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Motivation

Overview of how (im)practical (high quality) NLP systems are
produced
• basic (or advanced) workflows in practical NMT systems

• issues, errors, practical solutions

• HOWTO: win the WMT news shared task

Questions (with or without answers)
• What are the most important current research problems in NMT?

• How does SOTA research results carry over to (our) real life
systems?

• Do we need something special to deal with Hungarian?

• Does linguistics have a place in practical MT systems?
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Background

Project
• CEF eTranslation project

• MT service between all 26 official languages of the EU and the
EEA for translators and officials in EU and national authorities

• EU formal and general language engines

• recently extended to Zh, Ja, Ar, Tr (∑ > 100 systems)

• domain specific engines (health, law, financial)

• runs in MS Azure
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Background

The briefest history of all1

1Source: http://vas3k.com/blog/machine_translation/
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MT evolution

Translate:
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MT evolution

Translate:
It is a prerequisite for enrolment in the training that there is in place a
practical training agreement between the participant and a regional
body of the Danish Veterinary and Food Administration
(Fødevarestyrelsen).

Rule based

Ez egy előfeltétel beiratkozásért bent van az edzeni azt ott helyben
van egy gyakorlati tréningmegegyezés a résztvevő és a dán Veterinary
és Food Administration (Fødevarestyrelsen). egy területi teste között
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MT evolution

Translate:
It is a prerequisite for enrolment in the training that there is in place a
practical training agreement between the participant and a regional
body of the Danish Veterinary and Food Administration
(Fødevarestyrelsen).

PBMT

A nyilvántartásba vétel előfeltétele, hogy a képzés olyan gyakorlati
képzésben résztvevő közötti megállapodás egy regionális szerv és a
dán állategészségügyi és élelmiszerügyi hatóságot
(Fødevarestyrelsen).
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MT evolution

Translate:
It is a prerequisite for enrolment in the training that there is in place a
practical training agreement between the participant and a regional
body of the Danish Veterinary and Food Administration
(Fødevarestyrelsen).

NMT yesterday

A képzésen való részvétel előfeltétele, hogy gyakorlati képzési
megállapodás jöjjön létre a résztvevő és a Dán Állategészségügyi és
Élelmezésügyi Hivatal regionális szerve között (Fødevarestyrelsen).
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MT evolution

Translate:
It is a prerequisite for enrolment in the training that there is in place a
practical training agreement between the participant and a regional
body of the Danish Veterinary and Food Administration
(Fødevarestyrelsen).

NMT today

A képzésben való részvétel előfeltétele, hogy a résztvevő és a Dán
Állat-egészségügyi és Élelmiszerügyi Hivatal (Fødevarestyrelsen)
regionális szerve között gyakorlati képzési megállapodás jöjjön létre.
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Score evolution
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Score evolution

Big transformer
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Data

EU formal: high quality parallel data
• EURAMIS database [Steinberger et al., 2012]

• manual translations from EU institutions
• 3m (Ga) – 40m (Fr) segments (Hu: 22m)

General: mixed quality parallel data
• data from all over the place (mostly OPUS)

• ParaCrawl [Esplà et al., 2019, Bañón et al., 2020]

• 1m (Ga) – >100m (Fr, De, Es)
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Data filtering

Monolingual cleanup — cheap tricks
• minimum number of alphabetic characters, unicode filter

• maxlength (60-150 tokens→subwords)

• character/token ratio ([1.5,40])

• language identification (fasttext)

Parallel data scoring and filtering
• standard tool: Bicleaner [Esplà-Gomis et al., 2020]

rule-based prefilter, LM based fluency scorer, random forest
classifier

• similarity scoring based on sentence embeddings [Zhang et al.,
2020, Guo et al., 2018]
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Data pre- and postprocessing

EU formal systems: limn→∞U(n) = 1
• n: number of PP steps; U : user satisfaction ([0,1])

• standard steps: tokenization, normalization, truecasing
• placeholders (?)

• masking of specific patterns (losing semantic content and context)
• (soft) alignment based target side replacement (use the

Hungarian (Munkres) algorithm!)

Otherwise
• minimal or /0
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Attention, attention
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Data pre- and postprocessing

EU formal systems: limn→∞U(n) = 1
• n: number of PP steps; U : user satisfaction ([0,1])

• standard steps: tokenization, normalization, truecasing
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• masking of specific patterns (losing semantic content and context)
• (soft) alignment based target side replacement (use the

Hungarian (Munkres) algorithm!)

Otherwise
• minimal or /0
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Vocabulary
Rare words are very common→ subword segmentation
• optimal size? [Gowda and May, 2020]

• BPE: greedy segmentation [Sennrich et al., 2016b] (on tokenized
input)

• SentencePiece: unigram LM based segmentation [Kudo and
Richardson, 2018] (on raw input)

• Google’s WordPiece (not widely used in MT)

Subword regularization
• utilize the segmentation ambiguity as a noise to improve the

robustness of NMT [Kudo, 2018]

• BPE-Dropout [Provilkov et al., 2020]: stochastically corrupts BPE
segmentation→
multiple segmentations within the same fixed BPE framework
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Vocabulary sizes and scores
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Training and inference

Basic setup
• base transformer with standard hyperparameter settings

• 32–36k BPE/SP joint vocabulary

• 2–4 V100 GPUs

• train until sentence-wise normalized cross-entropy stalls on the
validation set for 5(–10) validation steps

Decoding speed
• low resource environment, implementation constraints

• default 6 layer self-attention decoder too slow

• reduced layer number for morphorich languages, RNN decoder
for others

• somewhat reduced quality, 2–4 x speedup
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Evaluation

Cross-evaluation on fixed test sets
• BLEU scores:

• EU formal engines: 45–70 (worst: Fi, Hu; best: Mt, Pt)
• generic: 30–50 (worst: Fi, Hu; best: Mt, Es)

Issues, frequent errors
• fluency vs adequacy

• domain robustness

• long segments: under- or overtranslation, hallucination→
automatic segmentation? [Pouget-Abadie et al., 2014]
big bird transformer? [Zaheer et al., 2020]

• named entities (placeholders?)

• input formatting/markup (brrr...) [Hanneman and Dinu, 2020]
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The Engine Factory

STOP

Epoch

Preprocessing

Validation

Model

Test data

Testing

Training data

3000 segments

2−100m segments

2−10000 segments

Parallel corpus

Validation data

Training

1−10 days
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High quality NMT system HOWTO

How to win the WMT News Task
• high peformance WMT engines

• some (standard) data filtering
• (iterative) (tagged) back-translation (forward translation does not

work)
• (ensembles of) huge (very deep) models (up to 50 encoder layers,

15000 FFN, 256 heads)
(cf. base: 6 layers, 2048 FFN, 8 heads)

• domain fine tuning
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Data selection vs. model complexity

Domain specific data rulez (even if noisy)
• build Fr–De system for European election news
• tune base model towards the topic by making use of guided topic

modeling [Jagarlamudi et al., 2012]
• seed word list from German news articles on elections
• classifiy documents in the 2014 and 2016 German News Crawl

into topics
• select candidate data (4m segments) for back-translation

• significant increase on task test set (3.7 BLEU)
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Result
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All in

En–De: the highest resource system
• 46m OP, 500m in domain mono, 35k dev set

• (normally) the strongest competition (≈ Zh)
• stepwise development from simple to complex models [Oravecz

et al., 2020]
• base transformer from OP
• + (tagged) back-translation
• + continued training on LM scored and ranked OP subset until

BLEU increases
• + big transformer
• + fine tuning
• + ensembling
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Evolution of models

En–De results

Test sets

System Data 2019 2020

M1: Baseline

base tr.
with OP

44.7M 41.9 32.7
M2: M1+BT+CT

base tr. with
back translation
and continued

training

64.7M 43.3 34.4
M3: M2+Tbig

big tr. with
more back
translation

and continued
training

232M 44.5 36.9
M4: M3+FT

big tr. with
more back
translation,
continued

training and
fine tuning

232M+34.5k 44.8 37.2

M5: M4 ens

ensemble of
best individual

models

232M+34.5k 46.0 37.9→(38.8)
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Evolution of models

All in one
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TINSTAAFL

The No Free Lunch Theorem for Machine Translation

26/76



WMT lessons

• cheaper to focus on data than on “smart” models

• no established best practice to rule them all

• differences between systems are small, cannot control for all
parameter settings (including data related processing)→
accidentally finding some optimal (best test set fitting)
configuration

• customized solutions most importantly wrt data selection and
filtering

• top systems are rarely suitable for large scale production
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Trends
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Clean data — better engine

Data quality
• NMT sensitive to noise [Khayrallah and Koehn, 2018, Koehn and

Knowles, 2017]

• improving the quality of training data by removing spurious
translations

• data filtering from noisy parallel data→
separate WMT shared task
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More data — better engine

Back-translation (BT)
• improving NMT with monolingual data [Sennrich et al., 2016a]

• tagged back translation [Caswell et al., 2019, Marie et al., 2020]
BT introduces:
• helpful signal (strong target-language, weak cross-lingual signal)
• harmful signal (amplifying MT bias)

BT label allows the model to separate helpful and harmful signal

• iterative BT [Hoang et al., 2018]
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BT

Simple but effective2

2Source: Hoang et al. [2018]
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More data — better engine

Back-translation (BT)
• improving NMT with monolingual data [Sennrich et al., 2016a]

• tagged back translation [Caswell et al., 2019, Marie et al., 2020]
BT introduces:
• helpful signal (strong target-language, weak cross-lingual signal)
• harmful signal (amplifying MT bias)

BT label allows the model to separate helpful and harmful signal

• iterative BT [Hoang et al., 2018]
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Iterative BT

Complex but can be effective3

3Source: Hoang et al. [2018]
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Task specific data — better engine

Domain adaptation (transfer learning)
• domain robustness [Müller et al., 2020]

• SMT: mostly adequate but not fluent
NMT: mostly fluent, but not adequate

• hallucinations (translations that are fluent but unrelated to the
source): key reason for low domain robustness

• various methods with mixed results
• subword regularization, defensive distillation, reconstruction, n-best

list reranking
• “radically different approaches are needed to increase the

coverage and adequacy of NMT translations without sacrificing
their fluency”
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in-domain and out-domain translation

Translate in the health domain
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in-domain and out-domain translation

Translate in the health domain
An example of its use is the treatment of some type of tumours, where
the radiolabelled medicine carries the radioactivity to the site of a
tumour to destroy the tumour cells.

Out of domain NMT yesterday

Ennek egyik példája a daganattípusok kezelése, ahol a radioizotóppal
jelölt gyógyszer a tumor helyszínének radioaktivitását hordozza, hogy
elpusztítsa a tumor sejteket.
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in-domain and out-domain translation

Translate in the health domain
An example of its use is the treatment of some type of tumours, where
the radiolabelled medicine carries the radioactivity to the site of a
tumour to destroy the tumour cells.

Out of domain NMT today

Egy példa a daganatok bizonyos típusainak kezelésére, ahol a
radioizotóppal jelölt gyógyszer radioaktivitást visz a daganat
helyszínére a daganatsejtek elpusztítása céljából.
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in-domain and out-domain translation

Translate in the health domain
An example of its use is the treatment of some type of tumours, where
the radiolabelled medicine carries the radioactivity to the site of a
tumour to destroy the tumour cells.

In-domain NMT (yesterday)

Egyik alkalmazása lehet bizonyos fajta daganatok kezelése, ahol a
radioaktív izotóppal jelzett gyógyszer a daganat területére szállítja a
radioaktivitást.
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Previously...

Translate:
It is a prerequisite for enrolment in the training that there is in place a
practical training agreement between the participant and a regional
body of the Danish Veterinary and Food Administration
(Fødevarestyrelsen).
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Previously...

Translate:
It is a prerequisite for enrolment in the training that there is in place a
practical training agreement between the participant and a regional
body of the Danish Veterinary and Food Administration
(Fødevarestyrelsen).

General NMT

A képzésben való részvétel előfeltétele, hogy a résztvevő és a Dán
Állat-egészségügyi és Élelmiszerügyi Hivatal (Fødevarestyrelsen)
regionális szerve között gyakorlati képzési megállapodás jöjjön létre.
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Previously...

Translate:
It is a prerequisite for enrolment in the training that there is in place a
practical training agreement between the participant and a regional
body of the Danish Veterinary and Food Administration
(Fødevarestyrelsen).

Health domain NMT

Előfeltétele annak, hogy a felállás egy olyan gyakorlati képzés
formájában hozták létre, amelyet a dán állatgyógyászati és
Élelmiszer-biztonsági hatóság regionális, valamint a dán alkalmazások
és az élelmiszer- és élelmiszerbiztonsági hatóság közötti gyakorlati
képzés felel meg (amely
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Task specific data — better engine

Domain adaptation (transfer learning)
• catastrophic forgetting [Thompson et al., 2019, Gu and Feng,

2020]

• domain adaptation with residual adapters; small adapter
components that are plugged in each hidden layer→
adapters are trained only with the in-domain data, keeping the
pretrained model frozen
[Bapna and Firat, 2019, Pham et al., 2020a]
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Methods
Increasing model complexity

• deeper models (mostly encoder) to model more complex dependencies;
vanishing gradient [Zhang et al., 2019, Liu et al., 2020a]

• layer normalization [Ba et al., 2016]: Post-LN and Pre-LN Transformer

Increasing training complexity

• teacher student training, knowledge distillation [Freitag et al., 2017]

• sequence level KD: student trained on teacher output with highest
score

• sequence level interpolation: student trained on teacher output
most similar to gold target

• multilingual [Lepikhin et al., 2020], multidomain models (transfer
learning)
multidimensional tagging [Stergiadis et al., 2021]
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Training with the wrong objective?

Standard training objective

• minimize the negative log-likelihood L (θ) of the training data D

L (θ) = ∑
(x,y)∈D

|y|

∑
t=1
− logP(yt |x,y<t ;θ)

x,y: source and target sequence
yt : tth token in y
y<t : all previous tokens
MLE with teacher forcing: y<t ground-truth labels in training→
mismatch with inference (y<t model predictions)
→ exposure bias [Wang and Sennrich, 2020]
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Minimum Risk Training

This is the way.
• MRT: sequence level objective, objective function: expected loss

(risk ) wrt posterior distribution [Shen et al., 2016]

R(θ) = ∑
(x,y)∈D

∑
ỹ∈Y (x)

P(ỹ|x)∆(ỹ,y)

∆(ỹ,y): discrepancy between gold translation y and model
prediction ỹ
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Minimum Risk Training

Training objective
• minimize the risk on the training data

• search space is intractable→ posterior distribution Y (x) is
approximated by a subspace by sampling a certain number of
candidate translations and normalizing

• loss: 1−sentence level smoothed BLEU

• Marian: "MRT and Reinforcement Learning are things I always
want to do, but never have time to implement."
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Other issues

• translation efficiency [Kim et al., 2019]

• data noising [Xie et al., 2017]
• terminology support

• training time [Dinu et al., 2019, Exel et al., 2020, Bergmanis and
Pinnis, 2021]

• decoding time: constrained decoding [Post and Vilar, 2018,
Hokamp and Liu, 2017]

44/76



Outline

1 Introduction

2 Systems for real life
Workflows for building practical systems
High quality (impractical) NMT systems

3 Methods to improve translation quality, system efficiency and service
Data centric approaches
Model centric approaches
Auxiliary tasks
Future directions

4 Questions with(out) answers

45/76



Evaluating and improving MT output

• QA (Quality Estimation)
• estimate MT output quality without reference
• word level (+/-); segment level (score)

• APE (Automatic Post-Editing)
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Remaining problems

• long range dependencies

• long segments

• terminology (adequacy)

• unsupervised MT [Marchisio et al., 2020]

• zero-shot MT

• multimodal (simultaneous) translation [Imankulova et al., 2020]

• more efficient transformer architectures [Tay et al., 2020]
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Most promising developments

• document level MT [Lopes et al., 2020, Ma et al., 2021]

• discourse level MT [Zhang, 2020]

• document/instance based dynamic domain adaptation [Farajian
et al., 2017, Xu et al., 2019, Pham et al., 2020b]
• adaptive MT

• live model training during post-editing from
<MT output, PE output> pairs

• expensive (time and resource)
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Qs

• What are the most important current research problems in NMT?

• How does SOTA research results carry over to (our) real life
systems?
• large focus on low resource settings in research
• many results do not carry over to practically usable models (which

are best case trained with substantial data or high quality parallel
domain data)

• Do we need something special to deal with Hungarian?

• Does linguistics have a place in practical MT systems?
“Phonemes are a fantasy of linguists” (Andrew Ng)

• Pretrained LMs in NMT [Liu et al., 2020b]
seem to work only in low resource or (some) multilingual settings;
the more data the less gain (or even drop) in quality
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Papers with code...
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Confusions and future steps

Lessons learned
• reasonable models can be produced using established

techniques even in very constrained conditions

• brute force is useful but expensive

• data selection is more rewarding and a lot cheaper

Where we are going we don’t need roads
• magical data generation algorithm, which out of an empty set,

generates a high quality parallel data set of any amount for any
language
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generates a high quality parallel data set of any amount for any
language
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I have spoken.
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