

# MODEL STRUCTURES AND AUTOMATA

András Kornai

Algebra Department, Budapest University of Technology and Economics  
and  
SZTAKI Institute of Computer Science

WLD Pécs, January 9 2026

# TWO MAGISTERIA: LOGIC AND MACHINE LEARNING

|              | logic        | ml            |
|--------------|--------------|---------------|
| • typically  | discrete     | continuous    |
| • math       | algebra-like | calculus-like |
| • stats      | irrelevant   | indispensable |
| • types      | load-bearing | vestigial     |
| • subdomains | liked        | hated         |

- Early effort at synthesis (Markov Logic) Richardson and Domingos, 2006; Domingos and Lowd, 2009 did not really have a strong logic flavor (graphical models still don't)
- Current efforts (Vector Semantics, Tensor Logic) Kornai, 2023; Domingos, 2025 may fare better
- Plan of the talk: describe **current state** of overlap and suggest **directions** for better hybrid systems

# SYNTAX OF LOGIC

Rough fit with formal language theory:

- Two infinite vocabularies: *variables* and (*extralogical*) *constants*
- Terminal vocabulary: parens, quantifiers, Booleans, . . .
- Terms, formulas
- 3SAT, FOL, HOL
- Syntax (whether a formula or a proof is well-formed) fits with context-sensitive ( $\mathcal{L}_1$ ) family
- Natural language fits in *mildly* context-sensitive ( $\mathcal{L}_{1.5}$ ) family.
- Conjecture (Marsh and Partee, 1984) logical syntax fits there too
- In vector semantics, only two variables (grammatical ‘agent’ and ‘patient’) are used, and only a finite number of constants (ballpark  $10^4 – 10^6$ ) are required. Tarski and Givant, 1987 requires three!
- With these limitations, no infinite vocabularies, and context-free logical syntax is sufficient

# SEMANTICS

## Tarski-style semantics

- Two-valued logic throughout
- Reist theory: there are worlds composed of objects and relations
- Standard (Kripke-enhanced) story: satisfaction in (nearby) models
- Ontology: any usual variant of set theory is fine
- Here we will make use of 'clouds' and 'clocks' Popper, 1966
- Clouds are *point clouds*, finite samples from possibly infinite distributions in (multi)linear space. They give us the best handle on extralogical constants. Instead of a few 'logical' constants (Boolean operators, term-binding operators) we want to extend 'logical' to things like *vertical* or *choose*. VS claims such notions are also subject to logical analysis
- Clocks will be model structures endowed with automata-theoretic *transitions* and possibly *input/output*

# WHAT WE WANT

- Turn certain key notions from extralogical to logic-internal
- One of these notions in *live*, *life*, *living*
- We want model structures where things (automata) can live
- Typical automaton: think of ordinary computers
- Typical model structure: think of a region of space where atoms are arranged to form what we recognize as a server room
- In one second, the server room doesn't change much, but the computer performed several billion operations. We need **timescales**
- Birds-eye view of temporal logic
- Concentrating on the linguistically informed part beginning with the **Partee Paradox** *The temperature is 90 °F and rising*

# STANDARD SOLUTION

- Richard Montague: *temperature* is intensional (can take different values in different possible worlds)
- Montague Grammar: models are indexed by  $\langle s, t \rangle$  pairs (Montague, 1973; Gallin, 1975)
- The use of such indexes is abstract: no structure, such as  $\mathbb{R}$  or  $\mathbb{Z}$ , is imposed on the temporal index
- Explicit temporal order begins with (Partee, 1976; Partee, 1984)
- (Kamp, 1979; Muskens, 1995) all sorts of linear orders are permitted as long as precedence is compatible with containment
- The current system also permits *frequentatives* like H. -gat/get as in *iszogat* 'drinks (alcohol) regularly' *igérget* 'regularly makes promises' etc.
- Simplest periodic automaton  $C_2$  (example: *day/night*), can build more complex ones (Kornai, 2015)

# TASTE OF VECTOR SEMANTICS

- We can consider individual samples (occurrences in text) of words like *vertical* or *choose*
- Characterize the point clouds either by their center (works well if the cluster is very tight) or by a bounding polytope
- The polytopes are related to one another
- *vertical* 'direction, has top, has middle, has bottom, Earth pull in direction' (Has immense survival value/hardwired detector)
- *choose* '=agt choose {=pat for\_ =agt}'
- Such definitions are circular, each provides an equation in a small (4-500 unknowns) system of equations.
- Less than 20 true primitives, insufficient for hanging all definitions off of these
- To get to the vectors we solve the system of equations. **not as good as learning them**

# TASTE OF TENSOR SEMANTICS

- Instead of formulas, the basic units of the formal theory are tensors of arbitrary shape  $d_1, d_2, \dots, d_k$
- These are used both to model specific entities *and* to select particular 'indexable' subsets of model structures
- Existential cut: *The boy ate the sandwich* is meaningful only in worlds where there are boys and sandwiches. Ancient Greece is out.
- A neighborhood of worlds selected around the 'here and now' point in index space (actually, it's not just a single point)
- Relation composition is done by tensor multiplication
- Domingos, 2025 surfaces relations 'predicate invention' by thresholding
- Whether this is the right way remains to be seen, but the ability to devise new predicates is key to human performance

# AUTOMATA

- We use Moore (emitting on state arrival) rather than Mealy (emitting on state transition)
- Deterministic or nondeterministic, full or partial flavors
- We include semiautomata (transition systems, labeled or unlabeled)
- Terminology across mechanistic devices (semiautomata, automata, transducers, machines) intentionally left vague
- Both biologically inspired and artificial neural nets are in scope
- Weighted generalizations such as probabilistic transitions would be possible but will not be discussed here
- Automata are models, models are automata

# LABELS/SYMBOLS

- Come from finite sets (alphabets):  $\Sigma$  input alphabet,  $O$  output alphabet
- Connection strengths are quantized (fp8 is extremely fine-grained)
- Proto-arithmetic on 8 bits already requires work
- System not well suited for bignum arithmetic/arbitrary precision
- Binary alphabet 0/1 created by God, the rest are the work of Man
- We begin with Clustered Moore Automata Kornai, 2025
- Under realistic assumptions, these cannot be built up to full Turing Machines (contra Domingos 2025 and Siegelmann, 1999, in agreement with Weiss, Goldberg, and Yahav, 2018)

# WHAT AUTOMATA BUY US

- A simple but powerful modeling technique
- Can do effective calculations (proof theory)
- Models are simulation models, with obvious predictive power
- NOT bisimulation models! Two model structures capable of bisimulating one another are considered equivalent, one is a perfect model of the other
- Good (universal) algebraic foundations
- Built in temporality with attendant causality/mechanistic interpretability Nanda et al., 2023
- Strong links to linguistics via formal lg theory
- Possible links to biology via Free Energy Principle (Friston, 2010)

# CLUSTERED MOORE AUTOMATA DEF.

- Like standard Moore automata  $\mathcal{A} = (Q, \Sigma, O, \delta, \lambda, q_0)$  where  $Q$  is a finite set of states,  $\Sigma$  is the input alphabet,  $O$  is the output alphabet,  $\delta : Q \times \Sigma \rightarrow Q$  is the transition function,  $\lambda : Q \rightarrow O$  is the output function, and  $q_0 \in Q$  is the initial state
- A CMA state can contain a smaller CMA running on a different (faster) timescale
- There are constraints on number of states, alphabet sizes, in- and out-degrees (see Kornai, 2025)
- There are only finitely many (few) timescales between `max` and `min`
- Can be used to build epistemically limited *slow* Turing Machines Kornai, 2026
- sTMs grow tetrationally with embedding depth  $d = \max - \min$

# MODEL STRUCTURES ARE CMA

- Sets (point clouds) of model structures can be considered CMA states
- Example: models that have 'weather' that can be characterised by a numerical predicate `temperature` and are connected by a shared temporal order. The Partee Paradox can be resolved trivially *as long as there is only one model structure for each time instance*
- We use two temporal primitives, `before` and `after` (in a strongly reductionist theory one of these would be sufficient)
- *temperature rising* '`temp er temp(before)`'
- Transitions are the passing of time (mechanical causation)
- Not a lot of signaling (i/o) across model states, just inertia
- No need to relax CMA limitations

# AUTOMATA ‘LIVING’ IN MODEL STRUCTURES

- One state of a model structure can hold a CMA (all its states, transitions, i/o) that runs on a faster timescale
- The internal machine can signal to the larger one, but this takes time to propagate
- No microsynchrony (clock signal) assumed, amorph timing
- Everything finitary/discrete, but it looks as if it was infinite/continuous
- Of what use is your beautiful investigation regarding  $\pi$ ? Why study these problems when irrational numbers do not exist?  
(Kronecker to Lindemann)

# THANK YOU!

-  Domingos, Pedro (2025). *Tensor Logic: The Language of AI*. arXiv: 2510.12269 [cs.AI]. URL: <https://arxiv.org/abs/2510.12269>.
-  Domingos, Pedro and Daniel Lowd (2009). *Markov Logic, An Interface Layer for Artificial Intelligence*. Springer. ISBN: 978-3-031-00421-6. DOI: [10.1007/978-3-031-01549-6](https://doi.org/10.1007/978-3-031-01549-6).
-  Friston, Karl (2010). “The free-energy principle: a unified brain theory?” In: *Nature Reviews Neuroscience* 11, pp. 127–138.
-  Gallin, D. (1975). *Intensional and Higher-Order Modal Logic*. North-Holland.
-  Kamp, Hans (1979). “Events, Instants and Temporal Reference”. In: *Semantics from a Multiple Point of View*. Ed. by U. Egli and A. van Stechow. Berlin: de Gruyter, pp. 376–471.
-  Kornai, András (2015). “Realizing monads”. In: *Hungarian Review of Philosophy* 59.2, pp. 153–162.
- (2023). *Vector semantics*. Springer Verlag. DOI: [10.1007/978-981-19-5607-2](https://doi.org/10.1007/978-981-19-5607-2). URL: <http://kornai.com/Drafts/advsem.pdf>.

-  Kornai, András (2025). *Cluster automata*. arXiv: 2503.22000. URL: <https://arxiv.org/abs/2503.22000>.
-  — (2026). *Ultrafinitism and epistemic limitations*. Submitted to Ultrafinitism special issue of *Philosophia Mathematica*.
-  Marsh, William and Barbara Partee (1984). “How non-context-free is variable binding?” In: *Proceedings of the West Coast Conference on Formal Linguistics III*. Ed. by M. Cobler, S. MacKaye, and M. Wescoat. Stanford, CA, pp. 179–190.
-  Montague, Richard (1973). “The proper treatment of quantification in ordinary English”. In: *Formal Philosophy*. Ed. by R. Thomason. Yale University Press, pp. 247–270.
-  Muskens, Reinhard A. (1995). “Tense and the Logic of Change”. In: *Lexical Knowledge in the Organization of Language*. Ed. by Urs Egli et al. Amsterdam: John Benjamins, pp. 147–183.
-  Nanda, Neel et al. (2023). *Progress measures for grokking via mechanistic interpretability*. arXiv: 2301.05217 [cs.LG].

-  Partee, Barbara (1984). "Nominal and temporal anaphora". In: *Linguistics and Philosophy* 7, pp. 243–286. DOI: 10.1007/BF00627707.
-  Partee, Barbara H., ed. (1976). *Montague Grammar*. New York: Academic Press.
-  Popper, Karl (1966). *Of Clouds and Clocks*. Washington University, St. Louis.
-  Richardson, Matthew and Pedro Domingos (2006). "Markov Logic Networks". In: *Machine Learning* 62 (1–2), pp. 107–136. DOI: 10.1007/s10994-006-5833-1.
-  Siegelmann, Hava T. (1999). *Neural Networks and Analog Computation: Beyond the Turing Limit*. Birkhäuser.
-  Tarski, A. and S.R. Givant (1987). *A formalization of set theory without variables*. American Mathematical Society.
-  Weiss, Gail, Yoav Goldberg, and Eran Yahav (2018). "On the Practical Computational Power of Finite Precision RNNs for Language Recognition". In: *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume*

2: *Short Papers*). Ed. by Iryna Gurevych and Yusuke Miyao. Melbourne, Australia: Association for Computational Linguistics, pp. 740–745. DOI: 10.18653/v1/P18-2117. URL: <https://aclanthology.org/P18-2117>.