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Word frequency distributions
First, collect a corpus reflective of the language variety that you
care about (e.g. the language of Dickens, the language of
neurobiology, or the language of “the web”)

How do you make sure the corpus is representative? Easy for
Dickens, harder for neurobiology, very hard for the web

Next, you tokenize. Key issues: do you equate lowercase and
uppercase versions? How do you treat punctuation? Where do
you draw the word boundaries?

Finally: do you want to lemmatize? Are represent and
represents the same word as representing and represented? How
about representative and representation?

In English, the issue can be largely avoided, but in many
languages it can’t be

We will start with English, but morphology will stay on the
agenda
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Corpora, tokenization

HLT has plenty, ask and you shall receive (see Corpora after the
overview)

You can also use some preexisting crawler, or undertake to dust
off our own, see Resources/wac4.pdf

We have fast C code for tokenization, but for many goals
standard unix utilities are already sufficient (see
Resources/bentley 1986.pdf)

Spot querying by ordinary (linux) means

Tokenizing is also easy in English with sed. For Hungarian
https://github.com/nytud/quntoken is fine

Morphological analysis is much more complex, for English we
may start using EMOR which is based on SFST (München has
Latin, German, Turkish, and Malayalam morphologies for the
fun-loving – HLT also has corpora for most of these)
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Some notation
We begin with a probability distribution of which a corpus C is
merely a sample. We adopt this view even for ‘closed’ corpora
such as the works of Dickens, for a new manuscript can always
surface, and our interest is in the population (e.g. the language
of Dickens, the language of neurobiology, etc)
For each type w we obtain FC (w) (called the sample counts).
HLT has counting tools that are considerably faster than code
you could write on the spot
We denote corpus size |C | =

∑
FC (w) by N , and consider

corpus frequency fC (w) = FC (w)/N . We are interested in fC (w)
only as an estimate of p(w), the probability of w in the
population
We denote by V (C ) the number of different types in the corpus.
To the extent we draw different samples C and D from the same
population we find that V depends heavily on |C | but only
minimally on the choice of C itself, so we will write V (N)
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Easily repeatable observations
We notice that empirical frequencies converge very slowly, and
give a weak estimate of the probability for the sample sizes (N
below a few million) common until the 1980s. In practice, not
even the top 10 words show stable frequencies below N = 109

(gigaword corpora)

We also notice that empirical frequencies span as many orders of
magnitude as the corpus size permits. There are always hapax
legomena, words that appear with F = 1, f = 1/N (see
Resources/indra.pdf)

To reduce the effect of slow convergence, we rearrange the data
by decreasing frequency. The most frequent word (in English
the) will be considered ‘rank 1’, the 2nd most frequent ‘rank 2’
and so on. Ranks r are between 1 and V (N), and instead of
p(w) we will look at pr .

We plot pr as a function of r on a log-log scale
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Direct plot (no log-log transform)
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More standard plots
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Normalization
We normalize the x (log rank) axis by scaling with logV (n) so
that our normalized x is always in the [0-1] range, no matter
how big the corpus

The rearrangement by rank automatically makes the function
monotonically decreasing
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Zipf fit a linear curve on the log-log plot, which means
log(F (x)) ∼ HC − BCx logV (N)
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Let’s look at the intercepts first

Close to x = 0. Here we have log F1 (the log count of the most
frequent item). Consider English the which takes up about 5%
of the corpus, this means log 0.05N ∼ HC − BC/V (N) Since
V (N) → ∞ with N → ∞ whereas BC remains bounded (close
to 1), we have HC ∼ logN + log p1 and the frequency of the
most frequent word is constant, so HC is about logN .

Close to x = 1. At the highest (log) rank we see a hapax, so we
have log(FV (N)) = log(1) = 0 which gives the linear equation
HC = BC logV (N), so by plugging in our HC estimate we get
log(N)/ log(V (N)) = BC

Taking q = 1/B we have V (N) = Nq known as Herdan’s law of
vocabulary growth.
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Herdan’s Law
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In the high range
The linearity of the empirical curve is highly questionable:

To get rid of the problem, we assume an urn model with two
urns, roughly corresponding to function words and content
words. We assign the top k words to the first urn, accounting
for maybe as much as 50% of the probability mass
For a broader overview see mitzenmacher 2003.pdf,

hmwat.pdf
Kornai Vector Semantics: Lecture 2 21 February 2024 12 / 15



In the low range
The fit is much better! Let c1 be the number of hapax
legomena, c2 the number of dis legomena, etc. Zipf’s Second
Law aka ‘number-frequency law’ says that plotting log n against
log cn will be linear, with slope ∼ −1/2
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Theorem 3 (Kornai, 1999a) If a distribution satisfies Zipf’s Law
with slope parameter B , it satisfies Zipf’s Second law with
parameter D = B/(1 + B)
Second Law ̸⇒ First Law (For nice clean Tauberian fun see
zipf.pdf)
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Entropy
Character entropy (finitely many choices) is actually very
important (cfreq tool for character counts) but we will really
concentrate on word entropy here

We cut the sum in two parts at some boundary k . To get the
two urns roughly equal, Pk =

∑k
i=1 pi ∼

∑∞
i=k+1 pi , takes about

256 words for English, 4096 (unstemmed) for Hungarian.
Altogether, we have

1−Pk = Ck

N1/B∑
r=k+1

r−B ≈ Ck

∫ N1/B

k

x−Bdx =
Ck

(1− B)
[N

1−B
B −k1−B ]

where Ck is some constant of proportionality that guarantees
that the probailities sum to 1. This yields
Ck ≈ (1− Pk)(B − 1)kB−1. Away from the very top of the
range, the Zipf fit is very good, so the computation is not very
sensitive to the choice of k .
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Word entropy con’t

We have

H = −
k∑

r=1

pr log2(pr )−
N1/B∑
r=k+1

pr log2(pr )

We use direct entropy computation for the “function word” urn,
and use Zipf’s laws for the “content word” urn. For English,
P256 is about 0.52, and B ∼ 1.25, for Hungarian P4096 ∼ 0.5.

H ≈ Hk+
1− Pk

log(2)
(B/(B−1)− log(B−1)+log(k)− log(1−Pk))

This yields H=12.67 bits for English, H=15.41 bits for
Hungarian.
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