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Abstract

The commonsensical assumption that any language has only finitely many words is shown
to be false by a combination of formal and empirical arguments. Zipf’s Law and related
formulas are investigated and a more complex model is offered.

1 Introduction

Ask the lay person how many different words are there, and you are likely to receive

a surprisingly uniform set of answers. English has more words than any other lan-

guage. There are over a hundred thousand words in unabridged dictionaries. The

OED has over three hundred thousand, but there are still a few words missing. A

five year old knows five thousand words, an adult uses fifteen thousand. Shakespeare

used thirty thousand, but Joyce used even more. Some primitive tribes get along

with only a few hundred words. Eskimo has seventeen words for snow. Introductory

linguistics courses invariably spend a great deal of energy on rebutting these and

similar commonly known “facts” about languages in general and English in par-

ticular. But the basic fallacy, what we will call the closed vocabulary assumption,

that there is a fixed number of words S in any given language, is often present even

in highly technical work otherwise based on a sophisticated understanding of lan-

guage. Open vocabulary, that words in a language form a denumerably infinite set,

is a standard assumption in generative linguistics, where it is justified by pointing

at productive morphological processes such as compounding and various kinds of

affixation. Yet somehow the existence of such processes generally fails to impress

those with more of an engineering mindset, chiefly because the recursive aspect

of these processes is weak – the probability of iterated rule application decreases

exponentially with the number of iterations.

In this paper we offer a new quantitative argument why vocabulary must be

treated as open. We investigate vocabulary size not as an isolated number, but

rather as part of the broader task of trying to estimate the frequency of words.

The rest of this Introduction establishes the terminology and notation and surveys

the literature. Section 2 disposes of some widely used arguments in favor of closed
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vocabulary by means of counterexamples and introduces the subgeometric mean

property that will play a crucial role in the subsequent analysis of vocabulary size.

Section 3 explores the regions of extremely high and extremely low frequencies,

where the basic regularity governing word frequencies, Zipf’s Law, is known to fail.

Section 4 investigates some widely used alternatives to Zipf’s Law, including the

beta, lognormal, Waring, and negative binomial distributions, and shows why most

of these are inferior to Zipf’s Law. We offer our conclusions in Section 5.

1.1 Zipf’s Laws

It is far from trivial to define words in spoken or signed language, but in this

paper we can steer clear of these difficulties by assuming some conventional or-

thography or linguistic transcription system that has one to one correspondence

between orthographic words (maximum non-whitespace non-punctuation strings)

and prosodic words. Because a large variety of transcription systems exist, no gen-

erality is lost by restricting our attention to text that has already been rendered

machine readable. For the sake of concreteness we will assume that all characters

are lowercased and all special characters, except for hyphen and apostrophe, are

mapped on whitespace. The terminal symbols or letters of our alphabet are there-

fore L = {a, b, ...z, 0, 1, ...9,′ ,−} and all word types are strings in L∗, though word

tokens are strings over a larger alphabet including capital letters, punctuation, and

special characters. Using these or similar definitions, counting the number of to-

kens belonging in the same type becomes a mechanical task. The results of such

word counts can be used for a variety of purposes, such as the design of more ef-

ficient codes, typology, investigations of style, authorship, language development,

and statistical language modeling in general.

Given a corpus Q of N word tokens, we find V different types, V ≤ N . Let

us denote the absolute frequency (number of tokens) for a type w by FQ(w), and

the relative frequency FQ(w)/N by fQ(w). Arranging the w in order of decreasing

frequency, the rth type (wr) is said to have rank r, and its relative frequency

fQ(wr) will also be written fr. As (Estoup 1916) and Zipf (1935) noted, the plot of

log frequencies against log ranks shows, at least in the middle range, a reasonably

linear relation. Fig. 1 shows this for a single issue of an American newspaper, the

San Jose Mercury News, or Merc for short.

Denoting the slope of the linear portion by −B, B is close to unity, slightly

higher on some plots, slightly lower on others. Some authors, like (Samuelsson

1996), reserve the term “Zipf’s Law” to the case B = 1, but in this paper we use

more permissive language, since part of our goal is to determine how to formulate

this regularity properly. As a first approximation, Zipf’s Law can be formulated as

log(fr) = HN − BN log(r)(1)

where HN is some constant (possibly dependent on S and thus on N , but indepen-

dent of r). When this formula is used to fit a Zipfian curve to frequency data, with

increased corpus size not only the intercept HN but also the slope BN will depend
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Fig. 1. Plot of log frequency as a function of log rank for a newspaper issue (150k words)

on the corpus size N . We reserve the term “Zipfian” to the case where BN tends

to a constant B as N tends to infinity, but do not assume in advance B = 1. (1)

is closely related to, but not equivalent with, another regularity, often called Zipf’s

Second Law. Let V (i, N) be the number of types that occur i times: Zipf’s Second

Law is usually stated as

log(i) = KN − DN log(V (i, N))(2)

1.2 Background

As readers familiar with the literature will know, the status of Zipf’s Law(s) is highly

contentious, and the debate surrounding it is often conducted in a spectacularly

acrimonious fashion. As an example, we quote here Herdan (1966:88):

The Zipf law is the supposedly straight line relation between occurrence frequency of
words in a language and their rank, if both are plotted logarithmically. Mathematicians
believe in it because they think that linguists have established it to be a linguistic law,
and linguists believe in it because they, on their part, think that mathematicians have
established it to be a mathematical law. [...] Rightly seen, the Zipf law is nothing but the
arbitrary arrangement of words in a text sample according to their frequency of occurrence.
How could such an arbitrary and rather trivial ordering of words be believed to reveal the
most recondite secrets, and the basic laws, of language?

We can divide the literature on the subject in two broad categories: empirical curve

fitting and model genesis. The first category is by far the more voluminous, run-

ning to several thousand scholarly papers and hundreds of monographs. Here we

do not even attempt to survey this literature: QUALICO conference volumes and

the Journal of Quantitative Linguistics offer a good entry point. In mathematical

statistics, attempts to discern the underlying mechanism that gives rise to a given

distribution are called investigations of model genesis: a particularly successful ex-

ample is the explanation why normal distribution appears so often in seemingly

unrelated areas, provided by the central limit theorems. Given the sheer bulk of
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the literature supporting some Zipf-like regularity in domains ranging from linguis-

tic type/token counts to the distribution of wealth, it is natural that statisticians

sought, and successfully identified, different mechanisms that can give rise to (1-2)

or related laws.

The first results in this direction were obtained by (Yule 1924), working on a

version of (2) proposed in (Willis 1922) to describe the number of species that belong

to the same genus. Assuming a single ancestral species, a fixed annual probability s

of a mutation that produces a new species, and a smaller probability g of a mutation

that produces an entirely new genus, Yule shows that over time the distribution for

the number of genera V (i, N) with exactly i species will tend to

c

i1+g/s
(3)

which, is the same as (2) with DN = s
s+g and KN = −s log(ζ(1+g/s))/(s+g) inde-

pendent of N (the Riemann ζ function enters the picture only to keep probabilities

summing to one).

This is not to say that words arise from a single undifferentiated ancestor by a

process of mutation, but as Zipf already noted, the most frequent words tend to

be the historically older ones, which also have the highest degree of polysemy. The

essential point of Yule’s work is that a simple, uniform process of mutation can give

rise, over time, to the characteristically non-uniform ‘Zipfian’ distribution: merely

by being around longer, older genera have more chance to develop more species,

even without the benefit of a better than average mutation rate.

The same distribution has been observed in patterns of income by (Pareto 1897),

and there is again a large body of empirical literature supporting Zipf’s Law (known

in economics as Pareto’s Law). Champernowne (originally in 1936, but not fully

published until 1973) offered a model where the uneven distribution emerges from a

stochastic process (Champernowne 1952, 1953, 1973, see also Cox and Miller 1965)

with a barrier corresponding to minimum wealth.

Zipf himself attempted to search for a genesis in terms of a “principle of least

effort”, but his work (Zipf 1935, 1949) was never mathematically rigorous, and was

cut short by his death. A mathematically more satisfying model specifically aimed

at word frequencies was proposed by (Simon 1955), who derived (1) from a model of

text generation based on two hypotheses: (i) new words are introduced by a small

constant probability, and (ii) old words are reused with the same probability that

they had in earlier text.

A very different genesis result was obtained by (Mandelbrot 1952) in terms of the

classic “monkeys and typewriters” scenario. Let us designate an arbitrary symbol

on the typewriter as a word boundary, and define “words” as maximum strings that

do not contain it. If we assume that new symbols are generated randomly, Zipf’s

law can be derived for B > 1. Remarkably, the result holds true if we move from

a simple Bernoulli experiment (zero order Markov process) to higher order Markov

processes.

In terms of content, though perhaps not in terms of form, the high point of

the Zipfian genesis literature is the Simon-Mandelbrot debate (Mandelbrot 1959
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1961a-c, Simon 1960 1961a 1961b). Simon’s genesis works equally well irrespective of

whether we assume closed (B < 1) or open (B > 1) vocabulary. For Mandelbrot, the

apparent flexibility in choosing any number close to 1 is a fatal weakness in Simon’s

model. While we will argue for open vocabulary, and thus side with Mandelbrot for

the most part, we believe his critique of Simon to be too strict in the sense that

explaining too much is not as fatal a flaw as explaining nothing. Ultimately, the

general acceptance of Mandelbrot’s genesis as the linguistically more revealing rests

not on his attempted destruction of Simon’s model but rather on the fact that we

see his model as more assumption-free.

2 Exponential and subexponential decay

Arguments based on counting the frequency of various words and phrases are noth-

ing new: in the 1640s a Swedish sect was deemed heretical (relative to Lutheran

orthodoxy) on the basis of larger than expected frequency of forms such as Christ

bleeding, Christ suffering, Christ crucified found in its Sion Psalmbook. With such

a long tradition, predating the foundations of modern probability theory by cen-

turies, it should come as no surprise that a considerable number of those employing

word counts still reject the standard statistical view of corpora as samples from

some underlying population. In particular, Zipf himself held that collecting more

data about word frequency can sometimes distort the picture, and there is an “op-

timum corpus size”. For a modern discussion and critique of this notion see Powers

(1998), and for an attempt to recast it in a contemporary statistical framework see

Baayen (2001:5.2), who traces the method to papers published in the eighties by

Orlov, Chitashvili, and Khmaladze (non vidi).

The central mathematical method of this paper is to make explicit the depen-

dence of certain model parameters on corpus size N , and let N increase without

bounds. Since this method only makes sense if we assume the standard apparatus

of mathematical statistics and probability theory, in 2.1 we devote some time to

defending the standard view. In 2.2 we introduce a simple normalization technique

that makes frequency counts for different values of N directly comparable. In 2.3

we compare the normalized distributions to exponential decay, an unrealistic, but

mathematically very tractable model. We introduce the more realistic subgeomet-

ric mean property in 2.4, and the empirically observable power law of vocabulary

growth in 2.5.

2.1 Corpora as samples

Suppose that the primary focus of our interest is the journalistic/nonfiction-literary

style exemplified by the Merc, or that even more narrowly, our focus is just the Merc

and we have no intention of generalizing our results to other newspapers, let alone

other stylistic ranges. While the Merc is a finite corpus, growing currently at a rate

of 60m words/year, our goal is not an exhaustive characterization of past issues,

but rather predicting word frequencies for future issues as well. Therefore, the

population we care about is an infinite one, comprising all potential issues written
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in “Merc style” and each issue is but a finite sample from this infinite population.

The issue we wish to address is whether this population is based on a finite (closed)

vocabulary, or an infinite (open) one.

It is often argued that synchronic vocabularies are by definition closed, and only

in a diachronic sense can vocabulary be considered open. New words enter the lan-

guage at a perceptible rate, and the Merc shows this effect as well as any other

continually growing corpus. But this process is considerably slower than the tem-

poral fluctuations in word frequency occasioned by certain geographic locations,

personages, or products getting in the news, and is, at least to some extent, offset

by the opposite process of words gradually falling into disuse. What we wish to

demonstrate is openness in the synchronic sense, and we will not make any use of

the continually growing nature of the Merc corpus in doing so. In fact, we shall

argue that even historically closed corpora, such as Joyce’s Ulysses, offer evidence

of being based on an open vocabulary (see 4.1). This of course makes sense only if

we are willing to go beyond the view that the words in Ulysses comprise the entire

statistical population, and view them instead as a sample of Joyce’s writing, or

even more narrowly, as a sample of Joyce’s writing books like Ulysses. It is rather

unlikely that a manuscript for a sequel to Ulysses will some day surface, but the

possibility can not be ruled out entirely, and it is only predictions about unseen

material that can lend support to any model. The Merc is better for our purposes

only because we can be reasonably certain that there will be future issues to check

our predictions against.

The empirical foundation of probabilistic arguments is what standard textbooks

like (Cramér 1955) call the stability property of frequency ratios: for any word w,

by randomly increasing the sample Q without bounds, fQ(w) = FQ(w)/N tends to

some f(w) as N tends to infinity. In other words, sample frequencies must converge

to a fixed constant 0 ≤ f(w) ≤ 1 that is the probability (population frequency) of

the word. In the context of using ever-increasing corpora as samples, the stability of

frequency ratios has often been questioned on the basis of the following argument.

If vocabulary is not closed, the pie must be cut into more and more slices as sample

size is increased, and therefore the relative frequency of a word must, on average,

decay.

Since word frequencies span many orders of magnitude, it is difficult to get a

good feel for their rate of convergence just by looking at frequency counts. The

log-log scale used in Zipf plots is already an indication of the fact that to get any

kind of visible convergence, exponentially growing corpora need to be considered.

Much of traditional quantitative linguistic work stays close to the Zipfian optimum

corpus size of 104 −105 words simply because it is based on a closed corpus such as

a single book or even a short story or essay. But as soon as we go beyond the first

few thousand words, relative frequencies are already in the 10−6 range. Such words

of course rarely show up in smaller corpora, even though they are often perfectly

ordinary words such as uniform that are familiar to all adult speakers of English.

Let us therefore begin by considering an artificial example, in which samples are

drawn from an underlying geometrical distribution f(wr) = 1/2r.

Example 1. If the rth word has probability pr = 2−r, in a random sample Q
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of size N = 2m we expect 2m−1 tokens of w1, 2m−2 tokens of w2, . . . , 2 tokens

of wm−1, 1 token of wm and one other token, most likely another copy of w1.

If this expectation is fulfilled, the frequency ratio based estimate fS(wr) of each

probability pr = f(wr) is correct within 1/N . Convergence is therefore limited only

by the resolution offered by corpus size N , yet the number of types V (N) observed

in a sample of N tokens still tends to infinity with log2(N).

Discussion. Needless to say, in an actual experiment we could hardly expect

to get results this precise, just as in 2N tosses of a fair coin the actual value of

heads is unlikely to be exactly N . Nevertheless, the mathematical expectations

are as predicted, and the example shows that no argument based on the average

decline of probabilities could be carried to the point of demonstrating that closed

vocabulary is logically necessary. Though not necessary, closed vocabulary is still

possible, and it is easy to construct examples, e.g. by using phonemes or syllables

instead of words. What we will demonstrate in Theorem 1 is that closed vocabulary

is logically incompatible with observable properties of word counts.

2.2 Normalization

We assume that population frequencies give a probability distribution over L∗, but

for now remain neutral on the issue of whether the underlying vocabulary is open

or closed. We also remain neutral on the rate of convergence of frequency ratios,

but note that it can be seen to be rather slow, and not necessarily uniform. If rates

of convergence were fast to moderate, we would expect empirical rankings based

on absolute frequencies to approximate the perfect ranking based on population

frequencies at a comparable rate. For example one could hope that any word that

has over twice the average sample frequency 1/V (N) is already “rank stabilized”

in the sense that increasing the sample size will not change its rank. Such hopes

are, alas, not met by empirical reality: doubling the sample size can easily affect

the ranking of the first 25 items even at the current computational limits of N ,

109-1010 words. For example, moving from a 10m corpus of the Merc to a 20m

corpus already affects the rankings of the first four items, changing the, of, a, to to

the, of, to, a.

Since sample rank is an unreliable estimate of population rank, it is not at all

obvious what Zipf’s law really means: after all, if we take any set of numbers and

plot them in decreasing order, the results charted on log-log scale may well be

approximately linear, just as Herdan, quoted above, suggests. As a first step, we

will normalize the data, replacing absolute rank r by relative rank x = r/V (N).

This way, the familiar Zipf-style plots, which were not scale invariant, are replaced

by plots of function values f(x) restricted to the unit square. f(1/V (N)) = f(w1)

is the probability of the most frequent item, f(1) = f(V (N)/V (N)) = 1/N is the

probability of the least frequent item, and for technical reasons we define the values

of f between r/(V (N)) and (r + 1)/V (N) to be p(wr+1). A small sample (four

articles) is plotted in this style in Fig. 2. Since the area under the curve is 1/V (N),

by increasing the sample size, plots of this kind get increasingly concentrated around

the origin.
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Fig. 2. Frequency as a function of normalized rank (4 articles, 1.5k words)

2.3 Exponential decay

In approximating such a curve an obvious choice would be to try exponential decay

i.e. f(x) ∼ Ce−Dx with some constants C, D > 0. However, for reasons that will

shortly become apparent, no such curve provides a very good fit, and we merely

use the exponential model as a tool to derive from first principles a lower bound

for V (N). We will use the following facts:

(F1) For any f obtained from a random sample S of size N , f(1/V (N)) tends to

p1, the frequency of the most frequent item, as N → ∞
(F2) For any f obtained from a random sample S of size N , f(1) = 1/N

(F3) Word frequencies decay subexponentially (slower than exp(−Dx) for any D >

0).

Theorem 1. Under conditions (F1-F3) V (N) grows at least as fast as

log(N)(1 − 1/N).

Proof: 1/V (N) =
∑V (N)

r=1 f(r/V (N))/V (N) is a rectangular sum approximating
∫ 1

0 f(x)dx. Since f(x) is subexponential, for any g(x) = exp(−Dx) that satisfies

g(1/V (N)) ≥ p1 and g(1) ≥ 1/N , we have g(x) ≥ f(x) everywhere else in the

interval [1/V (N), 1], and therefore 1/V (N) <
∫ 1

0 exp(−Dx)dx = (1−exp(−D))/D.

Using (F2) we compute D = log(N), and therefore V (N) ≥ log(N)(1 − 1/N).

Discussion. Since any theorem is just as good as its premises, let us look at the

conditions in some detail. (F1) is simply the axiom that sample frequencies for the

single most frequent item will tend to its population frequency. Though this is not

an entirely uncontroversial assumption (see 2.1), there really is no alternative: if

frequency ratios can’t be expected to stabilize even for the most frequent word,

there is nothing we can hope to accomplish by measuring them. On the surface

(F2) may look more dubious: there is no a priori reason for the least frequent

word in a sample to appear only once. For example, in closed vocabulary Bernoulli

experiments (e.g. phoneme or grapheme counts) we would expect every item to

appear at least twice as soon as the sample size is twice the inverse probability of

the least frequent item. In the final analysis, (F2) rests on the massively supported
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empirical observation that hapaxes are present in every corpora, no matter how

large (see 3.4).

It may therefore be claimed that the premises of the theorem in some sense include

what we set out to prove (which is of course true of every theorem) and certainly

in this light the conclusion that vocabulary must be open is less surprising. In fact

a weaker bound can already be derived from g(1/V (N)) ≥ p1, knowing g(x) =

exp(−Dx) and D = log(N). Since exp(− log(N)/V (N)) ≥ p1 we have V (N) ≥
log(N)/ log(1/p1), an estimate that is weakest for small p1. Baayen (2001:49) notes

that a Turing-Good type estimate (Good 1953) can be used to approximate the rate

at which the expected value of V (N) changes by the left derivative V (1, N)/N , so

that if hapaxes are always present we have V ′(N) ≥ 1/N , and by integrating both

sides, V (N) ≥ log(N). While the heuristic force of this simple argument is clear, it

is not trivial to turn it into a rigorous proof, inasmuch as Turing-Good estimates are

best viewed as Bayesian with a uniform prior over the (finite) set of types (Nadas

1985).

2.4 The subgeometric mean property

The most novel of our assumptions is (F3), and it is also the empirically richest one.

For any exponent D, exponentially decaying frequencies would satisfy the following

geometric mean property:

if r and s are arbitrary ranks, and their (weighted) arithmetic mean is t, the frequency
at t is the (weighted) geometric mean of the frequencies at r and s.

What we find in frequency count data is the subgeometric mean property, namely

that frequency observed at the arithmetic mean of ranks is systematically lower

than frequency computed as the geometric mean, i.e. that decay is slower than

exponential: for any 0 ≤ p, q ≤ 1, p + q = 1 we find

fpr+qs ≤ fp
r f q

s(4)

In geometrical terms (4) means that log(fr) is convex (viewed from below). This

may not be strictly true for very frequent items (a concern we will address in 3.1)

and will of necessity fail at some points in the low frequency range, where effects

stemming from the resolution of the corpus (i.e. that the smallest gap between

frequency ratios cannot be smaller than 1/N) become noticeable. If the rth word

has i tokens but the (r + 1)th word has only i − 1 tokens, we can be virtually

certain that their theoretical probabilities (as opposed to the observed frequency

ratios) differ less than by 1/N . At such steps in the curve, we cannot expect the

geometric mean property to hold: the observed frequency of the rth word, i/N , is

actually higher than the frequency computed as the geometric mean of the frequency

of e.g. the (r − 1)th and (r + 1)th words, which will be
√

i(i − 1)/N . To protect

our Theorem 1 from this effect, we could estimate the area under the curve by

segregating the steps up to log(log(N)) from the rest of the curve by two-sided

intervals of length N ε, but we will not present the details here because log(N) is
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only a lower bound on vocabulary size, and as a practical matter, not a very good

one.

2.5 The power law of vocabulary growth

Empirically it seems quite incontestable that V (N) grows with a power of N :

V (N) = Nρ(5)

where 0 < ρ < 1 is some constant, dependent on style, authorship, and other factors,

but independent of N (Herdan 1964:157 denotes this constant by C). In practice,

we almost always have ρ > 0.4, but even for smaller positive ρ the empirical power

law would still be stronger than the theoretical (logarithmic) lower bound establised

in 2.3 above.

In what follows, we illustrate our main points with a corpus of some 300 issues of

the Merc totaling some 43m words. While this is not a large corpus by contemporary

standards, it is still an order of magnitude larger than the classic Brown and LOB

corpora on which so much of our current ideas about word frequencies was first

developed and tested, and empirical regularities observed on a corpus this size can

not be dismissed lightly.

In one experiment, we repeatedly doubled the size of our sample to include

1,2,. . . ,128 issues. The samples were selected randomly at each step so as to protect

our results against arguments based on diachronic drift, and each sample was kept

disjoint from the previous ones. If we plot log vocabulary size against log sample

size, this experiment shows a remarkably good linear relationship (see Fig. 3), indi-

cating that V (N) ∼ N q, with q ≈ 0.75. A similar “power law” relationship has been

observed in closed corpora (including some Shakespeare plays) by (Turner 1997).
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Fig. 3. Growth of vocabulary size V(N) against corpus size N in the Merc on log-log scale

The assumption that a power law relates vocabulary size to sample size goes back

at least to (Guiraud 1954) (with ρ = 0.5) and (Herdan 1960). The main novelty in

our approach is that we need not postulate (5) as an empirical law, but will derive
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it as a consequence of Zipf’s second law in 3.2. We should add here that (5) is just

an approximate empirical law, and some slower patterns of infinite growth such as

V (N) = ND/ log(log(N)) would still look reasonably linear for N < 1010 at log-log

scale, and would be just as compatible with the observable data.

The lesson that we would like to take away from Theorem 1 is not the quantitative

form of the relationship V (N) ≥ log(N)(1− 1/N), since this is a rather weak lower

bound, but the qualitative fact that vocabulary size grows in an unbounded fashion

when sample size is increased. Less than logarithmic growth is logically inconsistent

with the characteristic properties of corpora, namely their subexponential decay and

that singletons (hapaxes) are present in every corpus, no matter how large. In fact,

hapaxes are not only present, they comprise a significant portion h of the word

types, a matter we shall return to in 3.4.

3 Frequency extremes

Implicitly or explicitly, much of the work concerning word frequency assumes a

Bernoulli-style experimental setup, in which words (tokens) are randomly drawn,

with replacement, from a large urn containing all word types in fixed proportions.

Though clearly not intended as a psychologically realistic model of speech or writ-

ing, it is nevertheless a very useful model, and rather than abandoning it entirely,

our goal here is to refine it to fit the facts better. In particular, we follow Mandel-

brot’s (1961c) lead in assuming that there are two urns, a small one UF for function

words, and a larger one UC for content words. The reasons why high frequency items

are expected to behave differently are discussed in 3.1, where the relative sizes of

the two urns are estimated by a heuristic argument. In 3.2 we argue that there

need be no perceptible break between the two urns, and show how the power law

(5) can be derived from (1) using only trivial facts about UC . A more rigorous

treatment of low frequency items is given in 3.3, and “ultra-low” frequency items,

hapax legomena and dis legomena are discussed in 3.4.

3.1 Function words vs. content words

Staring with Herdan (1960) it is common to set aside function words in UF , since

their placement is dictated by the rules of syntax rather than by efforts to choose

the semantically appropriate term. The same point can be made with respect to

other Zipf-like laws. For example, in the case of city sizes, it stands to reason that

the growth of a big city like New York is primarily affected by local zoning laws

and ordinances, the pattern of local, state, and federal taxes, demographic and

economic trends in the region, and immigration patterns: the zoning laws etc. that

affect Bombay are almost entirely irrelevant to the growth of New York. But once we

move to mid-sized and small population centers, the general spatial patterns of hu-

man settlement can be expected to assert themselves over the special circumstances

relevant to big cities. (The issue is more complex for the largest concentrations of

individual wealth, because the individuals will often diversify their holdings pre-

cisely in order to avoid disproportionate effects of laws and regulations affecting
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different sectors selectively. If true, this reasoning would suggest that Pareto’s Law

in economics suffers less from discrepancies at the high end than Zipf’s Law in lin-

guistics.) Another reason to set function words aside is that their use is subject to a

great deal of idiosyncratic variation, so much so that principal component analysis

on the function word counts is effective in separating different authors (Burrows

1987).

Our first task is to estimate the relative sizes of the two urns. Let fN (x) be a

family of [0, 1] → [0, 1] functions with the following properties:

(U1) exponential decay, fN(x) = exp(−DNx)

(U2) left limit, fN (1/N) is a constant, say exp(−c)

(U3) linear area law,
∫ (V (N)+1/2)/N

1/2N fN(x)dx = 1/N

To fix ideas, the fN should be thought of as normalized frequency distribu-

tions, but the x axis is scaled by N rather than V (N) as before: values of fN for

x > V (N)/N are simply 0. Also, we think of the values fN (r/N) as providing the

ordinate for trapezoidal sums approximating the integrals, rather than the rectan-

gular sums used above. Since the width of the trapezoids is 1/N and their height

sums to 1, the trapezoidal sum is 1/N rather than 1/V (N) as before.

From (U1) and (U2) we get DN = cN , which for (U3) gives

1/N =

∫ (V (N)+1/2)/N

1/2N

exp(−cNx)dx =
1

cN
[exp(

−c

2
) − exp(−c(V (N) + 1/2))]

Since V (N) → ∞ as N → ∞, the last term can be neglected and we get c =

exp(−c/2). Numerically, this yields c = 0.7035 meaning the frequency of the most

frequent item is 49.4866%.

While our argument is clearly heuristic, it strongly suggests that nearly half of

the tokens may come from function words i.e. the two urns are roughly the same

size. An alternative to using two separate urns may be to tokenize every function

word as an instance of a catchall ‘functionword’ type. The standard list in Vol

3 of (Knuth 1971) contains 31 words said to cover 36% of English text, the 150

most frequent used in Unix covers approximately 40% of newspaper text, and to

reach 49.5% coverage on the Merc we need less than 200 words. By grouping the

appropriate number of function words together we can have the probability of the

dominant type approximate 49.5%.

3.2 High frequency items

From the statistical perspective the tokenization process is arbitrary. We may wish

to declare THE, The, and the to be tokens of the same type, or we may wish to keep

them separate. We may declare a and an to be tokens of the same type, or, if we are

so inclined, we may even declare a, an, and the to be tokens of the same ‘article’

type. In French we may have good reasons to tokenize du as de+le, in English

we may keep a+priori together as a single token. Because some reorganization of

the data in the tokenization step (using only finite resources) is often desirable, it
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should be emphasized that at the high end we cannot in general expect Zipf-like

regularity, or any other regularity.

For example, Fig. 1 completely fails to show the linear pattern predicted by Zipf’s

law. Furthermore, it has multiple inflection points, so fitting other smooth curves

is also problematic at the high end. The geometric mean property is also likely to

fail for very high frequency items, but this does not affect our conclusions, since

the proof can be carried through on UC alone, either by segregating function words

in UF or by collecting them in a single functionword type that is added to UC .

In reality, there is no clear-cut boundary between function words and content

words based on rank or other observable properties. In fact, many function words

like on are homographic to content words: for example, in The cat is on the mat

we see the locative meaning of on rather than the purely prepositional one as in

go on ‘continue’. To account for this, ideally UC should also contain some function

word homographs, albeit with different probabilities. It would require sophisticated

sense disambiguation to reinterpret the frequency counts this way, and we make no

further efforts in this direction here, but note that because of this phenomenon the

use of two separate urns need not result in a perceptible break in the plots, even

if the functional wordsenses are governed by laws totally different from the laws

governing the contentful wordsenses.

It will be evident from Table 1 below that in the Merc no such break is found, and

as long as markup strings are lexed out just as punctuation, the same is true of most

machine readable material. Several explanations have been put forth, including the

notion that elements of a vocabulary “collaborate”, but we believe that the smooth

interpenetration of functional and contentful wordsenses, familiar to all practicing

linguists and lexicographers, is sufficient to explain the phenomenon. Be it as it may,

in the rest of 3.2 we assume the existence of some rank boundary k, (30 < k < 200)

such that all words in 1 ≤ r ≤ k are function words and all words with r > k are

content words. As we shall show shortly, the actual choice of k does not affect our

argument in a material way.

We assume that the function words have a total probability mass Pk =
∑k

r=1 pr,

(to fix ideas, take 0.3 ≤ Pk ≤ 0.5) and that Zipf’s law is really a statement about

UC . Normalizing for the unit square, again using V (N) as our normalizing factor,

sample frequencies are f(x), with k/V (N) ≤ x ≤ 1. The following properties will

always hold:

(D1) right limit, fN (1) = 1/N
(D2) left limit, fN (k/V (N)) is a constant
(D3) area under the curve,

∫ 1

k/V (N) fN (x)dx = (1 − Pk)/V (N)

To this we can provisionally add Zipf’s law in the form given in (1), or more

directly

fN (xV (N)) = exp(HN − BN log(xV (N)))(6)

Condition (D1) means f(1) = exp(HN ) = 1/N therefore HN = − log(N). The

logarithmic change in HN corresponds to the fact that as corpus size grows, unnor-

malized Zipf plots shift further to the right – notice that this is independent of any
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assumption about the rate of vocabulary growth. In fact, if we use Zipf’s law as a

premise, we can state that vocabulary grows with a power of corpus size as

Theorem 2. If corpora satisfy Zipf’s law, grow such that assumptions (D1-D2)

above hold, and BN tends to a fixed Zipf’s constant B, vocabulary size V (N) must

grow with Nρ, ρ = 1/B.

Proof. By (D1) we have Zipf’s law in the form fN (x) = 1/NxBN . If fN (k/V (N))

is to stay constant as N grows, N(k/V (N))BN must be constant. Since k (the

number of function words) is assumed to be constant, we get log(N)+BN log(k)−
BN log(V (N)) constant, and as BN converges to B, log(N) ∼ B log(V (N)). There-

fore, N = V (N)B within a constant factor.

In our notation, ρ = 1/B, and as V (N) ≤ N , we obtained as a side result that

frequency distributions with B < 1 are sampling artifacts in the sense that larger

samples from the same population will, of necessity, have a B parameter ≥ 1. Thus

we find (Mandelbrot 1961b) to be completely vindicated when he writes

Zipf’s values for B are grossly underestimated, as compared with values obtained when
the first few most frequent words are disregarded. As a result, Zipf finds that the observed
values of B are close to 1 or even less than 1, while we find that the values of B are not
less than 1 (p196)

We leave the special case B = 1 for 3.3, and conclude our investigation of high

frequency items with the following remark. Condition (D3) gives, for B > 1, (1 −
Pk)/Nρ =

∫ 1

k/Nρ 1/(NxB)dx = [1 − (k/Nρ)1−B ]/N(1 − B). Differentiating with

respect to k = xNρ gives ∂Pk/∂k = k−B . Therefore at the boundary between

content words and function words we expect pk ∼ 1/kB. Looking at four function

words in the Merc in the range where we would like to place the boundary, Table 1

summarizes the results.

Word Rank Frequency B

be 30 0.0035 1.66

had 75 0.0019 1.45

other 140 0.0012 1.36

me 220 0.00051 1.41

Table 1: B = − log(pk)/ log(k) (estimates)

The point here is not to compute B on the basis of estimated ranks and frequen-

cies of a few function words, but rather to show that a smooth fit can be made

at the function word boundary k. The proper procedure is to compute B on the

basis of fitting the mid- (and possibly the low-) frequency data, and select a k such

that the transition is smooth. As Table 1 shows, our normalization procedure is

consistent with a wide range of choices for k.
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3.3 Low frequency items

The fundamental empirical observation about low frequency items is also due to

Zipf – it is sometimes referred to as his “second law” or the number-frequency law.

Let us denote the number of singletons in a sample by V (1, N), the number of

types with exactly 2 tokens by V (2, N) etc. Zipf’s second low states that if we plot

log(i) against log(V (i, N)) we get a linear curve with slope close to -1/2. This is

illustrated in Fig. 4 below:
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Fig. 4. Number-frequency law on the Merc (10m words)

Some of the literature (e.g. the web article by (Landini 1997)) treats (1) and (2)

as separate laws, but really the “second law”, log(i) = KN −DN log(V (i, N)), is a

straightforward consequence of the first, as Zipf already argued more heuristically.

Theorem 3. If a distribution obeys Zipf’s first law with slope parameter B it will

obey Zipf’s second law with slope parameter D = B/(1 + B).

Proof. For sample size N we have fN (x) = 1/NxB , so the probability that an

item is between i/N and (i + 1)/N if i ≤ x−B ≤ i + 1. Therefore we expect

V (i, N) = V (N)(i−ρ − (i + 1)−ρ). By Rolle’s theorem, the second term is ρy−ρ−1

for some i ≤ y ≤ i + 1. Therefore,

log(V (i, N))/(ρ + 1) = log(V (N))/(ρ + 1) − log(ρ)/(ρ + 1) − log(y)

Since log(ρ)/(ρ + 1) is a small constant, and log(y) can differ from log(i) by no

more than log(2), rearranging the terms we get log(i) = log(V (N))/(ρ + 1) −
log(V (i, N))/(ρ + 1). Since KN = log(V (N))/(1 + ρ) tends to infinity, we can use

it to absorb the constant term bounded by (ρ − 1)/2 + log(2).

Discussion. The normalization term KN is necessitated by the fact that “second

law” plots would otherwise show the same drift as “first law” plots. Using this

term we can state the second law in a much more useful format. Since log(i) =

log(V (N))/(ρ + 1) − log(V (i, N))/(ρ + 1) plus some additive constant,

V (i, N) = mV (N)/iρ+1(7)
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where m is some multiplicative constant. If we wish
∑

∞

i=1 V (i, N) = V (N) to hold

we must choose m to be 1/ζ(ρ+1), which is the reason why Zipfian distributions are

sometimes referred to as ζ distributions. Since this argument assumes Zipf’s second

law to extend well to high frequency items, the case for using m = 1/ζ(ρ +1) is far

from compelling, but it is reassuring to see that for B ≥ 1 we always find a bound

constant (6/π2 for B = 1) that will make the distribution consistent.

Therefore we find Mandelbrot’s (1961c) criticism of B = 1 to be somewhat less

compelling than the case he made against B < 1. Recall from the preceding that

B is the reciprocal of the exponent ρ in the vocabulary growth formula (5). If we

choose a very “rich” corpus, e.g. a table of logarithms, virtually every word will be

unique, and V (N) will grow faster than N 1−ε for any ε > 0, so B must be 1. The

following example sheds some light on the matter.

Example 2. Let L = {0, 1, . . . , 9} and our word tokens be the integers (in stan-

dard decimal notation). Further, let two tokens share the same type if their small-

est prime factors are the same. Our size N corpus is constructed by N drawings

from the exponential distribution that assigns frequency 2−i to the number i. It

is easy to see that the token frequency will be 1/(2p − 1) for p prime, 0 other-

wise. Therefore, our corpora will not satisfy Zipf’s law, since the rank of the ith

prime is i, but from the prime number theorem pi ∼ i log(i) and thus its log fre-

quency ∼ −i log(i) log(2). However, the corpora will satisfy Zipf’s second law, since,

again from the prime number theorem, V (i, N) = N/i2(log(N) − log(i)) and thus

log(V (N))/2 − log(V (i, N))/2 = log(N)/2 − log(log(N))/2 − log(N)/2 + log(i) +

log(log(N) − log(i))/2, which is indeed log(i) within 1/ log(N).

Example 2 shows that Theorem 3 can not be reversed without additional con-

ditions (such as B > 1). A purist might object that the definition of token/type

relation used in this example is weird. However, it is just an artifact of the Arabic

system of numerals that the smallest prime in a number is not evident: if we used

the canonical form of numbers, everything after the first prime could simply be dis-

carded as mere punctuation. More importantly, there is a wealth of other easy to

construct examples: as we shall see in Section 4, there are several standard families

of distributions that can, when conditions are set up right, satisfy the second law

but not the first one with any B > 1.

To summarize, Theorem 3 means that distributions that satisfy (1) in the the mid-

and the low-frequency range will also satisfy (2) in the low-frequency range. Since

the observed fit with (2) is reasonably good, there seems to be no compelling need

for a separate urn in the low frequency range. This is in sharp contrast to the high-

frequency range, where both theoretical considerations and empirical observations

dictate the use of a separate urn.

3.4 Hapax legomena and vocabulary richness

At the extreme low end of the frequency distribution we find hapax legomena, types

that have only one token. Though misspellings and other errors often end up as

hapaxes, it is worth emphasizing that hapaxes are not some accidental contamina-

tion of corpora. In the Merc, 46m tokens fall into nearly 600k types, and more than
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400k of these (69.8%) are hapaxes. To be sure, over a third of these are numbers

(see 5.2), but if we remove numeral expressions from the corpus, we still have 44m

tokens, 385k types, of which 218k (56.6%) are hapaxes, consistent with the obser-

vation in Baayen (1996) that in large corpora typically more than 50% of the words

are hapaxes.

Using i = 1 in (7), Zipf’s second law predicts that a non-vanishing fraction

mV (N) of the vocabulary will be hapaxes, and with i = 2 we obtain that roughly

a quarter as many will be dis legomena (types with exactly two tokens). These pre-

dictions have massive support in the quantitative linguistics literature: for example,

Herdan (1964:219) only tabulates values of the Waring distribution (see 4.4 below)

for the range 0.4 ≤ V (1, N)/V (N) ≤ 0.6, because this range covers all values that

“are likely to arise in practical work in the area of language”.

Baayen (2001:2.4), following Khmaladze (1987, non vidi), defines sequences that

have V (1, N) → ∞ as having a large number of rare events (LNRE) if

limN→∞ V (1, N)/V (N) is positive. For a sequence to behave as LNRE it is not

necessary for a non-vanishing fraction of tokens be rare: in fact, by the power law

of vocabulary growth V (1, N)/N will still tend to zero, but a positive fraction h

of types are rare. As Baayen (2001: 57) notes, word frequency distributions, even

when obtained from large samples, are in the LNRE zone. This observation in

fact extends to the largest corpora currently available to researchers, web indexes

comprising trillions of words, where the ratio of hapaxes is even higher. Assuming

V (1, N) > hV (N) we can again use the Turing-Good heuristics (see 2.3 above) for

V ′(N) > hV (N)/N which, after integration, yields the power law (5) with exponent

h.

We can also turn (7) around and use the observed ratio h of hapax legomena

to vocabulary size to estimate the theoretical constant m directly, the ratio of dis

legomena to vocabulary size to estimate m/2ρ+1, and so forth. On the whole we

expect better estimates of m from dis legomena than from hapaxes, since the latter

also serve as a grab-bag for typos, large numerals, and other marginal phenomena

(see 5.2). We can include tris legomena and in general use V (i, N)/V (N) to estimate

m/iρ+1. Combining the observed numbers of rare words into a single least squares

estimate for 2 ≤ i ≤ 10, in corpora with at least a few million words, we can actually

obtain better values of the Zipf constant B = 1/ρ than by direct regression of log

frequency against log rank.

Clearly, any attempt to model word frequency distributions must take into ac-

count the large number of rare words observed, but the large number of hapaxes

is only the tip of the iceberg as far as vocabulary growth is concerned. (Tweedie

and Baayen 1998) survey a range of formulas used to measure vocabulary richness,

and argue that many widely used ones, such as the type-token ratio V (N)/N , fail

to define a constant value. In light of the asymptotic considerations used in this

paper this comes as no surprise: Guiraud’s R, defined as V (N)/
√

N , will tend to

zero or infinity if B < 2 or B > 2 respectively. Dugast’s and Rubet’s k, defined

as log(V (N))/ log(log(N)), must tend to infinity. Aside from Herdan’s C, the main

measures of vocabulary richness that can be expected to converge to constant values

as sample size increases without bounds are Yule’s K, defined as
∑

∞

r=1 f2
r , entropy,



18 András Kornai

given by
∑

∞

r=1 −fr log(fr), and in general Good’s (1953) spectral measures with

Bt > 1.

Our results therefore cast those of Tweedie and Baayen in a slightly different light:

some of the measures they investigate are truly useless (divergent or converging to

the same constant independent of the Zipfian parameter B) while others are at least

in principle useful, though in practice estimating them from small samples may

be highly problematic. In many cases, the relationship between a purely Zipfian

distribution with parameter B and a proposed measure of lexical richness such as

K is given by a rather complex analytic relation (in this case, K = ζ(2B)/ζ(B))

and even this relation can be completely obscured if effects of the high-frequency

function words are not controlled carefully. This important methodological point,

made very explicitly in Mandelbrot’s early work, is worth reiterating, especially

as there are still a large number of papers (see (Naranan and Balasubrahmanyan

1993) for a recent example) which treat the closed and the open vocabulary cases

as analogous.

4 Alternatives to Zipf’s Law

The most widely used quantitative frequency laws are (1) and (2) as proposed by

Zipf. But there are many alternatives, sometimes with easily identifiable champions,

but often simply as communities of practice where using a particular model is taken

for granted.

4.1 Minor variants

In many cases authors simply express (1-2) using different notation but an algrebri-

cally equivalent formula such as (3). A more interesting case is when the immediate

behavior is slightly different, as in Mizutani’s Expression:

s
∑

i=1

V (i, N) =
V (N)s/N

as/N + bN
(8)

with a, b constants (Mizutani 1989). Asymptotically this law is equivalent to the

Zipfian original. Differencing (8) with respect to s yields

V (i, N) =
bV (N)

(ai/N + bN)(a(i − 1)/N + bN)

For large N and fixed s the first term in both factors of the denominator becomes

negligible, yielding V (i, N) ∼ V (N)/bN 2, which is Zipf’s Second Law with B = 1.

Another kind of correction to (1) was suggested by (Mandelbrot 1961b), who

introduces an additional parameter W > 0 in order to guarantee that the relative

frequencies define a proper probability distribution for B > 1:

log(fr) = log(B − 1) + (B − 1) log(W ) − B log(r + W )(9)

With this correction,
∑

∞

r=0 fr ∼ (B − 1)W B−1
∫

∞

W
x−Bdx = 1. If W is kept con-
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stant, (7) still leaves something to be desired, inasmuch as it assigns a total proba-

bility mass of approximately N (1−B)/B to the region of the curve where r > V (N),

but at least this error tends to zero as N tends to infinity.

4.2 Beta

Many kinds of minor corrective factors would be compatible with the available

empirical evidence, but not all of them show acceptable limit behavior. A case in

point is the beta distribution, which (Simon 1955) obtained from a model of text

generation embodying two assumptions: (i) new words are introduced by a small

constant probability, and (ii) old words are reused with the same probability that

they had in earlier text. He gives the resulting distribution in the form

V (i, N) = AB(i, ρ + 1)(10)

where B is the Beta function. The parameter ρ is the same as in Zipf’s laws, as

can be seen from comparing the estimates for V (i, N)/V (i + 1, N) that can be

obtained from (7) and (10). In particular, the case ρ = 1 corresponds to Zipf’s

original formulation of the law as V (i, N)/V (N) = 1
i(i+1) .

But Simon’s assumption (i), linear vocabulary growth, is quite problematic em-

pirically. One example used in (Simon 1955) and subsequent work is Joyce’s Ulysses.

The general claim of V (N) = αN is made for Ulysses with α ≈ 0.115. However,

instead of linear vocabulary growth, in Ulysses we find the same power law that

we have seen in the Merc (cf. Fig. 3 above). To be sure, the exponent ρ is above

0.82, while in the Merc it was 0.75, but it is still very far from 1. Leaving out the

adjacent chapters Oxen of the Sun and Circe we are left with roughly three-quarters

of Ulysses, yielding an estimate of α = 0.116 or ρ = 0.825. Applying these to the

two chapters left out, which have 62743 words total, we can compute the number of

words in Ulysses as whole based on αN , which yields 31122, or based on N ρ, which

yields 29804. The actual number of different words is 30014, so the error of the

linear estimate, 3.7%, is over five times the 0.7% error of the power law estimate.

The Shakespeare canon provides another example of a “closed” corpus that dis-

plays open vocabulary growth. Plotting log(n) against against log(V (n, N)) as in

Figure 4 yields Figure 5 (see below). A least squares estimate of ρ at the tail end of

the curve yields about 0.52, quite far from unity. If we restrict ourselves to the very

tail, we obtain 0.73, and if we use (7) we get 0.76, numbers still very far from what

Simon considers the range of interest, “very close to 1”. To summarize, the beta

distribution is not an adequate model of word frequencies, because it assumes too

many words: linear vocabulary growth instead of the power law observable both on

dynamically growing corpora such as the Merc and on static ones such as Ulysses

or the Shakespeare canon (for separate power law counts on Antony and Cleopatra

and Richard III see Turner 1997).
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Fig. 5. Number-frequency law on the Shakespeare canon (885k words)

4.3 Lognormal

Another class of distributions that has considerable support in the literature is the

lognormal family (Herdan 1960). As Champernowne discovered, the same genesis

that leads to Pareto’s law, when the assumption on minimum wealth is removed, will

lead to a lognormal distribution instead. In word frequency counts, the resolution

of the corpus presents a minimum barrier (everything that appears must appear at

least once), but those in favor of the lognormal hypothesis could argue that this is

an artifact of the counting method rather than a structural property of the data.

Theorem 1 proves that under reasonably broad conditions V (N) → ∞, meaning

that the average frequency, 1/V (N), will tend to zero as sample size increases. But

if average frequency tends to zero, average log frequency will diverge. In fact, using

Zipf’s second law we can estimate it to be − log(N) within an additive constant

R. As the following argument shows, the variance of log frequencies also diverges

with
√

B log(N)/2. To see this, we need to first estimate f
′

N (k/V (N)), because the

functional equation for lognormal distribution,

f2
N (x) =

−f
′

N(x)√
2π

exp(
−1

2

(log(fN (x)) − µN )2

σ2
N

)

contains this term. Using the difference quotient we obtain pk+1−pk/V (N), and we

have V (N) = Nρ for some constant ρ < 1. By Zipf’s law log(fN (x)) = − log(N) −
B log(x). Using (D2) we get that

1/V (N)√
2π

exp(
−1

2

(−Bρ log(N))2

σ2
N

)(11)

is constant, which can hold only if ρ log(N) = (1/2) log(N)2/σ2
N i.e if σ2

N =

(B/2) log(N).

In other words, the lognormal hypothesis does not lead to a stable limiting distri-

bution: the means drift down with log(1/N) and the standard deviations open up

with
√

log(N). This latter divergence, though theoretically more significant than
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the divergence of the means, is in practice barely noticeable when N grows with

the current computational limits of corpus size: the predicted difference between a

hundred million word corpus and a ten billion word corpus is less than 12%.

Proponents of the lognormal law could object to the above derivation, pointing

out that once we assume that Zipf’s first law fits the midrange N ε < i < Nρ−ε and

Zipf’s second law fits the low range, surely the lognormal can not be expected to

fit well. (In the high range, introducing a separate urn would benefit the lognormal

approach just as much as it benefits the Zipfian.) We should, they might argue, turn

the tables and see how well the Zipfian would fit, once we assume the underlying

distribution to be lognormal. Because the results would be incompatible with Zipf’s

laws, the only means of settling the debate is to investigate which of the competing

hypotheses fits the data better. Since the fit with lognormal is about as good (or

about as bad, depending how we look at it) as with dzeta, there could be no

compelling reason to favor one over the other.

While it is true that estimates on the divergence of the lognormal parameters are

hard to quantify in the absence of an assumption that the distribution is Zipfian

at least to the first approximation, for lower N the divergence is quite strong, and

has been noted even by leading proponents of the lognormal hypothesis. Carroll

(1967:407) has this to say:

It will be noted that the mean and the standard deviation vary systematically as a
function of sample size; that is, they appear to be biased estimates of the population
value. [...] In ordinary sampling theory no bias is expected in the usual measures of central
tendency applied to samples of different sizes, and the bias in estimates of the population
variance is negligible for large samples and is easily adjusted for by using the number of
degrees of freedom as the denominator in the calculation of variance.

Whether this bias is a barely perceptible lack of fit with the data or a gaping hole

in the theoretical edifice is a matter of perspective: Herdan (1964:85) repudiates

the lognormal largely because “for samples of widely different sizes from the same

universe, the conventional statistics, such as the mean and the standard deviation,

would not be the same”. The main problem with the lognormal is the exact op-

posite of the problem with beta: beta distribution assumes there to be too many

different words, while lognormal requires there to be too few. This problem is quite

independent of the numerical details of curve-fitting: a lognormal distribution with

fixed means µ and variance σ2 predicts a fixed V (N) = exp(σ2/2 − µ), which

Carroll (1967) calls the “theoretical absolute size of the vocabulary”. But a fixed

upper limit for V (N) is incompatible with the results of our Theorem 1, and more

importantly, with the empirically observable power law of vocabulary growth.

4.4 Waring

In a series of influential publications Herdan (1964, 1966) described an alternative

to Zipf’s law based on the Waring distribution. The basic idea is to model the

classes Ci of types that have exactly i tokens: the Waring-Herdan formula asserts

that the probability of a type falling in class Ci is given by
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α

β + α

β

β + α + 1
...

β + i − 1

β + α + i
(12)

To account for the case when a token belongs to no previously seen type, the model

explicitly contains the class C0 of words not found in the sample, and assigns

probability to it by the i = 0 case of the same formula (12). Instead of the number

of visible types V (N) we therefore deal with the total number of types U(N) which

includes the unseen words as well.

Let us first estimate the appropriate value for α and β. By Zipf’s second law, we

have V (i, N)/V (i + 1, N) = (1 + 1/i)ρ+1, with ρ is a constant < 1. From (12) we

get V (i, N)/V (i + 1, N) = (β + α + i + 1)/(β + i). Therefore we need

1 +
α + 1

β + i
∼ 1 +

ρ + 1

i

which can work well for a range such as 2 ≤ i ≤ 200 only if α is close to ρ and β

is close to zero. With this choice, we actually obtain the correct prediction, namely

that class C0 has probability one, meaning that almost all types in the population

remain unseen in any sample.

Again, proponents of the Waring distribution could object to the above deriva-

tion, especially as it assumes Zipf’s second law to provide a reasonable first approx-

imation over a broad range, while in fact the fit in this range is far from perfect. We

will therefore use Herdan’s own estimators for α and β, which are based on the pro-

portion of hapaxes, h = V (1, N)/V (N) and on the average class size M = N/V (N)

as follows:

β =
1

1
1−h − 1

M − 1
β + α =

β

1 − h

In the larger Merc samples, 1/M is already less than 0.01, and if we increase N

without bounds, 1/M will tend to zero. Thus for very large samples Herdan’s esti-

mators yield β = (1− h)/h and α = 1. Thus we obtain a distribution with a single

parameter p, which predicts that in any sample the chances of a random type being

manifested as hapax legomena, dis legomena, tris legomena etc are

p(1 − p)

1 + p
;

p(1 − p)

(1 + p)(1 + 2p)
;

p(1 − p)

(1 + 2p)(1 + 3p)
; · · ·(13)

These probabilities do not add up to one: the remaining probability, which is p, is

assigned to unseen word types. Of course, the whole notion of equiprobable selection

of types makes sense only if there is a finite number of types (closed vocabulary):

what (13) predicts is that V (N)/U(N), the proportion of visible types among the

“theoretical absolute” number of types, is 1 − p.

One way of putting this result is that even if there are infinitely many word types,

on the basis of a finite sample, with V (N) manifest types, we can justify no more

than V (N)/(1 − p) types altogether. This is not dissimilar to the logic underlying

the lognormal fit, and in some sense even better, since the lognormal parameters µ

and σ diverge as N → ∞, but the Waring parameters α and β appear to converge
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to stable values 1 and (1 − h)/h respectively. Since h, the proportion of hapaxes

among the total number of word types seen, is about 1/2, we can conclude that

there are roughly as many unseen types as there are visible ones.

Herdan uses h to estimate p, but of course we could apply least squares fit in the

entire range of pi. From (13) we obtain V (i, N)/V (i + 1, N) = 1 + 2p
1+ip−p , which

will be the same as the Zipfian estimate 1 + ρ+1
i just in case ρ = 1/B = 1. Again,

both the Waring and the ζ distributions fit the observed numbers about equally

well for small i, and both leave a lot to be desired for larger i. Therefore, the choice

between the two has to be made indirectly, based in this case on the inability of

the Waring distribution to support a Zipfian tail for the case of practical interest,

B > 1.

4.5 Negative binomial

Another influential model originates with the work of Fisher (1943) on species

abundance. The main relation can be formulated as

V (i, N)

V (1, N)
=

Γ(i + α)

i!Γ(1 + α)
γi−1(14)

which is closely related to both (10) and (12). If (12) is to agree with (7) over a

broader range, we need

1 +
ρ + 1

i
∼ i + 1

γ(i + α)

which requires γ to be close to 1 and α to be close to −ρ. For example, Efron

and Thisted (1976) fits a negative binomial to the Shakespeare data depicted in

Figure 5, obtaining γ = 0.9905, α = −0.3954. This translates into an estimate of

ρ ≈ 0.4, much lower than the 0.73 we obtained in 4.2 based on V (1, N)/V (2, N)

alone, and still significantly lower than the 0.52 we obtained from the first five

V (i, N). Because their method gives nearly uniform weight to the whole range

1 ≤ i ≤ 40 they consider, the discrepancy is quite visible, but for the same range

our simpler fit would yield ρ = 0.36. Since Theorem 2 indicates that vocabulary

growth is determined at the margin, we concentrate at the low end, ignoring values

for i > 5 entirely.

In general, the negative binomial offers a considerably better fit than Zipf’s second

law, and in the range of interest, −1 < α < 0, yields the same vocabulary growth

formula

V ′(N) = V (1, N)/N(15)

as the Turing-Good method, but without assuming a uniform prior on types. As we

have seen in 3.2, V (1, N) = mV (N) for some constant 0 < m ≤ 1. Combined with

(15) we obtain, up to a constant factor, the power law (5) with exponent m. For

the Shakespeare canon, m = 0.46, roughly halfway between the exponent predicted

by (14) and the one computed from 1 ≤ i ≤ 5.
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5 Where do the words come from?

The closed vocabulary assumption, that there is a fixed number of words S in

any given language, is often couched in terms of rather sophisticated statistical

frameworks that assume the existence of unseen words. After discussing this issue

in 5.1, we turn to the open vocabulary in 5.2, where we attempt to identify the

factors fueling infinite vocabulary growth. We offer our conclusions in 5.3.

5.1 Unseen words

The lognormal and Waring distributions are examples of a broader class of hy-

potheses that require a distinction between the observed number of types V (N)

and the predicted number of types U(N). In some sense, this is a very attractive

distinction, for it would surely be absurd to assume that no new sample will ever

contain words hitherto unseen. Also, on the basis of such hypotheses, we can obtain

quantitative answers to a range of questions:

What proportion of first names known in small villages are actually in use there? Over
80%, according to the Waring fit used in Schubert and Toma (1983).

How many words could be used in children’s reading materials between grades 3 and 9?
609,606, according to the lognormal fit used in Carroll (1971).

How many words did Shakespeare know but never use? At least 35,000, according to the
negative binomial fit used by Efron and Thisted (1976).

How many words can appear in Turkish archeological texts given a sample of 7k words?
Over half trillion, based on the generalized inverse Gauss-Poisson fit used in Baayen
(2001:4.3.1).

It is quite conceivable that in rural Hungary first names were indeed drawn from a

rather small closed set, and therefore fitting a Waring or lognormal distribution is

appropriate. However, the statistics published in Carroll (1971) give no indication

that children’s reading materials come from a closed subset of the vocabulary, and

extrapolationg by (7) suggest that it would take less than 20 times the current

corpus to transcend the 609,606 types predicted by the lognormal fit.

While the third question seems to be about Shakespeare’s mental lexicon, in fact

Efron and Thisted (1976) posed it in a more conservative fashion: how many new

words ∆(t) do we expect if a new body t times the size of the currently acknowledged

Shakespearean canon was discovered? We are certainly in no position to collect 20

times the available Shakespearean corpus (for t = 0.0004849 see Thisted and Efron

1987) so let us for the moment pursue the issue based on the Merc.

The hope is that by fitting a Waring distribution, we can describe how many

words are known by the journalists at the Merc. In the first sample, N = 147, 260, we

estimate U(N) by V (N)/(1−V (1, N)/V (N)), obtaining U(N) = 35, 439. However,

in an independent sample of 587k tokens, we find more than this, 38,865 types.

For this sample the Waring estimate is U(N) = 113k. However, in an independent

sample of 4.7m words we find V (N) = 127k and U(N) = 280k, but we are just

as far from the elusive “theoretical absolute size” as we were before, and in an

independent sample of 18.3m words indeed we find 310k different words.
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What is fueling all this vocabulary growth? If indeed V (N) → ∞ as sample

size grows, the answer can not be that the Merc employs, say, a hundred journal-

ists: for the total to come out infinitely large, at least some of them must already

know infinitely many words. We are in no position to study the Merc contributors

separately, but wherever such studies have been conducted, as on the output of

Chaucer, Shakespeare, or Joyce, the same unlimited pattern of vocabulary growth

can be seen. In fact, Efron and Thisted (1976) are quite explicit about the fact that

their model predicts ∆(t) → ∞ as t → ∞, they just somehow find this conclu-

sion unpalatable (perhaps because it would make no sense for the case of species

abundance that originally gave rise to the model).

From what we have seen so far, not only do writers have infinite vocabularies, they

actually provide evidence of this in the (necessarily finite) corpus of their writings.

Further, this conclusion must hold not only for extraordinary literary geniuses but,

by the pigeonhole principle, at least for some of the lesser known journalists toiling

at the Merc.

5.2 Mixtures

A natural generalization of the Zipfian model is to assume that we have a mixture of

Zipfians: instead of a single distribution with parameter B we have k independent

distributions with parameters B1, · · · , Bk. In such cases, it follows from Theorem 2

that vocabulary growth will always be dominated by the smallest Bi. One applica-

tion would be to separate the individual writers of multi-author corpora and inspect

their contribution to the overall vocabulary separately. Another application is to

look at different classes of words, such as morphologically simple vs. morpholog-

ically complex, written using digits vs. letters, etc. For example, we may assume

that only 98% of the Merc data are ordinary words, and the remaining 2% are num-

bers. If we separate the two corpora, indeed we obtain quite different parameters:

Bw = 1.65 for words and Bn = 1.31 for numbers. Assuming the power law (5), this

means that for corpora with 385m words and beyond, the number of new number

types will exceed the number of new word types, even though the number of new

number tokens will still be only 2% of the number of new word tokens.

While it is true that the distribution of numbers in the Merc follows the same

broad Zipfian patterns as the distribution of words, we certainly do not need an

elaborate statistical argument to prove that the number of numbers is infinite, or

that writers know infinitely many numbers. To the contrary, our goal here is to

protect the conclusion, that vocabulary is open, against the counterargument “yes,

but only because it includes numbers”. In fact, if we remove numbers, we still find

the same Zipfian pattern, and vocabulary growth still obeys the power law (5),

though with a smaller exponent.

If we inspect the non-numerical hapaxes more closely, we find that other obvi-

ously infinite sources, such as proper names, foreign words, typos and eye-dialect

(e.g. Arrrrrrnnnnnold) play a significant role. Again we need to assign these to

separate mixture components, and argue that the rest still grows without bounds.

Remarkably, at this point the bulk of the vocabulary growth is actually provided
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by productive morphological processes: about 40% of the non-numeric hapaxes are

hyphenated, a clear sign of compounding, and over 7% end in the possessive suffix

’s. Multiply suffixed forms, such as eclectically or ebonizing provide about 5%, so at

40m words the majority of non-numeric hapaxes are either monomorphemic English

words such as decade or polymorphemic, but clearly well-formed English. To the

extent that numerals freely enter into combination with nouns to form adjectives

such as 958-member, one could even argue that there is no need to treat numbers,

proper names, or even foreign words as extragrammatical, but we leave this mat-

ter to the side here, as the inclusion of these classes would no doubt weaken our

argument in the eyes of many.

5.3 Summary and conclusions

In this paper we answered the question posed in the title by arguing that there are

an infinite number of words. We came to this conclusion not on the basis of produc-

tive morphological processes, but rather by inspecting the characteristic properties

of large corpora, and deriving the open vocabulary result from these properties.

Nevertheless, our results support the conclusion that the main grammatical source

of infinite vocabulary growth is productive generative morphology, in particular

compounding.

We inspected Zipf’s law separately for the high-, mid-, and low-frequency ranges.

For the high-frequency range we proposed that a separate urn, containing only a

few dozen to a few hundred function words, be used, and argued that this urn will

contain somewhere between 30% and 50% of the total probability mass. For the mid-

and low-frequency range we noted that the frequency plot is log-covex (subgeometric

mean property) and that every corpus has hapaxes. Using these properties and a

simple normalization technique we proved in Theorem 1 that vocabulary size V (N)

tends to infinity as N → ∞.

It is in the middle range that Zipf’s law appears strongest, and here estimates

of the Zipf constant B clearly give B > 1 which corresponds, as we have shown

in Theorem 2, to a vocabulary growth rate V (N) = N
1

B . Theorem 3 established a

simple quantitative connection between Zipf’s first and second law, suggesting that

there is no need to introduce a separate urn for the low range, especially as the B

of this urn, were it lower than the B of the mid-frequency urn, would dominate the

whole distribution for large N . If separate urns are needed at all, they should be

used for numerals, typos, eye-dialect, direct quotations form other languages, and

other arguably extragrammatical material that can be seen as contaminating the

basic vocabulary pattern.

Altogether, there appears to be considerable empirical support for the classical

Zipfian distribution with B > 1, both in the Merc and in standard closed corpora

such as Ulysses. There seems to be no way, empirical or theoretical, to avoid the

conclusion that vocabulary size grows approximately with a power ρ < 1 of N , and

the most widely used competing hypotheses, in particular the beta, lognormal, and

Waring distributions, are not well suited for characterizing the observed pattern of

word frequencies. The negative binomial, with α negative and γ close to 1, stands
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out as a realistic alternative to dzeta, though a satisfactory genesis, explaining why

the cumulative distribution function of the Poisson parameters should follow Γ, is

still lacking.

Acknowledgements

The author would like to thank Gabriel Landini, David M.W. Powers, and the

anonymous reviewers for valuable suggestions and discussion of earlier drafts of

this paper. In particular, the possibility of deriving a logarithmic lower bound for

vocabulary size based on the Turing-Good estimates (see the end of 2.3) was called

to my attention by reviewer #3.

References

Baayen, R. H.: 1996, The effect of lexical specialisation on the growth curve of the vocab-
ulary. Computational Linguistics 22, 455–480.

Baayen, R. H.: 2001, Word Frequency Distributions Dordrecht: Kluwer Academic Pub-
lishers

Burrows, J.: 1987, Word Patterns and Story Shapes: The Statistical Analysis of Narrative
Style. Literary and Linguistic Computing 2, 61–70.

Carroll, J. B.: 1967, On Sampling from a lognormal model of word-frequency distribution.
In: H. Kucera and W. Francis (eds.): Computational Analysis of Present-Day American
English. Providence, RI: Brown University Press, pp. 406–424.

Carroll, J. B.: 1971, The American Heritage word frequency book. Boston: Houghton
Mifflin.

Champernowne, D.: 1952, The graduation of income distributions. Econometrica 20,
591–615.

Champernowne, D.: 1953, A model of income distribution. Economic Journal 63, 318–351.
Champernowne, D.: 1973, The distribution of income. Cambridge University Press.
Cox, D. and H. Miller: 1965, The theory of stochastic processes. London: Methuen.

Cramér, H.: 1955, The elements of probability theory. New York: John Wiley & Sons.
Efron, B. and R. Thisted: 1976, Estimating the number of unseen species: How many

words did Shakespeare know?. Biometrika 63, 435–448.
Estoup, J.: 1916, Gammes Stenographiques. Paris: Institut Stenographique de France.
Fisher, R., A. Corbet, and C. Williams: 1943, The relation between the number of species

and the number of individuals in a random sample of an animal population. Journal of
Animal Ecology 12, 42–58.

Good, I.: 1953, The population frequencies of species and the estimation of population
parameters. Biometrika 40, 237–264.

Guiraud, H.: 1954, Les charactères statistiques du vocabulaire. Paris: Presses Universitaires
de France.

Herdan, G.: 1960, Type-Token Mathematics. The Hague: Mouton.
Herdan, G.: 1964, Quantitative Linguistics London: Butterworths
Herdan, G.: 1966, The Advanced Theory of Language as Choice and Chance. Springer.
Khmaladze, E.: 1987, The statistical analysis of large number of rare events Techni-

cal Report MS-R8804, Dept of Mathematical Statistics, CWI, Amsterdam: Center for
Mathematics and Computer Science.

Knuth, D. E.: 1971, The Art of Computer Programming. Reading MA: Addison-Wesley.
Landini, G.: 1997, Zipf’s laws in the Voynich Manuscript. http://web.bham.ac.uk

/G.Landini/evmt/zipf.htm.



28 András Kornai

Mandelbrot, B.: 1952, An informational theory of the structure of language based upon
the theory of the statistical matching of messages and coding. In: W. Jackson (ed.):
Second Symposium on Information Theory. London.

Mandelbrot, B.: 1959, A note on a class of skew distribution functions. Analysis and
critique of a paper by H.A. Simon. Information and Control 2, 90–99.

Mandelbrot, B.: 1961a, Final note on a class of skew distribution functions: analysis and
critique of a model due to Herbert A. Simon. Information and Control 4, 198–216.

Mandelbrot, B.: 1961b, On the thory of word frequencies and on related markovian models
of discourse. In: R. Jakobson (ed.): Structure of language and its mathematical aspects.
American Mathematical Society, pp. 190–219.

Mandelbrot, B.: 1961c, Post scriptum to ‘final note’. Information and Control 4, 300–304.
Mizutani, S.: 1989, Ohno’s Lexical Law: Its Data Adjustment by Linear Regression. In:

S. Mizutani (ed.): Japanese Quantitative Linguistics. Bochum: Brockmeyer, pp. 1–13.
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