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ABOUT ME

PhD student at Comenius University in Bratislava

Profile: xAl, NLP, Adversarial Neural Networks

Projects with HUN-REN SZTAKI - HLT Group
* Probing

« Summarization

Collabortion with Kempelen's Institute of Intelligent Technologies
« News dataset creation

« Political stance classification “ rn I.T

Working at a hungarian startup
« Applied NLP in the governmental sector .
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ABOUT THE PROJECT

« Inspiration: Acs (2023)'s Perturbed probing experiments

* Not yet arficulated findings of it:
 Randomly weighted MLMs
» Left-context dependence

* Open guestions:
« Explanation for the asymmetric context dependence
« How valid probing is¢



" HOW TO TREAT THE INTERNAL I

REPRESENTATIONS IN VISION
MODELS?

« Finding ,,exciting” examples for
specific hidden activations

« Motivation by Quiroga et. al
(2005)

« Dataset examples that
maximally activate specific
hidden neurons

« Optimizing an input which
would excite the selected
neurons even morel

Class visualization
of the class black widow Dataset examples
(BSCV) Of the black widow

Source: Hamerlik, Endre, Deb, Mayukh and Takac, Martin: ,,Bi-Source Class Visualization: An Adversarial Neural Networkbased Approach for Unbiased
Class Visualization”, DISA Conference (2023).
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Internal representation of an
example class is the more valid, 0.02}
the more a classifier can predict
it's class.
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Source: Alain, Guillaume, and Yoshua Bengio. "Understanding intermediate layers using linear
classifier probes." arXiv preprint arXiv:1610.01644 (2016).
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INTERNAL REPRESENTATIONS OF
MASKED LANGUAGE MODELS

DT NN VBN JJ NNS * The input space of the LLMs is rather
] [ ! sparse — Optimization of Maximally
Chobe | Pobs | Fobe | Probe robe Exciting Inputs (MElIs) is extremely hard.

Even if possible, it would need too much

regularization
« No smooth fransition between two

discrete words

¢

The chef made five pizzas

« Usually, the goalis to predict lower-level
features from the representations learnt
unsipervisedly.
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PREVIOUSLY ON



* The embeddings in question are n-
times 768d vectors

» Post-hoc analysis of these
embeddings is hard

 Training a diagnostic classifier to
evaluate the embeddings
(Kéhn, 2015)

» The accuracy of the diagnostic
classifier will be indicative of the
degree to which a chosen
feature is encoded in the
embedding

EVALUATING THE INTERNAL

REPRESENTATIONS -

PROBING
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[SEP]
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METHODS
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PROBE TRAINING PROCEDURE

« We train a diagnostic classifier for each
task separately

« MLP with a single hidden layer with 50
E neurons

* Trained using Adam optimizer (Kingma
J and Ba 201% P King

« With a =0.001, B1 =0.9, B2 =0.999
# « Early stopping based on development

P(singular)

% &

[ mBERT (fixed)

[CLS]|  You have pati | | ##ence [SEP] loss and accura CY

* Implemented a 20% dropout between
J both the input and hidden |layer of the

MLP and between the hidden and the
output layers.

« batch size 128
Accuracies averaged over 10 runs

[ mBERT tokenizer

You have patience




SELECTED RESULTS OF THE PREVIOUS
WORK




« Both evaluated models
(MBERT and XLM-R) perform
on the level of the ,,skyline”
morphological tagger
(STANZA)

 Both mBERT and XLM-R
outperform the two baselines
(chLSTM and fastText)

« XLM-R outperforms mBERT in
most of the cases; by 2% on
average
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RECAP 1: AVERAGE PROBINé

ACCURACIES

AVERAGE ACCURACIES OF MORPHOLOGICAL

MLP PROBES
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PERTURBATIONS IN THE INPUT SPACE -
PROBING CONTROLS

Method Explanation Example

Original Then he ripped open Hermione ’s letter and read it out loud .
..... T ARGmasktargetwordThenher|ppedopen|-|erm|oneS|etterand[M]|t0ut|0ud
..... |_2maskprewousgwordsThenher,ppedopenHermloneS[M][M]read,tou“oud
..... H2maSknethwordSThenhenppedopenHermloneSletterandread[M][MHOUd
..... 32maskgoneach3|deThenher|ppedopen|-|erm|oneS[M][M]read[M][M“OUd

PERMUTE  shuffle word order and open read Then letter . it out he ripped 's Hermione loud
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RECAP 2: PERTURBATION — THE BIG
PICTURE
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mBERT-permute
XLM-permute
mBERT-L;
XLM-L;
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RECAP 3: SHAPLEY VALUES
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RANDOM BERTS

 MLMs with such a big parameter size can easily learn
downstream NLP tasks (Kovaleva et al., 2019).

Questions:
1. What doesrandom BERTs rely on¢

2. How does randomizing the token embeddings affect the
probing accuracys?

3. How does randomizing all the layers affect the probing
aQCccuracye

4. How does perturbations affect the probing of random BERTs?



RESULTS 3: RANDOM MODELS
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-
DELS SUMMARY

« The accuracies of random models’ (with a
pretrained embedding layer)
morphological probes match the

accuracies of their embedding layers’ R
probe :
* j.e., even the Transformer-based E %

random MLMs rely mostly on the word-
identities represented by their
embeddings | mBERT (fxed) )

. Randomlyéini’riolized language models
are capable of tasks requmn%.
information about word identities only

« Probing perturbed and unperturbed

representations of random MLMs does not soment e P (e | (L (RN B TR | (B | B | e | [
make a big difference. Thus, word + + + + 2+ o+ o+ o+ o+ =
identifies are the most significant factor; ressen Mg, |6 |6 |[& & [& 1[5 [ [E |6

the order of words is almost irrelevant

Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation
embeddings and the position embeddings.
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MIXED-PROBING EXPERIMENTS
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ONGOING WORK

- Evaluating the ,,most important”
context via Dependency trees
(Universal Dependencies)

« Validating the usage of the
representations found by probing
(addressing Belinkov's (2022) critique)




DGE-PROBING

Part-of-speech! Partial dependency info!

The chef made five pizzas The chef made five pizzas

nsubj

DT NN VBD JJ NNS
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DENCY TREE

det relcl
m aux m
a simple sentence to showcase different dependency-
Method Explanation Example
Unperturbed This is a simple sentence to showcase different
dependency-perturbations.

DEPy Masks a randomly selected child of the tar- This is a simple sentence to showcase different

get in the dependency tree. dependency- [M].
RAND; Masks a random word, excluding the tar- This is a [M] sentence to showcase different

get. dependency-perturbations.
DEPg Masks a randomly selected pathway from This is a simple sentence to showcase [M]

DEPR 4 TARG

the target to a leaf node in the dependency
tree.

Masks out both what DEPy does, and the
target word itself in a specific sentence.

dependency- [M].

[M].

-

perturbations.
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DEPTREE TAGS

nmod
amod

obl
compound

amod: adjectival modifier nsubl
fi

* Large house oo

. cpe appos

nmMod: nominal modifier parataxis

adwvcl

. N |
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dislocated

nummod

morphological hypotheses case

reparandum
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det

conj. conjunct
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« Random perturbations
have the smallest effect

« Deptree and Depftree-r
perturbations aren’t
affecting the Accuracy
as much as L2, R2 or B2

-

THE BIG PICTURE

Perturbation

{ 0




AVERAGE RESULTS BY DT TAG
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DEPTREE TAG
DISTRIBUTIONS

A: Average
B: English
C: Polish

D: Urdu

Dependency Type

Dependency Type

Average Dependency Tag Distribution
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WHICH DEPTREE RELATIONS DO
AFFECT AGREEMENTS®

» Subject - VERB Agreement iIn number and person

E.g..lam, You are

« Modifier - NOUN Agreemens™* in gender, number and case

* E.Q.:
Singular Nominafive . Plural Nominative
* Masculine: velky pes (big dog) « Masculine: velci psi (big dogs)

« Feminine: velka koc¢ka (big cat)

. Neuter: velké auto (big car » Feminine: velke kocky (big cafs)

- Neuter: velkd auta (big cars)

*including possessive structures
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AGREEMENT RULE HYPOTHESES
TESTING

* By definition, agreement rules apply to both the target and
Its dependent children in the depftree; therefore, both the
target and its child node must exhibit the morphological
cue relevant to the specific agreement rule. Consequently,
agreement rule-based hypotheses were tested by
comparing the results of DEPR + TARG and TARG
perturbations.




——- RandomBERT baseline
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SUBJECT-VERB AGREEMENT

* [Subject + Target masking]

10.46% lower accuracy compared to masking
the target only.

 [Subject + Target verb masking]

Performance drop by15%

-
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MODIFIER-NOUN AGREEMENT

Modifier-Noun Agreement rule hypotheses testing

=

75

—-—- RandomBERT baseline

[Adjectival modifier + Target masking]
~6% lower accuracy compared to masking
] the target only.
[Determinant + Target verb masking]
Performance drop by ~5%

70 A

o
o
)
[ ]

Average Accuracy
o)
o

[Nominal modifier + Target] - Gender tasks only
~5% lower accuracy

[Nominal modifier + Target] - Tense tasks only
~6% lower accuracy

55

50
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PREMISES

« MLMs do not merely rely on the target word’'s and its neighborhood’s
representations, but also selectively integrate contextual cues, such as
dependencies, 1o enhance morphosyntactic understanding

« Probing can be a precise tool to investigate the correlation of the internal
representation of a MLM and a specific feature double.

« Future goals:
« Automatized evaluation of the known agreement rules by mixed-probing
 Jointly training an embedding model with a specific diagnostic classifier



OPEN QUESTIONS

« More data

« Weaker diagnostic classifiers

« What kind of perturbation
can increase the accuracy?

« What is the homeostasis of
BERT models regarding the
<MASK> tokens




THANK YOU FOR YOUR ATTENTION
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