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My story

▶ started this PhD program in 2014

▶ original topic: Unsupervised Learning of Morphology

▶ deep learning took over in the next few years

▶ subword models started to get popular in machine translation then in

language modeling

▶ so I shifted towards modeling and evaluation

1. Part I. deals with deep learning for morphology (2018–2020)

2. Part II. is about evaluating language models with special focus on

morphosyntax (2019–2024)
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Encoder-decoder models for morphology

Thesis 1

Encoder-decoder (a.k.a. sequence-to-sequence or seq2seq)
models are well-suited for morphological inflection and
generation. This holds for type-level and sentence-level tasks in
multiple languages.

These contributions were published in Ács (2018).
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Morphological inflection

model

offrir

V;IND;PRS;3;PL

offrent

release V;V.PTCP;PRS releasing

deodourize V;NFIN deodourize

outdance V;V.PTCP;PRS outdancing

misrepute V;NFIN misrepute

vanquish V;PST vanquished

resterilize V;3;SG;PRS resterilizes
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SIGMORPHON 2018 Shared tasks

Overview

▶ yearly competition computational morphology

▶ 2 tasks in 2018:

1. Task 1: Type-level inflection

▶ 110 languages

▶ high (10,000), medium (1,000), low (100) data sizes

▶ source: Wiktionary inflection tables

▶ UniMorph schema (Kirov et al., 2018)

2. Task 2: Inflection in context

▶ 7 languages

▶ I participated as an individual team

▶ 3rd place in Task 1, 2nd place in Task 2

8 / 82



Morphology in the

Age of Pre-trained

Language Models

Judit Ács

Encoder-decoder

models for

morphology

Neural pattern

matching

Morphosyntactic

probing of PLMs

Subword pooling

Morphology in PLMs

Ablations

Language-specific

models

Hungarian

Uralic languages

Perturbations and

Shapley values

Shapley values

References

SIGMORPHON 2018 Shared tasks

My model for Task 1: Type-level inflection
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SIGMORPHON 2018 Shared tasks

Task 1 results

Our team in orange (bme).
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SIGMORPHON 2018 Shared tasks

Task 2: Inflection in context

Les le DET;DEF;FEM;PL

compagnies compagnie N;FEM;PL

aériennes aérien ADJ;FEM;PL

à à ADP

bas bas ADJ;MASC;SG

coût coût N;MASC;SG

ne ne ADV;NEG

_ |
connaître _

pas pas ADV;NEG

la le DET;DEF;FEM;SG

crise crise N;FEM;SG

Track 2: no lemmas or tags
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Inflection in context model
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Differentiable neural pattern matching for

morphology

Thesis 2

Differentiable neural pattern matching can extract
morphosyntactic patterns in multiple languages when used as an
encoder for morphological inflection and analysis.

Ács and Kornai (2020) was awarded the best paper award at

the Hungarian Computational Linguistics Conference in 2020.
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Neural pattern matching

Overview

▶ Schwartz et al. (2018) introduced SoPa or Soft Patterns, a

differentiable pattern learner

▶ restricted to fixed length linear patterns with epsilon

transitions and self-loops

▶ fully differentiable and end-to-end trainable

▶ they used it for sequence classification in English, token

based
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My additions

▶ I reimplemented it as an encoder of an encoder-decoder

model

▶ the decoder is an LSTM initialized with the final state of

the SoPa encoder

▶ applied it at the character level

▶ each pattern matches a character span or subword
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Tasks

Language Task Source Target

Hungarian analysis vásároljanak V SBJV PRS INDF 3 PL

Hungarian analysis lepkékben N IN+ESS PL

English analysis hugging V V.PTCP PRS

French analysis désinstalleriez V COND 2 PL

Hungarian lemmatization vásároljanak vásárol

Hungarian lemmatization lepkékben lepke

English lemmatization hugging hug

French lemmatization désinstalleriez désinstaller

Hungarian copy vásároljanak vásároljanak

Hungarian copy lepkékben lepkékben

English copy hugging hugging

French copy désinstalleriez désinstalleriez

The source is the same in all three tasks.
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Experimental setup

▶ 120 patterns: 40 3-long, 40 4-long, 40 5-long

▶ 12 typologically diverse languages

▶ 10,000 train, 2,000 dev, 2,000 test word types

▶ baseline: both the encoder and the decoder are LSTMs

with attention

▶ SoPa seq2seq: SoPa encoder, LSTM decoder with

attention on intermediate SoPa outputs
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Results

▶ the baseline is always better

▶ SoPa is not good at copying and lemmatization

▶ noticably better at morphological analysis
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Model similarity

▶ We define a similarity metric between two SoPa seq2seq

models (M1 and M2) that work on the same input

▶ take the highest scoring T patterns for each input and

compare the subwords

▶ for each pattern by M1, find the most similar pattern in

M2

▶ average it over a dataset

Sim(M1,M2,D) =
1

|D|
∑
d∈D

S(M1(d),M2(d))

S(M1(d),M2(d)) =
1

2T
(
∑
pi∈P1

max
pj∈P2

J(pi, pj)+
∑
pj∈P2

max
pi∈P1

J(pi, pj))
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Evaluating Pre-trained Language Models
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Thesis 3

Pre-trained language models (PLMs) trained on unannotated
text learn morphology. PLMs’ representations retain
morphosyntactic information across a large set of typologically
diverse languages and multiple tasks. This information can be
recovered via probing or diagnostic classifiers.

These contributions were published in (Ács, 2019; Ács et al.,

2021; Acs et al., 2023).
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Background

▶ Pre-trained Language Models or PLMs are probabilistic

models of natural (written) language

▶ pre-trained on large unannotated text

▶ we mainly deal with masked language models

▶ contextual models

▶ sentence representation (or longer)

▶ word representation depends on the context

▶ BERT model family

▶ English and multilingual, later many language and

domain specific

▶ evaluation by probing

▶ take a set of annotated text

▶ train a small classifier on top of the PLM’s representation

▶ if it performs well, the information is available in the

model
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Probing architecture

mBERT tokenizer

You have patience .

[CLS] You have pati ##ence
. [SEP]

mBERT (fixed)

13∑
i = 1

wixiMLPP(singular) trained
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Universal Dependencies

Form UPOS Morphological features

The DET Definite=Def|PronType=Art

third ADJ Degree=Pos|NumType=Ord

was AUX Number=Sing|Person=3|Tense=Past|VerbForm=Fin

being AUX VerbForm=Ger

run VERB Tense=Past|VerbForm=Part|Voice=Pass

by ADP _

the DET Definite=Def|PronType=Art

head NOUN Number=Sing

of ADP _

an DET Definite=Ind|PronType=Art

investment NOUN Number=Sing

firm NOUN Number=Sing

. PUNCT _
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Morphosyntactic probing dataset

Languages

▶ UD: 122 languages

▶ mBERT: 104 languages

▶ XLM-RoBERTa: 100 languages

▶ intersection of these 3: 55 languages

▶ not enough morphosyntactic data: Chinese, Japanese,

Vietnamese

▶ different tagging schema: Korean

▶ insufficient data in some languages

▶ external treebank for Albanian, silver data for Hungarian

▶ 42 languages
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Morphosyntactic probing dataset

Tags and POS

▶ UD has over 130 different morphosyntactic tags

▶ most are only used for one or a few languages

▶ we pick 4 common tags: case, gender, number, tense

▶ 4 open POS classes: adj, noun, propn, verb

▶ 14 combinations are available

▶ ⟨NOUN, Tense⟩ and ⟨PROPN, Tense⟩ are linguistically
implausible

▶ ⟨ADJ, Tense⟩ only in Estonian

▶ most common tasks are ⟨NOUN, Number⟩ (37
languages), ⟨NOUN, Gender⟩ (32) and ⟨VERB, Number⟩
(27)
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Class number distribution

2 3 4 5 6 7 8 11 12 15
Number of classes

0

25

50

75

100

125

150

175
Ta

sk
s

Most classes:

▶ ⟨Hungarian, NOUN, Case⟩: 18
▶ ⟨Estonian, NOUN, Case⟩: 15
▶ ⟨Finnish, NOUN, Case⟩: 121

▶ ⟨Finnish, VERB, Case⟩: 12

1

Infrequent classes were omitted.
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Probing tasks by language family

0 20 40 60 80 100 120
Number of tasks

Slavic
Romance
Germanic

Uralic
Baltic

Semitic
Indic

Albanian
Turkic
Greek

Armenian
Basque
Persian

Number of morphological probing tasks by language family.
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Probing dataset statistics

▶ 247 tasks

▶ 42 languages

▶ 10 language families (Indo-European subfamilies)

▶ 4 POS, 4 tags, 14 POS-tag combinations

▶ 2,000 train, 200 validaion and 200 test samples

▶ sentence length between 3 and 40 tokens, average 20.5
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Subword pooling

Subword tokenization

mBERT tokenizer

You have patience .

[CLS] You have pati ##ence
. [SEP]

mBERT (fixed)

▶ PLMs use subword tokenizers

▶ one token corresponds to multiple subwords, which one

should we use?

▶ question for tagging problems too: POS and NER
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What do tokenizers do?

mBERT XLM-RoBERTa
count 2+ count 2+ _start

Arabic 1.95 48.9 1.49 35.0 3.4

Chinese 1.58 53.5 2.13 88.5 86.6

Czech 2.04 53.0 1.7 45.2 1.6

English 1.25 14.3 1.25 16.9 0.8

Finnish 2.32 67.3 1.86 53.0 2.3

French 1.34 22.4 1.41 28.7 2.1

German 1.64 30.6 1.57 29.7 1.3

Japanese 1.6 43.0 2.25 94.6 92.9

Korean 2.44 75.7 2.16 67.3 9.0
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Experimental setup

▶ 9 typologically

diverse languages

▶ 3 tasks:

morphosyntactic

probing, POS, NER

▶ 9 subword pooling

methods

▶ mBERT and

XLM-RoBERTa

▶ feature extraction,

no fine-tuning

Method Explanation

first first subword unit

last last subword unit

last2

concatenation of the

last two subword units

f+l wufirst + (1− w)ulast

sum elementwise sum

max elementwise max

avg elementwise average

attn

Attention over the

subwords, weights

generated by an MLP

lstm

biLSTM reads all vectors,

final hidden state
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Main results

▶ Morphology

▶ attn is the best pooling strategy but its advantage over

last is small and often not significant

▶ first is the worst

▶ POS and NER

▶ depends on the language

▶ we recommend trying a simple strategy (last) and a

parametric one (attn or lstm)

ar cs de en fi fr jp ko zh

85

90

95

Te
st

 a
cc

ur
ac

y

POS tagging

mBERT
XLM-RoBERTa

ar cs de en fi fr jp ko zh

NER tagging
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Conclusion

▶ most common: use first/last, max pooling

▶ the differences are very small

▶ last is usually better than first

▶ we pick either the first or the last based on the

development data in all following experiments

▶ last is better in over 90% of the tasks
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Overview

▶ Do PLMs learn morphology?

▶ We use our 247 probing tasks

▶ We compare it against various baselines

▶ Extensive ablations
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Models and baselines

main focus: mBERT and XLM-RoBERTa

other multilingual PLMs: XLM-Large, XLM-MLM-100,

distilmBERT, mT5

main baseline: character LSTM (chLSTM) over full sentence,

not pre-trained

other baselines: subword LSTM on sentence, char LSTM and

subword LSTM on target word only

fastText: language-specific bag-of-ngrams word vectors

Stanza: linguistic analysis toolkit for 70+ languages

trained on UD
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General results

ALL ADJ NOUN PROPN VERB
55

60

65

70

75

80

85

90

95

100
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cu
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cy

mBERT
XLM-R
XLM-L
XLM-MLM
mT5
distilmBERT
char LSTM (chLSTM)
subword LSTM
char LSTM - target
subword LSTM - target
fastText
Stanza

Accuracy of the pre-trained and the baseline models grouped by

POS.

▶ XLM-RoBERTa is slightly better than mBERT, larger

models are even better

▶ chLSTM is the best baseline, it’s closest in verbal tasks
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Easiest and hardest languages

Irish (3) Latin (9) Icelandic (12) Albanian (6) German (10) Turkish (4) French (7) Armenian (1) English (2) Catalan (6)
60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

mBERT
XLM-R
chLSTM

The best and the worst 5 languages by the average performance of

mBERT and XLM-RoBERTa. The number of tasks in a particular

language is listed in parentheses.
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Model comparison

Which model is better
2
at how many tasks?

IE-Baltic IE-Germanic IE-Indic IE-Romance IE-Slavic IE-other Isolate Semitic Uralic
0

10

20

30

40

ta
sk

 c
ou

nt

better
mBERT
XLM-R
same

mBERT XLM-RoBERTa comparison by language family.

2

Independent t-test over 10 runs.
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Overview

▶ Probing has its fair share of criticism (Belinkov, 2021;

Ravichander et al., 2021)

▶ We run various ablations to address them

▶ We find that:

1. the choice of probe (linear, MLP, 2 layers) doesn’t matter

2. probing individual layers is no better or worse than

probing the weighted sum of all layers

3. fine-tuning is actually harmful (and wasteful)

4. randomly initialized models (Voita and Titov, 2020) are

much worse
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Pooling individual layers
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mBERT
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XLM-R

The difference between probing a single layer and probing the weighted sum of

layers. concat is the concatenation of all layers. 0 is the embedding layer.
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Model ablations

mBERT-char: use character tokenization instead of subword

tokenization

mBERT-emb: probe the embedding layer instead of the

weighted sum of all layers

ALL NOUN PROPN VERB ADJ
65
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80
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90

95
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mBERT
XLM-R
mBERT-char
XLM-R-char
mBERT-emb
XLM-R-emb
chLSTM
fastText
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Thesis 4

Monolingual PLMs are better in their respective languages than
multilingual PLMs but the difference is small and often not
statistically significant. Moreover both monolingual and
multilingual PLMs can be successfully transfered to new
languages as long as the new language uses the same writing
system.

These contributions were published in (Ács et al., 2021b) and

(Ács et al., 2021a).
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Morphosyntactic evaluation tasks

Morph tag POS #classes Values

Case noun 18 Abl, Acc, . . . , Ter, Tra

Degree adj 3 Cmp, Pos, Sup

Mood verb 4 Cnd, Imp, Ind, Pot

Number[psor] noun 2 Sing, Plur

Number adj 2 Sing, Plur

Number noun 2 Sing, Plur

Number verb 2 Sing, Plur

Person[psor] noun 3 1, 2, 3

Person verb 3 1, 2, 3

Tense verb 2 Pres, Past

VerbForm verb 2 Inf, Fin
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Sequence tagging tasks

Part-of-speech tagging

1. Szeged UD Treebank (Farkas et al., 2012)

▶ gold standard automatically converted to UD

▶ 910/441/449 sentences

2. Webcorpus 2 subsample

▶ tagged with emtsv (Indig et al., 2019)

▶ 10,000/2,000/2,000 sentences

Named entity recognition

1. Szeged NER corpus

▶ 8172/503/900 sentences
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Models for Hungarian

Experimental setup

▶ same probing architecture for morphology

▶ similar setup for POS and NER

▶ no fine-tuning due to resource limitations

▶ huBERT: the only Hungarian model at the time

▶ multilingual models: mBERT, XLM-RoBERTa,

XLM-MLM-100, distilmBERT
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Morphology results by Tranformer layer
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The layerwise accuracy of morphological probes using the last subword.

Shaded areas represent confidence intervals over 3 runs.
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POS and NER results
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Models for Uralic languages

Overview

Experimental setup:

▶ same as the Hungarian evaluation

▶ fine-tuning

▶ include every Uralic language with data regardless of

model support

Models:

language-specific: HuBERT, FinBERT, EstBERT, Russian BERT

multilingual: mBERT, XLM-RoBERTa

random mBERT: random weights, mBERT tokenizer
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Languages and data

Language Code Morph POS NER

Hungarian [hu] 26k 2000 2000

Finnish [fi] 38k 2000 2000

Estonian [et] 26k 2000 2000

Erzya [myv] 0 1680 1800

Moksha [mdf] 0 164 400

Karelian [krl] 0 224 0

Livvi [olo] 0 122 0

Komi Permyak [koi] 0 78 2000

Komi Zyrian [kpv] 0 562 1700

Northern Sami [sme] 0 2000 1200

Skolt Sami [sms] 0 101 0

Size of training data for each language.
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Morphology results

mBERT XLM-RoBERTa EstBERT EstBERT-nodiacritic FinBERT FinBERT-nodiacritic HuBERT EngBERT rand-mBERT
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Pairs of bars: probing the first and last subword. Monolingual models are

highlighted.
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POS and NER results - Latin script
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POS and NER results - Cyrillic script
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Conclusions

▶ monolingual models are the best when available

▶ multilingal models are close

▶ model transfer is surprisingly good even for unsupported

languages

▶ state-of-the-art POS and NER models for minority

languages with no language-specific effort
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Perturbations and Shapley values
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Perturbations and Shapley values

Thesis 5

The source of morphosyntactic information is often localized in
a sentence. The systemic removal of certain information
(perturbations) reveals where the information is stored. The role
of context in morphosyntax can be quantified via Shapley values
and the results often comply with linguistic intuitions.

These contributions were published in (Acs et al., 2023).
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Perturbations

▶ Perturbations are a systematic removal of information

from the sentence.

▶ We retrain the probe on the perturbed sentence and

quantify the change as:

Effect(m, t, p) = 1− Acc(m, t, p)
Acc(m, t)

,

where m is the model, t is a probing task and p is a

perturbation.

Perturbation Explanation Example

Original Then he ripped open Hermione ’s letter and read it out loud .

targ mask target word Then he ripped open Hermione ’s letter and [M] it out loud .

l2 mask previous 2 words Then he ripped open Hermione ’s [M] [M] read it out loud .

r2 mask next 2 words Then he ripped open Hermione ’s letter and read [M] [M] loud .

b2 mask 2 on each side Then he ripped open Hermione ’s [M] [M] read [M] [M] loud .

permute shuffle word order and open read Then letter . it out he ripped ’s Hermione loud

List of perturbation methods with examples. The target word is in bold. The mask

symbol is abbreviated as [M].
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Perturbed accuracy
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Test accuracy of the perturbed probes grouped by POS. The first group is

the average of all 247 tasks. The first two bars in each group are the

unperturbed probes’ accuracy.
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Context masking results
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▶ case is the only tag affected strongly by context masking

▶ l2 is bigger than r2, the left context is more important
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Context masking results
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The effect of context masking on case tasks groupby by language family.

▶ std is larger than the effects

▶ l2 is smaller than r2 in Baltic and Indic languages

▶ context masking has neglible effect on Uralic languages
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Target masking and permutation
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▶ targ has by far the largest effect

▶ targ and permute have opposite effects?
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Relationship between perturbations
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▶ targ and permute indeed have a negative correlation

▶ permute and b2 are almost identical in effect
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Co-occurrence counts for each languages pair over 100 k-means clustering

runs.
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Formulation

Let’s split the sentence into 9 parts or 9 players:

▶ T is the target word

▶ L1 is the previous word, R1 is the next word
▶ and so on:

S = L4+, L3, L2, L1, T ,R1,R2,R3,R4+

Each player’s contribution can be quantified as:

φ(i) =
1

n

∑
S⊆N\{i}

v(S ∪ {i})− v(S)(n−1

|S|
) ,

where the value function of a subset of players S is:

v(S) = 100− 100 · AccS − Accall masked

AccmBERT − Accall masked
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Least and most anomalous Shapley distributions. The first row are the mean Shapley

values of the 247 tasks and the 5 tasks closest to the mean distribution, i.e. the least

anomalous as measured by the dfm distance from the average Shapley values. The

rest of the rows are the most anomalous Shapley values in descending order. For

each particular task, its distance from the mean (dfm) is listed in parentheses above

the graphs.
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Shapley values in Indic tasks.
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Shapley values in German tasks.
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Statistics

▶ Number of experiments: appr. 500,000

▶ unperturbed and perturbed experiments run 10 times

▶ Shapley computation is exponential, 460,000 experiments

▶ 40 days of runtime

▶ Maximum 200 epochs. Early stopping in 98% of the time

▶ Average 22 epochs

▶ 43 tables, 63 figures, 117 references for now
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