Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection

Máté Gedeon

October 9, 2024

Outline

- ► Introduction to (Self-)RAG
- ► Inner workings of Self-RAG
- How did they train it?
- How well does it perform?
- ▶ What can we learn from it? (Discussion)

RAG Introduction

Problem: Factual errors in LLM outputs

Solution: Retrieval-Augmented Generation (RAG)

- Augments LLM input with relevant retrieved passages
- Reduces factual errors in knowledge-intensive tasks

Challenges:

- Unnecessary or off-topic passages
 - ► **Reason:** retrieving passages indiscriminately
- Inconsistent output with retrieved information
 - ▶ **Reason:** the models are not explicitly trained to follow facts

RAG Introduction

Problem: Factual errors in LLM outputs

Solution: Retrieval-Augmented Generation (RAG)

- Augments LLM input with relevant retrieved passages
- Reduces factual errors in knowledge-intensive tasks

Challenges:

- Unnecessary or off-topic passages
 - Reason: retrieving passages indiscriminately
- Inconsistent output with retrieved information
 - ▶ **Reason:** the models are not explicitly trained to follow facts

Self-RAG Introduction

Goal: Improve LLM factual accuracy without sacrificing versatility

Method: On-demand retrieval + Self-reflection

- ► Generates task output + reflection tokens
- ▶ Reflection tokens: indicate *need for retrieval* or *critique* quality

Motivation: Inspired by reinforcement learning (RLHF)

Self-RAG Introduction

Goal: Improve LLM factual accuracy without sacrificing versatility **Method:** On-demand retrieval + Self-reflection

- ▶ Generates task output + reflection tokens
- ▶ Reflection tokens: indicate *need for retrieval* or *critique* quality

Motivation: Inspired by reinforcement learning (RLHF)

Self-RAG Introduction

Goal: Improve LLM factual accuracy without sacrificing versatility **Method:** On-demand retrieval + Self-reflection

- Generates task output + reflection tokens
- ▶ Reflection tokens: indicate *need for retrieval* or *critique* quality

Motivation: Inspired by reinforcement learning (RLHF)

Three phases:

- ▶ Retrieval Phase: Determines if retrieval is needed
 - If yes, it outputs a retrieval token that calls a retriever model on demand
- ► **Generation Phase:** Uses relevant passages to generate output
- ► Critic Phase: Critiques output and chooses the best one

Customization:

- ► High factuality tasks: frequent retrieval
- Open-ended tasks: less retrieval, prioritize creativity

Three phases:

- ▶ **Retrieval Phase:** Determines if retrieval is needed
 - If yes, it outputs a retrieval token that calls a retriever model on demand
- ▶ Generation Phase: Uses relevant passages to generate output
- ► Critic Phase: Critiques output and chooses the best one

Customization

- High factuality tasks: frequent retrieval
- Open-ended tasks: less retrieval, prioritize creativity

Three phases:

- ▶ Retrieval Phase: Determines if retrieval is needed
 - If yes, it outputs a retrieval token that calls a retriever model on demand
- Generation Phase: Uses relevant passages to generate output
- Critic Phase: Critiques output and chooses the best one

Customization:

- ► High factuality tasks: frequent retrieval
- Open-ended tasks: less retrieval, prioritize creativity

Three phases:

- ▶ **Retrieval Phase:** Determines if retrieval is needed
 - If yes, it outputs a retrieval token that calls a retriever model on demand
- Generation Phase: Uses relevant passages to generate output
- Critic Phase: Critiques output and chooses the best one

Customization:

- High factuality tasks: frequent retrieval
- Open-ended tasks: less retrieval, prioritize creativity

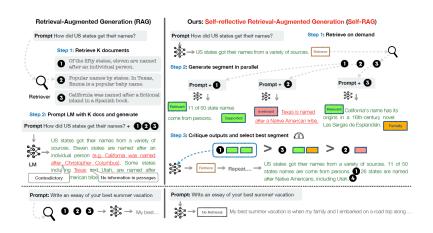


Figure: Traditional RAG vs. Self-RAG

How is this possible?

Self-RAG trains an arbitrary LM to generate text with reflection tokens (next token prediction)

How is this possible?

Self-RAG trains an arbitrary LM to generate text with reflection tokens (next token prediction)

Key Components:

- ▶ **Reflection tokens:** Critically assess generation quality
- ► **Training:** LM trained with interleaved reflection tokens and retrieved passages

How is this possible?

Self-RAG trains an arbitrary LM to generate text with reflection tokens (next token prediction)

Key Components:

- ▶ Reflection tokens: Critically assess generation quality
- ► **Training:** LM trained with interleaved reflection tokens and retrieved passages

Type	Input	Output	Definitions
Retrieve ISREL	x / x, y x, d	{yes, no, continue} {relevant, irrelevant}	Decides when to retrieve with \mathcal{R} d provides useful information to solve x .
ISSUP	x, d, y	{fully supported, partially supported, no support}	All of the verification-worthy statement in y is supported by d .
IsUsE	x, y	{5 , 4, 3, 2, 1}	y is a useful response to x .

Critic Model:

- Inserts reflection tokens offline, reducing overhead
- ► Trained on input-output pairs and reflection tokens (collected by LM)

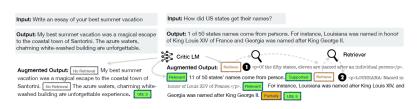
► Let *M* be an arbitrary LM

- ► Let *M* be an arbitrary LM
- ightharpoonup Input x, we train M to sequentially generate textual outputs

- Let M be an arbitrary LM
- ▶ Input x, we train M to sequentially generate textual outputs
- output y is sequentially generated consisting of multiple segments $y = [y_1, \dots, y_T]$, where y_t indicates a sequence of tokens for the t-th segment

- Let M be an arbitrary LM
- ▶ Input x, we train M to sequentially generate textual outputs
- output y is sequentially generated consisting of multiple segments $y = [y_1, \dots, y_T]$, where y_t indicates a sequence of tokens for the t-th segment
- Generated tokens in y_t include text from the original vocabulary as well as the reflection tokens.

- ► Let *M* be an arbitrary LM
- ightharpoonup Input x, we train M to sequentially generate textual outputs
- output y is sequentially generated consisting of multiple segments $y = [y_1, \dots, y_T]$, where y_t indicates a sequence of tokens for the t-th segment
- Generated tokens in y_t include text from the original vocabulary as well as the reflection tokens.
- Two models: *critic* model and *generator* model



4 日 N 4 周 N 4 国 N 4 国 N 1 国

Algorithm 1 SELF-RAG Inference Require: Generator LM \mathcal{M} , Retriever \mathcal{R} , Large-scale passage collections $\{d_1,\ldots,d_N\}$ 1: Input: input prompt x and preceding generation $y_{<t}$, Output: next output segment y_t 2: \mathcal{M} predicts Retrieve given $(x, y_{<t})$ 3: if Retrieve == Yes then 4: Retrieve relevant text passages D using \mathcal{R} given (x, y_{t-1}) > Retrieve 5: \mathcal{M} predicts IsRel given x, d and y_t given x, d, $y_{<t}$ for each $d \in \mathbf{D}$ > Generate 6: \mathcal{M} predicts IsSUP and IsUse given x, y_t , d for each $d \in \mathbf{D}$ > Critique 7: Rank y_t based on IsRel, IsSUP, IsUse > Detailed in Section 3.3 8: else if Retrieve == No then

▶ Generate

▶ Critique

Figure: Pseudo Code of the Generator Model

 \mathcal{M}_{gen} predicts y_t given x

 \mathcal{M}_{gen} predicts **Isuse** given x, y_t

9.

10:

Two models, the *critic model* and the *generator model* Critic Model Training:

- ▶ Data collection
 - lacktriangle by hand would be expensive ightarrow utilizing SOTA LLMs
 - ► GPT-4 is the best, but API call costs add up quickly, and diminish reproducibility
 - ► **Solution:** supervised data by prompting GPT-4 to generate reflection tokens and then distill their knowledge into an in-house critic model
 - ► For different reflection token groups different instruction prompts are used
- ► GPT-4 prompt example
 - "Given an instruction, make a judgment on whether finding some external documents from the web helps to generate a better response."
 - ▶ Is this in agreement with human judgement?
- ► Full dataset size: 4k-20k supervised training data for each type

4□ > 4回 > 4 亘 > 4 亘 > □ ● 90 0

Two models, the *critic model* and the *generator model* **Critic Model Training:**

- Data collection
 - lacktriangle by hand would be expensive ightarrow utilizing SOTA LLMs
 - GPT-4 is the best, but API call costs add up quickly, and diminish reproducibility
 - ► **Solution:** supervised data by prompting GPT-4 to generate reflection tokens and then distill their knowledge into an in-house critic model
 - ► For different reflection token groups different instruction prompts are used
- ► GPT-4 prompt example
 - "Given an instruction, make a judgment on whether finding some external documents from the web helps to generate a better response."
 - ▶ Is this in agreement with human judgement?
- ► Full dataset size: 4k-20k supervised training data for each type

4□ > 4圖 > 4 = > 4 = > = 9 < 0</p>

Two models, the *critic model* and the *generator model* **Critic Model Training:**

- Data collection
 - lacktriangle by hand would be expensive ightarrow utilizing SOTA LLMs
 - ► GPT-4 is the best, but API call costs add up quickly, and diminish reproducibility
 - ► **Solution:** supervised data by prompting GPT-4 to generate reflection tokens and then distill their knowledge into an in-house critic model
 - ► For different reflection token groups different instruction prompts are used
- ► GPT-4 prompt example
 - "Given an instruction, make a judgment on whether finding some external documents from the web helps to generate a better response."
 - ▶ Is this in agreement with human judgement?
- ► Full dataset size: 4k-20k supervised training data for each type

4□ > 4圖 > 4 = > 4 = > = 9 < 0</p>

Two models, the *critic model* and the *generator model* **Critic Model Training:**

- Data collection
 - lacktriangle by hand would be expensive ightarrow utilizing SOTA LLMs
 - ► GPT-4 is the best, but API call costs add up quickly, and diminish reproducibility
 - Solution: supervised data by prompting GPT-4 to generate reflection tokens and then distill their knowledge into an in-house critic model
 - ► For different reflection token groups different instruction prompts are used
- ► GPT-4 prompt example
 - "Given an instruction, make a judgment on whether finding some external documents from the web helps to generate a better response."
 - ▶ Is this in agreement with human judgement?
- ► Full dataset size: 4k-20k supervised training data for each type

Two models, the *critic model* and the *generator model* **Critic Model Training:**

- Data collection
 - by hand would be expensive → utilizing SOTA LLMs
 - ► GPT-4 is the best, but API call costs add up quickly, and diminish reproducibility
 - Solution: supervised data by prompting GPT-4 to generate reflection tokens and then distill their knowledge into an in-house critic model
 - ► For different reflection token groups different instruction prompts are used
- ► GPT-4 prompt example
 - "Given an instruction, make a judgment on whether finding some external documents from the web helps to generate a better response."
 - ▶ Is this in agreement with human judgement?
- ► Full dataset size: 4k-20k supervised training data for each type

Two models, the *critic model* and the *generator model* **Critic Model Training:**

- Data collection
 - lacktriangle by hand would be expensive ightarrow utilizing SOTA LLMs
 - ► GPT-4 is the best, but API call costs add up quickly, and diminish reproducibility
 - Solution: supervised data by prompting GPT-4 to generate reflection tokens and then distill their knowledge into an in-house critic model
 - ► For different reflection token groups different instruction prompts are used
- ► GPT-4 prompt example
 - "Given an instruction, make a judgment on whether finding some external documents from the web helps to generate a better response."
 - ▶ Is this in agreement with human judgement?
- ► Full dataset size: 4k-20k supervised training data for each type

Two models, the *critic model* and the *generator model* **Critic Model Training**:

- Data collection
 - lacktriangle by hand would be expensive ightarrow utilizing SOTA LLMs
 - ► GPT-4 is the best, but API call costs add up quickly, and diminish reproducibility
 - ➤ **Solution:** supervised data by prompting GPT-4 to generate reflection tokens and then distill their knowledge into an in-house critic model
 - ► For different reflection token groups different instruction prompts are used
- ► GPT-4 prompt example
 - "Given an instruction, make a judgment on whether finding some external documents from the web helps to generate a better response."
 - Is this in agreement with human judgement?
- ► Full dataset size: 4k-20k supervised training data for each type

Training Setup

Training

- ▶ initialize C with a pre-trained LM and train it on collected data
- ▶ Llama 2-7B is used for C initialization
- ▶ higher than 90% agreement with GPT-4-based predictions (on most reflection token categories)

Computational resources

- ▶ 4 Nvidia A100 with 80GB memory for training
- maximum token length is set to be 2,048 for 7B model, 1524 for 13B model
- ▶ Deepspeed stage 3 to conduct multi-GPU distributed training
- ► FlashAttention is used to make the long-context training more efficient
- Inference of the trained models is ran using 1-2 Quadro RTX 6000 GPUs with 24GB memory

Training Setup

Training

- ▶ initialize C with a pre-trained LM and train it on collected data
- ▶ Llama 2-7B is used for C initialization
- ► higher than 90% agreement with GPT-4-based predictions (on most reflection token categories)

Computational resources

- 4 Nvidia A100 with 80GB memory for training
- maximum token length is set to be 2,048 for 7B model, 1524 for 13B model
- Deepspeed stage 3 to conduct multi-GPU distributed training
- ► FlashAttention is used to make the long-context training more efficient
- ► Inference of the trained models is ran using 1-2 Quadro RTX 6000 GPUs with 24GB memory

Evaluation

Metrics:

► Correctness, factuality, fluency

Tasks:

- Closed-set: fact verification dataset about public health (PubHealth), multiple-choice reasoning dataset created from scientific exams (ARC-Challenge)
- Open-domain QA: open-domain question answering (PopQA, TriviaQA)
- ► Long-form: biography generation task, long-form QA task (ALCE-ASQA)
 - used metric: FactScore to evaluate biographies, metrics of correctness (str-em), fluency based on MAUVE, and citation precision and recall for ASQA.

Evaluation

Metrics:

Correctness, factuality, fluency

Tasks:

- ► Closed-set: fact verification dataset about public health (PubHealth), multiple-choice reasoning dataset created from scientific exams (ARC-Challenge)
- Open-domain QA: open-domain question answering (PopQA, TriviaQA)
- ► Long-form: biography generation task, long-form QA task (ALCE-ASQA)
 - used metric: FactScore to evaluate biographies, metrics of correctness (str-em), fluency based on MAUVE, and citation precision and recall for ASQA.

Baseline Models

Without retrieval

- publicly available LLMs (Llama2 7B,13B)
- ▶ instruction-tuned models (Alpaca 7B,13B)
- models trained and reinforced using private data (ChatGPT, Llama2-chat13B)

Concurrent model: CoVE65B, which introduces iterative prompt engineering to improve the factuality of LLM generations

With retrievals

- standard RAG baselines: an LM (Llama2, Alpaca) generates output given the query prepended with the top retrieved documents using the same retriever as in our system
- ► Llama2-FT, where Llama2 is fine-tuned on all training data used for Self-RAG without the reflection tokens or retrieved passages
- ► Retrieval-augmented baselines with LMs trained with private data: Ret-ChatGPT, Ret-Llama2-chat, perplexity.ai,

Baseline Models

Without retrieval

- publicly available LLMs (Llama2 7B,13B)
- ▶ instruction-tuned models (Alpaca 7B,13B)
- models trained and reinforced using private data (ChatGPT, Llama2-chat13B)

Concurrent model: CoVE65B, which introduces iterative prompt engineering to improve the factuality of LLM generations

With retrievals

- standard RAG baselines: an LM (Llama2, Alpaca) generates output given the query prepended with the top retrieved documents using the same retriever as in our system
- Llama2-FT, where Llama2 is fine-tuned on all training data used for Self-RAG without the reflection tokens or retrieved passages
- ► Retrieval-augmented baselines with LMs trained with private data: Ret-ChatGPT, Ret-Llama2-chat, perplexity.ai

Evaluation

	Short-form Closed-set			Long-form generations (with citations)									
	PopQA	TQA	Pub	ARC	Bio			ASQA					
LM	(acc)	(acc)	(acc)	(acc)	(FS)	(em)	(rg)	(mau)	(pre)	(rec)			
LMs with proprietary data													
Llama2-c _{13B}	20.0	59.3	49.4	38.4	55.9	22.4	29.6	28.6	_	_			
Ret-Llama2-c _{13B}	51.8	59.8	52.1	37.9	79.9	32.8	34.8	43.8	19.8	36.1			
ChatGPT	29.3	74.3	70.1	75.3	71.8	35.3	36.2	68.8	_	_			
Ret-ChatGPT	50.8	65.7	54.7	75.3	_	40.7	39.9	79.7	65.1	76.6			
Perplexity.ai	_	_	-	_	71.2	_	_	_	_	_			
Baselines without retrieval													
Llama2 _{7B}	14.7	30.5	34.2	21.8	44.5	7.9	15.3	19.0	_	_			
Alpaca _{7B}	23.6	54.5	49.8	45.0	45.8	18.8	29.4	61.7	_	_			
Llama2 _{13B}	14.7	38.5	29.4	29.4	53.4	7.2	12.4	16.0	_	_			
Alpaca _{13B}	24.4	61.3	55.5	54.9	50.2	22.9	32.0	70.6	_	_			
CoVE _{65B} *	-	_	_	_	71.2	_	-	-	-	-			
			Baseline	s with re	etrieval								
Toolformer*6B	-	48.8	_	_	_	_	-	_	_	_			
Llama2 _{7B}	38.2	42.5	30.0	48.0	78.0	15.2	22.1	32.0	2.9	4.0			
Alpaca _{7B}	46.7	64.1	40.2	48.0	76.6	30.9	33.3	57.9	5.5	7.2			
Llama2-FT _{7B}	48.7	57.3	64.3	65.8	78.2	31.0	35.8	51.2	5.0	7.5			
SAIL*7B	_	_	69.2	48.4	_	_	_	_	_	_			
Llama2 _{13B}	45.7	47.0	30.2	26.0	77.5	16.3	20.5	24.7	2.3	3.6			
Alpaca _{13B}	46.1	66.9	51.1	57.6	77.7	34.8	36.7	56.6	2.0	3.8			
Our SELF-RAG 7B	54.9	66.4	72.4	67.3	81.2	30.0	35.7	74.3	66.9	-67.8			
Our SELF-RAG 13B	55.8	69.3	74.5	73.1	80.2	31.7	37.0	71.6	70.3	71.3			

Results

Self-RAG outperforms retrieval-augmented ChatGPT on four tasks, Llama2-chat and Alpaca on all tasks.

Without Retrieval:

- SELF-RAG (bottom two rows) shows a substantial performance advantage over supervised fine-tuned LLMs or all tasks.
- Outperforms ChatGPT in PubHealth, PopQA, biography generation, and ASQA (Rouge and MAUVE)
- ▶ Outperforms concurrent CoVE (Dhuliawala et al., 2023) on the bio generation task with 7B and 13B models

Results

Self-RAG outperforms retrieval-augmented ChatGPT on four tasks, Llama2-chat and Alpaca on all tasks.

Without Retrieval:

- SELF-RAG (bottom two rows) shows a substantial performance advantage over supervised fine-tuned LLMs on all tasks.
- Outperforms ChatGPT in PubHealth, PopQA, biography generation, and ASQA (Rouge and MAUVE)
- Outperforms concurrent CoVE (Dhuliawala et al., 2023) on the bio generation task with 7B and 13B models

Results

With Retrieval:

- ➤ SELF-RAG outperforms existing RAG, obtaining the best performance among non-proprietary LM-based models.
- Powerful retrieval-augmented LMs like Llama2-chat and Alpaca show significant gains but fail to improve citation accuracy or performance on tasks like PubHealth and ARC-Challenge.
- SELF-RAG shows higher citation precision and recall than all models except ChatGPT, bridging the performance gap.
- Llama2-FT7B lags behind SELF-RAG, suggesting gains are not solely from training data but the framework itself.

Máté Gedeon Self-RAG $16 \ / \ 17$

Discussion

- ▶ What can we learn from this?
- ► Can we use any of it?
- ► All models and training code is available