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Plan for today

Speech emotion recognition: Gedeon Kövér

Algorithmic compression of weighted languages
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Algorithmic compression of weighted

languages

Goal: minimize sum of model length and residual data length
(error)

Both are measured in bits

For a finite example, such as the Hungarian proquants discussed
last time, the baseline is brute force: encode the strings, encode
the probabilites, build a simple automaton – about 10k bits

Where can we save?

First, we don’t need exact precision – a corpus is just a sample
from an infinite population, our interest is with population
probabilities

Every sample has some noise, how do we measure how much?

Ideally: get another sample, compare the two
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Comparing samples

Major measures: L2 (Euclidean distance) not very useful

Lp in general not very useful

“Earth mover” sometimes useful, but hard to compute

And the winner is cross-entropy:

Kullback-Leibler (KL) approximation error Q of q relative to p is∑
α∈S(q) p(α) log(p(α)/q(α)).

The case when q = 0 will be discussed later
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Internal noise

When we can’t take another sample, we randomly divide the
existing sample in two, and compute the cross-entropy

When you do this with proquants, you get KL ∼ 7 · 10−5

This means there is no reason to approximate the probabilities
better than 10−5

This is very general: no need for better precision than what’s
inherent in the data!

Our computations are finite precision anyway, but surely you
don’t need 64 bits

How many bits do you actually need?
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Uniform quantization

As a first approximation, let’s divide the [0,1] interval in 2b small
intervals, this is known as uniform quantization to b bits

For any probability p we could just use the center-point of the
interval it fits in. Transmitting the interval takes b bits

For the entire table this is 160b bits

What is the error of this method? We estimate both worst case
and expected

Can we improve on this, seeing a lot of zeros (24% of the data)?

Yes, and we can amortize the compression trick (not
transmitting the zero probabilities)
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Error of uniform quantization
Since we are not transmitting the zeros, we have a smallest
probaility pmin > 0 and we use b large enough for Pmin > 1/2b−2

(leaving the first four bins empty).

Usually 32 bits suffice for this, SRILM uses 64 bit quantities

Sum of reconstructed values (interval midpoints) need not be 1,
so receiver (Bob) renormalizes: if

∑
qi = r , he will use q = qi/r

instead of the qi that were transmitted by Alice.

When b is large, the pi will be distributed uniformly mod 2−b. In
this case, the expected values E (pi − qi) are zero for all i , so
E (

∑
qi) =

∑
E (qi) =

∑
E (pi) = E (

∑
pi) = 1 or, in other

words, E (r) = 1. Since Var(r − 1) =
∑

i Var(pi − qi) = k/12n2

is on the order 1/n2, renormalization can be ignored, and the the
KL approximation error is

Q =
∑n−1

i=0

∑
i/n≤pj≤(i+1)/n pj∆(pij ) where

∆(pij ) = log(2npj/(2i + 1))
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Error of uniform quantization cont’d

∆ is maximal if pj is at the low end of the interval, log(2i+1
2i

).
Using log(1 + x) ≤ x this will be less than 1

2i
≤ 1/8 since i ≥ 4

Therefore Qn ≤ 1
8 log 2

∼ 0.18 independent of n (as long as the

first four bins are empty).

This can be improved as b grows, but more important than the
maximum error is the expected error, for which we have
E (Qn) ≤ 1

8n log 2
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Log quantization

Probabilities are not distributed uniformly (many small vaues) so
it’s better to deal with log probabilities

Two-parameter quantization scheme, whereby first log pj are cut
off at −C , and the rest, which are on the (−C , 0) interval, are
sorted in n = 2b bins ‘b-bit quantization’

The expected value of the binning error is no longer zero, but

rather
−C log i

n∫
−C log i+1

n

ex − e−C i+0.5
n dx ∼ C 3/8n3

For C , n sufficiently large for the first 4 bins to remain empty,
the approximation error LCn of log-uniform quantization with
cutoff −C into n = 2b bins [−C (i + 1)/n,−Ci/n) is bounded by
LCn ≤ C

2n log 2
and the expected value E (LCn ) is bounded by

C 2/4n2 log 2.
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Observed quantization error
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More on the treatment of zeros

A string will be deemed ungrammatical or structurally excluded
iff every generation path includes at least one zero weight in the
above sense

This is NOT about measurement error! We are willing to say
p(teh)=0 even if ‘teh’ is frequently observed in the corpus
(34,174th most frequent word)

We will need to model typos, and it turns out that the log price
of the /the/teh/ substitution is about -9.8

This predicts not just the observed frequency of teh, but also
those of weatehr, otehr, tehy, tehre, tehft, Lutehr, tehn, tehn,
anotehr, leatehr, eitehr, whetehr, clotehs, otehrs, ratehr, tehse,
. . . without adding these to the lexicon.

Cannot build entire the language model in a single sweep directly
on the data.

Kornai Advanced Machine Learning AML 2024/11/27 11 / 24



Model fit with more complex models
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Summary so far

We transmit probabilities on arcs, strings from states With s
states, and b bits for probability, an arc requires 2 log2 s + b bits.

WFSA can be assumed to be trimmed

Zero probs NOT transmitted

Actual machine costs dominated by strings/architecture not by
cost of probs. Assume the character frequencies of Hungarian
with entropy H are shared between Alice and Bob: encoding a
string α costs simply |α|H
The baseline is always a ‘list’ automaton

Here we can obviously do better!
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List models with character-based

string encoding
b l M cs ca KL Hq

1 121 5210 4306 904 2.1883 6.833
2 121 5386 4306 1080 1.1207 3.487
3 121 5507 4306 1201 0.268 2.889
4 121 5628 4306 1322 0.041436 4.044
5 121 5749 4306 1443 0.016117 3.424
6 121 5870 4306 1564 0.002409 3.667
7 121 5991 4306 1685 0.000676 3.653
8 121 6112 4306 1806 0.000288 3.647
9 121 6233 4306 1927 5.905e-5 3.681
10 121 6354 4306 2048 8.003e-6 3.678
11 121 6475 4306 2169 3.999e-6 3.678
12 121 6596 4306 2290 1.387e-6 3.678
16 121 7080 4306 2774 4.660e-9 3.676
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b is the number of bits, l is the number of trainable parameters
(weights associated to arcs), ca is the cost of transmitting the arcs.
cs is the cost of transmitting the emissions, and the total model cost
is M = ca + cs . KL gives the KL divergence between the model and
the training data. This measures the expected extra message length
per arc weight, so that the error residual E is k times this value,
where k is the number of values being modeled. We emphasize that
k = l only in the listing format, where all values are treated as
independent – in the ‘hub’ model we shall discuss shortly l is only 26
(10 prefix and 16 suffix weights) but k is still 121.
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Main components of the total MDL

cost
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Hogy

For a weighted language p a model transform X is learnable in
principle (LIP) if (i) both M and X (M) are part of the
hypothesis space and (ii) the total MDL cost of describing p by
X (M) is significantly below that of describing p by M
hogy is ambiguous between ‘how’ and ‘that’

It also provides 40% of the total data

We consider simple ‘hub’ models

And add an extra arc for ‘hogy’
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Hub/hogy models

Lines 1-3: list models; Lines 4-6: hub models (lines 4-6);
Lines 7-9: hubs w/ hogy
b l M cs ca KLe5 M+E
3 121 1907 705 1202 26800 2289
10 121 2754 705 2049 0.8 3199
12 121 2999 705 2290 0.14 3441
3 26 473 81 392 42343 1305
10 26 662 81 581 32593 1201
12 26 716 81 635 29827 1249
3 27 480 81 400 23094 1052
10 27 676 81 596 11268 1161
12 27 733 81 652 10022 1198
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Singularities
Example: Hungarian stem-internal morphotactics. Data from
the Analytic Dictionary of Hungarian (Kiss et al 2011)
Each stem like beleilleszt ‘fit in’ is analyzed, here as preverb bele
+ root ill + verb-forming suffix eszt.
The analytic categories are Stem S ; sUffix U ; Preverb P ; rooT
T ; Modified M ; and foreIgn I
Each stem is analyzed as a string over Σ = {S ,U ,P ,T ,M , I}.
We have two weighted languages: the tYpe-weighted language
Y and tOken-weighted language O (tokens counted in the
Hungarian webcorpus, Halácsy et al., 2004)
Inherent noise of O is 0.0474 bits, of Y 0.011 bits. The two
languages are very different
We find types in the analytic dictionary that are not in the
corpus, and we find tokens in the corpus whose type is not listed
in the dictionary. This makes it theoretically impossible to
compute the KL divergence in either direction
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What can we do?

Criticize the data! In this case: add the missing entries to the
Analytic Dictionary manually.

Ignore the singular terms (obtain 2.11 bits, not correct but gives
an idea)

Censor the data (classical statistical method)

Recategorize the data (merge categories until singularities
disappear

In NLP practice, tokens with no dictionary type are either
collected in a single ‘unknown’ type or are silently discarded.
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The unigram data

fO PO KLO fY PY KLY
Stem .7967 .9638 4.7887 .5342 .9122 3.5092
sUffix .1638 .1464 0.2284 .3443 .5699 1.2174
Modified .0083 .0103 0.0149 .0255 .0623 0.0928
rooT .0114 .0141 0.0205 .0331 .0804 0.1209
Preverb .0198 .0248 0.0362 .0623 .1531 0.2397
foreIgn .0001 .0001 0.0002 .0006 .0010 0.0006
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The unseen data
If coverage is high, say P(unseen) < 0.05, the model that covers
the seen data should also be good for predicting the distribution
of the unseen data.
This means 5% or 5% (less than a quarter percent) is really
‘unseen unseen’ or, as the military likes to say, unknown
unknown (order of P2 not order of P)
In general we may consider two distributions {pi} and {qi} and
compute P =

∑
qi=0 pi , the proportion of q-singular data in p.

The total cost L of transmitting an item from the p-distribution
is bound by L ≤ (1− P)(KL(p, q) + Hq) + P(1 + log2 n)
Why? We use, with probability (1− P), the q-based codebook:
this will have cost Hq plus the modeling loss KL(p, q). In the
remaining cases (probability P) we resort to uniform coding at
cost log2 n, where n is the number of singular cases. We need to
transmit some information as to which codebook is used: this
requires an extra H(P , 1− P) ≤ P bits
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Discarding data
When P is small, the second term P(1 + log2 n) can be absorbed
in the noise

Consider I (foreign). By unigram freq, this is 0.06% of O and
0.013% of Y . Columns KLO and KLY show the KL divergence
of O and Y from models obtained by by discarding words
containing the letter in question, columns PO and PY show the
weight of the strings that are getting discarded.

For Y , only I can be discarded while keeping below the inherent
noise of the data, but for O we have three other symbols M, E,
and P, that could be removed! Further, removing both letters
M ,E only produces a KL loss of 0.036 bits; removing M , I a loss
of 0.015 bits; E , I 0.021 bits; P , I 0.036 bits; and even removing
all three of M ,E , I only 0.036 bits.

Discarding I helps with ignorance of lexicographer (paper+back,
base+ball)
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Merging
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Merge-split

XY merge-split transform in two steps: first we replace all letters
(or strings) X by Y and train a model, and next we split up the
emission states of Y in the merged model to X and Y -emissions
according to the relative proportions of X and Y in the original
data.

Transmission cost is composed of two parts: transmission of the
merged model plus transmitting the pair X ,Y and the
probability of the split but this is just the cost of a single arc

We can systematically investigate all 6·5 merge-split possibilities.
The best deal is to discard I and merge M into S (smallest
model 349 bits, about half of best model without these steps,
see Kornai, Zséder, and Recski, 2013)
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