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Algorithmic complexity

Theory built reductively (in order to make contact with logic)

First reduction: instead of classification or regression, we are
predicting a single function. If we know how to do that, we can
order the instances to be classified as xi , and the true values yi ,
what we need to predict is xn+1, yn+1

Second reduction: all you need to predict is a bitstring

What we require is an algorithm A that produces the i -th bit on
input i .

Initial definition: let the algorithmic complexity A(s) of a
bitstring s be the length (in bits) of the shortest program that
computes it
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Problems with the definition

This depends on programming language!

We can solve this by “programming” Turing machines instead of
ordinary hardware

On ordinary hardware, the closest concept is the “self-extracting
archive” e.g. RAR (Windows) or StuffIt (Mac)

In the Turing machine setup, we fix a universal TM, and prepend
the program it runs “prefix complexity”

Key observation: choosing another UTM just adds a constant
factor O(1)

There remains but one problem: A(s) is not computable

Indirect proof: Chaitin’s Theorem: there exists a limit L such
that we can’t prove that A(s) > L for any s
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Practical problems

Central issue: there are incompressible strings

Obviously, if we could compress all strings of length n to at most
n − 1 bits we will get collisions by the pigeonhole principle
because there are only 1 + 2 + . . .+ 2n−1 = 2n − 1 of these.

In fact, for large n most things will be incompressible (Theorem:
as n → ∞, proportion of compressible strings → 0)

Rational numbers have finite algorithmic complexity

Do algebraic numbers have finite ac? Yes. Why?

There are even transcendental numbers that have finite ac!

These are the constructible numbers, and there is only measure
zero of them: randomly chosen real is incompressible
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Algorithmic complexity in ML

There is an effective version due to Rissanen called Minimum
Description Length (MDL)

Setup identical to ML: we have some data D and a hypothesis
space H
Given some hypothesis H ∈ H we measure the length l(H) of
the hypothesis (called model length) and the length l(D|H)
(callad residual data length)

The view that individual information objects have algorithmic
complexity is hard to maintain (think of specialized compression
schemes)

But individual objects have a description length (upper bound on
algorithmic complexity)

It is quie easy to keep the compression scheme constant across
models
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MDL in NLP

A key concept in NLP is (probabilistically) weighted languages

A Language Model tells you what is the probability of a given
string α

This generalizes the standard concept of formal language. Take
a finite alphabet Σ, a formal language is a mapping
w : Σ∗ → {0, 1} (two-element ring B2). In general, a weighted
language is a mapping to some semiring S (why semiring?)

If S is the interval [0,1] and ΣW (α) = 1 we talk about
probabilistic weighting. This is the most important case, except
for practical reasons we prefer log probabilities

Classic (n-gram) language models built on n-gram statistics

Standard modeling toolkit is called SRILM (Stolcke et al., 2011)
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An application: Hungarian proquants

∅ a akár bár egyvala más másvala minden se vala
hány 72383 9502 2432 55 21 4584
hogy 7781539 213687 3173 1839 4570 123 4138 31873
hol 117231 399052 1037 9845 16066 16009 20521 34081
honnan 24777 18628 296 1205 2482 1321 627 4274
honnét 1598 1197 12 25 78 33 23 236
hová 17589 21073 486 1753 1 5073 1 1859 2249 3966
hova 17360 10591 309 1166 1788 1381 2105 3036
ki 1309618 1464744 3933 60923 884 814 308508 165230 221175
meddig 11879 8171 189 225 74 252
mely 761277 1586913 166 74262 3 4 40601
melyik 68051 47564 1996 34477 2 939 48274
mennyi 76429 25805 657 1415 517 96184
mi 1626013 1303820 6500 52480 1337 161 275773 355690
miért 251120 20672 58 205 4 1810 13552
mikor 173652 555325 679 33516 15892 11288 206 18235
milyen 343643 38921 8217 68033 1618 1 55603 81155
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MDL for proquants
Given some finite alphabet Σ, a weighted language p over this
alphabet is defined as a mapping p : Σ∗ → R taking
non-negative values such that

∑
α∈Σ∗ p(α) = 1

A WFSA M is defined by a square transition matrix M whose
element mij give the probability of transition from state i to
state j , an emission list h that gives a string hi ∈ Σ∗ for each
i ̸= 0, and an acceptance vector a⃗ whose i -th component is 1 if i
is an accepting state and 0 otherwise. There is a unique initial
state which starts the state numbering at 0, and we permit
states with empty outputs. Rows of M must sum to 1.
Hypothesis space: normalized probability-weighted
nondeterministic Moore machines
Data: a weighted language (divide by total number of words)
Standard method: SRILM, takes 12 kbytes
We (Kornai, Zséder, and Recski, 2013) minimize l(D|H) + l(H),
obtain 1052 bits
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