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Modeling: the bird’s eye view
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The “data modeling” and “algorithmic

modeling” schools

Data modelers start with a class of mathematical models: these
are highly parametrized, and have only few parameters.

How few? “With four parameters I can fit an elephant, and with
five I can make him wiggle his trunk” (Neumann János)

They also tend to believe that these models actually reveal
something about the internals of the black box

Main problems: low-hanging fruit all gone, statistical tests
become meaningless for millions of datapoints

Biggest problem (Breiman): fit is no good!
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Algorithmic modeling

The key is prediction accuracy on unseen (future) data

We don’t care if we don’t understand the model, black box is
good enough

Many parameters: millions are common, GPT 4o has 2 · 1011
numerical parameters

Very loosely structured models, e.g. neural nets

The approach benefits from theorems that show these are
universal approximators

Problems: even low-hanging fruit require very significant CPU
reseources

You may not care if you can’t understand the model, but your
sponsors will
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Decision trees: where the tire meets

the road

Random forests (typically obtained by bagging/boosting) are
good, but not interpretable

Single trees (CART, C5.0) are more interpretable

But even trees may be too general

Decision lists may be a good compromise
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Enrichment

The best form of learning is memorization ‘memory is all you
need’

Everything else is about generalization ability. This is really
necessary when there is a long tail, so training samples don’t
cover the problem space well, e.g. in NLP, where practically
every sentence is new.

Recent autonomous driving examples are all like this, exotic
signage and traffic blocking at road repair, unusual vehicles
. . . horse-driven carriage

When there is no data enrichment makes sense

One clever trick is bootstrap aggregating ‘bagging’ you have
only n datapoints, but you resample from these uniformly with
replacement, train new models that way, and vote in the end.
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Decision lists
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Model comparison
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LSTM (long short-term memory)

ft = σg (Wf xt + Uf ht−1 + bf ) (1)

it = σg (Wixt + Uiht−1 + bi) (2)

ot = σg (Woxt + Uoht−1 + bo) (3)

c̃t = σc(Wcxt + Ucht−1 + bc) (4)

ct = ft ◦ ct−1 + it ◦ c̃t (5)

ht = ot ◦ σh(ct) (6)

Historically LSTM (Hochreiter and Schmidhuber, 1997)
preceded GRU (Cho et al., 2014) who wanted to simplify LSTMs
LSTMs have more power (do better on long dependencies)
Computational power of architectures investigated by (Weiss,
Goldberg, and Yahav, 2018)
Key idea: keep a very contentful state vector
Best line of attack: information bottleneck method (Tishby,
Pereira, and Bialek, 2000)
These days the same issues are relevant for a better
understanding of attention (Vaswani et al., 2017)
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Seq2seq

Using LSTMs as elementary building blocks (Sutskever, Vinyals,
and Le, 2014)

Stacked 5 deep, state vectors 8000 dim

Does MT (English-French) quite well

Relies on reversing input

Encoder-decoder architecture (can be retrojected on LSTM)
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Attention
Bahdanau, Cho, and Bengio, 2015; Luong, Pham, and Manning,
2015

Self-attention (Lin et al., 2017) current form Vaswani et al
Also developed for MT (which remains the canonical case)
Introduces ‘multi-head’ model: several attention layers running
in parallel
Positional encoding: mixing sinusoids of different frequencies
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Seq2seq + Attention = Transformers

The first dynamic word vector system was CoVe (McCann et al.,
2017)

This was an encoder-decoder model trained on various MT
datasets (but no effort to mix them in a single model)

Trained on MT data (7m sentence pairs)

Encoder output concatenated to a static (GloVe) embedding

CoVe had sophisticated bidirectional attention, but not as good
as Transformers
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ELMO

Encoder-decoder trained on LM task (monolingual – much more
data) Peters et al., 2018

Multi-head (transformer-style) attention

Concatenates all (not just the top) LSTM states

For specific tasks, it may make sense to re-train the LM itself

ELMO training used 1G words of English text, GPT-2 on about
8G words, GPT-3 on over 100G words (45 TB compressed from
CommonCrawl, plus curated datasets)

GPT-3 175G parameters trained in 3.14·1023 flops (a third
yottaflop)

Energy usage alone 500MWh
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BERT

Introduced in Devlin et al., 2019

Similar to ELMO, but trained on much less data than GPT:
800m words from the Google Books Corpus and 2.5G words
from WP

Fully bidirectional, with 15% of tokens masked out

m-BERT (multilingual, 104 languages), RoBertA (Liu et al.,
2019), etc etc

National BERT’s: CememBERT (Martin et al., 2019), HuBERT
(Nemeskey, 2021) 2020), ...

Generalizations, BERTology
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