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MODELING: THE BIRD’S EYE VIEW

1. INTRODUCTION

Statistics starts with data. Think of the data as
being generated by a black box in which a vector of
input variables x (independent variables) go in one
side, and on the other side the response variables y
come out. Inside the black box, nature funections to
associate the predictor variables with the response
variables, so the picture is like this:

There are two goals in analyzing the data:

Prediction. To be able to predict what the responses
are going to be to future input variables;
Information. To extract some information about
how nature is associating the response variables
to the input variables.

There are two different approaches toward these
goals:

The Data Modeling Culture

The analysis in this culture starts with assuming
a stochastic data model for the inside of the black
box. For example, a common data model is that data
are generated by independent draws from
response variables = f(predictor variables,
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The values of the parameters are estimated from
the data and the model then used for information
and/or prediction. Thus the black box is filled in like
this:

linear regression
logistic regression
Cox model

Yo

Model validation. Yes-no using goodness-of-fit
tests and residual examination.

Estimated culture population. 98% of all statisti-
cians.

The Algorithmic Modeling Culture

The analysis in this culture considers the inside of
the box complex and unknown. Their approach is to
find a function f(x)—an algorithm that operates on
x to predict the responses y. Their black box looks
like this:

)"—x

decision trees
neural nets

Model validation. Measured by predictive accuracy.
Estimated culture population. 2% of statisticians,
many in other fields.
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THE “DATA MODELING” AND “ALGORITHMIC
MODELING” SCHOOLS

@ Data modelers start with a class of mathematical models: these
are highly parametrized, and have only few parameters.

e How few? “With four parameters | can fit an elephant, and with
five | can make him wiggle his trunk” (Neumann Jéanos)

@ They also tend to believe that these models actually reveal
something about the internals of the black box

e Main problems: low-hanging fruit all gone, statistical tests
become meaningless for millions of datapoints

e Biggest problem (Breiman): fit is no good!
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ALGORITHMIC MODELING

@ The key is prediction accuracy on unseen (future) data

@ We don't care if we don't understand the model, black box is
good enough

e Many parameters: millions are common, GPT 4o has 2 - 10!
numerical parameters

@ Very loosely structured models, e.g. neural nets

@ The approach benefits from theorems that show these are
universal approximators

@ Problems: even low-hanging fruit require very significant CPU
reseources

@ You may not care if you can’t understand the model, but your
sponsors will
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DECISION TREES: WHERE THE TIRE MEETS
THE ROAD

e Random forests (typically obtained by bagging/boosting) are
good, but not interpretable

e Single trees (CART, C5.0) are more interpretable

Fig. 4. ROC curves for rediction on the MDCD database for each of 5 folds of
crass-validatios f ke DkLpomx umm o CIADS, and OHALDS, VASe.

e But even trees may be too general

@ Decision lists may be a good compromise
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ENRICHMENT

@ The best form of learning is memorization ‘memory is all you
need’

@ Everything else is about generalization ability. This is really
necessary when there is a long tail, so training samples don't
cover the problem space well, e.g. in NLP, where practically
every sentence is new.

@ Recent autonomous driving examples are all like this, exotic
signage and traffic blocking at road repair, unusual vehicles
... horse-driven carriage

@ When there is no data enrichment makes sense

@ One clever trick is bootstrap aggregating ‘bagging’ you have
only n datapoints, but you resample from these uniformly with
replacement, train new models that way, and vote in the end.
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https://www.facebook.com/watch/?v=1576896106098532

DECISION LISTS

if hemiplegia and age > 60 then stroke risk 58.9% (53.870-63.8%)

else if cerebrovascular disorder then sivoke risk 47.8% (44.8%-50.7%)
else if transient ischaemic attack then stroke risk 23.8% (19.5%-28.4%)
else if occlusion and stenosis of carotid artery without infarction then
stroke risk 15.8% (12.2%-19.6%)

else if altered state of consciousness and age = 60 then stroke risk
16.0% (12.2%20.2%)

else if age < 70 then stroke risk 4.6% (3.9%-5.4%)

else stroke risk 8.7% (7.9%-9.6%)
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MODEL COMPARISON

TABLE 2
Mean, and in parentheses standard deviefion, of AUC and fraining time across 5 folds of
cross-validation for stroke prediction. Note that the CHADS; and CHA,DS;-VASe
models are fized, so no training time i8 repored

AUC Training time (mins)
BRL-point 0.756 (0.007) 21.48 {6.78)
CHADS, 0.721 {0.014) no training
CHA:DS:-VASe (LGTT (0.007) no training
CART 0.704 (0.000) 12.62 {IJ.[I'H}
Ca.0 0.704 (0.011) 2,56 {U.ZF}
#1 logistic regression 0,767 (0.010) (L05 {0.00)
SVM 0.753 (0.014) J02.889 {5.25}
Random forests 0.774 (0.013) 69856 {50.66)
BRL-post 0.775 (0.015) 21.48 {6.78)
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LSTM (LONG SHORT-TERM MEMORY)

fo = og(Wexe + Urhe_1 + br) (1)
ir = 0g(Wixe + Uihi_1 + b;) (2)
or = 0g(Woxt + Ushi—1 + by) (3)
& =0oc(Wexe + Uche_y + be) (4)
Gt =fioc_1+ 100G (5)
h, = 0; 0 op(ct) (6)

e Historically LSTM (Hochreiter and Schmidhuber, 1997)
preceded GRU (Cho et al., 2014) who wanted to simplify LSTMs

e LSTMs have more power (do better on long dependencies)

e Computational power of architectures investigated by (Weiss,
Goldberg, and Yahav, 2018)

o Key idea: keep a very contentful state vector

@ Best line of attack: information bottleneck method (Tishby,

Pereira, and Bialek, 2000)
T G



SEQ2SEQ

@ Using LSTMs as elementary building blocks (Sutskever, Vinyals,

and Le, 2014)
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Stacked 5 deep, state vectors 8000 dim
Does MT (English-French) quite well

Relies on reversing input

Encoder-decoder architecture (can be retrojected on LSTM)
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ATTENTION

e Bahdanau, Cho, and Bengio, 2015; Luong, Pham, and Manning,
2015

Context vector
Aligned position Figure 3: Local attention model — the model first
predicts a single aligned position p, for the current
target word. A window centered around the source
position p; is then used to compute a context vec-
tor ¢;, a weighted average of the source hidden
states in the window. The weights a4 are inferred
from the current target state h; and those source
states h in the window.

o Self-attention (Lin et al., 2017) current form Vaswani et al

e Also developed for MT (which remains the canonical case)

@ Introduces ‘multi-head’ model: several attention layers running
in parallel

e Positional encoding: mixing sinusoids of different frequencies
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SEQ2SEQ + ATTENTION = TRANSFORMERS

@ The first dynamic word vector system was CoVe (McCann et al.,
2017)

@ This was an encoder-decoder model trained on various MT
datasets (but no effort to mix them in a single model)

e Trained on MT data (7m sentence pairs)
e Encoder output concatenated to a static (GloVe) embedding

@ CoVe had sophisticated bidirectional attention, but not as good
as Transformers
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ELMO

@ Encoder-decoder trained on LM task (monolingual — much more
data) Peters et al., 2018

Multi-head (transformer-style) attention
Concatenates all (not just the top) LSTM states
For specific tasks, it may make sense to re-train the LM itself

ELMO training used 1G words of English text, GPT-2 on about
8G words, GPT-3 on over 100G words (45 TB compressed from
CommonCrawl, plus curated datasets)

e GPT-3 175G parameters trained in 3.14-10% flops (a third
yottaflop)

@ Energy usage alone 500MWh
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BERT

@ Introduced in Devlin et al., 2019

o Similar to ELMO, but trained on much less data than GPT:
800m words from the Google Books Corpus and 2.5G words
from WP

o Fully bidirectional, with 15% of tokens masked out

e m-BERT (multilingual, 104 languages), RoBertA (Liu et al.,
2019), etc etc

o National BERT's: CememBERT (Martin et al., 2019), HuBERT
(Nemeskey, 2021) 2020), ...

@ Generalizations, BERTology
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