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Groups

Speech emotion recognition: Gedeon Kövér

Wikipedia and other data harvest Juhász
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Language endangerment and

extinction
Digital language death (Kornai 2013, 2025?)

There are over 7k languages spoken today, 2.5k (35%) were
considered endangered (in the traditional sense – 100 year time
horizon). We investigated digital survival.

Four classes: Thriving, Vital, Heritage, Still. Few dozen
manually selected examples of each. E.g. French, Spanish,
Chinese are T; Czech, Finnish are V; Latin, Classical Chinese are
H; Rerau, Terik S.

Measurements collected along 30+ dimensions: number of
speakers, existence of spellchcker, size of wikipedia, . . .

6 features kept. Result: over 95% of languages not just
endangered, but already digitally dead. It’s not “there will be an
extinction”, the extinction is done.
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What does MaxEnt buy us?

No need to select arbitrary thresholds

No need to decide which features matter

Can flexibly set classes, e.g. use only 2 (Live/Dead) or 3, or as
many as you wish (assuming you can set up manual seeds
reliably)

Strong internal consistency checking

External consistency checking is hard (because of politics) but it
doesn’t matter!
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Genetic algorithms

Super-attractive idea: take algorithms that are described by
some genotype, mutate, cross, keep the most fit, rinse, repeat

If it’s good enough for Mother Nature it should be good enough
for us

Has serious problems in practice

Results not stable

Results rely on accidental properties of testbed

Not interpretable

Check out thompson 1996.pdf for an early description

Pitfalls: too little dev data set aside, too much exploitation of
train data
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Simulated annealing
More modest in its goals, inasmuch you don’t craft the fitness
function, it is given to you ahead of time

Controlled random mutation, no crossover – can be thought of
as directed semi-random walk over parameter space

We start with random model at high temperature T

Every model i (setting of model parameters) has an energy
(unfitness) Ei , and there is a global function that describes the
probability P of transition from model si to sj as a function
P(T ,Ei ,Ej) > 0 that depends only on temperature and the
energy of these models. Usually if Ej > Ei we assume P = 1.

If Ej < Ei we still assume P > 0 unless T = 0 (in which case the
algorithm reduces to greedy search)

A lot depends on the size and structure of the neighborhood we
inspect

Wikipedia has great animation!
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Boltzmann machines
We use simulated annealing in the special case when we wish to
learn a connection matrix W whose element wij measures the
strength of the connection from j to i . States are on (1) or off

(0) and energy is given as E = −
(∑

i<j wij si sj +
∑

i θi si
)

Energy of a state is proportional to neg log prob of state:
∆Ei = −kB T ln(pi=off)− (−kB T ln(pi=on))

−∆Ei

T
= ln

(
1

pi=on
− 1

)
Training involves clamping the “visible layer” to observed (gold)
data, followed by running the entire system to thermal
equilibrium

Connection update, based on minimizing KL distance between
true (observed) and predicted (thermal equilibrium)
distributions: ∂G

∂wij
= − 1

R
[p+ij − p−ij ]

Similar update for biases ∂G
∂θi

= − 1
R
[p+i − p−i ]
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More on being “brain-inspired”

Realistic assumptions: there are lots of neurons, update must be
local

Assume states are ±1, look at entire state space sized 210
11

sigmoid quashing σβ(r) =
1

1+e−βr , uniform θ, so probability of

neuron i firing at time t is σβ(ΣjWij
sj+1

2
− θ)

“Thought vector” Ψ(t) = |s1, . . . , sn⟩ follows path on hypercube
determined by 2n by 2n transition matrix P which gives the the
scalar product ⟨Ψ(t + 1)|P |Ψ(t)⟩ With probability 1, P is
diagonalizable

From here we follow Little:1974. Temporal updates are very
fast (millisecond scale) and we are interested in permenanet
engrams (year scale)
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Permanent memory
Express Ψ in the normalized basis of eigenvectors ϕr (eigenvalues
λr initially all assumed different) as ψ(Ψ) =

∑
r ϕr (Ψ)

Since these are orthonormal, the scalar product simplifies to
⟨Ψ(t + 1)|P |Ψ(t)⟩ = Σrλrϕr (α(t + 1))ϕr (α(t))
States cycle trough M = 2n steps (every state is reachable). The
time average of the probability of the system being in state α is

Γ(α) =
∑

r λ
M
r ϕ2

r (α)∑
r λ

M
r

As long as there is a unique largest eigenvalue λ1, for large M
the contributions of all the other eigenvectors and eigenvalues
will be negligible both in the numerator and the denominator
and we are left with Γ(α) = ϕ2

1(α)
Γ(α, β) = ϕ2

1(α)ϕ
2
1(β) = Γ(α)Γ(β) i.e. the probabilities are

independent, there are no persistent states
Suppose there are two largest eigenvalues, or λ2 is very close to

λ1. This gives Γ(α, β) =
λM
1 ϕ2

1(α)+λM
2 ϕ2

2(α)

λM
1 +λM

2
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Conclusion from the Little model

we thus have the possibility of states occurring (. . . ) which
are correlated over arbitrarily long periods of time. It is worth
noting too that the characteristics of the states which so
persist are describable in terms of the eigenvectors associ-
ated only with the degenerate maximum eigenvalues. In this
sense these persistent states are very much simpler to de-
scribe than an arbitrary state (. . . ) for they involve only
that small set of eigenvectors associated with the degenerate
maximum eigenvalues, whereas other states (require) the full
set of 2n eigenvectors.
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