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1. Introduction

Gordon Peterson and Harold Barney describe a detailed investigation of sustained
American English vowels in [1]. The article presents acoustic measurements of fundamental
frequency (FO) and first three formant frequencies (F1-F3). The authors also conducted
experiments where listeners were asked to identify words.

Raymond Watrous [2] re-organized the database collected in [1] and made it temporarily
available from University of Pennsylvania. In 1994, Murray Spiegel posted a message on
comp.speech news group® indicating the database had been made available again, but from
Bellcore. Later, Tony Robinson made it permanently available from Cambridge University?. Now
the database, formatted for Weka [3], is also available from [4]. It is called the pbvowel database
because Robison has made available another database that is usually identified as vowel in [5].

The vowel database consists of eleven sustained vowels of British English collected by
David Deterding and represented by log-area ratio (LAR) parameters. When using the standard
partitions into test and train sets’, the error rates for the vowel database are usually higher (around
twice) than for pbvowel. Besides being based on different English accents, the vowel and pbvowel
databases were not obtained through the same experimental procedures. Also, formants can be
seen as a more efficient representation of vowels than LAR parameters. LAR is a well-known,
but outdated parameterization of speech [6]. In speech coding the LARS were substituted by the
line spectral frequencies [7] and in speech recognition, parameters obtained through cepstrum
analysis are more popular [8].

The motivations for writing this report about pbvowel were:

- it has been used by several researchers (e.g. [9], [10], [11]) but their results can not be easily
compared due to the lack of a standard experimental procedure;

- the open-source Weka machine learning package [3] provides implementations of several
classical pattern recognition techniques. The command lines for Weka are provided here, so
the reported results can be easily reproduced;

- the conventional nomenclature for formants (F1, F2 and F3) and fundamental frequency (FO)
is confusing. Some publications mistakenly mention that pbvowel contains four formants (e.g.
[11], [2]). It seems important to present their definitions and emphasize the distinction
between FO and formants;

- [1] completes 50 years in 2002 and deserves a celebration!

! This group was |ater split in comp.speech.users and comp.speech.research.
2 Thefileis called PetersonBarney.tar.Z and is available at ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/datal.
® The error rate when using n-fold cross-validation is usually considerably smaller.



This report is organized as follows. Section 2 presents a brief description of the concepts
of formants and fundamental frequency, the numerical attributes of the pbvowel database. Section
3 reviews the work reported in [1]. A partition of the database is presented in section 4. The
results of vowel classification using Weka are reported in section 5. Section 6 shows some plots
obtained considering only the first two formants. The final considerations are in section 7.

2. Speech formants and fundamental frequency

In the Fifties, Gunnar Fant made significant contributions to the development of an
acoustic theory of speech where the speech wave is seen as the response of the vocal tract filter
systems to one or more sound sources. This is the basic principle of the so-called source-filter
model of the speech production process. A detailed description of this model can be found in
[12]. Given the scope of pbvowel, it suffices to consider here only the production of vowels.

Fundamental frequency (FO):

When a vowel is produced, the vocal cords vibrate on arate called fundamental frequency
or FO. In practice, FO is not exactly the same over time but varies intentionally or unintentionally
(machines can produce a monotonic FO though). The average FO values of children are higher
than of adults, and women have higher FO than men, as can be inferred from pbvowel. FO is a
parameter related to the source (as discussed later, the formants are related to the filter).

The pitch frequency is closely related to FO and in many cases these terms are used
interchangeably. In more strict terminology, pitch is atonal sensation and frequency a property of
the sound stimulus [12]. It is not an easy task to estimate FO, but it is harder to quantify the
subjective sensation of pitch. The mel scale [13], which is popular in speech recognition, is an
attempt to relate frequency and pitch.

The method used for estimating FO in [1] is not discussed by the authors (neither in the
companion paper [14]).

Formants:

The main articulators involved in vowel production are tongue and lips. Depending on
their configuration the vocal tract imposes different shapes to the resultant speech spectrum. The
source-filter model assumes the source spectrum Sf) is modified by the filter (vocal tract)
function T(f), leading to a speech spectrum P(f) = Sf) T(f). For vowels, ) is basically composed
by harmonics of FO. The speech formants can be defined either as the peaks of |S(f)| or [T(f)|,
which generates some confusion. From [12] (page 20):

"The spectral peaks of the sound spectrum |P(f)| are called formants. (...) it may be seen that one
such resonance has its counterpart in a frequency region of relatively effective transmission
through the vocal tract. This selective property of |T(f)| is independent of the source. The
frequency location of a maximum in |T(f)|, i.e., the resonance frequency, is very close to the
corresponding maximum in spectrum P(f) of the complete sound. Conceptually these should be
held apart but in most instances resonance frequency and formant frequency may be used
synonymoudly. Thus, for technical applications dealing with voiced sounds it is profitable to
define formant frequency as a property of T(f)."



Modern textbooks® define formants as the resonance frequencies associated to T(f) [16]
(page 18), [8] (page 27). As pointed out by Fant, this definition is sensible because eliminates the
influence of the source characteristics, which are speaker-dependent (e.g. different people say the
same vowel with potentially different values of FO). On the other hand, it raises the problem that
resonances of T(f) are sometimes undetermined given that usually only a measure of P(f) is
available. For example, a person (e.g. child) with high FO would produce Sf) with harmonics of
FO highly separated in frequency, so the peaks of T(f) would be hardly visualized if they were far
from any harmonic.

There are many techniques for estimating formants. A survey of formant estimation
methods used in the past is given in [17] (page 165). A popular modern approach is to obtain
formants from the roots of a filter calculated through linear prediction techniques [6]. Fig. 1 and
Fig. 2 show spectrograms [6] with formant tracks (F1-F3) superimposed. The first sentence is
composed basically by vowels and the method gives fairly good results. The sentence
correspondent to Figure 2 has more phonetic variation (fricatives, nasals, etc.) and the results are
not so good as in Figure 1. In fact, under realistic conditions (noise, etc.), formants estimation is a
difficult task.
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Fig. 1. First threeformants F1- F3 estimated from the roots of linear prediction filters of order 8. The
sentenceis" We were away" spoken by a male speaker with low FO.

* Kenneth Stevens observes that the concept of a formant should be restricted to natural frequencies of the vocal tract
when there isno coupling to the nasal cavities [15] (page 131).
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Fig. 2. First three formants F1-F3 estimated from theroots of linear prediction filtersof order 8. The sentence
is" In wage negotiations, the industry bar gains as a unit with a sngle union" .

The method for estimating formants used in [1] is described, though not thoroughly, in
[14]. It consists of calculating a weighted average of the spectrum components. This approach is
known as "peak-picking" and, as other formant estimation methods, is error prone and usually
requires the supervision of an expert for eventual corrections.

3. Peterson & Barney's paper

Data collection

A list of ten words was presented to 76 speakers, each word beginning with [h] and
ending with [d], and differing only in the vowel. The words are listed in Table |. Each speaker
was asked to pronounce two different lists, each list corresponding to a random permutation of
the 10 words. Therefore, the total number of recorded words was 1520.

The first formant F1 can be related to how far the tongue is raised and F2 to which part of
the tongue is raised. Therefore, vowels can be organized according to the tongue's position in
plots as Fig. 3. Nowadays phoneticians point out that pictorial representations as Fig. 3 should be
seen as first-order approximations, given that it is actually possible to produce a vowel with a
configuration radically different from the one suggested by Fig. 3[18].
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Fig. 3. Reations between for mants and tongue's positions. Note that the F1 and F2 axes should have the
directionsindicated by Figure 2in order to provide the pictur e popular among phoneticians.

The vowels are identified in Fig. 3 by symbols defined in the International Phonetic
Alphabet (IPA). The IPA makes extensive use of letters not available on computers. The
ARPABET isone of the proposed mappings from IPA to ASCII symbols. The vowels in pbvowel
were labeled according to the two-characters representation of the ARPABET®. Table | shows the
words and correspondent vowels. More details about these phonetic symbols can be found in [18]

(page 29).

Tablel - Words used in [1] and the correspondent vowels. The actual sounds can be heard at [20]. The IPA
diacritic : indicatesthe vowel haslonger duration and the" hook" diacritic ~indicatesthe vowel 3 is
influenced (" colored") by [r].

Word used IPA More ARPABET | Examplein | Examplein | Examplein | Examplein
in[1] symbol for | detailed IPA symbol context /h_/ context context context
thevowe | transcription /b d/ /h t/ /k_d/
heed i i: Y he bead heat keyed
hid I I IH - bid hit kid
head I3 3 EH - bed _ _
had ® ® AE - bad hat cad
hod a a: AA - bod hot cod
hawed o) o AO haw bawd - cawed
hood U U UH - - - could
who'd u u: uw who booed hoot cooed
hud A A AH - bud hut cud
heard 3 31 ER her bird hurt curd

® An on-line version of the ARPABET can be found at [19].




Listening tests

The 1,520 recorded words were presented to a group of 70 adult observers. Thirty-two of
the 76 speakers were also among the observers. The experiment was conducted in seven sessions.
The general purpose of these tests was to obtain an aural classification of each vowel. Each
observer would mark the word he heard. For each vowel, all correspondent 152 words were
presented to the observers. The ease with which the observers classified the various vowels
varied significantly. Of all 1Y sounds, for instance, 143 were unanimously classified by all
observers as Y. On the other hand, only 9 when the intended vowel was AA. This result is
summarized in Fig. 4. From [1]: "The very low scores of AA and AO result primarily from the fact
that some members of the speaking group and many members of the listening group speak one of
the forms of American dialectsin which AA and AO are not differentiated.”

Fig. 4. The per centage unanimously identified by all 70 listeners of 152 repetitions for each vowel.
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The complete confusion matrix is shown in Table Il. A graphical representation of the
confusion matrix is shown in Fig. 5. The total average "error” of the listening test was 5.57 %.

Tablell - Confusion matrix for listening experiment in [1]. Linesindicate the intended, and columnsthe vowel
understood by listeners. Thelast two columns show the total® and error per line.

Y IH EH AE AA AO UH uw AH ER Total %
error
Y 10267 4 6 - - 3 - - - - 10280 | 0.13
IH 6 9549 | 694 2 1 1 - - - 26 10279 7.10
EH - 257 | 9014 | 949 1 3 - - 2 51 10277 | 12.29
AE - 1 300 | 9919 2 2 - - 15 39 10278 | 3.49
AA - 1 - 19 8936 | 1013 69 - 228 7 10273 | 13.01
AO - - 1 2 590 | 9534 71 5 62 14 10279 7.25
UH - - 1 1 16 51 9924 96 171 19 10279 | 3.45
uw - - 1 - 2 - 78 10196 - 2 10279 | 0.81
AH - 1 1 8 540 127 103 - 9476 21 10277 7.79
ER - - 23 6 2 3 - - 2 10243 | 10279 | 0.35

® Each vowe should be voted 10640 (152 x 70) times, but the "Tota" column shows the actua average number is
around 10279. The total number of votes was 102780, indicating that 3620 from the expected total of 106400 votes
were not considered when organizing the table. Thereasons for that are not mentioned in [1].




Some instances in pbvowel are labeled as being unanimously classified by all observers. It
should be noticed that the documentation available with the pbvowel version distributed by
Cambridge University mentions only 26 observers, while 70 were reported in [1]. In fact, the
statistics of the vowels in pbvowel that were labeled as unanimously classified does not match the
results in [1]. In pbvowel, only 321 vowels were labeled as not unanimously identified by
observers. The reason for this discrepancy on the number of observers is unknown.
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Fig. 5. Graphical representation of the confusion matrix for the listening test in [1]. The columnsindicate the
recognized vowel. Theradii are proportional totheentriesin Tablell. Thelast column illustratesthe
difficulty on recognizing each vowel.

Acoustic measurements

Besides FO and three formants, the formant amplitudes in dB were also reported in [1],
but are missing in pbvowel. The statistics for FO and formants F1-F3 are listed in Tablel11.

Tablelll- Statistics of the numerical attributesin pbvowel: minimum, maximum, aver age and standard
deviation for all 1,520 instances.

Min Max | Average Std

FO 91 350 191.29 60.36
F1 190 | 1300 | 563.30 | 201.25
F2 560 | 3610 | 1624.38 | 637.01
F3 | 1400 | 4380 | 2707.81 | 519.45

4. Partitioning the database

The attributes for the version of pbvowel distributed by [5] are listed in Table IV. In
classification experiments, the attributes speaker _number and confidence should not be used.

A partition of pbvowel into four subsets based on the speaker identity is presented in this
section. All subsets have 19 speakers, corresponding approximately to the same number of males,
females and children. An open test set framework is adopted, i.e., speakers in the train do not
belong to the test set. The standard partition is a train set corresponding to the union of A and B



(with C and D corresponding to the test set). Eventually, if a given algorithm demands more
training data, set C can be used for training and the situation properly reported. Alternatively, set
C can be used as avalidation set.

Table V- Attributes of pbvowel.

Attribute name Type
gender_age nominal: {male, female, child}
speaker _number numerical, integer (0 [1, 76]
confidence nominal: {low, high}
FO numerical, integer
F1 numerical, integer
F2 numerical, integer
F3 numerical, integer
vowel nominal: {IY,IH,EH,AE,AA AO,UH UW,AH,ER}

Table V- Partition of pbvowel into four digoint subsets according to speaker identity. All sets have 380 vowels,
corresponding to 19 speakers.

Males | Females | Children
1-8 34-40 62-65
9-16 41-47 66-69
17-24 48-54 70-73
25-33 55-61 74-76

UOWZD&

It may be interesting to consider only the instances that were labeled as unanimously
identified by the listeners, i.e., those with attribute confidence equal to high. A suffix "u", as
shown in Table VI, identifies the corresponding subsets. The training set composed by A u and
B_u contains 599 instances, while the test set (C_u and D_u) contains 600. The distribution of
vowels is not uniform when considering only the ones unanimously identified.

Table VI- Number of vowels unanimoudy identified by listenersin each set in Table V.

Set A U Bu|Cu|Du
# of vowdls | 289 310 295 305

Table VII- Identifiersfor smulations using different combinations of the attributesin pbvowel.

I dentifier Used attributes (besdes the vowel)
gFo0-3 gender_age, FO, F1, F2, F3
FO-3 FO, F1, F2, F3
F1-3 F1, F2, F3
F1-2 F1, F2
u (as prefix, e.g., UFO-F3) | only instances with confidence equd to high

This report presents simulations with different combinations of the attributes in pbvowsl.
Table VII summarizes these combinations. For example, a simulation identified by uF1-3 uses a
train set composed by instances for which confidence is high, and discarding attributes
gender_age, speaker _number, confidence and FO.



5. Classification using Weka

This section presents results obtained with Weka, version 3.2. Weka can be obtained at
[3] and the source code in Java is also available. Table VIII shows results obtained with 20
different classifiers, for 5 different combinations of attributes as described in Table VII. The
command lines for reproducing these results are given in the Appendix. The best resultsin Table
VIII are aso the best in the literature that the author is aware of. However, some classifiers were
not tuned, as Table VIII was designed to serve simply as basis for comparisons. For example, the
default in Weka's multilayer perceptron is a number of units in the hidden layer given by the
average between the number of attributes and classes (e.g., (4+10)/2 = 7 units for the first column
FO-3). Tuning the network topology leads to improvements. However, it is questionable to use
the test set to validate parameters, i.e., choosing the parameters that lead to the best results for the
test set, implies the performance on this set does not necessarily indicate the generalization
capability of the classifier. A better approach in this case would be to use set C as avalidation set
and report results on set D. Here, the default values were used for most classifiers and a
validation set was not adopted.

It can be seen from Table VIII that the extra attribute gender_age in ugF0-3 does not
bring better results when compared to uF0-3. In fact, as discussed in section 2, FO alone does not
bring information about vowel identity. However, FO is related to attribute gender_age. Given
that vowels (and consequently F1-F3) vary depending if the speaker is a man, woman or child,
FO or gender_age can improve classification accuracy if the classifier effectively uses this
information. For classifiers as Naive Bayes, which assumes independence among attributes given
the class, FO and gender_age do not help.

For an easier visualization, the results of Table V111 are aso shown in Fig. 6. The reader is
refereed to the Weka documentation for an explanation of acronyms as ECOC (error-correcting
output code), etc.



Table VIl - Misclassification rate for 20 classifiers designed with Weka. The columns ar e labeled according to
TableVII. Thebest result for each data set isindicated in bold.

# Algorithm and configuration FO-3 | ugF0-3 | uF0-3 | uF1-3 | uF1-2
1 Nalve Bayes - smpler implementation 24.74 | 21.33 21.00 21.33 26.83
2 Naive Bayes 24.60 | 21.17 21.50 22.00 27.17
3 Nalve Bayes with kernd estimation 22.10 | 19.00 17.83 19.50 25.00
4 Kernd density estimator 17.37 | 13.50 13.17 13.33 18.67
5 K-nearest neighbor with K =5 16.58 | 13.50 13.17 14.33 21.50
6 K-nearest neighbor with entropic distance (KStar) 16.84 | 11.83 12.33 12.67 18.33
7 Multilayer perceptron 13.42 | 12.83 9.83 15.50 19.67
8 C4.5 decision tree with reduced error pruning 23.29 | 20.5 21.5 19.83 27.83
9 Bagging 10 iterations using C4.5 with reduced error 19.08 | 14.67 14.33 16.00 20.33

pruning
10 | Bagging 50 iterations using C4.5 with reduced error 17.89 | 14.33 14.67 17.83 22.00
pruning
11 | AdaBoost M1 using C4.5 without reduced error 16.05 | 14.33 14.00 16.17 29.50
pruning
12 | AdaBoost M1 using C4.5 with reduced error pruning | 18.29 | 17.50 16.83 19.17 26.83
13 | Boosted stumps with LogitBoost 20.00 | 18.33 18.50 19.50 24.17
14 | 10 binary classifiers (one-against-all): SVM with 15.92 | 11.17 11.50 17.17 28.83

polynomial kernel of order 5

15 | 10 binary classifiers (one-againgt-all): 50 iterations of | 19.34 | 16.50 17.83 19.50 27.83
AdaBoost using stumps

16 | 10 binary classifiers (one-againgt-all): 50 iterationsof | 19.60 | 15.83 15.67 18.67 23.50
LogitBoost using sumps

17 | 10 binary classifiers (one-against-all): multilayer 12.89 | 10.50 10.33 11.00 21.17
perceptron

18 | 20 binary classifiers (random code): multilayer 14.60 | 11.33 9.83 22.83 30.83
perceptron

19 | 20 binary classifiers (random code): 100 iterationsof | 31.58 | 22.50 22.33 27.83 30.00
AdaBoost using stumps

20 | 20 binary classifiers (random code): 10 iterations of 12.63 | 10.00 10.00 11.67 22.33
AdaBoost using multilayer perceptrons
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Fig. 6. Illustration of misclassification rates shown in Table VII1.

Fig. 7 compares the results obtained with the neural network classifier correspondent to
number 17 in Table V111 with the listening experiments in [1]. The pattern of errors is not exactly
the same, but there are coincidences as, for example, vowels 1Y and ER are recognized with high

accuracy in both cases. In relative terms, the machine has more troubles with UH, while listeners

have with AA.
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Fig. 7- Confusion matricesfor listening test (Fig. 5) at the left and results with neural network (number 17in
Table VIII) at theright. The columnsindicate the recognized vowel. Theradii are proportional to the entries.

6. Visualization of results on F1 x F2 plane

As shown in this section, illustrative plots can be obtained when using only the first two
formants. The figures in this section use color for an easier visualization.

Fig. 8 shows the instances used for training and testing the classifiers discussed in this
section (see the appendix for other plots) Note that the regions overlap significantly in the F1 x
F2 plane, especially for vowel ER. In spite of being perceptually less important than F1 and F2,
the third formant F3 is useful for distinguishing ER from the others. In fact, according to Table 1,
ER can be easily recognized by listeners.
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Fig. 8. Plot of all instancesfor which confidenceis high (identified unanimously).



C4.5 decision tree. Misclassification error: 27.83%
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Fig. 9. Decision boundaries obtained with a C4.5 decision tree (number 8in TableVIII). Thecolorsarethe
same asin Fig. 8. Thetest instances ar e superimpaosed with their corresponding colors, such that errorscan be
identified.

A decision tree as C4.5 leads to boundaries that are parallel to the axes as shown in Fig. 9.
This limitation is clearly problematic in this case. Some classifiers that are capable of arbitrary
decision boundaries as K-nearest neighbor and neural networks led to better results, as shown in
Fig. 10 and Fig. 11, respectively. Note that the K-nearest neighbor established a non-contiguous
region for ER.



KStar (-B 20 -M a). Misclassification error: 18.33%
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Fig. 10. Decision boundariesand errors obtained with a K-nearest neighbor classifier (number 6in Table
VIII).

Backpropagation neural network. Misclassification error: 19.67%
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Fig. 11. Decision boundariesand errors obtained with a multilayer perceptron (number 7in Table VIII).

Some classifiers, as the implementation of support vector machines (SVM) in Weka, can
not deal with more than two classes. One alternative is to break down the multiclass problem into
several binary problems. Fig. 12 shows the results obtained by training 10 binary classifiers using
aone-versus-all methodology [11].



SVM organized as 10 binary classifiers. Misclassification error: 28.83%
4000 T

3500 F

3000

2500 F

F2 (Hz)

2000 i

1500

1000

500 : L
0 200 400 600 800 1000 1200 1400

F1 (Hz)

Fig. 12. Decision boundariesand errors obtained with support vector machines (number 14 in Table VIII).

Bagging 10 C4.5 decision trees. Misclassification error: 20.33%
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Fig. 13. Decision boundariesand errors obtained by bagging 10 decision trees (number 9in Table VIII).

Another approach for circumventing limitations of classifiers is to build ensembles with
methods as boosting or bagging. Fig. 13 illustrates how bagging can improve results, obtaining
decision boundaries not as limited as the ones of the basic decision tree in Fig. 9. There is even a



non-contiguous region for ER in Fig. 13, similar to the one suggested by the K-nearest neighbor of
Fig. 10, which obtained the best result in terms of classification based only on F1 and F2.

7. Conclusions

This report reviewed the work described in [1]. The concepts of formants and

fundamental frequency were discussed in order to avoid confusions with the nomenclature FO and
F1-F3. A flexible partition of the database was proposed, such that results obtained by different
researchers can be easily compared. Results of vowel classification experiments conducted with
Weka were presented, with some plots on the F1 x F2 plane to help interpreting results.
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Appendix - Command lines for Weka

# Algorithm Weka's command line
1 Nalve Bayes - smpler implementation weka.classifiers.NaiveBayesSimple
2 Nalve Bayes weka.classifiers.NaiveBayes
3 Nalve Bayes with kernd estimation weka.classifiers.NaiveBayes -K
4 Kernd density estimator weka.classifiers.Kerne Density
5 K-nearest neighbor with K =5 weka.classifiers.IBk -K 5-W 0
6 K Star weka.classifierskstar. KStar -B 20-M a
7 Multilayer perceptron weka.classifiers.neural .NeuralNetwork -L 0.3-M 0.2 -N 500 -
V0-SO0-E20-Ha
8 C4.5 decision tree with reduced error pruning | weka.classifiersj48.J48 -R -N 3-M 2
9 Bagging 10 iterations using C4.5 with weka.classifiers.Bagging -S1 -l 10 -P 100 -W
reduced error pruning weka.classifiersj48.J48 -- -R-N 3-M 2
10 | Bagging 50 iterations using C4.5 with weka.classifiers.Bagging -S1 -1 50 -P 100 -W
reduced error pruning weka.classifiersj48.J48 -- -R-N 3-M 2
11 | AdaBoost M1 using C4.5 without reduced weka.classifiers AdaBoostM1 -P 100 -1 10-S1-W
error pruning weka.classifiersj48.J48 -- -C 0.25 -M 2
12 | AdaBoost M1 using C4.5 with reduced error | weka.classifiers AdaBoostM1 -P 100 -1 10-S1-W
pruning (only approximately 4 iterations were | weka.classifiersj48.J48 -- -R-N 3-M 0
compl eted)
13 | Boosted stumps with LogitBoost weka.classifiers.LogitBoost -P 100 -I 10 -W
weka.classifiers.DecisionStump --
14 | 10 binary classifiers (one-againgt-all): SVM weka.classifiers.MultiClassClassifier -E0-R 2.0 -W
with polynomial kernd of order 5 weka.classifiers. SMO -- -C 1.0 -E 5.0 -A 1000003 -T 0.0010
-P1.0E-12-O
15 | 10 binary classifiers (one-againgt-all): 50 weka.classifiers.MultiClassClassifier -E0-R 2.0 -W
iterations of AdaBoost using stumps weka.classifiers AdaBoostM1 -- -P 100 -1 50 -S 1 -W
weka.classifiers.DecisionStump --
16 | 10 binary classifiers (one-againgt-all): 50 weka.classifiers.MultiClassClassifier -E0-R 2.0 -W
iterations of LogitBoost using stumps weka.classifiers.LogitBoost -- -P 100 -I 50 -W
weka.classifiers.DecisionStump --
17 | 10 binary classifiers (one-against-all): weka.classifiers.MultiClassClassifier -E0-R 2.0 -W
multilayer perceptron weka.classifiers.neura .Neura Network -- -L 0.3 -M 0.2 -N
500-V 0-SO0-E20-Ha
18 | 20 binary classifiers (random code): weka.classifiersMultiClassClassifier -E 1-R 2.0 -W
multilayer perceptron weka.classifiers.neura .Neura Network -- -L 0.3 -M 0.2 -N
500-V 0-SO0-E20-Ha
19 | 20 binary classifiers (random code): 100 weka.classifiers.MultiClassClassifier -E 1-R 2.0 -W
iterations of AdaBoost using stumps weka.classifiers AdaBoostM1 -- -P 100 -1 100-S1-W
weka.classifiers.DecisionStump --
20 | 20 binary classifiers (random code): 100 weka.classifiers.MultiClassClassifier -E 1-R 2.0 -W

iterations of AdaBoost using multilayer
perceptrons

weka.classifiers AdaBoostM1 -- -P 100 -1 10-S 1 -W
weka.classifiers.neural .Neura Network -- -L 0.3 -M 0.2 -N
500-V0-S0-E20-Ha
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Appendix - F1 x F2 plots

All 1520 vowels from [Peterson & Barney]
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Fig. A.1- F1 x F2 for all 1520 vowels. This plot should be the same but for unknown reason it

seems to differ from [6], page 44.
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Fig. A.2- F1 x F2 for training set with only Fig. A.2- F1 x F2 for testing set with only

unanimoudly identified vowels. unanimoudly identified vowels.
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