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Contex Free Grammars

Slightly more powerful than regexps (can do Dyck language)

In addition to Σ ‘alphabet we are interested in’ we also have N
nonterminal alphabet ‘used for scaffolding’

Start symbol S , rewrite rules N → (N ∪ Σ)∗

Rewrite until all scaffolding is removed

The yield of a CFG is the set of strings that can be obtained
from a distinguished start symbol S ∈ V by application of
productions until no nonterminal is left

Example: S → (S), S → SS , S → λ gives Dyck languge D2.

HW9.1 Write the grammar for D6 using three types of parens
()[]{}
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First order language

It is convenient to use a very large (transfinite) list of constants.
These are the things we want to talk about (points on the plane,
sets, etc.)

We also permit an infinite, but denumerable list of variables
x , y , z , ... to help us talk about many things at the same time

Relation symbols, each with a fixed arity (the number of factors
in the direct product) – again we can permit a more than
denumerably infinite supply

Connectives ¬,∧,∨,⇒,⇔
Quantifiers ∀,∃ and brackets [ , ]
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FOL (almost) by CFG
Ignoring cardinality issues, the nonterminals include WFF, AF,
Const, Var, and Reln. We will also have some technical symbols
, (comma) and (placeholder). Brackets, parentheses,
connectives and quantifiers are considered terminal symbols, as
are the individual constants, variables, and relation symbols

The rules for Atomic Formulas: AF → Rn(( , )
n−1 ) ‘Each

n-ary relation symbol must be followed by (, a string of n empty
slots separated by n-1 commas, and terminated by )’

→ c , → v ‘Slots of n-ary relational symbols must be filled by
constants or variables. So R(a, x , b) is an Atomic Formula, but
S(x , ) is an incomplete atomic formula (doesn’t count in the
yield, because it still has a nonterminal )

To check if a string is an Atomic Formula, you need to check if
it starts with a relational symbol, what is the arity of that
symbol, and whether the slots are filled by variables/constants
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Moving from atomic to more complex

formulas

1 WFF → [AF] ‘bracketing an atomic formula gives a well-formed
formula’

2 WFF → [¬ WFF]|[WFF ∨ WFF]|[WFF ∧ WFF]|[WFF ⇒
WFF]|[WFF ⇔ WFF] ‘logical operations on WFFs lead to WFFs’

3 WFF → [(∀ Var) WFF]|[(∃ Var) WFF] ‘quantification’

4 We need to make sure that e.g. [(∀x)[(∃x)R(a, x)]] is not a
WFF ‘capturing variables’. This can’t be done with a CFG
(Type 2) , but very easy with a linear bounded TM (Type 1)

5 HW9.2-4 Write ZFC1,2,5 in FOL Remember = and ∈ are binary
relations

6 HW9.0 Write CFG for the language of arithmetic expressions Use
nonterminals Dig (digit), Int (integer), and Nat (natural number)
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Truth

There are two kinds of truth, syntactic and semantic

We have ⊢ ‘yields’ or ‘derives’ where A ⊢ B means B can be
formally derived (proved) from A. For example, in most systems
of logic x = 3 ∧ y = x ⊢ y = 3, but we need a lot of machinery
(called proof theory) to make this stick. This is pure syntax
manipulation: you take formulas and produce new ones by
mechanical operations

We also have |= ‘models’ where A |= B means that in any model
where A is true B is also true. This is more meaningful, but
requires model theory which spells out the relation between a
theory (bunch of formulas) and a set with lots of structure that
the formulas are about

In well-crafted systems A ⊢ B implies A |= B
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The converse is not true!

In many well-crafted systems (e.g. the first order formulation of
Peano Arithmetic) there are statements which are semantically
true e.g. PA |= Goodstein’s Theorem, but has no proof there

If it has no proof, how do we know it’s true? Because in a
stronger system (in this case, 2nd order arithmetic) we can prove
it

That the converse is not true for systems endowed with a bit of
arithmetic is the celebrated Gödel Incompleteness Theorem

Our interest here is with the less celebrated, but just as
important, Gödel Completeness Theorem

This says that every formula that is true in all structures is
provable

Wait, how can these both be true? The answer is that PA has
more models in first-order axiomatization than in second-order
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