Foundations of Mathematics, Lecture 9

András Kornai

BMETE91AM35 Fall 2023-24

CONTEX FREE GRAMMARS

- Slightly more powerful than regexps (can do Dyck language)
- In addition to Σ 'alphabet we are interested in' we also have N nonterminal alphabet 'used for scaffolding'
- Start symbol S, rewrite rules $N o (N \cup \Sigma)^*$
- Rewrite until all scaffolding is removed
- The yield of a CFG is the set of strings that can be obtained from a distinguished start symbol S ∈ V by application of productions until no nonterminal is left
- Example: $S \rightarrow (S), S \rightarrow SS, S \rightarrow \lambda$ gives Dyck language D_2 .
- HW9.1 Write the grammar for D₆ using three types of parens ()[]{}

FIRST ORDER LANGUAGE

- It is convenient to use a very large (transfinite) list of *constants*. These are the things we want to talk about (points on the plane, sets, etc.)
- We also permit an infinite, but denumerable list of *variables* x, y, z, ... to help us talk about many things at the same time
- Relation symbols, each with a fixed **arity** (the number of factors in the direct product) – again we can permit a more than denumerably infinite supply
- Connectives $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
- $\bullet~$ Quantifiers $\forall,\exists~$ and brackets [,]

FOL (Almost) by CFG

- Ignoring cardinality issues, the nonterminals include WFF, AF, Const, Var, and Rel_n. We will also have some technical symbols , (comma) and _ (placeholder). Brackets, parentheses, connectives and quantifiers are considered terminal symbols, as are the individual constants, variables, and relation symbols
- The rules for Atomic Formulas: AF → R_n((_,)ⁿ⁻¹_) 'Each n-ary relation symbol must be followed by (, a string of n empty slots separated by n-1 commas, and terminated by)'
- → c, → v 'Slots of n-ary relational symbols must be filled by constants or variables. So R(a, x, b) is an Atomic Formula, but S(x,) is an incomplete atomic formula (doesn't count in the yield, because it still has a nonterminal _)
- To check if a string is an Atomic Formula, you need to check if it starts with a relational symbol, what is the arity of that symbol, and whether the slots are filled by variables/constants

MOVING FROM ATOMIC TO MORE COMPLEX FORMULAS

- O WFF \rightarrow [AF] 'bracketing an atomic formula gives a well-formed formula'
- WFF \rightarrow [\neg WFF]|[WFF \lor WFF]|[WFF \land WFF]|[WFF \Rightarrow WFF]|[WFF \Leftrightarrow WFF] 'logical operations on WFFs lead to WFFs'
- **③** WFF \rightarrow [(\forall Var) WFF]|[(\exists Var) WFF] 'quantification'
- We need to make sure that e.g. [(∀x)[(∃x)R(a,x)]] is not a WFF 'capturing variables'. This can't be done with a CFG (Type 2), but very easy with a linear bounded TM (Type 1)
- IW9.2-4 Write ZFC1,2,5 in FOL Remember = and ∈ are binary relations
- HW9.0 Write CFG for the language of arithmetic expressions Use nonterminals Dig (digit), Int (integer), and Nat (natural number)

Truth

- There are two kinds of truth, syntactic and semantic
- We have ⊢ 'yields' or 'derives' where A ⊢ B means B can be formally derived (proved) from A. For example, in most systems of logic x = 3 ∧ y = x ⊢ y = 3, but we need a lot of machinery (called *proof theory*) to make this stick. This is pure syntax manipulation: you take formulas and produce new ones by mechanical operations
- We also have ⊨ 'models' where A ⊨ B means that in any model where A is true B is also true. This is more meaningful, but requires *model theory* which spells out the relation between a theory (bunch of formulas) and a set with lots of structure that the formulas are about
- In well-crafted systems $A \vdash B$ implies $A \models B$

THE CONVERSE IS NOT TRUE!

- In many well-crafted systems (e.g. the first order formulation of Peano Arithmetic) there are statements which are semantically true e.g. PA ⊨ Goodstein's Theorem, but *has no proof there*
- If it has no proof, how do we know it's true? Because in a stronger system (in this case, 2nd order arithmetic) we can prove it
- That the converse is not true for systems endowed with a bit of arithmetic is the celebrated Gödel Incompleteness Theorem
- Our interest here is with the less celebrated, but just as important, Gödel Completeness Theorem
- This says that every formula that is true in all structures is provable
- Wait, how can these both be true? The answer is that PA has more models in first-order axiomatization than in second-order