Automata

INTRODUCTION

Finite state machines are the most basic model of machines, organisms and processes in technology,
nature, society, the universe and philosophy, a model that captures the essence of finite systems and
allows us to learn, demonstrate and utilize their power.

On a theoretical level, finite state machines represent the very basic model of automata to start
with in designing, learning, analysing and demonstrating components, principles and power of real
and idealized computers and also a variety of basic computation modes.

On a practical level, finite state machines approximate real machines, systems and processes
closely enough. That is why the aim of applied research and development in computing is often to
reduce idealized concepts and methods to those realizable by finite state machines.

Finite state automata are also a good model for demonstrating how finite devices working in
discrete time can be used to process infinite or continuous objects.

LEARNING OBJECTIVES

The aim of the chapter is to demonstrate
1. the fundamental concept of finite state machine;

2. basic concepts, properties and algorithms concerning finite automata, their minimization and
main decision problems;

3. basic concepts, properties and algorithms concerning regular expressions, regular languages
and their closure properties;

4. finite transducers and their power and properties;

5. weighted finite automata and transducers and their use for image generation, transformation
and compression;

6. how to use discrete finite automata to process infinite and continuous objects;

7. various modifications of finite automata: nondeterministic, probabilistic, two-way, multihead
and linearly bounded automata and their power.
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The fact is, that civilization requires slaves. The Greeks
were quite right there. Unless there are slaves to do the
ugly, horrible, uninteresting work, culture and contemplation
become almostimpossible. Humanslavery is wrong, insecure,
and demoralizing. On mechanical slavery, on the slavery of the
machine, the future of the world depends.

Oscar Wilde, 1895

The concept of finite state devices is one of the most basic in modern science, technology and
philosophy; one that in a strikingly simple way captures the essence of the most fundamental principle
of how machines, nature and society work. The whole process of the development of a deterministic
and mechanistic view of the world, initiated by R. Descartes whose thinking was revolutionary for
its time, culminated in a very simple, powerful model of finite state machines, due to McCulloch and
Pitts (1943), obtained from an observation of principles of neural activities.'

In this chapter we present, analyse and illustrate several models of automata, as well as some of
their (also surprising) applications. The most basic model is that of a finite state machine, which is an
abstraction of a real machine (and therefore of fixed size and finite memory machines), functioning
in discrete time steps.

Finite state machines are building blocks, in a variety of ways, for other models of computing,
generating and recognizing devices, both sequential and parallel, deterministic and randomized.
This lies behind their fundamental role in the theory and practice of computing. Because of their
simplicity, efficiency and well worked out theory, it is often a good practice to simplify sophisticated
computational concepts and methods to such an extent that they can be realized by (co-operating)
finite state machines.

Basic theoretical concepts and results concerning finite state machines are presented in the first
part of this chapter. In the second part several applications are introduced, showing the surprising
power and usefulness of the basic concepts concerning finite state machines: for example, for image
generation, transformation and compression. Finally, various modifications of the basic model of
finite state machines are considered. Some of them do not increase the power of finite state machines,
but again show how robust the basic model is. Others turn out to be more powerful. This results in
a variety of models filling the gap between finite state machines and universal computers discussed
in the following chapter.

It will also be demonstrated that though such machines are finite and work in discrete steps, they
can process, in a reasonable sense, infinite and continuous objects. For example, they can be seen as
processing infinite words and computing (even very weird) continuous functions.

3.1 Finite State Devices

The finite state machine model of a device abstracts from the technology on which the device is based.
Attention is paid only to a finite number of clearly distinguished states that the device can be in and

1 Automata and automatization have for a long time been among the most exciting ideas for humankind, not
only because they offer ways to get rid of dull work, but also because they offer means by which humankind can
overcome their physical and intellectual limitations. The first large wave of fascination with automata came in the
middle of the nineteenth century, when construction of sophisticated automata, imitating functions considered
essential for living and/or intelligent creatures, flourished. The emerging automata industry, see the interesting
account in Bailey (1982), played an important role in the history of modern technology. The second wave,
apparently less mysterious but much more powerful, came with the advent of universal computers.
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a finite number of clearly identified events, usually called external inputs or signals, that may cause
the device to change its current state.

A simple finite state model of a digital watch is shown in Figure 3.1a. The model abstracts from
what, how and by whom the watch is made, and shows only eight main states, depicted by boxes,
the watch can be in, from the user’s point of view (‘update hours’, ‘display date’, ‘display time’),
and transitions between the states caused by pushing one of four buttons a,b,c,d. Each transition is
labelled by the button causing that transition. Having such a simple state transition model of a digital
watch, it is easy to follow the sequence of states of the watch when the buttons are pushed in a given
sequence. For example, by pushing buttons a,c,d,c,a,a, in this order, the watch gets, transition by
transition, from the state ‘display time’ back to the same state.

The finite state model of a watch in Figure 3.1a models watch behaviour as a process that goes
on and on (until the watch gets broken or the battery dies). Observe that this process has no other
outputs beside the states themselves — various displays. Note also that in some states, for example,
‘display watch’, it is not specified for all buttons what happens if the button is pressed. (This can
be utilized to make a more detailed model of a watch, with more states and actions, for example,
to manipulate the stopwatch.) Note also that neither requirements nor restrictions are made on how
often a button may be pressed and how much time a state transition takes.

There are many interesting questions one can ask/study about the model in Figure 3.1a. For
example, given two states p and g, which sequence of buttons should one push in order to get from
state p to state 47

Exercise 3.1.1 Describe the five shortest sequences of buttons that make the watch in Figure 3.1a go
from state p to state q if (a) p = “display alarm’, q = “display hours’; (b) p = 'display time’, 9 = “display
alarm’.

Two other models of finite automata are depicted in Figures 3.1b, c. In both cases the states
are depicted by circles, and transitions by arrows labelled by actions (external symbols or inputs)
causing these transitions. These two finite state machines are more abstract. We do not describe what
the states mean. Only transitions between states are depicted and states are partitioned into “yes’-
and ‘no’-states. For these two models we can also ask the question: which sequences of inputs make
the machine change from a given state p to a given state g; or a simpler question: which sequences
of inputs make the machine go from the starting state to a ‘yes’-state. For example, in the case of the
model in Figure 3.1b, the sequences of letters ‘the’, ‘thee’, ‘their’ and ‘then’ have such a property;
whereas the sequence ‘tha’ has not. In the case of the finite state model in Figure 3.1c a sequence
of inputs makes the machine go from the initial state into the single ‘yes’-state if and only if this
sequence contains an even number of a’s.

As we shall soon see, the questions as to which inputs make a finite state machine go from one
state to another or to a ‘yes’-state turn out to be, very important in relation to such an abstract model
of finite state machines.

In our model of finite state machines we use a very general concept of a (global) state. A digital
device is often composed of a large number of elementary devices, say n, such that each of them is
always in one of the two binary states. Any combination of these elementary states forms the so-called
‘global state’. The overall number of (global) states of the device is 2" in such a case. However, in a
simple finite state model of a device, very often only a few of the global states are used.
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(a) ab,c,d - buttons on the watch to press

Figure 3.1 Finite state devices

Exercise 3.1.2 Extend the finite state model of the watch in Figure 3.1 to incorporate other functions
which a watch usually has.

Exercise 3.1.3 Express in a diagram possible states and transitions for a coffee vending machine that
acts as follows. It takes 5, 10 and 20p coins, in any order, until the overall amount is at least 90p. At the
moment this happens, the machine stops accepting coins, produces coffee and makes change. (Take into
consideration only the money-checking activity of the machine.)

Four basic types of finite state machines are recognizers, acceptors, transducers and generators
(see Figure 3.2). A recognizer is a finite state machine .4 that always starts in the same initial state. Any
input causes a state change (to a different or to the same state) and only a state change — no output
is produced. States are partitioned into ‘yes’-states (terminal states) and ‘'no’-states (nonterminal
states). A sequence of inputs is said to be recognized (rejected) by A if and only if this sequence of
inputs places the machine in a terminal state (a nonterminal state).

Example 3.1.4 The finite state machine in Figure 3.3a recognizes an input sequence
(a1,b1) . . . (@n-1,bp-1)(an,bn), with (ay,by) as the first symbol, if and only if there is a k, 1 < k < n,
such that ay = by = 1. (Interestingly enough, this is precisely the case if (”;]) mod 2 = 0 for the integers
{=bin(audn_1 -..a1)and j = bin(bub,_, . . . by) — show that!)

An acceptor is also a finite state machine that always starts in the same initial state. An input either
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(a) recognizer (b) acceptor
{ output output
(c) transducer (d) generator

Figure 3.2 A recognizer, an acceptor, a transducer and a generator

causes a state transition or is not accepted atall, and again no output is produced. A sequence of inputs
is said to be accepted if and only if it puts the automaton in a terminal state. (The other possibilities
are that a sequence of inputs puts the automaton in a nonterminal state or that its processing is
interrupted at some point, because the next transition is not defined.)

Example 3.1.5 Figure 3.3d shows an acceptor that accepts exactly the words of the language a™*cb*.
A transducer acts as a recognizer, but for each input an output is produced.

Example 3.1.6 The transducer shown in Figure 3.3b produces for each input word w = wicwsC. . . CWy_1CWy,,
w; € {0,1}* the output word w = ¢(wy)cwycdp(ws)c . . . cwpad(w,) of n is odd and w =
d(wn )cwacd(ws)c . . . ch(Wn-1)cwy if n is even, where ¢ is the morphism defined by ¢(c) = ¢, ¢(0) = 01
and ¢(1) = 10. In Figure 3.3b, in each pair 'i,0’, used as a transition label, the first component denotes the
input symbol, the second the output string.

A generator has no input. It starts in an initial state, moves randomly, from state to state, and at
each move an output is produced. For each state transition a probability is given that the transition
takes place.

Example 3.1.7 The generator depicted in Figure 3.3c has only one state, and all state changes have the same
probability, namely 1 /3. It is easy to see that if a sequence of output symbols (x1,11) . . . (Xn,Yn) IS interpreted as
a point of the unit square, with the coordinates (0.x1 . . . X,,0.y1 . . . ¥») as in Section 2.1.2, then the generator
produces the Sierpinski triangle shown in Figure 2.1.

Is it not remarkable that a one-state generator can produce such a complex fractal structure? This
is in no way an exception. As will be seen later, finite state generators can generate very complex
images indeed.

3.2 Finite Automata

So far we have used the concepts of finite state recognizers and acceptors only intuitively. These
concepts will now be formalized, generalized and analysed. The main new idea is the introduction of
nondeterminism. In some states behaviour of the automaton does not have to be determined uniquely.
We show that such a generalization is fully acceptable and, in addition, sometimes very useful.
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Figure 3.3 Examples of a recognizer, a transducer, a generator and an acceptor

3.2.1 Basic Concepts

Definition 3.2.1 A (nondeterministic) finite automaton A (for short, NFA or FA) over the (input)
alphabet ¥ is specified by a finite set of states Q, a distinct (initial) state go, a set Qr C Q of terminal
(final) states and a transition relation § C Q x X x Q. Formally, A= (£,Q,90,QF,6).

If 6 is a function, that is 6 : Q x ¥ — Q, we also use the notation 6(q,a) to specify the value of 6 for
arguments q,a.

Informally, a computation of A for an input word w always starts in the initial state gy and continues
by a sequence of steps (moves or transitions), one for each input symbol. In each step the automaton
moves from its current state, say p, according to the next symbol of the input word, say 4, into a state g
suchthat (p,a,q) € 6 —if suchagexists. If there is a unique g € Q such that (p,a,9) € §, then the transition
from the state p by the input a is uniquely determined. We usually say that it is deterministic. If there
are several g such that (p,a,q) € 6, then one of the possible transitions is chosen, and all of them are
considered as being equally likely. If, for some state p and input g, there is no g such that (p,a,9) € 6,
then we say that input 4 in state p leads to a termination of the computation. A computation ends
after the last symbol of w is processed or a termination occurs. We can also say that a computation
is performed in discrete time steps and the time instances are ordered 0,1,2, . .. with 0 the time at
which each computation starts.

For a formal definition of computation of a FA the concept of configuration is important. A
configuration C of A is a pair (p,w) € Q x £*. Informally, the automaton A is in the configuration
(p,w), if it is in the state p and w is the part of the input word yet to be processed. A configuration
(90, w) is called initial, and any configuration (g,¢),9 € Qr is called final.

A computational step of A is the relation

FAC(QXT®) x (Qx E%)
between configurations defined forp,g€ Q,a€ =, w € £* by
(paw) b4 (q,w) & (p,a,q) 6.

Informally, (p,aw) b 4 (q,w) means that A moves from state p after input a to state 4. A computation of
A is the transitive and reflexive closure % of the relation -4 between configurations: that is, C % C’
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6(90,0) = {42}, 6(90,2) = {91,492}, go | G| - | 992
69,00 = i}, b(g1) = {g} g |93 [ 4| -
8(92,0) = {40}, 6(92,2) = {4390} g2 G0 | - | 93,90
8(93,0) = {q}, 6(g3,1) {92} 9 1| g -

(a) (b)

Figure 3.4 Finite automata representations

for configurations C and C’ if and only if there is a sequence of configurations Ci, . . . ,C, such that
C=C;,Cit4Cipy,for1<i<n,and C, =C".
Instead of (p,w) +% (4,¢), we usually use the notation p == q. A state g is called reachable in A if

there is an input word w such that g, - g-

Exercise 3.2.2 Let A= (X,Q,90,Qr,6) be a FA. Let us define a recurrence as follows: Ay = {qo},
A;=1{q(q,a.9') € 6 for some q € A;_1,a € L}, for i > 1. Show that a state q is reachable in A if and
only if g € A, for some j < |Q|. (This implies that it is easy to compute the set of all reachable states.)

Three basic ways of representing finite automata are illustrated in Figure 3.4 on the automaton
A= (2,Q,90,Qr,6), where Q = {49,41,92,93}, £ = {0,1}, and Qr = {90,43}: an enumeration of
transitions (Figure 3.4a), a transition matrix (Figure 3.4b) with rows labelled by states and columns
by input symbols, and a state graph or a transition diagram (Figure 3.4c) with states represented by
circles, transitions by directed edges labelled by input symbols, the initial state by an ingoing arrow,
and final states by double circles. For a finite automaton A let G 4 denote its state graph. Observe that
a state g is reachable in the automaton A if and only if the corresponding node is reachable in the
graph G4 from its starting vertex.

To every finite automaton A = (2,Q,4,,Qr,6) and every g € Q, we associate the language L(g) of
those words that make A move from state g to a final state. More formally,

Lg) = {we=*|g=>peQs}.

L(A) = L(qo) is then the language recognized by A. A language L is called a regular language if there
is a finite automaton A such that L = L(.A). The family of languages recognizable by finite automata,
or the family of regular languages, is denoted by

L(FA) = {L(A)| Ais a finite automaton}.
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Figure 3.5 Finite automaton

Exercise 3.2.3 Let L, = {uv|uv € {0,1}*,|u| = |v| = n,u # v}. Design a FA accepting the language
(a) Ly; (b) L3; (c) Ly.

Exercise 3.2.4 Describe the language accepted by the FA depicted in Figure 3.5.

Another way to define the language recognized by a finite automaton A is in terms of its state graph
G. A path in G4 is a sequence of triples (p1,41,02)(P2,42,P3) - - - (Pn,@n,Pns1) such that (pj,a;,pic1) €
6, for 1 <i < n. The word a; . . . a, is the label of such a path, p; its origin and p,, its terminus. A
word w € ©* is recognizable by A if w is the label of a path with gq as its origin and a final state as its
terminus. L(.A) is then the set of all words recognized by A.

The language recognized by a finite automaton A can be seen as the computational process that
A represents. This is why two finite automata A, A, are called equivalent if L(.A;) = L(.A,); that is,
if the corresponding languages (computational processes they represent) are equal.

Exercise 3.2.5 A natural generalization is to consider finite automata A= (X,Q,Q;,Qr,0) with a set
Q, of initial states, where computation and recognition are defined similarly. Show that to each such
finite automaton A we can easily construct an equivalent ordinary finite automaton.

If two FA are equivalent, that is, if they are ‘the same’ insofar as the computational processes
(languages) they represent are the same, they can nevertheless look very different, and can also have
a different number of states. A stronger requirement for similarity is that they are isomorphic — they
differ only in the way their states are denoted.

Definition 3.2.6 Two FA A; = (Z,Qi,q90,i, Qr.i, 6i), i = 1,2 are isomorphic if there is a bijection pn: Q1 — Q»
such that 11(go1) = o2, 4 € Qra if and only if 4(q) € Qr o, and for any q,q' € Q1, a € T we have (q,a,q') € &
if and only if (u(q),a,1(q')) € 6.

Exercise 3.2.7 Design a finite automaton that accepts those binary words that represent integers (with
the most significant bit as the first) divisible by three.
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Figure 3.6 A path in a NFA and in an equivalent DFA obtained by the subset construction

3.2.2 Nondeterministic versus Deterministic Finite Automata

The formal definition of a FA (on page 158) allows it to have two properties that contradict our
intuition: a state transition, for a given input, does not have to be unique and does not have to be
defined. Our intuition seems to prefer that a FA is deterministic and complete in the following sense.

A finiteautomaton is a deterministic finite automaton if its transition relation isa partial function:
that is, for each state p € Q and input a € X there is at most one g € Q such that (p,a,9) € 6. A finite
automaton is called complete if for any p € Q,a € ¥ there is at least one g such that (p,a,4) € 6. In the
following the notation DFA will be used for a deterministic and complete FA.

The following theorem shows that our definition of finite automata, which allows “strange’
nondeterminism, has not increased the recognition power of DFA.

Theorem 3.2.8 To every finite automaton there is an equivalent deterministic and complete finite automaton.

Proof: Given a FA A = (£,Q,490,Qr,6), an equivalent DFA A’ can be constructed, by the subset
construction, as

A = (2,29, {q},{B|B € 2°,BNQ; # 0},5"),

where the new transition relation ¢’ is defined as follows:
(A,a,Bye ¢ ifand onlyif B= {q|3p € A,(p,a,9) € 6}.

The states of A’ are therefore sets of the states of A. There is a transition in A’ from a state S, a set of
states of A, to another state Sq, again a set of states of .4, under an input a if and only if to each state
in S there is a transition in A from some state in S under the input a.

A s clearly deterministic and complete. To show that .4 and A’ are equivalent, consider the state
graphs G4 and G4 . For any path in G4, from the initial state to a final state, labelled by a word
w = w; . . . Ws, there is a unique path in G 4, labelled also by w, from the initial state to a final state (see
Figure 3.6). The corresponding states of .A’, as the sets of states of A, can be determined, step by step,
using the transition function é’, from the initial state of A’ and w. The state of A’ reached by the path
labelled by a prefix of w has to contain exactly the states of A reached, in G 4, by the path labelled by
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Figure 3.7 FA and equivalent DFA obtained by the subset construction

the same prefix of w. Similarly, to any path in A’, from the initial to a final state, labelled by a word
w, there is a path in G 4 from the initial to a final state. The states on this path can be taken from the
corresponding states of the path labelled by w in G » in such a way that they form a path in G4. To
design it, one has to start in the last state (of A’) of the path in G, to pick up a state g, (terminal in
A), from this state of A’ and go backwards to pick up states g,_1,4,_2, . . . ,41. This is possible, because
whenever A = Bin A, then for any ¢4’ € B there is a g € A such thatg = ¢’ in A. 0

Example 3.2.9 Let A = (3,Q,q0,Qr,6) be the nondeterministic finite automaton depicted in Figure 3.7a.
The finite automaton obtained by the subset construction has the following transition function §':

80,00 = 0 50,1 = o
§¢({p},0) = {p.a} o({p}1) = {gk
&({9}.0) = {prh &({q1:1) = {q.r}h
(5'({7’},0) = {p,r}; §'({r},1) = 0;
(5’({P,Q},0) = {pqur}; 5'({{’,‘]},1) = {q’r};
5'({}7,7’},0) = {p’qar}; 5'({}7,1’},1) = {q}s
(5'({6],7’},0) = {p’r}; (5'({6],?’},1) = {q’r}3

&({p.q.rt.0) = {pgry  F{pgrt1) = {gr}

The states {r} and @ are not reachable from the initial state {p}; therefore they are not included
in the state graph G4 of A’ in Figure 3.7b. The subset construction applied to the FA in Figure 3.7c
provides the DFA shown in Figure 3.7d. Other states created by the subset construction are not
reachable in this case.

Exercise 3.2.10 Design a DFA equivalent to NFA in (a) Figure 3.8a; (b) Figure 3.8b.

Since nondeterministic and incomplete FA conform less to our intuition of what a finite state
machine is and, are not more powerful than DFA, it is natural to ask why they should be considered
atall.

There are two reasons, both of which concern efficiency. The first concerns design efficiency. It
is quite often easier, even significantly easier, to design a NFA accepting a given regular language
than an equivalent DFA. For example, it is straightforward to design a NFA recognizing the language
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Figure 3.8 Examples of a NFA

{a,b}*a{a,b}" (see Figure 3.9a for the general case and Figure 3.9b for n = 2). On the other hand, it
is much more difficult to design a DFA for this language (see the one in Figure 3.9c for n = 2). The
second reason concerns size efficiency, and this is even ‘provably important’.

The number of states of a FA 4, in short state(.A), is its state complexity. In the case of the NFA
in Figure 3.7c the subset construction does not provide a DFA with a larger number of states. On
the other hand, the subset construction applied to the NFA in Figure 3.7a, has significantly increased
the number of states. In general, the subset construction applied to a NFA with 7 states provides a
DFA with 2" states. This is the number of subsets of each set of n elements and indicates that the
subset construction can produce exponentially more states. However, some of these states may not
be reachable, as the example above shows. Moreover, it is not yet clear whether some other method
could not provide a DFA with fewer states but still equivalent to the given NFA.

In order to express exactly how much more economical a NFA may be, compared with an
equivalent DFA, the following economy function is introduced:

EconomyRea (n) = max{min{state(B)|B is a DFA equivalent to A}|A is NFA, state(A) = n}.

The following result shows that a DFA can be, provably, exponentially larger than an equivalent
NFA.

Theorem 3.2.11 Economyggs (n) = 2".

Proof idea: The inequality EconomyRia (1) < 2" follows from the subset construction. In order to
prove the opposite inequality, it is sufficient to show, which can be done, that the minimum DFA
equivalent to the one shown in Figure 3.9d must have 2” states. a

A simpler example, though not so perfect, of the exponential growth of states provided by the
subset construction, is shown in Figure 3.9. The minimum DFA equivalent to the NFA shown in
Figure 3.9a must have 2"~ states. This is easy to see, because the automaton has to remember the last
n — 1 symbols. For n = 2 the equivalent DFA is shown in Figure 3.9c.

Corollary 3.2.12 Nondeterminism of a NFA does not increase its computational power, but can essentially
(exponentially) decrease the number of states (and thereby also increase the design efficiency).

Exercise 3.2.13 Design a DFA equivalent to the one in Figure 3.9d for (a) n = 4; (b) n=">5.
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Figure3.9 Examples showing that the subset construction can yield an exponential growth of states

Figure 3.10 Two equivalent DFA

3.2.3 Minimization of Deterministic Finite Automata

Once we have the task of designing a DFA that recognizes a given regular language L, it is natural to
try to find a ‘minimal” DFA, with respect to the number of states, for L. Figure 3.10 shows that two
equivalent DFA may have different numbers of states.

The following questions therefore arise naturally:

¢ How many different but equivalent minimal DFA can exist for a given FA?
* How can a minimal DFA equivalent to a given DFA be designed?
e How fast can one construct a minimal DFA?

In order to answer these questions, new concepts have to be introduced. Two states p,q of a FA A are
called equivalent; in short p =4 g, if L(p) = L(g) in A. A FA A is called reduced if no two different

states of A are equivalent. A DFA A is called minimal if there is no DFA equivalent to .4 and with
fewer states.

We show two simple methods for minimizing finite automata. Both are based on the result, shown
later, that if a DFA is reduced, then it is minimal.

1. Minimization of DFA using the operations of reversal and subset construction. The first
method is based on two operations with finite automata. The operation of reversal assigns to a
DFA A= (2,Q,90,QF, ) the finite automaton p(A) = (£,Q,Qr, {90}, p(6)), that is, the initial and final
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states are exchanged, and g € p(6)(4’,a) if and only if 6(g,a) = q'. The operation of subset construction
assigns to any FA A = (X,Q,Q,Qr, ), with a set Q; of initial states, a DFA 7 (A) obtained from A by
the subset construction (and containing only reachable states).

Theorem 3.2.14 Let A be a finite automaton, then A' = n(p(n(p(.A)))) is a reduced DFA equivalent to A.

Proof: Clearly A’ is a DFA equivalent to A. It is therefore sufficient to prove that 7(p(D)) is reduced
whenever D = (X, (Y, q;,QF,8) is a FA and each of its states is reachable. Let Q1 C Q’, Q, € Q' be two
equivalent states of 7(p(D)). Since each state of D is reachable, for each g, € Q, there is aw € T* such
that g, = 8'(g;, w). Thus g, € p(6')(Q1,w). As Q; and Q, are equivalent, we also have g, € p(8')(Q2,w),
and therefore g, = §'(gy,w) for some g, € Q. Since ¢’ is a mapping, we get g1 = 4,, and therefore

Q1 € Qy. By symmetry, Oy = Q». a

Unfortunately, there is a DFA A with n states such that 7(p(.A)) has 2” states (see the one in
Figure 3.9d). The time complexity of the above algorithm is therefore exponential in the worst case.

2. Minimization of DFA through equivalence automata. The second way of designing a reduced
DFA A’ equivalentto a given DFA A is also quite simple, and leads to a much more efficient algorithm.
In the state graph G 4 identify nodes corresponding to the equivalent states and then identify multiple
edges with the same label between the same nodes. The resulting state graph is that of a reduced
DFA. More formally,

Definition 3.2.15 Let A = (X,Q,40,Qr,6) be a DFA. For any state q € Q let [q] be the equivalence class on
Q with respect to the relation = 4. The equivalence automaton A’ for A is defined by

A = (Z,Q',[q0], Q. 8"), where Q' = {[q] |9 € Q}, Qr = {[9] 19 € Qe }, and &' = {([g1], 4. [92]) | (4),4.95) €
6 for some gy € [q1]:9; € [g2]}-

Minimization of DFA is now based on the following result.

Theorem 3.2.16 (1) The equivalence automaton A’ of a DFA A is well defined, reduced and equivalent to A.
(2) State(B) > state(A’) for any DFA B equivalent to a DFA A.
(3) Any minimal DFA B equivalent to a DFA A is isomorphic with A'.

Proof: (1) If g =4 ¢/, then either both g and 4’ are in Qf, or both are not in Qf. Final states of
A’ are therefore well defined. Moreover, if L(g) = L(g') for some 4,4’ € Q, then for any a € L,
L(6(g,a)) = L(6(q',a)), and therefore all transitions of A’ are well defined. If w = w, . . . w, € * and
gi = 6(qo,wn . . . w;), then [g;] = &'([go],w, - - - w;). This implies that L(.A) = L(A’). The condition of A’
being reduced is trivially fulfilled due to the construction of A'.

(2) It is sufficient to prove (2) assuming that all states of B are reachable from the initial state. Let
B=(X,Q",q5,QF, ") be a DFA equivalent to A. Consider the mapping g : @’ — ' defined as follows:
since all states of B are reachable, for any g” € Q" there is a w,» € X* such that §"(qy,wy) = q". Define
now g(q") = 8”([go],w,). From the minimality of A" and its equivalence with B, it follows that this
mapping is well defined and surjective.

(3) In the case of minimality of B it is easy to verify that the mapping g defined in (2) is actually
an isomorphism. 0

Corollary 3.2.17 Ifa DFA is reduced, then it is minimal.

The task of constructing a minimal DFA equivalent to a given DFA A has therefore been reduced
to that of determining which pairs of states of .4 are equivalent, or nonequivalent, which seems to be
easier. This can be done as follows.

Let us call two states 4,4’ of A
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1. 0-nonequivalent, if one of them is a final state and the other is not;

2. i-nonequivalent, for i > 0, if they are either (i — 1)-nonequivalent or there is an a € X such that
6(q,a) and 6(¢,a) are (i — 1)-nonequivalent.

Let A, be the set of pairs of i-nonequivalent states, i > 0. Clearly, A; C A;;4, for all i > 0, and one
can show that A, = A, for any k > 0 if n = state(.A).

Two states g,¢’ are not equivalent if and only if there isaw = w; . . . w,, € £* such that §(q,w) € Q¢
and 6(q’,w) & Q. This implies that states §(q,w; . . . wy,_;) and 6(¢’,w; . . . wy,_;) are i-nonequivalent.
Hence, if g and ¢’ are not equivalent, they are n-nonequivalent.

The recurrent definition of the sets A; actually specifies an O(n?m) algorithm, m = |Z|, to determine
equivalent states, and thereby the minimal DFA.

Example 3.2.18 The construction of i-nonequivalent states for the DFA in Figure 3.10a yields
Ay =1{(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6) }, A1 = AgU{(1,2),(1,4),(2,3),(3,4)}, A2 = A1 U
{(1,3)}, A3 = A,. The resulting minimal DFA is depicted in Figure 3.10b.

It can be shown, by using a more efficient algorithm to determine the equivalence, that one can
construct the minimal DFA in sequential time O(mnlgn), where m is the size of the alphabet and n is
the number of states of the given DFA (see references).

Exercise 3.2.19 Design the minimal DFA accepting the language (a) of all words over the alphabet
{a,b} that contain the subword ‘abba’ and end with the subword ‘aaa’; (b) of all words over the alphabet
{0,1} that contain at least two occurrences of the subword “111°;

(c) L = {w|#,w = #,w (mod 3)} C {a,b}*.

3.2.4 Decision Problems

To decide whether two DFA, A, and A, are equivalent, it suffices to construct the minimal equivalent
DFA A] to A; and the minimal DFA 4; to A,. A; and A; are then equivalent if and only if A; and A)
are isomorphic. If n = max{state(.A;),state(A;)} and m is the size of the alphabet, then minimization
can be done in O(mnlgn) sequential time, and the isomorphism can be checked in O(nm) sequential
time. :

One way to decide the equivalence of two NFA A; and 4, is to design DFA equivalent to A; and A,
and then minimize these DFA. If the resulting DFA are isomorphic, the original NFA are equivalent;
otherwise not. However, this may take exponential time. It seems that there is no essentially better
method, because the equivalence problem for NFA is a PSPACE-complete problem (see Section 5.11.2).

Two other basic decision problems for FA A are the emptiness problem - is L(.4) empty? — and
the finiteness problem - is L(.A) finite? It follows from the next theorem that these two problems are
decidable; one has only to check whether there is a w € L(.A) such that |w| < n in the first case and
n < |w| < 2n in the second case.

Theorem 3.2.20 Let A= (X,Q,90,Qr,8) bea DFA and |Q| = n.
(1) L(A) # 0 if and only if there is a w € L(.A) such that fw| < n.
(2) L(A) is infinite if and only if there is a w € L(A) such that n < [w| < 2n.

Theorem 3.2.20 is actually a corollary of the following basic result.
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Lemma 3.2.21 (Pumping lemma for regular languages) If Aisa FA and thereisaw € L(A), |w| >n =
state( A), then there are x,y,z € £ such that w = xyz, |xz| <n,0 < |y| <n, and xy'z € L(A), for all i > 0.

Proof: Letw be the shortest word in L(.A) with |w| > nand w = wy. . . wi, w; € X. Consider the following
sequence of states:
gi =6(q0,w1...w;),0<i<k.

Let us now take i; and i; such that 0 < i; < i <k, g;, = gi,, and i, — 71 is as small as possible. Such
11,1, must exist (pigeonhole principle), and clearly i, —i; < n. Denote x = w; . . . Wi, ¥ = Wi, +1. . . Wiy,
z=1W1... W Then 6(qo,xy’) = gi, = g;, foralli >0, and therefore also xy'z € L(A). Because of the
minimality of w we get |xz| < n. 0

Exercise 3.2.22 Show the following modification of the pumping lemma for regular languages. Let L
be a regular language. There exists an N € N such that if for some strings x1, X, X3, X1X2X3 € L and
|x2| > Ny, then there exist strings u, v and w such that x; = uvw, v # ¢, |uv| < N and x;uv'wx; € L
foralli> 0.

Exercise 3.2.23 Show, using one of the pumping lemmas for regular languages, that the language
{wew|w € {a,b}*} is not regular.

3.2.5 String Matching with Finite Automata

Finding all occurrences of a pattern in a text is a problem that arises in a large variety of applications,
for example, in text editing, DNA sequence searching, and so on. This problem can be solved elegantly
and efficiently using finite automata.

String matching problem. Given a string (called a pattern) x € £*, |x| = m, design an algorithm
to determine, for an arbitrary y € £*, y =y1. . . ¥, y; € T for 1 < j < n, all integers 1 < i < n such that
x is a suffix of the string y; . . . i.

A naive string matching algorithm, which checks in m steps, for all m < i < n, whether x is a suffix
of y1. ..y, clearly requires O(mn) steps.

The problem can be reduced to that of designing, for a given x, a finite automaton A, capable of
deciding for a given word y € £* whether y € Z*x.

If x = x1...%m,X; € X, then the NFA A, shown for an arbitrary x in Figure 3.11a and for x = abaaaba
in Figure 3.11b accepts £*x. A, has m +1 states that can be identified with the elements of the set P,
of prefixes of x — that is, with the set

P, ={e,x1,x1%2, . . .\ X1X2. . . Xy }

or with the integers from 0 to m, with i standing for x; . . . x;.

It is easy to see that the DFA 4], which can be obtained from A, by the subset construction, has
also only m + 1 states. Indeed, those states of A, that are reachable from the initial state by a word
y form exactly the set of those elements of P, that are suffixes of y. This set is uniquely determined
by the longest of its elements, say p, since the others are those suffixes of p that are in P,. Hence, the
states of A’ can also be identified with integers from 0 to m. (See A, for x = abaaaba in Figure 3.11d.)

Let f; : P, — P, be the failure function that assigns to each p € P, — {¢} the longest proper suffix of
p thatis in P,. (For x = abaaaba f, is shown in Figure 3.11¢, as a mapping from {0, ... ,7} to {0, ... ,7}.)
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(a) (©)

Figure 3.11 String matching automata and a failure function

Then the state of A’ corresponding to the longest suffix p contains those states of A, that correspond
to the prefixes

p.fe(p). f2(p), . . - e

To compute f,, for an x € ¥* we can use the following recursive rule: f;(x;) = ¢, and for all p,
pac P, —{e}:

f(pla,  iffi(p)a € Py
fx(pa) = { fx(fc(p)a), otherwise.

Oncef, is known, the transition function 4, of A’, for p € P, and a € £, has the following form:

_J pa, if pa € Py;
8(p,a) = { 6¢(fx(p),a), otherwise.

This means that we actually do not need to store §. Indeed, we can simulate .4, on any input word y
by the following algorithm, one of the pearls of algorithm design, with the input x.f,y.

)
Algorithm 3.2.24 (Knuth-Morris-Pratt’s string matching algorithm)

m e |x[;n —ly|,q —0;
fori — 1tondowhile0<g<mandux,#y doq«—f.(q) od;
ifg<mandx; 1=y thenge—gq+1;
if g = m then print ‘pattern found starting with (i — m)-th symbol’;

q —£x(9)
od

O(m) steps are needed to compute f;, and since g can get increased at most by 1 in an i- cycle,
the overall time of Knuth-Morris-Pratt’s algorithm is O(m + n). (Quite an improvement compared
to O(mn) for the naive algorithm.)
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(a) (b) (@)

Figure 3.12 Closure of regular languages under union, concatenation and iteration

Exercise 3.2.25 Compute the failure function for the patterns (a) aabaaabaaaab; (b) aabbaaabbb.

Exercise 3.2.26 Show in detail why the overall time complexity of Knuth—Morris—Pratt’s algorithm is
O(m+n).

3.3 Regular Languages

Regular languages are one of the cornerstones of formal language theory, and they have many
interesting and important properties.

3.3.1 Closure Properties

The family of regular languages is closed under all basic language operations. This fact can be utilized
in a variety of ways, especially to simplify the design of FA recognizing given regular languages.

Theorem 3.3.1 The family of regular languages is closed under the operations

1. union, concatenation, iteration, complementation and difference;

2. substitution, morphism and inverse morphism.

Proof: To simplify the proof, we assume, in some parts of the proof, that the state graphs G 4 of those
FA we consider are in the normal form shown in Figure 3.12a: namely, there is no edge entering the
input state i, and there is a single final state f with no outgoing edge. Given a FA A = (Z,Q,40,QF, 6)
accepting aregular language that does not contain the empty word, it is easy to construct an equivalent
FA in the above normal form. Indeed, it is enough to add two new states, i — a new input state — and
f — a new terminal state — and the following sets of state transitions:

* {(1,2,9)[(q0,2,9) € 8};
b {(pvavf) | (pvavq) € 67q € QF};
e {(i,a,f)|(90,2,9) € 6,9 € Qr}.

To simplify the proof of the theorem we assume, in addition, that languages we consider do not
contain the empty word. The adjustments needed to prove the theorem in full generality are minor.
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inG is replaced by in G(I)(L)

Figure 3.13 Closure of regular languages under substitution

For example, by taking the state i in Figure 3.12a as an additional terminal state, we add ¢ to the
language.

Figures 3.12b, c, d show how to design a FA accepting the union, concatenation and iteration of
regular languages provided that FA in the above normal form are given for these languages. (In the
case of union, transitions from the new initial state lead exactly to those states to which transitions
from the initial states of the two automata go. In the case of iteration, each transition to the final state
is doubled, to go also to the initial state.)

Complementation. If .4 is a DFA over the alphabet ¥ accepting a regular language L, then by
exchanging final and nonfinal states in .4 we get a DFA accepting the complement of L - the language
L¢. More formally, if L = L(A), A= (2,Q,40,Qr,6), then L = L(A"), where A" = (X,0Q,40,Q — Qr,6).

Intersection. Let L; = L(A;), L, = L(A2), where A; = (£,0Q:,910,Q1r,6) and A, =
(2,Q2,920,Q2r,62) are DFA. The intersection L; NL; is clearly the language accepted by the DFA

(2,Q1 xQa, (lh,o,‘h,o),Ql,r X Qz,r,5>,

where §((p,q),a) = (61(p,a),6,(q,a)) foranyp€ Q;, g€ Q,anda e L.

Difference. Since L; — L, = L; N L] the closure of regular languages under difference follows from
their closure under complementation and intersection.

Substitution. Let ¢ : & — 21 be a substitution such that ¢(a) is a regular language for each a € .
Let L be a regular language over %, and L = L(A), A = (£,Q,90,Qr,0). For each a € ¥ let G, be the
state graph in the normal form for the language ¢(a). To get the state graph for a FA accepting the
language #(L) from the state graph G4, it suffices to replace in G4 any edge labelled by an a € ¥ by
the state graph G, in the way shown in Figure 3.13.

The closure of regular languages under morphism follows from the closure under substitution.

Inverse morphism. Let ¢ : & — =} be a morphism, L C £} a regular language, L = L(A) for a FA

A. As defined in Section 2.5.1,
¢7(L) = {w e 5*|¢(w) €L},

Let G4 = (V,E) be the state graph for .A. The state graph G;-1;, for a FA recognizing the language
#~'(L) will have the same set of nodes (states) as G4 and the same set of final nodes (states). For any
a€ %, q €V there will be an edge (p,a,q) in G;-1(1, if and only if p % g in A. Clearly, w is a label of a
path in G;-1(;), from the initial to a final node, if and only if ¢(w) € L. 0

Using the results of Theorem 3.3.1 it is now easy to see that regular languages form a Kleene

algebra. Actually, regular languages were the original motivation for the introduction and study of
Kleene algebras.
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Exercise 3.3.2 Show that if L C ¥* is a regular language, then so are the languages
(@) LR = {w|wR € L}; (b) {u} 'L, where u € T*.

3.3.2 Regular Expressions

There are various formal systems that can be used to describe exactly regular languages. (That is,
each language they describe is regular, and they can be used to describe any regular language.) The
most important is that of regular expressions. They will now be defined inductively, together with
their semantics (interpretation), a mapping that assigns a regular language to any regular expression.

Definition 3.3.3 A regular expression E, over an alphabet X, is an expression formed using the following
rules, and represents the language L(E) defined as follows:

1. O is a regular expression, and L(0) = 0.
2. ais a regular expression for any a € LU {e} and L(a) = {a}.
3. If Eq,E; are regular expressions, then so are

(El +E2)’ (El 'EZ)a (ET)

and
L((Ey+Ey)) = L(E;) UL(Ep), L((E:1 - E)) = L(E1) - L(Ez), L((EF)) = L(E}),

respectively.

4. There are no other regular expressions over X.

Remark 3.3.4 Several conventions are used to simplify regular expressions. First, the following
priority of operators is assumed: x, -, 4. Second, the operators of concatenation are usually omitted.
This allows us to omit most of the parentheses. For example, a regular expression describing a word
w=ay...a,is usually written as 4,4, . . . 4, and not (. .. ((a;.42).a3) . . . a,). Finally, the expression
{wy, ... ,w,} is used to denote the finite language containing the words wy, . . . ,w,.

Example 3.3.5 {0,1}*, {0,1}*000{0,1}* and {a,b}*c{a,b}*c{a,b}* are regqular expressions.

Regular expressions and finite automata

The following theorem, identifying languages accepted by finite automata and described by regular
expressions, is one of the cornerstones of formal language and automata theory, as well as of their
applications.

Theorem 3.3.6 (Kleene’s theorem) A language L is regular if and only if there is a regular expression E
such that L = L(E).

Proof: It follows from Theorem 3.3.1 that each language described by a regular expression is regular.
To finish the proof of the theorem, it is therefore sufficient to show how to design, given a DFA A4,
a regular expression E 4 such that L(E 4) = L(A). This is quite a straightforward task once a proper
notation is introduced.
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Figure 3.14 Decomposition of a computational path for a word w € R

i,j’w =Wwy. . . Wy

Let A = (X,0Q,40,Qr,6). Without loss of generality we assume that Q = {0,1, ... ,n}, g0 =0and
consider, for 0 < i,j < n, —1 <k < n, the set Rf}. defined by

R}, = {w e ©*|6(i,w) = j and 6(i,u) <k for any proper prefix u of w}.

In other words, the set Rf{j contains those strings that make .4 go from state 7 to state j passing
only through states in the set {0,1, . . . ,k}. Clearly,

R,.‘v}.1 ={a|b(i,a) =j}U{e|ifi=j} CTU{e},
and therefore there is a regular expression representing R;jl. Since
L(a) = J Ry,
jeQr

in order to prove the theorem, it suffices to show the validity of the recurrence (3.1) for any Rf It

0, ifk=—1,i#j,6(i,a) #J;
{a}, ifk=-1,i#j,6(i,a) =J;
R{F‘}. =< {e}, ifk=-1,i=j,6(i,a) #J; 3.1
{e,a}, ifk=-1,i=j,6(i,a)=j;
RiTTURGM (R R, ifk>0.

Once this is done, it is straightforward to show by induction that for each language R{.‘, ; there is a
regular expression representing it.

However, the validity of the recurrence (3.1) is actually easy to see. Any path in G4 from a state
i to a state j that passes only through states {0,1, . . . ,k} can be decomposed into subpaths that may
contain the state k only at the beginning or the end of the path (if the state k occurs on the path at all).
See Figure 3.14 for the case that the state k occurs several times. These subpaths belong to one of the
subsets R{;l or R’;‘;l or R’;;l. 0

Two regular expressions E; and E, are said to be equivalent if they describe the same language.
Some of the most basic pairs of equivalent regular expressions are listed in the right-hand column of
Table 2.1.

Exercise 3.3.7 Determine which of the following equalities between regular languages are valid:
(a)(011+ (10)*1 +0)* = 011(011 + (10)*1+ 0)*;
(b) ((140)*100(1+0)*)* = ((1+0)100(1 4 0)*100)*.
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Design of finite automata from regular expressions

One of the advantages of regular expressions is that they specify a regular language in a natural way in
alinear form, by astring. Regular expressions are therefore very convenient as a specification language
for regular languages, especially for processing on computers. An important practical problem is to
design, given a regular expression E, a FA (or a DFA) that recognizes the language L(E). An elegant
way of doing this, by using the derivatives of regular expressions, will now be described. However,
in order to do so, a proper notation has to be introduced.

For a regular expression E let p(E) be a regular expression that is equal to ¢ if ¢ € L(E), and to ()
otherwise. (That is, p(E)F equals F if the empty word is in L(E), and () otherwise.) To compute p(E)
for a regular expression E, we can use the following inductive definition of p (where 2 € X):

p@) = 0, ple) = ¢ p(E+F) = p(E)+p(F),
pla) = 0, p(E*) = ¢ p(E-F) = p(E)-p(F).

Definition 3.3.8 The derivative of a regular expression E by a symbol a, notation a™'E, is a regular expression
defined recursively by a !0 = 0 and

ale = 0, a'b = 0, ifa#b, a Y (E*) = (a'E)-E*,
ala = ¢ aYE+F) = a'E+4alF, a(E-F) = (a 'E)F+p(E)a'F.

The extension from the derivatives by symbols to derivatives by words is defined by ¢ 'E = E
and (wa) 'E = a~Y(w™E).

It can be shown that with respect to any regular expression E the set ©* is partitioned into the
equivalence classes with respect to the relation wy = w, if w;'E = w; 'E. Sg = {F|3w € &* : F=w™'E}
has only finitely many equivalence classes with respect to the equivalence of regular expressions.

The following method can be used to design, given a regular expression E, a DFA A recognizing
the language L(E):

1. The state set of A is given by the set of equivalence classes with respect to the relation =. We
write w™! for [w].

2. Forany state {w] and any symbol a € . there will be a single transition from w~'E: namely, that
into the state [wa].

3. The equivalence class for the whole expression E is the initial state. A state w™'E is final if and
only if e € L(w™'E).

To illustrate the method, let us consider the regular expression E = {a,b}*a{a,b}{a,b}. Using the
notation S = {a,b} we have E = $*4S8S. For derivatives we get:

a'E = E+SS, bE = E,
(aa)'E = E+SS+S§, (ab)'E = E+S,
(aaa)'E = E+SS+S+{c}, (aab)'E = E+S+{e}, "~
(aba)"'E = E+SS+{e}, (abb)'E = E+{e}.

It is easy to verify that no two of these regular expressions are equivalent, and that further derivations
do not provide new regular expressions. The resulting state graph is shown in Figure 3.15. Observe
that it is the same state diagram as the one in Figure 3.9¢, the state diagram obtained from the one in
Figure 3.9b by the subset construction. The algorithm just presented for designing a DFA accepting
the language described by a regular expression always provides the minimal DFA with this property.
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Figure 3.15 A DFA accepting the language represented by the regular expression {a,b}*a{a,b}{a,b}
and designed using derivatives of regular expressions

Exercise 3.3.9 Use the method of derivatives to design a DFA equivalent to the following regular
expressions: (a) {a,b}*aba{a,b}*; (b) {a,b}*{ab,ba}{a,b}*.

Exercise 3.3.10 Show that the method of derivatives always creates the minimal DFA for a given
language. (Hint: show that for each string w, w 'E is the state of the minimal DFA that is reached
from the initial state by the input w.)

On the other hand, using the ideas presented in the proof of Theorem 3.3.1, given a regular
expression, one can design a NFA accepting the same language in linear time.

Exercise 3.3.11 Design a NFA describing the same language as the following regular expressions:
(a) {{a,b}*aaa{a,b}*}*; (b) aaa{ab,ba}* + aaa{aa,bb}*.

3.3.3 Decision Problems

Finite automata and regular expressions can be seen as two different specification tools for describing
regular languages. But how different are they really? One way of understanding the difference is

to compare the computational complexity of some main decision problems for DFA and regular
expressions.

The membership problem. This is the problem of deciding whether, given a regular expression
E, over an alphabet %, and a w € £*, w € L(E). This can be done in time O(|w}{|E|?). Indeed, in time
O(|E|) one can design a NFA Ag accepting the same language as E, and then, for each symbol of w in
time O(|E|?), calculate the potential states when simulating acceptance of w on Ag.
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Exercise 3.3.12 Design in detqil an algorithm that decides, given a NFA A and a word w, whether
w € L(A).

The emptiness problem and the finiteness problem are, on the other hand, very easy (here we
assume that the symbol for the empty language is not used within the expression). They require
time proportional to the length of regular expressions. Indeed, if E'contains a symbol from ¥, then
the language L(E) is nonempty. Similarly, if E contains a symbol from ¥ in the scope of an iteration
operator, then the language is infinite, and only in such a case.

Exercise 3.3.13 Show how to decide, given a FA A over the alphabet &, whether L(A) = £*.

The equivalence problem for regular expressions is, as for NFA, PSPACE-complete.

In the rest of this section we discuss the equivalence problem for generalized regular expressions
in order to illustrate how the computational complexity of a problem can be altered by a seemingly
inessential change in the language used to describe input data. (We shall come to this problem again
in Section 5.11.)

The idea of considering some generalized regular expressions is reasonable. We have seen in
Section 3.3.1 that the family of regular languages is closed under a variety of operations. Therefore,
in principle, we could enhance the language of regular expressions with all these operations: for
example, with complementation and intersection, to be very modest. This would in no way increase
the descriptional power of such expressions, if measured solely by the family of languages they
describe.

Such generalizations of regular expressions look very natural. However, there are good reasons
for not using them, unless there are special contra-indications. Complementation and intersection
have enormous descriptive power. They can be used to describe succinctly various ‘complex’ regular
languages. This in turn can make working with them enormously difficult. One can see this from the
following surprising result concerning the equivalence problem for generalized regular expressions.

Theorem 3.3.14 The following lower bound holds for the sequential time complexity T (n) of any algorithm
that can decide whether two generalized reqular expressions with the operations of union, concatenation and
complementation, of length n, are equivalent:

2-"2 }logn times
T(n)=Q (2 )

An even higher lower bound has been obtained for algorithms deciding the equivalence of regular
expressions when the iteration operation is also allowed.

Why is this? There is a simple explanation. Using the operation of complementation, one
can enormously shorten the description of some regular expressions. Since the time for deciding
equivalence is measured with respect to the length of the input (and regular expressions with
operations of negation can be very short), the resulting time can be very large indeed.

Example 3.3.15 If X is an alphabet, |$| > 2, x # y € T*, then {x} and (Z*x%%) N (T*yS*) are simple
examples of generalized regular expressions for which the corresponding regular expressions are much more
complex.
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Exercise 3.3.16 Give regular expressions that describe the same language as the following generalized
regular expressions for © = {a,b,c}: (a) (X* - {abc}-L*); (b) (X*-{aba}-T*)N(T*-{bcb} -LT*).

3.3.4 Other Characterizations of Regular Languages

In addition to FA and regular expressions, there are many other ways in which regular languages
can be described and characterized. In this section we deal with three of them. The first concerns
syntactical monoids (see Section 2.6.2).

Let L C ©* be a language. The context of a string w € £*, with respect to L, is defined by

Co(w) ={(u,v) |uwv € L}.
The relation =; on £* x £*, defined by
X=L Y <— CL(X) = CL(y),

is clearly an equivalence relation (the so-called syntactical equivalence). In addition, itis a congruence
in the free monoid (Z*,-), because

X1 =LY, X2 =L Y2 = X1X2 = 1Y

This implies that the set of equivalence classes [w];, w € £*, with respect to the relation = and the
operation [w];. {w,), = [wyw,). forms a monoid, the syntactical monoid of L.

Theorem 3.3.17 (Myhill’s theorem) A language L is regular if and only if its syntactical monoid is finite.

Proof: Let L be a regular language and L = L(A) for a DFA A = (2,0Q,40,Qr,6). For any p € Q let
I(p) = {w| (g0, w) = p}. Moreover, for any w € £* let S, = {(p,9) | 6(p,w) = q}. Clearly,

Cw) = |J 1p) xL().

{p49)€Sw

Since the number of different sets S,, is finite, so is the number of contexts C;(w); therefore the
syntactical monoid of L is finite.

Now let us assume that the syntactical monoid M for a language L C £* is finite. We design
a DFA recognizing L as follows. Elements of M, that is the equivalence classes with respect to the
relation =, will be the states, with [¢], the initial state. States of the form [w].,w € L will be the final
states. For a state (w] and a symbol a € ¥ there will be a transition ([w].,a, [wa]. ). Clearly, the resulting
DFA recognizes L. a

The second characterization is in terms of the prefix equivalence =] defined foralanguage L € ©*
by '

w = w, &= VueS (wuel o wuel).

Theorem 3.3.18 (Nerode’s theorem) A language L is regular if and only if its prefix equivalence has finitely
many equivalence classes. If a language L is regular, then the number of its prefix equivalence classes equals
the number of states of the minimal DFA for L.
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Proof: (1) If L is regular, then by Myhill’s theorem the set of syntactical equivalence classes of L is
finite. Since u =, w = u =} w, the set of prefix equivalence classes of L has to be finite also.

(2) Let the number of prefix equivalence classes [w]} be finite. These classes will be the states of
a DFA A that will recognize L, and is defined as follows. [¢]/ is the initial state and {[w]} |w € L} are
final states. The transition function ¢ is defined by 6([w}/,a) = [wa]} . Since wy =] w; = wna =} waa for
all wy,w, and g, 6 is therefore well defined, and A clearly recognizes L.

The resulting DFA has to be minimal, because no two of its states are equivalent; this follows

from the definition of prefix equivalence classes. 0

Exercise 3.3.19 Show that syntactical monoids of the following languages are infinite (and therefore
these languages are not regular): (a) {a"b" |n > 0}; (b) {a' |i is prime}.

Exercise 3.3.20 Determine the syntax equivalence and prefix equivalence classes for the following
languages: (a) {a,b}*aa{a,b}*; (b) {a'¥/ |i,j > 1}.

Nerode’s theorem can also be used to derive lower bounds on the number of states of DFA for
certain regular languages.

Example 3.3.21 Consider the language L, = {a,b}*a{a,b}"~". Let x,y be two different strings in {a,b}", and
let them differ in the i-th left-most symbol. Clearly, xb'~' € L < yb'~1 ¢ L, because one of the strings xb'~!
and ybi~! has a and the second b in the n-th position from the right. This implies that L, has at least 2" prefix
equivalence classes, and therefore each DFA for L, has to have at least 2" states.

Exercise 3.3.22 Design an n+ 1 state NFA for the language L, from Example 3.3.21 (and show in this
way that for L, there is an exponential difference between the minimal number of states of NFA and DFA
recognizing L,).

Exercise 3.3.23 Show that the minimal deterministic FA to accept the language
L= {w|#,w mod k =0} C {a,b}* has k states, and that no NFA with less than k states can

recognize L.

Example 3.3.24 (Recognition of regular languages in logarithmic time) We show now how to use the
syntactical monoid of a regular language L to design an infinite balanced-tree network of processors (see
Figure 3.16) recognizing L in parallel logarithmic time.

Since the number of syntactical equivalence classes of a regular language is finite, they can be
represented by symbols of a finite alphabet. This will be used in the following design of a tree network
of processors.

Each processor of the tree network has one external input. For asymbol 2 € ¥ on its external input
the processor produces as an output symbol representing the (syntactical equivalence) class [4].. For
the input #, a special marker, on its external input the processor produces as the output symbol
representing the class [¢];.



178 § AUTOMATA

Figure 3.16 Tree automaton recognizing a regular language

The tree automaton works as follows. An input word w =4, . . . a, € £* is given, one symbol per
processor, to the external inputs of the left-most processors of the topmost level of processors that has at
least |w| processors. The remaining processors at that level receive, at their external inputs, the marker
# (see Figure 3.16 for n = 6). All processors of the input level process their inputs simultaneously, and
send their results to their parents. (Processors of all larger levels are ‘cut off” in such a computation.)
Processing in the network then goes on, synchronized, from one level to another, until the root
processor is reached. All processors of these levels process only internal inputs; no external inputs
are provided. An input word w is accepted if and only if at the end of this processing the root processor
produces a symbol from the set {[w]. |w € L}.

It is clear that such a network of memory-less processors accepts the language L. It is a simple
and fast network; it works in logarithmic time, and therefore much faster than a DFA. However, there
is a price to pay for this. It can be shown that in some cases for a regular language accepted by a
NFA with n states, the corresponding syntactical monoid may have up to n" elements. The price to be
paid for recognition of regular languages in logarithmic time by a binary tree network of processors
can therefore be very high in terms of the size of the processors (they need to process a large class of
inputs), and it can also be shown that in some cases there is no way to avoid paying such a price.

Exercise 3.3.25 Design a tree automaton that recognizes the language
(a) {a¥" |n > 0} (note that this language is not regular); (b) {w|w € {a}*{b}*,|w| = 2,k > 1}.

3.4 Finite Transducers

Deterministic finite automata are recognizers. However, they can also be seen as computing
characteristic functions of regular languages — the output of a DFA A is 1 (0) for a given input w
if A comes to a terminal (nonterminal) state on the input w. In this section several models of finite
state machines computing other functions, or even relations, are considered.
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Figure 3.17 Moore and Mealy machines for serial addition

34.1 Mealy and Moore Machines

Two basic models of finite transducers, as models of finite state machines computing functions,
are called the Moore machine and the Mealy machine. They formalize an intuitive idea of an
input-output mapping realized by a finite state machine in two slightly different ways.

Definition 3.4.1 In 2 Moore machine M = (£,Q,40,9,p,A), the symbols 3,0Q,q0 and § have the same
meaning as for DFA, A is an output alphabet, and p: Q — A an output function.

For an input word w = w; . . . W, w; € Z, p(qo)p(71) - - - p(gn) is the corresponding output word,
whereg; = 8(go, w1 - . . w;),1 < i <n.InaMoore machine the outputs are therefore ‘produced by states’.
Figure 3.17a shows a Moore machine for a serial addition of two binary numbers. (It is assumed that
both numbers are represented by binary strings of the same length (leading zeros are appended if
necessary), and for numbers x,,. . . x1, ¥, . . . y1 the input is a sequence of pairs (x1,y1), . . . , (x4, ¥s) in
this order. Observe also that the output always starts with one 0 which is then followed by output
bits of bin ! (bin(x, . .., x1) X bin(y, . . . y1).

Definition 3.4.2 InaMealy machine M = (£,0,40,6,p,A), symbols £,Q,q,,6, A have the same meaning
as in a Moore machine, and p: Q x ¥ — A is an output function.

For an input word w = w; . . . w,, w; € E, p(qo,w1) - . . p(du-1,Wn) is the corresponding output
word, where g; = §(qo, w1 - - . w;). Outputs are therefore produced by transitions. Figure 3.17b shows
a Mealy machine for the serial addition of two binary numbers x = x; .. . x,, ¥ = ¥1. - . ¥», with inputs
presented as above. :

Let us now denote by Tx(w) the output produced by a Moore or a Mealy machine M for the
input w. For a Moore machine |Ty(w)| = |w| + 1 and for a Mealy machine |T(w)| = |w|. A Moore
machine can therefore never be fully equivalent to a Mealy machine. However, it is easy to see that
for any Moore machine there is a Mealy machine (and vice versa) such that they are equivalent in the
following slightly weaker sense.

Theorem 3.4.3 For every Mealy machine M over an alphabet ¥ there is a Moore machine M’ over E (and
vice versa) such that p(qo)Tm(w) = Ty (w), for every input w € T*, where p is the output function of M'.
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Exercise 3.4.4 Design (a) a Moore machine (b) a Mealy machine, such that given an integer x in binary
form, the machine produces |5 |.

Exercise 3.4.5*% Design (a) a Mealy machine (b) a Moore machine that transforms a Fibonacci
representation of a number into its normal form.

Exercise 3.4.6 Design a Mealy machine M that realizes a 3-step delay. (That is, M outputs at time t
its input at time t - 3.)

3.4.2 Finite State Transducers

The concept of a Mealy machine will now be generalized to that of a finite state transducer. One new
idea is added: nondeterminism.

Definition 3.4.7 A finite (state) transducer (FT for short) T is described by a finite set of states Q, a
finite input alphabet ¥, 4 finite output alphabet A, the initial state g, and a finite transition relation
p CQxX* x A* x Q. Forshort, T = (Q,%, A, 4o, p).

AFT T can also be represented by a graph, G7, with states from Q as vertices. There is an edge in
Gr from a state p to a state g, labelled by (u,v), if and only if (p,u,v,q) € p. Such an edge is interpreted
as follows: the input # makes 7 transfer from state p to state g and produces v as the output.

Each finite transducer 7 defines a relation

R’T = {(uav) la(quanvﬂvql)a(qlaulavlan)a e 1(qmunavnaqn+1)a
where (g;,u;,0;,9i41) €Ep,for0<i<n,andu=1uy... U, 0="0...0s}.

The relation Ry can also be seen as a mapping from subsets of £* into subsets of A* such that for
LCY*Rr(L)y={v|3uecL,(u,v) €Rs}

Perhaps the most important fact about finite transducers is that they map regular languages into
regular languages.

Theorem 3.4.8 Let T = (Q,X,A,q0,p) be a finite transducer. If L C ©* is a regular language, then so is
Rr(L).

Proof: Let A’ = AU {#} be a new alphabet with # as a new symbol not in A. From the relation p we
first design a finite subset A, C Q x £* x A”™ x ( and then take A, as a new alphabet. A, is designed
by a decomposition of productions of p. We start with A, being empty, and for each production of p
we add to A, symbols defined according to the following rules:

1. If (p,u,v,q) € p, |u| <1, then (p,u,v,q) is taken into A,,.

2. Ifr=(puvg)€p [ul|>1L,u=u ... u 1<i<k u; €L, then new symbols ], ... ,t;_, are
chosen, and all quadruples

(p’ul’#’t;)a (t;7u23#1t£)7 e a(t;-2auk-1a#at]rc71)a(tl’;—laukav:q)

are taken into A,,.
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Now let Q; be the subset of A% consisting of strings of the form

(G0, u0,v0,91)(1,%1,V1,92) - - - (G5 Us, Vs, Gss1) (3.2

such that v; # # and upu, . . . u; € L. That is, Q; consists of strings that describe a computation of 7
for an input u = ugu; . . . us € L. Finally, let 7 : A, — A"™ be the morphism defined by

| v, fo##
T((p’uavaq))z{ £, othej‘i\ll#‘ie.

From the way 7 and (; are constructed it is readily seen that 7(Q;) = Rr(L).

Itisalsostraightforward tosee thatif L is regular, then Q; is regular too. Indeed, aFA Arecognizing
Q; can be designed as follows. A FA recognizing L is used to check whether the second components
of symbols of a given word w form a word in L. In parallel, a check is made on whether w represents
a computation of 7 ending with a state in Q. To verify this, the automaton needs always to remember
only one of the previous symbols of w; this can be done by a finite automaton.

As shown in Theorem 3.3.1, the family of regular languages is closed under morphisms. This
implies that the language Ry (L) is regular. 0

Mealy machines are a special case of finite transducers, as are the following generalizations of
Mealy machines.

Definition 3.4.9 In a generalized sequential machine M = (Q,3 A qq,6,p), symbols Q, X, A and gy
have the same meaning as for finite transducers, § - Q x £ — Q is a transition mapping, and p: Q x & — A*
is an output mapping.

Computation on a generalized sequential machine is defined exactly as for a Mealy machine. Let
fum: Z* — A* be the function defined by M. For L C £* and L' C A* we therefore consider fy,(L) and
definef, (L) = {u|u e =* fi(u) e L'}.

It follows from Theorem 3.4.8 that if M is a generalized sequential machine with the input alphabet
¥ and the output alphabet A and L C £* is a regular language, then so is f1(L). We show now that
areverse claim also holds: if L’ C A* is a regular language, then so is f, ' (L').

Indeed, let M = (Q,X,A,q0,6,p). Consider the finite transducer 7 = (Q,A,X,4,6') with §’ =
{(p,u,v,q)|6(p,u) = q,p(p,u) = v} U {(p,e,c,9)}. Clearly, f7}(L') = Rr(L') and, by Theorem 3.4.8,

(L) is regular. Hence

Theorem 3.4.10 If M is a generalized sequential machine, then mappings fa and f,! both preserve regular
languages.

In Section 3.3 we have seen automata-independent characterizations of languages recognized by
FA. There exists also a machine-independent characterization of mappings defined by generalized
sequential machines.

Theorem 3.4.11 For a mapping f : ©* — A¥*, there exists a generalized sequential machine M such that
f =fm, if and only if f satisfies the following conditions:

1. f preserves prefixes; that is, if u is a prefix of v, then f (u) is a prefix of f(v).

2. f has a bounded output; that is, there exists an integer k such that |f(wa)| — [f (w)| < k for any w €
L*aex.

3 fle)=e.
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0,0.5 0,
1

Figure 3.18 Two WFA computing functions on rationals and reals

4. f~Y(L) is a regular language if L is regular.

Exercise 3.4.12 Letf be the function defined by f (a) = b,f (b) = aandf (x) = x for x € {a,b}* —{a,b}.
(a) Does f preserve regular languages? (b) Canf be realized by a generalized sequential machine?

Exercise 3.4.13* Show how to design, given a regular language R, a finite transducer Tg such that
Tr(L) = LoR (where o denotes the shuffle operation introduced in Section 2.5.1).

3.5 Weighted Finite Automata and Transducers

A seemingly minor modification of the concepts of finite automata and transducers, an assignment of
weights to transitions and states, results in finite state devices with unexpected computational power
and importance for image processing. In addition, the weighted finite automata and the transducers
introduced in this section illustrate a well-known experience that one often obtains powerful practical
tools by slightly modifying and ‘twisting’ theoretical concepts.

3.5.1 Basic Concepts

The concept of a weighted finite automaton is both very simple and tricky at the same time. Let us
therefore start with its informal interpretation for the case in which it is used to generate images.
Each state p determines a function that assigns a greyness value to each pixel, represented by an
input word w, and therefore it represents an image. This image is computed as follows: to each path
starting in p and labelled by w a value (of greyness) is computed by multiplying the weights of all
transitions along the path and, in addition, the so-called terminal weight of the final state of the path.
These values are then added for all paths from p labelled by w. The initial weights of all nodes are
then used to form a linear combination of these functions to get the final image-generating function.
More formally,

Definition 3.5.1 A weighted finite automaton (for short WFA) A is described by a finite set of input
symbols X, afinite set of states Q, an initial distributioni : Q — R, and a terminal distributiont: Q —R
of states, as well as a weighted transition function w: Q x ¥ x Q — R. In short, A = (£,Q,i,t,w).

To each WFA A we first associate the following distribution function §4 : Q x £* — R:

Salpe) = Hp); 33)

dalp,au) = Zw(p,a,q)éA(q,u) foreachpc Qac X, uecx*, (3.4)
q€Q
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A WFA T canbe represented by a graph G (see Figures 3.18a, b) with states as vertices and transitions
as edges. A vertex representing a state g is labelled by the pair (i(9),t(q)). If w(p,a,q) = r is nonzero,
then there is, in G7, a directed edge from p to g labelled by the pair (a,r).

A WFA A can now be seen as computing a functionf : ©* — R defined by

fa(w) =Y i(p)éalp,u).

peQ
Informally, 6 4(p,u) is the sum of all ‘final weights’ of all paths starting in p and labelled by u. The
final weight of each path is obtained by multiplying the weights of all transitions on the path and
also the final weight of the last node of the path. f4(u) is then obtained by taking a linear combination
of all 6 4(p,u) defined by the initial distribution i.
Example 3.5.2 For the WFA A, in Figure 3.18a we get
64,(40,011) =0.5-0.5-0.5-140.5-0.5-1-140.5-1-1-1 = 0.875;8,4,(41,011) =1-1-1-1 =1,

and therefore f4,(011) = 1-0.87540-1 = 0.875. Similarly, § 4,(40,0101) = 0.625 and f4,(0101) = 0.625.
For the WFA A, in Figure 3.18b we get, for example,

04,(90,0101) = 0.25-0.5-0.5-1-140.25-0.25-1-1-1=0.125,

and therefore also f4,(0101) = 0.125.

Exercise 3.5.3 Determine, for the WFA A, in Figure 3.18a and for A; in Figure 3.18b:
(a) 6_,41 (qg, 10101),fA1 (10101), (b) 6A2 (qg, 10101)’fAl (10101)

Exercise 3.5.4 Determinef,(x) andfa,(x) for the WFA Az and A4 obtained from A, in Figure 3.18a
by changing the initial and terminal distributions as follows:
(@) i(go) =1, i(g1) =0, t(go) = 0, and t(g1) = 1; (b) i(qo) = i(q1) = 1, and t(qo) = t(q1) = 1.

Exercise 3.5.5 (a) Show that fr, (x) = 2bre(x) + 2~ for the WFT T, depicted in Figure 3.18.
(b) determine functions computed by WFA obtained from the one in Figure 3.18a by considering several
other initial and terminal distributions.

If & = {0,1} is the input alphabet of a WFA A, then we can extend f4 : £* — R to a (partial)
real function {3 : [0,1] — R defined as follows: for x € [0,1] let bre~*(x) € £ be the unique binary
representation of x (see page 81). Then

f4(x) = Hm f(Prefix,(bre” (x))),

provided the limit exists; otherwise f¥(x) is undefined.

For the rest of this section, to simplify the presentation, a binary string x; . . . x,, x; € {0,1} and
an w-string y = vy . . . over the alphabet {0,1} will be interpreted, depending on the context, either
as strings x; . . . x, and 11y, . . . orasreals 0.x; ... x, and 0.y1y» . . .. Instead of bin(x) and bre(y), we
shall often write simply x or y and take them as strings or numbers.



184 @ AUTOMATA

(s} (b) (<)

Figure 3.19 Generation of a fractal image

Exercise 3.5.6 Show, for the WFA A, in Figure 3.18a, that (a) if x € £%, then f 4, (x0") = 2bre(x) +
2-(n+ 0 (p) £4. (x) = 2bre(x).

Exercise 3.5.7 Show that f4(x)*(x) = x? for the WFA A, in Figure 3.18b.

Exercise 3.5.8 Determine f; (x) for the WFA obtained from WFA A by taking other combinations of
values for the initial and final distributions.

Of specialimportance are WFA over the alphabet P = {0,1,2,3}. Asshown in Section 2.5.3, a word
over P can be seen as a pixel in the square [0, 1] x [0,1]. A functionfy4 : P* — R is then considered as
a multi-resolution image with f4(u#) being the greyness of the pixel specified by u. In order to have
compatibility of different resolutions, it is usually required that f4 is average-preserving. That is, it
holds that

Fa(w) = 3 a0 +£4u1) + £ (u2) +£4(u3)]

In other words, the greyness of a pixel is the average of the greynesses of its four main subpixels.
(One can also say that images in different resolutions look similar if f4 is average-preserving —
multi-resolution images contain only more details.)

It is easy to see that with the pixel representation of words over the alphabet P the language
L={1,2,3}*0{1,2}*0{0,1,2,3}* represents the image shown in Figure 3.19a (see also Exercise 2.5.17).
At the same time L is the set of words w such that f4(w) = 1 for the WFA obtained from the one in
Figure 3.19b by replacing all weights by 1. Now it is easy to see that the average-preserving WFA
shown in Figure 3.19b generates the grey-scale image from Figure 3.19c.

The concept of a WFA will now be generalized to a weighted finite transducer (for short, WFT).

Definition 3.5.9 Ina WFT T = (%4,¥,,Q,i,t,w), X1 and ¥, are input alphabets; Q,1 and t have the same
meaning as fora WFA; and w : Q x (£, U {e}) x (£2U {e}) x Q — Ris a weighted transition function.

We can associate to a WFT T the state graph Gz, with Q being the set of nodes and with an edge
from a node p to a node g with the label (ay,a, - r) if w(p,a1,a2,9) =r.
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A WFT T specifies a weighted relation Ry : £ x £ — R defined as follows. For
pg €Q uexf and v € £, let A, (u,v) be the sum of the weights of all paths
(p1,a1,b1,p2)(p1,82,b2,p2) . . . (Pn8n, b, Pns1) from the state p = p; to the state p,..1 = g that are labelled
byu=a,...a,and v =b, . ..b,. Moreover, we define

Rr(u,0) = i(p)Apq(u,0)H(g).

p4eQ

That is, only the paths from an initial to a final state are taken into account. In this way R relates
some pairs (1,v), namely, those for which Rz (u,v) # 0, and assigns some weight to the relational pair
(u,v).

Observe that A, ,(u,v) does not have to be defined. Indeed, for some p, 4, u and v, it can happen
that A, ,(u,v) is infinite. This is due to the fact that if a transition is labelled by (a,,4; : 7), then it may
happen that either a = € or 4, = € or a; = a; = ¢. Therefore there may be infinitely many paths between
p and g labelled by u and v. To overcome this problem, we restrict ourselves to those WFT which have
the property that if the product of the weights of a cycle is nonzero, then either not all first labels or
not all second labels on the edges of the path are ¢.

The concept of a weighted relation may seem artificial. However, its application to functions has
turned out to be a powerful tool. In image-processing applications, weighted relations represent an
elegant and powerful way to transform images.

Definition 3.5.10 Let p: &} x £3 — R be a weighted relation and f : £1 — R a function. An application of
ponf,inshort g = pof = p(f) : £5 — R, is defined by

g) =Y p(uv)f (u),

ueE;k

for v € &3, if the sum, which can be infinite, converges; otherwise g(u) is undefined. (The order of summation
is given by a strict ordering on £¥.)

Informally, an application of p on f produces a new function g. The value of this function for an
argument v is obtained by taking f-values of all # € £* and multiplying each f () by the weight of
the paths that stand for the pair (u#,v). This simply defined concept is very powerful. The concept
itself, as well as its power, can best be illustrated by examples.

Exercise 3.5.11 Describe the image transformation defined by the WFT shown in Figure 3.20a which
produces, for example, the image shown in Figure 3.20c from the image depicted in Figure 3.20b.

Example 3.5.12 (Derivation) The WFT T; in Figure 3.21a defines a weighted relation Ry, such that for any
functionf : {0,1}* — R, interpreted as a function on fractions, we get

R of (r) = T

(and therefore Tz acts as a functional), in the following sense: for any fixed n and any function f : ¥ — R,
Ry of (x) = J&%ﬂﬂ , where h = . (This means that if x is chosen to have n bits, then even the least
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£,0:1 g,3:1
(a)
(b)
Figure 3.20 Image transformation
0,0:2 O,O:O.SC
1,1:2 1,1:0,5
(a) (b) 1,1:0.5

Figure 3.21 WFT for derivation and integration

significant 0, in a binary representation of x, matters.) Indeed, Ry (x,y) # 0, for x,y € {0,1}* if and only if
either x =y and then Ry, (x,y) = 2% or x = x,10%, y = x,01*, for some k, and in such a case Ry (x,y) =21,
Hence Ry, of (x) = Ry (x,x)f (x) + Re (x + 37, %)f (x + 1) = — 28 (x) + 2% (x + 5). Take now n = |x|,
h= 3.

2

Example 3.5.13 (Integration) The WFT T in Figure 3.21b determines a weighted relation Ry, such that for
any functionf : ¥* - R

Regof () = [ Flar
0

in the following sense: Ry, of computes h(f (0) +£ (k) +f(2h)+ . . . +f (x)) (for any fixed resolution h = %,
for some k, and all x € {0,1}*).
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0,0:1 0,0:1

1,1:1 I,1:1

< 2,0:1 2,2:1
(a) 3,1:1 3.3;1

Figure 3.22 Two WFT

Exercise 3.5.14 Explain in detail how the WFT in Figure 3.21b determines a functional for integration.

Exercise 3.5.15* Design a WFT for a partial derivation of functions of two variables with respect:
(a) to the first variable; (b) to the second variable.

The following theorem shows that the family of functions computed by WFA is closed under the
weighted relations realized by WFT.

Theorem 3.5.16 Let A; = (£1,Qn,1i1,t, wn) be a WFA and A; = (3,,Q5,12,t2,w5) be an e-loop free WFT.
Then there exists a WFA A such that f4 = R4, of4,.

This result actually means that to any WFA A over the alphabet {0,1} two WFA A4’ and A" can
be designed such that for any x € £*, fy (x) = 242 and fu (x) = [ fa(x)dx.

Exercise 3.5.17 Construct a WFT to perform (a)* a rotation by 45 degrees clockwise; (b) a circular left
shift by one pixel in two dimensions.

Exercise 3.5.18 Describe the image transformations realized by WFT in: (a) Figure 3.22a;
(b) Figure 3.22b.

Exercise 3.5.19* Prove Theorem 3.5.16.

3.5.2 Functions Computed by WFA

For a WFA A over the alphabet {0,1}, the real function f4 : [0,1] — R does not have to be total.
However, it is always total for a special type of WFT introduced in Definition 3.5.20. As will be seen
later, even such simple WFT have unexpected power.

Definition 3.5.20 A WFA A= (%,Q,i.t,w) is called alevel weighted finite automaton (for short, LWFA)
if

1. all weights are between 0 and 1;

2. the only cycles are self-loops;
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0,-8/3

0,2/3
1,2/3\}

1,-8/3

Figure 3.23 A LWFA that computes a function that is everywhere continuous and nowhere has a
derivative

3. if the weight of a self-loop is 1, then it must be a self-loop of a node that has no other outgoing edges than
self-loops.

For example, the WFA in Figure 3.18b is a LWFA; the one in Figure 3.18a is not. LWFA have unexpected
properties summarized in the following theorem.

Theorem 3.5.21 LWEFA have the following properties:

1. It is decidable, given a LWFA, whether the real function it computes is continuous. It is also decidable,
given two LWFA, whether the real functions they compute are identical.

2. Any polynomial of one variable with rational coefficients is computable by a LWFA. In addition, for any

~ integer n there is a fixed, up to the initial distribution, LWFA A, that can compute any polynomial of

one variable and degree at most n. (To compute different polynomials, only different initial distributions
are needed.)

3. If arbitrary negative weights are allowed, then there exists a simple LWFA (see Figure 3.23) computing
a real function that is everywhere continuous and has no derivatives at any point of the interval [0,1].

Exercise 3.5.22* Design a LWFA computing all polynomials of one variable of degree 3, and show how
to fix the initial and terminal distributions to compute a particular polynomial of degree 3.

3.5.3 Image Generation and Transformation by WFA and WFT

As already mentioned, an average-preserving mapping f : P* — R can be considered as a
multi-resolutionimage. There is a simple way to ensure that a WFA on P defines an average-preserving
mapping and thereby a multi-resolution image.

Definition 3.5.23 A WFA A = (P,Q,i,t,w) is average-preserving if for all p € Q

Y w(p.a.g)e) =4(p).

acy g€Q
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0,0.5
1,0.5
@ 205
3,0.5

Figure 3.24 WFA generating two images and their concatenation

Indeed, we have
Theorem 3.5.24 Let A be a WFA on P. If A is average-preserving, then so is f 4.

Proof: Let u € P*,a € P. Since

falua) = )" 8(qua)t(q) (35)
9€Q

= Z‘S(pau)w(paaﬂq)t(q)a (36)
pacQ

we have

D fatua) = D spu) Y w(pa,9iy) 3.7)

acP reQ aeP geQ
= > b(p,u)at(p) = 4fa(w). 3.8)
peQ

a

The family of multi-resolution images generated by a WFA is closed under various operations
such as addition, multiplication by constants, Cartesian product, concatenation, iteration, various
_affine transformations, zooming, rotating, derivation, integration, filtering and so on. Concatenation
of WFA (see also Section 2.5.3) is defined as follows.

Definition 3.5.25 Let Ay, A, be WFA over P and fa, ,fa, multi-resolution images defined by A, and A,,
respectively. Their concatenation A, A; is defined as

faray () =Y fay (r)fiay ().

Uyuz=u
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(@) (b) ()

Figure 3.25 Concatenation of two images generated by WFA

’

0:1
1,1:1 0,1:1

0,2:1 2,3:1
1,0:13,1:1

(a) (b)

Figure 3.26 Image transformations defined by WFT: (a) circular shift left, (b) rotation, (c) vertical
squeezing

Exercise 3.5.26 (a) Show that the WFA in Figure 3.24b generates the chess board shown in Figure 3.25a;
(b) that the WFA in Figure 3.24a generates the linear slope shown in Figure 3.25b; (c) that concatenation
of the two images in Figures 3.24a, b (see the result in Figure 3.25c) generates the WFA in Figure 3.24c.

Observe that several of the WFA we have considered, for example, the one in Figure 3.24b, are
nondeterministic in the sense that if the weights are discarded, a nondeterministic FA is obtained. It
canbe shown that nondeterministic WFA generate more images than deterministic ones. For example,
there is no deterministic WFA that generates the same linear slope as does the WFA in Figure 3.24a.

3.5.4 Image Compression

We have seen several examples of WFT generating images. From the application point of view, itis the
inverse problem that is of special importance: given an image, how to design a WFT generating that
image. Indeed, to store a multi-resolution image directly, a lot of memory is needed. A WFT generating
the same image usually requires much less memory. There is a simple-to-formulate algorithm that
can do image compression.
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Algorithm 3.5.27 (Image compression) Assume as input an image I given by a function ¢ : P* — R. (It
can also be a digitalized photo.) :

1. Assign the initial state qq to the image represented by the empty word, that is, to the whole image
1, and define i(go) = 1,£(90) = ¢(€), the average greyness of the image I.

2. Recursively, for a state q assigned to a square specified by a string u, consider four subsquares
specified by strings u0,ul,u2,u3. Denote the image in the square ua by 1,,. If this image is
everywhere 0, then there will be no transition from the state q with the label a. If the image I, can
be expressed as a linear combination of the images I, corresponding to thestatespy, . . . ,px —that s,

La= Zfz 1 €ily, —add a new edgefrom q to each p; with label a and with weight w(q,a,p;) =ci(i =

1,...,k). Otherwise, assign a new state r to the pixel ua and define w(g,a,r) = 1,t(r) = ¢(L,)
— the average greyness of the image in the pixel ua.

3. Repeat step 3 for each new state, and stop if no new state is created.

Since any real image has a finite resolution, the algorithm has to stop in practice. If this algorithm
is applied to the picture shown in Figure 3.19a, we get a WFA like the one shown in Figure 3.19b but
with all weights equal 1. Using the above "theoretical algorithm’ a compression of 5-10 times can be
obtained. However, when a more elaborate 'recursive algorithm’ is used, a larger compression, 50-60
times for grey-scale images and 100-150 times for colour images (and still providing pictures of good
quality), has been obtained.

Of practical importance also are WFT. They can perform most of the basic image transformations,
such as changing the contrast, shifts, shrinking, rotation, vertical squeezing, zooming, filters, mixing
images, creating regular patterns of images and so on.

Exercise 3.5.28 Show that the WFT in Figure 3.26a performs a circular shift left.
Exercise 3.5.29 Show that the WFT in Figure 3.26b performs a rotation by 90 degrees counterclockwise.
Exercise 3.5.30 Show that the WFT in Figure 3.26¢ performs vertical squeezing, defined as the sum

of two affine transformations: x; = 3,y = y and x, = *51 y, = y — making two copies of the original
image and putting them next to each other in the unit square.

3.6 Finite Automata on Infinite Words

A natural generalization of the concept of finite automata recognizing/accepting finite words and
languages of finite words is that of finite automata recognizing w-words and w-languages. These
concepts also have applications in many areas of computing. Many processes modelled by finite state
devices (for instance, the watch in Section 3.1) are potentially infinite. Therefore it is most appropriate
to see their inputs as w-words. Two types of FA play the basic role here.

3.6.1 Bichi and Muller Automata

Definition 3.6.1 A Biichi automaton A = (X, Q,q0,Qr, 6) is formally defined exactly like a FA, but it is used
only to process w-words, and acceptance is defined in a special way. An w-word w = wow w, . . . € L¥,w; €L,
is accepted by A if there is an infinite sequence of states qo,41,92, - . . such that (g;,w;,qi1) €6, foralli >0,
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Figure 3.27 Biichi automata

and a state in Qr occurs infinitely often in this sequence. Let L*(_A) denote the set of all w-words accepted by
A.

An w-language L is called regular if there is a Biichi automaton accepting L.

Example 3.6.2 Figure 3.27a shows a Biichi automaton accepting the w-language over the alphabet {a,b,c}
consisting of w-words that contain infinitely many a’s and between any two occurrences of a there is an odd
number of occurrences of b and c. Figure 3.27b shows a Biichi automaton recognizing the language {a,b}*a“.

Exercise 3.6.3 Construct a Biichi automaton accepting the language L C {a,b,c}* defined as follows:
(a) w € L if and only if after any occurrence of the symbol a there is some occurrence of the symbol b
in w; (b) w € L if and only if between any two occurrences of the symbol a there is a multiple of four
occurrences of b's or c’s.

The following theorem summarizes those properties of w-regular languages and Biichi automata
that are similar to those of regular languages and FA. Except for the closure under complementation,
they are easy to show.

Theorem 3.6.4 (1) The family of reqular w-languages is closed under the operations of union, intersection
and complementation.

(2) An w-language L is reqular if and only if there are reqular languages Ay, . . . ,A,and By, . . . B, such
that L = A1B{U. .. UA,B;.

(3) The emptiness and equivalence problems are decidable for Biichi automata.

Exercise 3.6.5 Show that (a) if L is a regular language, then L* is a regular w-language; (b) if Ly and
L, are regular w-languages, then so are L, UL, and Ly NLy; (c)** the emptiness problem is decidable for
Biichi automata.

The result stated in point (2) of Theorem 3.6.4 shows how to define regular w- expressions in such
a way that they define exactly regular w-languages.

One of the properties of FA not shared by Biichi automata concerns the power of nondeterminism.
Nondeterministic Biichi automata are more powerful than deterministic ones. This follows easily from
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the fact that languages accepted by deterministic Biichi automata can be nicely characterized using
regular languages. To show this is the task of the next exercise.

Exercise 3.6.6 Show that an w-language L C ¥ is accepted by a deterministic Biichi automaton if and

only if
L=W-= {w € T¥| Prefix,(w) € W, for infinitely many n},

for some regular language W.

Exercise 3.6.7* Show that the language {a,b}” — (b*a)* is accepted by a nondeterministic Biichi

automaton but not by a deterministic Biichi automaton.

There is, however, a modification of deterministic Biichi automata, with a different acceptance
mode, the so-called Muller automata, that are deterministic and recognize all regular w-languages.

Definition 3.6.8 I a Muller automaton A = (X,Q,q0,F,6), where X, Q, g0 and § have the same meaning
as for DFA, but F C 29 is a family of sets of final states. A recognizes an w-word w = wow,w; . . . if and only
if the set of states that occur infinitely often in the sequence of states {9;}3°,, 9i = 6(qo, wowrw> . . . w;), is an
element of F. (That is, the set of those states which the automaton A takes infinitely often when processing w
is an element of F.)

Exercise 3.6.9* Show the so-called McNaughton theorem: Muller automata accept exactly reqular
w-languages.

Exercise 3.6.10 Show, for the regqular w-language L = {0,1}*{0}* (that is, not a deterministic regular
w-language), that there are five non-isomorphic minimal (with respect to the number of states) Muller
automata for L. (This indicates that the minimization problem has different features for Muller automata
than it does for DFA.)

3.6.2 Finite State Control of Reactive Systems*

In many areas of computing, for example, in operating systems, communication protocols, control
systems, robotics and so on, the appropriate view of computation is that of a nonstop interaction
between two agents or processes. They will be called controller and disturber or plant (see Figure
3..28). Each of them is supposed to be able to perform at each moment one of finitely many actions.
Programs or automata representing such agents are called reactive; their actions are modelled by
symbols from finite alphabets, and their continuous interactions are modelled by w-words .

In this section we illustrate, as a case study, that (regular) w-languages and w-words constitute
a proper framework for stating precisely and solving satisfactorily basic problems concerning such
reactive systems. A detailed treatment of the subject and methods currently being worked out is
beyond the scope of this book.

A desirable interaction of such agents can be specified through an w-language L C (£A)“, where
¥ and A are disjoint alphabets. An w-word w from L has therefore the form W = ¢,dic2d; . . . , where



194 i AUTOMATA

Figure 3.28 Controller and disturber

i € X (d; € A). The symbol ¢; (d;) denotes the ith action that the controller (disturber) performs. The
idea is that the controller tries to respond to the actions of the disturber in such a way that these
actions make the disturber ‘behave accordingly’.

Three basic problems arise when such a desirable behaviour is specified by an w-language. The
verification problem is to decide, given a controller, whether it is able to interact with the disturber
in such a way that the resulting w-word is in the given w-language. The solvability problem is to
decide, given an w-language description, whether there exists a controller of a certain type capable of
achieving an interaction with the disturber resulting always in an w-word from the given w-language.
Finally, the synthesis problem is to design a controller from a given specification of an w-language
for the desired interaction with the disturber. Interestingly enough, all these problems are solvable
if the w-language specifying desirable behaviour of the controller-disturber interactions is a regular
w-language.

Problems of verification and synthesis for such reactive automata can be nicely formulated, like
many problems in computing, in the framework of games - in this case in the framework of the
Gale-Stewart games of two players, who are again called controller (C) and disturber (D). Their
actions are modelled by symbols from alphabets ¥ and ¥p, respectively. Let ¥ = Xc U Xp.

A Gale-Stewart game is specified by an w-language L C (¥cXp)“. A play of the game is an w-word
p € Tc(EpXc)“. (An interpretation is that C starts an interaction by choosing a symbol from ¢, and
then D and C keep choosing, in turn and indefinitely, symbols from their alphabets (depending, of
course, on the interactions to that moment).) Player C wins the play p if p € L, otherwise D wins.
A strategy for C is a mapping s¢ : £}, — Z¢ specifying a choice of a symbol from E¢ (a move of C)
for any finite sequence of choices of symbols by D — moves of D to that moment. Any such strategy
determines a mapping s¢c : g — ¢, defined by

gc(dgdldz o ) =CpC1C2 . . ., where Ci = Sc(d()dl “e d,‘,l).

If D chooses an infinite sequence p = dyd; . . . of events (symbols) to act and C has a strategy s¢, then
C chooses the infinite sequence v = sc(u) to create, together with D, the play p,.s. = codocid; - . - .
The main problem, the uniform synthesis problem, can now be described as follows. Given a
specification language for a class £ of w-languages, design an algorithm, if it exists, such that, given
any specification of an w-language L € L, the algorithm designs a (winning) strategy sc for C such
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that no matter what strategy D chooses, that is, no matter which sequence y disturber D chooses, the
play p,s. willbein L.
In general the following theorem holds.

Theorem 3.6.11 (Biichi~Landweber’s theorem) Let Xc, Xp befinite alphabets. To any w-regular language
L C Yc(XpXc) and any Muller automaton recognizing L, a Moore machine A; with L.p as the input alphabet
and ¢ as the output alphabet can be constructed such that A, provides the winning strategy for the controller
with respect to the language L.

The proof is quite involved. Moreover, this result has the drawback that the resulting Moore
machine may have superexponentially more states than the Muller automaton defining the game.
The problem of designing a winning strategy for various types of behaviours is being intensively
investigated.

3.7 Limitations of Finite State Machines

Once a machine model has been designed and its advantages demonstrated, an additional important
task is to determine its limitations.

In general it is not easy to show that a problem is not within the limits of a machine model.
However, for finite state machines, especially finite automata, there are several simple and quite
powerful methods for showing that a language is not regular. We illustrate some of them.

Example 3.7.1 (Proof of nonregularity of languages using Nerode’s theorem) For the language
Ly = {a'b'|i >0} it clearly holds that @' #;, @ if i # j. This implies that the syntactical monoid for the
language L, is infinite. L, is therefore not recognizable by a FA.

Example 3.7.2 (Proof of nonregularity of languages using the pumping lemma) Let us assume that
the language L, = {a” |p prime} is reqular. By the pumping lemma for regular languages, there exist integers
x,y,2,x+2z# 0,y # 0, such that all words a**"¥*+% i > 0, are in L,. However, this is impossible because, for
example, x + 1y + z is not prime for i = x + z.

Example 3.7.3 (Proof of nonregularity of languages using a descriptional finiteness argument)
Let us assume that the language Ly = {a'ch’ |i > 1} is regular and that A is a DFA recognizing L. Clearly,
for any state q of A, there is at most one i € N such that b’ € L(q). If such an i exists, we say that q specifies
that i. Since a'ch' € L for each 1, for any integer | there must exist a state q; (the one reachable after the input
d@'c) that specifies j. A contradiction, because there are only finitely many states in A.

Exercise 3.7.4 Show that the following languages are not reqular: {a'b* |i > 0};
(b) {a'|1 is composite}; (c) {a'|i is a Fibonacci number}; (d) {w € {0,1}* |w = wk}.

Example 3.7.5 We now show that neither a Moore nor a Mealy machine can multiply two arbitrary binary
integers given the corresponding pairs of bits as the input as in the case of binary adders in Figure 3.17. (To
be consistent with the model in Figure 3.17, we assume that if the largest number has n bits, then the most
significant pair of bits is followed by additional n pairs (0,0) on the input.)

If the numbers x and y to be multiplied are both equal to 2°™, the 2m + 1-th input symbol will be (1,1) and
all others are (0,0). After reading the (1,1) symbol, the machine still has to perform 2m steps before producing
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a 1 on the output. However, this is impossible, because during these 2m steps M has to get into a cycle. (It
has only m states, and all inputs after the input symbol (1,1) are the same - (0,0).) This means that either M
produces a 1 before the (dm+ 1)-th step or M never produces a 1. But this is a contradiction to the assumption
that such a machine exists.

Exercise 3.7.6 Show that there is no finite state machine to compute the function (a) f;(n) = the n-th
Fibonacci number; (b) £(071™) = 17 med m,

Example 3.7.7 Itfollowsfrom Theorem 3.4.11 that no generalized sequential machine can compute thefunction
f:{0,1}* — {0,1}* defined by f (w) = wr. Indeed, the prefix condition from that theorem is not fulfilled.

Example 3.7.8 Let L C {0,1}" bea language of w-words w for which there is an integer k > 1 such that w has
a symbol 1 exactly in the positions k™ for all integers n. We claim that L is not a regular w-language. Indeed,
since the distances between two consecutive 1s are getting bigger and bigger, a finite automaton cannot check
whether they are correct.

Concerning weighted finite transducers it has been shown that they can compute neither
exponential functions nor trigonometric functions.

3.8 From Finite Automata to Universal Computers

Several natural ideas for enhancing the power of finite automata will now be explored. Surprisingly,
some of these ideas do not lead to an increase in the computational power of finite automata at
all. Some of them, also surprisingly, lead to very large increases. All these models have one thing
in common. The only memory they need to process an input is the memory needed to store the
input. One of these models illustrates an important new mode of computation - probabilistic finite
automata. The importance of others lies mainly in the fact that they can be used to represent, in an
isolated form, various techniques for designing of Turing machines, discussed in the next chapter.

3.8.1 Transition Systems

A transition system A = (X,0Q,40,Qr,6) is defined similarly to a finite automaton, except that the
finite transition relation § is a subset of Q x ¥* x Q and not of Q x ¥ x Q as for finite automata. In
other words, in a transition system, a longer portion of an input word only can cause a single state
transition. Computation and acceptance are defined for transition systems in the same way as for
finite automata: namely, an input word w is accepted if there is a path from the initial state to a final
state labelled by w.

Each finite automaton is a transition system. On the other hand, to each transition system A it is
easy to design an equivalent FA which accepts the same language. To show this, we sketch a way to
modify the state graph G 4 of a transition system A in order to get a state graph of an equivalent FA.

1. Replace each transition (edge) p = g,w = whw, . . . wy, w; € £, k > 1 by k transitions p =
w w1y
P1==pP2- . - Pk-2 = Pk-1 = q, where py, . . . ,Px_1 are newly created states (see the step from
w2 W1 Wi
Figure 3.29a to 3.29b).
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Figure 3.29 Derivation of a complete FA from a transition system

2. Remove e-transitions. This is a slightly more involved task. One needs first to compute the
transitive closure of the relation = between states. Then for any triple of states p,q,4" and

each g € X such that p == g4 = q', the transition p = q' is added. If, after such modifications,

q =% g for some 9 € Qand g € Qf, add g’ to the set of final states, and remove all e-transitions
and unreachable states (see the step from Figure 3.29b to 3.29¢).

3. If we require the resulting automaton to be complete, we add a new ‘sink state’ to which all
missing transitions are added and directed (see the step from Figure 3.29c to 3.29d). By this
construction we have shown the following theorem.

Theorem 3.8.1 The family of languages accepted by transition systems is exactly the family of regular
languages.

The main advantage of transition systems is that they may have much shorter descriptions and
smaller numbers of states than any equivalent FA. Indeed, for any integer n a FA accepting the
one-word language {4"} must have n — 1 states, but there is a two-state transition system that can do
it.

Exercise 3.8.2 Design a transition system with as few states as possible that accepts those words over
the alphabet {a,b,c} that either begin or end with the string 'baac’, or contain the substring ‘abca’. Then
use the above method to design an equivalent FA.

Exercise 3.8.3 Design a minimal, with respect to number of states, transition system accepting the
language L = (a*b3)* U (a*b®)*. Then transform its state graph to get a state graph for a FA accepting
the same language.

3.8.2 Probabilistic Finite Automata

We have mentioned already the power of randomization. We now explore how much randomization
can increase the power of finite automata.

Definition 3.8.4 A probabilistic finite automaton P = (X, Q,40,Qr, ¢) has an input alphabet ¥, a set
of states (), the initial state g, a set of final states Qr and a probability distribution mapping ¢ that
assigns to each a € ¥ a |Q| x |Q| matrix M, of nonnegative reals with rows and columns of each M, labelled
by states and such that ZqEQM,,(p,q) =1forany a € ¥ and p € Q. Informally, M,(p,q) determines the
probability that the automaton P goes, under the input a, from state p to state q; M,(p,q) = 0 means that there
is no transition from p to q under the input a.
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(b) ©

Figure 3.30 Probabilistic finite automata — missing probabilities are 1

Fw=w...w, w; €L, then the entry My, (p,q) of the matrix My, = My, M, . . . My, is exactly the
probability that P goes, under the input word w, from state p to state q. Finally, for aw € £*, we define

Prp(w) =" My(q0,9)-
9€Qp

Prp(w) s the probability with which P recognizes w.

There are several ways to define acceptance by a probabilistic finite automaton. The most basic
one is very obvious. It is called acceptance with respect to a cut-point. For a real number 0 <c < 1
we define a language

L.(P)={u|Prp(u) > c}.

The language L.(P) is said to be the language recognized by P with respect to the cut-point c.
(Informally, L.(P) is the set of input strings that can be accepted with a probability larger than c.)

Example 3.8.5 Let £ = {0,1}, Q = {g0,91}, Qr = {1},
0

1
2

O M=
et N3

1
MOZ 1 s M, =
2

Figure 3.30a shows the corresponding probabilistic finite automaton P;. Each edge is labelled by an
input symbol and by the probability that the corresponding transition takes place. By induction it
can easily be shown that for any w = w, . . . w, € ", the matrix M, = My, M, . . . My, has in the right
upper corner the number 0.w, . . . wy, expressed in binary notation. (Show that!)

Exercise 3.8.6 Determine, for all possible c, the language accepted by the probabilistic automaton in
Figure 3.30b with respect to the cut-point c.

Exercise 3.8.7 Determine the language accepted by the probabilistic automaton in Figure 3.30c with
respect to the cut-point 0.5. (Don’t be surprised if you get a nonregular language.)
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First we show that with this general concept of acceptance with respect to a cut-point, the
probabilistic finite automata are more powerful than ordinary FA.

Theorem 3.8.8 For the probabilistic finite automaton Py in Example 3.8.5 there exists a real 0 < ¢ < 1 such
that the language L (Py) is not regular.

Proof: If w = w, . . . w,, then (as already mentioned above) Prp (w) = 0.w, . . . w; (because g; is the
single final state). This implies that if 0 < c; < ¢; < 1 are arbitrary reals, then L, (Py) & Lc,(Pp). The
family of languages that P, recognizes, with different cut-points, is therefore not countable. On the
other hand, the set of regular expressions over X is countable, and so therefore is the set of regular
languages over ¥. Hence there exists an 0 < ¢ < 1 such that L.(7,) is not a regular language. 0

The situation is different, however, for acceptance with respect to isolated cut-points. A real

0 <c < 1is an isolated cut-point with respect to a probabilistic FA P if there is a § > 0 such that for
allwe ©*

|Prp(w) —c| > 6. (3.9)

Theorem 3.8.9 If P = (X,Q,90, Qr, ¢) is a probabilistic FA with c as an isolated cut-point, then the language
L.(P) is regular.

To prove the theorem we shall use the following combinatorial lemma.

Lemma 3.8.10 Let P, be the set of all n-dimensional random vectors, that is, P, = {x = (x1, . .. ,X4), x; >0,
1<i<n-and Y  x;i=1}.Let forane > 0, U, be such a subset of P, that for any x,y € U., x # y implies
S |xi—yil > €. Then the set U. contains at most (1+ 2)"~! vectors.

Proof of the theorem: Assume that Q = {4,41, . . . .44-1} and, for simplicity and without loss of
generality, that Qr = {g,-1}. In this case the probability that P accepts some wis Prp(w) = My, (40, 4n-1),
where M,, is an n x n matrix defined as on page 198.

Consider now the language L = L.(P), and assume that we have a set of k words vy, . . ., such
that no two of them are in the same prefix equivalence class with respect to the relation =/. This
implies, by the definition of prefix equivalence, that for each pairi # j,1 <1i,j < k there exists a word
yij such that v;y; € L and v;y; € L - or vice versa.

Now let (si,...,s}), 1 <i<k, be the first row of the matrix M,,, and let (r], ... ,r) be the
last column of the matrix M,,. Since M,,, = My, M,, and 4,1 is the only accepting state, we get

Prp(viyy) = siti+. .. +sir] and Prp(vjy’) = siri+. . +s,r], and therefore
c<siriy tsird and 4. tdrl<c

If we now use the inequality (3.9), we get

> si=sr! 228 (3.10)
I=1
In addition, it holds that
Siai=shr < (T —si)* max{r/[1<1<k)
+(XZ,(sj—s)) min{r/[1<I1<k}
= (Xr(si—s))* (max{r/|1 <1<k} —min{r/[1 <1 <k})
SEOMRCEL DA PRI EL]S
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where (...)* denotes that only the positive numbers in the expression inside the parentheses are
taken and, similarly, (. . . )~ denotes taking only the negative numbers. In deriving these inequalities

we have used essentially the fact that |r/| <1 forall ], i, j.
A combination of the last inequality with the inequality 3.10 yields Y ,|si — s{| > 46. An

application of Lemma 3.8.10 then gives k < (1+ 5 )"-1. Now we can use Myhill’s theorem to show
that the language L.(P) must be regular. 0

It has been shown that from the point of view of randomized computations, acceptance with
respect to an isolated cut-point is very natural. Theorem 3.8.9 is therefore often seen as the main
theorem showing the power of probabilistic finite automata. Unfortunately, it is still an open question
whether it is decidable, given a probabilistic finite automaton P with rational probabilities of
transitions and a rational ), if ) is an isolated cut-point of P.

Exercise 3.8.11* A cut-point ) is weakly isolated for a probabilistic finite automaton P if | Prp(w) — | >
€ or Prp(w) = A for all w € ©* and some fixed €. Prove that if ) is a weakly isolated cut-point for P,
then the language L (P) is regular.

Exercise 3.8.12** Two probabilistic finite automata Py and P, are called mutually isolated if | Prp, (w) —
Prp,(w)| > e for all w € £*. Prove that if P, and P, are mutually isolated, then the language
L = {w|Prp (w) > Prp,(w)} is regular.

The concept of a probabilistic finite automaton is usually generalized. Instead of a fixed initial
state an initial distribution of states is considered, that is, each state is an initial state of a given
probability. In order to get the overall probability that a word is accepted, the probability of each
path has to be multiplied by the probability that its starting state is initial. Languages accepted by
such probabilistic finite automata with respect to a cut-point c are called c-stochastic. A language is
called (finite state) stochastic if there is a probabilistic finite automaton A and a cut-point ¢ such that
L=LJ(A).

Exercise 3.8.13 Show that any regular language is c-stochastic for anty cut-point 0 < ¢ < 1.

Exercise 3.8.14 Show that every O-stochastic language is regular.

Of special interest are probabilistic finite automata with uniform probability distributions of
transitions ~ for each state g and each input symbol a all transitions from g under a have the same
probability. Such probabilistic automata are formally defined exactly like nondeterministic automata;
it is therefore natural to ask what is the difference between them. Actually, it is a very big one.
Nondeterministic automata are very convenient to deal with, but are completely unrealistic models
of computations. By contrast, probabilistic finite automata are very realistic models of computation.

Another way to regard probabilistic finite automata, often very useful for applications, is as
defining a probability distribution on the set of inputs.
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Figure 3.31 Two ways to seea FA

3.8.3 Two-way Finite Automata

In addition to the usual view of a FA as a finite state device (see Figure 3.31a) which processes an
external input string symbol by a symbol, there is another view (see Figure 3.31b) that is the basis of
several natural generalizations of FA.

As illustrated in Figure 3.31b, a (one-way) deterministic finite automaton A = (3,Q, 40, Qr,6) can
be seen as consisting of a finite control (determined by 6) that is always in one of the states in the set
Q, a bi-infinite tape each cell of which may contain a symbol from ¥ or a special blank symbol LI not
in ¥, and a read-only head that always stays on a cell of the tape and can move only to the right, one
cell per move (we refer to the two directions on the tape as left and right).

At the beginning of a computation the input word w is written, one symbol per cell, in |w|
consecutive cells, and the head is positioned on the cell with the first symbol of w. In each
computational step A reads the symbol from the cell the head is on at that moment. Depending
on the state of the finite control, A goes, according to the transition function of the finite control é, to
a new state g, and also moves its head to the next cell. If A reaches a final state at the moment when
the head moves over the right end of the input word, then the input word is considered as accepted.
In a similar way, nondeterministic finite automata can be defined.

With such a model of a finite automaton the question naturally arises as to whether a more
powerful device could be obtained if the head were allowed to move also to the left. Let us explore
this idea.

Definition 3.8.15 A two-way finite automaton A = (X, Q,90,Qr,6) is defined similarly to an ordinary
FA, except that the transition function has the form

0:QxE-Qx{—],—}

and §(p,a) = (q,d), whered € {—,|,—}, means that the automaton A in the state p moves, under the input
a, to the state g and the head moves one cell in the direction d — that is, to the right if d = —, to the left if d = —,
and does not move at all if d = |. The language L(A), accepted by A, is then defined as follows:

L(A) = {w € =*| A starting with the head on the first symbol of w and in the state g, moves,
after a finite number of steps, over the right end of w exactly when
A comes to a final state}.

1

Nondeterministic two-way finite automata can be defined similarly.
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Figure 3.32 An example of a two-way finite automaton

Example 3.8.16 The two-way finite automaton A, in Figure 3.32 recognizes the language
L=x(Z - {x})*NZ*nT* NS no* nT*xx*

of all words over the alphabet ¥ = {x¢,x1,X2,x3} that begin with x,, do not contain another occurrence of xo
and contain all remaining symbols from X at least once. Indeed, Ay first verifies whether the first symbol really
is xo. If s0, Ag starts a move to the right to search for an x,. If found, Ay, moves back to the left end and starts a
search for an x,. If found, Ay again moves to the left-most end and starts a search for an xs. If x, is found twice,
or the first symbol is not xo, then Ay moves to the ‘sink’ state g .

Two-way finite automata appear to be more powerful than FA. This, however, is misleading.
Theorem 3.8.17 Nondeterministic two-way finite automata accept exactly the regular languages.

Proof: We prove the lemma only for the deterministic case. For the nondeterministic case the idea of
proof is the same but details are more technical.

The only way a prefix p of an input word w of a two-way FA A = (£,Q,90,Qr,6) can influence
the behaviour of A when A is no longer reading p is through state transitions of .A which p causes.
Indeed, the external effect of p is completely determined by a function T, : QU {#} — QU {#}, that
gives, for each state g € Q in which A re-enters p, the state .A has when leaving p through its rightmost
symbol for the next time, or the symbol # if A leaves p at its leftmost symbol or does not leave it at
all. Moreover T,(#) is the state in which A leaves for the first time the rightmost symbol of p when
starting on the leftmost symbol in the starting state. The relation w; = w, if and only if T, =T, is
finer than the prefix equivalence for L(A4). The number of functions T, w € £*, is finite (actually at
most (|Q| + 1)/2*1). Therefore, by Nerode’s Theorem, L(A) is a regular language.

Because there are only finitely many of such functions possible for A and, in addition, from a
table T, transitions of .4 and a tape symbol a4 of .4, one can construct table for T, we can show that
there exists a one-way FA A’ that accepts the same language as \A. Indeed, A’ will be such that after
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Figure 3.33 Multi-head finite automata

finishing reading p in a state (g, T, ), where g is the state A is after the first time .4 leaves p and T, is the
corresponding transition table for the prefix p. It is now obvious that given the transition function of
A one can easily construct the transition function of A". If we now define that A" accepts an input w
if and only if A', after reading w, comes into a state (4',T,,), where 4’ is a final state of A, then A and
A’ accept the same language. 0

Informally, the theorem actually says that multiple readings do not help if writing is not allowed
and the machine has only finite memory.
On the other hand, a two-way finite automaton can be much smaller than an equivalent FA.

Example 3.8.18 Let X = {ag,a1, . . . ,a,} and let Ly be the set of all words over ¥ that start with the symbol
ay, do not contain any other occurrence of ay, and contain each of the remaining symbols from X at least once.
Similarly, as in Example 3.8.16, a two-way finite automaton with 2n+ 2 states can be constructed to accept
Ly. On the other hand, it can be shown that any finite automaton recognizing Ly must have at least 2" states.

One can show that even larger savings in description length can be achieved by using two-way
finite automata compared with ordinary FA. It holds, for example, that

Economy35t (n) = Q((n/5)").

where the economy function for replacing a DFA with an equivalent 2DFA is defined as on page 163.

Exercise 3.8.19 Show, given an integer n, how to design a two-way finite automaton accepting the
language o o
L, = {1011021...1072%0% |1 <k <n,1<i; <n,1<j<n}.

3.8.4 Multi-head Finite Automata

Another natural idea for enhancing the power of finite automata is to admit a sort of parallelism
by allowing the use of several read-only heads (see Figure 3.33a). Two types of multi-head finite
automata are obvious: one-way, heads move in one direction only, two-way, heads can move in both
directions.

Informally, a k-head two-way finite automaton (for short, k-2FA) has k heads, and at the beginning
of any computation all heads stay on the cell with the first symbol of the input word. Each computation
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step is uniquely determined by the current state of the automaton and by the symbols the heads read.
A step consists of a state change and moves of heads as specified by the transition function.

More formally, in a k-head two-way finite automaton A = (X,0Q,40,Qr,6) the symbols X,0Q,90,Qr
have the usual meaning, and

6. QxXYx ... XE—)QXi&,l,—»}X,ﬁ{(—,l,q}j

k k

where 6(p, b1, . .. ,bx) = (9,41, . .. ,dx) means thatif Ais instate p and the ithhead reads b;, for 1 <i <k,
then A goes to state g and the jth head moves in the direction determined by d;. Nondeterministic
k-head two-way finite automata are defined similarly, as are one-way multi-head FA.

The language L(.A) is defined as the set of words w such that if .4 starts with all heads on the first
symbol of w, then, after some number of steps, .4 moves to a final state exactly when one of the heads
leaves the cells that are occupied by w, at the right end.

Example 3.8.20 It is easy to see that the 2-head one-way finite automaton in Figure 3.33b recognizes the
language {da'ch' |i > 1} that is not regular.

Exercise 3.8.21 (a) Design a 2-head FA that will accept the language {a'b'c'|n > 1}, (b) design a 3-head
EA that will accept the language {a'b*c |i > 1}.

Once we know that even one-way 2-head finite automata are more powerful than 1-head finite
automata, it is natural to ask whether any additional increase in the number of heads provides more
power. To formulate the result, let us denote by L(k-2DFA) (L£(k-2NFA)) the family of languages
accepted by deterministic (nondeterministic) two-way finite automata with k heads. In an analogical
way we use notation L£(k-1DFA) and L£(k-1NFA).

Theorem 3.8.22 For each k > 1 and i = 1,2, L(k-iDFA) G L((k +1)—iDEA) and L(k-NFA) G L((k +
1)—iNEA).

The proofs are quite involved, and represent solutions of long-standing open problems. It follows
from Theorem 3.8.22 that k-head finite automata, fork = 1,2, . . ., form an infinite hierarchy of more
and more powerful machines!

How is this possible? It seems that k-head finite automata have again only finitely many states
and use only a finite amount of memory. This impression, however, is misleading. The actual state
of such a machine is determined not only by the state of its finite control but also by the positions of
the heads. If an input word w has length #, then the overall number of global states (configurations)
ak-head FA A canbe inis |Q[n*, where Q is the set of internal states of A. The total number of global
states of a k-head FA therefore grows polynomially with respect to the length of the input.

The following two closely related families of languages,

| J£(-2DFA) and | JL(k-2NFA),
k=1 k=1

play an important role in complexity theory, and are the same as two families of languages defined
with respect to space complexity, L and NL, introduced in Section 5.2.
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Figure 3.34 A linearly bounded automaton

3.8.5 Linearly Bounded Automata

Another natural generalization of finite automata are linearly bounded automata (LBA for short).
The head of a LBA is not only allowed to move in both directions, it may also write (see Figure 3.34a).
This is an essentially new and very powerful step in the generalization of the finite automata concept.

Since the head of a LBA can move in both directions and can also write, two markers, $ and #
are used to delimit the beginning and end of the tape section on which the input word is written. A
LBA is allowed to move neither left from $ nor right from #; nor is it allowed to write these markers
on the tape or to erase them.

Formally, an LBA A is specified as A = (3, A,Q,490,Qr,$,#,6), where £,Q,4o, Qr have the same
meaning as for FA, and

e A D ¥ isatape alphabet;
e §.# € A—X are special markers;

e 6 CORXAXQXAX{—,|,—} is a transition relation satisfying the above-mentioned
conditions (that is, if (p,a,9,b,d) €6, thenb ¢ {$,#},a=8=>d#A—a=#=>d#->)a=8%=>
b=%,a=#=0>b=+#.

A LBA A may perform a transition (p,a,b,q,d) € 6 when A is in the state p and the head reads a.
In this case the finite control of A goes to state g, the head rewrites 4 by b and moves in the direction
d. Of course, in general there may be more than one quintuple in § starting with the same p and 4;
therefore a move of the head may be nondeterministic. If 6 is a function of its first two arguments,
then we have a deterministic LBA (DLBA for short).

To describe a computation on a LBA 4, the concept of configuration is again useful. This is a
word of the form wiqw, € A*QA*. A LBA Ais in the configuration wyqw;, if q is its current state,
w1w, the contents of the tape, and the head is positioned on the first symbol of w, (see Figure 3.34b).
A configuration is initial if it has the form gyw, w € T* (the input alphabet), and final if its state is
final.

The concept of a configuration is very helpful in formally defining a computation on a LBA. In
order to do this, we first introduce the concept of a computation step. A configuration C' is a direct
successor of a configuration C; in short C+ C', if C' is a configuration that can be obtained from
C by performing a transition, a computation step. A configuration is called terminating if there is
no configuration that would be its direct successor. (In a terminating computation the LBA ’halts’.)
If C* C, then C' is called a successor configuration of C, or a configuration that can be reached
from C. A computation of a LBA is a finite or infinite sequence of configurations that starts with
the initial configuration, and, for any integer i > 1, the ith configuration is a direct successor of
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the (i — 1)-th configuration. A terminating computation is a finite computation that ends with a
terminating configuration.
The language accepted by a LBA A is defined as follows:

L(A) = {w € ¥ | 3 computation starting in gow and ending in a final configuration}.

To describe a LBA formally, its transition relation must be specified. To do this in detail may be
tedious, but it is basically a straightforward task when a high-level algorithm describing its behaviour
is given, as in the following example.

Example 3.8.23 We describe the behaviour of a LBA which recognizes the language {a'b' |i > 1}.

begin Check if the input word has the form 't/ - if not, then reject;
while there are at least one 2 and one b on the tape
do erase one g2 and one b;
if there is still a symbol a or b on the tape then reject else accept
end

Exercise 3.8.24 Describe a LBA which accepts the language {a'bic’' |i > 1}.

The above examples show that DLBA can accept languages that are not regular; therefore DLBA
are more powerful than finite automata. On the other hand, it is not known whether nondeterminism
brings new power in the case of LBA.

Open problem 3.8.25 (LBA problem) Are LBA more powerful as DLBA?

This is one of the longest standing open problems in foundations of computing.

The next natural question to ask is how powerful are LBA compared with multi-head FA (because
multi-head FA have been shown to be more powerful than finite automata). It is in a sense a question
as to what provides more power: a possibility to write (and thereby to store immediate results and to
make use of memory of a size proportional to the size of the input) or a possibility to use more heads
(and thereby parallelism).

Let us denote by L(LBA) the family of languages accepted by LBA and by £(DLBA) the family
of languages accepted by DLBA. For a reason that will be made clear in Chapter 7, languages
from L(LBA) are called context-sensitive, and those from L(DLBA) are called deterministic
context-sensitive.

Theorem 3.8.26 The following relations hold between the families of languages accepted by multi-head finite
automata and LBA:

|Jctk2DFA) ¢ £(DLBA), (3.11)
k=1
JLtk2NFA) ¢ £(NLBA). (3.12)

k=1
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We show here only that each multihead 2DFA can be simulated by a DLBA. Simulation of a multihead
2NFA by a NLBA can be done similarly. The proof that there is a language accepted by a DLBA but
not accepted by a multihead 2DFA, and likewise for the nondeterministic case, is beyond the scope
of this book.

In order to simulate a k-head 2DFA A by a DLBA B, we need:

(a) to represent a configuration of .4 by a configuration of B;
(b) to simulate one transition of .4 by a computation on B.

(a) Representation of configurations. A configuration of A is given by a state g, a tape content
w = w; . .. w, and the positions of the k heads. In order to represent this information in a configuration
of B, the jth symbol of w, that is, w;, is represented at any moment of a computation by a (k + 2)-tuple
(q,wj,s1, . ..,sr), wheres; = 1if the ith head of 4 stays, in the given configuration of A, on the ith cell,
and s; = 0, otherwise. Moreover, in order to create the representation of the initial configuration of A,
B replaces the symbol w; in the given input word w by (g0, w1,1, . .. ,1) and all other w;,1 < i < |w|
by (40,wi,0, . ..,0).

(b) Simulation of one step of A. B reads the whole tape content, and remembers in its finite
state control the state of .4 and the symbols read by heads in the corresponding configuration of A.
This information is enough for B to simulate a transition of 4. B need only make an additional pass
through the tape in order to replace the old state of A by the new one and update the positions of all
heads of A. 0

It can happen that a LBA gets into an infinite computation. Indeed, the head can get into a cycle,
for example, one step right and one step left, without rewriting the tape. However, in spite of this the
following theorem holds.

Theorem 3.8.27 The membership problem for LBA is decidable.

Proof: First an observation: the number of configurations of a LBA A = (X,A,Q,90,Qr,$,#,6) that
can be reached from an initial configuration gow is bounded by ¢,, = |Q||A}®/(|w| + 2). (A"l is the
number of possible contents of the tape of length |w|, |w| 42 is the number of cells the head can stand
on, and |Q)] is the number of possible states.) This implies that if A is a DLBA, then it is sufficient to
simulate c,, steps of A in order to find out whether there is a terminal configuration reachable from
the initial configuration gow - that is, whether w is accepted by .A. Indeed, if A does not terminate in
¢y steps, then it must be in an infinite loop. If A is not deterministic, then configurations reachable
from the initial configuration gow form a configuration tree (see Figure 3.35), and in order to find out
whether w € L(A), it is enough to check all configurations of this tree up to the depth c,,. 0

The fact that a LBA may not halt is unfortunate. This makes it hard to design more complex LBA
from simpler ones, for example, by using sequential composition of LBA. The following result is
therefore of importance.

Theorem 3.8.28 For each LBA there is an equivalent LBA that always terminates.

To prove this theorem, we apply a new and often useful technique of dividing the tape into more
tracks (see Figure 3.36), in this case into two. Informally, each cell of the tape is divided into an upper
and a lower subcell. Each of these subcells can contain a symbol and the head can work on the tape in
such a way as to read and write only to a subcell of one of the tracks. Formally, this is nothing other
than using pairs 3 of symbols as symbols of the tape alphabet, and at each writing changing either

none or only one of them or both of them.
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Figure 3.35 Configuration tree
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Figure 3.36 A tape with two or one tracks

Proof: Given an LBA A with input alphabet ¥, we design from A another LBA B the tape of which
consists of two tracks. At the beginning of a computation the input word w is seen as being written
in the upper track. B first computes the number ¢, = |Q||A|™!(jw|+ 2), the maximum number of
possible configurations, and stores this number in the second track. (Such a computation is not a
problem with LBA power.) Space is another issue. There is, however, enough space to write c,, on the
second track, because |Q[|A|“(|w|+2) < (2|Q||A|)"™. Therefore it is enough to use a number system
with a sufficiently large base, for example, 2|Q||A|, the size of which does not depend on the input
word w. B then simulates the computation of A step by step. Whenever the simulation of a step of A
is finished, B decreases the number on the second track by 1. If 4 accepts before the number on the
second track is zero, then B accepts as well. If B decreases the number on the second track to zero,

then B moves to a terminating, but not a final, state. Clearly, B accepts an input word w if and only
if A does. 0

The family of context-sensitive languages contains practically all formal languages one has to deal
with in practice. It is a rich family, and one of its basic properties is stated in the following theorem.

Theorem 3.8.29 Both families L(LBA) and L(DLBA) are closed under Boolean operations (union,
intersection and complementation).

Proof: Given two LBA (or DLBA) A1, 4, that always terminate, it is easy to design a LBA (or DLBA)
that for a given input w simulates first the computation of .4; on w and then the computation of A,
on w, and accepts w if and only if both A4; and A4; accept w (in the case of intersection) or if at least
one of them accepts it (in the case of union). This implies closure under union and intersection. To



EXERCISES W 209

show closure under complementation is fairly easy for a DLBA A= (X,A,Q,90,Qr,6,8,#,6), which
always terminates. It is enough to take Q — Qr instead of Qr as the set of the final states. The proof
that the family £(LBA) is also closed under complementation is much more involved. 0

Another natural idea for enhancing the power of finite automata is to allow the head to move
everywhere on the tape and to do writing and reading everywhere, not only on cells occupied by the
input word. This will be explored in the following chapter and, as we shall see, it leads to the most
powerful concept of machines we have.

All the automata we have dealt with in this chapter can be seen as more or less restricted variants
of the Turing machines discussed in the next chapter. All the techniques used to design automata
in this chapter can be used also as techniques "to program’ Turing machines. This is also one of the
reasons why we discussed such models as LBA in detail.

Moral: Automata, like people, can look very similar and be very different, and can look very different
and be very similar. A good rule of thumb in dealing with automata is, as in life, to think twice and
explore carefully before making a final judgement.

3.9 Exercises

1. Let.Abe the FA over the alphabet {4, b} with the initial state 1, the final state 3, and the transition
relation 6 = {(1,4,1),(1,b,1),(1,4,2),(2,b,3) }. Design an equivalent deterministic and complete
FA.

2. Design state graphs for FA which accept the following languages: (a) L = {w|w €
{a,b}*,aaa is not a subword of w}; (b) L = {w|w € {a,b}*,w = xbv,|v| =2}; (©) L = {w|w €
{a,b}*,aaa is not a subword of of w and w = xby, ly| = 2}.

3. Design a finite automaton to decide whether a given number # is divided by 3 for the cases: (a)
n is given in binary, the most significant digit first; (b) » is given in binary, the least significant

digit first; (c) n is given in decimal; (d)* n is given in Fibonacci number representation.

4. Show that if a language L; can be recognized by a DFA with n states and L; by a DFA with m
states, then there is a DFA with n2™ states that recognizes the language L;L; (and in some cases
no smaller DFA for L,L, exists).

5.* Show that for any n-state DFA A there exists a DFA 4’ having at most 2" ' + 2"~2 states and
such that L(A') = (L(A))*.

6. Show that a language L C {a}* over a one-symbol alphabet is regular if and only if there are
two finite sets M;,M, C {a}* and a w € {a}* such that L = M; UM {w}*.

7. Show that if R is a regular language, then so is the language Ruyr = {x|3y|x| = |y|,xy € R}.

8. Show that the following languages are not regular: (a) {ww|w € {a,b}*};

(b) {@'bld |i,j > 1}Ub*c*; () L = {w|w € {a,b}*,w contains more a's than b’s}.

9. Which of the following languages is regular: (a) UNEQUAL={a"b"|n,m € N,n # m}; (b)
{a}*UNEQUAL; (¢) {b}*UNEQUAL?

10. Show that the following languages are not regular: (a) {a?'|n > 1}; (b) {a™ |n > 1}.
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11. Let w be a string. How many states has the minimal DFA recognizing the set of all substrings
of w?

12.* Let L, = {xi#x2# . . . xn##x|x; € {a,b}",x = x; for some 1 < j < m}. Show that each DFA
accepting L, must have 22" states.

13. Let R; and R; be regular languages recognized by DFA A; and A, with r and s states,
respectively. Show that the languages R; UR; and R; NR; can be recognized by DFA with
rs states. (Hint: take the Cartesian product of the states of .4; and .A; as the new set of states.)

14. Find two languages L, L, such that neither of them is regular but their union and also their
intersection are.

15. For two languages K,L C ©* define the right quotient K /L = {u € £*|3v € L,uv € K}. Show
that the family of regular languages is closed under the operation of right quotient.

16.* Let us assume that there exists a morphism ¢ from * to a finite monoid M, and let for some
LC =¥ ¢71(¢(L)) = L. Prove that L is a regular language.

17.* Show that the regular language {10101}* can be expressed without the operation of iteration,
using only the operations of union, concatenation, complementation and intersection.

18. Show that the family of regular languages is closed under the shuffle operation.

19. Show that if a tree automaton has the property that for the acceptance of an input word it does
not matter which level of processors is used to start the computation with an input word w,
provided the level has at least |w| processors and the input is given to the left-most processor,
one symbol per processor, then such a tree automaton always accepts a regular language.

20. Let R C ©* be a regular language. Is the language twist(R) defined by the following mapping:
TWIST : £* — &%; TWIST (x) = xif x € ZU{e}, TWIST (awb) = abTWIST (w) if a,b € %, regular?

21. Design a Moore or a Mealy machine with three states which for the input 00001000100010
produces as output 01010000101001.

22. Show that the family of relations defined by finite transducers is closed under composition.

23.* Letf be a bijection between ©* and A* that preserves prefixes, lengths and regular sets. Show
that f is realized by a generalized sequential machine.

24. Which image transformations realize the WFT in Figure 3.37?

25. Construct a WFT to perform (a)** a rotation by 90 degrees counterclockwise with linear slope;
(b)* stretching defined by the mapping (x,y) — (x,2y).

26.** Show that the function computed by the LWFT depicted in Figure 3.38 is continuous if and only
if the following two conditions are satisfied: (1) a+8=1,2) §(1 -a) =v(1-6),0<a,8<1,
0<4,6é.

27.* Show that the polynomial x” can be computed by a WFA with 41 states (g, . . . ,4o) with the
initial distribution (1,0, . . . ,0), final distribution (1, . . . , 1) and the following transitions:

(1)q,-£q,~forj=0,l,i=0,l,...,n; (2) g ,_(:) giv,fori=1,... ,nandt=1,...,L
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28.
29.

30.

31.

32.

33.

34.

35.

Prove the second assertion of Theorem 3.6.4.
Show that the w-language {a"b"c* |n > 0} is not regular.

Design Biichi automata that recognize the following w-languages: (a) an w-language consisting
of w-words over the alphabet {a,b,c} with infinitely many a’s and b’s and such that there is an
odd number of ¢’s between any two symbols from {a,b}; (b) an w-language consisting of all
w-words over {a,b,c} with infinitely many a’s and b’s, but with never more than three ¢’s in a
TOowW. ‘

Determine whether the following w-languages are regular: (a) {a't' |i > 0}~; (b) {a'V/ |i,j > 0}*;
@ {aV]|1<i<j}.

Show that there is no finite state machine to compute the following functions f : N :— N:
@f(n) =n* ®) f(n) = |Vn].

Design a transition system with as few states as possible to recognize the languages (a)
{a®b¥i,j > 1}; (b)* L, = {a'|1 < i< n}.

Let A= (2,Q,0Q;,Qr,6) be a transition system with the alphabet ¥ = {a,b,c}, states Q =
{1,2,...,7}, the initial states Q; = {1,2}, the final states Qr = {4,5} and the transitions
{(1,abc,5),(2,¢,4), (3,b,4), (4,a,6), (4,c,7), (6,c,5)}. Transform .4, step by step, into an
equivalent transition system with the following properties: (a) only one initial state; (b)
transitions only on symbols from ¥ U {¢}; (c) transitions on all symbols from all states; (d)
all states reachable from the initial state; () complete and deterministic FA.

Show that every stochastic language is c-stochastic forany 0 < c < 1.

36.* Give an example of a probabilistic finite automaton which accepts a nonregular language with

the cut-point 1.
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37. Design a multi-head FA that recognizes the languages (a) {a'bic'd |1,j > 1}; (b) {ww®|w €
{0,1}*}.
38. Design LBA that recognize the languages (a) {a'|i is a prime}; (b) {ww® |,w € {0,1}*}.

39. Which of the following string-to-string functions over the alphabet {0,1} can be realized
by a finite transducer: (@) w — w®; (b) w1 ... w, > WWWW; . . . WyWy; (©) Wy . .. Wy —
Wy...WyW1...Wy,?

Questions

1. When does the subset construction yield the empty set of states as a new reachable state?
. Are minimal nondeterministic finite automata always unique?

. Is the set of regular languages closed under the shuffle operation?

. What is the role of initial and terminal distributions for WFA?

2

3

4. Is the mapping 1' — 1% realizable by a finite transducer?

5

6. How can one define WFA generating three-dimensional images?
7

. Weighted finite automata and probabilistic finite automata are defined very similarly. What
are the differences?

8. Does the power of two-way finite automata change if we assume that input is put between two
end markers?

9. Are LBA with several heads on the tape more powerful than ordinary LBA?

10. What are natural ways to define finite automata on ww- words, and how can one define in a
natural way the concept of regular ww- languages?

3.10 Historical and Bibliographical References

Itis surprising that such a basic and elementary concept as that of finite state machine was discovered
only in the middle of this century. The lecture of John von Neumann (1951) can be seen as the initiative
to develop a mathematical theory of automata, though the concept of finite automata, as discussed
in this chapter, is usually credited to McCulloch and Pitts (1943). Its modern formalization is due to
Moore (1956) and Scott (1959). (Dana Scott received the Turing award in 1976.)

Finite automata are the subject of numerous books: for example, Salomaa (1969), Hopcroft and
Ullman (1969), Brauer (1984) and Floyd and Beigel (1994). (John E. Hopcroft received the Turing
award in 1986 for his contribution to data structures, Robert Floyd in 1978 for his contribution to
program correctness.) A very comprehensive but also very special treatment of the subject is due to
Eilenberg (1974). See also the survey by Perrin (1990).

Bar-Hillel and his collaborators, see Bar-Hillel (1964), were the first to deal with finite automata
in more detail. The concept of NFA and Theorem 3.2.8 are due to Rabin and Scott (1959). The
proof that there is a NFA with n states such that each equivalent DFA has 2" states can be found
in Trakhtenbrot and Barzdin (1973) and in Lupanov (1963). Minimization of finite automata and
Theorem 3.2.16 are due to Huffman (1954) and Moore (1956). The first minimization algorithm, based
on two operations, is from Brauer (1988) and credited to Brzozowski (1962). Asymptotically the fastest
known minimization algorithm, in time O(mnlgn), is due to Hopcroft (1971). The pumping lemma
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for regular language has emerged in the course of time; for two variants and detailed discussion see
Floyd and Beigel (1994). For string-matching algorithms see Knuth, Morris and Pratt (1977).

The concepts of regular language and regular expression and Theorem 3.3.6 are due to Kleene
(1956). The concept of derivatives of regular languages is due to Brzozowski (1964). Very high lower
bounds for the inequivalence problem for generalized regular expressions are due to Stockmeyer
and Meyer (1973). The characterization of regular languages in terms of syntactical congruences,
Theorems 3.3.16 and 3.3.17 are due to Myhill (1957) and Nerode (1958). The recognition of regular
languages in logarithmic time using syntactical monoids is due to Culik, Salomaa, and Wood (1984).
The existence of regular languages for which each processor of the recognizing tree network of
processors has to be huge is due to Gruska, Napoli and Parente (1994).

For two main models of finite state machines see Mealy (1955) and Moore (1956), and for
their detailed analysis see Brauer (1984). The results concerning finite transducers and generalized
sequential machines, Theorems 3.4.8-11 are due to Ginsburg and Rose (1963, 1966); see also Ginsburg
(1966). (Moore and Mealy machines are also called Moore and Mealy automata and in such a case
finite automata as defined in Section 3.1 are called Rabin-Scott automata.)

The concept of a weighted finite automaton and a weighted finite transducer are due to Culik and
his collaborators: Culik and Kari (1993, 1994,1995); Culik and Fri§ (1995); Culik and Raj¢dni (1996). See
also Culik and Kari (1995) and Raj¢ani (1995) for a survey. Section 3.4.2 and examples, exercises and
images are derived from these and related papers. For a more practical ‘recursive image compression
algorithm’ see Culik and Kari (1994). The idea of using finite automata to compute continuous
functions is due to Culik and Karhumaki (1994). The existence of a function that is everywhere
continuous, but nowhere has derivatives and is still computable by WFA is due to Derencourt,
Karhumaiki, Latteux and Terlutte (1994). An interesting and powerful generalization of WFT, the
iterative WFT, has been introduced by Culik and Raj¢dni (1995).

The idea of finite automata on infinite words is due to Biichi (1960) and McNaughton (1966).
Together with the concept of finite automata on infinite trees, due to Rabin (1969), this created the
foundations for areas of computing dealing with nonterminating processes. For Muller automata see
Muller (1963). A detailed overview of computations on infinite objects is due to Gale and Stewart
(1953) and Thomas (1990). For a presentation of problems and results concerning Gale-Stewart (1953)
games see Thomas (1995).

The concept of a transition system and Theorem 3.8.1 are due to Myhill (1957). Probabilistic finite
automata were introduced by Rabin (1963), Carlyle (1964) and Bucharaev (1964). Theorems 3.8.8 and
3.8.9 are due to Rabin (1963), and the proof of the second theorem presented here is due to Paz (1971).
See also Salomaa (1969), Starke (1969) and Bucharaev (1995) for probabilistic finite automata.

Two-way finite automata were introduced early on by Rabin and Scott (1959), who also made
a sketch of the proof of Theorem 3.8.17. A simpler proof is due to Shepherdson (1959); see also
Hopcroft and Ullman (1969). Example 3.8.16 is due to Barnes (1971) and Brauer (1984). For results
concerning the economy of description of regular languages with two-way FA see Meyer and Fischer
(1971). Multi-head finite automata were introduced by Rosenberg (1966), and the existence of infinite
hierarchies was shown by Yao and Rivest (1978) for the one-way case and Monien (1980) for two-way
k-head finite automata.

Deterministic linearly bounded automata were introduced by Myhill (1960), nondeterministic
ones by Kuroda (1964). The closure of DLBA under intersection and complementation was shown by
Landweber (1963), and the closure of NLBA under complementation independently by Szelepcsényi
(1987) and Immerman (1988).



