HOPF ALGEBRA READING SEMINAR

András Kornai

Aug 2 2023 2PM CET

ORGANIZATION

- 2pm zoom https://us02web.zoom.us/j/84045659802?pwd=L3grbWtqREE4OE
- 11pm zoom https://us02web.zoom.us/j/89203668566?pwd=M1dRL2ozOWxB7
- Slack https://join.slack.com/t/slack-qyx1689/shared_invite/zt-1xppi4d00-WnJhAvg_ThoSBOw9xH7ylw
- Course webpage https://nessie.ilab.sztaki.hu/~kornai/2023/Hopf Also reachable as kornai.com → 2023 → Hopf
- Attendance sheet https://docs.google.com/spreadsheets/d/17cKcl3_xdbo73_kHWCIAvwgkd-G6qz44J4D6tyFfAc/edit?usp=sharing

PLAN FOR TODAY: HAS PIECE BY PIECE

Tensor products (Blanka Kövér)

- Onvolution
- Antipodes

TENSOR PRODUCTS

Paper: https://nessie.ilab.sztaki.hu/~kornai/2023/Hopf/Resources/gowers_ten:

Why introduce tensor products?

- Let V, W, X be vector spaces over ℝ. f : V × W → X is bilinear if it is linear in each variable when we fix the other variable, i.e. f(av + bv', w) = af(v, w) + bf(v', w) and f(v, cw + dw') = cf(v, w) + df(v, w')
- We already know linear maps correspond to matrices. Is there a similar way to naturally encode *bilinear* maps using a few numbers?
- Yes! If v_i and w_j are bases of V and W respectively, then because of the bilinearity of f, knowing f(v_i, w_j) for all pairs of basis vectors determines f. If dim V = p, dim W = q and dim X = r, then pqr numbers are enough to describe f.

WHEN IS f COMPLETELY DETERMINED?

• We do not necessarily need to know all of the $f(v_i, w_j)$'s

- Ex. $V = W = \mathbb{R}^2$, $X = \mathbb{R}$ with the usual basis e_1 , e_2
- *f*(*e*₁, *e*₁), *f*(*e*₂, *e*₂), *f*(*e*₁ + *e*₂, *e*₁ + *e*₂), *f*(*e*₁ + *e*₂, *e*₁ + 2*e*₂) determines *f*, since we can solve a system of linear equations and express *f*(*e*₁, *e*₂) and *f*(*e*₂, *e*₁)
- *f*(*e*₁, *e*₁), *f*(*e*₂, *e*₂), *f*(*e*₁ + *e*₂, *e*₁ + *e*₂), *f*(*e*₁ *e*₂, *e*₁ *e*₂) does not determine *f*
- We want something like a 'basis' of pairs (v, w). The basis of V × W does not work (see the usual basis in ℝ²)

WHEN IS f COMPLETELY DETERMINED?

Try special cases to get a feel for the problem

- $V = W = \mathbb{R}$: Suppose f(a, b) is given. Then $f(x, y) = \frac{xy}{ab}f(a, b)$ if $ab \neq 0$
- V = W = ℝ²: Suppose f(s, t), f(u, v), f(w, x), f(y, z) is given. We can take (s, t) and (u, v) to be such that s and u form a basis of V, and t and v form a basis of W
- If w = as + bu, x = ct + dv, y = es + gu and z = ht + kv, then f(w, x) = acf(s, t) + adf(s, v) + bcf(u, t) + bdf(u, v) and f(y, z) = ehf(s, t) + ekf(s, v) + ghf(u, t) + gkf(u, v) by bilinearity
- If adgh ≠ bcek, we get a unique solution for f(s, v) and f(u, t), and hence f is determined
- If adgh = bcek, then for any f bilinear, ekf(w,x) adf(y,z) = (ekac - adeh)f(s,t) + (ekbd - adgk)f(u,v) is automatically satisfied. This looks like linear dependence, but isn't quite that

Converting the problem into linear Algebra (1st way)

- B := {bilinear maps defined on V × W}. Regard (u, v) as a function on B: (u, v)(f) := f(u, v). Notation: [u, v]
- B is too big to be a set! Gowers shows that it is enough to consider bilinear maps to ℝ. So redefine
 B := {bilinear maps V × W → ℝ}
- Using this notation, our previous equation becomes
 ek[w,x] - ad[y,z] = (ekac - adeh)[s,t] + (ekbd - adgk)[u,v].
 This is genuine linear dependence in the vector space of
 functions from B to ℝ
- Why was this all useful? Now we have
 - ► { (v_i, w_i) } fixes all bilinear maps iff $[v, w] \in \langle \{[v_i, w_i]\} \rangle$ $(v, w) \in V \times W$
 - ► {(v_i, w_i)} contains no redundancies iff the functions [v_i, w_i] are linearly independent

Converting the problem into linear Algebra (2nd way)

Facts

- [v, w + w'] [v, w] [v, w'] = 0[v + v', w] - [v, w] - [v', w] = 0[av, w] - a[v, w] = 0[v, aw] - a[v, w] = 0
- Proposition: A linear combination of functions of the form [v, w] is zero if and only if it is generated by functions of the form [av, w] a[v, w], [v, aw] a[v, w], [v, w+w'] [v, w] [v, w'] and [v + v', w] [v, w] [v', w].

Converting the problem into linear algebra (2nd way)

- Z := {linear combinations of [[v, w]]} where [[v, w]] is a meaningless symbol
- *E* := the subspace of *Z* generated by vectors of the form [[*av*, *w*]] - *a*[[*v*, *w*]], [[*v*, *w* + *w'*]] - [[*v*, *w*]] - [[*v*, *w'*]], [[*v*, *aw*]] - *a*[[*v*, *w*]], [[*v* + *v'*, *w*]] - [[*v*, *w*]] - [[*v'*, *w*]]
- We want everything in E to 'be zero' in some sense, so we take the quotient space Z/E. This gives a trivial proof of the proposition:
 - ► Suppose a₁[v₁, w₁] + ... + a_n[v_n, w_n] is not a linear combination of expressions of such forms
 - ► Then of course z := a₁[[v₁, w₁]] + ... + a_n[[v_n, w_n]] is not a linear combination of vectors of the form above
 - Equivalently, $z \notin E$, or $z + E \neq 0 \in Z/E$
 - ► Then for f(v, w) = [[v, w]] + E, $a_1 f(v_1, w_1) + \ldots + a_n f(v_n, w_n) = z + E \neq 0$ as we wanted

10/14

How to think about tensor products

- $v \otimes w$: an alternative notation for [v, w] or for [[v, w]] + E
- an element of V ⊗ W: a *linear combination* of elements v ⊗ w.
 NOT all elements are pure tensors!
- Gowers' advice: do NOT pay undue attention to the construction! When working with an equation involving tensors, do not worry about what the objects mean, instead use the following fact: a₁v₁ ⊗ w₁ + ... a_nv_n ⊗ w_n = 0 iff a₁f(v₁, w₁) + ... + a_nf(v_n, w_n) = 0 for all f bilinear
- If V and W are finite dimensional with given bases, we can also think of tensors as matrices: if v = (a₁,..., a_m) and w = (b₁,..., b_n), then v ⊗ w is the matrix ((A_{ij})) with A_{ij} = a_ib_j
 - Advantage: easier to visualize
 - Disadvantage: relies on a particular choice of basis

UNIVERSAL PROPERTY

• Take $g: V imes W o V \otimes W$ which takes (v, w) to $v \otimes w$

- g is bilinear (check this using our previous fact), and g is 'arbitrary' in the following sense:
 a₁g(v₁, w₁) + ... + a_ng(v_n, w_n) = 0 iff
 a₁f(v₁, w₁) + ... + a_nf(v_n, w_n) = 0 for all f bilinear. We say the tensor product has a *universal property*
- If f: V × W → U is bilinear, then we can define
 h: V ⊗ W → U by sending v ⊗ w to f(v, w) (extend linearly).
 Then h ∘ g = f and h is the only such linear map, so we say f factors uniquely through g

$$V \times W \xrightarrow{g} V \otimes W$$

CONVOLUTION

- Classic setup: $f, g \ \mathbb{R} \to \mathbb{R}$ functions with compact support, $(f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t \tau)d\tau$
- * is obviously a bilinear function, * is associative
- Modern generalization: let G be a group with locally compact Hausdorff topology (group multiplication and inverse are continuous!). G has Haar measure μ on the Borel subsets (σ-algebra generated by the open sets) of G. With functions f,g: G → C we can define f * g(t) as ∫_G f(s)g(s⁻¹t)dμ(s)
- Related to Möbius inversion formula (see lecture 20 of Ardila) and to Lagrange inversion formula (not discussed by FA)
- Call *H*, when viewed as an algebra *H*^{*a*}, and call it *H*^{*c*} when viewed as a coalgebra
- If $f, g: H^c \to H^a$ are linear functions, their convolution f * g is defined as the composition

$$H^{c} \xrightarrow{\Delta} H^{c} \otimes H^{c} \xrightarrow{f \otimes g} H^{a} \otimes H^{a} \xrightarrow{m} H^{a}$$

ANTIPODE

- First, let's see that * as defined above is bilinear, associative
- Now consider Id: $H \rightarrow H$ (obviously a linear function)
- The antipode S is the inverse of Id for convolution: S * Id = Id * S = η ∘ ϵ
- By def, HAs have antipodes, but we can construct near-HAs that meet all other requirements but have no antipode
- Antipode is unique if it exists
- Let's build a diagram, work out some examples