Hopf algebra Reading seminar

András Kornai

July 192023 2PM CET

Organization

- 2pm zoom
https://us02web.zoom.us/j/84045659802?pwd=L3grbWtqREE4OE
- 11pm zoom
https://us02web.zoom.us/j/89203668566?pwd=M1dRL2ozOWxBT
- Slack https://join.slack.com/t/slack-qyx1689/shared_invite/zt-1xppi4d00-WnJhAvg_ThoSBOw9xH7ylw
- Course webpage
https://nessie.ilab.sztaki.hu/~kornai/2023/Hopf Also reachable as kornai.com $\rightarrow 2023 \rightarrow$ Hopf
- Attendance sheet https://docs.google.com/spreadsheets/d/17cK-cl3_xdbo73_kHWCIAvwgkdG6qz44J4D6tyFfAc/edit?usp=sharing

Plan for today: HAs piece by piece

© Algebras
© Coalgebras

- Tensors
- This still leaves antipodes

Algebra

- A is a vector space over some field \mathbb{K} (or more generally, module over some ring R) (so it comes with scalar multiplication and addition)
- Has a product - that is associative (not necessarily commutative) with a unit (some people talk about unital algebras to stress this point)
- Product distributes over the addition, making it a ring, the ring addition is the same as the module addition
- Isomorphic copy of \mathbb{K} is built into the center of A (if we do this over a ring R, we only require homomorphic copy)

Canonical examples: $n \times n$ matrices over a ring/field, polynomial rings, group rings, any ring as a \mathbb{Z}-module

Group Ring is An ALGEBRA

- Take any group G (can be finite or infinite, commutative or not), create finite sums $\sum \lambda_{i} g_{i}$ where $\lambda_{i} \in \mathbb{K}, g_{i} \in G$
- This will be a vector space over \mathbb{K} with termwise addition, group elements form a basis, $\operatorname{dim}(A)=|G|$
- Multiply $\sum \lambda_{i} g_{i}$ with $\sum \mu_{j} g_{j}$ as $\sum_{i, j} \lambda_{i} \mu_{j} g_{i} g_{j}$ (every term by every term)
- Check that $\{\lambda e \mid \lambda \in \mathbb{K}\}$ is isomorphic to K
- Check A-unit, associativity, distributivity
- group product \neq tensor product! (we don't even have \otimes yet, and it will be strange)
- Homework: prove that any ring R is a \mathbb{Z}-module

GRADING

- Modeled on the polynomial case
- let $\operatorname{deg}(p)$ be defined as usual
- We have $\operatorname{deg}(p q)=\operatorname{deg}(p)+\operatorname{deg}(q)$
- Whenever we have such a deg : $A \rightarrow \mathbb{Z}$ we call A a graded algebra
- These can be naturally presented as a sequence $\left\{A_{i} \mid i \in \mathbb{N}\right\}$ where A_{i} contains the degree i monomials
- How about multivariate polynomials? What goes in the A_{i} ?

Coalgebras

- We will first restate the algebraic requirements (associativity, unit) that are imposed on algebras as diagrams
- We reverse the diagrams 'dualize'
- Coalgebras are structures that satisfy the reverse diagrams
- We will provide examples
- Duality is a huge powerful thing!

DiAgrams: unit

We use \otimes for tensor product: $m: H \otimes H \rightarrow H$ with unit $\eta: \mathbb{K} \rightarrow H$ We use Δ for coproduct: $\Delta: H \rightarrow H \otimes H$ with counit $\epsilon: H \rightarrow \mathbb{K}$

DiAgrams: associativity

We use \otimes for tensor product: $m: H \otimes H \rightarrow H$ with unit $\eta: \mathbb{K} \rightarrow H$
We use Δ for coproduct: $\Delta: H \rightarrow H \otimes H$ with counit $\varepsilon: H \rightarrow \mathbb{K}$
$H \otimes H \otimes H \xrightarrow{m \otimes i d} H \otimes H$

$\begin{array}{cc}H \otimes \underset{\uparrow i d \otimes \Delta}{H \otimes H} \underset{\Delta \otimes i d}{ } & H \otimes H \\ H \otimes H< & \wedge_{\Delta}^{\otimes} \\ H & H\end{array}$

Examples of coalgebras (Ardila Lecture 5)

- Built on the algebra of sets $\mathbb{K} S$
- Let $\Delta: s \mapsto x \otimes s$, and $\epsilon: s \mapsto 1$
- Verify this is a coalgebra
- Built on poset intervals: let $I=\{z \mid x \leq z \leq y\}$ the base, we work in $\mathbb{K} /$
- Let $\Delta:[x, y] \mapsto \sum_{x \leq z \leq y}[x, z] \otimes[z, y]$
- Let $\epsilon([x, y])=1$ if $x=y, 0$ otherwise
- Verify this is a coalgebra

Algebras And CoAlgebras in A more

GENERAL SETTING

- First we generalize 'algebra' from vector spaces to any category \mathcal{C} (incl. Set, where objects are sets, arrows are functions) endowed with an endofunctor F
- If F is a functor (it maps objects to objects, arrows to arrows, preserves composition and identity) from \mathcal{C} to \mathcal{C}, an algebra for F is defined by a set X and a function from $F(X)$ to X
- Example: fix $F(X)$ to be $X+1$ (discrete union of X and a one-member set denoted ${ }^{*}$) this amounts to endowing each set with a distinguished element $f(*)$ and a unary operator s.
- A key example is $X=\mathbb{N}, s(*)=0, s(n)=n+1$
- This is the (unique) initial object among F-algebras
- 'unique' always means 'up to isomorphism'

Initial and final objects in A CATEGORY

- An initial object is the 'smallest' object in a category: for I initial and X in \mathcal{C} there is only one arrow from I to X
- A final (terminal) object is the 'largest': for T terminal and any X there is only one arrow from X to T
- An object can be both initial and final, these are called null objects
- What is a coalgebra for the same F? This is given by the 'extended natural numbers' $\mathbb{N} \cup\{\infty\}$
- $\mathcal{C}, \mathcal{C}^{\text {op }}$, covariant, contravariant
- Generally, if A is an algebra for \mathcal{C} with endofunctor F, A^{*} is a coalgebra means it's an algebra for $\mathcal{C}^{o p}$ endowed with $F^{o p}$

Tensors

- This is the abstract view - the concrete view (specifically tied to finite dimensional vector spaces) will be presented by Blanka Kövér two weeks from now
- Our category is composed of the modules (vector spaces) over the same fixed ring (field) R. The arrows are the multilinear mappings among these
- The tensor product $V \otimes W$ of two modules V, W (which don't have to have the same dimension) is an object $V \otimes W$ endowed with (incoming) arrow $\phi: V \times W \rightarrow V \otimes W$ such that for every module Z and incoming bilinear mapping $f: V \times W \rightarrow Z$ there exists a unique linear mapping \tilde{f} such factors through ϕ

