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Leibniz’s Law of the Identity of Indiscernibles (1686) 

Filler/role representation:

Role decomposition:
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Leibniz’s Law of the Identity of Indiscernibles (1686) 

● But these are partial functions (r is the function, not f)

● “Faithful:” 1-to-1, stay away from 0 vector.

● Superposition: conjunction as addition
○ When can we recover the original conjuncts?

○ What about when multiple conjunctions are stored in/learned by the same 

network?

○ 2 different answers provided: 

■ orthonormality (Hebbian learning), 

■ linear independence (Widrow-Hoff learning).
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“Tensors” 

● Independently encode fillers and roles in vector spaces:

● ... then combine with cross-product:

● Matrix → Tensor?  
○ A matrix is a kind of tensor, and he will use tensors of higher rank later,

○ …but not all rank-2 tensors are matrices.

● Cross-product → Tensor?  
○ More truth to this than perhaps Smolensky is aware
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Example: Spectograms

● Very discrete, but not as oversimplistic as you may think: sampling.

● See also “continuous strings,” p. 191.
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Nota bene!

● p. 200: “primary purpose of the tensor product rep is not to serve as

an apparatus for filler/role associations ...rather to provide pattern 

of activity representing a structured object which can then be used

[as a proxy for the whole object during processing].”

● Smolensky (1990) will turn to this later in the paper, but in a way that 

seems to imply it’s only important because of the existence of 

recursion in language.

● Unitary matrices aren’t popular just because they stand in a 1-to-1 

relation with complex numbers.
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Example: Phonetic string decompositions 

● Lots of possibilities, most of them obvious now, but big deal back then.
○ “Local” – 1-hot encodings
○ “Distributed” – over pools(!) of units

● See also “continuous strings,” p. 191.
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Example: Phonetic string decompositions 

● Lots of possibilities, most of them obvious now, but big deal back then.
○ “Local” – 1-hot encodings
○ “Distributed” – over pools(!) of units

● The winner:
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O tempora, O mores…

● p. 185: “…the answer depends on dynamics driving the connectionist 

network, not solely on the representations themselves“

○ vs. tacit assumption in much of deep learning today that CL is now purely 

a science of representation: no algorithms, no algebra.

● p. 193: “Here it is not the job of the network to set up tensor product 

representations: ... the modeler must convert the symbolic inputs and 

outputs to their vector representations" 

○ not anymore: LLMs, end-to-end architectures, etc.
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The Big Theorem 

● Strong connections to Hebbian learning of associations (discussed).
● Replace Hebb with Widrow-Hoff?  Then linear independence is key.
● Strong connections to algebraic topology (not discussed). 10



When Things Go Wrong 
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● Saturation bounds (Thm 3.5, pp. 188-9): number of bindings that can be 
stored before magnitude of intrusion = magnitude of correct pattern is 
O(√N), N = dimensionality of role vectors. 



Generalizing to Continuous Case 
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● Both the roles (“continuous strings”) and the fillers (e.g. Gaussians) 

can be continuous. 



Recursion 
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● Filler recursion (iterative application to more arguments, e.g., list): 

increase dimensionality.

● Role recursion (higher-order role, application of which results in 

lower-order role): increase rank of tensor.

● Discussion here is foreshadows fascination 10 years later with 

monads:



Annihilators 
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● These are an important caveat to the linear independence result for Widrow-Hoff 

learning. 

● Again, algebraic topology provides the tools for thinking about this systematically.



Implementation!

● TPPS: tensor product production system

● Dolan and Dyer (1988-9)

● Source code available?

15


