
Tensor Product “Variable

Binding” and the

Representation of Symbolic

Structures
Paul Smolensky (1990)

as narrated by

Gerald Penn

University of Toronto

Vector Institute for Artificial Intelligence

1

Leibniz’s Law of the Identity of Indiscernibles (1686)

Filler/role representation:

Role decomposition:

2

Leibniz’s Law of the Identity of Indiscernibles (1686)

● But these are partial functions (r is the function, not f)

● “Faithful:” 1-to-1, stay away from 0 vector.

● Superposition: conjunction as addition
○ When can we recover the original conjuncts?

○ What about when multiple conjunctions are stored in/learned by the same

network?

○ 2 different answers provided:

■ orthonormality (Hebbian learning),

■ linear independence (Widrow-Hoff learning).

3

“Tensors”

● Independently encode fillers and roles in vector spaces:

● ... then combine with cross-product:

● Matrix → Tensor?
○ A matrix is a kind of tensor, and he will use tensors of higher rank later,

○ …but not all rank-2 tensors are matrices.

● Cross-product → Tensor?
○ More truth to this than perhaps Smolensky is aware

4

Example: Spectograms

● Very discrete, but not as oversimplistic as you may think: sampling.

● See also “continuous strings,” p. 191.

5

Nota bene!

● p. 200: “primary purpose of the tensor product rep is not to serve as

an apparatus for filler/role associations ...rather to provide pattern

of activity representing a structured object which can then be used

[as a proxy for the whole object during processing].”

● Smolensky (1990) will turn to this later in the paper, but in a way that

seems to imply it’s only important because of the existence of

recursion in language.

● Unitary matrices aren’t popular just because they stand in a 1-to-1

relation with complex numbers.

6

Example: Phonetic string decompositions

● Lots of possibilities, most of them obvious now, but big deal back then.
○ “Local” – 1-hot encodings
○ “Distributed” – over pools(!) of units

● See also “continuous strings,” p. 191.

7

Example: Phonetic string decompositions

● Lots of possibilities, most of them obvious now, but big deal back then.
○ “Local” – 1-hot encodings
○ “Distributed” – over pools(!) of units

● The winner:

8

O tempora, O mores…

● p. 185: “…the answer depends on dynamics driving the connectionist

network, not solely on the representations themselves“

○ vs. tacit assumption in much of deep learning today that CL is now purely

a science of representation: no algorithms, no algebra.

● p. 193: “Here it is not the job of the network to set up tensor product

representations: ... the modeler must convert the symbolic inputs and

outputs to their vector representations"

○ not anymore: LLMs, end-to-end architectures, etc.

9

The Big Theorem

● Strong connections to Hebbian learning of associations (discussed).
● Replace Hebb with Widrow-Hoff? Then linear independence is key.
● Strong connections to algebraic topology (not discussed). 10

When Things Go Wrong

11

● Saturation bounds (Thm 3.5, pp. 188-9): number of bindings that can be
stored before magnitude of intrusion = magnitude of correct pattern is
O(√N), N = dimensionality of role vectors.

Generalizing to Continuous Case

12

● Both the roles (“continuous strings”) and the fillers (e.g. Gaussians)

can be continuous.

Recursion

13

● Filler recursion (iterative application to more arguments, e.g., list):

increase dimensionality.

● Role recursion (higher-order role, application of which results in

lower-order role): increase rank of tensor.

● Discussion here is foreshadows fascination 10 years later with

monads:

Annihilators

14

● These are an important caveat to the linear independence result for Widrow-Hoff

learning.

● Again, algebraic topology provides the tools for thinking about this systematically.

Implementation!

● TPPS: tensor product production system

● Dolan and Dyer (1988-9)

● Source code available?

15

