Hopf algebra seminar In Search of an Antipode

Blanka Kövér

November 132023 6:30PM CET

Quick Recap

Definition

A bialgebra H is a \mathbb{K}-vector space such that the following diagrams commute:

Example

The group ring $\mathbb{K} G=\left\{\sum_{i=1}^{n} \lambda_{i} g_{i}: \lambda_{i} \in \mathbb{K}, g_{i} \in G\right\}$.
Here we have

$$
\begin{array}{cc}
m(g \otimes h)=g h & u(\lambda)=\lambda \cdot 1_{G} \\
\Delta(g)=g \otimes g & \epsilon(g)=1_{\mathbb{K}}
\end{array}
$$

(extend linearly).

Definition

An antipode on a bialgebra H is a linear map $S: H \rightarrow H$ such that the following diagram commutes:

Idea: S is kind of like an inverse.

In the case of group ring, $S(g)=g^{-1}$ indeed makes it a Hopf algebra:

$S: H \rightarrow H$ is an antipode for H iff $S * i d=u \epsilon=i d * S . S$ is unique if it exists.
Reminder: the convolution of f and g is the composition

$$
f * g=m \circ(f \otimes g) \circ \Delta
$$

Bialgebras without an Antipode

If G is a monoid but not a group, then $\mathbb{K} G$ is not a Hopf algebra.

Example

S is a set, $G=\mathcal{P}(S)$ its power set. Let $A \cdot B=A \cap B$ for $A, B \in G$. Then G is a monoid with $1_{G}=S$ and no inverses.

Note from András: these structures are very important because the syntactic monoids of most formal languages are not groups.

More generally, if our bialgebra H contains elements that are 'not invertible', then H cannot be a Hopf algebra.

Definition

An element $q \in H$ is grouplike if $\Delta(q)=q \otimes q$ and $\epsilon(q)=1_{\mathbb{K}}$.
The set of grouplike elements forms a monoid under multiplication. If H is a Hopf algebra with antipode S, then S acts like an inverse operation for grouplike elements, making this monoid into a group. So if there is a noninvertible grouplike element, H cannot admit an antipode.

Example

For those with a taste for algebraic topology: see Beauvais for a description of a topological example, the p-primary Dyer-Lashof algebra.

Note: this is not the only way for a bialgebra not to have an antipode, see Radford.

In SEARCH OF AN ANTIPODE

Takeaway: we don't actually need an antipode, but in the cases we consider, its existence is automatically guaranteed.

Definition

A bialgebra H is graded if

- $H=\bigoplus_{n=0}^{\infty} H_{n}$
- $H_{i} H_{j} \subseteq H_{i+j}$ for all $i, j \geq 0$
- $\Delta H_{n} \subseteq \bigoplus_{i+j=n}\left(H_{i} \otimes H_{j}\right)$
- $\epsilon H_{n}=0$ for all $n \geq 1$
H is connected if $H_{0} \cong \mathbb{K}$.

ExAMPLE

$H=\mathbb{K}[x]$ with $m\left(x^{i} \otimes x^{j}\right)=x^{i+j}, \Delta\left(x^{n}\right)=\sum_{i+j=n} x^{i} \otimes x^{j}$ and
$H_{n}=\mathbb{K}\left\{x^{n}\right\}$

ExAMPLE

$H=\mathbb{K}\{$ isomorphism classes of finite graphs $\}$ with

- multiplication: disjoint union
- comultiplication: $\Delta(G)=\left.\left.\sum_{S \subseteq V} G\right|_{S} \otimes G\right|_{V-S}$, i.e. partitions of the graph
$H_{n}=\mathbb{K}\{$ isomorphism classes of finite graphs with n vertices $\}$

Theorem (Takeuchi, 1971)

A graded, connected bialgebra has an antipode, explicitly given by the formula

$$
S=\sum_{n \geq 0}(-1)^{n} m^{n-1} \pi^{\otimes n} \Delta^{n-1}
$$

where $\pi=i d-u \epsilon$.
Convention: $m^{0}=\Delta^{0}=i d, m^{-1}=u, \Delta^{-1}=\epsilon$.
That is to say, "often the antipode comes for free" (Ardila).

FACT

$S\left(h_{d}\right)$ is a finite sum for any $h_{d} \in H_{d}$.

- Let $n>d$.
- $\Delta^{n-1}\left(H_{d}\right) \subseteq \bigoplus_{i_{i}=d}\left(H_{i_{1}} \otimes \ldots \otimes H_{i_{n}}\right)$
- Since $n>d, i_{j}=0$ for some j.

FACT
 $\pi\left(H_{0}\right)=0$.

This comes from the assumption that H is connected (in fact they are equivalent). Since $H_{0} \cong \mathbb{K},\left.u \epsilon\right|_{H_{0}}=\left.i d\right|_{H_{0}}$.

- Hence $m^{n-1} \pi^{\otimes n} \Delta^{n-1}\left(H_{d}\right)=0$ if $n>d$.
- So $S\left(h_{d}\right)$ is indeed finite.

FACT

$m^{n-1} \pi^{\otimes n} \Delta^{n-1}=\pi * \ldots * \pi=\pi^{* n}$
(feel free to check this!)
Then

$$
\begin{aligned}
S * i d & =\left(\sum_{n \geq 0}(-1)^{n} \pi^{* n}\right) *(\pi+u \epsilon) \\
& =\sum_{n \geq 0}(-1)^{n} \pi^{*(n+1)}+\sum_{n \geq 0}(-1)^{n} \pi^{* n}=\pi^{* 0}=u \epsilon
\end{aligned}
$$

Similarly for id $* S . \square$

Antipodes in MCB and MBC

- MCB: gives an (inductive) definition for the antipode, and then never uses it again.
- MBC: "Thus, in the following we will focus only on the bialgebra structure and not discuss the antipode map explicitly."
- The bialgebra of (planar) binary rooted trees is graded by the number of leaves.
- Moral of the story: we can forget about the antipode (for now) while knowing that our structures are indeed Hopf algebras.

The Ardila lectures, as always
雷 Why graded bi-algebras have antipodes, Secret Blogging Seminar, https://sbseminar.wordpress.com/2011/07/07/why-graded-bi-algebras-have-antipodes/
D. Beauvais-Feisthauer, Y. Patel, A. Salch, Milnor-Moore Theorems for Bialgebras in Characteristic Zero, Journal of Algebra, 623 (2023) 234-268.
(David E. Radford, On bialgebras which are simple Hopf modules, Proc. Amer. Math. Soc., 80(4) (1980) 563-568.

