
Investigating what Transformers do with formal
languages

Stepan Shabalin

Hopf Algebra Seminar

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Introduction

Neural networks have mostly overtaken the field of NLP
Why do they work so well?
Opening the black box

Converting the model into a human-interpretable form
Approach: see if a network can learn to recognize formal
languages by training it on them
Approach: see if a network has learned a formal language from
real-world data by looking at its circuits
Instead of passively observing the model to see if it works,
intervene on it
Ultimate goal: don’t just observe the performance (including
the components). Replace the model with a
human-interpretable one

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Part 1: Expressivity of RNNs
RNNs are the simplest neural networks for sequence processing
Only variable is the hidden state
Universal approximation theorems (RNNs can represent Turing
machines), RNNs can efficiently represent stacks
If the RNN learned a DFA, we can sometimes extract the
language from it

Figure 1: RNN architecture
Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Rule extraction for RNNs

Early work
Clustering for finding DFAs: Omlin and Giles (1996)

Quantize neuron activations
Start from a state, run through all possible inputs and record
transitions between quantized states

Modern approaches use L* (Weiss et al. 2018)
Also uses quantization, but instead of BFS uses RNN for
membership and equivalence queries
RNN:

Answers if a word is in the language
Checks if the DFA matches the RNN and provides
counterexamples

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Low-dimensional linear dynamics

Susillo and Barak (2013)
Linearize RNN

ẋ = F (x)
F (x∗ + δx) = F (x∗) + F ′(x∗)δx + 1

2 δxF ′′(x∗)δx + ..

Linearization is interesting when
F ′(x∗)δx > |F (x∗)|
F ′(x∗)δx > |F (x∗)| > | 1

2 δxF ′′(x∗)δx |
Fixed points tick the first condition
“Kinetic energy” at a point. If we minimize this, we can find
fixed points and slow points.

q(x) = 1
2 |F (x)|2

DFA parallel: fixed points are states

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Low-dimensional linear dynamics
Susillo and Barak (2013)

Linearize RNN
Find fixed points and slow points

Figure 2: Dynamics in a PCA of a 3-bit RNN
Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Linear RNNs
Elman RNN

h(t + 1) = tanh(Whhh(t) + Wuhu(t))
y(t) = Wr h(t + 1)

Reading and writing memories
Start with a linearized RNN
|h(t)⟩ = (ξi

µΦµ
ν (ξ†)ν

j |ei⟩⟨ej |)|h(t − 1)⟩
|h(t + 1)⟩ = (Φµ

ν |ϕµ⟩⟨ϕν |)|h(t)⟩
Φ =

∑(N−1)κ
µ=1 |ψµ⟩⟨ψµ+κ| +

∑Nκ
µ=(N−1)κ Φµ

ν |ψµ⟩⟨ψν |
Wr =

∑Nκ

µ=(N−1)κ+1 |eµ−(N−1)κ⟩⟨ψµ|
Wuh = |ψ(N−1)κ+j⟩⟨ej |

Repeat copy task, which is just ww
Φ =

∑(s−1)κ
µ=1 |ψµ⟩⟨ψµ+k | +

∑sκ
µ=(s−1)κ+1 |ψµ⟩⟨ψµ−(s−1)k |

|h(s + t)⟩ =
∑s

µ=1 ui(µ)|ψ[((µ−t−1 mod s)+1)κ+i]⟩ _

_
Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Linear RNNs

Figure 3: Figure 3 from Karuvally, Arjun et al. (2023)Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Linear RNNs

LRU: nonlinear RNNs can be replaced with linear RNNs with
efficiency gains

See also: SRU, QRNN
See also: state-space models (which are convolutions)

Justification in Koopman theory
“In essence, Koopman operator theory, provides the following
guarantee: any regular nonlinear dynamical system is
representable by a linear RNN after proper nonlinear
reparameterization of the inputs — which can be performed by
an MLP.”

Looks suspiciously Hopf Algebra-like

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Part 2: Transformers
Transformers are the new hotness

They are inherently more parallelizable
They are capable of using much more information from the
input

Figure 4: Transformer architecture
Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Expressivity of transformers

Dyck-k
First-order logic with majority or counting

Doesn’t seem particularly useful

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



RASP and Tracr

RASP (Weiss et al. 2021)
Language for writing transformers by hand
Operations:

Elementwise operations - can use index
Select: create an attention matrix between queries and keys
based on a boolean predicate
Aggregate: averages over values matching the predicate

Tracr (Lindner et al. 2023) is an implementation of a compiler
from a RASP-like DSL to Transformer weights

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Learning Transformer Programs

An algorithm for learning programs using Transformers
(It’s in the title)

A more discrete transformer
Use “variables”
Each attention head reads three variables and outputs one
Binary predicate matrix
Hard Attention
Gumbel Softmax for optimizing this mess

Learns Dyck-1, Dyck2 and sorting

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



ACDC

One way to interpret a model is to ask it to predict some
feature at different layers and see its accuracy
But this can only measure correlations, it doesn’t tell us if the
model is actually using the feature
Instead, we can ablate circuits in the model and see how the
accuracy changes
Conmy, Arthur et al. (2023) - ACDC: recursive pruning of a
model to keep only components causally important for a task
This lets us isolate components in real-world transformers that
perform a task

but the user has to interpret the results

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Part 3: Case studies

There are some toy problems for which if we understand how
transformers solve them, we can understand how transformers
solve other linguistic tasks
We can also use these problems to test the expressivity of
transformers (not recommended)

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Case study: Sorting

Sequence-to-sequence task: encode a list of integers and
output a sorted list
Transformers can sort integer tokens with just one layer and
one head!
Looking inside, we find that each generated token attends to
the input tokens that are greater than it

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Case study: Modular addition

Neural networks for group composition: addition modulo 113
An MLP mapping from a pair of tokens to a token
Grokking: validation accuracy rapidly increases long after the
network finished overfitting
Embedding matrices are suspiciously low-rank and sparse under
FFT
MLP activations are second-order polynomials of cosines of the
input

The networks use group theory. Input elements are mapped to
matrices and multipled inside MLPs

a, b 7→ ρ(a), ρ(b) 7→ ρ(a)ρ(b) = ρ(ab)
It’s possible to handcode the weights of the network with a
formula

Similar principels apply to permutations

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Case study: Dyck-k
Chan et al. (2022):

Attribute components of a simple circuit. It didn’t actually work.
Ebrahimi et al. (2020):

Interesting attention map, but not mechanistic
Bhattamishra et al. (2020):

Single-layer transformers can’t learn a “reset” token for Dyck-1
RASP/Tracr have their Dyck-k implementation, it’s completely

differentStepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Case study: Dyck-k
Chan et al. (2022):

Attribute components of a simple circuit. It didn’t actually work.
Ebrahimi et al. (2020):

Interesting attention map, but not mechanistic
Bhattamishra et al. (2020):

Single-layer transformers can’t learn a “reset” token for Dyck-1
RASP/Tracr have their Dyck-k implementation, it’s completely

differentStepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Remaining questions

RNNs can represent Dyck-(k,m) in O(m log k).
Interesting fact: the syntactic monoid of Dyck-k is the bicyclic
monoid. It has no faithful finite-dimensional representations.
Is there perhaps some connection between the representations
of the syntactic monoid and the solution the network learns?

How is the Dyck-k network represented at neuron level?
LRUs and state-space models are basically convolutions. Do
they have a Hopf algebraic interpretation?
Does the shift result from EMT correspond to some operation?
Is there something deeper here than just reading off memories
and overwriting them?
What if the modular addition transformer used bilinear
activations?
Is there a way to improve on the Tracr solution for Dyck-k?

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



References
Siegelmann, Hava T., and Eduardo D. Sontag. “On the
computational power of neural nets.” Proceedings of the fifth
annual workshop on Computational learning theory. 1992.

Hewitt, John, et al. “RNNs can generate bounded hierarchical
languages with optimal memory.” arXiv preprint
arXiv:2010.07515 (2020).

Omlin, Christian W., and C. Lee Giles. “Extraction of rules
from discrete-time recurrent neural networks.” Neural networks
9.1 (1996): 41-52.

Weiss, Gail, Yoav Goldberg, and Eran Yahav. “Extracting
automata from recurrent neural networks using queries and
counterexamples.” International Conference on Machine
Learning. PMLR, 2018.

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



References

Karuvally, Arjun, Peter DelMastro, and Hava T. Siegelmann.
“Episodic Memory Theory of Recurrent Neural Networks:
Insights into Long-Term Information Storage and
Manipulation.” Topological, Algebraic and Geometric Learning
Workshops 2023. PMLR, 2023.

Sussillo, David, and Omri Barak. “Opening the black box:
low-dimensional dynamics in high-dimensional recurrent neural
networks.” Neural computation 25.3 (2013): 626-649.

Orvieto, Antonio, et al. “Resurrecting recurrent neural networks
for long sequences.” arXiv preprint arXiv:2303.06349 (2023).

Lei, Tao, et al. “Simple recurrent units for highly parallelizable
recurrence.” arXiv preprint arXiv:1709.02755 (2017).

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



References

Strobl, Lena, et al. “Transformers as Recognizers of Formal
Languages: A Survey on Expressivity.” arXiv preprint
arXiv:2311.00208 (2023).

Bhattamishra, Satwik, Kabir Ahuja, and Navin Goyal. “On the
ability and limitations of transformers to recognize formal
languages.” arXiv preprint arXiv:2009.11264 (2020).

Weiss, Gail, Yoav Goldberg, and Eran Yahav. “Thinking like
transformers.” International Conference on Machine Learning.
PMLR, 2021.

Lindner, David, et al. “Tracr: Compiled transformers as a
laboratory for interpretability.” arXiv preprint arXiv:2301.05062
(2023).

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



References

Friedman, Dan, Alexander Wettig, and Danqi Chen. “Learning
Transformer Programs.” arXiv preprint arXiv:2306.01128
(2023).

Conmy, Arthur, et al. “Towards automated circuit discovery for
mechanistic interpretability.” arXiv preprint arXiv:2304.14997
(2023).

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



References

Ebrahimi, Javid, Dhruv Gelda, and Wei Zhang. “How Can
Self-Attention Networks Recognize Dyck-n Languages?.” arXiv
preprint arXiv:2010.04303 (2020).

Chan et al. “Causal scrubbing: results on a paren balance
checker.” LessWrong (2022).

Mateusz Bagiński and Gabin Kolly. “One Attention Head Is All
You Need for Sorting Fixed-Length Lists.” Apart Research
Alignment Jam #4 (Mechanistic Interpretability) (2023 ).

Chughtai, Bilal, Lawrence Chan, and Neel Nanda. “A toy
model of universality: Reverse engineering how networks learn
group operations.” arXiv preprint arXiv:2302.03025 (2023).

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages



Empty slide

Stepan Shabalin Hopf Algebra Seminar
Investigating what Transformers do with formal languages


