
● Some language phenomena can’t be modeled with CFGs.
● In 1991, Seki et al. come up with MCFGs, an extension of CFGs that allows

us to work with discontinuous constituents or displaced elements.
● MCFGs are mildly context-sensitive grammars, as TAGs and CCGs. They are

between Type-1 and Type-0 (Chomsky’s hierarchy).
● MCFGs are equivalent to (some sort of) Minimalist Grammars (MGs).
● In his article, Clark provides a “non-technical explanation of MCFGs” and

aims to account “how these can give a natural treatment of the types of
syntactic phenomena that in mainstream generative grammar have been
treated using movement”.

“An introduction to multiple context free grammars
for linguists” (Clark, 2014)

‘Top-down’ notation Bottom-up notation

L = {anbn | n > 0}

S(uwv) ← A(u),S(w),B(v)
S(uv) ← A(u),B(v)
A(a) ←
B(b) ←

S → A,S,B
S → A,B
A → a
B → b

Top-down notation Bottom-up notation

u = ‘a’, w = ‘ab’, v = ‘b’

(1) S(uwv) ← A(u), S(w), B(v)

(2) S(ab)

(2) S →
ab

(1) S →
aSb

Motivation

In order to manipulate the way in which the yields (i.e. the sequence of words) of
two or more constituents are concatenated when they form a more complex
constituent, it is useful to refer to them as variables that satisfy a predicate: P(x),
where the predicate is a non-terminal symbol.

“In the case of this new format, we
express the concatenation
explicitly using variables”
(p. 5)

or…

P =>* u
Q =>* v
N =>* uv

It’s worth noting…

● In CFGs, the order of the strings derived by the non-terminals was implicitly
encoded. Now it is not.

Linearity

● “Each variable on the right-hand side of the rule occurs exactly once on
the left-hand side of the rule – and there aren’t any other variables.”

● N(uv) ← P(u),Q(v) is linear. N(vu) ← P(u),Q(v) is not.

MCFGs

● Their key novelty is the two-place predicate, i.e. a predicate that applies not
just to one string, but to a pair of strings.

M(u, v)

● These two strings are ordered.
● The number of strings which a predicate applies to is called dimension.

MCFGs

● We will always want to have some “normal” predicates to generate “full
sentences”.

● But this is also possible:

● And finally we need:

On the notation

We can no longer express the concatenation with solely
the order of the symbols at the right-hand side.

N
2
(xu,yv)

N
2
(xuy,v)

N
2
(x,uvy)

…

Even if we limit ourselves to linear and non-permuting rules:

N
2
(uux,vvy) ← P

2
(u,v),Q

2
(x,y)❌

N
2
(vy,ux) ← P

2
(u,v),Q

2
(x,y) ❌

ordered pair!

Formal definition (Stabler)

Again… L = {anbn | n > 0}

a1,b1

a2a1,b2b1

a3a2a1,b3b2b1

a3a2a1b3b2b1

same distance!

Weak equivalence, but not strong equivalence

a1b1

a3a2a1b1b2b3

a2a1b1b2

Why (some sort of) context-freeness is preserved

● “The validity of a step in the derivation does not depend on the context that
the symbol occurs in, only on the symbol that is being processed. Thinking of
it in terms of trees, this means that if we have a valid derivation with a subtree
headed with some symbol, whether it is of dimension one or two, we can
freely swap that subtree for any other subtree that has the same symbol as its
root, and the result will be also be a valid derivation” (p. 13)

Linguistic example: the cross-serial dependencies from
Swiss German

❌
❌

Rules for cross-dependency structures

The symbols that are derived at
the same step of the derivation
(i.e. discontinuous constituents)
establish the right dependency.

Relative clauses
“The book that I read ε”

● The displaced constituent ‘moves’
upwards leaving a trace -or a copy.

● It is interpreted in the lower position
and pronounced in the higher one.

How movement looks like in MCFGs

1. We derive the element in its ‘semantic’ (original) position, but instead of
concatenating its ‘phonetic features,’ these are held in a waiting position.

2. When the moving string gets to its landing position, it is concatenated with the
main string.

General rule for moving constituent

● We could have infinite rules of this type (“This is the book that I told you Bob
said I should read.”, and so on).

Alternative with trace

Equivalence between MCFGs and TAGs

MCFGs are closely related to TAGs, but the latter are more restrictive, as their
derivation trees will only use well-nested rules.

✔

✔

❌

Equivalence between MCFGs and MGs

Michaelis (2001) noticed that for every MG G, there is an MCFG G’ which is not
only weakly equivalent but also strongly equivalent in the sense that there is an
isomorphism between the derivations of G and G’ for every string in L(G).

Stabler’s rules of inference

read : =NP S, book :: -k I : NP

S : I read, book :: -k

S : , -k ::
2
 (book,I read) ← NP :

1
 (I), =NP S ::, -k :

2

(book,read)

read :: =N =NP S book :: N -k

read : =NP S, book :: -k

=NP S :, -k ::
2
 (book,read) ← =N =NP S ::

1
 (read), N -k ::

1

(book)

that :: =S +k RP I read : S, book :: -k

that I read : +k RP, book :: -k

+k RP : , -k ::
2
 (book, that I read) ← =S +k RP ::

1
 (that), S : , -k ::

2
 (book, I

read)

that I read : +k RP book :: -k

book that I read : RP

RP :
1
 (book that I read) ← +k RP : , -k ::

2
 (book, that I read)

Merge-3: any item selects a mover

Merge-2: derived item selects non-mover as specifier

Merge-1: lexical item selects a non-mover as complement

Move-1: final move of licensee

Time complexity of an MCFG parsing algorithm

● Depends on the rank r of a grammar (maximum number of non-terminals that
we have on the right hand side of a rule) and dimension d (number of chunks
of the predicate).

● MCFGs can be parsed in time n(r+1)d.
● CFGs (in Chomsky normal form) have d = 1 and r = 2: n3.
● MCFGs with d = 2 and r = 2: n6.

Conclusion

● MCFGs provide a way of dealing with movement and discontinuous
constituencies in polynomial time, preserving -to a large degree- the structural
descriptions of traditional generative analyses.
○ As a consequence, MGs are computationally tractable as well.

● MCFGs show that there is not necessarily a ‘technical’ difference between
formalisms that use movement and formalisms that don’t.

● (Well-nested) MCFGs are weakly equivalent to TAGs and CCGs -among
other formalisms-, which means that they have the properties of MCSLs.

● These equivalences “suggest that MCFGs define the right combinatorial
operations to model natural language syntax.”

References

● Clark, A. (2014). “An introduction to multiple context free grammars for
linguists”. Available at:
https://alexc17.github.io/static/pdfs/mcfgsforlinguists.pdf

● Michaelis, J. (2001). “Transforming linear context-free rewriting systems into
minimalist grammars”. Logical Aspects of Computational Linguistics, pp.
228–244. Springer.

● Seki, H., Matsumura, T., Fujii, M., and Kasami, T. “On multiple context-free
grammars”. (1991). Theoretical Computer Science, 88(2):229, 1991

● Stabler, E. (2013). “Computational Linguistics: Defining, calculating, using,
and learning linguistic structures”. Lx185/209 lecture notes. Available at:
https://linguistics.ucla.edu/people/stabler/185-13.pdf

https://alexc17.github.io/papers/mcfgsforlinguists.pdf.
https://linguistics.ucla.edu/people/stabler/185-13.pdf

