
On Internal Merge
Steedman (2023) on CCGs and Minimalism

Isabella Senturia

Hopf Algebra seminar

October 9, 2023

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 1 / 35



Introduction

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 2 / 35



Introduction

Inclusiveness Condition (Chomsky, 1995): The output of a system must
not contain anything beyond its input, meaning syntactic derivation rules
cannot add information (indices, traces, syntactic categories, etc.) to
whatever has been specified in the categories that the derivation begins with.

This is taken as a core tenet of Steedman (2023): a derivation begins
with inputs specifying exactly the combinatory potential to be used.
The universal, type–dependent and language–independent rules are then
applied to combine the inputs, which do not alter information.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 3 / 35



Introduction

Inclusiveness Condition (Chomsky, 1995): The output of a system must
not contain anything beyond its input, meaning syntactic derivation rules
cannot add information (indices, traces, syntactic categories, etc.) to
whatever has been specified in the categories that the derivation begins with.

This is taken as a core tenet of Steedman (2023): a derivation begins
with inputs specifying exactly the combinatory potential to be used.

The universal, type–dependent and language–independent rules are then
applied to combine the inputs, which do not alter information.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 3 / 35



Introduction

Inclusiveness Condition (Chomsky, 1995): The output of a system must
not contain anything beyond its input, meaning syntactic derivation rules
cannot add information (indices, traces, syntactic categories, etc.) to
whatever has been specified in the categories that the derivation begins with.

This is taken as a core tenet of Steedman (2023): a derivation begins
with inputs specifying exactly the combinatory potential to be used.
The universal, type–dependent and language–independent rules are then
applied to combine the inputs, which do not alter information.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 3 / 35



Introduction (cont.)

How to deal with long–distance dependencies, such as long–distance
agreement or movement?

Unite internal merge with external merge without adding discontinuity
into the grammar, using as minimal expressive power as possible.

▶ Contrary to other proposals that eliminate movement (GPSG
trace–feature passing, CG–nonstandard constituency, LFG lexicalization
of locality, HPSG structural unification, etc.).

▶ These are too restrictive (grammar collapses to CFG) or too expressive
(require additional constraints to then limit this).

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 4 / 35



Introduction (cont.)

How to deal with long–distance dependencies, such as long–distance
agreement or movement?
Unite internal merge with external merge without adding discontinuity
into the grammar, using as minimal expressive power as possible.

▶ Contrary to other proposals that eliminate movement (GPSG
trace–feature passing, CG–nonstandard constituency, LFG lexicalization
of locality, HPSG structural unification, etc.).

▶ These are too restrictive (grammar collapses to CFG) or too expressive
(require additional constraints to then limit this).

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 4 / 35



Introduction (cont.)

How to deal with long–distance dependencies, such as long–distance
agreement or movement?
Unite internal merge with external merge without adding discontinuity
into the grammar, using as minimal expressive power as possible.

▶ Contrary to other proposals that eliminate movement (GPSG
trace–feature passing, CG–nonstandard constituency, LFG lexicalization
of locality, HPSG structural unification, etc.).

▶ These are too restrictive (grammar collapses to CFG) or too expressive
(require additional constraints to then limit this).

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 4 / 35



Introduction (cont.)

How to deal with long–distance dependencies, such as long–distance
agreement or movement?
Unite internal merge with external merge without adding discontinuity
into the grammar, using as minimal expressive power as possible.

▶ Contrary to other proposals that eliminate movement (GPSG
trace–feature passing, CG–nonstandard constituency, LFG lexicalization
of locality, HPSG structural unification, etc.).

▶ These are too restrictive (grammar collapses to CFG) or too expressive
(require additional constraints to then limit this).

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 4 / 35



CCG solution to Internal Merge

The link between the internally merged item and its long–distance
relationship item must be established before the start of the derivation.

Do this in the logical lexical form as binder λα and variable α.
▶ Thus, internal merge (IM) is not different than external merge (EM).

Expressive power of this system: “low near–context–free".
Categories are defined functionally and semantically with functions and
arguments, and IM discontinuities base–generated in the logical forms.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 5 / 35



CCG solution to Internal Merge

The link between the internally merged item and its long–distance
relationship item must be established before the start of the derivation.
Do this in the logical lexical form as binder λα and variable α.

▶ Thus, internal merge (IM) is not different than external merge (EM).

Expressive power of this system: “low near–context–free".
Categories are defined functionally and semantically with functions and
arguments, and IM discontinuities base–generated in the logical forms.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 5 / 35



CCG solution to Internal Merge

The link between the internally merged item and its long–distance
relationship item must be established before the start of the derivation.
Do this in the logical lexical form as binder λα and variable α.

▶ Thus, internal merge (IM) is not different than external merge (EM).

Expressive power of this system: “low near–context–free".
Categories are defined functionally and semantically with functions and
arguments, and IM discontinuities base–generated in the logical forms.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 5 / 35



CCG solution to Internal Merge

The link between the internally merged item and its long–distance
relationship item must be established before the start of the derivation.
Do this in the logical lexical form as binder λα and variable α.

▶ Thus, internal merge (IM) is not different than external merge (EM).

Expressive power of this system: “low near–context–free".

Categories are defined functionally and semantically with functions and
arguments, and IM discontinuities base–generated in the logical forms.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 5 / 35



CCG solution to Internal Merge

The link between the internally merged item and its long–distance
relationship item must be established before the start of the derivation.
Do this in the logical lexical form as binder λα and variable α.

▶ Thus, internal merge (IM) is not different than external merge (EM).

Expressive power of this system: “low near–context–free".
Categories are defined functionally and semantically with functions and
arguments, and IM discontinuities base–generated in the logical forms.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 5 / 35



Topics

Components of CCG
▶ Lexical items
▶ Function application/composition
▶ Type raising

External Merge
Internal Merge
Linguistic examples

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 6 / 35



Defining CCGs and External Merge

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 7 / 35



Components of CCG

(1) Bare Phrase Structural notation for linguistic categories

▶ The Categorial Assumption: Linguistic Categories are defined
syntactically and semantically as functions and/or arguments.

(2) Contiguous merger universal rules
▶ The Adjacency Assumption: Rules are purely functional binary

operations, limited to application, composition, and substitution,
applying to strictly adjacent, phonologically-realized categories, which
synchronously and monotonically compose logical forms (lf) and
concatenate phonological forms (pf).

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 8 / 35



Components of CCG

(1) Bare Phrase Structural notation for linguistic categories
▶ The Categorial Assumption: Linguistic Categories are defined

syntactically and semantically as functions and/or arguments.

(2) Contiguous merger universal rules
▶ The Adjacency Assumption: Rules are purely functional binary

operations, limited to application, composition, and substitution,
applying to strictly adjacent, phonologically-realized categories, which
synchronously and monotonically compose logical forms (lf) and
concatenate phonological forms (pf).

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 8 / 35



Components of CCG

(1) Bare Phrase Structural notation for linguistic categories
▶ The Categorial Assumption: Linguistic Categories are defined

syntactically and semantically as functions and/or arguments.
(2) Contiguous merger universal rules

▶ The Adjacency Assumption: Rules are purely functional binary
operations, limited to application, composition, and substitution,
applying to strictly adjacent, phonologically-realized categories, which
synchronously and monotonically compose logical forms (lf) and
concatenate phonological forms (pf).

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 8 / 35



Components of CCG

(1) Bare Phrase Structural notation for linguistic categories
▶ The Categorial Assumption: Linguistic Categories are defined

syntactically and semantically as functions and/or arguments.
(2) Contiguous merger universal rules

▶ The Adjacency Assumption: Rules are purely functional binary
operations, limited to application, composition, and substitution,
applying to strictly adjacent, phonologically-realized categories, which
synchronously and monotonically compose logical forms (lf) and
concatenate phonological forms (pf).

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 8 / 35



(1) Linguistic category labels of lexical items
Every lexical item has two components:

CG lexical category: function (specified for linearization order, which is
itself a formal feature) X/Y or X\Y or argument (with agreement
features)

▶ X, Y variables over categories (S ,NP3pl ,S\NP3pl)
⋆ walk S\NP
⋆ show (S\NP)/NP

▶ Comparable to lexical categories in Bare Phrase Structure Minimalism:
⋆ walk [V, uN]
⋆ show [V, uN, uN]

▶ Merge/unification possible in function composition when values on all
attributes are equal or one is less specified than the other (merged item
has most specific attribute).

Logical form: f a application of f to a, left association,
variable–binding λ operator

▶ f , a variables over logical forms corresponding to categories
λy .pres(walk y)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 9 / 35



(1) Linguistic category labels of lexical items
Every lexical item has two components:

CG lexical category: function (specified for linearization order, which is
itself a formal feature) X/Y or X\Y or argument (with agreement
features)

▶ X, Y variables over categories (S ,NP3pl ,S\NP3pl)
⋆ walk S\NP
⋆ show (S\NP)/NP

▶ Comparable to lexical categories in Bare Phrase Structure Minimalism:
⋆ walk [V, uN]
⋆ show [V, uN, uN]

▶ Merge/unification possible in function composition when values on all
attributes are equal or one is less specified than the other (merged item
has most specific attribute).

Logical form: f a application of f to a, left association,
variable–binding λ operator

▶ f , a variables over logical forms corresponding to categories
λy .pres(walk y)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 9 / 35



(1) Linguistic category labels of lexical items
Every lexical item has two components:

CG lexical category: function (specified for linearization order, which is
itself a formal feature) X/Y or X\Y or argument (with agreement
features)

▶ X, Y variables over categories (S ,NP3pl ,S\NP3pl)

⋆ walk S\NP
⋆ show (S\NP)/NP

▶ Comparable to lexical categories in Bare Phrase Structure Minimalism:
⋆ walk [V, uN]
⋆ show [V, uN, uN]

▶ Merge/unification possible in function composition when values on all
attributes are equal or one is less specified than the other (merged item
has most specific attribute).

Logical form: f a application of f to a, left association,
variable–binding λ operator

▶ f , a variables over logical forms corresponding to categories
λy .pres(walk y)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 9 / 35



(1) Linguistic category labels of lexical items
Every lexical item has two components:

CG lexical category: function (specified for linearization order, which is
itself a formal feature) X/Y or X\Y or argument (with agreement
features)

▶ X, Y variables over categories (S ,NP3pl ,S\NP3pl)
⋆ walk S\NP

⋆ show (S\NP)/NP
▶ Comparable to lexical categories in Bare Phrase Structure Minimalism:

⋆ walk [V, uN]
⋆ show [V, uN, uN]

▶ Merge/unification possible in function composition when values on all
attributes are equal or one is less specified than the other (merged item
has most specific attribute).

Logical form: f a application of f to a, left association,
variable–binding λ operator

▶ f , a variables over logical forms corresponding to categories
λy .pres(walk y)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 9 / 35



(1) Linguistic category labels of lexical items
Every lexical item has two components:

CG lexical category: function (specified for linearization order, which is
itself a formal feature) X/Y or X\Y or argument (with agreement
features)

▶ X, Y variables over categories (S ,NP3pl ,S\NP3pl)
⋆ walk S\NP
⋆ show (S\NP)/NP

▶ Comparable to lexical categories in Bare Phrase Structure Minimalism:
⋆ walk [V, uN]
⋆ show [V, uN, uN]

▶ Merge/unification possible in function composition when values on all
attributes are equal or one is less specified than the other (merged item
has most specific attribute).

Logical form: f a application of f to a, left association,
variable–binding λ operator

▶ f , a variables over logical forms corresponding to categories
λy .pres(walk y)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 9 / 35



(1) Linguistic category labels of lexical items
Every lexical item has two components:

CG lexical category: function (specified for linearization order, which is
itself a formal feature) X/Y or X\Y or argument (with agreement
features)

▶ X, Y variables over categories (S ,NP3pl ,S\NP3pl)
⋆ walk S\NP
⋆ show (S\NP)/NP

▶ Comparable to lexical categories in Bare Phrase Structure Minimalism:

⋆ walk [V, uN]
⋆ show [V, uN, uN]

▶ Merge/unification possible in function composition when values on all
attributes are equal or one is less specified than the other (merged item
has most specific attribute).

Logical form: f a application of f to a, left association,
variable–binding λ operator

▶ f , a variables over logical forms corresponding to categories
λy .pres(walk y)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 9 / 35



(1) Linguistic category labels of lexical items
Every lexical item has two components:

CG lexical category: function (specified for linearization order, which is
itself a formal feature) X/Y or X\Y or argument (with agreement
features)

▶ X, Y variables over categories (S ,NP3pl ,S\NP3pl)
⋆ walk S\NP
⋆ show (S\NP)/NP

▶ Comparable to lexical categories in Bare Phrase Structure Minimalism:
⋆ walk [V, uN]

⋆ show [V, uN, uN]
▶ Merge/unification possible in function composition when values on all

attributes are equal or one is less specified than the other (merged item
has most specific attribute).

Logical form: f a application of f to a, left association,
variable–binding λ operator

▶ f , a variables over logical forms corresponding to categories
λy .pres(walk y)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 9 / 35



(1) Linguistic category labels of lexical items
Every lexical item has two components:

CG lexical category: function (specified for linearization order, which is
itself a formal feature) X/Y or X\Y or argument (with agreement
features)

▶ X, Y variables over categories (S ,NP3pl ,S\NP3pl)
⋆ walk S\NP
⋆ show (S\NP)/NP

▶ Comparable to lexical categories in Bare Phrase Structure Minimalism:
⋆ walk [V, uN]
⋆ show [V, uN, uN]

▶ Merge/unification possible in function composition when values on all
attributes are equal or one is less specified than the other (merged item
has most specific attribute).

Logical form: f a application of f to a, left association,
variable–binding λ operator

▶ f , a variables over logical forms corresponding to categories
λy .pres(walk y)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 9 / 35



(1) Linguistic category labels of lexical items
Every lexical item has two components:

CG lexical category: function (specified for linearization order, which is
itself a formal feature) X/Y or X\Y or argument (with agreement
features)

▶ X, Y variables over categories (S ,NP3pl ,S\NP3pl)
⋆ walk S\NP
⋆ show (S\NP)/NP

▶ Comparable to lexical categories in Bare Phrase Structure Minimalism:
⋆ walk [V, uN]
⋆ show [V, uN, uN]

▶ Merge/unification possible in function composition when values on all
attributes are equal or one is less specified than the other (merged item
has most specific attribute).

Logical form: f a application of f to a, left association,
variable–binding λ operator

▶ f , a variables over logical forms corresponding to categories
λy .pres(walk y)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 9 / 35



(1) Linguistic category labels of lexical items
Every lexical item has two components:

CG lexical category: function (specified for linearization order, which is
itself a formal feature) X/Y or X\Y or argument (with agreement
features)

▶ X, Y variables over categories (S ,NP3pl ,S\NP3pl)
⋆ walk S\NP
⋆ show (S\NP)/NP

▶ Comparable to lexical categories in Bare Phrase Structure Minimalism:
⋆ walk [V, uN]
⋆ show [V, uN, uN]

▶ Merge/unification possible in function composition when values on all
attributes are equal or one is less specified than the other (merged item
has most specific attribute).

Logical form: f a application of f to a, left association,
variable–binding λ operator

▶ f , a variables over logical forms corresponding to categories
λy .pres(walk y)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 9 / 35



(1) Linguistic category labels of lexical items
Every lexical item has two components:

CG lexical category: function (specified for linearization order, which is
itself a formal feature) X/Y or X\Y or argument (with agreement
features)

▶ X, Y variables over categories (S ,NP3pl ,S\NP3pl)
⋆ walk S\NP
⋆ show (S\NP)/NP

▶ Comparable to lexical categories in Bare Phrase Structure Minimalism:
⋆ walk [V, uN]
⋆ show [V, uN, uN]

▶ Merge/unification possible in function composition when values on all
attributes are equal or one is less specified than the other (merged item
has most specific attribute).

Logical form: f a application of f to a, left association,
variable–binding λ operator

▶ f , a variables over logical forms corresponding to categories
λy .pres(walk y)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 9 / 35



(2) Merge: Function application

Contiguous Merge I: Application Rules

a. Forward application (>)
X/∗Y : f Y : a ⇒ X : f a

b. Backward application (<)
Y : a X\∗Y : f ⇒ X : f a

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 10 / 35



(2) Merge: Function application

Contiguous Merge I: Application Rules
a. Forward application (>)

X/∗Y : f Y : a ⇒ X : f a

b. Backward application (<)
Y : a X\∗Y : f ⇒ X : f a

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 10 / 35



(2) Merge: Function application (cont.)

The Principle of Consistency: All rules linearize their inputs consistently with
the directionality specified in the governing category.

The Principle of Inheritance: Any category that appears in an input that also
appears in the output of a rule must be feature-identical in both, including
its slash-features, if any.

a. Y : a X/Y : f ⇏ X : f a

b. (X/Y )/W : f Y : a ⇏ X/W : λw .f w a

c. Xi/Y : f Y : a ⇏ Xj : f a

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 11 / 35



(2) Merge: Function application (cont.)

The Principle of Consistency: All rules linearize their inputs consistently with
the directionality specified in the governing category.
The Principle of Inheritance: Any category that appears in an input that also
appears in the output of a rule must be feature-identical in both, including
its slash-features, if any.

a. Y : a X/Y : f ⇏ X : f a

b. (X/Y )/W : f Y : a ⇏ X/W : λw .f w a

c. Xi/Y : f Y : a ⇏ Xj : f a

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 11 / 35



(2) Merge: Function application (cont.)

The Principle of Consistency: All rules linearize their inputs consistently with
the directionality specified in the governing category.
The Principle of Inheritance: Any category that appears in an input that also
appears in the output of a rule must be feature-identical in both, including
its slash-features, if any.

a. Y : a X/Y : f ⇏ X : f a

b. (X/Y )/W : f Y : a ⇏ X/W : λw .f w a

c. Xi/Y : f Y : a ⇏ Xj : f a

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 11 / 35



Examples of Merge

1. Mary walks.

NP3s : mary S\NP3s : λy .pres(walk y)
<

S : pres(walk mary)

2. A child held a balloon.

NP3s/N3s N3s (S\NPagr)/NP NP3s/N3s N3s
: a : child : λxλy .past(hold)xy : a : balloon

> >

NP3s : achild NP3s : aballoon
>

S \NP3s : λy .past(hold(aballoon)y)
<

S : past(hold(aballoon)achild)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 12 / 35



Examples of Merge

1. Mary walks.

NP3s : mary S\NP3s : λy .pres(walk y)
<

S : pres(walk mary)

2. A child held a balloon.

NP3s/N3s N3s (S\NPagr)/NP NP3s/N3s N3s
: a : child : λxλy .past(hold)xy : a : balloon

> >

NP3s : achild NP3s : aballoon
>

S \NP3s : λy .past(hold(aballoon)y)
<

S : past(hold(aballoon)achild)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 12 / 35



Merge: Function Composition

Contiguous Merge IIa: Function Composition

a. Forward composition (>B)
X/⋄Y : f Y /Z : g ⇒ X/Z : λz .f (gz)

b. Backward composition (<B)
Y \Z : g X\⋄Y : f ⇒ X\Z : λz .f (gz)

c. Forward crossing composition (>B×)
X/×Y : f Y \Z : g ⇒ X\Z : λz .f (gz)

d. Backward crossing composition (<B×)
Y /Z : g X\×Y : f ⇒ X/Z : λz .f (gz)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 13 / 35



Merge: Function Composition

Contiguous Merge IIa: Function Composition
a. Forward composition (>B)

X/⋄Y : f Y /Z : g ⇒ X/Z : λz .f (gz)

b. Backward composition (<B)
Y \Z : g X\⋄Y : f ⇒ X\Z : λz .f (gz)

c. Forward crossing composition (>B×)
X/×Y : f Y \Z : g ⇒ X\Z : λz .f (gz)

d. Backward crossing composition (<B×)
Y /Z : g X\×Y : f ⇒ X/Z : λz .f (gz)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 13 / 35



Merge: Function Composition

Contiguous Merge IIa: Function Composition
a. Forward composition (>B)

X/⋄Y : f Y /Z : g ⇒ X/Z : λz .f (gz)

b. Backward composition (<B)
Y \Z : g X\⋄Y : f ⇒ X\Z : λz .f (gz)

c. Forward crossing composition (>B×)
X/×Y : f Y \Z : g ⇒ X\Z : λz .f (gz)

d. Backward crossing composition (<B×)
Y /Z : g X\×Y : f ⇒ X/Z : λz .f (gz)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 13 / 35



Merge: Function Composition (cont.)

Consistency and Inheritence apply here too:

X/⋄Y : f Y /Z : g ⇏ X\Z : λz .f (gz)

Function composition yields constituency effects:

will wear

(S\NP)/VP λpλy .will(py) VP/NP : λxλy .(wear xy)
>B

(S\NP)/NP : λxλy .will(wear xy)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 14 / 35



Merge: Function Composition (cont.)

Consistency and Inheritence apply here too:

X/⋄Y : f Y /Z : g ⇏ X\Z : λz .f (gz)

Function composition yields constituency effects:

will wear

(S\NP)/VP λpλy .will(py) VP/NP : λxλy .(wear xy)
>B

(S\NP)/NP : λxλy .will(wear xy)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 14 / 35



Merge: Function Composition (cont.)

Consistency and Inheritence apply here too:

X/⋄Y : f Y /Z : g ⇏ X\Z : λz .f (gz)

Function composition yields constituency effects:

will wear

(S\NP)/VP λpλy .will(py) VP/NP : λxλy .(wear xy)
>B

(S\NP)/NP : λxλy .will(wear xy)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 14 / 35



Merge: Function Composition (cont.)

Consistency and Inheritence apply here too:

X/⋄Y : f Y /Z : g ⇏ X\Z : λz .f (gz)

Function composition yields constituency effects:

will wear

(S\NP)/VP λpλy .will(py) VP/NP : λxλy .(wear xy)
>B

(S\NP)/NP : λxλy .will(wear xy)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 14 / 35



Merge: Second-level Function Composition

Contiguous Merge IIb: Second-level Function Composition

a. Forward level-2 composition (>B2)
X/⋄Y : f (Y /Z )|W : g ⇒ (X/Z )|W : λwλz .f (gwz)

b. Backward level-2 composition (<B2)
(Y \Z )|W : g X\⋄Y : f ⇒ (X\Z )|W : λwλz .f (gwz)

c. Forward crossing level-2 composition (>B2
×)

X/×Y : f (Y \Z )|W : g ⇒ (X\Z )|W : λwλz .f (gwz)

d. Backward crossing level-2 composition (<B2
×)

(Y/Z )|W : g X\×Y : f ⇒ (X/Z )|W : λwλz .f (gwz)

X/Y : f (Y /Z )/W : g ⇏ (X/Z )\W : λwλz .f (gwz)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 15 / 35



Merge: Second-level Function Composition

Contiguous Merge IIb: Second-level Function Composition
a. Forward level-2 composition (>B2)

X/⋄Y : f (Y /Z )|W : g ⇒ (X/Z )|W : λwλz .f (gwz)

b. Backward level-2 composition (<B2)
(Y \Z )|W : g X\⋄Y : f ⇒ (X\Z )|W : λwλz .f (gwz)

c. Forward crossing level-2 composition (>B2
×)

X/×Y : f (Y \Z )|W : g ⇒ (X\Z )|W : λwλz .f (gwz)

d. Backward crossing level-2 composition (<B2
×)

(Y/Z )|W : g X\×Y : f ⇒ (X/Z )|W : λwλz .f (gwz)

X/Y : f (Y /Z )/W : g ⇏ (X/Z )\W : λwλz .f (gwz)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 15 / 35



Merge: Second-level Function Composition

Contiguous Merge IIb: Second-level Function Composition
a. Forward level-2 composition (>B2)

X/⋄Y : f (Y /Z )|W : g ⇒ (X/Z )|W : λwλz .f (gwz)

b. Backward level-2 composition (<B2)
(Y \Z )|W : g X\⋄Y : f ⇒ (X\Z )|W : λwλz .f (gwz)

c. Forward crossing level-2 composition (>B2
×)

X/×Y : f (Y \Z )|W : g ⇒ (X\Z )|W : λwλz .f (gwz)

d. Backward crossing level-2 composition (<B2
×)

(Y/Z )|W : g X\×Y : f ⇒ (X/Z )|W : λwλz .f (gwz)

X/Y : f (Y /Z )/W : g ⇏ (X/Z )\W : λwλz .f (gwz)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 15 / 35



Merge: Second-level Function Composition

Contiguous Merge IIb: Second-level Function Composition
a. Forward level-2 composition (>B2)

X/⋄Y : f (Y /Z )|W : g ⇒ (X/Z )|W : λwλz .f (gwz)

b. Backward level-2 composition (<B2)
(Y \Z )|W : g X\⋄Y : f ⇒ (X\Z )|W : λwλz .f (gwz)

c. Forward crossing level-2 composition (>B2
×)

X/×Y : f (Y \Z )|W : g ⇒ (X\Z )|W : λwλz .f (gwz)

d. Backward crossing level-2 composition (<B2
×)

(Y/Z )|W : g X\×Y : f ⇒ (X/Z )|W : λwλz .f (gwz)

X/Y : f (Y /Z )/W : g ⇏ (X/Z )\W : λwλz .f (gwz)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 15 / 35



Merge: Second-level Function Composition (cont.)

may give

(S\NP)/VP λpλy .may(py) (VP/PP)/NP : λwλxλy .(give xwy)
>B2

((S\NP)/PP)/NP : λwλxλy .may(give xwy)

Categories can grow completely unbounded, meaning CCG here is
non–context–free.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 16 / 35



Merge: Second-level Function Composition (cont.)

may give

(S\NP)/VP λpλy .may(py) (VP/PP)/NP : λwλxλy .(give xwy)
>B2

((S\NP)/PP)/NP : λwλxλy .may(give xwy)

Categories can grow completely unbounded, meaning CCG here is
non–context–free.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 16 / 35



CPP

The Combinatory Projection Principle (CPP): Combinatory rules apply
to contiguous categories (“Adjacency"), must respect the linearization
specified in the slash direction for the governing category (“Consistency"),
and must project unchanged onto the resulting category any further
categorial, selectional, and linearization information specified in either the
governing or the dependent category (“Inheritance").

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 17 / 35



Internal Merge

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 18 / 35



Internal Merge: Raising

Long–range dependency, i.e. IM, governed by the same
function/argument category composition as local–dependency (EM).

IM is achieved via function composition, just need to extend set of
lexical types to include second-order functions which themselves can
take functions (semantic type e → t).
Working examples:

1. Raising: John seems to walk.
Johni seems ti to walk.

2. Control: John tries to walk.
Johni tries PROi to walk.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 19 / 35



Internal Merge: Raising

Long–range dependency, i.e. IM, governed by the same
function/argument category composition as local–dependency (EM).
IM is achieved via function composition, just need to extend set of
lexical types to include second-order functions which themselves can
take functions (semantic type e → t).

Working examples:
1. Raising: John seems to walk.

Johni seems ti to walk.
2. Control: John tries to walk.

Johni tries PROi to walk.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 19 / 35



Internal Merge: Raising

Long–range dependency, i.e. IM, governed by the same
function/argument category composition as local–dependency (EM).
IM is achieved via function composition, just need to extend set of
lexical types to include second-order functions which themselves can
take functions (semantic type e → t).
Working examples:

1. Raising: John seems to walk.
Johni seems ti to walk.

2. Control: John tries to walk.
Johni tries PROi to walk.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 19 / 35



Internal Merge: Raising

Long–range dependency, i.e. IM, governed by the same
function/argument category composition as local–dependency (EM).
IM is achieved via function composition, just need to extend set of
lexical types to include second-order functions which themselves can
take functions (semantic type e → t).
Working examples:

1. Raising: John seems to walk.

Johni seems ti to walk.
2. Control: John tries to walk.

Johni tries PROi to walk.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 19 / 35



Internal Merge: Raising

Long–range dependency, i.e. IM, governed by the same
function/argument category composition as local–dependency (EM).
IM is achieved via function composition, just need to extend set of
lexical types to include second-order functions which themselves can
take functions (semantic type e → t).
Working examples:

1. Raising: John seems to walk.
Johni seems ti to walk.

2. Control: John tries to walk.
Johni tries PROi to walk.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 19 / 35



Internal Merge: Raising

Long–range dependency, i.e. IM, governed by the same
function/argument category composition as local–dependency (EM).
IM is achieved via function composition, just need to extend set of
lexical types to include second-order functions which themselves can
take functions (semantic type e → t).
Working examples:

1. Raising: John seems to walk.
Johni seems ti to walk.

2. Control: John tries to walk.

Johni tries PROi to walk.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 19 / 35



Internal Merge: Raising

Long–range dependency, i.e. IM, governed by the same
function/argument category composition as local–dependency (EM).
IM is achieved via function composition, just need to extend set of
lexical types to include second-order functions which themselves can
take functions (semantic type e → t).
Working examples:

1. Raising: John seems to walk.
Johni seems ti to walk.

2. Control: John tries to walk.
Johni tries PROi to walk.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 19 / 35



IM via raising and control

Raising-to-subject

seem: VP/VPto : λpλy .seem(p y)

John seems to walk.

NP : john (S\NP)/VPto : λpλy .pres(seem(py)) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S \NP : λy .pres(seem(walky))
<

S : pres(seem(walkjohn))
Subject-control
try: VP+a/VPto : λpλy .try( p y)y

John tries to walk.

NP : john (S+a\NP)/VPto : λpλy .pres(try(py)y) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S+a \NP : λy .pres(try(walky)y)
<

S+a : pres(try(walkjohn)john)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 20 / 35



IM via raising and control

Raising-to-subject
seem: VP/VPto : λpλy .seem(p y)

John seems to walk.

NP : john (S\NP)/VPto : λpλy .pres(seem(py)) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S \NP : λy .pres(seem(walky))
<

S : pres(seem(walkjohn))
Subject-control
try: VP+a/VPto : λpλy .try( p y)y

John tries to walk.

NP : john (S+a\NP)/VPto : λpλy .pres(try(py)y) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S+a \NP : λy .pres(try(walky)y)
<

S+a : pres(try(walkjohn)john)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 20 / 35



IM via raising and control

Raising-to-subject
seem: VP/VPto : λpλy .seem(p y)

John seems to walk.

NP : john (S\NP)/VPto : λpλy .pres(seem(py)) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S \NP : λy .pres(seem(walky))
<

S : pres(seem(walkjohn))

Subject-control
try: VP+a/VPto : λpλy .try( p y)y

John tries to walk.

NP : john (S+a\NP)/VPto : λpλy .pres(try(py)y) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S+a \NP : λy .pres(try(walky)y)
<

S+a : pres(try(walkjohn)john)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 20 / 35



IM via raising and control

Raising-to-subject
seem: VP/VPto : λpλy .seem(p y)

John seems to walk.

NP : john (S\NP)/VPto : λpλy .pres(seem(py)) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S \NP : λy .pres(seem(walky))
<

S : pres(seem(walkjohn))
Subject-control

try: VP+a/VPto : λpλy .try( p y)y

John tries to walk.

NP : john (S+a\NP)/VPto : λpλy .pres(try(py)y) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S+a \NP : λy .pres(try(walky)y)
<

S+a : pres(try(walkjohn)john)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 20 / 35



IM via raising and control

Raising-to-subject
seem: VP/VPto : λpλy .seem(p y)

John seems to walk.

NP : john (S\NP)/VPto : λpλy .pres(seem(py)) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S \NP : λy .pres(seem(walky))
<

S : pres(seem(walkjohn))
Subject-control
try: VP+a/VPto : λpλy .try( p y)y

John tries to walk.

NP : john (S+a\NP)/VPto : λpλy .pres(try(py)y) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S+a \NP : λy .pres(try(walky)y)
<

S+a : pres(try(walkjohn)john)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 20 / 35



IM via raising and control

Raising-to-subject
seem: VP/VPto : λpλy .seem(p y)

John seems to walk.

NP : john (S\NP)/VPto : λpλy .pres(seem(py)) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S \NP : λy .pres(seem(walky))
<

S : pres(seem(walkjohn))
Subject-control
try: VP+a/VPto : λpλy .try( p y)y

John tries to walk.

NP : john (S+a\NP)/VPto : λpλy .pres(try(py)y) VPto/VP : λpλy .py VP : λy .walk(y)
>

VPto : λy .walk(y)
>

S+a \NP : λy .pres(try(walky)y)
<

S+a : pres(try(walkjohn)john)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 20 / 35



IM via raising and control (cont.)

These result in composition of the lf content with the predicate of their
complement.

In the raising-to-subject, the variable y has no role outside of predicate
p.
For subject-control, the variable has two roles, one inside of the
predicate p and one outside of it, i.e. once as a subject controller and
once as the controllee.
Thus, the c-command relationship used for operator binding is here only
established at lf, which is why IM is effectively reduced to EM with
additional lf machinery.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 21 / 35



IM via raising and control (cont.)

These result in composition of the lf content with the predicate of their
complement.
In the raising-to-subject, the variable y has no role outside of predicate
p.

For subject-control, the variable has two roles, one inside of the
predicate p and one outside of it, i.e. once as a subject controller and
once as the controllee.
Thus, the c-command relationship used for operator binding is here only
established at lf, which is why IM is effectively reduced to EM with
additional lf machinery.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 21 / 35



IM via raising and control (cont.)

These result in composition of the lf content with the predicate of their
complement.
In the raising-to-subject, the variable y has no role outside of predicate
p.
For subject-control, the variable has two roles, one inside of the
predicate p and one outside of it, i.e. once as a subject controller and
once as the controllee.

Thus, the c-command relationship used for operator binding is here only
established at lf, which is why IM is effectively reduced to EM with
additional lf machinery.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 21 / 35



IM via raising and control (cont.)

These result in composition of the lf content with the predicate of their
complement.
In the raising-to-subject, the variable y has no role outside of predicate
p.
For subject-control, the variable has two roles, one inside of the
predicate p and one outside of it, i.e. once as a subject controller and
once as the controllee.
Thus, the c-command relationship used for operator binding is here only
established at lf, which is why IM is effectively reduced to EM with
additional lf machinery.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 21 / 35



Type-raising

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 22 / 35



Universal quantifiers and type-raising

In order for universally quantified NPs to take scope over the verbal domain,
they themselves need to bear the category of a functor.

Everything flows

NP : everything S\NP : λy .pres(flow y)
<

S : pres (flow everything)

Everything flows

S/(S\NP) : λp∀y [thing y ⇒ py ] S\NP : λy .pres(flow y)
>

S : ∀y [thing y ⇒ pres(flow y)]

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 23 / 35



Universal quantifiers and type-raising

In order for universally quantified NPs to take scope over the verbal domain,
they themselves need to bear the category of a functor.

Everything flows

NP : everything S\NP : λy .pres(flow y)
<

S : pres (flow everything)

Everything flows

S/(S\NP) : λp∀y [thing y ⇒ py ] S\NP : λy .pres(flow y)
>

S : ∀y [thing y ⇒ pres(flow y)]

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 23 / 35



Universal quantifiers and type-raising

In order for universally quantified NPs to take scope over the verbal domain,
they themselves need to bear the category of a functor.

Everything flows

NP : everything S\NP : λy .pres(flow y)
<

S : pres (flow everything)

Everything flows

S/(S\NP) : λp∀y [thing y ⇒ py ] S\NP : λy .pres(flow y)
>

S : ∀y [thing y ⇒ pres(flow y)]

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 23 / 35



Type-raising

This then results in having to allow all NPs and transitive verbs to “type
raise”, e.g. objects to take scope over matrix domain.

Someone sees everything

S/(S\NP) (S\NP)/NP (S\NP)\((S\NP)/NP)
: λp.p(some person) : λxλy .pres(see xy) : λpλy .∀x [thing x ⇒ p x y ]

<

S\NP : λy .∀x [thing x ⇒ pres(see xy)]
>

S : ∀x [pres(see x(some person))]

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 24 / 35



Type-raising

This then results in having to allow all NPs and transitive verbs to “type
raise”, e.g. objects to take scope over matrix domain.

Someone sees everything

S/(S\NP) (S\NP)/NP (S\NP)\((S\NP)/NP)
: λp.p(some person) : λxλy .pres(see xy) : λpλy .∀x [thing x ⇒ p x y ]

<

S\NP : λy .∀x [thing x ⇒ pres(see xy)]
>

S : ∀x [pres(see x(some person))]

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 24 / 35



Type-raising (cont.)

Type-raised generalized quantifier is the only way for universal quantifiers to
take wide-scope without quantifier-raising.

A girl held every chipmunk.
(S/(S\NP3s))/N3s N3s (S\NPagr)/NP ((S\NPagr)\((S\NPagr)/NP))/N3s N3s
: λnλp.p(a n) : girl : λxλy.past(hold xy) : λnλpλy.∀x[n x → p x y ] : chipmunk

> >
S/(S\NP3s) : λp.p(a girl) (S\NPagr)\((S\NPagr)/NP)

: λpλy.∀x[chipmunk x → p x y)]
<

S\NPagr : λy.∀x[chipmunk x → past(hold xy)]
>

S : ∀x[chipmunk x → past(hold x(a girl))]

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 25 / 35



Type-raising (cont.)

Type-raised generalized quantifier is the only way for universal quantifiers to
take wide-scope without quantifier-raising.

A girl held every chipmunk.
(S/(S\NP3s))/N3s N3s (S\NPagr)/NP ((S\NPagr)\((S\NPagr)/NP))/N3s N3s
: λnλp.p(a n) : girl : λxλy.past(hold xy) : λnλpλy.∀x[n x → p x y ] : chipmunk

> >
S/(S\NP3s) : λp.p(a girl) (S\NPagr)\((S\NPagr)/NP)

: λpλy.∀x[chipmunk x → p x y)]
<

S\NPagr : λy.∀x[chipmunk x → past(hold xy)]
>

S : ∀x[chipmunk x → past(hold x(a girl))]

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 25 / 35



Type-raising for generalized quantifiers

Type-raising changes nothing about the derivations except reverses the
direction of function application.

Raised arguments pass their values to the lf by binding a second-order
variable p, rather than the verb itself, similar to IM.

▶ someone: NP↑ : λpλŷ .p(some person)ŷ
▶ an: NP↑/N : λnλpλŷ .p(a n)ŷ
▶ every: NP↑/N : λnλpλŷ .∀x(n x → p x ŷ)

Type-raising allows for scrambling word orders.
Caveat: not a free combinatory rule to be used for syntactic derivations,
only available as a morpho-lexical schema.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 26 / 35



Type-raising for generalized quantifiers

Type-raising changes nothing about the derivations except reverses the
direction of function application.
Raised arguments pass their values to the lf by binding a second-order
variable p, rather than the verb itself, similar to IM.

▶ someone: NP↑ : λpλŷ .p(some person)ŷ
▶ an: NP↑/N : λnλpλŷ .p(a n)ŷ
▶ every: NP↑/N : λnλpλŷ .∀x(n x → p x ŷ)

Type-raising allows for scrambling word orders.
Caveat: not a free combinatory rule to be used for syntactic derivations,
only available as a morpho-lexical schema.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 26 / 35



Type-raising for generalized quantifiers

Type-raising changes nothing about the derivations except reverses the
direction of function application.
Raised arguments pass their values to the lf by binding a second-order
variable p, rather than the verb itself, similar to IM.

▶ someone: NP↑ : λpλŷ .p(some person)ŷ
▶ an: NP↑/N : λnλpλŷ .p(a n)ŷ
▶ every: NP↑/N : λnλpλŷ .∀x(n x → p x ŷ)

Type-raising allows for scrambling word orders.
Caveat: not a free combinatory rule to be used for syntactic derivations,
only available as a morpho-lexical schema.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 26 / 35



Type-raising for generalized quantifiers

Type-raising changes nothing about the derivations except reverses the
direction of function application.
Raised arguments pass their values to the lf by binding a second-order
variable p, rather than the verb itself, similar to IM.

▶ someone: NP↑ : λpλŷ .p(some person)ŷ
▶ an: NP↑/N : λnλpλŷ .p(a n)ŷ
▶ every: NP↑/N : λnλpλŷ .∀x(n x → p x ŷ)

Type-raising allows for scrambling word orders.

Caveat: not a free combinatory rule to be used for syntactic derivations,
only available as a morpho-lexical schema.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 26 / 35



Type-raising for generalized quantifiers

Type-raising changes nothing about the derivations except reverses the
direction of function application.
Raised arguments pass their values to the lf by binding a second-order
variable p, rather than the verb itself, similar to IM.

▶ someone: NP↑ : λpλŷ .p(some person)ŷ
▶ an: NP↑/N : λnλpλŷ .p(a n)ŷ
▶ every: NP↑/N : λnλpλŷ .∀x(n x → p x ŷ)

Type-raising allows for scrambling word orders.
Caveat: not a free combinatory rule to be used for syntactic derivations,
only available as a morpho-lexical schema.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 26 / 35



Type-Raising: Scrambling in Germanic

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 27 / 35



Scrambling in Germanic

Scrambling of NP arguments is not freely allowed in most English dialects.

CCGs ensure case-raised NP↑s cannot combine by specifying slash-types to
exclude crossing composition: |3∗

*Sara gave cake her sister.

S/3∗(S\NP) ((S\NP)/NP)/NP (S\NP)\3∗((S\NP)/NP) (S\NP)\3∗((S\NP)/NP)
*<B×

***

Scrambling involving heavy NP-shift allowed with English VP adjuncts like
yesterday:

Sara saw today a really large dog.

S/3∗(S\NP) (S\NP)/NP (S\NP)\(S\NP) (S\NP)\3∗((S\NP)/NP)
<B×

(S\NP)/NP
<

S\NP
>

S

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 28 / 35



Scrambling in Germanic

Scrambling of NP arguments is not freely allowed in most English dialects.

CCGs ensure case-raised NP↑s cannot combine by specifying slash-types to
exclude crossing composition: |3∗

*Sara gave cake her sister.

S/3∗(S\NP) ((S\NP)/NP)/NP (S\NP)\3∗((S\NP)/NP) (S\NP)\3∗((S\NP)/NP)
*<B×

***

Scrambling involving heavy NP-shift allowed with English VP adjuncts like
yesterday:

Sara saw today a really large dog.

S/3∗(S\NP) (S\NP)/NP (S\NP)\(S\NP) (S\NP)\3∗((S\NP)/NP)
<B×

(S\NP)/NP
<

S\NP
>

S

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 28 / 35



Scrambling in Germanic

Scrambling of NP arguments is not freely allowed in most English dialects.

CCGs ensure case-raised NP↑s cannot combine by specifying slash-types to
exclude crossing composition: |3∗

*Sara gave cake her sister.

S/3∗(S\NP) ((S\NP)/NP)/NP (S\NP)\3∗((S\NP)/NP) (S\NP)\3∗((S\NP)/NP)
*<B×

***

Scrambling involving heavy NP-shift allowed with English VP adjuncts like
yesterday:

Sara saw today a really large dog.

S/3∗(S\NP) (S\NP)/NP (S\NP)\(S\NP) (S\NP)\3∗((S\NP)/NP)
<B×

(S\NP)/NP
<

S\NP
>

S

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 28 / 35



Scrambling in Germanic

Scrambling of NP arguments is not freely allowed in most English dialects.

CCGs ensure case-raised NP↑s cannot combine by specifying slash-types to
exclude crossing composition: |3∗

*Sara gave cake her sister.

S/3∗(S\NP) ((S\NP)/NP)/NP (S\NP)\3∗((S\NP)/NP) (S\NP)\3∗((S\NP)/NP)
*<B×

***

Scrambling involving heavy NP-shift allowed with English VP adjuncts like
yesterday:

Sara saw today a really large dog.

S/3∗(S\NP) (S\NP)/NP (S\NP)\(S\NP) (S\NP)\3∗((S\NP)/NP)
<B×

(S\NP)/NP
<

S\NP
>

S

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 28 / 35



Scrambling in Germanic

Scrambling of NP arguments is not freely allowed in most English dialects.

CCGs ensure case-raised NP↑s cannot combine by specifying slash-types to
exclude crossing composition: |3∗

*Sara gave cake her sister.

S/3∗(S\NP) ((S\NP)/NP)/NP (S\NP)\3∗((S\NP)/NP) (S\NP)\3∗((S\NP)/NP)
*<B×

***

Scrambling involving heavy NP-shift allowed with English VP adjuncts like
yesterday:

Sara saw today a really large dog.

S/3∗(S\NP) (S\NP)/NP (S\NP)\(S\NP) (S\NP)\3∗((S\NP)/NP)
<B×

(S\NP)/NP
<

S\NP
>

S

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 28 / 35



German scrambling
Type-raising of arguments (morpho-lexical and order-preserving) can interact
with function composition to derive scrambling effects in languages with
freer word-order.

(1) Johann
Johann

hat
has

[auf
at

dem
the

Markt]
market

[die
the

Lebensmittel
groceries

gekauft].
bought.

‘Johann bought the groceries at the market.’

(2) Johann
Johann

hat
has

[die
the

Lebensmittel
groceries

] [auf
at

dem
the

Markt]
market

gekauft.
bought.

‘Johann bought the groceries at the market.’

(3) *Johann
Johann

[die
the

Lebensmittel
groceries

] hat
has

[auf
at

dem
the

Markt]
market

gekauft.
bought.

‘Johann bought the groceries at the market.’
Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 29 / 35



CCG and German scrambling

Johann hat die Lebensmittel auf dem Markt gekauft.
Johann has the groceries at the market bought.

S/(S\NP) (Smain\NPnom)/VP VP/(VP\NP) VP/VP VP\NPacc
>B×

VP\NPacc
>

VP
>

S \NPnom
>

S

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 30 / 35



CCG and German scrambling (cont.)

*Johann die Lebensmittel hat auf dem Markt gekauft.
Johann the groceries has at the market bought.

S/(S\NP) VP/(VP\NPacc) (Smain\NPnom)/VP VP/VP VP\NPacc
>B×

VP\NPacc
>B×

(Smain\NPnom)\NPacc
*

***

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 31 / 35



IM: Wh-Movement

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 32 / 35



Wh-movement

Unbounded wh-movement is analyzed as merger by application of
second-order function to the residue left over after the wh-word has
moved out.

Fronted elements have to have a non-order preserving raised type.
So, we have both type-raising and lf alteration.

Topicalization:

Books, she hates.

St/(S/NP) : λp.p books S/(S\NP3s) : λp.p her (S\NP3s)/NP : λxλy .pres(hate x y)
>B

S/NP : λx .pres(hate x her)
>

St : pres(hate books her)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 33 / 35



Wh-movement

Unbounded wh-movement is analyzed as merger by application of
second-order function to the residue left over after the wh-word has
moved out.
Fronted elements have to have a non-order preserving raised type.

So, we have both type-raising and lf alteration.

Topicalization:

Books, she hates.

St/(S/NP) : λp.p books S/(S\NP3s) : λp.p her (S\NP3s)/NP : λxλy .pres(hate x y)
>B

S/NP : λx .pres(hate x her)
>

St : pres(hate books her)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 33 / 35



Wh-movement

Unbounded wh-movement is analyzed as merger by application of
second-order function to the residue left over after the wh-word has
moved out.
Fronted elements have to have a non-order preserving raised type.
So, we have both type-raising and lf alteration.

Topicalization:

Books, she hates.

St/(S/NP) : λp.p books S/(S\NP3s) : λp.p her (S\NP3s)/NP : λxλy .pres(hate x y)
>B

S/NP : λx .pres(hate x her)
>

St : pres(hate books her)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 33 / 35



Wh-movement

Unbounded wh-movement is analyzed as merger by application of
second-order function to the residue left over after the wh-word has
moved out.
Fronted elements have to have a non-order preserving raised type.
So, we have both type-raising and lf alteration.

Topicalization:

Books, she hates.

St/(S/NP) : λp.p books S/(S\NP3s) : λp.p her (S\NP3s)/NP : λxλy .pres(hate x y)
>B

S/NP : λx .pres(hate x her)
>

St : pres(hate books her)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 33 / 35



Wh-movement

Unbounded wh-movement is analyzed as merger by application of
second-order function to the residue left over after the wh-word has
moved out.
Fronted elements have to have a non-order preserving raised type.
So, we have both type-raising and lf alteration.

Topicalization:

Books, she hates.

St/(S/NP) : λp.p books S/(S\NP3s) : λp.p her (S\NP3s)/NP : λxλy .pres(hate x y)
>B

S/NP : λx .pres(hate x her)
>

St : pres(hate books her)

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 33 / 35



Wh-question formation

Auxiliaries (in English) specify the subject-inversion, not the subject.

What does she hate?

Swhq/(Sinv/NP) (Sinv/VP)/NP3s (Sinv/VP)\((Sinv/VP)/NP3s) VP/NP
: λpλwh.p wh : λyλp.pres(p y) : λp.p her : λxλy .hate x y

<
Sinv/VP : λp.pres(p her)

>B
Sinv/NP : λx .pres(hate x her)

>
Swhq : λwh.pres(hate wh her)

Wh-item has copies of what it has moved out of, p, and λ-binder.

Its syntactic category is specified as at the left edge of the sentence.

Its argument is thus passed into the wh-item as p.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 34 / 35



Wh-question formation

Auxiliaries (in English) specify the subject-inversion, not the subject.

What does she hate?

Swhq/(Sinv/NP) (Sinv/VP)/NP3s (Sinv/VP)\((Sinv/VP)/NP3s) VP/NP
: λpλwh.p wh : λyλp.pres(p y) : λp.p her : λxλy .hate x y

<
Sinv/VP : λp.pres(p her)

>B
Sinv/NP : λx .pres(hate x her)

>
Swhq : λwh.pres(hate wh her)

Wh-item has copies of what it has moved out of, p, and λ-binder.

Its syntactic category is specified as at the left edge of the sentence.

Its argument is thus passed into the wh-item as p.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 34 / 35



Wh-question formation

Auxiliaries (in English) specify the subject-inversion, not the subject.

What does she hate?

Swhq/(Sinv/NP) (Sinv/VP)/NP3s (Sinv/VP)\((Sinv/VP)/NP3s) VP/NP
: λpλwh.p wh : λyλp.pres(p y) : λp.p her : λxλy .hate x y

<
Sinv/VP : λp.pres(p her)

>B
Sinv/NP : λx .pres(hate x her)

>
Swhq : λwh.pres(hate wh her)

Wh-item has copies of what it has moved out of, p, and λ-binder.

Its syntactic category is specified as at the left edge of the sentence.

Its argument is thus passed into the wh-item as p.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 34 / 35



Wh-question formation

Auxiliaries (in English) specify the subject-inversion, not the subject.

What does she hate?

Swhq/(Sinv/NP) (Sinv/VP)/NP3s (Sinv/VP)\((Sinv/VP)/NP3s) VP/NP
: λpλwh.p wh : λyλp.pres(p y) : λp.p her : λxλy .hate x y

<
Sinv/VP : λp.pres(p her)

>B
Sinv/NP : λx .pres(hate x her)

>
Swhq : λwh.pres(hate wh her)

Wh-item has copies of what it has moved out of, p, and λ-binder.

Its syntactic category is specified as at the left edge of the sentence.

Its argument is thus passed into the wh-item as p.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 34 / 35



Wh-question formation

Auxiliaries (in English) specify the subject-inversion, not the subject.

What does she hate?

Swhq/(Sinv/NP) (Sinv/VP)/NP3s (Sinv/VP)\((Sinv/VP)/NP3s) VP/NP
: λpλwh.p wh : λyλp.pres(p y) : λp.p her : λxλy .hate x y

<
Sinv/VP : λp.pres(p her)

>B
Sinv/NP : λx .pres(hate x her)

>
Swhq : λwh.pres(hate wh her)

Wh-item has copies of what it has moved out of, p, and λ-binder.

Its syntactic category is specified as at the left edge of the sentence.

Its argument is thus passed into the wh-item as p.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 34 / 35



Conclusion

Steedman shows all different types of surface syntactic discontinuity are
able to be accounted for in CCG in terms of contiguous merger of local
domains that itself is strictly local.

λ-binding in lexical logical forms creates potentially unbounded
dependency domains without requirement of cyclic mediation.
IM is thus reduced at the level of syntactic derivation to EM, which
reduces Move to purely local contiguous Merge. This is in comparison
to Minimalist systems which are not entirely synchronous, as opposed
to CCG here.
Probes, goals, valuations, feature deletion, and visibility conditions can
all be eliminated.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 35 / 35



Conclusion

Steedman shows all different types of surface syntactic discontinuity are
able to be accounted for in CCG in terms of contiguous merger of local
domains that itself is strictly local.
λ-binding in lexical logical forms creates potentially unbounded
dependency domains without requirement of cyclic mediation.

IM is thus reduced at the level of syntactic derivation to EM, which
reduces Move to purely local contiguous Merge. This is in comparison
to Minimalist systems which are not entirely synchronous, as opposed
to CCG here.
Probes, goals, valuations, feature deletion, and visibility conditions can
all be eliminated.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 35 / 35



Conclusion

Steedman shows all different types of surface syntactic discontinuity are
able to be accounted for in CCG in terms of contiguous merger of local
domains that itself is strictly local.
λ-binding in lexical logical forms creates potentially unbounded
dependency domains without requirement of cyclic mediation.
IM is thus reduced at the level of syntactic derivation to EM, which
reduces Move to purely local contiguous Merge. This is in comparison
to Minimalist systems which are not entirely synchronous, as opposed
to CCG here.

Probes, goals, valuations, feature deletion, and visibility conditions can
all be eliminated.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 35 / 35



Conclusion

Steedman shows all different types of surface syntactic discontinuity are
able to be accounted for in CCG in terms of contiguous merger of local
domains that itself is strictly local.
λ-binding in lexical logical forms creates potentially unbounded
dependency domains without requirement of cyclic mediation.
IM is thus reduced at the level of syntactic derivation to EM, which
reduces Move to purely local contiguous Merge. This is in comparison
to Minimalist systems which are not entirely synchronous, as opposed
to CCG here.
Probes, goals, valuations, feature deletion, and visibility conditions can
all be eliminated.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 35 / 35



References

Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MA: MIT
Press.

Steedman, Mark. 2023. On Internal Merge. Linguistic Inquiry ; doi:
https://doi.org/10.1162/ling_a_00521.

Isabella Senturia (Hopf Algebra seminar) On Internal Merge October 9, 2023 36 / 35


	Introduction
	Defining CCGs and External Merge
	Internal Merge
	Type-raising
	Type-Raising: Scrambling in Germanic
	IM: Wh-Movement

