Hopf algebra Reading seminar

András Kornai

June 212023 2PM CET

Organization

- 2 pm zoom https://us02web.zoom.us/j/84045659802?pwd=L3grbWtqREE4OE
- 11pm zoom https://us02web.zoom.us/j/89203668566?pwd=M1dRL2ozOWxBT
- Slack https://join.slack.com/t/slack-qyx1689/shared_invite/zt-1xppi4d00-WnJhAvg_ThoSBOw9xH7ylw
- Course webpage https://nessie.ilab.sztaki.hu/~kornai/2023/Hopf Also reachable as kornai.com $\rightarrow 2023 \rightarrow$ Hopf
- Attendance sheet
https://docs.google.com/spreadsheets/d/17cK-cl3_xdbo73_kHWCIAvwgkdG6qz44J4D6tyFfAc/edit?usp=sharing
- Add github repo?

GoALS

(0) Our focus will be with the application(s) to natural language
(3) HAs are a family of methods not a single unified theory - we need to understand how to build HAs for typical data structures used by linguists: (planar) trees, wild trees, finite functions, DAGs, codescriptive stuff,...

- We want not just a shared understanding, but we want to (computer) verify it
(0) Looking for volunteers to explain minimalism, HAs, ML, and TP from an expert perspective to non-experts. Sign up on the appropriate slack channel
- If you have goals that don't look like a good fit with the above, explain them now

Background: SYMBOLIC COMPUTATION

 WITH NNS- We start with three papers: McCulloch and Pitts, 1943; Little, 1974 and Smolensky, 1990
- McC-P: We have a bunch of neurons (IRL 10^{12}) which we assume to be binary (on or off). Individually they change state on a millisecond, collectively on femtosecond scale. Each brain state is characterized by a thought vector $\Psi(t)$ of dim 10^{12}
- I/O neurons are clamped to some state (we will ignore these for the most part)
- Language acquisition takes place on a multi-year scale, with a child learning maybe (peak) 40 words/day. If state vectors are updated according to some $2^{10^{12}}$ by $2^{10^{12}}$ transition matrix P as $\Psi(t+1)=\Psi(t) P$, we see P change adiabatically (1 change in P for 10^{17} changes in Ψ). On a second/minute scale we may as well assume P is constant

LittLe:1974

- P is stochastic, we have a Markov chain. (Once we know enough, we may invite Amy Pang to discuss her stuff.)
- By Perron-Frobenius, P has a unique largest eigenvalue $\lambda_{0}=1$, the corresponding eigenvector gives the long-term state distribution ϕ_{0}
- P is big. But with probability 1 it is diagonalizable, so we can select an eigenvector basis $\left\{\phi_{r}\right\}$ arranged in decreasing order of the eigenvalues λ_{r} so that for any vector α we have $\alpha=\sum_{r} a_{r} \phi_{r}$
- In this basis, $\langle\Psi(t+1)| P|\Psi(t)\rangle=\Sigma_{r} \lambda_{r} \phi_{r}(\Psi(t+1)) \Psi_{r}(t)$

Machine Learning

THIS IS YOUR MACHINE LEARNNG SYSTEM?
YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.
WHAT IF THE ANSWERS ARE WRONG?)
JUST STRR THE PILE UNTLL THEY START LOOKING RIGHT.

Linear algebra for automata

Survey - BEGINNER

- What is the P transition matrix for the top automaton?
- Can you compute the eigenvector basis?
- How about the second automaton?
- How about the third (8 state) automaton?

SURVEY - INTERMEDIATE

- Can you generalize to 2^{n} states?
- What software are you using to compute the eigenvalues? How far can you push it?
- Can you provide a formula for the second largest eigenvalue?
- Can you prove it?
- Can you locate a computer-verified proof of Perron-Frobenius?

SURVEY - ADVANCED

- Can you generalize from linear connectivity (as on the examples) to planar, spatial, n-dim? How do the transition matrices P look like?
- What can you show about the gap between 1 and the 2 nd largest eigenvalue?
- Can you coax a theorem prover into proving your formula?
- How about proving upper and lower bounds?
- Physicists do a lot of stuff the mathematicians find objectionable, but the results often stand up. How can TPs/verifiers support such arguments?
(ittle, W. A. (1974). "The existence of persistent states in the brain". In: Mathematical Biosciences 19, pp. 101-120.
囲 McCulloch, W.S. and W. Pitts (1943). "A logical calculus of the ideas immanent in nervous activity". In: Bulletin of mathematical biophysics 5, pp. 115-133.
目 Smolensky, Paul (1990). "Tensor product variable binding and the representation of symbolic structures in connectionist systems". In: Artificial intelligence 46.1, pp. 159-216.

