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Computational perspectives on minimalism

While research in ‘principles and parameters’ tradition [18] can be re-
garded as attributing as much as possible to universal grammar (UG) in
order to understand how language acquisition is possible, Chomsky charac-
terizes the ‘minimalist program’ as an effort to attribute as little as possible
to UG while still accounting for the apparent diversity of human languages
[23, p.4]. Of course, these two research strategies aim to be compatible, and
ultimately should converge. Several of Chomsky’s own early contributions
to the minimalist program have been fundamental and simple enough to
allow easy mathematical and computational study. Among these contribu-
tions are (1) the characterization of ‘bare phrase structure,’ and (2) the
definition of a structure building operation merge which applies freely to
lexical material, with constraints that ‘filter’ the results only at the PF and
LF interfaces. The first studies inspired by (1) and (2) are ‘stripped down’
to such a degree that they may seem unrelated to minimalist proposals, but
in this paper, we show how some easy steps begin to bridge the gap.

This paper briefly surveys some proposals about (3) syntactic features
that license structure building, (4) ‘locality,’ the domain over which struc-
ture building functions operate, (5) ‘linearization’, determining (in part) the
order of pronounced forms, and (6) the proposal that merge sometimes in-
volves ‘copies.’ Two very surprising, overarching results emerge. First, seem-
ingly diverse proposals are revealed to be remarkably similar, often defining
identical languages, with recursive mechanisms that are similar (Thms. 2-
5, below). As noted by Joshi [47] and others, this remarkable convergence
extends across linguistic traditions and even to mathematical work that
started with very different assumptions and goals (Thm. 1, below). Second,
all the mechanisms reviewed here define sets of structures with nice compu-
tational properties; they all define ‘abstract families of languages’ (AFLs)
that are efficiently recognizable. This raises an old puzzle: why would human
languages have properties that guarantee the existence of parsing methods
that correctly and efficiently identify all and only the well-formed sentences,
when humans apparently do not use methods of that kind? A speculation
– perhaps supported by the whole cluster of AFL properties – is that this
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might facilitate learning, by facilitating the calculation of how lexical prop-
erties should be adjusted in light of input available to the learner.

One methodological point should be noted immediately. One way to
study generative mechanisms is by considering what they generate, what
structures and what ‘sentences’. Often this is the first, easiest thing to as-
sess. This does not indicate that the linguists’ task is to provide grammars
generating all and only some set of pronounced sequences that are judged
‘grammatical’. For one thing, syntactic principles (at least to a good first
approximation) do not depend on phonetic properties, and so in our formal
studies, the alphabet of pronounced complexes gets scant attention – in a
certain sense, we do not care what the sequences are, but only what kinds
of patterns they exhibit. And morphophonology also intervenes to obscure
the sequences of syntactic heads in ways that are not well understood. But
most importantly, in studying syntax, we abstract away from many ‘non-
syntactic’ influences on language, factors which are not known in advance.
Spoken phonetic sequences, intuitive judgments about ‘sentences’, and cor-
pus studies can provide our evidence, in part, but we do not know a priori,
in advance of the science, what should count as a ‘sentence’, or which prop-
erties of language can be explained in which ways. This methodological
stance is familiar from [16, Chapter 1, Section 1] and many other places.

1. Bare phrase structure

Following Muysken [71], Chomsky [20, pp.242-243] suggests that the impor-
tant insight of X-bar syntax is a relational one: a head X determines certain
relevant properties of the phrase XP it is the head of. This idea, sometimes
called ‘endocentricity,’ gets its content with a specification of what com-
prises a phrase XP and which properties are relevant. Which properties of
the complex XP are visible later in the derivation, and which are determined
by the head? These properties are sometimes called the ‘label’ of the com-
plex: Chomsky [23, p.17] says “all operations are driven by labels.” If the
labels encode what is visible to syntactic operations, they must encode at
least those properties of the head that have an influence on later derivational
steps, and any properties of other elements that can enter into other syntac-
tic relations (‘valuation’, ‘licensing’) elsewhere in the derivation. Chomsky
[20, p.245] suggests that merging constituents α and β yields a set {α, β}
together with label α,

(1) {α, {α, β}},

a complex that could be also be regarded as an unordered tree:1

(2) α

α β

The set notation and the tree both represent α twice, but that is not nec-
essary.2 A slight variant of this notation from [91] represents α just once,
with a tree notation in which internal nodes are labeled with order symbols
(< or >) ‘pointing’ towards the head:
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(3) <

α β

We could label the leaves of these trees with lexical items, but we can
further reduce clutter in the representation by assuming that all and only
the syntactic features of heads are visible, where these features are ‘erased’
once they cease to play a role. In that case, the leaves will either be lexical
items or simpler structures.

Some research in the minimalist program also assumes that when el-
ements are merged, their linear order (and possibly even the question of
whether they will be pronounced) may not be determined until later in the
derivation. We will postpone consideration of this abstraction, and tenta-
tively assume that linear order can be determined locally by the nature of
the elements merged, forming complexes in which linear order can already
be determined. So we will use the notation of (3), departing from (2) not
only with the indication of headedness but also with the assumption that
the tree is linearly ordered. Some adjustments to this tentative assumption,
and other ideas about ‘linearization’, are briefly considered in §5 below.

With these assumptions, consider a tree like this:

(4) >

<

1 >

2 <

3 4

>

<

5 6

>

7 <

8 9

The head of this whole tree is the node labeled 8. Every tree is regarded as
a subtree of itself, and the leaves are subtrees too. Let’s say that a subtree
is a ‘maximal phrase’, or a ’maximal projection’, or simply ‘maximal’, if
it is not properly included in any larger subtree that has the same head.
The ‘minimal’ elements in each tree are the leaves. Then the subtree of (4)
with leaves 234 is maximal, while the subtree containing only 34 is neither
maximal nor minimal, and the subtree containing only the leaf 4 is both
maximal and minimal. Furthermore, with the assumption that the tree is
linearly ordered, the heads are pronounced in the order 123456789.

Considering the lexical items more carefully, let’s assume that they have
semantic and phonetic features, which are distinct from the formal syntac-
tic features. We will put the non-syntactic features first (usually using the
conventional spelling of a word to indicate what is intended), followed by a
double colon ::, followed by a sequence of syntactic features.

Phon :: feature1 feature2. . . featureN.

We use the double colon :: in lexical items, but for reasons mentioned in
Appendix 1, in derived structures a colon : will separate phonetic from syn-
tactic features – in the body of this paper this distinction will be respected
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but will not matter. And here we assume that syntactic features are ordered
sequentially, but an alternative is considered in §3, below.

Tentatively, let’s distinguish four kinds of syntactic features: in addition
to the usual ‘categorial’ features N, V, A, P, C, T, D,. . . , let’s assume
that a head which wants to select a phrase of category X has a features
=X. So then we have the ‘selector’ features =N, =V, =A, =P, =C, =T,
=D. . . . Ultimately, of course, we would like to understand the nature of
these features – why some verbs select DP arguments, for example, but for
the moment we simply give such a verb a feature =D.3 Some other properties
may require or allow a licensing relationship of a different kind, so we will
have ‘licensee’ or ‘goal’ features -wh, -focus, -case,. . . . We assume, initially,
that these features are all distinct; for example, no licensee feature is also a
category. The heads that can license phrases with such requirements will be
called ‘licensors’ or ‘probes’ and will have features +wh, +focus, +case,. . . .
So a simplistic lexicon might have 4 items like this:

Marie :: D
who :: D -wh

praises :: =D =D V
ǫ :: =T +wh C.

A minimalist grammar (MG) is simply a finite lexicon like this. That
is, a minimalist grammar G is a lexicon

(5) G ⊂ Phon × Features∗, a finite set,

where Features∗ is the set of finite sequences of syntactic features, and where
the elements of the lexicon are combined by the merge operation which is
defined in §2, just below. Later sections consider some variations in both
the feature system and in the the merge function.

2. Merge: First version

We will regard the lexicon as providing the labels for 1-node trees, so that
merge can be regarded as a function that applies either to pairs of trees
(‘external merge’, em) or to single trees (‘internal merge’, im). Since we
are assuming that the derived structures specify linear order (an option we
reassess in §5 below), em is specified with two cases as well. When a lexical
selector combines with a first element, that element is attached on the right
and is called the complement. When a derived expression selects another
element, that element is attached on the left and is called a specifier. (Some
linguists have proposed that each category can have at most one specifier,
but these first definitions will not impose that bound, allowing any number
of specifiers.) Furthermore, we assume that the selector features =X and
X must be the first features of the heads of the arguments, and that they
are both erased by merge. For example, applying merge to the pairs of
structures shown on the left, we obtain the derived structures on the right:
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praises::=D =D V + Pierre::D ⇒ <

praises:=D V Pierre

<

praises:=D V Pierre

+ Marie::D ⇒ >

Marie <

praises:V Pierre

Let’s write t[α] when the head of tree has a sequence of syntactic features
whose first element is α. Given a structure t[α], let t denote the result of (i)
erasing feature α and (ii) if the head of t[f ] has a double colon ::, changing
it to a colon. And for any tree t, let |t| be the number of nodes in t. Then
the function em is given by

(6) em(t1[=x], t2[x]) =























<

t1 t2 if |t1| = 1
>

t2 t1 otherwise

To reduce notational clutter, we write a leaf node label word:ǫ simply as
word, as in the Marie praises Pierre examples above. And leaf nodes with
no features at all, ǫ : ǫ, are usually written just ǫ, or as nodes with no label.
In particular, the tree consisting of one node and no (phonetic, semantic or
syntactic) features is sometimes called ǫ.

Internal merge applies to a single structure t[+x] only if it satisfies this
strong version of the ‘shortest move constraint’:

(7) SMC: Exactly one head in the tree has -x as its first feature.

In that case, im moves the maximal projection of the -x head to specifier
position, leaving an empty subtree ǫ behind. (§6.5 considers the idea that im
involves a copy, leaving the original -x phrase in its original position. Covert
movements that leave the phonetic material behind are briefly discussed in
§6.2 below.) So for example,

<

ǫ:+wh C >

Marie <

praises <

which:-wh student

⇒ >

<

which student

<

ǫ:C >

Marie <

praises
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To define this operation, given any tree t, let t{t1 7→ t2} be the result of
replacing subtree t1 by t2 in t, and given any subtree (possibly a leaf) t, let
tM be the maximal projection of the head of t. Then im applies to a tree
t1[+x] containing subtree t2[-x], by deleting the +x feature to obtain t1,
removing the maximal projection of the -x head to obtain t1{t2[-x]M 7→ ǫ},
and finally adding tM2 as a specifier. In sum,

(8) im(t1[+x]) =

>

tM2 t1{t2[-x]M 7→ ǫ} if SMC.

Since em and im apply in different cases, their union is also a function,
which we will call merge.

Example G1. Consider the grammar G1 given by these 6 lexical items,
numbered for easy reference:

0 Pierre::D who::D -wh 4

1 Marie::D ǫ::=V +wh C 5

2 praises::=D =D V knows::=C =D V 6

3 ǫ::=V C

With this grammar G, we can apply merge (em and im) as follows, for
example:

em(2,4)= 7

<

praises:=D V who:-wh

em(7,1)= 8

>

Marie <

praises:V who:-wh

em(5,8)= 9

<

ǫ:+wh C >

Marie <

praises who:-wh

im(9)= 10

>

who <

ǫ:C >

Marie <

praises

For any MG G, let the set structures(G) includes all and only the struc-
tures that can be derived from the lexical items of G by applying merge in
all possible ways. Let a completed structure is one in which (i) there is
exactly 1 syntactic feature, (ii) that feature is the ‘root’ or ‘start’ category,
and (iii) that feature is at the head of the tree. And let the language L(G)
be the set of phonetic sequences at leaves of completed structures of G.

The derivation tree of the 4 step derivation of our example can be drawn
like this:

◦

•

ǫ::=V +wh C •

•

praises::=D =D V who::D -wh

Marie::=D
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Here we use • to represent em, and ◦ to represent im. Since these functions
apply unambiguously, the derived structure obtained at each internal node
of this derivation tree is completely determined. So if C is the ‘start’ category
of our example grammar G, then this derivation shows that the sentence who
Marie praises ∈ L(G1). Notice that the derivation tree is not isomorphic to

the the derived tree, numbered 10 just above.
Minimalist grammars (MGs), as defined here by (5), (6) and (8), have

been studied rather carefully. It has been demonstrated that the class of
languages definable by minimalist grammars is exactly the class definable
by multiple context free grammars (MCFGs), linear context free rewrite
systems (LCFRSs), and other formalisms [62,64,66,41]. MGs contrast in
this respect with some other much more powerful grammatical formalisms
(notably, the ‘Aspects’ grammar studied by Peters and Ritchie [76], and
HPSG and LFG [5,46,101]):

Fin Reg CF MG non−RERec RECS

Aspects,HPSG,LFG

The MG definable languages include all the finite (Fin), regular (Reg), and
context free languages (CF), and are properly included in the context sen-
sitive (CS), recursive (Rec), and recursively enumerable languages (RE).
Languages definable by tree adjoining grammar (TAG) and by a certain
categorial combinatory grammar (CCG) were shown by Vijay Shanker and
Weir to be sandwiched inside the MG class [103].4 With all these results,

Theorem 1. CF⊂ TAG ≡ CCG ⊂ MCFG ≡ LCFRS ≡ MG ⊂CS.

When two grammar formalisms are shown to be equivalent (≡) in the
sense that they define exactly the same languages, the equivalence is of-
ten said to be ‘weak’ and possibly of little interest to linguists, since we are
interested in the structures humans recognize, not in arbitrary ways of defin-
ing identical sets of strings. But the weak equivalence results of Theorem 1
are interesting. For one thing, the equivalences are established by providing
recipes for translating one kind of grammar into another, and those recipes
provide insightful comparisons of the recursive mechanisms of the respective
grammars. Furthermore, when a grammar formalism is shown equivalent to
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another one that is already well studied, many new facts about the new
formalism may come to light; this in fact happened in the case of MGs.

One key insight behind Theorem 1 can be expressed as follows [63,66,
62, for full details]. For any MG G, let’s say that a derived tree in struc-
tures(G) is useful or relevant if and only if it is used in a derivation of
a completed structure. That is, completed structures are useful, and so are
all the structures involved in their derivations. Let useful(G) be the set of
useful elements of structures(G). Then it is easy to see that every minimalist
grammar G has the following property:

(9) (Finite partition) ∃n ≥ 0, ∀t ∈ useful(G), the number of heads in
t with syntactic features is less than n. So every useful structure can
be classified according to which features these heads have, providing
a finite partition of useful(G).

MGs have this property because, first, there can only be a finite number of
lexical items, and so there can only be a finite number of licensee features.
Second, each head in a useful tree will have some suffix of the syntactic fea-
ture sequences in the lexicon, since syntactic features are checked and erased
in order, from the front. And third, by the SMC, no useful tree can have two
heads beginning with the same licensee. So there can only be finitely many
heads with non-empty sequences of syntactic features. Classifying each use-
ful tree according to these feature sequences, in a relevant sense, completely
determines syntactic properties of that tree.

Michaelis [63, §5.2] shows that MG languages have a large set of nice
closure properties that make the class a ‘substitution-closed full abstract
family of languages’ (AFL) in the standard sense introduced in [35] and
discussed in [59, §3].5 This means, for example, that it is easy to represent
the intersections of minimalist languages and the results of certain kinds
of substitutions and other operations. Many standard parsing methods and
probabilistic models depend implicitly on AFL properties [39,72,36].

It is also known that the MG definable languages are efficiently parsable
[90], and that standard parsing methods can be adapted for them [42].6 In
CKY and Earley parsing models, the operations of the grammar (em and
im) are realized quite directly by adding, roughly, only bookkeeping oper-
ations to avoid unnecessary steps. For any minimalist grammar G, these
parsing models are guaranteed to accept all and only the elements of L(G).
(In cases of non-sentences these parsing methods will not ‘succeed’, but will
often detect non-trivial subconstituents, a presumably useful input to repair
or learning strategies.) Humans, on the other hand, in the recognition of flu-
ent speech, seem to use parsing methods that fail on certain kinds of fully
grammatical structures; among the best-known examples are garden paths
like the horse raced past the barn fell [77], and highly ambiguous strings
like police police police police police police [4, §3.4]. It is an open question
whether the human failures can be attributed to externally imposed limita-
tions on mechanisms that can otherwise handle all constructions definable
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with merge (cf. the chapter on processing in this volume, and the discussion
of grammar-performance relations in [6]).

Earlier formal studies of government-binding (GB) theory [86,87,55]
concluded that it was a context free grammar notation, up to indexing.7 But
those GB grammars required that each moved constituent c-command its
trace, blocking ‘remnant movement’. That requirement, sometimes called a
‘proper binding condition’ (PBC), is now generally regarded as too stringent
[2,9,44,70,69,53,48], and is not imposed here. Familiar remnant movement
analyses include structures like these:

(10) a. [AP2
How likely [t1 to win]] is3 John1 t3 t2?

b. John [V P2
reads t1] [no novels]1 t2.

c. [V P2
t1 Gelesen]

read
hat
has

[das
the

Buch]1
book

[keiner
noone

t2].

Notice that without the PBC, many of the common, simplistic assumptions
about processing models will not work: processors cannot work left-to-right
by putting moved elements into a memory store and then watching for
the corresponding gap, since human languages not only allow constructions
in which gaps precede the moved elements, but also ‘remnant movement’
structures like (10) where moved elements can contain moved elements (re-
cursively, without bound).8

3. Merge: Conflated and persistent features

Minimalist grammars, as defined in the previous sections, partition the cat-
egories and the licensees into non-overlapping sets, but perhaps some prop-
erties of heads can enter into both selection and movement relations. For
example, a verb might select a D, and a tense head might want that very
same element to appear in its specifier because it is a D. The MGs above
insist on having two features for these two different roles: category D can
be selected, while only -D could be licensed by movement.

Inspired by Chomsky [20, §4.4.4] and Collins [27, §5.2], let’s (i) conflate
the categories and licensees, using only features f and selectors/licensors =f,
and (ii) specify that some subset of these features is persistent (or ‘inter-
pretable’). (Non-persistent features are sometimes called ‘formal’.) If fea-
tures are ordered and merge steps do not erase persistent features, then
everything following a persistent feature would be inaccessible. So we could
remove the order, and assume that constituents have a set of features. That
approach is common, but then when a head selects two constituents, what
controls which constituent is selected first? To avoid that problem, let’s
keep ordered features but allow merge to optionally erase persistent fea-
tures, so that when they have played all their roles in a derivation they can
be deleted. For this approach, we leave the previous definition of em (6)
unchanged; we modify the definition of im (8) so that it is triggered by =x,
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(11) im(t1[=x]) =

>

tM2 t1{t2[x]M 7→ ǫ} if SMC,

and for persistent features we add variants of (6) and (11) that apply only
to persistent features, leaving them unerased. (Persistent features are un-
derlined.)

(12) em’(t1[=x], t2[x]) =























<

t1 t2[x] if |t1| = 1
>

t2[x] t1 otherwise,

im’(t1[=x]) =

>

t2[x]
M t1{t2[x]M 7→ ǫ} if SMC

Let’s call these grammars ‘conflated minimalist grammars’ (CMGs): merge
is now defined by (6), (11), and (12).

Example G2. In his discussion of persistent features, Collins [27, p.102]
considers a structure that he gives schematically as follows:

(13) [TP Johni [T’ T [VP seems [TP ti [T’ to be [SC ti in the room]]]]]],

The following tiny CMG lexicon suffices to derive structures of this form.
(Persistent features are underlined, and remnant movement triggered by
feature h is used get the preposition into the right place. Cf. §6.1 below on
head movement).

ǫ::=V =k T seems::=T V to::=v =D T
be::=p v in::=D P h ǫ:=P =k =h =D p
the::=N D k room::N John::D k.

The derivation shown below, left, yields the structure on the right:

◦

•

ǫ::=V =k T •

seems::=T V ◦

•

to::=v =D T •

be::=p v •’

◦

◦

•

ǫ::=P =k =h =D p •

in::=D P h •

the::=N D k room::N

John::D k

>

John <

ǫ:T <

seems >

<

to <

be >

>

<

in

>

<

the room

<
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The bare phrase structure reveals so little about the derivation, it can be
useful to compute the corresponding redundant but more readable X-bar
tree:

TP

DP(2)

D’

D

John

T’

T VP

V’

V

seems

TP

DP

t(2)

T’

T

to

vP

v’

v

be

pP

DP

t(2)

p’

PP(1)

P’

P

in

DP

t(0)

p’

DP(0)

D’

D

the

NP

N’

N

room

p’

p PP

t(1)

The MG finite partition property (9) still holds for CMGs: in useful CMG
trees, there is a finite bound on the number of visible heads. And in fact,
MGs and CMGs do not differ at all in the languages they define:

Theorem 2. CMG≡MG.

A proof is sketched in Appendix A.1, below. This result obviously means
that the question of whether humans use CMGs rather MGs cannot be
based simply on what expressions are in any particular language. In fact, it
is not clear that an implementation of an CMG could be distinguished from
an implementation of an MG: they might be different specifications of the
very same implemented computation.9

Many other feature checking and feature percolation schemes are pro-
posed in the literature (and we will consider one more in §4.2, below). Some
are similar in expressive power and succinctness to the ones in MGs or
CMGs; others are known to make the grammars as powerful as any com-
puting device [50]. Obviously, the real challenge is to see through the nota-
tional variants to find the most restrictive characterizations that can provide
insightful, explanatory models of human language abilities.
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4. Merge: Locality

4.1. Phases

It is possible that certain categories make everything in their complements
invisible to syntactic operations, acting rather like the ‘bounding nodes’ of
earlier work in the GB tradition. We could call such categories ‘phases’,
after the similar proposals in the literature [21,22,24,12,1]. For example,
the categories v and C could be phases in this sense. The following simple
condition, which we will call PIC after the similar formulations of ‘phase im-
penetrability conditions’ in the literature, obtains the desired effect in MGs
as soon as the phase feature becomes visible, which will always happen ex-
actly at the point when the projection of the phase, including all movements
to specifier positions (the ‘edge’ of the category), has been completed:

(14) (PIC) Merge cannot apply to a tree t[f ] if f is a phase and if the
complement of the head of t[f ] has any syntactic features.

The PIC restricts both em and im, so no outstanding conditions in the
complement of any phase can ever appear in a successful derivation. Call
MGs with this constraint ‘phase-based minimalist grammars’ (PMGs): they
are (i) MGs as defined in §§1-2, (ii) extended with a specification of which
categories (if any) are phases, and (iii) with PIC. We can also consider
‘phase-based conflated minimalist grammars’ (PCMGs) by imposing PIC
on the CMGs of §3.

We can establish the following result, and easily adapt the standard MG
parsing methods to the phase-based grammars:

Theorem 3. PCMG≡PMG≡MG.

A proof is sketched in Appendix A.2.
One of the intuitive ideas behind phase theory is that the material in

the complements of phases is ready to be “sent to the interfaces” – so that
no syntactic operations can affect the interpretation or the linear order of
pronounced elements inside a phase complement. Notice that, at least with
regard to the pronounced sequences, we can establish this as a theorem
about PMGs (and PCMGs) too: since no outstanding syntactic features
are allowed in phase complements, it follows immediately that nothing can
affect the linear order of phrases there. Chomsky apparently has some ad-
ditional point in mind [23, pp.16-17, for example]: perhaps phases could
provide some analog of the finite partition property, so that, even without
the assumption of SMC or anything like it, no search of unbounded struc-
ture would ever be needed to determine whether a derivational step can be
taken (e.g. to find a matching head for im). For example, suppose that the
amount of syntactically visible material in a phase (not counting the mate-
rial inside contained phases) were finitely bounded; that could be significant
for recognition or any other algorithm that required discovering derivations.
But phases as defined above provide no such guarantee.10
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4.2. Relativized minimality

The SMC given in (7) above blocks derivations in which there are two
-wh elements competing for the same position; intuitively, allowing either
to move would mean that the other would not be checked by the closest
available +wh position. In a natural grammar, this principle could block
constructions like this:11

(15) Whati do you wonder howj [to solve ti tj ]

Rizzi’s ‘relativized minimality’ suggests a natural generalization of the SMC,
extending intervention beyond matching features to broader classes [82,81,
80]. Not only can one wh-phrase not move across another, but also, for
example, in (16) one subject cannot move across another, and in (17) one
adverb cannot move across another (examples 16-19 from [81]):

(16) * Johni seems that it is likely ti to win

(17) Rapidamentei,
rapidly,

i
the

tecnici
technicians

hanno
have

(*probabilmente)
probably

risolto
resolved

ti

il
the

problema
problem

(Italian)

However, it seems that an adverb can sometimes be extracted across an
adverb, e.g., if it is being moved to a stressed focus position,

(18) RAPIDAMENTEi,
RAPIDLY,

i
the

tecnici
technicians

hanno
have

probabilmente
probably

risolto
resolved

ti il
the

problema
problem

(non
(not

lentamente)
slowly)

A similar kind of ‘selective island’ effect is also suggested by Obenauer’s
examples,

(19) a. [Combien
how-many

de
of

livres]i
books

a-t-il
has-he

beaucoup
much

consultés
consulted

ti (French)

b. *Combieni a-t-il beaucoup consultés [ti de livres]

Notice also that in (16), (17), and (19b), the intervening elements are block-
ing the movements because of features that will have been checked and
deleted in an MG or CMG derivation at the time when the offending move-
ment wants to take place. So in order to determine this kind of intervention,
several changes in the MG formalism are needed.

We adapt MGs to capture a number of Rizzi’s insights as follows. First,
we conflate selectors with probes, and licensees with categories, distinguish-
ing some subset of these as persistent, as in CMGs. Second, in order to ob-
tain intervention effects like those suggested by (16) and (17), since checked
features seem to be relevant, the merge rule is modified so that, while the
distinction between persistent and non-persistent features is maintained for
checking relations, all features remain visible for intervention effects. In-
stead of marking progress on the requirements of lexical items by erasing
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features, we move a dot through the sequence. That is, lexical items will
start with dot-initial feature list •α1α2 . . . αn; when α1 is checked and be-
comes invisible to any other probe, we get the sequence α1•α2 . . . αn; and
when α1 is checked and persists (e.g. for the kind of cyclic movements men-
tioned in §3), the feature sequence is left unchanged. The dot is similarly
moved across later features, marking the unique feature that is visible to a
probe/selector while leaving all the features available for the determination
of blocking effects. In this system, the notation t[f ] refers to a tree whose
head has feature f immediately following the dot. Third, for any tree t, let
type be a function mapping each basic feature f to features that will block
movement of t[f ]. And finally, potential interveners are defined in terms
of c-command as follows.12 For any subtree t2 of tree t1, let cover(t2) be
the set of features of heads t3 such that tM3 c-commands tM2 . With these
definitions, we formulate this replacement for the SMC:

(20) (RMC) Im applies to t1[=f ] only if (i) t1[=f ] has exactly one subtree
t2[f ], and (ii) cover(t2[f ]) ∩ type(f) = ∅.

Let’s call grammars that are constrained in this way “relativized minimalist
grammars” (RMGs). In this kind of RMG it is possible to require that a =f
movement of an adverb is blocked by another intervening adverb, while a
different kind of movement triggered by a different feature =g can move the
same adverb without being blocked. RMGs have the same expressive power
as MGs, and standard parsing methods extend to them (Appendix A.3):

Theorem 4. RMG≡MG.

In recent work, Rizzi has proposed another, rather different restriction
on movement. The reader will have noticed that in example G2, above,
an ‘abstract case’ feature -k was checked in the tensed matrix clause. Rizzi
observes that the subject requirement is not always associated with the case
system in this way, and proposes a more general, semantically-motivated
account of why clauses need subjects and why subjects of tensed clauses
tend not to be movable [83,84]. Adapting his account slightly to the terms
of the present framework:

(21) Certain designated positions are ‘criterial’ in the sense that they are
dedicated to a particular interpretive property. These positions may
be identified as the specifiers created by +f features for f = q, top,
foc,. . .

(22) (Criterial freezing) Nothing can be moved from a criterial position.

Rizzi shows how a range of subject-object asymmetries follow from the fact
that there is a ‘subject criterion’ but not an ‘object criterion’.13 In the
present framework, criterial freezing is achieved simply by making the cri-
terial features non-persistent, and requiring (perhaps for semantic reasons)
that these features always appear as the last feature of any head.14
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4.3. Multiple movements and multiple agree

The theory of merge and its locality restrictions needs to allow for wh-
in-situ and multiple wh-fronting [88,61,13,11]. Wh-in-situ can be allowed
in simply by assuming that they do not have formal features which must
be checked by movement. Multiple wh-movement poses trickier problems
for SMC (and also RMC and related constraints): they do not allow im to
apply when there are two -wh features. There are several strategies that
might be worth pursuing. First, an SMC-like constraint might be tenable
if we refine the wh-features (e.g. wh-nom, wh-acc, wh-manner,. . . ) so that
each wh-movement is triggered by a different wh-feature. Another strategy
introduces a special ‘clustering’ or ‘absorption’ case of merge which, upon
encountering a second -wh phrase in a derivation, immediately merges those
two phrases into a single one, leaving a single -wh feature [34,32,74]. This
idea might fit with the special ordering (‘tucking in’) found in some multiple-
wh constructions, noted for example in [78]. A third strategy relaxes SMC-
like constraints to allow a more expressive formalism (perhaps similar to the
‘-SpIC -SMC’ formalism mentioned [31]). It is not yet clear which approach
can best fit the facts.

As noted in §6.2 below, it is easy to extend MGs to allow ‘feature move-
ment’, that is, instances of im that check features in the usual way but
which do not move anything. Operations of this sort have been proposed
in analyses of agreement relations. But in that case, multiple agreement
relations will pose the same puzzle as multiple movements.

5. Merge: Linearization

Merge is defined in §2 so that complements are attached to the right of
the selecting head, while specifiers are attached on the left. This underlying
‘SVO’ order is stipulated in the definition of our merge operation, but is
conceivably the result of some other forces on linearization. We will con-
sider that possibility but first, it is worth observing the unsurprising fact
that all orders can obtained by movement. It is easy to establish that the
MG definable languages are ‘closed with respect to reversal’. That is, for
any minimalist grammar G defining language L(G), the result of reversing
every sentence of that language is a language L(G’), where G’ is another
minimalist grammar. Is this a signal that the formalism is overly general?
Perhaps not.

Greenberg’s Universal 20 observes that certain orders of the basic el-
ements of determiner phrases are common across languages, while others
are extremely rare or unattested [37]. In a recent assessment of Greenberg’s
proposal, Cinque [25] reports that only 14 of the possible 24 orderings of
[Dem Num Adj N] are attested. These ordering facts are sometimes offered
as evidence for the assumptions like the ones made in the definition of merge
in §2, but if all orders can be derived by movement, it is natural to wonder
whether all hope of explaining Universal 20 and related facts is lost. Perhaps
not.
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While MGs are closed with respect to reversal, nevertheless, some orders
are easier to define than others. That is, some orders of elements require
more steps in their derivation. In particular, suppose that head 1 selects
head 2, head 2 selects head 3, and head 3 selects head 4. Then we can de-
rive the order 1234 using em only. Adding pairs of features (+f,-f) triggering
movement to these heads, it turns out that we can derive many other or-
ders, but not all of them. For example, we cannot derive the order 3214,
as can be seen by trying all the possibilities. (Trying all the possibilities is
quite tedious by hand, but is much easier when the process is automated.)
Notice first that movement never changes the root category, so given our
assumptions about selection, 1 must be the root of all derivable orders. If
we just let head 1 trigger movement of head 3 to its specifier, we get the
order 2341. Since the 4 is in the wrong place, we can try to move it first: 4
can move to the specifier of heads 1, 2, or 3, but in none of these positions
can we separate it from 2 and 3. (Appendix A.4 shows MG grammars for
derivable orders.)

Given the assumption that the selection order is 1234, and assuming no
other heads are introduced, only 16 out of the 24 orders can be obtained by
movement, and 14 of those 16 are the ones that Cinque reports as attested.
It is hard to believe that this is an accident! So one might be tempted to
assume that these linear asymmetries are coming from the underlying SVO
order. But that assumption would be a mistake, as recently pointed out by
Abels and Neeleman [3,2]. They point out that the patterns observed by
Cinque are well accounted for even when there can be heads and specifiers
on either side of the head.

One way to see this point is to consider another variant on MGs in
which im is unchanged, but the feature =X always triggers attachment on
the right and X= triggers attachment on the left. That is:15

(23) em(t1[α], t2[x]) =























<

t1 t2 if α is =x
>

t2 t1 if α is x=

Let’s call grammars defined by by (5), (8) and (23) ‘directional MGs’ (DMGs).
Using the same proof strategy used for Theorems 2 and 3, it is easy to es-
tablish

Theorem 5. DMG≡MG,

but the derivational complexities of various surface orders obtainable in
DMGs and MGs can differ. Keeping the previous assumption that we have
exactly four heads with the selection order 1234, DMGs derive the 8 of the
24 possible orders using em only, and only 8 of the other orders are deriv-
able. The following table compares the minimal derivational complexities
of the various orders in MGs and DMGs with Cinque’s assessment of the
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typological frequencies of each. To facilitate comparison, for Cinque’s clas-
sification, we write 0 for ‘unattested’ orders, 1 for orders found in ‘very few’
languages, 2 for ‘few’, 3 for ‘many’, and 4 for ‘very many’. For the gram-
mars, since all derivable orders are obtained with 3 or fewer licensees, we
use 0 to indicate underivable orders and otherwise use the quantity (4− ℓ)
where ℓ is the minimum number of licensees needed to get the order. (See
grammars in Appendix A.4.)

order Cinque MG DMG order Cinque MG DMG
1234 4 4 4 1324 0 0 0
1243 3 3 4 1342 1 3 4
1423 1 3 3 1432 3 2 4
4123 2 3 3 4132 1 2 3
2134 0 0 0 2314 0 0 0
2143 0 0 0 2341 1 3 4
2413 0 0 0 2431 2 2 4
4213 0 0 0 4231 2 2 4
3124 0 0 0 3214 0 0 0
3142 0 2 2 3241 0 1 2
3412 1 3 3 3421 1 2 4
4312 2 2 3 4321 4 1 4

First, comparing the underivable and unattested orders, we see that MGs
and DMGs are identically in good agreement with Cinque’s results. And in
addition, there is a tendency for rarer orders to be harder to derive. Given
the nature of Cinque’s typological classification and the way we have coded
derivational complexity here, it is important to avoid reading too much
into the quantitative details, but calculating Pearson correlation coefficients,
we find a correlation of 0.62 between the MG ranks and Cinque’s, and a
correlation of 0.75 between the DMG ranks and Cinque’s. So we see that
DMGs fit the typological data without the assumption of a rigid SVO order.

Up to this point, we have been coding linear order in the derived trees,
but this is slightly redundant. Notice for example that in the simple MGs,
both em and im put specifiers on the left. There is a missed generalization
there, and we may find other simplifications of the grammar if we separate
the determination of linear order from the calculation of hierarchical struc-
ture. A simple and elegant idea about this is explored by Kayne [48] and
has been much discussed. From our computational perspective, consider the
grammars that result from retracting our assumption that the derived trees
created by em in (6) and im in (8) are ordered. Then immediately, the two
cases given in (6) collapse into one. We can consider what function properly
maps the unordered, derived trees into linearly ordered structures. The the-
ory of tree transducers [52,57] provides a natural framework in which the
computational properties of such functions can be studied.
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6. More variations

6.1. Head movement

The nature of head movement remains controversial, but many traditional
instances of head movement can be captured with a simple extensions of
minimalist grammars (MGH), studied in [91–93,65]. A certain MG equiva-
lent version of a ‘mirror’ theory inspired by Brody’s proposals has also been
carefully studied in [49]. These extensions too are all weakly equivalent to
MGs. Intuitively, the effects of head movement, and of mirror theory, can
be achieved by phrasal remnant movement. Many mysteries remain.

6.2. LF and PF movements

Many minimalist proposals consider the possibility that all constraints on
syntax should come from the LF and PF interfaces, with the action of merge
between these two interfaces kept as simple as possible This leads some to
ask: if im is acting to check a feature, why does this ever involve movement of
structure with phonetic material in it? This possibility was already familiar
in analyses of ‘covert’ movement at least since [17]. It is easy to add feature
checking without overt movement of structure to MGs, a kind of covert ‘LF
movement’, to MGs, as studied in the early work [91,62]. If some features
are interpretable while others are not, as briefly mentioned in §3, above,
then there could also be processes that leave the interpretable features be-
hind while moving phonetic features, ‘PF movement.’ Perhaps certain head
movement phenomena and certain instances of scrambling should be treated
as PF movements.

6.3. Adjunct merge

The external merge rule introduced in §2 is sometimes called ‘argument
merge,’ and there are various proposals for another kind of operation for
merging adjuncts [56,19,29,30]. These are usually proposed in order to allow
a more natural account of the certain ‘reconstruction’ effects found with
arguments but not with adjuncts. A proposal of this kind has been formally
modeled in [33].

6.4. Sideward movement

The MG variants defined above all allow merge to select freely from the
lexicon. Some proposals compare derivations that involve exactly the same
multiset of lexical elements.16 Phases provide a different kind of domain,
sometimes regarded as a “subarray” of constituents [21,22,24], from which
the structure building functions can select their arguments. On some concep-
tions, these intermediate workspaces admit a kind of ‘sideward movement’
[99,73,45,10,26] which moves an element from one tree to another which
has not yet been merged or adjoined. Increasing the domain of merge in this
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way seems to open the way to more unified accounts of various phenomena.
Some preliminary studies of this kind of domain have been undertaken in
[96,95], again MG equivalent systems.

6.5. Copy and delete

The MG variants considered so far have left nothing behind when something
moves. In the implementation of standard parsing methods, this means sim-
ply that syntactic relations can be constructed from non-adjacent parts.
There is no particular mystery in that; in all perceptual domains we some-
times recognize a unity among components that are (spatially or temporally)
non-adjacent. And we have various kinds of discontinuity in artificial lan-
guages that we design for our own convenience; mutually dependent type
declarations in many programming languages need not be adjacent, and are
usually rejected or flagged if they are vacuous [58]. But familiar arguments
suggest that moved phrases sometimes seem to be interpreted as if they are
their original positions [17,60,19], and sometimes we even seem to see all or
part of the phonetic contents of the moved phrase in the original positions
too [51,14].

Suppose we keep the definition of em unchanged from §2, but identify a
subset of features that trigger the use of this special additional case of im,
defined in terms of a function g from trees to trees:

(24) im(t1[+x]) =

>

tM2 t1{t2[-x]M 7→ g(t2[-x]
M )} if SMC

Now we obtain different kinds of grammar depending on the function g.
If g maps every tree to the empty tree ǫ, this is exactly the original im.
But now consider, for example, the function that g leaves the structure and
phonetic contents of each tree untouched, removing only any outstanding
syntactic features. Let’s call these grammars ‘minimalist grammars with
copying’ (MGC). MGCs have quite different computational properties from
the previous MG variants, as discussed in [51].17 Again they define languages
in an efficiently recognizable class that has been studied: so-called ‘parallel
multiple context free grammars’ (PMCFGs) [90]:

Theorem 6. CF ⊂ MCFG ≡ MG ⊂ MGC ⊆ PMCFG ⊂CS.

7. Next steps

The formal, computational studies of apparently diverse ideas in the min-
imalist program reveal some surprising properties and especially common-
alities. (Cf. [31], a survey emphasizing some significant differences among
minimalist proposals.) There will always be a big gap between new empiri-
cal speculations and what is well understood, but we can seek results that
apply to large families of related proposals whenever possible, identifying
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common themes if only approximately. Further study will certainly illumi-
nate important distinctions that have been missed here and bring deeper
understanding of the fundamental mechanisms of human language.

Acknowledgements: Thanks to Chris Collins, Greg Kobele, and Jens
Michaelis for help with this material.

Notes

1When Chomsky [23, p.23] stipulates that the probe/selector α remains the
label, as in (1), he suggests that this is the ‘simplest’ idea, since then no other
label needs to be sought. What does that mean? Notice that the label is pre-
sumably represented somehow, so the size of that representation will contribute
to memory demands, and the nature of that representation will be relevant for
ensuing computational steps. It is difficult to evaluate such matters in a princi-
pled and relevant way, since the time and space efficiency of an algorithm (that
is, how many steps are taken on each input, and how much memory is used) is
determined relative to a computational architecture (what counts as a step; how is
the memory accessed; can steps be taken in parallel; etc.) – see for example, [102,
75]. Perusing any standard text on algorithms like [28], one finds many surprises,
and very many results that naive, informal intuition could not have led us to, so
casual claims about complexity should be considered with appropriate care.

2Chomsky [20, p.245] says that the set in (1) is simpler than the tree in (2), but
it is not clear what the relevant notion of simplicity is. Perhaps the set is assumed
simpler since it involves just 4 objects – α, β, {α, β}, and {α, {α, β}} – with a
membership relation as defined by some standard set theory. Considering the tree
on the other hand, we have 3 nodes, each labeled, and a dominance relation. So
at this point, we will regard the tree and the set as notational variants, until we
have found a reason to regard some distinguishing property of the notations as
linguistically relevant.

3It is possible to assume that whatever requirements are imposed on the ‘se-
lection’ relation are not part of the definition of merge, but result from the action
of other constraints. Obviously, this could provide a notational variant of the for-
malism given here, or could be quite different, depending on the nature of the
constraints.

4Along with TAG and CCG languages, the MG definable languages are ‘mildly
context sensitive’ in the sense defined by Joshi [47]. This is discussed in [62] and
[94].

5As discussed in [89, §IV], [63, §5.2], [59, §3], a class of languages is a ‘substitution-
closed full abstract family of languages’ just in case it is closed with respect to
finite unions, finite products, Kleene star, arbitrary homomorphisms, inverse ho-
momorphisms, and substitutions.

6The recognition problem for MCFGs or MGs can be solved ‘efficiently’ in the
sense that the number of steps required can be bounded by a polynomial function
of a natural measure of the input size, assuming that the steps are taken serially
on a ‘random access machine’ of the kind mentioned in [102]. Harkema presents a
CKY-like algorithm for MG recognition that is guaranteed to need no more than
O(n4m+4) steps [40,42], where n is the length of the input and m is a constant
depending on the grammar (specifically, on the number of licensees that can occur
in a derivation). Standard parsing algorithms like CKY and Earley’s present many
opportunities for parallelism, and so it is no surprise that much faster execution
can be obtained when enough parallelism is available [54,100,43].

7Some of Ristad’s [79] arguments can be understood as showing that languages
defined by GB syntax are more complex than context free grammars, but these



Computational perspectives 21

arguments include the indexing mechanisms of binding theory. Cf. the discussion
of various sources of complexity in [4].

8Although simplistic ‘slash-passing’ grammars are not easily extended to the
MG class (or to the MGC class mentioned in §6.5 below), the ‘attribute grammar’
formalism of [8] might be regarded as similar, and it can easily be extended to
MGs, as shown by [67].

9Familiar programs are implemented by ‘compiling’ them into codes that can
be ‘directly’ executed by a computer, and it is reasonable to expect the neural
implementation of our high level linguistic performance models to be at least as
involved. But the question of what should count as an implementation of a given
program (particularly with ‘optimizing’ compilers) is not clear; addressing this
question in the case of linguistic computations will certainly comprise part of the
scientific problem. See for example [7,68].

10Chesi [15] notes that although phases have been argued to be of unbounded
size (p.48n32), he can guarantee they are finite by stipulating a fixed finite bound
on the number of arguments allowed in each phase and by assuming that the
functional categories in each phase are not recursive. If these assumptions are
warranted, they could of course be adopted here too, potentially giving us an al-
ternative route to the finite partition property or something similar; the challenge
is to defend those assumptions.

11We leave aside the argument-adjunct asymmetries in such movements, but
consider them in [97], and we postpone the discussion of multiple wh-extractions
to §4.3 below.

12As usual, the dominance relation is reflexive (so in any tree, every node domi-
nates itself), and in any tree with subtrees t1, t2, t3, subtree t1 c-commands subtree
t2 if and only if the root of t2 is dominated by a sister of the root of t1.

13Rizzi and Shlonsky observe that sometimes the subject can move, noting an
example in Imbabura Quechua and other things, but also the simple English Who
came? In the English question, they suggest, the φ features of the finite clause and
valued by who suffice to satisfy the subject criterion, so that who can move to the
C domain: “So, Fin+Phi offers a kind of bypassing device,. . . allowing the thematic
subject endowed with the wh- (or some other A’-) feature to move higher.”

14Abels observes that a ban on improper movement can also be enforced with
restrictions on feature ordering [2].

15The DMGs introduced here generate more orders than allowed by the assump-
tions of Abels and Neeleman [3,2]: Abels and Neeleman disallow movements that
do not affect the noun, for reasons I do not understand. I think it is more inter-
esting to compare all movements that involve only elements of the DP structure,
as I do here, but the conclusions I mention here are the same in either case.

16Multisets are often called ‘numerations’ by linguists; computer scientists some-
times call them ‘heaps’ or ‘bags.’ Multisets of elements of a set Lex can be formal-
ized as functions from Lex into the natural numbers; each lexical item is mapped
to the number of times it occurs.

17As discussed by [51] and [94], these languages are not ‘mildly context sensitive’
in the sense defined by Joshi [47]. Cf. note 4.

Appendix: MG variants and MCFGs

A.1. CMG≡MG

To prove this claim from page 11, we show (1) that CMG⊆MG and (2) MG⊆CMG.
To establish (1), it suffices to show establish (3) CMG⊆MCFG since it is

already known that (4) MCFG⊆MG [64,41]. In fact, the proof of (3) can be a
very minor variation of the proof of MG⊆MCFG given by Michaelis, so we sketch
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the main ideas here and refer the reader to Michaelis’s earlier proof [62,63] for
full details.

(3) can be established in two steps. First we show (3a) every CMG using merge
is exactly equivalent to a grammar defined over tuples of categorized strings, and
then (3b) we provide a simple recipe for converting the grammars over tuples of
categorized strings into an exactly equivalent MCFG over tuples of strings. For
(3a), a minor variation of the presentation in [98] suffices. The conversions between
grammar formalisms needed for (3a-b) are very simple and easily automated [38].

For (3a), we define,

(25) vocabulary Σ = { every,some,student,...}

types T ={::, :} (‘lexical’ and ‘derived’, respectively)

syntactic features F of two kinds:

C, T, D, N, V,. . . , wh, case,. . . (basic features)
=C, =T, =D, =N, =V,. . . , =wh, =case,. . . (selectors/probes)

persistent features = P ⊆ F

chains C = Σ∗ × T × F ∗

expressions E = C∗

lexicon Lex ⊂ Σ∗ × {::} × F ∗, a finite set.

Then we define merge as the union of the following 7 functions, (3 for em, 2 for
im, and then for persistent features: em3’ and im2’).

(26) For s, t ∈ Σ∗, for · ∈ {:, ::}, γ, γ′ ∈ F ∗, δ ∈ F+, and where

α1, . . . , αk, ι1, . . . , ιl (0 ≤ k, l) are any chains, define:

s :: =fγ t · f, α1, . . . , αk

st : γ, α1, . . . , αk

em1: lexical item selects a non-mover

s : =fγ, α1, . . . , αl t · f, ι1, . . . , ιk

ts : γ, α1, . . . , αl, ι1, . . . , ιk
em2: derived item selects a non-mover

s ·=fγ, α1, . . . , αl t · fδ, ι1, . . . , ιk

s : γ, α1, . . . , αl, t : δ, ι1, . . . , ιk
em3: any item selects a mover

s : =fγ, α1, . . . , αi−1, t : f, αi+1, . . . , αk

ts : γ, α1, . . . , αi−1, αi+1, . . . , αk

im1: final move of licensee

s : =fγ, α1, . . . , αi−1, t : fδ, αi+1, . . . , αk

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk

im2: nonfinal move of licensee

where

(tuple-SMC) none of the chains α1, . . . , αi−1, αi+1, . . . , αk in im1, im2 or im2’
has f as its first feature.

These first 5 functions apply regardless of whether the features involved are per-
sistent. The functions for only persistent features (indicated by underlining) are
similar, except the feature is not deleted. Since the undeleted feature is then
available for internal merge, we have only the ‘mover’ cases:

s · =fγ, α1, . . . , αl t · fγ′

, ι1, . . . , ιk

s · γ, α1, . . . , αl, t : fγ
′

, ι1, . . . , ιk
em3’: any item selects a mover

s : =fγ, α1, . . . , αi−1, t : fγ
′

, αi+1, . . . , αk

s : γ, α1, . . . , αi−1, t : fγ
′

, αi+1, . . . , αk

im2’: nonfinal move of licensee
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Define the structures S(G)=closure(Lex,{em1,em2,em3,im1,im2,em3’,im2’}). The
completed structures are those expressions w · C, where C is the ‘start’ category
and · ∈ {:, ::}. The sentences L(G) = {w| w · C ∈ S(G) for some · ∈ {:, ::}}.
Now it is easy to show by an induction on derivation depth that derivations from
these grammars are isomorphic to the ones over trees, with the same lexical items
and the same yields. For (3b) we convert these grammars to exactly equivalent
MCFGs as in Michaelis’s earlier proof: the tuples of categorized strings can be
represented as tuple of strings with a single simple category, where the number of
simple categories needed is finite by (9).

To complete the proof it remains only to show (2) MG⊆CMG. Given any
MG, we remove any useless lexical items, and then produce a CMG simply by
changing every +f in the MG to =f, and changing every -f to f (after renaming if
necessary so that none of these new =f and f features are the same as ones already
in the grammar). We let the set of persistent features P = ∅. These grammars will
produce isomorphic derivations. Although the features are conflated in the CMG,
since none of them are persistent, every step will delete a pair of features, and so
every em and im step in the CMG will correspond to the same kind of step in the
MG.

A.2. PCMG≡PMG≡MG

This claim from page 12 can be proven with the same kind of strategy used above
in A.1 and in [62]. Here we consider only PCMG≡MG, since PMG≡MG can be
established in an exactly analogous fashion. We show (1) that PCMG⊆MG and
(2) MG⊆PCMG.

As in A.1, to establish (1), it suffices to show (3) PCMG⊆MCFG, which can
be done in two steps: showing (3a) every PCMG using merge is exactly equivalent
to a grammar defined over tuples of categorized strings, and then showing (3b) a
simple recipe for converting the grammars over tuples of categorized strings into
an exactly equivalent MCFG over tuples of strings.

Adapting step (3a) from A.1 for CMGs with phases, we adopt the definitions
in (25), adding only a specification of a set of phases Ph ⊆ F . Merge is unchanged
except that we impose the following condition on em (that is, on em1, em2, em3,
and em3’):

(tuple-PIC) em cannot apply if f ∈ Ph and k > 0.

It is easy to show that this grammar on tuples of categorized strings is equivalent
to the corresponding PCMG, and then (3b) can be established as in A.1 and in
[62]. The other direction, (2), is trivial, since a CMG is simply a PCMG where
Ph = ∅.

A.3. RMG≡MG

The results in the previous appendices A.1 and A.2 involve minor adjustments
in the basic idea from Michaelis’s [62], but this result requires a more substan-
tial innovation. A complete presentation of the proof is given in [97], where the
extension of RMGs to head movement as an instance of internal merge [81,85]
is also discussed, together with RMG parsing methods. Here we just sketch the
main idea of the proof.

The proof is split in the usual way: (1) RMG⊆MG and (2) MG⊆RMG, where
(1) is the challenging step. To establish (1), it suffices to show (3) RMG⊆MCFG,
which can be done in two steps: showing (3a) every RMG is exactly equivalent
to some intermediate grammar G, and then showing (3b) a simple recipe for con-
verting each such intermediate G into an exactly equivalent MCFG over tuples
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of strings. For previous results, the intermediate grammar G was a grammar over
tuples of categorized strings (of bounded size), but for RMGs, a straightforward
extension of that idea will not suffice. In RMGs, we need to keep track of both the
active sequences of features and potential interveners. Notice that the interveners
for each category can be represented as a subset of the finite set of features, and so
this can be added to our categories without threatening the finite partition prop-
erty. The problem is that when a remnant moves, the set of potential interveners
for both the remnant and every moving part of the remnant changes, because the
c-commanders of those elements will change. So the most natural proof strategy
is to let the intermediate grammars be defined over trees, as RMGs are, but use
trees for which it is evident that the finite partition property holds. This can be
done because we can let the leaves of the tree be exactly the categorized strings
that would have been used in a tuple-based grammar – and we know the length
of these tuples is bounded – and then use a binary tree structure over these leaves
to indicate hierarchical relations and potential interveners. So then in the MCFG
the categories are not tuples of feature sequences but trees with k leaves, and
since k is bounded and the number of binary trees and intervener specifications
is also bounded, the number of categories in the MCFG is finitely bounded too,
as required.

A.4. Derivable permutations of 1234 in MGs and DMGs

In the following grammars, we let the ‘phonetic forms’ of the heads 1, 2, 3, 4 be the
same as their categories. Many orders can be obtained in multiple equally simple
ways, only one of which is shown. We write ‘nd’ for ‘not derivable’. (Obviously,
all orders are derivable if we allow additional heads, as pointed out in the text.)

order MG DMG
1234 1::=2 1 2::=3 2 3::=4 3 4::4 1::=2 1 2::=3 2 3::=4 3 4::4
1243 1::=2 1 2::=3 2 3::=4 +4 3 4::4 -4 1::=2 1 2::=3 2 3::4= 3 4::4
1423 1::=2 1 2::=3 +4 2 3::=4 3 4::4 -4 1::2= +4 1 2::=3 2 3::4= 3 4::4 -4
4123 1::=2 +4 1 2::=3 2 3::=4 3 4::4 -4 1::=2 +4 1 2::=3 2 3::=4 3 4::4 -4
1324 nd nd
1342 1::=2 1 2::=3 +3 2 3::=4 3 -3 4::4 1::=2 1 2::3= 2 3::=4 3 4::4
1432 1::=2 1 2::=3 +3 2 3::=4 +4 3 -3 4::4 -4 1::=2 1 2::3= 2 3::4= 3 4::4
4132 1::=2 +4 1 2::=3 +3 2 3::=4 3 -3 4::4 -4 1::=2 +4 1 2::3= 2 3::=4 3 4::4 -4
2134 nd nd
2143 nd nd
2413 nd nd
4213 nd nd
2314 nd nd
2341 1::=2 1 2::=3 +3 2 3::=4 3 -3 4::4 1::2= 1 2::=3 2 3::4= 3 4::4
2431 1::=2 +2 1 2::=3 2 -2 3::=4 +4 3 4::4 -4 1::2= 1 2::=3 2 3::4= 3 4::4
4231 1::=2 +2 1 2::=3 +3 2 -2 3::=4 3 4::4 -4 1::2= +4 1 2::=3 2 3::4= 3 4::4 -4
3124 nd nd
3142 1::=2 +3 1 2::=3 +4 2 3::=4 3 -3 4::4 -4 1::=2 +3 1 2::=3 +4 2 3::=4 3 -3 4::4 -4
3412 1::=2 +3 1 2::=3 2 3::=4 3 -3 4::4 1::=2 +3 1 2::=3 2 3::=4 3 -3 4::4
4312 1::=2 +3 1 2::=3 2 3::=4 +4 3 -3 4::4 -4 1::=2 +3 1 2::=3 2 3::4= 3 -3 4::4
3214 nd nd
3241 1::=2 +4 +2 1 2::=3 +3 2 -2 3::=4 3 -3 4::4 -4 1::=2 +4 +2 1 2::3= 2 -2 3::=4 3 4::4 -4
3421 1::=2 +2 1 2::=3 +3 2 -2 3::=4 3 -3 4::4 1::2= 1 2::3= 2 3::=4 3 4::4
4321 1::=2 +2 1 2::=3 +3 2 -2 3::=4 +4 3 -3 4::4 -4 1::2= 1 2:: 3= 2 3::4= 3 4::4
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