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Multiple context-free grammars (mcfg’s) is a subclass of generalized context-free grammars intro- 

duced by Pollard (1984) in order to describe the syntax of natural languages. The class of lan- 

guages generated by mcfg’s (called multiple context-free languages or, shortly, mc~?‘s) properly 

includes the class of context-free languages and is properly included in the class of context-sensitive 

languages. First, the paper presents results on the generative capacity of mcfg’s and also on the 

properties of mctl’s such as formal language-theoretic closure properties. Next, it is shown that the 

time complexity of the membership problem for multiple context-free languages is O(n’), where n is 

the length of an input string and e is a constant called the degree of a given mcfg. Head grammars 

(hg’s) introduced by Pollard and tree adjoining grammars (tag’s) introduced by Joshi et al. (1975) are 
also grammatical formalisms to describe the syntax of natural languages. The paper also presents the 
following results on the generative capacities of hg’s, tag’s and 2-mcfg’s, which are a subclass of 

mcfg’s: (1) The class HL of languages generated by hg’s is the same as the one generated by tag’s; (2) 

*This paper is partially based on the authors’ previous reports [6, 1 l] 

0304-3975/91/$03.50 0 1991 -Elsevier Science Publishers B.V. 



192 H. Seki et al. 

HL is the same as the one generated by left-wrapping hg’s (or right-wrapping hg’s) which is a proper 

subclass of hg’s; (3) HL is properly included in the one generated by 2-mcfg’s. As a corollary of(l), it 

is also shown that HL is a substitution-closed full AFL. 
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1. Introduction 

Literature on generative grammars shows often a mention of inadequacy of con- 

text-free grammars (cfg’s) for describing the structures involving discontinuous con- 

stituents in natural languages [13]. Context-sensitive grammars (csg’s or Type 

1 grammars), on the other hand, may not be an adequate model of grammars of 

natural languages because they are too powerful in generative capacity, and phrase 

structures which are “natural” extension of phrase structures in cfg’s are not defined in 

Type 0 and Type 1 grammars. Although various types of formal grammars between 

cfg’s and csg’s were proposed and investigated in 1960s and early 1970s [2, 151, the 

main interest was the process of sentence derivation and generation, rather than the 

development of grammars suitable for defining phrase structures and formalizing their 

syntax analysis. 

Generalized context-free grammars (gcfg’s) introduced by Pollard [12] are an 

interesting formalization for defining phrase structures. However, since the generative 

capacity of gcfg’s is readily shown to be the same as that of Type 0 grammars [6, 71, 

gcfg’s themselves are also too powerful. 

Multiple context-free grammars (mcfg’s) were introduced as a subclass of gcfg’s in 

[6]. Mcfg’s deal with tuples of strings, and a rewriting rule of mcfg’s has the following 

form: 

Ao+fCA,, AZ, . . . . A,], 
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where f is a function whose arguments and function values are tuples of strings and 

satisfies the following conditions: 

(1) Each component of the value off is a concatenation of some constant strings 

and some components of its arguments. 

(2) Each component is not allowed to appear in the value off more than once. 

Vijay-Shanker et al. [23] introduced linear context-free rewriting systems (lcfrs’). 

Lcfrs’ are essentially the same grammar formalism as mcfg’s except that lcfrs’ are 

required to satisfy the information-lossless condition (see condition (f3) of Lemma 2.2; 

this conditon is called nonerasing condition in [23]), while mcfg’s need not satisfy this 

condition. However, it is shown that this condition does not weaken the generative 

capacity of mcfg’s (see Lemma 2.2). 

The class of languages generated by mcfg’s, called multiple context-pee languages 

(mcfls), properly includes the class of context-free languages (cfl’s) and is properly 

included in the class of context-sensitive languages. In mcfg’s, it is possible to account 

for structures involving discontinuous constituents such as “respectively” sentences in 

a simple manner, and such concepts as phrase structures and derivation trees in cfg’s 

can be extended naturally in mcfg’s. Furthermore, the class of mcfl’s enjoys the formal 

language-theoretic closure properties that the class of cfl’s does. For example, the class 

of mcfl’s is closed under union, concatenation, Kleene closure, c-free Kleene closure, 

substitution and intersection with regular languages (see Theorem 3.9). Hence, the 

class of mcfl’s is a substitution-closed full AFL [2]. Moreover, the time complexity of 

the membership problem for mcfl’s was shown to be polynomial [6,23]. 

If an mcfg G deals with only i-tuples of strings for 1 d idm, then G is called an 

m-mcfg. Let m-MCFL denote the class of languages generated by m-mcfg’s. Then the 

following inclusion relations hold (Theorem 3.4): 

CFL= l-MCFL and m-MCFLS (m+ I)-MCFL for ma 1. 

In Section 3, we present results on the generative capacity of mcfg’s, which include 

a pumping lemma for mcfl’s and also on properties of mcfl’s such as formal language- 

theoretic closure properties. Next, it is shown that the time complexity of the 

membership problem for mcfl’s is O(ne), where n is the length of an input string and 

e is a constant called the degree of a given mcfg. 

As other grammar formalisms to describe the syntax of natural languages, tree 

adjoining grammars and head grammars were developed. Tree adjoining grammars 

(tag’s), introduced by Joshi et al. [S], deal with elementary trees which are composed 

by means of an operation called adjoining (see also [3,20]). Head grammars (hg’s), 
introduced by Pollard [12], deal with headed strings by means of head-wrapping 

operations besides concatenation operations. Vijay-Shanker et al. [22] use pairs of 

strings (CC,, a2) (called split strings) instead of headed strings and introduce modified 
head grammars (mhg’s) which deal with split strings. It was shown in [22] that the 

generative capacities of mhg’s and tag’s are equivalent and that the generative 

capacity of mhg’s is not weaker than that of hg’s. Moreover, Vijay-Shanker [20] 

showed that the generative capacity of tag’s is equivalent to that of linear indexed 
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grammars (lig’s) introduced by Gazdar [l] as a subclass of indexed grammars [;?I. 

Weir et al. [25] showed that the generative capacity of tag’s is also equivalent to that 

of combinatory categorial grammars (ccg’s) introduced by Steedman [17, 181 as an 

extension of categorial grammars. Let CFL, HL, TAL, LIL, CCL and m-MCFL 

(ma 1) denote the class of languages generated by cfg’s, hg’s, tag’s, lig’s, ccg’s and 

m-mcfg’s, respectively. Summarizing, it has already been known that the following 

inclusion relations hold between these classes of languages: 

CFL= I-MCFLsHLc TAL=LIL=CCLc2_MCFL. 

Furthermore, TAL (= LIL = CCL) and m-MCFL are shown to be substitution-closed 

full AFL’s in [20] and [6], respectively (see Theorem 3.9 in this paper for the latter). 

Vijay-Shanker et al. [22] conjecture that HL= TAL, Weir [24] conjectures that 

HLs2-MCFL and Roach [14] conjectures that HL is closed under substitution. 

However, these conjectures were not proved (it was shown that HL is closed under 

a-free substitution in [9]). 

In Section 4, we give affirmative answers to all of these open problems. It is also 

shown, as a corollary, that the generative capacity of hg’s is not weakened even if the 

head-wrapping operations are restricted only to left-wrapping operations or only to 

right-wrapping operations (see Section 4.1). 

2. Definitions 

2.1. Generalized context-free grammars 

A generalized context-free grammar (gcfg) [12] is a 5-tuple G=(N, 0, F, P, S) (we 

have slightly modified the definition of a gcfg in order to make it easier to compare it 

with a cfg, see [12, Appendix 2]), where 

(Gl) N is a finite set of nonterminal symbols; 

(G2) 0 is a set of n-tuples of strings ( IZ > 1) over a finite set of symbols; 

(G3) F is a finite set of partial functions from finite dimensional direct products 

0 x 0 x ... x 0 to 0. Let us define F, to be the set of partial mappings from O4 to 

0 which are in F; 

(G4) P is a finite subset of U,(F, x Nqf’); 

(G5) SEN is the initial symbol. 

An element of P is called a rewriting rule (or simply rule) and written as 

Ao-+fCA,, AZ, . . ..A.1 

instead of (f; AO, AI, AZ, . . , Aq) (there may be more than one occurrence of some 

nontermmal symbols m AI, AZ, . , A,). For A,+f[A,, AZ, . . . . A,], ifq=O,i.e. iffis 

an element in 0, the rule is said to be a terminating rule; otherwise, it is said to be 

a nonterminating rule. 
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For AEN, let us define LG( A) as the smallest set satisfying the following two 

conditions: 

(Ll) If a terminating rule A-+@ is in P, then MEL,; 

(L2) If BiELo(Ai) (1 <i64)9 A+f[A,, AZ, ...) A,]EP and f[e,, 02, . . . . O,] is de- 

fined, then f[O,, O2 ,..., IY,]EL,(A). 

If ~EL,( A), we say that 8 parses as an A in G or 8 is derivedfrom A in G; 0 is called an 

A-phrase (or simply phrase). We let L(G)= LG(S); L(G) is called the generalized 

context-free language (gcj) generated by G. For gcfg’s G1 and G2, we say that G1 is 

weakly equivalent to G2 if L( Cl)= L(G,). 
A concept which is an extension of derivation trees of cfg’s can be defined for gcfg’s. 

It is suited for formal definition of semantics of sentences. 

A derivation tree in a gcfg G is defined as follows: 

(Tl) For a terminating rule A+B, the tree whose root (labeled with A, or the 

applied rule instead of A, if necessary) has only one child (labeled with 0) is a deriv- 

ation tree of 8. 

(T2) If Ti is a derivation tree of Oi whose root is labeled with Ai (1 d i dq), 

A+f [A,, AZ, . . . . Aq] is in P andf[O1, Q2 ,..., O,] is defined, then a tree such that (1) 

the root is labeled with A, (2) the root has 4 children, and (3) the subtree rooted at the 

ith child is isomorphic to ri (1 did q), is a derivation tree off [ fll, 02,. . . , O,]. 

(T3) There is no other derivation tree. 

In a cfg G = (N, T, P, S), the string obtained by concatenating the labels of leaves in 

a derivation tree of c(ET* is equal to M. This is not always true in gcfg’s. 

For a derivation tree t and a node D in t, if v is labeled with a rule R, then we say that 

R is applied at v in t or the applied rule at v in t is R. If the subtree oft rooted at v is 

a derivation tree of 0, then we say that 19 is derived from v in t. Assume that 0 and 0’ are 

derived from v and v’ in t, respectively, and a node v’ is an ancestor of a node v in t. We 

say that 0 is a subphrase of 0’. 

Pollard [12] showed that gcfg’s and gcfl’s are generalizations of cfg’s and cfl’s, 

respectively. 

In (G3) of the definition of a gcfg, if arbitrary partial recursive functions are 

permitted as functions of F, it can easily be shown that any recursively enumerable set 

of strings (any language generated by a Type 0 grammar [Z]) is a gcfl. Even if 

functions of F are restricted to be arbitrary compositions of elementrary functions, the 

same conclusion can be obtained (this result is not surprising since any partial 

recursive function can be defined by a Turing machine) [6]. Of course, the converse is 

also true. That is, if 0 is the set of all strings over a finite alphabet and all functions in 

F are partial recursive in a gcfg G = (N, 0, F, P, S), then the language generated by 

G is a recursively enumerable set. 

If a function in a gcfg is defined without using the information of some arguments, 

then “unnatural” phrases, which do not reflect their subphrases, may be introduced. 

TO avoid introducing such “unnatural” phrase structures, the following conditions for 

functions in F may be necessary: 
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(1) For given arguments, a predicate representing whether or not the value of the 

function is defined is given as a composition of elementary functions. 

(2) The information in arguments of functions does not get lost by any applications 

of the functions, i.e. the values (strings) of arguments must be reconstructible from the 

value (string) of the function. 

In Section 2.2, we introduce a subclass of gcfg’s called multiple context-free 

grammars which deal with tuples of strings and use only functions which are defined 

as concatenations of constant strings and components of arguments. 

2.2. Multiple context-free grammars 

An m-parallel multiple context-free grammar for a positive integer m, abbreviated as 

m-pmcfg or pmcfg, is defined to be a gcfg G =( N, 0, F, P, S), which satisfies the 

following conditions (Ml) through (M4). Let T be a finite set of terminal symbols 

which is disjoint with N. Then 

(Ml) O=u;=, (T*)‘. 
(M2) Let a(f) be the number of arguments offeF. For each feF, positive integers 

r(f) and di( f) (1~ i < a( f )) which are not greater than m are given, and f is a function 

from ( T*)dl(/) x (T*)dz(/) x . . . x ( T*)dQ(f)(/) to ( T*)r(s) which satisfies the following 

condition (fl). Letfh (l<h<r(f)) d enote the hth component off. We define 

xi=(xil, xi2, ...Y Xid,(f)) 

and 

X={Xijll GiGa( lGj<di(f)}. 

(fl) Functionsfh(X1,X2,...,X,CSJ)(1<h<r(f)) are represented by concatenation 

of some constant strings in T * and some variables in X. That is, 

(2.1) 

where Q&T* (o<k<t+,(f)) and Z&X (l<k<U,(f)). 
(M3) A positive integer d(A) is given for each nonterminal symbol AEN. If a rule 

A+f CA,, Al, ..., ‘&s,l is in P, then r(f)=d(A) and di(f)=d(Ai) (l<i<a(f)). 

(M4) For the initial symbol S, d(S)= 1. 

From (M3), &E&(A) implies CIE( T*)d(A); especially, CZEL( G) implies OIE T * from 

(M4). 
If all the functions in F satisfy the next condition (f2) in addition to (f l), G is called 

an m-multiple context-free grammar and is abbreviated as m-mcfg or simply mcfg. 
(f2) For each h (1 <h <r( f )) and each variable Xij in X, the total number of 

occurrences of xij in the right-hand sides of (2.1) is at most one. 

If some variable occurs in the right-hand side of (2.1) more than once or some 

variable occurs in the right-hand sides of (2.1) for different h’s, the string substituted 

for the variable will be copied more than once. (f2) is the condition for inhibiting the 

use of such copy operations to define f: 
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A language generated by an m-pmcfg and an m-mcfg is called an m-parallel multiple 

context-free language and an m-multiple context-free language, respectively, and is 

abbreviated as m-pm@ (or simply pm@) and m-m@ (or simply mcfl), respectively. The 

classes of m-pmcfl’s pmcfl’s m-mcfl’s, mcfl’s and cfl’s are denoted by m-PMCFL, 

PMCFL, m-MCFL, MCFL and CFL, respectively. It was shown that the following 

relation holds ([6]; the original idea is from [12]): 

CFL = I-MCFL. (2.2) 

Example 2.1. (1) {cc~~cxE{O, l}+}~l-PMCFLn2-MCFL, 

(2) {c?“I~~~}E~-PMcFL, 
(3) {a;ai...a!jml n>O}Em-MCFL, ma 1, 

(4) {a”‘In>O}E2-PMCFL. 

These languages are generated by the following pmcfg’s respectively: 

(1) Let L={cc21~~{0,1jf} and let us define r={O,l}, N={A,S}, 

P={A+O/ 1 lgr[A,A], S+gz[A]}, where gr[x,y]=xy,g,[x]=xx. Then the l- 

pmcfg G =( N, T*, (gI, g2}, P, S) generates the language L. Next, let us define 

P={A+(O, O)l(L l)lg,,,CAl lg3,1CAl, S-+g4CAI), where g~,oC(x_,y)l=(w ay), 
a=O, 1,g4[(x,y)]=xy. Then the 2-mcfg G=(N, T*,{g3,0,g3,1,g4},P,S) also gen- 

erates L. 

(2) Let T= {a}, N = {S} and P = {S-a I g2 [S] }, where g2 is the same as (1). Then 

the 1-pmcfg G=(N, T*, {g2},P,S) generates {a2”ln>0). 

(3) Let T={aiIl<id2m}, N={A,S},P={A+(E,&,...,E)Igg[A],S+g6[A]}, 

where g~C(x1,~2,...,~,)1=(a,x,a2,a3x2a4,...,a2m-1x,a2m), g6C(~1,~2,...,~m)l= 
XlX2...X,. Then the m-mcfg G = (N, l,_jr= 1 ( T *) i, { g5, g6}, P, S) generates the lan- 

guage {a;a!j...al,(n>O}. 

(4) Let ~={~},~={~,~},~={~~(~,~~Ig~C~I,~~gsC~I},~~~~~g~C(~,,x~)l= 
(ax,, &x2), g8C(xI, x2)1 =ax:x,. Then 2-pmcfg G=(N, T*u(T*J2, (g7, g8}, P, S) 
generates {an21 n>O}. 

None of the sets given in Example 2.1 is in CFL [2, 151. Hence, 

CFLs I-PMCFLn2-MCFL (2.3) 

Lemma 2.2. For a given m-pmcfg (m-mcfg) G, we can construct an m-pmcfg (m-mcfg) 
G’=(N’, O’, F’, P’, S’) which is weakly equivalent to G and satisfies the following 

information-lossless condition (f3) and (Nl) through (NS): 

(f3) For any f in F’, any variable x in X appears exactly once in the right-hand side of 
(2.1) for some h (1 dhdr(f)). 

(Nl) For any nonterminal symbol A in N’ which appears in the left-hand side of some 
terminating rule, d(A) = 1. 

(N2) For any terminating rule in P’, the length of the right-hand side is not greater 

than 1. 

(N3) For any nonterminal symbol A in N’ except the initial symbol S’, if 

(a 1, az,..., c(~(~))EL~( A), then ai # E (1 d i < d( A)), where E denotes the empty string. 
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(N4) If the rule S’+E exists in P’, then S’ does not appear in the right-hand side of any 
nonterminating rule in P’. 

(N5) For any nonterminating rule in P’, each constant string c(,,~ in the right-hand side 

of(2.1) is the empty string. 

Proof. For a given m-mcfg G, we first construct an m-mcfg G’ which is weakly 

equivalent to G and satisfies the condition (f3) as follows. Assume that xrr, for 

example, does not appear in the right-hand side of (2.1) for any h (1 <h <r(f)). For 

each rule A+f[A,, AZ,... ] whose function in the right-hand side is f, we introduce 

a new nonterminal symbol A; (d(A;) = d(A,)- 1) corresponding to AI EN, and 

replace the rule by A+f’[A;,A,,... 1, where f’ is a function obtained from f by 

deleting the variable xI1 and replacing the variables x12,..., x,~,(~) by 

X1l,...>Xld,(f)-l> respectively. Moreover, for each rule A 1 +g [II,, &, . . .] whose 

left-hand side is Al, we construct a new rule A;+g’[B1, BZ, . ..I. where g’ is a new 

function whose first component is the second component of g, the second component 

is the third component of g, and so on. This operation should be repeated until 

condition (f3) is satisfied (this procedure terminates in a finite number of repetitions 

because the procedure introduces only nonterminal symbols which have smaller 

values of d( . )). 
Next, for each nonterminal symbol A and Y c { 1,2,. . . , d(A)}, we introduce a non- 

terminal symbol A[ Y] (d(A[ Y])=d(A)-1 Yl). We define A[fl]=.4. We reconstruct 

G by executing Procedure 1 which adds new rules and deletes unnecessary ones so 

that L,S(A[Y])={a[Y]16~LG,(A) and “KEY iffjth component of ol is E”} holds. 

&[ Y] is a tuple of strings obtained by deleting all jth components (je Y) from Cr. 

Procedure 1. For each nonterminal symbol A in G’, let M(A) be a variable in which 

a subset of the power set of { 1,2,..., d(A)} is stored. The initial value is the empty set 

8. Execute the following steps (1) through (5) in this order. The resulting grammar is 

a desired one satisfying (f3) and (Nl) through (N5). 

(1) First, remove all rules of the form A -+E. Then for each terminating rule R: 

A+(u,, az,..., adcAl), MiET*, d(A)> 1, let Cli,, Cli2,..., Cli, be the nonempty (non-s) 

elements of aI, a2 ,..., X,,(A), in this order. Let us define the set Y = { 1,2 ,..., 

d(A))-{&, i2,. . . , ip}. Remove the rule R and introduce new nonterminal symbols 

cli,, c(i2,..., Ixip, A [ Y] and the following new rules: 

(a) tli,+cli,, l<q<p, 
(b) A[ Y]+(tii,, cli2, ...) pi,) if Y#{ 1,2,..., d(A)). 

Add Y to M(A) if Y$M(A). 

(2) For each nonterminating rule A --+f [A 1, AZ,. . . , Aacs,] except those introduced 

by this procedure, and each AiCY,], Yi~M(Ai), l<i<a(f), let ilri2,...,ip be the 

suffixes in increasing order such that Yiq # { 1,2,, . . , d(A)} (1 <q < p). Construct the 

following new rules. Let f” be the function obtained from f by substituting E for the 

variables Xij( jE Yi) in the right-hand side of (2.1) in the definition off: Let f’ be the 

function obtained from f” by deleting (a) the arguments Xi except Xi,, Xi29 . . . , Xip and 
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(b) the components equal to E. Let hl, hz, . . . be the components deleted. If 

Y={h,, h,,...}$M(A), then add Y to M(A). Generate the following new rule if 

Y#{ 1,2,..., d(A)}: 

(3) Delete all of the old nonterminating rules. 

(4) Let S’ be the new initial symbol and add the rule S’+ZD [ S], where ID [ x] = x. 

If EE&,(S), then also add the rule S’+E. 

(5) For each rule which does not satisfy the condition (N5), add new nonterminal 

symbols and terminating rules which are used only for each nonempty constant string 

cxhk in the right-hand side of the rule. 

(6) For each terminating rule A-ra a 1 2...ah with ha2 and a,ET(l<kdh), delete 

this rule and add rules A+f[A,, , . . . . A,,] and Aak-+ak for 16 k< h, where 

fCx 1,x.2,..., x,] =x1x2 . ..x. and A,,‘s are new nonterminal symbols. 

LetGbeanmcfgand&=(x,,cr,,..., CC,) be an A-phrase. Let t be a derivation tree of 

rX and ul, u2 (zil # u2) be two internal nodes of t whose labels are AI, AZ, respectively. 

Suppose that /?=(pl, p2,..., &) and Y=(y1,y2,...,yk2) are tuples of strings in 

L,( AI ) and L,( AZ), respectively, whose derivation trees are the subtrees oft rooted at 

v1 and v2, respectively. Each ~j appears in Cc at most once (and only once when 

G satisfies the condition (f3) of Lemma 2.1) as a substring of some component of Cc, and 

even if Bi and pj (i #j) are contained in the same component of &, they do not overlap 

with each other (see the definition of gO,Os in Section 3.1). If there is no ances- 

tor-descendant relation between u1 and v2, Bi and yj do not overlap with each other 

even if /?i and yj are contained in the same component of Cr. Thus, in an mcfg, for each 

nonterminal symbol A, an A-phrase is composed of d( A) components and they unite 

together in the syntax and ancestor-descendant relations between phrases exist. This 

property distinguishes an mcfg from a scattered context-free grammar [15], a parallel 

context-free grammar [16, 191 and a matrix grammar [15] (abbreviated as an scfg, 

a pcfg and an mg, respectively). 

In an scfg, each rule has the form (A,+uI, A2+u2,...,Aq+uq), where 

AiEN, Ui~( TuN)* (1~ i<q), and N and T are the sets of nonterminal and terminal 

symbols, respectively. When all of Al, A2,. , A, appear in cc~(TuN)*, the string 

p obtained from CI by substituting ul, u2,..., U, for A,, A2 ,..., A,, respectively, is 

called a string derived from c1 by the rule. In the string p, these Ui’s will not behave to 

unite together in further derivations. Thus, in an scfg, we may not be able to define 

meaningfully an ancestor-descendant relation between phrases. Similar situations 

exist in a pcfg and an mg. Although a pcfg has some resemblance to a pmcfg in that it 

has copy operations, they are not equivalent because the class of languages generated 

by pcfg’s and CFL do not include each other while CFL is properly included in 

MCFL (see the properties (2.2) and (2.3) of mcfg’s). 
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3. Properties of multiple context-free grammars 

In this section, we will present properties of pmcfg’s and mcfg’s. These results except 

for Theorem 3.7 are first obtained in [6]. 

3.1. Generative capactiy and closure properties 

First, some results on the generative capacity of pmcfg’s and mcfg’s are presented 

[see also (2.2) and (2.3)]. 

Theorem 3.1. PMCFL is properly included in the class CSL of context-sensitive 

languages. 

Now, some definitions will be introduced for the proof of the next lemma. Let t be 

a derivation tree of an mcfg G. Let v and v’ be internal nodes in t labeled with A and 

A’, respectively, where v’ is an ancestor of v or u itself. A function go,“, from ( T*)d(A) to 
(T*)d’A” is defined as follows. Let y= (yl, y,, . . . , ydcA)) be a variable over ( T*)d(A): 

(1) s”,“cYl=.F 
(2) Assume that v#v’. Let ul, v2 ,..., u, (labeled with Al, A2 ,..., A,, respectively) 

be the children of v’, and Vi (1 did w) be the child of v’ on the path from v’ to v in t. Let 

A’+‘CA,, AZ,..., A,] be the rule applied at U’ in t, and Sj be the string derived from Vi 

(j#i) in t. Then 

From the definition, for any I%EL,(A), 

s”,“fC463(‘4’) (3.1) 

Each component of g,,,,(y) can be represented by the concatenation of some 

variables in { y, , y,, . . . , y,(,,} and constant strings. If G satisfies the condition (f3), 

each variable yi is contained in one and only one component of go, “,(j). Let us denote 

the sum of string lengths of components of g,,,,(y) by 1 gV,vS(jj) 1. If G satisfies the 

conditions (f3), (N3) and (N4) of Lemma 2.1, and on the path from v’ to v in t there 

exists a node which is not v and has two or more children, then the following 

inequality holds: 

lg&Y)l >d(A). (3.2) 

The following lemma analogous to the pumping lemma for cfl’s [2, 151 holds for 

mcfl’s. For a string a, let (K( denote the length of CC. 

Lemma 3.2 (pumping lemma for mcfl’s). For any m-m@ L, ifL is an injinite set then 

thereexistsomeuj~T*(1~j~m+1),vj,wj,sj~T*(1~j~m)whichsatisfythefollow- 
ing conditions: 

(1) f (VjsjI>O, and 
j=l 
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(2) for any nonnegative integer i, 

Proof. Let G( = (N, 0, F, P, S)) be an m-mcfg which generates L and satisfies the 

conditions (f3) and (Nl) through (N5) of Lemma 2.1. Let us denote max{ a(f) I~EF} 

by q. Since L contains a string of length greater than two, q32 holds from the 

conditions (Nl) and (N5). Let us consider a derivation tree t of ZEL such that 

lzl>q . INi+ ’ There exists a path p from the root r to a leaf in t such that the number of 

the nodes on p which has more than two children is at least log,lzl= IN( + 1 by the 

assumption Izl>qtNl+‘. 

Therefore, there exist distinct nodes v and v’ on p with a same label (say, AEN) 

which have at least two children. Assume that v is a descendant of v’. Let k = d(A). Let 

us denote g”,,, by g for simplicity, and the function obtained by cornpositing g i times 

by gi. Note that gi is not a value obtained by concatenating the value of g i times. For 

a function g, let us denote the jth component of g by gj. 

Let K={l,2,..., k}. We define a function p from K to K such that if a variable 

y,(n~K) is contained in gj, then p(n) =j. Let d be the maximal nonempty subset K’ of 

K which satisfies the condition: if we regard p as a function from K’ to K (by 

restricting the domain), p is a permutation over K’. This subset J (called the kernel) 

can always be found. 

From the definition of jand the fact that the number of components of g is k, for 

each variable y, (n$J), y, is moved to one of the components in the kernel by 

cornpositing g at most (k - 1) times. Therefore, if we let J i = {j ) the jth component of gi 

is a constant string}, then J i = J k-1 holds for each i(i>k). Let v=p’-‘. Since v is also 

a permutation over the kernel J, there exists some integer p such that the permutation 

obtained by cornpositing v p times is the identity permutation. Let us denote gpCkP1) 

by 9 for simplicity. @j(j) is a constant string of the form yj~ T + if j$J and yjI yjyjz 

if jEJ, where Yjl and yj2 are strings over Tu(y,Ij$J}. Hence, for any 

jej, j,?(y) = yjr gj(y) yiz, where yjl and yj2 are the strings over T obtained from yjl and 

yjz, respectively, by substituting yi for yi(i4J). For any positive integer i, 

(1) ifjE1, then 

(2) otherwise, 

gf(Y)=Yj. 

Since Ig(y)l>k from (3.2) and IS’+‘(y)J>I&y)l, 

(3.3) 

(3.4) 

(3.5) 

On the other hand, from the condition (f3), 

g”‘,,(~)=UoYh,Ulyh~...Uk-lYL~Uk, (3.6) 
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where r is the root of t, &ET* (O<h,<k) and (hl,h2,..., hk) is a permutation of 

(1,2,..., k). Let BE&(A) be the string derived from u in t. Then, from (3.1), 

&&L&A), i30. Again from (3.1), 

S”&?(B))GM), i30. (3.7) 

The lemma holds by (3.3) through (3.7) letting Zi=gu,,r(S’(p)) for i30. 0 

The next lemma can be proved by using Lemma 3.2. 

Lemma 3.3. L={a~a~...a~,+, 1 PI> 1, Ui~T, 1 <i<2Vl+ l} is not Un WWTKJE. 

Proof. Assume that L is an m-mcfl. By Lemma 3.2, let 

Zi = U,“iUli.. U;h + 1 

=U1VfW1SfU2ViW2S~U3... 
I I 

hthzW,S,%n+ 1. 

For some j (1 < j,<m), if there exists some k such that Uj or sj contains ~,a,+ 1 as 

a substring, then z2 contains ukuk+ 1 twice as its substring. This implies that z,$L; 
acontradiction.Hence,foreachj(ldj~m),k(j)andh(j)(ldk(j)dh(j)d2m+l)are 

uniquely determined, and vjEUk*(j) and sjEUh*(j). Therefore, for some 4 (1 <q d 2m + l), 

oneofu,,w,,...,u,,w,,u,+, should contain u,“’ as its substring. But for sufficiently 

large i,ni>Iujl (l<j<m+l) and ni>lwjl (ldjbm) hold. This is also a 

contradiction. 0 

By using an argument similar to the one used in Example 2.1(3), we can show that 

1 u;u;...u;,+l I n> 1 }~(m + I)-MCFL. By this fact and Lemma 3.3, Theorem 3.4 

follows. 

Theorem 3.4. m-MCFLs(m+ l)-MCFLfor any m3 1 

Similarly, next lemma holds as a corollary of Lemma 3.2. 

Lemma 3.5. For any m, L= {u’” I n3 l} does not belong to m-MCFL. 

Proof. Assume that L is an m-mcfl. By Lemma 3.2, let 

Let k = CT= 1 I Vjsjl> 0. Then, for any positive integer i, 2”’ + (i - 1) k is a power of 2. 

This is a contradiction. 0 

From Example 2.1(2) and Lemma 3.5, we obtain the next theorem. 

Theorem 3.6. l-PMCFL 4 MCFL. 
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/ /PMCFL, \ 

CFL=l-MCFL 

Fig. 1. Inclusion relations between subclasses of CSL. 

Inclusion relations between the classes of languages mentioned above are sum- 

marized in Fig. 1. 

As is the case in cfl’s, we have the following positive result for pmcfl’s and/or mcfl’s. 

Theorem 3.7 (Vijay-Shanker et al. 17231). Any mc$ is semilinear. 

Theorem 3.8. For a given pmcfg G, it is decidable whether or not L(G) is empty. 

Note that Lemma 3.5 can be proved as a corollary of Theorem 3.7. 

PMCFL and MCFL have the following closure properties which CFL has. 

Theorem 3.9. (1) The class m-PMCFL and m-MCFL are closed under substitution. 

(2) The class m-PMCFL and m-MCFL are closed under union, concatenation, 

Kleene closure, E-free Kleene closure. 

(3) The class m-PMCFL and m-MCFL are closed under intersection with regular 

languages. 

(Hence, m-PMCFL and m-MCFL are substitution-closed full AFL’s.) 

Proof. (1) can be easily shown from definition. (2) can be shown from (1) and the fact 

that these operations can be expressed by regular expressions. For proof of (3) let 

G = (IV, 0, F, P, S) be an m-pmcfg (or m-mcfg) which generates L. Let SR, 6, s0 and 

AR denote the set of states, the state transition function, the initial state and the set of 

final states, respectively, of a deterministic finite automaton which accepts R. We 

construct an m-pmcfg (or m-mcfg) G’ = (N’, 0, F, P’, S’) as follows: 
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(l) N’~{S’}u(ACslO~sll~s*O~s*l~~~~~Sd(A)O~Sd(A)11IA~N~ SijESR, l<i<d(A), 
j=O, 1). 

(2.1) For each rule 

A,~fCA,,A,,...,A,(s,l 
in P and 

A!&[& sy; & sy,, 1 I 9 3 3 ,...> d$i)o,sg!4i)ll, O<i<a(f), 

which satisfy the following connecting condition, let 

A&-[A;,A;, . . . . A&,]EP’. 

The connecting condition: let each component f” (1 <h < u(f) =d(A,)) off be 

fh(%,%, . . ..X.(f))=CXhOZh1C(h1zh2...Zhoh(J)Clhvh(/.), 

where 

Xi=(Xil,Xi2,...,Xid,(S)), 

%+.~T*, Odk9u,(f), 

‘hk = Xich.&.X,) 1 d k < oh(f), 1 d i(h,k) < a(f), 1 G.&h,k) l <d, lch xl (.I-). 

Then we have the following: 

(4 S!h. d _ 
J~~,l,O-dZi’~C(hO)~ 

(b) 
&4h.d _ Uo,k-ll) 

J~h.k~O-‘(~j~h,t~,,l’ ah(k-&26k<Uh(f), and 

(4 
&. 

SL?=~Csj,,,o~‘~~~~ tlhvh(f)). 

(2.2) S’+S[sO,sF]~P’, sF~AR. 

(2.3) There is no rule except those mentioned above. 

It is easily shown that 

LG, (A [S 10,~11,~ZO,~21~~~~~~d(A)O~~d~~~l~) 

=(E=( 
@l,UZ, ‘.., Rd(,,)IC(E&(A), Sil=G(SiO,ai), lbiGd(A)). 

Hence, L(G’)=LnR. 0 

Since it is undecidable whether or not the intersection of given two cfl’s is empty 

[2,15], it follows from Theorem 3.8 that both of PMCFL and MCFL are not closed 

under intersection. Hence, they are not closed under complement, because they are 

closed under union. 

3.2. Membership problem for multiple context-free languages 

Here we discuss the membership problem for mcfl’s, i.e. the problem of deciding, for 

a given mcfg G and a string CXE T*, whether or not CI is in L(G). Hereafter, we assume 

that a given mcfg G = (N, 0, F, P, S) satisfies the condition (f3), (Nl), (N3) and (N4) of 

Lemma 2.2. 
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For @ET*, let cc=(a(ll,r,),a(/2,~2),...,~(lk,~k)) be a k-tuple of nonoverlapping 

substrings of a. We define the position vector of Cc to be (II, rl, 12,r2, . . . . lk, rk). Since 

a position vector uniquely determines a tuple of substrings in a given string, 

we sometimes specify a phrase by giving its position vector. For a phrase 

(ll,r1,12,r2,.... lk, rk), the greatest value among rl, r2, . . ., rk is called the right end of 

the phrase. 

Now let 6 be an A-phrase and assume that 

(1) x+L,(Ai) for 1 b&m, 

(2) A~f[A1,Al,...,A,(f)], with m=a(f), and 

(3) ~=f(Q,“z,...,%,J (E&(A)). 
Then we call ai (16 i < a(f)) the ith daughter phrase of Cc, or simply, a daughter phrase 
of 6. We will write the position vector of the ith daughter phrase as 

for 1 <id a(f). The daughter phrase whose right end is greater than that of any other 

daughter phrase is called the rightmost daughter phrase. 

Let R:A+f[A1,A2, ...,Aatf, ] be a rule in P. Suppose that, for any @EL(G), the 

number of the subphrases 6’s of c( satisfying the conditions (1) through (3) above is not 

greater than O(rP), where n = 1 c( I. Then we say that the degree ofthe rule R, denoted by 

D(R), is not greater than e. We also say that the degree of a grammar G, denoted by 

D(G), is not greater than e, if the degree of every rule in G is not greater than e. 

We evaluate D(R) as follows: 

(Al) The total number of components of the position vectors of the daughter 

phrases x1, cz2, . . ..c(.(~) is equal to 

NJ-) 

2 1 d(Ai). 
i=l 

(A2) In (2.11, let Zhk be Xio,,,jl,,,, (1 G iCh,kj<a(f) and 1 <j(h,k) ~d,,,l,(f)(=d(A,,,,,,)) for 

1 d h < r(f)( = d(A)) and 1 d k d q,(f)). Then the constraints 

must be satisfied for 1 d h d r(f) and 2 d k d t+,(f). For example, for 

there are two constraints such that 

p=r’2’+3 
3 1 5 

and 

l:“=r:l’+ 1. 

For each h (1 <h <r(f)), the number of such constraints given above is equal to the 
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number of variables appearing in the right-hand side of (2.1) minus 1. Hence, the total 

number of constraints is equal to 

{the total number of variables appearing in the right-hand side of (* 1) 

for l<hdr(f)}-d(A). 

By the conditions (f2) and (f3), this is equal to 

a(f) 

i I C d(Ai) -d(A). 
i=l 

(A3) The constraints mentioned in (A2) are linearly independent when they are 

considered as linear equations on variables I;‘, rji’ (1~ i Q a(f), 1 < j < di(f) ( = d(A,))). 

Hence, by (Al) and (A2), the number of variables which are independent is not greater 

than 

(3.8) 
i=l 

Therefore, D(R) d d holds. 

The above discussion (Al) through (A3) gives an upper bound on D(R) in a general 

case. If we have more information about R, the upper bound may be improved. For 

example, if we know that the second component of the first daughter phrase is always 

less than or equal to some fixed value in (A3), then we can conclude that D(R) Q d - 1 

holds. In the following, we assume for simplicity that G satisfies (N5) of Lemma 2.2, i.e. 

every C(hk in (2.1) is the empty string for 1 d h d r(f) and 0 <k d di(f). For a given mcfg 

G which does not satisfy (N5), we can construct an mcfg G’ which satisfies (N5), 

L(G)=L(G’) and D(G)=D(G’), by using Lemma 2.2. 

Let I, denote the set (1,2, . . ., a, *}. For each AEN, j (ldj<n) and 

U=(ui, u2, . . , u~~&Z,~~‘~‘, let us define p(A,j, U) to be 

(6=(u1,u2, . ..) uZd(A)) I(l) V is a position vector of some A-phrase, (2) the right 

end of V is not greater thanj, and (3) Ui = ui or Ui = * for 

1 <i<2d(A)}. 

6 is called a constraint vector. The value “*” in a component of U (if it exists) denotes 

that there is no constraint for that component. Let y(G) denote the number of *‘s 

appearing in U. Then 

1 p(A,j, U)l q(U) < II’(“) 

by the definition of p. 

In what follows, for an mcfg G, we describe the procedure MEMBER which decides 

in O(l~l~(~))-time whether or not a given string a is in L(G). This procedure is an 

extension of an O(n3)-algorithm for the membership problem for cfl’s. 

MEMBER has variables P(A, U) for each AEN, UEZ~~(~), and Ap(A) for each AEN. 

P(A, U) is used to store the set p(A,j, U), and Ap(A) is used to store temporarily the set 

of position vectors which are to be added to P(A,ti). 
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We assume that the arithmetic operations on integers not greater than n can be 

executed within a constant time (rigorously, within O(p(logn)), where p is some 

polynomial function). 

The data structures and the operations on them used in MEMBER are represented 

in the following way: 

(1) Foreach AENandtiEZ, , , 2d(A) P(A ii) is represented by a linearly linked list 1. 1 is 

allocated in such a way that the address of its header cell can be calculated within 

some constant time from A and U. 1 has two pointers, one of which points the “current” 

cell (used in procedure E) and the other points the last cell. 

(2) For each position vector V and AEN, we use one bit memory, denoted by b(C, A), 

whose address can be calculated within some constant time from V and A. If 

b(C, A)= 1, then it represents that %Ap(A); otherwise, $Ap(A). The set Ap(A) itself is 

represented by a linearly linked list I’. 1’ has two pointers, say p1 and pz. The cells 

preceding the cell pointed by p1 are considered as “marked” and the other cells 

“unmarked”. p2 points the last cell. 

Procedure MEMBER(E) 

(* For a given string z in T*, MEMBER answers “czEL(G)” or “cc$L(G)“. Assume that 

for each AEN and UEZ,~~‘~‘, the initial value of the variable P(A,ti) is the empty set 8. *) 

begin 

forj:= 1 to n do B(j); (* B(j) sets the value of P(A,ti) to p(A,j,ii) *) 

if P(S,(l,n))#QI then answer “cKL(G)” else “&L(G)“; 

end: 

Procedure B(j) 

(* Assume that the value of the variable P(A, U) is already set to p(A,j- 1, U) for each 

A and U when B(j) is called. Then the value of P(A, U) is set to p(A, j, U) for each A and 

U by executing B( j ) *) 

begin 

for each AEN do 

Ap(A):= the set of all the position vectors of A-phrases whose right ends 

are j; (3.9) 

for each AEN do begin 

for each U=(II~, v2, . . ..VZICAj)~Ap(A) and 

each constraint vector u = (U 1, ~2, . . . . Uzd(A)) such that Vi=Ui or Ui=* holds for 

each i (1 di<2d(A)) 

do P(A,ii):=P(A,u)u(u} 

end 

end; 

For simplicity, in what follows, we may also use the term “A-phrase” to denote its 

position vector. Statement (3.9) is refined as follows: 
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for each AEN do 

Ap(A) := the set of all (unmarked) A-phrases, each of which can be obtained by 

applying only a terminating rule; 

for each AEN and each unmarked G,gAp(A) do begin 

mark Ur ; 

C(A, &,j) 
(* C(A, Vl,j) adds every A,-phrase whose rightmost daughter phrase is VI, to 

MAO) *) 
end; 

Let 

~::A~~~CA~,AZ,...,A,(/,I 

be a rule and il,i2, . . . . i, be distinct nonnegative integers not greater than a(f). Let 

VI be an Ail-phrase whose right end is j and ~7~ be an Ail-phrase whose right end is less 

than j for 2 d t d s. Consider the following condition: 

(P) There exists an A,-phrase 17 which satisfies 

(Pl) the rightmost daughter phrase of 17 is VI, 

(P2) the i,th daughter phrase of 17 is 6, for 1 d t bs, and 

(P3) V is obtained by applying the rule cp to VI, V2, . , and U,. 

A necessary condition (and also a sufficient condition if s = a(f)) for the condition 

(P) to hold is 

(Bl) Assume that VI =(1r ,rl, . . . . lk, rk , . . .) and rk =j. Then the variable Xi,k appears 

at the right end of the right-hand side of (2.1) for some h (1~ h <r(f)), i.e. 

Zhq,(f)=Xi,k, 

(B2) U1,U2, . . . . and V, are nonoverlapping, and 

(B3) VI,Vz, . . . . and V, satisfy all the constraints in (2.1) (see (A2) at the beginning of 

this section). 

Considering the arguments given above, we can define procedure C(A, VI, j) as 

follows. 

Procedure C(A, VI, j) 

(* Assume that the right end of VI is j. Then C(A, VI, j) finds all the A,-phrases 

whose rightmost daughter phrase is VI, and add them to Ap(Ao) if they are not yet in 

Ap(Ao). *) 

begin 

for each rule ~P:A,~~[A,,A,,...,A,(~,] and 

each nonnegative integer ir not greater than a(f) satisfying “Ai, =A and the 

condition (Bl) above holds” 

do E(qo, (ur )); 
end; 
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(* For simplicity, we assume i1 = 1 in the following. We can always make i1 = 1 by 

introducing the function which “rotates” its arguments. *) 

Procedure E(cp, (U1, U2, . . . . i&)) 

(* Let (P:&+~[A,,A*, . . . . A,,/,] and assume that s<a(f). Then E((P,(U~,U~, . . . . &)) 

tests whether all the conditions (Bl), (B2) and (B3) are satisfied with i1 = 1, i2 = 2, . . . , 

and i,=s. If so, procedure E finds all the &phrases V’s such that the rightmost 

daughter phrase of V is 5, , the ith daughter phrase of U is Vi (1 < ids), and V is obtained 

by applying cp to V1, I&, . . . , and V,. Then E adds them to A&lo) if they are not in 

A&I,). *) 

begin 

U:= the constraint vector for the (s+ 1)th daughter phrase; 

(* U can be obtained from the constraints of (2.1) and V1, I&, . . , ~5~. *) 

if P(A,+ 1, U) = 8 then return 

else 

for each V,+ 1 in W,+ 1, 4 
such that Cl, Vz, . . ., and V,+ 1 are nonoverlapping do 

ifs+l<a(f) then E(cp,(v,,v,,...,v,+,)) 

else (* s + 1 = a(f) holds *) begin 

15 := the &-phrase whose rightmost daughter phrase is VI, whose tth daugh- 

ter phrase is 17~ (1 d t bs + l), and which is obtained by applying cp to 

-1, -2, . . . . and V,+1; 

AP(:~;=A~(A,)~ (U> 

end 

end; 

Suppose that D(G) is not greater than e. Then 

(1) for each j (16 j < n), the total number of tuples of daughter phrases to be tested 

in procedure B(j) is O(ne- ‘) (note that the right end of a rightmost daughter phrase is 

fixed to j ), and, 

(2) for each tuple of daughter phrases, the required time for testing is O(1). Hence, 

we conclude that the time complexity of MEMBER(a) is O(ne). 

Theorem 3.10. Let G be an mcfg which satisfies the conditions (f3), (Nl), (N3) and (N4) 

of Lemma 2.2, and suppose that D(G) is not greater than e. For a given @ET*, we can 
decide whether or not M is in L(G) within O(lal’) time. 

Using similar methods described in this section, an O(n’+‘)-algorithm for the 

membership problem for pmcfl’s can be obtained. The difference between the algo- 

rithms for mcfg’s and pmcfg’s is that in the case of pmcfg’s, a variable occurring in (2.1) 

for some h may occur at other positions in (2.1) for the same h and/or occur in (2.1) for 

another h. For such a variable x, the additional test is necessary that examines 
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whether all the strings corresponding to the occurrences of x are the same. This test 

takes O(n) time. 

Vijay-Shanker et al. [23] showed that the time complexity of the membership 

problem for mcfl’s is polynomial order by showing that for a given mcfg G, an 

alternating Turing machine can be constructed which accepts L(G) in O(log n) space. 

However, they did not give any upper bound for polynomial time complexity of the 

problem. Theorem 3.10 further gives an upper bound which depends on the degree of 

a grammar. It is an interesting problem to find, for a given G, an mcfg whose degree is 

not greater than some constant and is weakly equivalent to G. In cfg’s, the degree of 

any Chomsky normal form is not greater than 3. 

Joshi [4] pointed out that from Theorem 3.10 it follows that the class of languages 

generated by multicomponent tag’s [23] whose tree sets have at most k trees in them 

can be recognized in time O(H~~). 

4. Head grammars, tree adjoining grammars and 2-mcfg’s 

4.1. Head grammars 

In [12], Pollard defined a special subclass of gcfg’s, called head grammars (hg’s), 
which are intended for describing the syntax of natural languages. The hg’s exceed the 

cfg’s in generative capacity but retain most of their pleasant mathematical properties. 

We will define head grammars and some related concepts according to [12] in the 

sequel. For a finite set T of terminal symbols, let T r denote the set 

For (a, i)ETf, the ith symbol of a is called the head of (a, i) and each element of Ty is 

called a headed string over T. 

Definition 4.1. An s-ary function c : (T t) ‘+ T 7 is called an (s-ary) headed concatena- 

tion operation if a nonnegative integer h (h < s) and terminal strings yO, yl, . . . , ys on T* 
are specified, and for each headed string (aj, ij)E Tt (1 <j< s), 

is defined as follows: 

Case 1: If (ah, &)#(&,O), then the value of the function c is obtained by concaten- 

ating the argument strings and the terminal strings ye, y1 , . . . , y,,, and the head of the 

resulting string is defined to be the head of the hth argument of c, i.e. 

h-l h-l 

CC(a,,il),(C12,i2),...,(tl,,i,)l= Yo~IYI@z...Y~-I%Ys~ 1 IYiI+ c IaiI+ih . 
i=O i=l > 
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Case 2: If (aj, ij) = (a, 0) for all j (1 d j < s), then 

c [(a, O), (a, 0), . ‘. , (6 011 = (6 0). 

Case 3: If (IX,,, ih)=(c, 0) and (a,, i,)#(~, 0) for some p (p#h, 1 <pbs), then 

c[(ccl, ii),(~, i2), . . . . (as, i,)] is undefined. 

For each string CI=CX~C(~...U,ET*, let us define cc(i,j) to be the substring Uiai+l...Uj 

ofaif l<i<j<lal,anddefinea(i,j)=cotherwise. 

Definition 4.2. The head-wrapping operations are the binary functions wi, w2, wj and 

w4 : T f x T r + T t defined as follows: 

Exceptions: 

(1) For each k (1 <k <4), w~[(E, 0), (E, 0)] is defined to be (E, 0). 

(2) For k=1,3 and (/?,j)#(a,O), wk[(c,O),(fi,j)] is undefined. 

(3) For k = 2,4 and (cx, i) # (E, 0), wk [(a, i), (E, 0)] is undefined. 

w1 and w2 are called left-wrapping operations and w3 and w4 are called right- 

wrapping operations. 

Definition 4.3. Let T be a finite set of terminal symbols and G = (N, 0, F, P, S) a gcfg 

with NnT=@. Then G is called a head grammar (hg) if 

(1) 0= Tt, and 

(2) each function in F, other than a constant function, is either a headed concatena- 

tion operation or a head-wrapping operation. 

For an hg G, the language 

is called the underlying language generated by G. A language L is called a head 

language (hl) if L is the underlying language generated by some hg. Let HL denote the 

class of hl’s. 

Example 4.4. Let G=(N, 0, F, P, S) be an hg where, 

(1) T= {a, b), 

(2) N={&A,B,RE}, 
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(3) F={wJ,c~,Q}, where c,[(cc,i)]=(ax,i) for x=a,b, and 

(4) P=(S-*(aa,2)l(bb,2)lc,(D)lc,(E), D+w,(S,A), E+w~(S,B), ~+(a,l), 

B-r@, 1)). 
Then, the underlying language generated by G is 

{u” I C(E{U, b}+}. 

Let G be an hg and assume that (p, i) is a subphrase of (cr,j)~L(G). Then both the 

strings /?(l,i- 1) and b(i+ 1, Ipl) are always substrings of ~1. Although the head /3(i, i) 
of (b,i) always appears between p(l,i- 1) and ,8(i+ l,/fi\) in c(, it is not always the 

case that fi(i,i) is adjacent to p(l,i- 1) and/or p(i+ l,IpI) in GI. For example, let 

G =(N, 0, F, P, S) be an hg where 

P={A+(aIuza3,2), B+(b, l), C-*wi(A,B), S+w3(C,B)}. 

Then (a,u,u,,2) is a subphrase of (aIbu2bu3,3) and the head u2 of (u1u2uJ,2) is 

adjacent to neither a, nor u3 in a, buzbu3. Hence, for a headed string 

(/I, i),(fi(l,i- l),p(i, i),j?(i+ 1, IBI)) might be a more appropriate notation than (/I, i). 

Definition 4.5. An hg G = (N, 0, F, P, S) is called a normal form head grammar (nhg) if 

G satisfies the following conditions (1) through (3): 

(1) The right-hand side of each terminating rule in P is either (E, 0) or (a, 1) (a~ T). 

(2) Headed concatenation operations in F are limited to the following binary 

functions cl and c2: 

(Exceptions: as in Case 2 and Case 3 of Definition 4.1) 

(3) If A-+(E,O)EP, then A does not appear in the right-hand side of any rule in P. 

Lemma 4.6 (Roach [14]). For a gioen hg G, un nhg G’ can be constructed such that the 
underlying languages generated by G and G’ are the same. 

An nhg which uses only left-wrapping operations wi and w2 as wrapping operations 

is called a left-wrapping head grammar (lhg). Similarly, an nhg which uses only 

right-wrapping operations w3 and wq as wrapping operations is called a right- 
wrapping head grammar (rhg). The class of the underlying languages generated by lhg’s 

and rhg’s are denoted by LHL and RHL, respectively. 

It was shown that for a given hg G, we can effectively construct a 2-mcfg G’ of 

D(G’) < 6 such that L(G) is the same as the underlying language generated by G and G’ 

satisfies condition (f3), (Nl), (N3) and (N4) [6]. Therefore, by Theorem 3.10 the next 

corollary holds. 
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Corollary 4.7. The time complexity of the membership problem for hi’s is 0(n6). 

Corollary 4.7 was shown in an earlier paper [22] as a corollary of the fact that the 

class of languages generated by tag’s includes the class of hl’s (see Theorem 4.9) and 

that the time complexity of the membership problem for tal’s is O(n”) [21]. This result 

is an improvement over the O(n’)-algorithm given by Pollard [12]. Pollard also gives 

an O(n6)-algorithm of the membership problem for left-wrapping hg’s and right- 

wrapping hg’s [12]. In Section 4.1, it is shown that the generative capacities of hg’s, 

lhg’s and rhg’s are equivalent (Corollary 4.13). 

4.2. Equivalence of HL and TAL 

Hg’s are interesting in that a wide range of “discontinuous constituents” such as 

subject-auxiliary inversion can be defined naturally by using hg’s. Pollard defines the 

headed concatenation operations and the head-wrapping operations as partial func- 

tions on headed strings. That is, a function in hg’s is undefined when the value of the 

argument whose head is designated as the head of the value of the function is (E, 0) (e.g. 

if the first argument is (E, 0) and the second argument is not (E, 0), then w1 and wg are 

undefined [see Definition 4.21). This partiality of the functions has led to difficulties in 

proving certain formal properties of hg’s. For example, CFL is closed under substitu- 

tion, and the proof is trivial from the definition. On the other hand, it has not yet been 

shown that the class HL is also closed under substitution, in spite of an affirmative 

conjecture (see [12, Appendix 23 and [14]). 

Vijay-Shanker et al. [22] use pairs of strings (c(~, a2) (called split strings) instead of 

headed strings, and consider that a head is not a symbol but a position between two 

strings z1 and c(~. They define three operations as total functions on split strings 

corresponding to the operations of hg’s and introduce modiJied head grammars (mhg’s) 

which deal with split strings. They showed that the generative capacity of mhg’s is 

equivalent to that of tag’s and is not weaker than that of hg’s. 

In what follows, we show that the generative capacity of mhg’s, hg’s and tag’s are all 

equivalent, and show as a corollary, that HL is a substitution-closed full AFL and the 

generative capacity of hg’s are not weakened even if the head-wrapping operations are 

restricted to left-wrapping operations or right-wrapping operations. We first define 

modified head grammars. 

Definition 4.8 (Vijay-Shanker et al. [22]). Let T be a set of terminal symbols. A 2-mcfg 

G =(N, 0, F, P, S,) (0 = T* u( T*)‘) is called a modijed head grammar (mhg) if G satis- 

fies the following conditions (1) through (3): 

(1) For each nonterminal symbol A other than So, d(A)=2. 
(2) There exists a nonterminal symbol S other than So such that S,+J[S] is in P, 

where 
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S does not appear in the right-hand sides of the rules in P other than S,+J[S]. 

(3) The nonterminating rules in P other than S,-+J[S] has the following form: 

A+f[B,D] with A,B,DEN-{So} andfe{C,,C2, W}. 

Functions C1, C2 and W are defined as follows: 

C,c(~l,xz),(Y,,Y,)l=(xl,x2YlY2), 

C,c(~~,~~),(Y~~Y~)l=(~~~*Yl,Y*), 

~c(~l~~*)~(Yl~Y2)l=(~~Yl,Y2~2)~ 

A language generated by an mhg is called a modijied head language (abbreviated as 

mhl) and let MHL denote the class of mhl’s. 

It has already been shown that CFL= l-MCFL [see (2.2)], CFLs HL [12] and 

HL c TAL = MHL [22], TAL = LIL [20] and TAL = CCL [25], where LIL is the 

class of languages generated by linear indexed grammars [l] and CCL is the class of 

languages generated by combinatory categorical grammars [17, IS]. It is obvious that 

MHL G 2-MCFL since mhg’s is a subclass of 2-mcfg’s. The following theorem sum- 

marizes these results (see Figure 2). 

Theorem 4.9. CFL = 1-MCFL 5 HL z TAL = MHL = LIL = CCL G 2-MCFL. 

In what follows, we show that MHLs HL. That MHLs2-MCFL is shown in 

Section 4.3. Let Go be an mhg. We will construct an hg weakly equivalent to Go. By 

Lemma 2.2, we first construct a 2-mcfg G =(N, 0, F, P, S) which is equivalent to 

Go and satisfies condition (f3) and (Nl) through (N5) of Lemma 2.2. G has the 

following property by construction. 

TAL=MHL 
=LIL=ccL(*4) 

CFL=l-MCFL(*l) 

* 1 See [6], onginal idea is from [12]. 
*2 See 1121. 
*3 See [22]. 
*4 See [22] for TAL=MHL, [20] for TAL=LIL 

and [25] for TAL=CCL. 
* 5 Trivial. 

Fig. 2. Inclusion relations between subclasses of 2-MCFL. 
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Property DRV. Each function used in G other than a constant function is obtained from 

some function f in { C1, C2, W} by deleting several (possibly zero, but not all) variables in 

the dejinition off [see (2.1)] and deleting the resulting components which are the empty 

strings. (These functions are shown in Table 1.) 

By conditions (N3) and (N4), for any derivation tree t in G, none of E, (~1, E) and (E, a) 

(C(E T*) is derived from any node other than the root of t. By using this property, we 

will construct an hg which “simulates derivations” in G without letting the function be 

undefined (see the discussion at the beginning of this section). 

Lemma 4.10. For a given mhg Go, an hg G’ can be constructed such that the underlying 

language generated by G’ is L(G,). 

Proof. For a given mhg G,,, let G=(N, 0, F,P,S) (0= T* Us) be the 2-mcfg 

constructed from Go by Lemma 2.2. We will construct an hg G’=(N’, Tf, F’,P’, S) 

satisfying the following condition EQ. We let 

Condition EQ. The following conditions (EQl) through (EQ3) are satisfied. 

(EQl) EEL(G) o (E,O)EL(G’) 
(EQ2) For each AEN with d(A)=l, aET and MET+ (loll>l), 

CXEL,(A) and cr(l,l)=a o 3j(l<j<IcI-1): (C((2,1crI),j)ELG.(a\A). 

(EQ3) For each AEN with d(A)=2, aETand c(~,cQET~, 

(aI,~&L,(A) and 4l,l)=a 0 (~1(2,14)~Z,I~11)~L~4a\A). 

For any tuple Cr = (x1, cc2, . . . . cc,) of strings in T*, a,(l, 1) is said to be the top symbol 
of L? if aI #E. In what follows, we call a tuple of strings merely “a string”. 

Construction of P’. Consider a rule A+f [B,D] in P, peL,(B), 6;LG(D) and 
-- 

&=f [fi, ~]EL,(A). By the definition of the functions in G (see Table l), the top symbol 

of a is either the top symbol of fl or that of K When none of the components of the 

strings derived from B and D is the empty string, it is easily determined, by examining 

onlyJ; which nonterminal symbol, B or D, derives the string whose top symbol is the 

top symbol of the string derived from A. Similarly, for a rule A+g[B] in P, BELo 

and Cr =g[p]~Lo(A), the top symbol of Cc is the top symbol of p if none of the 

components of Bis the empty string. For a rule R : A-f [B, D] (f# C’,12’), assume that 

the top symbol of a string derived from A is that of B. Then, a rule of the form 

a\A+f ‘[a\ B, D] is added to P’ for each a6 T, where f’ is chosen so that condition 

(EQ2) is satisfied if d(A) = 1 and (EQ3) is satisfied if d(A)= 2. If the top symbol of 

a string derived from A is that of D, a rule of the form a\A -f ‘[B, a\D] is added to P’ 
in a similar manner. Assume that A + C \“)[B D] is in P. Since the second component , 
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Table 1 
The functions used in G’ constructed from an mhg G by Lemma 2.2 

Cl1 c,C(xl,xzb(Y,,YZ)l=(X1,X2Y1Y2) 

PI C,C(xl,XZ)r(Y1,Y2)1=(X1XZY1.Y2) 

c31 w(~l~~~)~(Yl,Yz)I ‘(X Y 4’ x ) 11, z z 

M C:“‘C~~(Yl~Y,)l “XYlYZ 

I51 CZ’CX~(Yl~YJl =(x,Y,Y*) 

C61 C~~“~(~l~~2bYI =(x,,x*y) 

171 C~~l’cX,(YlrYZ)l =(xy,,y,) 

Cgl Pl(Xl,X2),Yl =(x,xz,y) 

c91 G=‘c(x,~~,),Y1 =xlxzY 

Cl01 ~‘“‘lX,(Y,,Y*)l =(Yl,Y,x) 

Cl11 ~(21’C(XI~X*),Yl =(x,,Yx*) 

1121 ~‘22~~(~l>Xz)>Yl =(x,Y,x*) 

Cl31 c:“.‘*‘[(x,,x,)] =x,x2 

1141 c:“J1’[x,y] =xy 

Cl51 qz,*“[x,y] =(x,y) 

Cl61 c:z’=‘[(x,) x*)] =(x1,x*) 

Cl71 w’“,21’[x,y] =yx 

I181 W’“.22’[x,y] =(y,x) 

1191 The function obtained by deleting three variables (ID [ x] =x) 

~“1.2”_~‘11.22’_~~11,2Z~~~~2,22~~ ~‘12,22, 
1 1 - 2 

~‘12.21’_~“2.22’_~‘11.21~~~:12,21~~ ~“2.21~ 
1 1 2 

c’21.22’_~(11.12)=w~11.12~= f,fA21.22,, 
1 -2 

(f”“‘.‘. ) denotes the function obtained from f by deleting the j, th component of the i,th 

argument, etc. in the definition of J) 

of the value of C’,12’ (see line [S] in Table 1) begins with the first component yl of the 

second argument, the head of a headed string derived from a\A must be the first 

symbol of the second argument in order to satisfy (EQ3). 

Based on the discussion above, we summarize the construction of P’ as (P’ 1) 

through (P’7) below. In what follows, id[B] is an abbreviation of c1 [B, EPS], which is 

the identity function (a rule with EPS as its left-hand side is constructed in (P’7) 

below). c1 and c2 are headed concatenation operations introduced in Definition 4.5. 

(P’l) If S+E is in P, then add S-(&,0) to P’. 
(P’2) Let R be a rule A+f[B,D] (f#C\“)) in P. 
Case (i): The top symbol of a string derived from A is that of B. 

(i.1) If d(B)=2, then add a\A+f’[a\B,D] to P’, wheref’ is chosen from the 

functions in hg as shown in Table 2 in order to satisfy (EQ2) and (EQ3). 

(i.2) If d(B)= 1, then add a\A+f ‘[u\B,ll] to P’ as is the Case (i.l). In order that 

(E, 0) will not be derived from any node other than the root in any derivation tree in G’, 
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Table 2 

Construction (P’2) through (P’4) of Lemma 4.4. 

P 

(i.1) of (P’2): 

Cl1 A-+C,IB,Dl 

PI A+Cz C&D1 

C31 A + WC& 01 
[6] A+Cyl’[B,D] 

[S] A+C:Z1)[B,D] 

[9] A-+C$=‘[B,D] 

[ll] A+W’Z1)[B,D] 

[12] A- W’22’[B, D] 

(i.2) of (P’2): 

[4] A-+C:“‘[B,D] 

[7] A-+C:‘“[B,D] 

1141 A-C :“~21)[~,~] 

[15] A-C :12,21)[~,~] 

(ii.1) of (P’Z): 

[lo] A+W”“[B,D] 

(ii.2) of (P’2): 

[17] A+W ClLZIl[~,D] 

[lS] A+W (Il.ZZ)[B,D] 

(P’3): 

[13] A+C :“,lz)[~,~] 

[16] A-C :Z1.22)[~,~] 

[19] A+ID[B] 

(P’4): 

[S] A+C:“‘[B,D] 

P’ 

a\A ‘~1 [a\8 Dl 

a\A +c2 [a\& 01 

a\A ‘~4 la\& 01 

a\A+c, [a\& 01 

a\A +c2 [a\& 01 

a\A+c, [a\& 01 

a\A + w4 Ca\B, 01 
a\A+w, [a\B, D] 

a\A+c, la\& 01 
a\A+id[D] 

a\A +c2 Ca\B, 01 
a\A-tid[D] 

a\A +c, [a\& 01 
a\A+id[D] 

a\A ‘~2 [a\& 01 
a\A+id[D] 

a\A+w,[B,a\,D] 

a\A+w, LB, a\Dl 
a\A+id[B] 

a\A +w CB, a\Dl 
a\A+id[E] 

a\A-+id[a\B] 

a\A+id[a\B] 

a\A+id[a\B] 

a\A+czCa\B, D,o,l 

~\A-+idlh,l 

(as T) 
k= T) 
(as T) 
(aE T)* 

(LIE T)’ 

(aE T)*+ 

(a~ T) 

(a~ T) 

(a T)+ 

kJ~M@) 
@ET) 
kJ~&m) 
@ET)*+ 

@MB)) 

(a~ T)’ 

N-MB)) 

(a~ T)* 

(asT)*+ 

(=-L(D)) 

(a~ T)’ 

(agL(D)) 

(a~ T) 
(a~ T) 
(a~ T) 

(a~ T)’ 

&MB)) 

217 

Line number [i] corresponds to the one in Table 1, where the function appearing in 

the right-hand side of the rule in P is defined. 

the rule a\&+(&, 0) is not directly added to P’ but “embedded in” nonterminating rule 

a\A+f’[a\B,D]. That is, for each aET, add a\A--+id[D] to P’ if ~E:L,(B). (It can 

easily be decided whether a~&@) or not, as is the case of cfg’s.) Note that, since the 

position of the head of a headed string derived from a\,4 is arbitrary by condition 

(EQ2)ifd(A)=l,a\A+c,[a\B,D] may beadded to P’insteadofa\A-+c,[a\B,D] 

in line [4] in Table 2. In the case that for a rule in P there are more than one rule which 
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may be added to P’ since the position of the head of a headed string derived from the 

nonterminal symbol in the left-hand side is arbitrary by condition (EQ2), one of the 

rules is shown and marked “ + ” in Table 2. 

Case (ii): The top symbol of a string derived from A is that of D. 

(ii. 1) If d(D) = 2, then add a\ A +f’ [B, a\ D] to P’ (see Table 2). Note that, since 

the head of a headed string derived from B with d(B)= 1 is always the first symbol, 

a\A-w,[a\D,B] may be added to P’ instead of a\A+w,[B,a\D] in line [lo] of 

Table 2. In the case that for a rule in P there are more than one rule which may be 

added to P’ since the head of a headed string derived from a nonterminal symbol in 

the right-hand side is always the first symbol, one of the rules is shown and marked 

“+” in Table 2. 

(ii.2) If d(D)= 1, then add rules to P’ in the same way as in (i.2). 

(P’3) If a rule A+g[B] is in P, then add rules to P’ in the same way as in (i.1) of 

(p’2). 

(P’4) If a rule A+c’,“‘[B, D] is in P, then add a\A-+c2[a\B, D,,,] for each aeT 

and a\A+id[D,,,] for each UEL~(B) to P’. 

(P’5) For each AEN with d(A)=l, 

A-c1 [[a],a\A] for each UET, and 

A +(a, 1) for each ueL,(A) 

are added to P’. 

(P’6) For each AEN with d(A)=2, 

A-Z [Cal, a\4 for each aeT, and 

Atop-w1 [[a], u\A] for each JET 

are added to P’. 

(P’7) The following rules are also added to P’ so that (E, 0) can be derived from EPS 

and (a, 1) can be derived from [a] for each UET: 

EPS+(E, o), 

[~]+(a, 1) for each UET. 

It can be shown by induction on the height of derivation trees that condition EQ is 

satisfied. We can conclude that L(G) and the underlying language generated by G’ are 

the same by using the fact that EQ is true. Details of the proof are described in 

Appendix. 

By Theorem 4.9 and Lemma 4.10, the following theorem is obtained. 

Theorem 4.11. HL = MHL = TAL = LIL = CCL. 
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By Theorem 4.11 and the fact that TAL is a substitution-closed full AFL, the next 

corollary is obtained. 

Corollary 4.12. HL is a substitution-closed fill AFL. 

In the proof of Lemma 4.10, G’ is an nhg and uses only wJ and w4 as head-wrapping 

operations. Consequently, for a given mhg G, a right-wrapping hg G’ can be construc- 

ted such that the underlying language generated by G’ is the same as L(G). Similarly, 

for a given mhg G, a left-wrapping hg G” can be constructed such that the underlying 

language generated by G” is the same as L(G) (in this case, for each AEN and aET, 

a nonterminal symbol A/a is introduced from which every headed string obtained 

from some string & derived from A in G by deleting the last symbol of the last 

component of a is derived.) Therefore, the following corollary holds. 

Corollary 4.13. LHL = RHL = HL. 

4.3. Proper inclusion of HL in 2-MCFL 

In this section, we show that HL is properly included in 2-MCFL. Consider the 

following language. 

RESP = {aTayb;blc?cyd;dl) m, n 30}. 

RESP is a 2-mcfl [24, p. 1 lo]. Weir conjectures that RESP is not an mhl, but a proof 

has not yet been given. Vijay-Shanker [20, Theorem 4.71 proved a pumping lemma for 

tal’s (mhl’s). As pointed out by [24, p. 1 lo], however, the lemma is not strong enough 

to show that RESP is not an mhl. In what follows, another pumping lemma (Lemma 

4.14) for mhl’s is given, and it is shown by using the lemma that RESP is not an mhl 

which concludes by Theorem 4.11 that HL = TAL = MHL 5 2-MCFL. 

For a string CIE T* and a symbol aE T, let v,(a) denote the number of the occurrences 

of a in z. 

Lemma. 4.14 (pumping lemma for mhl’s). Let L be an mhl. Assume that, for a given 

n 3 0, there exists CI in L such that V,(E) 3 n for each aE T. Then, there exists a constant 

M 30, depending only on L, such that for any n 20 there exists z in L satisfying the 

following conditions (1) and (2): 

(1) For each aET, v,(z)>n, and 

(2) z may be written as z=u x w s u x w s u such that 111122223 

(4 lxlslx2s2 I3 1, 

(b) lu2I<M, and 

(c) for all i30, uIx~wIs~uZx~wZs~u3 is in L. 

(Note that this lemma is similar to the pumping lemma for 2-mcfl’s derived by letting 

m=2 in Lemma 3.2 in that z may be written as ~=u~x~w~s~u~x~w~s~~~ with 
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lxlslx2s21 Z 1 such that x1 ,si,xz and s2 can be arbitrarily pumped. Lemma 4.14 

is stronger than Lemma 3.2 (m= 2) in that z is shown to be divided into 

u1 ,x1, wl, sl, u2,x2, w2, s2 and ug in such a way that the length of the substring 

u2 intervening between s1 and x2 is not greater than a constant M.) 

Proof. Let L be an mhl satisfying the assumption of the lemma. Let G, be an mhg 

satisfying L(G,) = L, and G = (N, 0, F, P, S) be a 2-mcfg constructed in Lemma 2.2 

which is weakly equivalent to Go. By the construction of G, property DRV mentioned 

in Section 4.2 holds for G. In what follows, we consider G. Let n be a nonnegative 

integer. By the assumption, there exists z1 in L satisfying that (1) v,(zl)>n for each 

aETand(2)lz,1>2 . INi+ ’ Let t be a derivation tree of z1 . There exists a path p from the 

root I to a leaf in t such that the number of the nodes on p which has two children is at 

least log, ( z1 ( = IN) + 1 by the assumption 1 z1 / > 2 INI + I. Therefore, there exist distinct 

nodes u and v’ on p with a same label (say, AEN) which have two children. The proof is 

similar to that of Lemma 3.2. The difference is that we must construct a path in t in 

such a way that ( u2 ( is not greater than some constant depending only on L. 

In what follows, we evaluate the length of uz. If d(A) = 1, then z can be divided with 

IuzI =O. Assume that d(A)=2 and let u1u2...v, be the path from r to u’ (ui = r and 

v, = u’). By property DRV, for each h (1 <h d m), gUh+ 1, “,, has the following form: 

9 “h+l,“hcYl : bfi%Y:hl>Y:h’) (4.1) 

(Y:h’>YZ!YY:hl) (4.2) 

YE!YJ+i? (4.3) 

9 .,,,,,,C(Y1~YZ)l : (Y,YJi%P) (4.4) 

(YKY:h’Y,Y,) (4.5) 

(Y%Y,Y%%YzY(zhl) (4.6) 

Y%Y,Y,Y:h! (4.7) 

(Y%J+ihl ) . ..ET*) 

Therefore, the length of u2 is the sum of ( y ‘/‘i y :“:, ( for y ih! and y $$ in (4.6) for each 

h (1 d h d m). On the other hand, I y :“j y :“:, I is positive for y :“i and y$!A in (4.6) only if the 

function appearing in the right-hand side of the applied rule at rh is W, Wczl) or WC”) 

and t+,+ 1 is the first (left) child of rh (see Table 1). Let such uh’s be Uil, Ui2y . . . , Uid in the 

order from r to L”, and let l(v) denote the sum of the lengths of the components of the 

strings derived from the second (right) child of u; then 

I”ZI= i lt”ij). 
j= 1 

In order to make I u2 I not greater than some constant depending only on L, we choose 

a path p from the root r to a leaf in such a way that if the function appearing in the 



On multiple context-free grammars 221 

right-hand side of the applied rule at o is W, WC21’ or W’22’, we let the next node be the 

second child of u (if possible) in the following way. Let k denote INJ. 

Let p be a path from the root Y to a leaf in t such that the number of the nodes on 

p which have two children is at least k + 1 and p satisfies the following conditions (such 

a path always exists in t): 

Let v be a node on p which has two children, and a1 and v2 be the first and 

the second children of u, respectively. Let j denote the number of the nodes 

which are in the sequence of nodes from Y to u and have two children. If there 

exists a path from u2 to a leaf such that the number of the nodes on the path 

which have two children is k+ 1 -j or more, then the next node to v on p is 

v2, and v1 otherwise. 

By the definition of p mentioned above, l(Vi,) < 2k-j. If we choose a pair v, v’ of nodes 

having identical labels which have two children in such a way that u’ is nearest to the 

root Y among such pairs, then d < k - 1 holds. Therefore, 

Iu21= i I(Vij)Gkil 2k-j=2k-2. 
j=l j=l 

By the definition of zi and z, v,(z)> v,(zl)3 n for each n. Let M be 2k-2. This 

completes the proof. q 

Both Theorem 4.7 of [ZO] and Lemma 4.14 of our paper state that z may be written 

as Z=U x w s u x w s tl with ~xls,x2s2~>1 such that xl,sl,x2 and s2 can be 11 1122 223 

arbitrarily pumped. The difference between the two lemmas is as follows. Lemma 4.14 

states that z may be written as z=u x w s u x w s u in such a way that only the 11 1122223 

substring u2 of length not greater than a constant A4 can intervene between sl and x2. 

On the other hand, Theorem 4.7 of [20] states that z may be written as 

z=u x w s u x w s u insuchawaythatthesumofthelengthsofx,,wl,s,,x2,w2 11 1122223 

and s2 is not greater than a constant N. 

Lemma 4.15. RESP$MHL. 

Proof. Suppose that RESPEMHL and let A4 be the constant in Lemma 4.14. Let 

z=all,a”,b;b;c~c~d~d; (q,r>M/2), 

and divide z as 

The condition “Ixls1x2s2/> 1 and u xi w si u xi w si u ERESP for all i>O” holds 11 1122223 

only if 

(a) xI=a{,sl=a{, x2=c{,s2=cj2(l<j<q), or 

(b) xl=b’j,sl=b~,x2=d:,s2=d~(1<k<r). 
However, neither of (a) and (b) satisfies ( u2 / d M. I7 
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“1 Theorem 4.5 
*2 Corollary 4.7 
‘3 Lemma 4.9 

Fig. 3. Results of this paper on inclusion relations between subclasses of 2-MCFL. 

By Theorems 4.9 and 4.11 and Lemma 4.15, the following inclusion relations hold 

(see Fig. 3). 

Corollary 4.16. CFL = l-MCFL 5 HL = MHL = TAL = LIL = CCL 5 2-MCFL. 

5. Conclusion 

In this paper, is has been shown that the generative capacity of hg’s is equivalent to 

that of tag’s and weaker than that of 2-mcfg’s, and that the class of head languages is 

a substitution-closed full AFL. Recently, the authors have developed an Earley-type 

parsing algorithm for m&s. Details of the algorithm is described in [lo]. 

Appendix. Proof of Lemma 4.10 

We will show that 2-mcfg G =(N, 0, F, P, S) and hg G’=(N’, Tt, F’, P’, S) construc- 

ted in the proof of Lemma 4.10 satisfy condition EQ and that L(G) is the same as the 

underlying language generated by G’. For a derivation tree t, the maximum length of 

paths in t from the root of t to the leaves is called the height of t. 

A.1. Inclusion of L(G) in the underlying language generated by G’ 

Lemma A.l. G and G’ constructed in Lemma 4.10 satisfy the following conditions (the 

“only if” part of (EQ2) and (EQ3), respectioely): 

(1) For each AEN with d(A)=l, aETand ct~T+(Iaj>l), 

tzL,(A) and a(l,l)=a 3 3j(l<j<Ia/-l):(a(2,IcrI),j)~L,,(a\A). 
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(2) For each AEN with d(A)=2,aETand u~,~(~ET’, 

(alra2kLdA) and cc(l,l)=a * (al(2,1alI)~~,lalI)~LG~(a\A). 

Proof. The lemma is proved by induction on the height of a derivation tree in 

G rooted at a node labeled with A. 

{Basis (height 2)) 
Case (i): Assume that c( ((M/B 1) is in L,(A) and let t be a derivation tree of a rooted 

at a node labeled with A. The height of t is 2 only if the applied rule at the root r is 

either A-+C\1’921)[B,D] or A -+ W”“21)[B,D] and the applied rule at the first 

(second) child of r is B-b (D-d) for some beT (deT). If the applied rule at r is 

A-+C’,‘1321)[B, D], then a=bd and a(l,l)=b. b\A+id[D] is in P’ by construction 

(i.2) of (P’2) (see line [14] in Table 2) since b is in L,(B). On the other hand, D+(d, 1) is 

in P’ by construction (P’5) since d is in &(D). Therefore, 

(a(2,laI), l)=(d, 1) is in L,.(b\A). 

The proof is similar to the one in the case that the applied rule at Y is 

A+W(“~‘2)[B,D]. 

Case (ii): Assume that (al, a2) is in &(A). The height of a derivation tree t of (aI, az) 
is 2 only if the applied rule at the root is either A+C\12*21)[B,D] or A-+ W(11, 22)[B, 
D]. The proof is analogous to Case (i). 

(Inductive step (height greater than 2)) 

Let k be an integer greater than 2 and suppose that the lemma is true for derivation 

trees of height k- 1 or less. Let t be a derivation tree in G of height k, and r, ul and 

v2 be the root oft, the first child of r and the second child ofr (if it exists), respectively. 

Let R be the rule applied at r. 

Case (i): R is a rule mentioned in (i.1) of (P’2) in the construction of P’ in 

Lemma 4.10. For example, let R be A+W[B,D]. By the definition of W, 

d(A)=d(B)=d(D)=2. Let (a,,a,)E&(A), (/?1,fi2)~LG(B) and (6,,6,)~&(D) be 

strings derived from r,vl and v2, respectively; then (al,cx2)=( /?161,S2/32). al,a2, PI, 
p2, 6,) a2 E T + since G satisfies conditions (N3) and (N4) of Lemma 2.2. Let j3i (1,1) = a 
and 6,(1,l)=d. The height of the subtrees oft rooted at u1 and v2 is not greater than 

k- 1. By the inductive hypothesis, 

Since D+c2[[d],d\D] is in P’ by construction (P’6), 
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A -+ W [B, D] EP implies a\A -+ w4 [a\& D] EP’ by (i. 1) of (P’2) (see line [3] in Table 2). 

Hence, 

The proofs are analogous in the other cases. 

Case (ii): R is a rule mentioned in (i.2) of (P’2). For example, let R be 

A+C’,“‘[B,D]. By the definition of C I”’ d(A)=d(B)= 1 and d(D)=2. Let MEL,(A), 

BE&(B) and (6,,6,)~&(D) be strings derived from r,ui and u2, respectively; then 

~=/36,6~. By conditions (N3) and (N4), CI, /I, hi, S2~T+. Let Pi(l,l)=a and 

bl(l, 1) = d. The height of the subtree oft rooted at uz is not greater than k- 1. By the 

inductive hypothesis, 

Since D-+c2 [Cd], d\D] is in P’ by construction (P’6), 

Vi&, 161 I + l)~LT’(W 

There are two subcases: 

(1) Assume that \fil=l. Then fi=a. Since A+C\“‘[B,D]EP and a~&(@, 

u\A + id [D] EP’, i.e. u\A +ci [D, EPS] EP’ by (i.2) of (P’2) (see line [4] in Table 2) and 

EPS+(&, O)EP’. Therefore, 

(2) Assume that \pI > 1. The height of the subtree rooted at vi is not greater than 

k- 1. By the inductive hypothesis, 

3j(ldjdlBI-l):(P(2,IPl),j)~L,,(a\B), where 8(2,Ipl)~T’ since IPI> 

A+C’,“‘[B,D]EP implies u\A+c,[u\B,D]EP’ by (i.2) of (P’2) (see line [4] in 

Table 2). Hence, 

In both subcases (1) and (2), 

3j(ldj<lxl-1): (~(2,1a/),j)ELG,(a\A). 

The proofs are analogous in the other cases. 

Case (iii): R is a rule mentioned in (ii) of (P’2) or (P’3). The proof is analogous to 

Case (i) or (ii). 

Case (iu): R is a rule mentioned in (P’4), i.e. A+C\“‘[B,D]. By the definition of 

C\12’, d(A)=2, d(B)= 1, d(D)=2. Let (al,cc2)~L&l), PE&(B) and (6,,6,)~&@) be 

strings derived from r, u1 and v2, respectively; then (c(,, az) =(/I, d1d2). By condition 

(N3) and (N4), al, a2, p, al, a2~7’+. Let /I(l, l)=u and 6i(l, l)=d. The height of the 

subtree of t rooted at u2 is not greater than k- 1. By the inductive hypothesis, 
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Since Dtop+cl [[d J, d\DJ is in P’ by construction (P’6), 

(&&, lk~G’(&J. 

There are two subcases: 

(1) Assume that IpJ=l. Then /?=@,=a. Since A+C\“)[B,D]EP and MEL,, 

cz\A+id[D,,,]~P by (P’4) (see line [S] in Table 2). [all= 1 implies cr1(2,1a,l)=~. 

Therefore, 

(~1(2,l~,o~,,l~,I)=(~2,1)=(~lfi2> l)EL&\4. 

(2) Assume that l/II > 1. The height of the subtree rooted at o1 is not greater than 

k- 1. By the inductive hypothesis, 

3j(l ~j~lBI-l):(B(2,Jpl),j)~L~.(a\B), where P(~,J~I)ET+ since IpI>l. 

A-+C\‘2’[B,D]~P implies u\A-+c,[u\B,D,,,]EP’ by (P’4) (see line [S] in Table 2). 

Hence, 

~~~~~,l~~0~2~l~~l)=~P~~,181)~~~2,lPI)~~~~~~\~). 

In both subcases (1) and (2) 

(&(2> lhlb2, Ia, I)G7(a\4. 

This completes the proof. 0 

Let M be in L,(S). If lal>l, there exists j (l,<j<[~l-1) such that 

(n(2,lal),j)~L,,(u\S) (~(1, l)=a) by Lemma A.1 above. Therefore (a, ~)E&(S) since 

S+C~[[U],U\S]EP’ by construction (P’5). If lal=l, then S-+(cc,l)~P’ by (P’5). If 

EEL(G), then S-xsP by condition (N3). It follows that S-+,O)EP’ by (P’l), which 

implies (E, O)E&(S). (That is, the “only if” part of (EQl) ho1ds.j Therefore, for each 

CL in L(G), there exists i30 such that (a, i) is in &(S). Hence, L(G) is included in the 

underlying language generated by G’. 

A.2. Inclusion of the underlying language generated by G’ in L(G) 

Lemma A-2. For each AEN, UE T, MET + and i> 1, the conditions (1) and (2) (the “if” 

part of (EQ2) and (EQ3), respectively) hold: 

(1) (CI, i)ELGs(a\A) and d(A)= 1 in G =j meLo( 

(2) (x,i)~L~,(u\A) and d(A)=2 in G*(ua(l,i-l),a(i,laj))~L,(A). 

Proof. The lemma is proved by induction on the height of a derivation tree in G’ 

rooted at the node labeled with a\,4 (usT, AEN). 

{Basis (height 2)). 

Let (a, i) be in L,,(u\A) (NET+) and let t be a derivation tree of (cc,i) rooted at 

a node labeled with u\A. The height oft is 2 only if the applied rule at the root r oft is 
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a\A+id[B] (which is the abbreviation of a\A+c,[B, EPS]) for some BEN and the 

applied rule of the first child of r is B+(a, 1). Therefore, lcll= 1, i= 1, MEL,(B) and 

d(B) = 1 [by construction (P’5)]. 

Ifd(A)=l, thena~L,(D)and“A-,C’,‘1~2’~[D,B]~PorA~W~”~21~[B,D]~P”by 

construction (P’2), which implies acx~L,(A). 

Ifd(A)=2, thena& and “A-+C\12921)[D, Bl~Por A+W(1’*22)[B,D]~P” by 

construction (P/2), which implies (a, c()E&(A). 

{Inductive step (height greater than 2)). 

Let k be an integer greater than 2 and suppose that the lemma is true for derivation 

trees of height k - 1 or less. Let (c(, i) be in &,(u\A) (a~ T ‘) and let t be a derivation 

tree of (c(, i) of height k rooted at a node labeled with u\A. Let r, ui and u2 be the root of 

t, the first child of r and the second child of r (if it exists), respectively, and let Y and 

Z be the labels of ul and u2, respectively (if the function appearing in the right-hand 

side of the applied rule R at r is id, then only Y is considered). Let (/3, il)ELGf( Y) and 

(6, i2)ELGz(Z) (if v2 exists) be the headed strings derived from vi and v2, respectively. 

(E, 0) is not derived in G’ from any nonterminal symbol other than S and EPS in G’, 

and if (E, 0) is derived from S in G’, then S does not appear in the right-hand side of any 

rule. Furthermore, EPS does not appear in the right-hand side of any rule other than 

rules of the form E-+id[F] (i.e. E+c,[F,EPS]) with E,FEN’. Hence, j? and 6 are 

in Tf. 

Case (i): R is constructed in (P’2) or (P’3), and the function appearing in its 

right-hand side is not id. For example, let R be u\A+wq[a\B, D] with d(A) = 

d(B)=d(D)=2. Then, Y=u\B, Z=D and (cl,i)=(p(l,il-1)6/?(i1,1pI),il+i2-1). 

By construction (P’6), for each dE T, D+cz [ [d], d\D] EP’, and there exists no other 

rule in G’ with D as its left-hand side. Hence, let d=6(1,1) and we obtain 

(6(2,16l),i,-l)~Lc~(d\D) with 6(2,16l)~T+. 

The height of the subtrees rooted at u1 and the second child of v2 is not greater than 

k - 1. By the inductive hypothesis, 

ML 4 - l),lI(iI, IPI)W&O, and 

Since REP’ and d(A)=d(B)=d(D)=2,A-+W[B, D]EP by (i.1) of (P’2) (see line [3] in 

Table 2). Hence, 

The proofs are analogous in the other cases. 

Case (ii): R is constructed in (P’4), and the function appearing in its right-hand side 

is not id. Then R is a form of 

u\A+c2 [a\& D,,,] with d(A) = 2, d(B) = 1, d(D) = 2. 
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Y=a\B, Z= Dtop and (a,i)=(/% I/? +i2). By (P’6), for each dET,Dtop+ 
cl[ [d],d\D]EP’, and there exists no other rule in G’ with D,,, as its left-hand side. 

Hence, i2 = 1, i= I/?[ + 1 and there exists j> 1 such that 

(6(2,16l),j)~L~,(d\D), where 6(2,lGl)~T+ and d=6(1,1). 

The height of the subtrees rooted at u1 and the second child of u2 is not greater than 

k- 1. By the inductive hypothesis, 

a/i’EL,(B), and 

Since REP’, A+C$12’[B, D]EP by (P’4) (see line [S] in Table 2). Hence, 

Case (iii): R is constructed in (P’2), (P’3) or (P’4), and the function appearing in its 

right-hand side is id. For example, let R be a\A-+id[B] with d(A)=d(B)=l. Then, 

Y= B and (a, i) = (/?, ir). If IpI = 1, then it is one of the basis cases of the induction. 

Assume that IfiI > 1 and p( 1,1) = b. Since d(B) = 1, the only rules with B as their 

left-hand sides are of the form B+cI [[b], b\B] (bET) and B+(b, 1) (bELG(B)) 

constructed in (P’S). Since IfiI > 1, the applied rule at u1 is B+c,[[b], b\B], which 

implies that there exists j>O such that 

(P(2,IBl),j)EL,,(b\B), where LT&l/3IkT+. 

The height of the subtree rooted at the second child of L’~ is not greater than k- 1. By 

the inductive hypothesis, 

“A+C\1’3 21)[D, B]EP or A+ W cl ‘, ‘l)[B, D] EP” and aE L,(D) by the construction 

(see Table 2). Hence, 

aa=afiEL,(A). 

The proofs are analogous in the other cases. 0 

Here we make the following observations: 

(a) S+(E,O)EP’ only if S+EEP. Therefore, (E,O)EL(G’) implies EEL&S). (That is, 

“if” part of (EQl) holds.) 

(b) The only rules in P’ with S as their left-hand sides other than S--+(&,0) are (i) 

S+(a, 1) for each agL,(S) and (ii) S+c, [[a], a\S] for each aET. By (a) and (b), for 

each aeT* and i>O, (ct,i)~L~,(S) implies c(EL~(S) [by Lemma A.2 in the case (ii) 

of @)I. 
Hence, the underlying language generated by G’ is included in L(G). 
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By Sections A.1 and A.2, the underlying language generated by G’ is the same as 

L(G), which implies that Lemma 4.10 holds. 
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