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ON BIALGEBRAS WHICH ARE SIMPLE HOPF MODULES

DAVID E. RADFORD1

Abstract. This paper gives a module characterization of commutative or cocom-

mutative Hopf algebras over a field.

0. Introduction. Let A be a bialgebra over a field k. Then A has a natural left

A -Hopf module structure, and if A is a Hopf algebra, an easy calculation with the

antipode shows that A is a simple Hopf module. We show that a commutative or

cocommutative bialgebra over a field k which is a simple left Hopf module is a

Hopf algebra. From this result we derive a module-theoretic characterization of

commutative or cocommutative bialgebras over a field k which are Hopf algebras;

namely such a bialgebra is a Hopf algebra if and only if all left A -Hopf modules

are free (or (0)).

Generally a commutative or cocommutative bialgebra A over a field k has a

unique maximal subcoalgebra A{1) which is a Hopf algebra. In both cases Aw can

be described in terms of grouplike elements-the basic results of this paper are

derivatives of elementary observations concerning grouplikes in certain bialgebras.

The author wishes to thank the referee for his comments and suggestions, and

wishes to express appreciation to Rutgers University for its hospitality during the

time of the revision of this paper.

1. Preliminaries. In this section we show that any bialgebra A over a field k has a

unique subcoalgebra A^ maximal among the subcoalgebras D such that the

inclusion iD £ Hom(£), A) has an inverse in the convolution algebra. We will see

that A(IX is characterized by its simple subcoalgebras.

For a coalgebra C over k recall that the wedge product U /\ V oí subspaces

U, V £ C is defined by U /\ V = A~X(U ® C + C ® V). The wedge product of

subcoalgebras is a subcoalgebra.

Lemma 1. Let C be a coalgebra over a field k, and suppose E, D', D" £ C are

subcoalgebras, E simple.

(a) If E £ 2£>, where D runs over a family of subcoalgebras of C, then E £ D for

some D.

(b) IfE £D'/\D" then E £ D' or E £ D".
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(c) // A is a bialgebra and E E D'D", then E E E'E" where E' E D' and

E" E D" are simple subcoalgebras.

(d) If f: C —* C is a surjective coalgebra map, then E E f(E') for some simple

subcoalgebra E' E C

Proof, (a) is [S, Proposition 8.0.3.a]. To show (b) note that &E E D' ® C + C

® D" means (E ® E) n (D' ® C + C ® D") ¥- (0). By (a) if U is a simple

subcoalgebra of this intersection, then U E D' ® C or U Q C ® D", so E E D'

or E E D". To show (d) observe that C0 Ef(C¿) by [HR, 2.3.9]. Thus writing

C0 = 'EE' as the (direct) sum of the simple subcoalgebras of C, we have E E

2/(£"), and hence (d) follows by (a). To show (c), first observe that E E m(U) for

some simple subcoalgebra U E D' ® D" by (d), where m: D' ® D" -+D'D" is

multiplication. By [HR, 2.3.13] (D' ® D")0 E D¿ ® D'¿, so U E E' ® E" for

simple subcoalgebras E' E D' and E" E D" by (a). Thus E E E'E".   Q.E.D.

For a coalgebra C and an algebra A over k recall that the unity of the

convolution algebra Hom(C, A) is given by e(c) = £(c)l^ and the product is

/* g(c) = 2/(c(1))g(c(2)) for c E C and f, g E Hom(C, A). The following is a

refinement of [T, Lemma 14].

Lemma 2. Let C be a coalgebra and A be an algebra over a field k, and let

x E Hom(C, A).

(a) If x = 0 on C0 then X t-> x determines an algebra map k[[X]] h» Hom(C, A).

(Thus x is invertible if x = c on C0.)

(b) x is left (resp. right) invertible if and only if x\E E Hom(£, A) is left (resp.

right) invertible for all simple subcoalebras EEC. (Hence x is invertible if and only

if x\E is invertible for all simple subcoalgebras E E C.)

Proof, (a) The C„'s form a filtration of C. Thus if x = 0 on C0, then xn+1 = 0

on C„ for n > 0 by induction, and therefore 2"_0«„x" is meaningful for all

a0, ax, . . . Ek. That X i-> x extends to an algebra map is easy to check. If x = e

on C0, we have just shown that X i-> e — x determines an algebra map, so

x = e — (c — x) is invertible since 1 — X E k[[X]] is.

(b) If x is left invertible, then x\D is for any subcoalgebra D E C. On the other

hand, if x\E is left invertible for all simple subcoalgebras EEC, then x|c has a

left inverse/ E Hom(C0, A) since C0 is a direct sum of simples. Let F: C —* A be a

linear extension of / Then F * x = c on C0 which means F * x is invertible by (a),

hence x is left invertible. The rest easily follows.   Q.E.D.

Proposition 1. Let C be a coalgebra and A be an algebra over a field k, and let

f El\om(C,A).

(a) Let L(f) E C (resp. R{f) E C) be the sum of all subcoalgebras DEC such that

f\D is left (resp. right) invertible. Then f\L is left invertible and f\R is right

invertible.

(b) C(f) = L(/) n R(f) is the sum of all subcoalgebras DEC such that f\D is

invertible, andf\c   is invertible.

(c) L(f) and R{f) (hence C^) are closed under wedging.
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(d) // ß is a field extension of k then Lif) ®tQç £(/»/„) and P(/) ®ti2ç

*</•/«> (hmCe C(f) ®* « Ç C(/®/a))-
(e) If A is a bialgebra and f is a coalgebra homomorphism, thenf\¡.x is a coalgebra

antihomomorphism.

Proof, (a) follows by Lemmas 2(b) and 1(a). (b) follows directly from (a). That

L(f) and R(f) are closed under wedging, or equivalently, L(f) A L(f) £ L(^ and

R(f) A R(f) Q R(f), follows by Lemmas 2(b) and 1(b). (d) is straightforward. The

proof of [HS, 1.5.2.(6)] generalizes to a proof of (e).   Q.E.D.

Let A be a bialgebra over k and let L(/), P(/) and A(l) denote the subcoalgebras

of C = A described in Proposition 1 for the identity map I of A. One should note

that G(A(I^j consists of all invertible g £ G(A) and is therefore a group. (For a

coalgebra C over k recall that g £ C is grouplike if g ¥= 0 and Ag = g ® g, and

that G(C) denotes the set of grouplike elements of C.) By Proposition 1(e)

s = (I\A )~x is a coalgebra antihomomorphism. Observe that s(g) = g~x for

g £ G(A(I)).

Suppose that U and V are vector spaces over k. For a field extension ß of A:

(U ®k ü)0k (V 0k Ü)^(U 0k V)0k ß((u® a) <8> (t> ® ß) h» (m <8> v) <8> aß)

is an isomorphism of ß-spaces. The Galois group G(fi \ Ac) acts on U ®k ß as

rc-automorphisms by the rule o • (m ® a) = u ® aa. (Thus G(ß \ A:) acts as Âr-alge-

bra automorphisms if U is an algebra.)

Lemma 3. Let C be a coalgebra over a field k and suppose Si is a field extension of

k. Then G(C <%)k ß) is a G(ß \ k)-module, which is cyclic if C is cocommutative and

simple and ß is an algebraic closure of k.

Proof. If g = 2,- c, ® a,- G C ®* Q, then Ag = g ® g if and only if 2, Ac, ® a,

= 2,v c,. ® Cj 0 a¡aj. From this it follows that G(C ®k ß) is a G(ß \ A:)-module.

Now assume C is cocommutative and simple, and ß is an algebraic closure of k.

The isomorphism C ®¿ ß ^ Hom^íC*, ß) (c ® a(c*) = c*(c)a) restricts to an

identification of G(ß \ Ä:)-modules G(C ®k ß) =s Algfc(C*, ß). Since C* is a finite-

dimensional field extension of k and ß is an algebraic closure of k, given

t, t' G Alg¿(C*, ß) there exists a a G G(fi \ k) such that t' = a ° t, i.e.

Alg^C*, ß) is cyclic.   Q.E.D.

Let V be a left C-module with basis vx, . . . , vn. Define e0, £ C (1 < i,j < n) by

w(u,) = 2". | e¿, ® Vj. Then Ae,y = 2fc e(Vt ® e^ and e(ej,) = 8¡¡ follow from the

comodule axioms. If C is a commutative bialgebra then the determinant d =

det(e0) of (e0) £ M(n, C) is grouplike and does not depend on the choice of basis.

Here we set dv = d.

Let C(n, k) be the coalgebra over k with basis of symbols ei} (1 < i,j < n) with

structure defined as above. Let V £ C(n, k) have basis exx, . . ., enX and let

S(C(n, k)) be the free commutative bialgebra on C(n, k). Then %„(&) =

S(C(n, k))[dyX] is a Hopf algebra since it represents the affine group scheme

GL_( ) over k.
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2. The main results. Here we examine the role of grouplikes in certain bialgebras.

Proposition 2. Let A be a bialgebra over a field k which is commutative or has

cocommutative coradical. Then A^ is a Hopf algebra.

Proof. Assume A is commutative. We will use Nichols' result [N] that a

bialgebra quotient of a commutative Hopf algebra is a Hopf algebra. First let

V Q A([) be a simple subcoalgebra and choose e¡j E A (1 < i, j < n) for V as

indicated above. Since F is a coalgebra, the e¡¿s span V. From the equations

"2k eiks(ekJ) = 8¡jl we conclude that (e¡¡) E M(n, A) is invertible, hence dv is

invertible. Clearly Bv = (V)[dfl] is a bialgebra quotient of %„(&), so By is a Hopf

algebra. In particular s(V) E A{1). For simple subcoalgebras E', E" E /l(/) we

apply Nichols' result again to multiplication BE, ® BE„ -» BE,BE„ to deduce E'E"

E A(iy Thus A{1) is a Hopf algebra by Lemmas 2(b) and 1(c).

Now assume A0 is cocommutative and ß is an algebraic closure of k. Then

A ®k ß is pointed. D = A(I) + s(A{I^) is a subcoalgebra of A by Proposition 1(e).

Note G(s(A{I)) ®k ß) = G(s ® I(A(I) ®k ß)) = G(A(I) ®k ü)~x by Lemma 1(d),

so G(D ®k ß) = G(D ®k ß)~' by part (a) of the same lemma. Thus by Lemma

1(c) the grouplikes of (D) ®k ß = (D ®k ß) form a group. Therefore (D) ®k ß is

a Hopf algebra by Lemma 2(b), and this means (D) is a Hopf algebra also. By

definition A(/) = (D).    Q.E.D.

Using Lemma 3 we have as a corollary to the proof:

Corollary 1. Let A be a bialgebra over afield k, and suppose C E A is a simple

subcoalgebra.

(a) If A is commutative, then C E A(I) if and only if dc is invertible in A.

(b) If A0 is cocommutative and ß is an algebraic closure of k, then C E A(I) if and

only if some g E G(C ®kQ) is invertible in A ®k fi.

Aw need not be a Hopf algebra in general.

Example 1. Let C = C(n, k) © C(n, k) and T(C) be the free bialgebra on C.

The ideal / E T(C) generated by the relations described in M(n, T(C)) by (e^Xe,.,)'

= I = (e¡j)'(e¡j) is a bi-ideal. By the method of §1 of [B] one can show that

C E A = T(C)/I (so C(n, k) E A(I)) and that (e,-,) E M(n, A) is not invertible (so

s(C(n, k)) = C(n, k) g A(I)) for n > 2.

Proposition 3. Let A be a bialgebra over a field k and suppose C,C E A are

nonzero subcoalgebras such that CC E A^ D C'C. Then C, C E Ayy

Proof. Assume CC E A^ and choose a' E C such that e(a') = 1. Then

/ E Hom(C, A) defined by t(c) = ~2a'ms(ca'(2)) is a right inverse for I\c, so C E

Ryy Likewise C E L(/).   Q.E.D.

Let A be a bialgebra with left antipode s (a left inverse of I E Hom(A, A)). Such

an A is a left Hopf algebra. Suppose V E A is a left Hopf submodule (i.e.

A V E A ® V and A V E V). For v E V the calculation e(v)l = 2 s(vm)v(2) E A V

= V shows V = (0) or V = A, so A is a simple left yl-Hopf module.
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Theorem 1. Let A be a bialgebra over a field k which is commutative or has

cocommutative coradical. Then the following are equivalent.

(a) A is a Hopf algebra.

(b) A is a simple left A-Hopf module.

(c) If C £ A is a simple subcoalgebra then AC = A.

Proof. We need only show (c) =» (a). Assume (c) holds and let C C A be simple.

By Lemma 2(b) we need only show C £ A(iy If A is commutative, dc is invertible,

so C Ç A(¡x by Corollary 1(a). Suppose A0 is cocommutative and ß is an algebraic

closure of k. Then AC = A means 1 G C'C for some simple C by Lemma 1(c), so

1 = g'g where g' G G(C 0k ß) and g G G(C 0k ß) by the same result. Now

replacing C by C we see 1 = h"h' for some h' £ G(C 0 ß). P

g' = a • h' for some a G G(ß \ A;). Thus the calculation 1 = (a • h")(o • h') shows

that g' is invertible, so g is also, and C £ A(J) by Corollary 1(b).   Q.E.D.

A bialgebra which is a simple left Hopf module may not be a Hopf algebra

(there exist left Hopf algebras which are not Hopf algebras [GNT]).

As a consequence of Lemma 2(b) and Corollary 1(a) a commutative bialgebra is

a Hopf algebra if and only if all grouplikes are invertible [T, Corollary 69].

Generally this is not the case.

Example 2. Let C be a coalgebra over a field k and let T(C) be the free

bialgebra on C. Then T(C)n = C 0 ■ ■ ■ ®C («-times) has the tensor product

coalgebra structure (n > 1). From the general coalgebra fact that

G(CX 0 ■ ■ ■ 0C„) = G(CX) X • • • X G(C„)

and Lemma 1(a) we conclude that G(T(C)) = {1} if G(C) = 0. For example let

k = R and C = C*. Then T(C) is a cocommutative bialgebra, but is not a Hopf

algebra, since T(C) ®R C =* T(C ®R Q is the free monoid on G(C ®R Q.

Example 3. Let C be a coalgebra which is also an algebra (possibly without

unity), and suppose A, e are multiplicative. The coalgebra structure of C extends

(uniquely) to a bialgebra structure on the algebra A = k ■ 1 + C obtained by

adjoining a unity to C. A is not a Hopf algebra, since C is a sub-Hopf module,

unless C = (0). For finite-dimensional examples where G(A) = {1} let C = C(n, k)

and ei}ekl = \eu.

Our last result gives a module-theoretic characterization of commutative or

cocommutative Hopf algebras.

Theorem 2. Let A be a bialgebra over a field k which is commutative or has

cocommutative coradical. Then A is a Hopf algebra if and only if all left A-Hopf

modules are free (or (0)).

Proof. If A is any Hopf algebra over a field, then all left Hopf modules are free

(or (0)) by [S, Theorem 4.1.1]. Conversely, suppose A satisfies this condition and let

C £ A be a simple subcoalgebra. By Theorem 1 we must show AC = A, or

A/AC = (0). Since AC and A/AC are Hopf modules, AC is free and A/AC is free

or (0). Since ker e is a codimension 1 ideal, any two bases of a free A -module M



568 D. E. RADFORD

have the same cardinality r(M). If A/AC is free, then 1 = r(A) = r(AC) +

r(A /AC), a contradiction, so A /AC = (0).   Q.E.D.

"Free" cannot be replaced by "projective" in the preceding theorem since there

are semisimple bialgebras which are not Hopf algebras. We close with a general

construction.

Example 4. Let % be an associative algebra (with unity) over k with an algebra

map 8: % -* % ® % satisfying /<8>Ó,°Ó" = S<8>/°Ó\ The direct sum of alge-

bras A = k- d © % (d2 = d ¥= 0) has a bialgebra structure determined by Ad =

d ® d and Aa = a ® d + d ® a + 8a for a E %. A is a Hopf algebra if and only

if <?L = (0). Let ^ be any semisimple bialgebra.
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