Constructing Deterministic Finite-State Automata

in Recurrent Neural Networks!

Christian W. Omlin ¢*, C. Lee Giles “©
* NEC Research Institute, 4 Independence Way, Princeton, NJ 08540
> CS Department, Rensselaer Polytechnic Institute, Troy, NY 12180
¢ UMIACS, U. of Maryland, College Park, MD 20742

Abstract

Recurrent neural networks that are ¢rained to behave like deterministic finite-state automata (DFA’s)
can show deteriorating performance when tested on long strings. This deteriorating performance can
be attributed to the instability of the internal representation of the learned DFA states. The use of a
sigmoidal discriminant function together with the recurrent structure contribute to this instability. We
prove that a simple constructive algorithm can construct second-order recurrent neural networks with a
sparse interconnection topology and sigmoidal discriminant function such that the internal DFA state
representations are stable, i.e. the constructed network correctly classifies strings of arbitrary length.
The algorithm is based on encoding strengths of weights directly into the neural network. We derive a
relationship between the weight strength and the number of DFA states for robust string classification.
For a DFA with n states and m input alphabet symbols, the constructive algorithm generates a “pro-
grammed” neural network with O(n) neurons and O(mn) weights. We compare our algorithm to other

methods proposed in the literature.

1 INTRODUCTION

Recurrent neural networks can be trained to behave like deterministic finite-state automata (DFA’s) [3, 4, 7,
8, 19, 20, 22]. The dynamical nature of recurrent networks can cause the internal representation of learned
DFA states to deteriorate for long strings [23]; therefore, it can be difficult to make predictions about the
generalization performance of trained recurrent networks. Recently, we have developed a simple method for
encoding partial DFA’s (state transitions) into recurrent neural networks [9, 18]. The goal was to demon-

strate that prior knowledge can decrease the learning time significantly compared to learning without any

0t Technical Report No. 94-3, Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180.

prior knowledge. The training time improvement was 'proportional’ to the amount of prior knowledge with
which a network was initialized. Important features of the encoding algorithm are the use of second-order
weights, and the small number of weights that are programmed to achieve the desired network dynamics.
When partial symbolic knowledge is encoded into a network in order to improve training, programming as
few weights as possible is desirable because it leaves the network with many unbiased adaptable weights.
This is important when a network is used for domain theory revision [15, 21], where the prior knowledge is

not only incomplete, but may also be incorrect [10, 17].

Methods for constructing DFA’s in recurrent networks where neurons have hard-limiting discriminant func-
tions have been proposed [1, 14, 16]. This paper is concerned with neural network implementations of DFA’s

where continuous sigmoidal discriminant functions are used.

Our method is an alternative to an algorithm for constructing DFA’s in recurrent networks with first-order
weights proposed by Frasconi et al. [4, 5, 6]. A short introduction to finite-state automata will be followed
by a review of the method by Frasconi et al. We will prove that our method can implement any deterministic
finite-state automaton in second-order recurrent neural networks such that the behavior of the DFA and the
constructed network are identical. Finally, we will compare DFA encoding algorithm with other methods

proposed in the literature.

2 FINITE STATE AUTOMATA

Regular languages represent the smallest class of formal languages in the Chomsky hierarchy [12]. Regular
languages are generated by regular grammars. A regular grammar G 1s a quadruple G =< S, N, T, P > where
S 1s the start symbol, N and T are non-terminal and terminal symbols, respectively, and P are productions of

the form A — aor A — aB where A, Be N and aeT. The regular language generated by G is denoted L(G).

Associated with each regular language L is a deterministic finite-state automaton (DFA) M which is an
acceptor for the language L(G), i.e. L(G) = L(M). DFA M accepts only strings which are a member of the
regular language L(G). Formally, a DFA M is a 5-tuple M =< X,Q, R, F,6 > where X = {ay,...,an} is
the alphabet of the language L, @ = {q1,...,¢n} is a set of states, Re @ is the start state, F C @ is a set
of accepting states and 8 :) x ¥ — () defines state transitions in M. A string « is accepted by the DFA M
and hence is a member of the regular language L(M) if an accepting state is reached after the string « has
been read by M. Alternatively, a DFA M can also be considered a generator which generates the regular
language L(M).

3 FIRST-ORDER NETWORKS

This section summarizes work done by Frasconi et al. on implementing DFA’s in recurrent neural net-
works. For details of the algorithms and the proofs see [4, 5, 6]. The work in [6] is an extension of [4, 5]
which restricted the class of automata that could be encoded into recurrent networks to DFA’s without
cycles (except self-loops). The authors were focusing on automatic speech recognition as an application of
implementing DFA’s in recurrent neural networks. The constructed recurrent network becomes part of a
K-L(priori-Knowledge and Learning) architecture consisting of two cooperating subnets devoted to explicit
and learned rule representation, respectively, and whose outputs feed into a third subnet that computes the

external output.

Each neuron in the first-order network computes the following function:

it
S§t+1) = gla;(t)) = tanh(aT()), a;(t) = Z VVijS]('t) + Z VVikI](:), (1)
j k

where S](»t) and I](Ct) represent the output of other state neurons and input neurons, respectively. For conve-
nience of implementing a DFA in a recurrent network, a unary encoding is used to represent both inputs and
DFA states; the state vectors representing successive DFA states ¢(¢) and ¢(¢ + 1) have a Hamming distance
of 1. This requires a transformation of the original DFA into an equivalent DFA with more states which is
suitable for the neural network implementation. In addition to the recurrent state neurons, there are three
feed-forward layers of continuous state neurons that are used to construct the DFA state transitions. These
continuous neurons implement boolean-like OR and AND functions by constraining the incoming weights.
When a DFA state transition é(g;, ay) = ¢; is performed, the neuron corresponding to DFA state ¢; switches
from a high positive to a low negative output signal and the neuron corresponding to DFA state ¢; changes its
output signal from a low negative to a high positive value. The main characteristic of the constructed neural
networks is the variable duration of the switching of state neurons, which is controlled by the self-recurrent
weights W;; and the input from other neurons. This is a desired property for the intended application. The
authors prove that their proposed network construction algorithm can implement any DFA with n states
and m input symbols using a network with no more than 2mn — m 4 3n continuous neurons and no more

than m(n? + m + 5n — 5) + 6n weights.

4 SECOND-ORDER NETWORKS

The algorithm used here to construct DFA’s in networks with second-order weights has also been used to

encode partial prior knowledge to improve convergence time [9, 18], and to perform rule correction [10, 17].

4.1 Network Construction

We use discrete-time, recurrent networks with weights W;;; to implement DFA’s. A network accepts a

time-ordered sequence of inputs and evolves with dynamics defined by the following equations:

1

(t+1) _ , _
S = hau(t) = T

ai(t) = b + > Wiy 1L, (2)
3k
where b; is the bias associated with hidden recurrent state neurons 5;; I denotes the input neuron for symbol
ap. The product S](»t)fl(j) directly corresponds to the state transition é(¢;, ar) = ¢;. The goal is to achieve
a nearly orthonormal internal representation of the DFA states with the desired network dynamics. For the
purpose of illustration, we assume that a unary encoding is used for the input symbols. A special neuron
Sp represents the output (accept/reject) of the network after an input string has been processed. Given a
DFA with n states and m input symbols, a network with n+1 recurrent state neurons and m input neurons
is constructed. The algorithm consists of two parts: programming weights of a network to reflect DFA state
transitions §(g;, ax) = ¢; and programming the output of the response neuron for each DFA state (figure 1).
Neurons S; and S; correspond to DFA states ¢; and ¢;, respectively. The weights W; 1, Wi and biases b;

are programmed as follows:

Wije = +H if 6(q5,ar) = ¢ (3)
+H ifé(q;,ar) = q;
I/V]']'k: (]) J (4)

—H otherwise

+H ifé(q5,ap) e F
WOjk == ! (5)

—H otherwise

b =—H/2 for all state neurons S; (6)

For each DFA state transition, at most three weights of the network have to be programmed. The initial
state SO of the network is

S% = (59,1,0,0,...,0)

The initial value of the response neuron S{ is 1 if the DFA’s initial state go is an accepting state and 0
otherwise. The network rejects a given string if the value of the output neuron S at the end of the string

is less or equal 0.5; otherwise, the network accepts the string.

4.2 Internal State Representation and Network Performance

When a recurrent network is {rained to correctly classify a set of example strings, it can be observed that

the networks’ generalization performance on long strings which the network was not explicitly trained on

\
} by =-H/2 ‘ } b=-H/2 b=-H/2
\ . |
! 0 } ! k
| Wt 1
q; ; \ - _
i ‘ (accepting) | } Wiy =+ H[Wy =—H
Woje—H } |
(rejecting) | }
L
L
\

Figure 1: Rule Insertion. A known DFA transition §(¢;,ax) = ¢; is programmed into a network.

deteriorates with increasing string length. This deteriorating performance can be explained by observing
that the internal DFA state representation becomes unstable with increasing string length due to the net-
work’s dynamical nature and the sigmoidal discriminant function. This phenomenon has also been observed

by Zeng et al. [23].

For a second-order network, whether or not a constructed recurrent network implements the desired DFA,
i.e. whether the output of the the network and the DFA are identical for all input strings, depends on the
value of H. The network dynamics preserves the internal nearly orthonormal DFA state representation only
if the weights are programmed such that the outputs of all state neurons are close to 0 and 1, respectively.
This calls for large values of the rule strength H. In order to demonstrate that the internal representation

can be made sufficiently stable, we show test results on very long strings.

4.3 Experiment

We encoded a randomly generated, minimized 100-state DFA with alphabet ¥ = {0, 1} into a recurrent
network with 101 state neurons (figure 2). The graph in figure 3 shows the generalization performance of the
network constructed with varying rule strength H = {0.0,0.1,0.2,...,7.0} on randomly chosen 1000 strings
each of length 1000. At the end of each string, the network’s classification was ’1” (member of the regular
language) if S2%°° > 0.5, and ’0’ (not a member of the regular language) otherwise. We observe that the

network performance monotonically improves with increasing value of H and that the network makes no

classification errors for H > 6.3. The following analysis will show why this is the case.

PR
-
R
-

/‘.4,‘, , & N v' \J g
S TN,
X Y AT Uy 17 eS|
P WA G oy
\ WE‘L&}‘\%&Q;%?&R/ ',' K 0
‘ v = = \ /1 /
e 8
o R g |/
\ ‘\ ,”” 3 {E&} “1'56§5,9: "l
S f}fa 3 ;!‘%\7/&55 TG h
>4 y 1

28

Figure 2: Randomly Generated DFA: The minimized DFA has 100 states and alphabet ¥ = {0, 1}. State

1 is the start state. States with and without double circles are accepting and rejecting states, respectively.

045 T T T T T T

04 | .

0.35 | B

03 B

0.25 i

02 B

misclassified strings (x 100%)

0.15 i

0.1 i

0.05 B

Figure 3: Network Classification Performance: The network classification performance on a data set
as a function of the rule strength H (in 0.1 increments) is shown. The data set consisted of 1000 randomly
chosen strings of length 1000; their labels were assigned by a randomly generated 100-state DFA. The
classification performance 1s poor for small values of the rule strength H. The network’s performance

dramatically improves for 5 < H < 6 to perfect classification for H > 6.3.

5 ANALYSIS

5.1 Motivation

When a constructed network processes a string, the state neurons go through a sequence of state changes.
These state changes can be represented as iterations of the discriminant function h(.) for each state neu-
ron. A constructed network will only correctly classify strings of arbitrary length if its internal DFA state
representation remains sufficiently stable. One way to achieve representation stability is to show that the
iteration of the discriminant function h(.) has desired properties such as fixed points. Thus, we will first
investigate under what conditions the discriminant function h(.) has fixed points. Recall that the recurrent
network changes its state according to equation (2). From the encoding algorithm, we can derive a more

precise form of the equation governing the dynamics of the constructed network:

1

(t+1) _ —
Si —h(l‘,H)—m (7)

The term —H /2 comes from the bias which is the same for all state neurons; Hx is the weighted sum feeding
into neuron SZ(H_l). The graph of the function A(.) is shown in figure 4. The discriminant function has
properties which are important to the construction of recurrent networks with h(z, H) as its discriminant

function.

1.5
1 I —
05 |
R
wn
g ////////
z 0 T
o
x
Q
+
ha)
=
-05 |
ERN |

15 I I I I

Figure 4: Fixed Points of h(x, H): The graph of 1/(1+4 exp(H/2(1 —2z))) is shown for H = {3,4,7}. The
function has three fixed points ¢° = 0.5,¢~, and ¢t as shown by the intersection with y = H/4 z. ¢° = 0.5
is the only fixed point for H < 4. For H > 4, ¢ is unstable; starting in the neighbourhood of ¢°, the stable
fixed points ¢~ and ¢t can be reached.

5.2 Fixed Point Analysis

We investigate under what conditions h(z, H) converges toward fixed points.

Lemma 5.2.1 For 0 < H <4, h(x, H) has the following fized point:
#° =05

Furthermore, h(z, H) converge to ¢¥ for any choice of a start value xq.

Proof: We observe that h(x, H) is a contractive mapping for 0 < H < 4, i.e. for any choice of #; and z3 we

have

|h(x1, H) — h(z2, H)| < ¢ |21 — 2|

with 0 < ¢ < 1 because the derivative h'(z, H) < 1 for all choices of z (figure 4). By the Contraction Mapping
Theorem [2], h(z, H) has only one fixed point at ¢° = 0.5 and the iteration h(h(...(x,H)...) = hP(z, H)

converges to ¢° for any choice of .

The above lemma has the following corollary:

Corollary 5.2.1 A recurrent network constructed from a DFA M with H < 4 will only misclassify strings
that are members of the regular language L(M).

Proof: For some strings which are members of L(M), the fixed point ¢° = 0.5 may be reached, leading to a

misclassification of positive strings.
Lemma 5.2.2 For H >4, h(x, H) has three fized points ¢° = 0.5, ¢~ and ¢T.

Proof: The lemma is proven by defining an appropriate Lyapunov function V(.) and showing that V(.)

decreases toward the minima ¢~ and ¢+. The details of the proof can be found in [6].

For H = 4, the fixed points are ¢ = ¢~ = ¢+ = 0.5. For H > 4, the fixed point ¢° = 0.5 is unsta-
ble, i.e. starting from = # ¢, the state trajectory converges to one of the two stable points ¢~ and ¢1. In

fact, the following holds true:
Lemma 5.2.3 for z < ¢° and ¢° <z, h?(xz, H) (with H > 4) converges to ¢~ and ¢t , respectively.

Proof: Starting with < ¢% hP(z, H) cannot converge to ¢T, because this would require to cross the line
y = H/4 % x; this is impossible since the derivative h'(x, H) is less than H/4 for all values except for ¢°

(figure 4). A similar argument can be made for the case x > ¢°.

Lemma 5.2.4 For arbitrary H > 0, the two fived points ¢~ and ¢T are related as follows:
o~ +ot =1

Proof: This relationship follows from the symmetry of h(z, H) around ¢° = 0.5.

The graph of the iterated function hP(x, H) with initial values 0 and 1 is shown in figure 5 for different
values of H. The iteration h?(S°, H) represents the DFA state transitions &(...8(qo,a'),a?, ..., a?) = g;.

5.3 Worst Case Analysis

Having found conditions under which the sigmoidal discriminant function h(z, i) reaches its fixed points
67, 0", and ¢, we will now analyze under what conditions a constructed network implements a given DFA.
The main result will show how large a network may be for fixed H such that the DFA and the constructed
network have identical behavior, i.e. the network accepts strings iff the DFA accepts the same strings; the

length of the strings is arbitrary.
From the DFA encoding algorithm, we can derive four different types of neuron state changes:
low — high:

St = h(—H/2+ Sj«H+ Y Si«H—Si«H) (S :high, S}, S} low) (8)
SIEC,)I

0.9
08 | E
0.7 R

©

>

c

Q

2 05 |

=]

o

2

o

e 0.4 k_/—/—r/—
0.3 E
02| e
Ol Il Il Il Il Il Il Il Il Il

0 100 200 300 400 500 600 700 800 900 1000

number of iterations

Figure 5: Rate of Convergence of h?(x, H): The graphs show for values of H = {3.8,3.9,4.0,4.1,4.2,4.3}
the convergence of h?(x, H) toward the fixed points. For H < 4, h?(x, H) converges toward ¢° = 0.5 for any

starting value of . For H > 4, h¥(z, H) converges toward ¢~ and ¢* for starting values x = 0 and = = 1,

respectively.
SZH _ h(—H/?—I—S} * H + Z Stx H+ St H) (S]t : high, S, ST« low) 9)
SIEC,)I
high — high:
SZ?+1 =h(—H/2+ 5!+ H + Z St+ H) (S!: high, S} : low) (10)
SIEC,)I
high — low:
ST = h(—H/2—St« H+ Y StxH) (S!: high, S} : low) (11)
SIEC,)I
low — low:
S = h(—H/2 =St H+ > St+H) (S8, 5): low) (12)
SIEC,)I
SHU = h(—H/2+ S« H+ > StwH) (S, St low) (13)
SIEC,)I
where
Cii1=A{S; | Wiyi=H} (14)

The terms —H/2 and S]t» * H are derived from the network construction algorithm; they represent the

10

principal contribution to the neuron Sf"'l; all other terms are the residual contributions to the input of
neuron Sf"'l. The term Y S+ H contributes to the total input of state neuron Sf"'l if there are other tran-
sitions 8(g;, ap) = ¢; in the DFA from which the recurrent network is constructed. Since there is a one-to-one
correspondence between state neurons and DFA states, there will always be a negative contribution —S! * H
for the current DFA state transition 6(g;,ax) = ¢;, i.e. only S! can drive the signal SZ‘H low. Equations
(8) and (9) only differ with respect to the sign of the residual input S! + H. If there is a state transition
6(gi, ar) = ¢;, then equation (9) applies; otherwise, there is a residual low signal S! trying to drive SI*' low
and equation (8) applies. Similarly, either equation (12) or (13) is chosen for state transitions of the type
low — low. The above equations account for all possible contributions to the net input of all state neurons

because the encoding algorithm constructs a sparse recurrent network.

Before we proceed, we make some justified assumptions which will simplify the analysis.

Assumption 5.3.1 An analysis for state transitions of type low — high and low — low also covers state

transitions of type high — high and high — low, respectively.

The state transitions types high — high and high — low cause stronger high and low signals, respectively,

than the state transitions types low — high and low — low. Thus, no separate analysis will be necessary.

Assumption 5.3.2 Of the two possible equations (8) and (9) for state transitions low — high, the former

equation also covers the latter equation.

If the internal state representations can be kept stable for equation (8), then it certainly can also be kept

stable for equation (9). No separate analysis is necessary for the two equations.

Assumption 5.3.3 Of the two possible equations (12) and (13) for state transitions low — low, the latter

equation also covers the former equation.

An argument similar to that given for validity of assumption 5.2.2 can be given.

Thus, we are left with only the two following types of state transitions which represent the worst cases:

low — low:
ST = h(—H/2+ S{«H+ Y Si«H) (5,5 :low) (15)
SIEC,)I
low — high:
ST = h(—H/2+Si«H+ Y St+«H—SH«H) (S :high, S}, St low) (16)
SIEC,)I

We will make a simplifying assumption about the values of low and high signals:

11

Assumption 5.3.4 The low signal S} in state transitions of type low — low converges toward the fized

point ¢~ ; the high signal S]t» in transitions of type low — high converges toward fized point ¢7T.

The network’s initial state is S = (57,1,0,...,0); the value of Sj depends on whether the start state is
an accepting or rejecting state. The low and high signals of all state neurons will converge toward the fixed
points ¢~ and ¢, respectively; these fixed points will be reached for sufficiently long strings according to

lemma 5.2.3.

In order for the internal DFA state representation to remain stable, the low and high signals must re-

main sufficiently stable, i.e. the low and high signals must be less or equal and larger than 0.5, respectively.

Consider equation (15). In order for the low signal to remain less or equal 0.5, the argument of A(.) must be
less or equal 0.5. From equation (15) and under assumption 5.3.4, we have the following condition for stable
low signals:

o 1
— Gt Henxd" < g (17)

Solving the above inequality leads to the following lemma for the preservation of low signals:

Lemma 5.3.1 The low signals S* are always less or equal to 0.5 if

n< L+ 7))

Thus, the lemma puts restrictions on the size n of the network for a given H. The location of the fixed point
¢~ is determined by H; thus, we write ¢~ (H). The graph in figure 6 shows the maximum allowed network

size n as a function of the rule strength H; the allowed size grows exponentially with increasing rule strength.

A similar analysis can be carried out for state transitions of equation (16). In the worst case, the following

inequality must be satisfied for stable high signals:

H 1
— S S H = ST H > 5 (18)

For the left-hand side in the above inequality, we assumed that there is only one DFA transition 6(q;, ax) = ¢;
for chosen ¢; and ay; thus, Zsl’ec,,l = 0. Any positive terms would only strengthen the high signal Sf"'l.
Furthermore, S! has a negative contribution to the net input of Sf"'l; if there were a transition 6(¢;, ar) =
¢; (self-loop), then the contribution +S! * H would only strengthen the high signal Sf"'l. Thus, we are
considering the worst possible case for high signals for all recurrent state neurons. The high signal S]t» and

the low signal S! converge toward ¢* and ¢, respectively. Therefore, the inequality simplifies to:

—%+H*¢>+—H(1—¢>+)>% (19)

12

12000

10000

8000 |

6000

Maximum Network Size n

4000

2000

0 Il L Il Il Il Il
4 6 8 10 12 14 16 18 20
Rule Strength H

Figure 6: Maximum Allowed Network Size for Preservation of Low Signals: The graph shows for
different values of H the maximum allowed number of nodes in a constructed network such that the low

signals remain stable.

Solving for ¢T results in the following condition for stable high signals:

Lemma 5.3.2 The high signals S* are always greater than 0.5 if

1 1
TH)> -3+ =
GHH) > 23+ 1)
The left hand-side of the above inequality converges toward 1 and the right-hand side decays exponentially
toward 3/4 with increasing values of H. Thus, there exists a value H,,;, such that the above inequality is

always satisfied (figure 7) for all values H > Hp;p.

The condition for guaranteed low signals explicitly depends on the network size, whereas the condition
for guaranteed high signals does not. This asymmetry arises from the simplifying assumptions in the anal-
ysis: The residual inputs contribute to weakening low signals (i.e. higher low signals) and thus had to be
included in the analysis; they strengthen high signals (i.e. higher high signals) and could thus be omitted in
proof of the stabiblity of high signals.

We can now state the following theorem:

Theorem 5.3.1 A sparse recurrent neural network RN N with n+ 1 sigmoidal state neurons, m input neu-
rons, at most 3mn second-order weights with alphabet ¥,y = {—H,0,+H} (4 < Hpmin < H < Hpyeq), n+1
biases with alphabel Xy = {—H/2}, and mazimum fan-oul 3m can be constructed from a DFA M with n

states and m input symbols such that the internal state representation remains stable, i.e. S; > 0.5 when ¢;

13

35

Fixed Point of h(x, H) and 1/4(3+1/H)

Figure 7: Condition for Preservation of High Signals: ¢1(H) converges toward 1 and 1/4 (3+1/H)
converges exponentially toward 3/4 as H increases. Thus, the condition for strong high signals is satisfied

for some values of ¢ (H) > Hpin.

1s the current DFA state and S; < 0.5 otherwise if

n < Lﬁ(l + %)J with ¢T(H) > %(3+

1

)

for a proper choice of H. H, ¢~ (H) and ¢ (H) can be computed by iterating h(0, H) until h*(0,H) =
PO, H) = ¢~ (H).

Proof: Our analysis assumed the worst case for weak low and high signals; this analysis also covers the
cases of strong low and high signals. Thus, we have shown that the internal state representation remains

sufficiently stable in general. The value of H can be computed (lemma 5.2.3).

The experiments of section 4.3 showed that a randomly generated DFA with 100 states correctly classi-
fies 1000 strings of length 1000 for H.;, > 6.3. We computed the value of Hp,.q which guarantees that the
constructed network performs perfectly; the value H,,.q = 10.4 guarantees perfect generalization. Hy,.q was

computed from a worst case analysis; it should thus come as no surprise that Hyn < Hepp < Hpred.

Since our analysis investigated the worst case and since we made no limits on the string length, we can
now state that a recurrent network can be constructed from a DFA such that the behavior of the recurrent

network and the DFA are the same:

Corollary 5.3.1 Let L(Mpra) denote the language accepted by a DFA M and let L(MrnN) be the language
accepted by the sparse RNN constructed from M ; then, there exists a value of H (4 < Huyin < H < Hpreq)

14

such that L(Mrnn) = L(Mpra). The value Hppeq can be computed from theorem 5.3.1.

Proof: Theorem 5.3.1 states that the internal DFA state representation remains stable for arbitrary string
length. Thus, all DFA states are always distinguishable and the value of the special output neuron Sy is
greater than 0.5 if the string is accepted by the DFA and less or equal 0.5 otherwise.

5.4 Analysis for Partially Recurrent Networks

The above analysis was carried out for the worst case where a neuron receives residual inputs from all other
neurons. The upper bound on the maximum number of recurrent state neurons can be increased when a
network is constructed from a specific DFA. Consider a state ¢; and let D;;, denote the number of states ¢;
such that 6(¢;,ag) = ¢; for each symbol aj. Setting D = max{D;;}, each recurrent state neuron receives
residual input from at most p = % recurrent neurons for a chosen input symbol az. Thus, the number of

terms in the sum Y H # S* in reduces from n to p* n in inequality (17):

H 1
— —+H*xn*xpx¢~ < = (20)
2 2
The analysis for guaranteed high signals is the same as in section 5.3, since S! can drive SZ‘H low and
the positive contribution of other state neurons only strengthens the high signal Sf"'l. Thus, we have the

following theorem for the construction of recurrent networks for specific DFA’s:

Theorem 5.4.1 Let p denote the mazimum fraction of DFA states q; from which there are state transitions
8(q;, ar) = ¢; for a fized choice of ay, and any q;. Then, a sparse recurrent neural network RN N with n+1 sig-
moidal state neurons, m inpul neurons, al most 3mn second-order weights with alphabet X, = {—H,0,+H}
(4 < Hpmin < H < Hpreq), n+ 1 biases with alphabet ¥y = {—H/2}, and mazimum fan-out 3m can be
constructed from a DFA M with n states and m input symbols of states such that the internal state repre-

sentation remains stable, i.e. S; > 0.5 when q; 1s the current DFA state and S; < 0.5 otherwise if

1

1 1
e

with QS;','(H) > i(3 + E)

n, <

for a proper choice of H.

It follows that a recurrent network can be constructed from any DFA such that the languages accepted by

the network and the DFA are identical.

5.5 Analysis for Fully Recurrent Networks

In the above analysis, the constructed networks were not fully connected. When recurrent networks are
used for domain theory revision, fully recurrent networks are initialized with the available prior symbolic

knowledge; partial or complete knowledge can be encoded. In the case of encoding a complete DFA, a small

15

=~

3 neurons D-1 neurons n—(D-1)-2 neurons

Figure 8: Preservation of Low Signals: The figure shows the input fed into neuron SlH'l from all other

neurons for a chosen input symbol. For clarity, the operation S I}, is omitted.

number of weights are programmed to values +H and —H according to the encoding algorithm. All other
weights are usually initialized to small random values. We are interested in whether a recurrent network
can be constructed such that the constructed network still implements a given DFA when the network is
fully recurrent and the free weights (as opposed to the programmed weights) are initialized to random values

drawn from the interval [—=TV, W] according to some distribution.

Notice that the special response neuron Sy also drives other neurons in a fully connected recurrent net-

work. The following inequality has to be satisfied in order for low signals to be preserved:

H
—— 4+ Hxzx <

5 (21)

N | —

We will now derive a a condition for the preservation of low signals in fully recurrent networks (figure 8).

SlH'l which do not correspond to DFA state ¢;

Consider a DFA transition é(¢;, ar) = ¢;. All state neurons
should be low signals. Assuming the current state is an accepting state, neuron S} has a high output signal
and is weighted by +W. Neuron S]t» has a high output since it corresponds to the current DFA state ¢;; it
is also weighted by +W. Neuron S} is low since we are dealing with state transitions of type low — low
only; it has a weight +H. There are pn — 1 neurons with low outputs and weights +H. The remaining

n — (pn — 1) — 2 neurons also have low outputs and are weighted by +W. Thus, the worst case expression

for the net input to neuron S;'H becomes:

w w w
ﬁsé + ﬁs; + 5+ (pn — 1)S) + (= (pn —1) - 2)S) (22)

Assuming that all signals converge toward their respective fixed points, the above net input yields the

following inequality for guaranteed low signals S;'H in the worst case:

- % +2W(1—¢7)+ Ho™ + H(pn — 1)¢™ + W(n — (pn — 1) = 2)¢~ (23)

N | —

Solving for n, we get the following lemma:

16

3 neurons D-1 neurons n-(D-1)-2 neurons

Figure 9: Preservation of High Signals: The figure shows the input fed into neuron Sf"'l from all other

neurons for a chosen input symbol. For clarity, the operation S; I} is not shown.

Lemma 5.5.1 The low signals S* in a fully recurrent network are always less or equal to 0.5 if

1 14 H—2W(2-3¢~(H))
20~ (H) pH +W(l—p)

Notice that the above inequality reduces to the inequalities for the simpler cases discussed above.

]

npw <[

Similarly, we can derive a condition for the preservation of high signals (figure 9). For a DFA state transition
8(q;,ar) = ¢;, state neuron S]t» is a high signal and Sf"'l should change from a low to a high signal. In the

worst case, neuron Sf"'l receives the following net input:

w w w w
— ﬁ53+5‘; — FSH ﬁ(pn— 1)s; — F(n—(pn—1)—2)sg (24)

Assuming that all signals converge toward their respective fixed points, we get the following inequality for
stable high signals:

L WO+ HGT 4 Hipn =) —W(n— (pn—1) =29~ > - (25)

Solving the above inequality for ¢~ yields the following condition for stable high signals:

Lemma 5.5.2 The high signals S* in a fully recurrent network are always greater than 0.5 if

o+ (H)>l 14+5H —2pn(H+W)+2W(n—-1)
W 2 3H+W(n-2)—pn(H+W)

Thus, we have proven the following theorem:

Theorem 5.5.1 A fully recurrent neural network RN N with n + 1 sigmoidal state neurons, m input neu-

rons, at most 3mn second-order weights with alphabet ¥,y = {—H,0,+H} (4 < Hpmin < H < Hpyeq), n+1

17

biases wilh alphabelt Xy = {—H/2}, mazimum fan-out 3m, and random initial weights drawn from an arbi-
trary distribution in [-W, W] with W < H can be constructed from a DFA M with n stales and m input
symbols such that the internal state representation remains stable, i.e. S; > 0.5 when q; 1s the current DFA

state and S; < 0.5 otherwise if

1 14 H—2W(2-3¢"(H))
20~ (H) pH +W(l—p)

1 1450 = 2pn(H + W) +2W(n —1)
2 3H+W(n—2)—pn(H+W)

npw < | | with ¢;W(H) >

There exist solutions for i, W, p, and n, w such that the above two conditions are satisfied.

Theorems 5.3.1, 5.4.1 and 5.5.1 have the following corollary:

Corollary 5.5.1 The mazimum allowed network sizes n,n, and n,w are related as follows:
n,>n and n,>n,w

where equality only holds for p =1 and W = 0.

We have shown that a fully recurrent network can be constructed from a DFA such that the languages ac-
cepted by the network and the DFA are identical independent of the distribution of the randomly initialized
weights. The value W depends on the network size n, the value of p, and the magnitude of H.

One can view fully recurrent networks as sparse networks with noise in the programmed weights. From
that point of view, the encoding algorithm constructs sparse networks which are to some extent tolerant to

noise in the weights.

Both conditions in theorem 5.5.1 must be satisfied for a stable internal DFA representation. We cannot
guarantee that a network constructed from a given DFA accepts the same language as the DFA if any one

of the above conditions is violated. In fact, we believe that the following conjecture holds true:

Conjecture 5.5.1 If either one of the two condilions is violated, then the languages accepted by the con-
structed network and the given DFA are not tdentical for an arbitrary distribution of the randomly initialized

weights in the interval [-W, W1.

5.6 Comparison with other Methods

Different methods [1, 6, 11, 14, 16] for encoding DFA’s with n states and m input symbols in recurrent
networks are summarized in table 2. The methods differ in the choice of the discriminant function (hard-

limiting, sigmoidal, radial basis function), the size of the constructed network and the restrictions that are

18

61

‘ author(s) nonlinearity ‘ order ‘ # neurons ‘ # weights weight alphabet fan-in limit | fan-out limit
Minsky (1967) hard first O(mn) O(mn) Yw =4{1,2} none none
Alon et al. (1991)! hard first O(n?*) - no restriction none none
Alon et al. (1991)! hard first O(n) - any restriction none yes
Frasconi et al. (1993) sigmoid first O(mn) O(n?) no restriction none none
Horne (1994)2 hard first O(\/#:@]f]ig_n) - no restriction none none
Horne (1994)2 hard first O(y/mnlogn) | O(mnlogn) Yw ={-1,1} none none
Horne (1994)2 hard first (%) O(n) Yw ={-1,1,2} 2 none
Gori et al. (1994)3 sigmoid/radial | first O(n) O(n?) no restriction none none
Giles & Omlin (1994)* sigmoid second O(n) O(mn) Yw=4{-H,-H/2,+H} none 3m

Table 2: Comparison of different DFA Encoding Methods: The different methods use different

amounts and types of resources to implement a given DFA with n states and m input symbols. 2 There also

exist lower bounds for the number of neurons necessary to implement any DFA. 2 The bounds for ¥ = {0, 1}

have been generalized to arbitrary alphabet size m. 3 The authors use their network with sigmoidal and

radial basis functions in multiple layers to train recurrent networks; however, their architecture could be

used to directly encode a DFA in a network. 4 The rule strength H can be chosen according to the results

in section 5.3.

imposed on the weight alphabet; the neuron fan-in and fan-out. The results in [14] improve the upper and
lower bounds reported in [1] for DFA’s with only two input symbols. Those bounds can be generalized to
DFA’s with m input symbols [13]. Among the methods which use continuous discriminant functions, our
algorithm uses no more neurons than the best of all methods, and consistently uses fewer weights and smaller

fan-out size than all methods.

5.7 Open Problems

One of the theoretical results in [1] gives a lower bound of Q(v/nlogn) on the number of hard-limiting neurons
needed to implement a DFA with n states when the weight alphabet and the neuron fan-in are limited. Our
encoding algorithm establishes without optimization an upper bound of O(n) for sigmoidal neurons with
limited fan-out. It would be interesting to investigate whether there i1s a lower bound and whether the upper
bound can be made tighter. While n states can be encoded in only logn neurons using a binary encoding
scheme, our encoding algorithm cannot encode arbitrary DFA’s with only logn neurons; this can be shown

on small example DFA’s.

Our result about constructing DFA’s in fully recurrent networks makes no assumptions about the distri-
bution of the randomly initialized weights. It would be interesting to investigate whether a constructed
network and its associated DFA accept the same language with some probability p if either one of the con-
ditions for guaranteed stability of low and high signals were violated. A positive result would have to make

some assumptions about the distribution of the randomly initialized weights.

6 CONCLUSION

We compared two different methods for encoding deterministic finite-state automata (DFA’s) into recurrent
neural networks with sigmoidal discriminant functions. The method proposed in [6] implements DFA’s using
linear programming and explicit implementation of state transitions implementing boolean-like functions
with sigmoidal neurons. The authors give rigorous proofs about their neural network implementation of
DFA’s. An interesting characteristic of their approach is that state transitions usually take several time

steps to complete.

We have proven that our encoding algorithm can implement any DFA with n states and m input sym-
bols in a sparse recurrent network with O(n) state neurons, O(mn) weights and limited fan-out of size O(m)
such that the DFA and the constructed network accept the same regular language. The desired network
dynamics is achieved by programming some of the weights to values +H or —H. A worst case analysis has

revealed a quantitative relationship between the rule strength H with which some weights are initialized

20

and the maximum network size such that the network dynamics remains robust for arbitrary string length.
For any chosen value 4 < Hpip < H < Hppeq, there exists an upper bound on the network size which
guarantees that the constructed network implements a given DFA; the value H,,;, 1s independent of the
DFA to be implemented and H,,.q can be computed for a given DFA. We extended our analysis to fully
recurrent networks where free weights are initialized with random values drawn from a distribution in the
interval [-W, W] with W < H. We have proven that there exist fully-recurrent networks which accept the
same language as the given DFA for arbitrary distribution of the randomly initialized weights W > 0.

This 1s only a proof of existence, i.e. we do not make any claims that such a solution can be learned.

Our algorithm for constructing DFA’s in recurrent neural networks is more straightforward compared to
the method proposed in [6]. By using second-order weights, we have adjusted the network architecture so
that DFA state transitions are naturally mapped into network state transitions. Our networks need fewer
nodes and weights than the implementation reported in [6]. The network model has not lost any of its

computational capabilities by the introduction of second-order weights.

7 ACKNOWLEDGMENT

We would like to acknowledge useful discussions with B.G. Horne, L. R. Leerink, and T. Lin.

References

[1] N. Alon, A. Dewdney, and T. Ott, “Efficient simulation of finite automata by neural nets,” Journal of
the Association for Computing Machinery, vol. 38, no. 2, pp. 495-514, April 1991.

[2] M. Barnsley, Fractals Everywhere. San Diego, CA: Academic Press, 1988.
[3] J. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179-211, 1990.

[4] P. Frasconi, M. Gori, M. Maggini, and G. Soda, “A unified approach for integrating explicit knowledge
and learning by example in recurrent networks,” in Proceedings of the International Joint Conference

on Neural Networks, vol. 1, p. 811, IEEE 91CH3049-4, 1991.

[5] P. Frasconi, M. Gori, M. Maggini, and G. Soda, “Unified integration of explicit rules and learning by
example in recurrent networks,” IFEE Transactions on Knowledge and Data Engineering, 1993. To

appear.

21

[6]

[10]

[11]

[15]

P. Frasconi, M. Gori, and G. Soda, “Injecting nondeterministic finite state automata into recurrent
networks,” tech. rep., Dipartimento di Sistemi e Informatica, Universita di Firenze, Italy, Florence,

Italy, 1993.

C. Giles, D. Chen, C. Miller, H. Chen, G. Sun, and Y. Lee, “Second-order recurrent neural networks for

grammatical inference,”

vol. I, pp. 273-281, July 1991.

in Proceedings of the International Joint Conference on Neural Networks 1991,

C. Giles, C. Miller, D. Chen, H. Chen, G. Sun, and Y. Lee, “Learning and extracting finite state

automata with second-order recurrent neural networks,”

1992.

Neural Computation, vol. 4, no. 3, p. 380,

C. Giles and C. Omlin, “Inserting rules into recurrent neural networks,” in Neural Networks for Signal
Processing II, Proceedings of The 1992 IEEE Workshop (S. Kung, F. Fallside, J. A. Sorenson, and
C. Kamm, eds.), pp. 13-22, IEEE Press, 1992.

C. Giles and C. Omlin, “Rule refinement with recurrent neural networks,” in Proceedings IEEE Inter-

national Conference on Neural Networks (ICNN’93), vol. 11, pp. 801-806, 1993.

M. Gori, M. Maggini, and G. Soda, “Insertion of finite state automata in recurrent radial basis function

networks,” tech. rep., Dipartimento di Sistemi e Informatica, Universita di Firenze, Italy, 1994.

J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation. Reading,
MA: Addison-Wesley Publishing Company, Inc., 1979.

B. Horne. Personal Communication.

B. Horne and D. Hush, “Bounds on the complexity of recurrent neural network implementations of
finite state machines,” in Advances in Neural Information Processing Systems 6, Morgan Kaufmann,

1994. To appear.

R. Maclin and J. Shavlik, “Refining algorithms with knowledge-based neural networks: Improving the

>

chou-fasman algorithm for protein folding,” in Computational Learning Theory and Natural Learning

Systems (S. Hanson, G. Drastal, and R. Rivest, eds.), MIT Press, 1992.

M. Minsky, Computation: Finite and Infinite Machines, ch. 3, pp. 32-66. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1967.

C. Omlin and C. Giles, “Rule checking with recurrent neural networks,” IEEE Transactions on Knowl-

edge and Data Engineering, 1993. accepted for publication.

22

[18]

[19]

[20]

[21]

C. Omlin and C. Giles, “Training second-order recurrent neural networks using hints,” in Proceedings
of the Ninth International Conference on Machine Learning (D. Sleeman and P. Edwards, eds.), (San
Mateo, CA), pp. 363-368, Morgan Kaufmann Publishers, 1992.

J. Pollack, “The induction of dynamical recognizers,” Machine Learning, vol. 7, pp. 227-252, 1991.

D. Servan-Schreiber, A. Cleeremans, and J. McClelland, “Graded state machine: The representation of

temporal contingencies in simple recurrent networks,” Machine Learning, vol. 7, p. 161, 1991.

G. Towell, J. Shavlik, and M. Noordewier, “Refinement of approximately correct domain theories by
knowledge-based neural networks,” in Proceedings of the Eighth National Conference on Artificial In-
telligence, (San Mateo, CA), p. 861, Morgan Kaufmann Publishers, 1990.

R. Watrous and G. Kuhn, “Induction of finite-state languages using second-order recurrent networks,”

Neural Computation, vol. 4 no. 3, p. 406, 1992.

7. Zeng, R. Goodman, and P. Smyth, “Learning finite state machines with self-clustering recurrent

networks,” Neural Computation, vol. 5, no. 6, pp. 976-990, 1993.

23

