
Constructing Deterministic Finite-State Automatain Recurrent Neural NetworksyChristian W. Omlin a;b, C. Lee Giles a;ca NEC Research Institute, 4 Independence Way, Princeton, NJ 08540b CS Department, Rensselaer Polytechnic Institute, Troy, NY 12180c UMIACS, U. of Maryland, College Park, MD 20742AbstractRecurrent neural networks that are trained to behave like deterministic �nite-state automata (DFA's)can show deteriorating performance when tested on long strings. This deteriorating performance canbe attributed to the instability of the internal representation of the learned DFA states. The use of asigmoidal discriminant function together with the recurrent structure contribute to this instability. Weprove that a simple constructive algorithm can construct second-order recurrent neural networks with asparse interconnection topology and sigmoidal discriminant function such that the internal DFA staterepresentations are stable, i.e. the constructed network correctly classi�es strings of arbitrary length.The algorithm is based on encoding strengths of weights directly into the neural network. We derive arelationship between the weight strength and the number of DFA states for robust string classi�cation.For a DFA with n states and m input alphabet symbols, the constructive algorithm generates a \pro-grammed" neural network with O(n) neurons and O(mn) weights. We compare our algorithm to othermethods proposed in the literature.1 INTRODUCTIONRecurrent neural networks can be trained to behave like deterministic �nite-state automata (DFA's) [3, 4, 7,8, 19, 20, 22]. The dynamical nature of recurrent networks can cause the internal representation of learnedDFA states to deteriorate for long strings [23]; therefore, it can be di�cult to make predictions about thegeneralization performance of trained recurrent networks. Recently, we have developed a simple method forencoding partial DFA's (state transitions) into recurrent neural networks [9, 18]. The goal was to demon-strate that prior knowledge can decrease the learning time signi�cantly compared to learning without any0y Technical Report No. 94-3, Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180.1



prior knowledge. The training time improvement was 'proportional' to the amount of prior knowledge withwhich a network was initialized. Important features of the encoding algorithm are the use of second-orderweights, and the small number of weights that are programmed to achieve the desired network dynamics.When partial symbolic knowledge is encoded into a network in order to improve training, programming asfew weights as possible is desirable because it leaves the network with many unbiased adaptable weights.This is important when a network is used for domain theory revision [15, 21], where the prior knowledge isnot only incomplete, but may also be incorrect [10, 17].Methods for constructing DFA's in recurrent networks where neurons have hard-limiting discriminant func-tions have been proposed [1, 14, 16]. This paper is concerned with neural network implementations of DFA'swhere continuous sigmoidal discriminant functions are used.Our method is an alternative to an algorithm for constructing DFA's in recurrent networks with �rst-orderweights proposed by Frasconi et al. [4, 5, 6]. A short introduction to �nite-state automata will be followedby a review of the method by Frasconi et al. We will prove that our method can implement any deterministic�nite-state automaton in second-order recurrent neural networks such that the behavior of the DFA and theconstructed network are identical. Finally, we will compare DFA encoding algorithm with other methodsproposed in the literature.2 FINITE STATE AUTOMATARegular languages represent the smallest class of formal languages in the Chomsky hierarchy [12]. Regularlanguages are generated by regular grammars. A regular grammarG is a quadruple G =< S;N; T; P > whereS is the start symbol, N and T are non-terminal and terminal symbols, respectively, and P are productions ofthe formA! a or A! aB where A;B �N and a � T . The regular language generated by G is denoted L(G).Associated with each regular language L is a deterministic �nite-state automaton (DFA) M which is anacceptor for the language L(G), i.e. L(G) = L(M ). DFA M accepts only strings which are a member of theregular language L(G). Formally, a DFA M is a 5-tuple M =< �; Q;R; F; � > where � = fa1; : : : ; amg isthe alphabet of the language L, Q = fq1; : : : ; qng is a set of states, R�Q is the start state, F � Q is a setof accepting states and � : Q��! Q de�nes state transitions in M . A string x is accepted by the DFA Mand hence is a member of the regular language L(M ) if an accepting state is reached after the string x hasbeen read by M . Alternatively, a DFA M can also be considered a generator which generates the regularlanguage L(M ). 2



3 FIRST-ORDER NETWORKSThis section summarizes work done by Frasconi et al. on implementing DFA's in recurrent neural net-works. For details of the algorithms and the proofs see [4, 5, 6]. The work in [6] is an extension of [4, 5]which restricted the class of automata that could be encoded into recurrent networks to DFA's withoutcycles (except self-loops). The authors were focusing on automatic speech recognition as an application ofimplementing DFA's in recurrent neural networks. The constructed recurrent network becomes part of aK-L(priori-Knowledge and Learning) architecture consisting of two cooperating subnets devoted to explicitand learned rule representation, respectively, and whose outputs feed into a third subnet that computes theexternal output.Each neuron in the �rst-order network computes the following function:S(t+1)i = g(ai(t)) = tanh(ai(t)2 ); ai(t) =Xj WijS(t)j +Xk WikI(t)k ; (1)where S(t)j and I(t)k represent the output of other state neurons and input neurons, respectively. For conve-nience of implementing a DFA in a recurrent network, a unary encoding is used to represent both inputs andDFA states; the state vectors representing successive DFA states q(t) and q(t+1) have a Hamming distanceof 1. This requires a transformation of the original DFA into an equivalent DFA with more states which issuitable for the neural network implementation. In addition to the recurrent state neurons, there are threefeed-forward layers of continuous state neurons that are used to construct the DFA state transitions. Thesecontinuous neurons implement boolean-like OR and AND functions by constraining the incoming weights.When a DFA state transition �(qj; ak) = qi is performed, the neuron corresponding to DFA state qj switchesfrom a high positive to a low negative output signal and the neuron corresponding to DFA state qi changes itsoutput signal from a low negative to a high positive value. The main characteristic of the constructed neuralnetworks is the variable duration of the switching of state neurons, which is controlled by the self-recurrentweights Wii and the input from other neurons. This is a desired property for the intended application. Theauthors prove that their proposed network construction algorithm can implement any DFA with n statesand m input symbols using a network with no more than 2mn �m + 3n continuous neurons and no morethan m(n2 +m+ 5n� 5) + 6n weights.4 SECOND-ORDER NETWORKSThe algorithm used here to construct DFA's in networks with second-order weights has also been used toencode partial prior knowledge to improve convergence time [9, 18], and to perform rule correction [10, 17].3



4.1 Network ConstructionWe use discrete-time, recurrent networks with weights Wijk to implement DFA's. A network accepts atime-ordered sequence of inputs and evolves with dynamics de�ned by the following equations:S(t+1)i = h(ai(t)) = 11 + e�ai(t) ; ai(t) = bi +Xj;k WijkS(t)j I(t)k ; (2)where bi is the bias associated with hidden recurrent state neurons Si; Ik denotes the input neuron for symbolak. The product S(t)j I(t)k directly corresponds to the state transition �(qj; ak) = qi. The goal is to achievea nearly orthonormal internal representation of the DFA states with the desired network dynamics. For thepurpose of illustration, we assume that a unary encoding is used for the input symbols. A special neuronS0 represents the output (accept/reject) of the network after an input string has been processed. Given aDFA with n states and m input symbols, a network with n+1 recurrent state neurons and m input neuronsis constructed. The algorithm consists of two parts: programming weights of a network to re
ect DFA statetransitions �(qj; ak) = qi and programming the output of the response neuron for each DFA state (�gure 1).Neurons Sj and Si correspond to DFA states qj and qi, respectively. The weights Wjjk, Wijk and biases biare programmed as follows: Wijk = +H if �(qj; ak) = qi (3)Wjjk = 8<: +H if �(qj ; ak) = qj�H otherwise (4)W0jk = 8<: +H if �(qj; ak) � F�H otherwise (5)bi = �H=2 for all state neurons Si (6)For each DFA state transition, at most three weights of the network have to be programmed. The initialstate S0 of the network is S0 = (S00 ; 1; 0; 0; : : : ; 0)The initial value of the response neuron S00 is 1 if the DFA's initial state q0 is an accepting state and 0otherwise. The network rejects a given string if the value of the output neuron St0 at the end of the stringis less or equal 0.5; otherwise, the network accepts the string.4.2 Internal State Representation and Network PerformanceWhen a recurrent network is trained to correctly classify a set of example strings, it can be observed thatthe networks' generalization performance on long strings which the network was not explicitly trained on4
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Figure 1: Rule Insertion. A known DFA transition �(qj; ak) = qi is programmed into a network.deteriorates with increasing string length. This deteriorating performance can be explained by observingthat the internal DFA state representation becomes unstable with increasing string length due to the net-work's dynamical nature and the sigmoidal discriminant function. This phenomenon has also been observedby Zeng et al. [23].For a second-order network, whether or not a constructed recurrent network implements the desired DFA,i.e. whether the output of the the network and the DFA are identical for all input strings, depends on thevalue of H. The network dynamics preserves the internal nearly orthonormal DFA state representation onlyif the weights are programmed such that the outputs of all state neurons are close to 0 and 1, respectively.This calls for large values of the rule strength H. In order to demonstrate that the internal representationcan be made su�ciently stable, we show test results on very long strings.4.3 ExperimentWe encoded a randomly generated, minimized 100-state DFA with alphabet � = f0; 1g into a recurrentnetwork with 101 state neurons (�gure 2). The graph in �gure 3 shows the generalization performance of thenetwork constructed with varying rule strength H = f0:0; 0:1; 0:2; : : : ; 7:0g on randomly chosen 1000 stringseach of length 1000. At the end of each string, the network's classi�cation was '1' (member of the regularlanguage) if S10000 > 0:5, and '0' (not a member of the regular language) otherwise. We observe that thenetwork performance monotonically improves with increasing value of H and that the network makes noclassi�cation errors for H > 6:3. The following analysis will show why this is the case.5
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Figure 2: Randomly Generated DFA: The minimized DFA has 100 states and alphabet � = f0; 1g. State1 is the start state. States with and without double circles are accepting and rejecting states, respectively.
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HFigure 3: Network Classi�cation Performance: The network classi�cation performance on a data setas a function of the rule strength H (in 0.1 increments) is shown. The data set consisted of 1000 randomlychosen strings of length 1000; their labels were assigned by a randomly generated 100-state DFA. Theclassi�cation performance is poor for small values of the rule strength H. The network's performancedramatically improves for 5 < H < 6 to perfect classi�cation for H > 6:3.5 ANALYSIS5.1 MotivationWhen a constructed network processes a string, the state neurons go through a sequence of state changes.These state changes can be represented as iterations of the discriminant function h(:) for each state neu-ron. A constructed network will only correctly classify strings of arbitrary length if its internal DFA staterepresentation remains su�ciently stable. One way to achieve representation stability is to show that theiteration of the discriminant function h(:) has desired properties such as �xed points. Thus, we will �rstinvestigate under what conditions the discriminant function h(:) has �xed points. Recall that the recurrentnetwork changes its state according to equation (2). From the encoding algorithm, we can derive a moreprecise form of the equation governing the dynamics of the constructed network:S(t+1)i = h(x;H) = 11 + eH=2(1�2x) (7)The term �H=2 comes from the bias which is the same for all state neurons; Hx is the weighted sum feedinginto neuron S(t+1)i . The graph of the function h(:) is shown in �gure 4. The discriminant function hasproperties which are important to the construction of recurrent networks with h(x;H) as its discriminantfunction. 7
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Proof: For some strings which are members of L(M ), the �xed point �0 = 0:5 may be reached, leading to amisclassi�cation of positive strings.Lemma 5.2.2 For H � 4, h(x;H) has three �xed points �0 = 0:5, �� and �+.Proof: The lemma is proven by de�ning an appropriate Lyapunov function V(.) and showing that V (:)decreases toward the minima �� and �+. The details of the proof can be found in [6].For H = 4, the �xed points are �0 = �� = �+ = 0:5. For H > 4, the �xed point �0 = 0:5 is unsta-ble, i.e. starting from x 6= �0, the state trajectory converges to one of the two stable points �� and �+. Infact, the following holds true:Lemma 5.2.3 for x < �0 and �0 < x; hp(x;H) (with H > 4) converges to �� and �+, respectively.Proof: Starting with x < �0, hp(x;H) cannot converge to �+, because this would require to cross the liney = H=4 � x; this is impossible since the derivative h0(x;H) is less than H=4 for all values except for �0(�gure 4). A similar argument can be made for the case x > �0.Lemma 5.2.4 For arbitrary H > 0, the two �xed points �� and �+ are related as follows:�� + �+ = 1Proof: This relationship follows from the symmetry of h(x;H) around �0 = 0:5.The graph of the iterated function hp(x;H) with initial values 0 and 1 is shown in �gure 5 for di�erentvalues of H. The iteration hp(S0;H) represents the DFA state transitions �(: : : �(q0; a1); a2; : : : ; ap) = qj.5.3 Worst Case AnalysisHaving found conditions under which the sigmoidal discriminant function h(x;H) reaches its �xed points��; �0, and �+, we will now analyze under what conditions a constructed network implements a given DFA.The main result will show how large a network may be for �xed H such that the DFA and the constructednetwork have identical behavior, i.e. the network accepts strings i� the DFA accepts the same strings; thelength of the strings is arbitrary.From the DFA encoding algorithm, we can derive four di�erent types of neuron state changes:low ! high: St+1i = h(�H=2 + Stj �H + XSl�Ci;l Stl �H � Sti �H) (Stj : high; Stl ; Sti : low) (8)9
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principal contribution to the neuron St+1i ; all other terms are the residual contributions to the input ofneuron St+1i . The termPStl �H contributes to the total input of state neuron St+1i if there are other tran-sitions �(ql; ak) = qi in the DFA from which the recurrent network is constructed. Since there is a one-to-onecorrespondence between state neurons and DFA states, there will always be a negative contribution �Sti �Hfor the current DFA state transition �(qj; ak) = qi, i.e. only Sti can drive the signal St+1i low. Equations(8) and (9) only di�er with respect to the sign of the residual input Sti � H. If there is a state transition�(qi; ak) = qi, then equation (9) applies; otherwise, there is a residual low signal Sti trying to drive St+1i lowand equation (8) applies. Similarly, either equation (12) or (13) is chosen for state transitions of the typelow ! low. The above equations account for all possible contributions to the net input of all state neuronsbecause the encoding algorithm constructs a sparse recurrent network.Before we proceed, we make some justi�ed assumptions which will simplify the analysis.Assumption 5.3.1 An analysis for state transitions of type low ! high and low ! low also covers statetransitions of type high! high and high! low, respectively.The state transitions types high ! high and high! low cause stronger high and low signals, respectively,than the state transitions types low! high and low ! low. Thus, no separate analysis will be necessary.Assumption 5.3.2 Of the two possible equations (8) and (9) for state transitions low ! high, the formerequation also covers the latter equation.If the internal state representations can be kept stable for equation (8), then it certainly can also be keptstable for equation (9). No separate analysis is necessary for the two equations.Assumption 5.3.3 Of the two possible equations (12) and (13) for state transitions low ! low, the latterequation also covers the former equation.An argument similar to that given for validity of assumption 5.2.2 can be given.Thus, we are left with only the two following types of state transitions which represent the worst cases:low ! low: St+1i = h(�H=2 + Sti �H + XSl�Ci;l Stl �H) (Sti ; Stl : low) (15)low ! high: St+1i = h(�H=2 + Stj �H + XSl�Ci;l Stl �H � Sti �H) (Stj : high; Stl ; Sti : low) (16)We will make a simplifying assumption about the values of low and high signals:11



Assumption 5.3.4 The low signal Stl in state transitions of type low ! low converges toward the �xedpoint ��; the high signal Stj in transitions of type low ! high converges toward �xed point �+.The network's initial state is S0 = (S00 ; 1; 0; : : :; 0); the value of S00 depends on whether the start state isan accepting or rejecting state. The low and high signals of all state neurons will converge toward the �xedpoints �� and �+, respectively; these �xed points will be reached for su�ciently long strings according tolemma 5.2.3.In order for the internal DFA state representation to remain stable, the low and high signals must re-main su�ciently stable, i.e. the low and high signals must be less or equal and larger than 0.5, respectively.Consider equation (15). In order for the low signal to remain less or equal 0.5, the argument of h(:) must beless or equal 0.5. From equation (15) and under assumption 5.3.4, we have the following condition for stablelow signals: � H2 +H � n � �� � 12 (17)Solving the above inequality leads to the following lemma for the preservation of low signals:Lemma 5.3.1 The low signals St are always less or equal to 0.5 ifn � b 12��(H) (1 + 1H )cThus, the lemma puts restrictions on the size n of the network for a given H. The location of the �xed point�� is determined by H; thus, we write ��(H). The graph in �gure 6 shows the maximum allowed networksize n as a function of the rule strength H; the allowed size grows exponentially with increasing rule strength.A similar analysis can be carried out for state transitions of equation (16). In the worst case, the followinginequality must be satis�ed for stable high signals:� H2 + Stj �H � Sti �H > 12 (18)For the left-hand side in the above inequality, we assumed that there is only one DFA transition �(qj; ak) = qifor chosen qi and ak; thus, PStl �Ci;l = 0. Any positive terms would only strengthen the high signal St+1i .Furthermore, Sti has a negative contribution to the net input of St+1i ; if there were a transition �(qi; ak) =qi (self-loop), then the contribution +Sti � H would only strengthen the high signal St+1i . Thus, we areconsidering the worst possible case for high signals for all recurrent state neurons. The high signal Stj andthe low signal Sti converge toward �+ and ��, respectively. Therefore, the inequality simpli�es to:� H2 +H � �+ �H(1� �+) > 12 (19)12
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such that L(MRNN ) = L(MDFA). The value Hpred can be computed from theorem 5.3.1.Proof: Theorem 5.3.1 states that the internal DFA state representation remains stable for arbitrary stringlength. Thus, all DFA states are always distinguishable and the value of the special output neuron S0 isgreater than 0.5 if the string is accepted by the DFA and less or equal 0.5 otherwise.5.4 Analysis for Partially Recurrent NetworksThe above analysis was carried out for the worst case where a neuron receives residual inputs from all otherneurons. The upper bound on the maximum number of recurrent state neurons can be increased when anetwork is constructed from a speci�c DFA. Consider a state qi and let Dik denote the number of states qjsuch that �(qj; ak) = qi for each symbol ak. Setting D = maxfDikg, each recurrent state neuron receivesresidual input from at most � = Dn recurrent neurons for a chosen input symbol ak. Thus, the number ofterms in the sumPH � St in reduces from n to � � n in inequality (17):� H2 +H � n � � � �� � 12 (20)The analysis for guaranteed high signals is the same as in section 5.3, since Sti can drive St+1i low andthe positive contribution of other state neurons only strengthens the high signal St+1i . Thus, we have thefollowing theorem for the construction of recurrent networks for speci�c DFA's:Theorem 5.4.1 Let � denote the maximum fraction of DFA states qj from which there are state transitions�(qj; ak) = qi for a �xed choice of ak and any qi. Then, a sparse recurrent neural network RNN with n+1 sig-moidal state neurons, m input neurons, at most 3mn second-order weights with alphabet �w = f�H; 0;+Hg(4 < Hmin < H < Hpred), n + 1 biases with alphabet �b = f�H=2g, and maximum fan-out 3m can beconstructed from a DFA M with n states and m input symbols of states such that the internal state repre-sentation remains stable, i.e. Si > 0:5 when qi is the current DFA state and Si � 0:5 otherwise ifn� � b 12 � ��(H) (1 + 1H )c with �+� (H) > 14(3 + 1H )for a proper choice of H.It follows that a recurrent network can be constructed from any DFA such that the languages accepted bythe network and the DFA are identical.5.5 Analysis for Fully Recurrent NetworksIn the above analysis, the constructed networks were not fully connected. When recurrent networks areused for domain theory revision, fully recurrent networks are initialized with the available prior symbolicknowledge; partial or complete knowledge can be encoded. In the case of encoding a complete DFA, a small15
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biases with alphabet �b = f�H=2g, maximum fan-out 3m, and random initial weights drawn from an arbi-trary distribution in [-W, W] with W < H can be constructed from a DFA M with n states and m inputsymbols such that the internal state representation remains stable, i.e. Si > 0:5 when qi is the current DFAstate and Si � 0:5 otherwise ifn�;W � b 12��(H) 1 +H � 2W (2� 3��(H))�H +W (1� �) c with �+�;W (H) > 12 1 + 5H � 2�n(H +W ) + 2W (n� 1)3H +W (n� 2)� �n(H +W )There exist solutions for H;W; �, and n�;W such that the above two conditions are satis�ed.Theorems 5.3.1, 5.4.1 and 5.5.1 have the following corollary:Corollary 5.5.1 The maximum allowed network sizes n; n� and n�;W are related as follows:n� � n and n� � n�;Wwhere equality only holds for � = 1 and W = 0.We have shown that a fully recurrent network can be constructed from a DFA such that the languages ac-cepted by the network and the DFA are identical independent of the distribution of the randomly initializedweights. The value W depends on the network size n, the value of �, and the magnitude of H.One can view fully recurrent networks as sparse networks with noise in the programmed weights. Fromthat point of view, the encoding algorithm constructs sparse networks which are to some extent tolerant tonoise in the weights.Both conditions in theorem 5.5.1 must be satis�ed for a stable internal DFA representation. We cannotguarantee that a network constructed from a given DFA accepts the same language as the DFA if any oneof the above conditions is violated. In fact, we believe that the following conjecture holds true:Conjecture 5.5.1 If either one of the two conditions is violated, then the languages accepted by the con-structed network and the given DFA are not identical for an arbitrary distribution of the randomly initializedweights in the interval [�W;W ].5.6 Comparison with other MethodsDi�erent methods [1, 6, 11, 14, 16] for encoding DFA's with n states and m input symbols in recurrentnetworks are summarized in table 2. The methods di�er in the choice of the discriminant function (hard-limiting, sigmoidal, radial basis function), the size of the constructed network and the restrictions that are18



author(s) nonlinearity order # neurons # weights weight alphabet fan-in limit fan-out limitMinsky (1967) hard �rst O(mn) O(mn) �W = f1; 2g none noneAlon et al. (1991)1 hard �rst O(n3=4) - no restriction none noneAlon et al. (1991)1 hard �rst O(n) - any restriction none yesFrasconi et al. (1993) sigmoid �rst O(mn) O(n2) no restriction none noneHorne (1994)2 hard �rst O(q mn lognlogm+log n) - no restriction none noneHorne (1994)2 hard �rst O(pmn logn) O(mn logn) �W = f�1; 1g none noneHorne (1994)2 hard �rst O( mn lognlogm+log n) O(n) �W = f�1; 1; 2g 2 noneGori et al. (1994)3 sigmoid/radial �rst O(n) O(n2) no restriction none noneGiles & Omlin (1994)4 sigmoid second O(n) O(mn) �W = f�H;�H=2;+Hg none 3mTable 2: Comparison of di�erent DFA Encoding Methods: The di�erent methods use di�erentamounts and types of resources to implement a given DFA with n states and m input symbols. 1;2 There alsoexist lower bounds for the number of neurons necessary to implement any DFA. 2 The bounds for � = f0; 1ghave been generalized to arbitrary alphabet size m. 3 The authors use their network with sigmoidal andradial basis functions in multiple layers to train recurrent networks; however, their architecture could beused to directly encode a DFA in a network. 4 The rule strength H can be chosen according to the resultsin section 5.3.
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imposed on the weight alphabet, the neuron fan-in and fan-out. The results in [14] improve the upper andlower bounds reported in [1] for DFA's with only two input symbols. Those bounds can be generalized toDFA's with m input symbols [13]. Among the methods which use continuous discriminant functions, ouralgorithm uses no more neurons than the best of all methods, and consistently uses fewer weights and smallerfan-out size than all methods.5.7 Open ProblemsOne of the theoretical results in [1] gives a lower bound of 
(pnlogn) on the number of hard-limiting neuronsneeded to implement a DFA with n states when the weight alphabet and the neuron fan-in are limited. Ourencoding algorithm establishes without optimization an upper bound of O(n) for sigmoidal neurons withlimited fan-out. It would be interesting to investigate whether there is a lower bound and whether the upperbound can be made tighter. While n states can be encoded in only logn neurons using a binary encodingscheme, our encoding algorithm cannot encode arbitrary DFA's with only logn neurons; this can be shownon small example DFA's.Our result about constructing DFA's in fully recurrent networks makes no assumptions about the distri-bution of the randomly initialized weights. It would be interesting to investigate whether a constructednetwork and its associated DFA accept the same language with some probability p if either one of the con-ditions for guaranteed stability of low and high signals were violated. A positive result would have to makesome assumptions about the distribution of the randomly initialized weights.6 CONCLUSIONWe compared two di�erent methods for encoding deterministic �nite-state automata (DFA's) into recurrentneural networks with sigmoidal discriminant functions. The method proposed in [6] implements DFA's usinglinear programming and explicit implementation of state transitions implementing boolean-like functionswith sigmoidal neurons. The authors give rigorous proofs about their neural network implementation ofDFA's. An interesting characteristic of their approach is that state transitions usually take several timesteps to complete.We have proven that our encoding algorithm can implement any DFA with n states and m input sym-bols in a sparse recurrent network with O(n) state neurons, O(mn) weights and limited fan-out of size O(m)such that the DFA and the constructed network accept the same regular language. The desired networkdynamics is achieved by programming some of the weights to values +H or �H. A worst case analysis hasrevealed a quantitative relationship between the rule strength H with which some weights are initialized20



and the maximum network size such that the network dynamics remains robust for arbitrary string length.For any chosen value 4 < Hmin < H < Hpred, there exists an upper bound on the network size whichguarantees that the constructed network implements a given DFA; the value Hmin is independent of theDFA to be implemented and Hpred can be computed for a given DFA. We extended our analysis to fullyrecurrent networks where free weights are initialized with random values drawn from a distribution in theinterval [�W;W ] with W < H. We have proven that there exist fully-recurrent networks which accept thesame language as the given DFA for arbitrary distribution of the randomly initialized weights W > 0.This is only a proof of existence, i.e. we do not make any claims that such a solution can be learned.Our algorithm for constructing DFA's in recurrent neural networks is more straightforward compared tothe method proposed in [6]. By using second-order weights, we have adjusted the network architecture sothat DFA state transitions are naturally mapped into network state transitions. Our networks need fewernodes and weights than the implementation reported in [6]. The network model has not lost any of itscomputational capabilities by the introduction of second-order weights.7 ACKNOWLEDGMENTWe would like to acknowledge useful discussions with B.G. Horne, L. R. Leerink, and T. Lin.References[1] N. Alon, A. Dewdney, and T. Ott, \E�cient simulation of �nite automata by neural nets," Journal ofthe Association for Computing Machinery, vol. 38, no. 2, pp. 495{514, April 1991.[2] M. Barnsley, Fractals Everywhere. San Diego, CA: Academic Press, 1988.[3] J. Elman, \Finding structure in time," Cognitive Science, vol. 14, pp. 179{211, 1990.[4] P. Frasconi, M. Gori, M. Maggini, and G. Soda, \A uni�ed approach for integrating explicit knowledgeand learning by example in recurrent networks," in Proceedings of the International Joint Conferenceon Neural Networks, vol. 1, p. 811, IEEE 91CH3049-4, 1991.[5] P. Frasconi, M. Gori, M. Maggini, and G. Soda, \Uni�ed integration of explicit rules and learning byexample in recurrent networks," IEEE Transactions on Knowledge and Data Engineering, 1993. Toappear. 21



[6] P. Frasconi, M. Gori, and G. Soda, \Injecting nondeterministic �nite state automata into recurrentnetworks," tech. rep., Dipartimento di Sistemi e Informatica, Universit�a di Firenze, Italy, Florence,Italy, 1993.[7] C. Giles, D. Chen, C. Miller, H. Chen, G. Sun, and Y. Lee, \Second-order recurrent neural networks forgrammatical inference," in Proceedings of the International Joint Conference on Neural Networks 1991,vol. II, pp. 273{281, July 1991.[8] C. Giles, C. Miller, D. Chen, H. Chen, G. Sun, and Y. Lee, \Learning and extracting �nite stateautomata with second-order recurrent neural networks," Neural Computation, vol. 4, no. 3, p. 380,1992.[9] C. Giles and C. Omlin, \Inserting rules into recurrent neural networks," in Neural Networks for SignalProcessing II, Proceedings of The 1992 IEEE Workshop (S. Kung, F. Fallside, J. A. Sorenson, andC. Kamm, eds.), pp. 13{22, IEEE Press, 1992.[10] C. Giles and C. Omlin, \Rule re�nement with recurrent neural networks," in Proceedings IEEE Inter-national Conference on Neural Networks (ICNN'93), vol. II, pp. 801{806, 1993.[11] M. Gori, M. Maggini, and G. Soda, \Insertion of �nite state automata in recurrent radial basis functionnetworks," tech. rep., Dipartimento di Sistemi e Informatica, Universit�a di Firenze, Italy, 1994.[12] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation. Reading,MA: Addison-Wesley Publishing Company, Inc., 1979.[13] B. Horne. Personal Communication.[14] B. Horne and D. Hush, \Bounds on the complexity of recurrent neural network implementations of�nite state machines," in Advances in Neural Information Processing Systems 6, Morgan Kaufmann,1994. To appear.[15] R. Maclin and J. Shavlik, \Re�ning algorithms with knowledge-based neural networks: Improving thechou-fasman algorithm for protein folding," in Computational Learning Theory and Natural LearningSystems (S. Hanson, G. Drastal, and R. Rivest, eds.), MIT Press, 1992.[16] M. Minsky, Computation: Finite and In�nite Machines, ch. 3, pp. 32{66. Englewood Cli�s, NJ: Prentice-Hall, Inc., 1967.[17] C. Omlin and C. Giles, \Rule checking with recurrent neural networks," IEEE Transactions on Knowl-edge and Data Engineering, 1993. accepted for publication.22



[18] C. Omlin and C. Giles, \Training second-order recurrent neural networks using hints," in Proceedingsof the Ninth International Conference on Machine Learning (D. Sleeman and P. Edwards, eds.), (SanMateo, CA), pp. 363{368, Morgan Kaufmann Publishers, 1992.[19] J. Pollack, \The induction of dynamical recognizers," Machine Learning, vol. 7, pp. 227{252, 1991.[20] D. Servan-Schreiber, A. Cleeremans, and J. McClelland, \Graded state machine: The representation oftemporal contingencies in simple recurrent networks," Machine Learning, vol. 7, p. 161, 1991.[21] G. Towell, J. Shavlik, and M. Noordewier, \Re�nement of approximately correct domain theories byknowledge-based neural networks," in Proceedings of the Eighth National Conference on Arti�cial In-telligence, (San Mateo, CA), p. 861, Morgan Kaufmann Publishers, 1990.[22] R. Watrous and G. Kuhn, \Induction of �nite-state languages using second-order recurrent networks,"Neural Computation, vol. 4, no. 3, p. 406, 1992.[23] Z. Zeng, R. Goodman, and P. Smyth, \Learning �nite state machines with self-clustering recurrentnetworks," Neural Computation, vol. 5, no. 6, pp. 976{990, 1993.

23


