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MATHEMATICAL STRUCTURE OF SYNTACTIC MERGE

MATILDE MARCOLLI, NOAM CHOMSKY, ROBERT C. BERWICK

Abstract. The syntactic Merge operation of the Minimalist Program in linguistics can be de-
scribed mathematically in terms of Hopf algebras, with a formalism similar to the one arising
in the physics of renormalization. This mathematical formulation of Merge has good descriptive
power, as phenomena empirically observed in linguistics can be justified from simple mathematical
arguments. It also provides a possible mathematical model for externalization and for the role of
syntactic parameters.

1. Introduction

Within the context of generative linguistics, the Minimalist Model was introduced in the ’90s,
[5], as a formalism that analyzes the generative process of syntax in terms of a basic fundamental
operation, referred to as Merge, that generates, combines, and transforms syntactic trees. The
formulation of Minimalism underwent some significant changes in recent years, after a simplifying
reformulation, [6], [7], [8], [9], see also [3], [4], [29], where the Merge operation is described as a
combinatorial binary set formation.

Our main goal here is to present a mathematical formulation of the Merge operator in syntax,
based on Hopf algebras.

The reason why Hopf algebras are the suitable mathematical setting comes from the fact that
grafting operations on trees such as Merge provide a natural strategy for generating a hierarchy
of recursively defined structures. This idea has been widely developed within theoretical physics,
where Hopf algebras of rooted trees and of Feynman graphs are used to analyze the combinatorics
of perturbative expansions in quantum field theory and the formalism of renormalization, [15],
[16], [30]. The Hopf algebra formalism of perturbative quantum field theory and renormalization
has also found applications to the theory of computation, see for instance [18], [32], [33], [39].

In particular, an important case in physics, where recursive structures are built out of operators
formally resembling the syntactic Merge, is the recursive construction of solutions to the quantum
equations of motion (Dyson–Schwinger equations), [20], [51]. The Dyson–Schwinger equations
can be seen as a way of implementing recursively at the quantum level the variational least action
principle characterizing the classical equations of motion (see §9.6 of [43]).

The fact that the Hopf algebra formalism provides a natural setting for the formulation of
recursive operations that build hierarchical structures based on trees strongly suggests that this
should also be the natural setting for describing the properties of the Merge operators of syntax.
We show in this paper that this is indeed the case, namely that the same mathematical formalism
that governs the recursive structures of quantum field theory also governs Merge in the Minimalist
Model.

The mathematical formulation of Merge that we obtain here is not just a convenient, math-
ematically elegant, rephrasing of [7], [8], but it has good descriptive and predictive power. We
demonstrate that by showing that some empirically observed linguistic phenomena acquire a sim-
ple and direct mathematical explanation in this model. For example, we show that some of the
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properties usually required of Merge, such as not decreasing the size of workspaces, or cancellation
of deeper copies of accessible terms, follow directly from the mathematical formalism (in partic-
ular from the structure of the coproduct of the Hopf algebra). We also show that a hypothetical
Merge operator that instead of binary would be n-ary for any n ≥ 3 would necessarily suffer from
both undergeneration and overgeeration with respect to the binary Merge. This property again
follows immediately from counting arguments in the Hopf algebra and confirms and explains in
clear computational terms some empirically observed linguistic phenomena.

We also show that, within this mathematical setting, one can formulate a possible model for
the externalization process, that interfaces the core computational mechanism of Merge with the
syntactic constraints of specific languages. We describe the model of externalization in the form
of a correspondence, rather than a function, where one side of the correspondence implements the
linear order of sentences, which is not present at the level of the deeper structure of Merge, while
the second step of the correspondence implements other constraints (in addition to word order)
on the syntactic trees that come from syntactic parameters.

We formulate some possible questions for future study, involving possible approaches to models
of syntactic-semantic interface, and a characterization of Merge as a solution to an optimization
problem.

1.1. Summary of Merge. We summarize briefly the structure of the Merge operation of syntax
according to the more recent formulation of the Minimalist Model of syntax, following [7], [8].

One considers a given set of lexical items and syntactic features like N, V,A, P, C, T,D, . . .. One
also starts with an independently constructed set of syntactic objects (SO) obtained recursively,
by adding to the above set all syntactic objects created by application of a basic Merge operation.
This is defined in terms of the binary set formation that assigns to two arguments α and β the
unordered set

(1.1) M(α, β) := {α, β} ,

so as to include, for example, sets like {N, V }, etc. We denote by SO the set obtained in this
way, starting from lexical items and syntactic features. We write SO0 for the initial set of lexical
items and syntactic features.

The accessible terms of a syntactic object SO are proper nonempty subsets of SO. (A definition
in terms of binary rooted trees is given below, in Definition 2.4.) We write Acc(SO) for the set
of accessible terms of a syntactic object SO. A Work Space WS is a finite (multi)set of syntactic
objects in SO. The size of the workspace WS is the sum of the number of syntactic objects and
the number of accessible terms, where the set Acc(WS) of accessible terms of the workspace is

Acc(WS) :=
⋃

SO∈WS

Acc(SO) .

Merge acting on workspaces consists of a collection of operations M = {MA}, parameterized
by sets A consisting of two syntactic objects α, β. These operations have as input a workspace
and produce as output a new workspace, by searching for accessible terms in the given workspace
matching the selected objects α, β, producing a new object in the workspace obtained by applying
binary set formation, and cancelling the remaining deeper copies of the accessible terms used.

The Merge action on workspaces can be given an axiomatic formulation by imposing a list of
desired properties. Some of the fundamental required properties of Merge are:

(1) it is a binary operation (it applies to only two arguments in WS);
(2) any generated syntactic object remains accessible for further applications of Merge;
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(3) every accessible term only appears once in the workspace;1

(4) the result of Merge applied to two arguments α, β does not add any new syntactic properties
to α and β nor it removes any of their existing properties (structure preserving principle);2

(5) workspace size does not decrease and increases at most by one.

The last condition on the size of workspaces can be broken down into two separate conditions
on the number of syntactic objects in the workspace and on the number of accessible terms. The
number of syntactic objects is expected to be non-increasing, and overall decreasing in the course
of the derivation, for derivations to terminate and “converging” thought to be generated, while at
the same time the overall number of accessible terms will be non-decreasing, and overall increasing
in the course of a derivation. (The term derivation is meant here in the same sense as in logic
and theory of computation). The condition stated as above in terms of size of the workspace is
consistent with, for example, [22]. Separating conditions on number of syntactic objects and of
accessible terms, we can formulate the last condition in the different form

(5’) the number of syntactic objects in the workspace is non-increasing, and the number of
accessible terms is non-decreasing.

We will give a more precise definition of syntactic objects, accessible terms, and workspace size in
§2.1 and §2.2, and we will discuss more in detail conditions (5) and (5’) in §2.5.1.

For the underlying linguistic justification for the desirable properties of the action of Merge on
workspaces we refer the reader to [7], [8], [11], and the forthcoming [14]. For our purposes here,
we take this list as an assigned guideline, a kind of “axiomatic template” on how to construct a
mathematical model for the action of Merge on workspaces. Some caveats and some more specific
interpretation of the items listed above will be discussed in the following sections.

A goal of this paper is to show that such a list of fundamental properties leads naturally
to a mathematical formulation of Merge in terms of magmas and Hopf algebras, and that this
formulation turns out to be in fact the same very basic mathematical structure that arises naturally
in the description of fundamental interaction in physics.

2. A mathematical model of syntactic Merge

We consider here the formulation of Minimalism as presented in [7], [8], with a fundamental
Merge operation of binary set formation.

2.1. Syntactic objects and the Merge magma. As in [7], [8], one considers, as the starting
point in the construction of the set of syntactic objects SO, an initial set, which we denote by SO0

consisting of lexical items and syntactic features.

Definition 2.1. The set SO of syntactic objects is the free, non-associative, commutative magma
over the set SO0,

(2.1) SO = Magmana,c(SO0,M) ,

with the binary Merge operation

(2.2) M(α, β) = {α, β} .

1It is important to distinguish here between copies and repetitions: the workspace is a multiset of syntactic
objects, hence repetitions are allowed, while this property refers to copies. This will be made more precise in §2.2
and §2.5.2 below.

2One should interpret this principle in the sense that, for example, we cannot add features, or transform α, β
into new α′, β′. However, syntactic properties do change through Merge, as the following simple example suggested
to us by Sandiway Fong shows: in Y P = {R,XP} we have that Y P is a theta-configuration, and XP has now
acquired the syntactic property that it is the theta-marked object of R.
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This means that, as described in [7], [8], the set SO is obtained from the initial set SO0

through iterations of the Merge operation (2.2). This procedure generates elements of SO of the
form {α, β}, {α, {β, γ}}, for α, β, γ ∈ SO0, and so on. The Merge operation (2.2) acts on the set
SO, giving it the structure of non-associative, commutative magma3.

Remark 2.2. The description of the set SO of syntactic objects given in Definition 2.1 above
gives an identification

(2.3) SO ≃ TSO0

of the set of syntactic objects with the set of binary, non-planar, rooted trees, with leaves labelled
by elements of SO0.

By non-planar we mean that we regard trees T ∈ TSO0 as abstract trees, without fixing a choice
of a planar embedding. This implies that there is no choice of a linear ordering on the leaves of
the trees. As in [7], [8], the word order structure, that is, the linearly ordered form of sentences,
is considered a part of the externalization process, not of the core computational mechanism of
syntax given by Merge.

2.1.1. Planarity and lists versus sets. In the formulation above, in Definition 2.1 and Remark 2.2
we identify syntactic objects with non-planar binary rooted finite trees with leaves labelled by
the set SO0, where non-planar means that no choice of a planar embedding is taken for the tree.
These are often also referred to as “abstract trees”. This is the usual mathematical description of
the elements of the free, non-associative, commutative magma on a given set.

While planar trees (trees together with a choice of a planar embedding) and abstract trees
appear to be similar mathematical objects, their combinatorial properties are very different, and
this accounts for several significant differences, in linguistics, between older forms of Minimalism
and the newer form we discuss in this paper. This is discussed more explicitly in our companion
paper [38].

In the linguistics literature, the passage from planar trees in the older versions of Minimalism
to abstract trees, is usually discussed using the terminology sets to refer to the abstract trees as
elements of the free, non-associative, commutative magma. The reason for the use of this termi-
nology is that in dropping the planar structure one replaces an identification of the set of leaves
with parenthesized lists (ordered sets, often referred to in the linguistics literature as “strings”)
with just sets (in fact more precisely multisets). In order to avoid the conflict of terminology
between sets and mutisets, we prefer here to follow the standard mathematical terminology and
refer to the syntactic objects as abstract binary rooted trees (with no assigned planar embedding).

It is important to note that, because all the trees are binary, the clash of terminology between
sets and multisets is very mild when one considers syntactic objects. Indeed, since trees are binary
rather than n-ary with some n ≥ 3, the only repetitions of labels that give rise to multisets can
be on two consecutive ones, so there is an unambiguous way of labeling the same objects by
sets. For example, a multiset of the form {{a, a}, b, {c, d}} can be written equivalently as the set
{{a}, b, {c, d}} with the convention that a set of the form {a} stands for the abstract tree a a.

However, even with binary trees, the clash of terminology between sets and multisets becomes
seriously problematic when it comes to describing workspaces, as we will see in §2.2 below. These
are genuinely multisets that do not have an equivalent description as sets, hence the mathemati-
cally correct notion to use is binary forests (disjoint unions of a finite collection of abstract binary

3The presence of magma structures in generative linguistics was also recently observed independently in [17], in
a somewhat different context.
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rooted trees) rather than sets. Indeed, forests are multisets where the same tree (the same syn-
tactic object) may appear more than once. This is expected as the same syntactic object may be
used repeatedly, in different ways, in the course of a derivation. For this reason, we will not be
using the “sets” terminology that is more common in the linguistics literature and we prefer to
adopt the mathematical notation of trees (with no planar structure) and forests.

2.2. Workspaces: product and coproduct. We next introduce workspaces, as in [7], [8] and
the action of Merge on workspaces. We first introduce workspaces with a bialgebra structure
related to the combination of workspaces and the extraction of accessible terms with cancellation
of copies.

Definition 2.3. Workspaces are nonempty finite sets of syntactic objects. The identification (2.3)
between syntactic objects and binary, non-planar, rooted trees, with leaves labelled by elements of
SO0, induces an identification

(2.4) WS ≃ FSO0

between the setWS of all workspaces and the set FSO0 of binary non-planar forests (disjoint unions
of binary, non-planar, rooted trees) with leaf labels SO0.

Note that, with this definition of workspaces, we allow for the presence of repeated copies of the
same syntactic object in a workspace, since a forest can have multiple connected components that
are isomorphic to the same tree. This is needed for the operations of combination of workspaces and
extraction of accessible terms described below to be well defined, as the result of these operation
can produce repeated copies of the same tree, even when starting with a forest that has none.

Definition 2.4. Given a binary non-planar rooted tree T ∈ TSO0, let Vint(T ) denote the set of all
internal (non-root) vertices of T . For v ∈ Vint(T ), let Tv ⊂ T denote the subtree consisting of v
and all its descendants. Let Lv = L(Tv) be the set of leaves of Tv. The set of accessible terms of
T is given by

(2.5) Acc(T ) = {Lv = L(Tv) | v ∈ Vint(T )} .

For a workspace given by a forest F = ⊔aTa ∈ FSO0, the set of accessible terms is

(2.6) Acc(F ) =
⋃

a

Acc(Ta) ,

so that we have the total number of vertices of the forest given by the sum

(2.7) #V (F ) = b0(F ) + #Acc(F ) ,

where b0(F ) is the number of connected components (trees) of the forest F . We define the size of
a workspace F by

(2.8) σ(F ) := #V (F ) = b0(F ) + #Acc(F ) ,

namely the number of syntactic objects plus the total number of accessible terms. We also define
another counting function, which is given by

(2.9) σ̂(F ) := b0(F ) + #V (F ) .

The size σ(F ) of the workspace, defined as in (2.8) is consistent with [7], [8] and agrees with the
definition of size used in [22]. As pointed out to us by Riny Huijbregts, it may be preferable to
consider the effect of Merge on workspaces in terms of the counting of accessible terms #Acc(F ) =
#Vint(F ), rather than in terms of the size σ(F ). We will discuss and compare the effect on various
size-counting in §2.5.1 below.
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The set of workspaces is endowed with two operations. A product operation that combines
workspaces by taking their union is simply given by the disjoint union on the set of forests. It is a
commutative and associative product, with unit given by the empty forest. The second operation
is a coproduct, which provides all the possible extractions of admissible terms. In order to be able
to consider all accessible terms simultaneously, one considers, instead of the set FSO0, as above,
a space of formal linear combinations of elements in this set. Namely, we denote by V(FSO0) the
Z-module freely generated by elements of FSO0 (formal linear combinations of binary non-planar
forests with integer coefficients), so that one can sum over all the possible extractions of accessible
terms (see (2.10) below).

In the following, for a given rooted binary tree (with no assigned planar embedding) T ∈ TSO0,
we write Tv for the subtree consisting of v and all its descendants, as in Definition 2.4. In addition
to considering these sub-objects Tv ⊂ T , we also consider corresponding quotient objects T/Tv.
Linguistically, the Tv are the accessible terms, as described above, while the T/Tv implement the
cancellation of the deeper copy of Tv from the resulting workspace, after application of Merge.
Mathematically, as we discuss below, the pairs Tv and T/Tv correspond to the two terms of a
coproduct applied to T . The quotient object T/Tv is no longer a sub-object of T .

The usual way of defining the quotient T/Tv, in the context of Hopf algebras of rooted trees in
mathematics and theoretical physics, is to contract the entire tree Tv to a single vertex, so that
the root vertex of Tv becomes a leaf of T/Tv. With this definition of the quotient, in particular,
one has T/T = •, the tree consisting of a single root vertex. However, this choice of how to define
T/Tv is not the best one in our setting. One reason is that, with this definition, the new leaf of
T/Tv (the root vertex of Tv) needs to be labeled by an element of SO0, hence some calculus of
labels of internal vertices is required. While such a projection mechanism for labeling internal
vertices is required in other versions of Minimalism, in the version we are considering we can
dispense with that, and labeling of internal vertices should not be required. The other reason,
as we will discuss more in detail below, is that for mathematical consistency and for a simple
unifying view of Internal and External Merge (see Proposition 2.12 below), it is necessary that
the quotient T/T = 1 is also the unit 1 of the magma SO, and such a unit 1 is provided not by
the single vertex tree but by formally adding an empty tree. Thus, the consistent way of defining
the quotient object T/Tv is provided by the following definition.

Definition 2.5. Given a rooted binary tree (with no assigned planar embedding) T ∈ TSO0 and
a subtree Tv ⊂ T consisting of a vertex v of T and all its descendants, the quotient T/Tv is the
rooted binary tree obtained by removing the entire tree Tv from T . There is then a unique maximal
rooted binary tree that can be obtained from the complement T rTv via contraction of edges. That
resulting rooted binary tree is what we call T/Tv.

Lemma 2.6. Given a rooted binary tree (with no assigned planar embedding) T ∈ TSO0, a subforest
Fv ⊂ T is a union of subtrees Tv1∪· · ·∪Tvk , for v = (v1, . . . , vk), with the property that Tvi∩Tvj = ∅
for all i 6= j. The quotient T/Fv given by

T/Fv = (· · · (T/Tv1)/Tv2 · · · )/Tvk ,

with each quotient of trees as in Definition 2.5, is well defined and independent of the order of
v1, . . . , vk. This extends to quotients of the form F/Fv where F = ⊔aTa is a forest with each
component Ta a rooted binary tree (with no assigned planar embedding) and Fv is a subforest of
F with Fv ∩ Ta a subforest in the sense above. In particular, these quotients of forests satisfy
Fv,w/Fv = Fw.

Proof. If no pair Tvi , Tvj has a common vertex vij of T adjacent to both roots, then it is clear that
(T/Tvi)/Tvj = (T/Tvj )/Tvi . If a pair has such common vertex then we can still see that this works
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since in this case we have

T =

Ti Tj
Ta

Tb

T/Ti =
Tj Ta

Tb

T/Tj =
Ti Ta

Tb

(T/Ti)/Tj = (T/Tj)/Ti = Ta Tb
.

The extension from trees to forests follows similarly by components. For Fv,w a subforest of T (or
of a forest F ) on the set of vertices (v, w) with the disjointness property above, we have that Fv

is a subforest given by a subcollection of components, each of which is removed in the quotient
operation, so that one is left with Fw. �

With these definitions of the trees Tv and T/Tv, and forests Fv and T/Fv, we then have the
following structure.

Lemma 2.7. The operation ∆ : V(FSO0)→ V(FSO0)⊗ V(FSO0) defined on trees T ∈ TSO0

(2.10) ∆(T ) =
∑

v

Fv ⊗ (T/Fv) ,

with the sum over subforests with quotients as in as in Lemma 2.6, and extended to forests by
∆(F ) = ⊔a∆(Ta) for F = ⊔aTa, which we write as

(2.11) ∆(F ) =
∑

v

Fv ⊗ F/Fv ,

with subforests and quotients as in Lemma 2.6. This defines a coproduct on V(FSO0), which en-
dows V(FSO0) with the structure of an associative, commutative, coassociative, non-cocommutative
bialgebra (V(FSO0),⊔,∆).

Proof. The multiplication given by disjoint union is both associative and commutative, in the case
of non-planar forests. We check that the coassociativity

(2.12) (id⊗∆) ◦∆ = (∆⊗ id) ◦∆

of the coproduct (2.10) is verified. We have

(∆⊗ id) ◦∆(T ) = (∆⊗ id)
∑

w

Fw ⊗ T/Fw =
∑

v,w

Fv ⊗ (Fw/Fv)⊗ T/Fw ,

where the sums are over subforests with the disjointness condition as in Lemma 2.6, where the
subforests Fv ⊂ Fw consists of either full components of Fw or of subforests of the components.
The first case gives terms of the form Fv⊗Fu⊗T/Fv,u for w = (v, u). On the other hand, we have

(id⊗∆) ◦∆(T ) = (id⊗∆)
∑

v

Fv ⊗ T/Fv =
∑

u,v

Fv ⊗ (T/Fv)u ⊗ (T/Fv)/(T/Fv)u .

We distinguish among these terms the case where the subtrees of T with root at ui are disjoint
from the trees of Fv, where we have (T/Fv)/(T/Fv)u = T/Fv,u, and the remaining cases where
some vertices ui in u, as vertices of T , are above some vertices vj of the components of Fv, in
which case the corresponding quotient is (T/Tvj )/Tui

= T/Tui
and (T/Tvj )ui

= Tui
/Tvj . Thus, we

see that we obtain the same two types of terms with the same counting.
For a vector space V let τ : V⊗4 → V⊗4 denote the permutation of the two central factors,

(2.13) τ(X1 ⊗X2 ⊗X3 ⊗X4) = X1 ⊗X3 ⊗X2 ⊗X4 .

Multiplication and comultiplication satisfy the compatibility,

(2.14) ∆ ◦ ⊔ = (⊔ ⊗ ⊔) ◦ τ ◦ (∆⊗∆),
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since ∆(T ⊔ T ′) = ∆(T ) ⊔ ∆(T ′) =
∑

v,v′ Fv ⊔ F ′
v′ ⊗ (T/Fv) ⊔ (T ′/F ′

v′) = (⊔ ⊗ ⊔) ◦ τ
∑

v Fv ⊗
(T/Fv)⊗

∑

v′ F
′
v′ ⊗ (T ′/F ′

v′). It is convenient to include in the spanning set of V(FSO0) the unit 1

of the product given by the trivial (empty) forest, which also spans the range of the counit of the
coproduct. Moreover, the vector space is graded by the number of leaves (the length of sentences),
V(FSO0) = ⊕n≥0V(FSO0)n, and the product and coproduct are compatible with the grading, in
the sense that ⊔ : V(FSO0)n ⊗ V(FSO0)m → V(FSO0)n+m and ∆(T ) = T ⊗ 1 + 1⊗ T +

∑
T ′ ⊗ T ′′

where T ′, T ′′ are of strictly lower degree than T , and similarly for forests. Thus, the antipode of
the Hopf algebra structure can be defined inductively by S(T ) = −T −

∑
S(T ′)T ′′. �

We can write the coproduct ∆ of (2.10) in the form

(2.15) ∆(T ) =
∑

n≥2

∆(n)(T ) ,

where the terms ∆(n) involve extraction and quotient of subforest of size (number of components)
n − 1, namely with terms of the form Fv ⊗ T/Fv with v = (v1, . . . , vn−1). For any given T the
expression (2.15) is a finite sum. In particular the first term

(2.16) ∆(2)(T ) =
∑

v

Tv ⊗ T/Tv

corresponds to the extraction of subtrees (including the case of the trivial tree 1 and of the full
tree T ). Note that (2.16) does not suffice for coassociativity, for which the full coproduct (2.10)
is needed, which is a form of the usual coproduct by admissible cuts on Hopf algebras of rooted
trees. The leading term (2.16) will be the relevant one for the Merge operation.

2.3. Action of Merge on Workspaces. We introduce the action of Merge on workspaces by
introducing an operator that performs a search for matching terms. This will be applied to the
terms of the coproduct, that is, to the accessible terms that Merge applies to. Indeed, the left-
hand-side of the coproduct produces the list of accessible terms, over which the search runs, while
the right-hand-side of the coproduct keeps track of the corresponding cancellation of copies. We
will introduce the action of Merge with some preliminary steps.

Suppose then given two syntactic objects, that is, two S, S ′ ∈ TSO0. We define a linear operator

δS,S′ : V(FSO0)⊗ V(FSO0)→ V(FSO0)⊗ V(FSO0)

by defining it on generators in the following way. Let

(2.17) F∆
SO0

= {(F1, F2) ∈ FSO0 × FSO0 | ∃F ∈ FSO0, Fv ⊂ F : F1 = Fv and F2 = F/Fv} .

For F1, F2 ∈ FSO0 , we set

(2.18) δS,S′(F1 ⊗ F2) = 0 for (F1, F2) /∈ F∆
SO0

.

For (F1 = Fv, F2 = F/Fv) ∈ F∆
SO0

with F = ⊔i∈ITi, we set

(2.19) δS,S′(Fv ⊗ F/Fv) = S ⊔ S ′ ⊗ Ta/S ⊔ Tb/S
′ ⊔ F (a,b)

with F (a,b) = ⊔i 6=a,bTi, if there are indices a, b ∈ I such that Ta,va ≃ S, Tb,vb ≃ S ′. If there is
more than one choice of indices a, b for which matching pairs Ta,va ≃ S, Tb,vb ≃ S ′ exist, then the
right-hand-side of (2.19) should be replaced by the sum over all the possibilities. We do not write
that out explicitly for simplicity of notation. In all other cases (where no matching terms for S
and S ′ are found) we set

(2.20) δS,S′(Fv ⊗ F/Fv) = 1⊗ F .
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Next observe that the operation (2.2) on syntactic objects factors through the grafting operator
B+ on forests.

Definition 2.8. Let TN
SO0

denote the set of all n-ary finite rooted trees with arbitrary n ∈ N, with
no assigned planar structure and with labels labelled by the set SO0. Let FN

SO0
be the set of finite

forests with connected components in TN
SO0

. Let V(TN
SO0

) and V(FN
SO0

) denote the Q-vector spaces
spanned by these sets. The grafting operator B+ : V(FN

SO0
) → V(TN

SO0
) is the linear operator

defined on generators by

(2.21) B+(T1 ⊔ T2 ⊔ · · · ⊔ TN ) =
T1 T2 · · · TN

.

The grafting operator B+ is well known in the mathematical formulation of perturbative quan-
tum field theory, as it is the operator that defines the recursive structure of Dyson–Schwinger
equations, see [1], [20].

Lemma 2.9. The Merge operator M of (2.2), namely the multiplication operation in the magma
Magmana,c(SO0,M), determines a bilinear operator M : V(TSO0) ⊗ V(TSO0) → V(TSO0) defined
on generators as

(2.22) M : T ⊗ T ′ 7→M(T, T ′) = T T ′ ,

where we set M(1, 1) = 1 and M(T, 1) = M(1, T ) = T . This operator factors through the grafting
operator B+ restricted to the range of multiplication ⊔, namely the diagram

V(TSO0)⊗ V(TSO0)
M //

⊔ ((❘❘
❘❘

❘❘❘
❘❘

❘❘❘
❘

V(TSO0)

V(FSO0)
B+

88rrrrrrrrrr

Proof. Since trees and forests do not have an assigned planar structure, both M and the operator
B+ do not depend on the order of the trees. Moreover, since the image of cV (TSO0) ⊗ V(TSO0)
under ⊔ consists of forests with two connected components, so that their image under B+ is still
a binary tree, which is of the form (2.22). �

The operation (2.19) in combination with the operation (2.2) on syntactic objects and the
bialgebra structure on workspaces contribute to the definition of the action of Merge on workspaces
as described in [7], [8], which we can define in the following way.

Definition 2.10. The action of Merge on workspaces consists of a collection of operators

{MS,S′}S,S′∈TSO0
, MS,S′ : V(FSO0)→ V(FSO0) ,

parameterized by pairs S, S ′ of syntactic objects, which act on V(FSO0) by

(2.23) MS,S′ = ⊔ ◦ (B+ ⊗ id) ◦ δS,S′ ◦∆ ,

with B+ the grafting operator of Definition 2.8.

Note that by the definition of δS,S′ the operator B+ ⊗ id applied to elements of the form
δS,S′(Fv ⊗ F/Fv), for F ∈ FSO0, produces elements X ⊗ Y with X in TSO0 and Y in FSO0, hence
MS,S′ maps FSO0 to itself.

The expression (2.23) agrees with the description of the action of Merge on workspaces in [7],
[8], namely the Merge operator MS,S′ searches for copies of the syntactic terms S and S ′ in the
accessible terms of a given workspace F , extracts those accessible terms to perform the Merge
operation on, and cancels copies from the workspace, producing the new resulting workspace.
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In (2.23) the first operation, the coproduct ∆, produces the list of all the accessible terms Tv

that can be used by Merge and of the corresponding remaining terms T/Tv where the cancellation
of copies of accessible terms is performed. Note that these terms correspond to just the part
∆(2) of the coproduct as in (2.16), since it is in this part that the nontrivial terms selected by
the operator δS,S′ reside, which searches for matching terms among the accessible terms. If no
matching terms are found, the action is the identity and the resulting workspace is not changed.
If matching terms are found, they are merged using M (or equivalently B+). The final application
of the product ⊔ produces the new resulting workspace. The trees in the initial workspace F
that do not contain a pair of accessible objects matching the pair (S, S ′) remain unchanged in the
workspace, in agreement with the formulation of [7], [8], while the trees that contain matching
accessible terms are replaced by a new syntactic object given by merging the matching terms and
by cancellation of the deeper copies, in the form

(2.24)
∑

v,w :Tv=S,Tw=S′

M(Tv, Tw) ⊔ (T/Tv) ⊔ (T/Tw) .

We describe more in detail in §2.4 the various cases.

2.4. Forms of Merge and Minimal Search. One of the drawbacks of the formulation (2.23) of
Definition 2.10 is that it allows for additional forms of Merge, besides internal and external Merge,
which are not desirable in linguistic terms, such as “sideward Merge” or “countercyclic Merge”.
We discuss here how a simple modification of Definition 2.10 that incorporates a formulation
of “Minimal Search” suffices to eliminate these cases and retain only the linguistically desirable
cases of External and Internal Merge. This is the usual argument given in linguistics, where
only External and Internal Merge are retained based on Minimal Search, except that here we
reformulate it in a way that fits our algebraic setting. First we review how the different cases of
Merge are incorporated in (2.23), then we describe how Minimal Search is implementable in our
Hopf algebra setting, and then we show that this has the effect of only retaining the correct forms
of external and internal Merge.

2.4.1. Different forms of Merge. In the description of Merge in Definition 2.10 we can distinguish
several cases. We recall here the various cases, and we show how they occur in the formulation
given above.

Two syntactic objects α, β ∈ SO = TSO0 can occur in a workspaces F ∈ FSO0 either as elements
(that is, as connected components of the forest F ), or as accessible terms of some elements. We
write T ∈ F to indicate that a certain syntactic object T ∈ SO, seen as a tree, is a connected
component of the forest F . We write T ∈ Acc(T ′) to indicate that T occurs as an accessible term
T ′
v of a syntactic object T ′ ∈ F .
Thus, we have the following three possibility

(1) α = Ti and β = Tj with Ti, Tj ∈ F and i 6= j;
(2) α = Ti ∈ F and β ∈ Acc(Tj) for some Tj ∈ F , with two sub-cases:

a) i = j
b) i 6= j

(3) α ∈ Acc(Ti) and β ∈ Acc(Tj) for some Ti, Tj ∈ F , with two sub-cases:
a) i = j
b) i 6= j

Case (1) describes External Merge: for a workspace F = ⊔aTa, the Merge operation MTi,Tj

replaces the pair Ti, Tj of elements of F with a new syntactic object given by the tree Tij =
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{Ti, Tj} = M(Ti, Tj), and produces the new workspace

F ′ = Tij ⊔
⊔

a6=i,j

Ta ,

where the two components Ti, Tj of F have been removed and replaced by the new tree Tij =
{Ti, Tj}. External Merge decreases by one the number of syntactic objects, and increases by two
the number of accessible terms, by adding Ti and Tj to the set Acc(Ti) ∪ Acc(Tj). In the case of
External Merge the following is immediately evident.

Lemma 2.11. External Merge is achieved by the operators MTi,Tj
of Definition 2.10 when the

syntactic objects (trees) Ti, Tj match two different connected components of the workspace F =
⊔aTa.

Case (2a) describes Internal Merge: in this case the new workplace F ′ contains a new component
of the form M(β, Ti/β) for β ∈ Acc(Ti) an accessible term of Ti and Ti a component of the given
workspace F . The quotient Ti/β to indicate that the deeper copy of β as an accessible term of
Ti is no longer an accessible term of M(β, Ti/β) in F ′ as β already occurs as accessible term in a
higher level in the new syntactic object M(β, Ti/β) formed by Merge. In this case, the realization
of Internal Merge by the operators MS,S′ of Definition 2.10 is more interesting, as it involves a
composition of two such operators and the role of the multiplicative unit 1 of the Merge magma,
given by the trivial tree.

Proposition 2.12. Internal Merge is realized by the operators of Definition 2.10 as a composition

MT/β,β ◦Mβ,1,

where 1 is the unit of the Merge magma, where the tree β is an accessible term of a connected
component of F isomorphic to T .

Proof. The operator Mβ,1 acting on the workspace F will act on a term of the form β ⊗ T/β
in ∆(F ), producing two new components β = M(1, β) and T/β in the resulting new workspace.
The operator MT/β,β can then be applied to these two components, as an external Merge, and the
resulting workspace will now contain the resulting termM(β, T/β) which is the internal Merge. �

Remark 2.13. Note that in this formulation internal Merge is just repeated application of two
external Merge operations, one of them involving the magma unit, which has the effect of extracting
an accessible term and adding it, together with the cancellation of its deeper copy, to the new
workspace. However, we will see that by Minimal Search, as well as by counting of size and number
of accessible terms, the operation Mβ,1 in fact can only occur in the combination MT/β,β ◦Mβ,1

that is Internal Merge and not on its own.

Case (2b) corresponds to a case of Sideward Merge. In this case one obtains in the new workspace
F ′ a component of the form M(Ti, β) and a component of the form Tj/β. Similarly, case (3b) also
represents a case of Sideward Merge where in the resulting workspace F ′ one has new components
M(α, β), as well as Ti/α and Tj/β. These cases of Sideward Merge also occur in the formulation
of Merge of Definition 2.10, as the following statement clearly shows.

Lemma 2.14. The two cases of Sideward Merge (2b) and (3b) are realized by the Merge operators
of (2.23) with MTi,β with Ti occurring as a component of F and β as an accessible term of a
different component Tj of F , and Mα,β with α ∈ Acc(Ti) and β ∈ Acc(Tj), for two components
i 6= j of F .

The last remaining case (3a) corresponds to what is called Countercyclic Merge. In this case the
new workspace F ′ contains new components M(α, β) and Ti/(α, β), where we write Ti/(α, β) for
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the cancellation from the accessible terms of the copies of α and β inside Ti. This type of Merge
can also be obtained through our formulation (2.23). In this case, as for the Internal Merge, one
uses a composition of operators MS,S′.

Lemma 2.15. Countercyclic Merge is realized by a composition Mα,β ◦Mα,1 ◦Mβ,1 for α and β
accessible terms of the same component Ti of F , with α seen as an accessible term of Ti/β after
the application of the first Mβ,1 operation.

Proof. This is analogous to the Internal Merge case, with the first operator Mβ,1 acting on a
term β ⊗ Ti/β in the coproduct ∆(F ), giving rise to two new components β and Ti/β in the new
workspace. The second operator Mα,1 can then be applied to this new workspace. This acts on
the term of the form α⊗ (Ti/β)/α, producing a new workspace that contains components of the
form α, β, and Ti/(α, β) = (Ti/β)/α. The last operation Mα,β then acts as External Merge on
the components α, β of this workspace, producing the desired new component M(α, β), as well as
retaining the component Ti/(α, β) with the cancellation of the deeper copies. �

This brief discussion shows that, in addition to Internal and External Merge, our construction
allows for extensions of Merge, such as Sideward and Countercyclic Merge that are not desirable
from the linguistic perspective. We show in the next subsection how one can introduce a simple
modification of the Merge operation described in (2.23) that will retain only Internal and External
Merge. This will make use of the grading of the Hopf algebra, to introduce a Minimal Search that
eliminates the other extensions of Merge.

To avoid misunderstandings as to the purpose of the construction in the coming §2.4.2 and
§2.4.3, it is worth stressing that our goal here is simply to implement the usual mechanism by
which, in linguistics, only Internal and External Merge are retained, and not other extensions of
Merge, namely the mechanism of Minimal Search. Where our presentation differs from the usual
formulation in linguistics, is that we provide a somewhat different-looking, but in fact equivalent,
description of Minimal Search. The reason why we introduce a reformulation of Minimal Search
is the following. We are arguing here that all the key properties of Merge follow directly from
underlying Hopf-algebraic properties. In particular, in order to show that this is the case, we need
to reformulate all the necessary aspects of the linguistic description of the key Merge operation
in such algebraic terms, including Minimal Search. This requires describing the “minimality”
property of Minimal Search in terms of a minimization procedure that can be made sense of
entirely in terms of the algebraic structure. We argue in §2.4.2 and §2.4.3 below that this can
indeed be done, with minimality expressed in the form of extraction of leading order, with respect
to a suitable grading (cost function) associated to the terms of the coproduct.

2.4.2. Minimal search. In the formulation of Merge in [7], [8], the search for matching copies of
S, S ′ in the workspace components and accessible terms, for the application of MS,S′ is performed
according to a “Minimal Search” principle, according to which accessible terms in the higher levels
of trees are preferentially searched, before those occurring in the deeper levels.

In the formulation given in (2.23) this Minimal Search principle is implicitly built in, through
the structure of the coproduct. Our coproduct extracts the entire list of accessible terms (simul-
tanously implementing the cancellation of copies). However, we can introduce a weight that keeps
track of the depth of the accessible terms in each term of the coproduct. This can be done by
introducing formal parameters ǫ and η and assigning to the subtrees Tv ⊂ T a weight ǫdv , where
dv is the distance of the vertex v from the root of T , and to the corresponding quotient trees T/Tv

a weight ηdv . This can be done by modifying the coproduct to

(2.25) ∆(ǫ,η) : V(TSO0)→ V(TSO0)[ǫ]⊗Q V(TSO0)[η] ,
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∆(ǫ,η)(T ) =
∑

v

ǫdv Fv ⊗ ηdv(T/Fv) ,

where for v = (v1, . . . , vn) a set of vertices vi ∈ Vint(T ), we set dv = dv1 + · · · + dvn , with dv the
distance to the root of T as above.

With this simple bookkeeping device, we see that, for instance, for small ǫ the higher levels of
the tree T (internal vertices closer to the root), carry the largest weight, while the deeper levels
are lower order contributions that can be neglected when one looks at the dominant terms in the
coproduct. Note that the introduction of the parameters ǫ, η does not alter the coassociativity
property of the coproduct and the compatibility with multiplication of Lemma 2.7. We also assign
weight ǫd and ηd to the primitive terms of the coproduct 1 ⊗ T and T ⊗ 1, with d = 0 for both
of these terms. Thus, the limit for ǫ → 0 and η → 0 of the weighted coproduct ∆(ǫ,η)(T ) retains
only the primitive part ∆(0,0)(T ) = 1⊗ T + T ⊗ 1.

2.4.3. Internal and External Merge. We now introduce a simple modification of the Merge oper-
ation described in (2.23), based on the form of Minimal Search described above, that will retain
only External and Internal Merge, eliminating the other forms of Sideward and Countercyclic
Merge.

Proposition 2.16. Consider the modification of (2.23) given by

(2.26) Mǫ
S,S′ = ⊔ ◦ (Mǫ ⊗ id) ◦ δS,S′ ◦∆(ǫ,ǫ−1) ,

with ∆(ǫ,ǫ−1) as in (2.25), and with

(2.27)
Mǫ : V(TSO0)[ǫ, ǫ

−1]⊗Q V(TSO0)[ǫ, ǫ
−1]→ V(TSO0)[ǫ, ǫ

−1]

Mǫ(ǫdα, ǫℓβ) = ǫ|d+ℓ|M(α, β) .

Then taking compositions of operations of the form (2.26) followed by evaluation at ǫ→ 0 retains
only External and Internal Merge and eliminates all other extended forms of Merge, such as
Sideward and Countercyclic.

Proof. For a single application of (2.26), one obtains terms of the form ǫdv+dwM(Tv, Tw), hence
the only terms remaining after taking ǫ → 0 are of the form M(T, T ′) with T, T ′ two connected
components of the workspace F , which have degree zero in the ǫ variable. These are the External
Merge cases. For a composition of two operators of the form (2.26), we regard the result of the first
Mǫ

S,S′ applied to a forest F ∈ FSO0 as a new workspace, which now carries a dependence on the

parameter ǫ. We write such workspaces as F (ǫ) = ⊔aǫ
daTa in the direct sum (as Q-vector spaces)

⊕aV(TSO0)[ǫ, ǫ
−1]. The composition with a second operator of the form (2.26), then produces

terms of the form M(ǫdaǫdvaTa,va , ǫ
dbǫdvbTb,wb

) for components Ta, Tb and for vertices va, wb in these
components. Thus the remaining terms of this composition, after setting ǫ→ 0 will be those with
da+db+dva+dwb

= 0. Since dva+dwb
≥ 0, We need da+db ≤ 0 and exactly matching the quantity

−(dva + dwb
). This requires that at least one of the components Ta and Tb (say Ta) of the image

of the first operation is a quotient Ta = T/Tv of a component T of the initial workspace, with
da = −dv. This implies that the first Mǫ had the corresponding Tv as one of the two arguments.
The other component Tb is either an unchanged component Tb = T ′ of the original workspace F ,
or again a quotient Tb = T ′/T ′

w of a component, if T ′
w was the other argument of the first Mǫ, or

else it can be Tb = 1, the trivial tree, so that in all cases either db = 0 or db = −dw. Thus, we
obtain either a Merge of the form M(M(T ′, Tv), T/Tv) or of the form M(T ′,M(Tv, T/Tv). The
second case is clearly a composition of internal and external Merge, so it is of the desired form.
The first case does not appear to be consisting only of internal/external Merge, but in fact it can

be equivalently realized as M(M(T ′, Tv), T̃ /M(T ′, Tv)), for another tree T̃ , which is obtained by
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contracting Tv to its root vertex in T and gluing that root vertex to the root of M(T ′, Tv). Thus,
it is also a composition of internal and external Merge. The case of repeated compositions can be
analyzed in the same way. �

Thus, Proposition 2.16 shows that Minimal Search is equivalently described by taking the leading
order term for ǫ→ 0 of the operations formed using Mǫ

S,S′.

2.5. Other linguistic properties. We verify here that the action of Merge on workspaces defined
as in (2.23) satisfies the desired linguistic properties. First that it accounts for the usual types
of Merge: external and internal Merge, and a form of sideway Merge. We then show that several
properties that are imposed empirically on Merge are in fact naturally built into the mathematical
formulation. In particular, we discuss the requirement that Merge does not decrease the total
size of the workspaces and increases it at most by one. We show that this is indeed the case for
the dominant (Minimal Search) part Mǫ

S,S′|ǫ=0 obtained as in Proposition 2.16, which recovers
internal/external Merge, while violations occur when one also includes Sideward/Countercyclic
Merge, confirming what is known from linguistics. Moreover, we show that the cancellation of
copies of accessible terms in the resulting workspaces is dictated not only by ‘economy principles’
but also by algebraic constraints, namely by the coassociativity property of the coproduct.

2.5.1. Cases of Merge and size counting. We now analyze the effect of the action of Merge on
workspaces in terms of the effect on the size of workspace and on the number of accessible terms.

We show that this property holds for the dominant term (the ǫ = 0 term) of the Merge action of
Proposition 2.16, which gives Internal/External Merge, while it generally fails for the other forms
of Sideward/Countercyclic Merge. This recovers an observation already known from linguistics.

We first discuss the cases of External/Internal Merge, obtained as ǫ → 0 dominant terms as
in Proposition 2.16. We then discuss the other forms of Merge that are eliminated by Minimal
Search, that is, that do not occur in the ǫ→ 0 limit of Proposition 2.16.

Proposition 2.17. Under External and Internal Merge, the effect on the counting functions of
Definition 2.4 is given by the following table, where we display the difference between the counting
function after application of Merge and before.

b0 #Acc σ σ̂
External −1 +2 +1 0
Internal 0 0 0 0

Proof. In the case of External Merge, for F = ⊔aTa, we have F ′ = MS,S′(F ) given by

F ′ = M(Ti, Tj) ⊔ F̂ (i,j) ,

with Ti ≃ S, Tj ≃ S ′ (where S, S ′ are assumed to be non-trivial syntactic objects, that is, not equal

to 1), and with F̂ (i,j) = F r (Ti ⊔ Tj) the remaining components. Thus, the number of connected
components (of syntactic objects in the workspace) decreases by one, b0(F

′) = b0(F ) − 1. The
number of accessible terms, on the other hand, satisfies

#Acc(F ′) = #Vint(F
′) = #Acc(F ) + 2 ,

as the two root vertices of Ti and Tj become internal vertices of M(Ti, Tj), while all the other
internal vertices remain unchanged. The size of the workspace satisfies

σ(F ′) = b0(F
′) + #Acc(F ′) = #V (F ′) = σ(F ) + 1 ,

since we have
σ(M(Ti, Tj)) = σ(Ti) + σ(Tj) + 1 .
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The size function σ̂ on the other hand gives

σ̂(F ′) = b0(F
′) + #V (F ′) = b0(F )− 1 + #V (F ) + 1 = σ̂(F ) ,

hence it is a conserved quantity under External Merge. The special case MS,1, where S ′ = 1 is
the trivial object (empty tree) is discussed in Remark 2.19 below.

In the case of Internal Merge, the number of connected components (number of syntactic objects
in the workspace) remains unchanged, as Internal Merge operates on a single tree, so b0(F

′) =
b0(F ). When counting the number of internal (that is, non-root) vertices, which is the number of
accessible terms, we see that the old root of the tree T , which is also the root of T/Tv becomes a
new non-root vertex, while in the process of taking the quotient T/Tv according to Definition 2.5,
two vertices are identified, hence the overall change in the number of internal vertices is zero, and
so is the change in the total number of vertices (the size σ) where we have

σ(Tv) + σ(T/Tv) + 1 = σ(T ) since #Acc(Tv) + #Acc(T/Tv) + 2 = #Acc(T ) ,

because T/Tv is obtained by removal of Tv, contraction of the edge above the root of Tv and of
the other edge adjacent to it at the vertex above the root of Tv, so that all the vertices of Tv as
well as one additional vertex of T are removed to form T/Tv. This gives

σ(F ′) = σ(M(Tv, T/Tv)) + σ(F̂ ) = σ(Tv) + σ(T/Tv) + 1 + σ(F̂ ) .

Similarly, σ̂(F ′) = b0(F
′) + σ(F ′) = b0(F ) + σ(F ), so that the size σ̂ also remains constant.

Thus, with our choice of counting measures as in Definition 2.4, all these quantities are preserved
unchanged under Internal Merge. �

Remark 2.18. The fact that under External Merge the number of syntactic objects decreases
by one and the number of accessible terms increases by two, while under Internal Merge both the
number of syntactic objects and the number of accessible terms remain the same is consistent with
the counting in [22]. Note that if one takes the quotient T/Tv in the more sense of contracting Tv

to its root vertex, then the number of accessible terms in Internal Merge would increase by one:
this is the counting considered by Riny Huijbregts. With this choice of quotient and counting,
both Internal and External Merge would increase the number of accessible terms by exactly one.
This makes the choice appealing, but we prefer to maintain the counting as in [22] because taking
the quotient T/Tv as in Definition 2.5 has advantages over the simple contraction of Tv to the
root, in particular not needing projections to assign a syntactic feature label to this root vertex,
which would become a leaf in the contraction quotient.

Remark 2.19. In the special case of a Merge MS,1, where S ′ = 1 is the trivial syntactic object
(empty tree), if S is matched by a component tree Ti of the workspace forest F = ⊔aTa, then
M(Ti, 1) = Ti so F ′ = MS,1(F ) = F and the operation is just the identity. If S is matched by a
subtree Ti,vi of a component Ti of F , then

MS,1(F ) = M(Ti,vi, 1) ⊔ Ti/Ti,vi ⊔ F̂ = Ti,vi ⊔ Ti/Ti,vi ⊔ F̂ ,

for F̂ = ⊔a6=iTa. In this case the number of connected components is growing by one, as the
component Ti is separated into two components Ti,vi ⊔ Ti/Ti,vi, while the total number of vertices
is decreasing by one, since two vertices are identified in taking the quotient Ti/Ti,vi while all other
vertices remain unchanged. The number of accessible terms is decreasing by two, as the root
vertex of Tv is now the root of a component. Thus, we have the table

b0 #Acc σ σ̂
MS,1 +1 −2 −1 0
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If one imposes either that the size of the workspace (total number of vertices) should not decrease
or that the number of accessible terms should not decrease, then this implies that a Merge of
the form MS,1 only occurs in compositions such as Mβ,T/β ◦Mβ,1 that give an Internal Merge
as in Proposition 2.12, but not alone, since otherwise we would violate such conditions. This is
consistent with the fact that the weight in ǫ in Proposition 2.16 also excludes the occurrence of a
Merge MS,1 by itself rather than in a composition that forms an Internal Merge.

Remark 2.20. When we consider separately the number of connected components (number of
syntactic objects) b0(F ) of the workspace, rather than the size σ(F ) = b0(F ) + #Acc(F ) we
see that, as expected, this decreases by one under External Merge while remaining unchanged
under Internal Merge, so that the number of components decreases overall during the course of a
derivation, as expected, leading to the desired “convergence”.

The remaining cases of the Merge operation (2.23), which are subdominant in ǫ → 0 in (2.26)
(hence eliminated by Minimal Search) have a different behavior with respect to the counting
functions of Definition 2.4.

Proposition 2.21. In the cases of Sideward and Countercyclic Merge in (2.23) we have the
following change in the counting functions of Definition 2.4.

b0 #Acc σ σ̂
Sideward (3b) +1 0 +1 +2
Sideward (2b) 0 +1 +1 +1
Countercyclic (3a) (i) +1 #Acc(Ta,wa

) σ(Ta,wa
) σ(Ta,wa

) + 1
Countercyclic (3a) (ii) +1 #Acc(Ta,va) σ(Ta,va) σ(Ta,va) + 1
Countercyclic (3a) (iii) +1 −2 −1 0

where in case (3a) Ta,va and Ta,wa
are the two subtree of the same component Ta used for Coun-

tercyclic Merge.

Proof. In the case of case of Sideward Merge, case (3b) of Section 2.4.1, we have, for F = ⊔iTi,

F ′ = M(Ta,va , Tb,wb
) ⊔ Ta/Ta,va ⊔ Tb/Tb,wb

⊔ F̂ (a,b) ,

with F̂ (a,b) = ⊔i 6=a,bTi. Thus, the number of connected components increases by one, because of
the new component M(Ta,va , Tb,wb

), while the number of accessible terms is given by

#Acc(F ′) = #Acc(M(Ta,va , Tb,wb
)) + #Acc(Ta/Ta,va) + #Acc(Tb/Tb,wb

) + #Acc(F̂ (a,b))

= #Acc(Ta,va) + #Acc(Tb,wb
) + 2 + #Acc(Ta)− #Acc(Ta,va)− 1

+#Acc(Tb)− #Acc(Tb,wb
)− 1 + #Acc(F̂ (a,b)) = #Acc(F ) .

Thus, σ(F ′) = b0(F
′) + #Acc(F ′) = σ(F ) + 1 and σ̂(F ′) = σ̂(F ) + 2.

For Sideward Merge, case (2b) of Section 2.4.1 we similarly have

F ′ = M(Ta, Tb,wb
) ⊔ Tb/Tb,wb

⊔ F̂ (a,b) ,

so that b0(F
′) = b0(F ), since one new component M(Ta, Tb,wb

) is created and one component Tb is
removed. The counting of accessible terms give

#Acc(F ′) = #Acc(M(Ta, Tb,wb
)) + #Acc(Tb/Tb,wb

) + #Acc(F̂ (a,b))

= #Acc(Ta) + #Acc(Tb,wb
) + 2 + #Acc(Tb)−#Acc(Tb,wb

)− 1 + #Acc(F̂ (a,b)) = #Acc(F ) + 1 .

Thus, the size satisfies σ(F ′) = σ(F ) + 1 and σ̂(F ′) = σ̂(F ) + 1.
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In the case of Countercyclic Merge we have, for F = ⊔iTi

F ′ = M(Ta,va , Ta,wa
) ⊔ Ta/Ta,va,wa

⊔ F̂ (a) ,

where Ta,va,wa
⊂ Ta is given by

(2.28) Ta,va,wa
:=







Ta,va case (i): if Ta,wa
⊂ Ta,va

Ta,wa
case(ii): if Ta,va ⊂ Ta,wa

Ta,va ⊔ Ta,wa
case (iii): if Ta,va ∩ Ta,wa

= ∅ ,

and F̂ (a) = ⊔i 6=aTi. Thus, we obtain one additional connected component M(Ta,va , Ta,wa
), so that

b0(F
′) = b0(F ) + 1 .

The counting of accessible terms is given by

#Acc(F ′) = #Acc(M(Ta,va , Ta,wa
)) + #Acc(Ta/Ta,va,wa

) + #Acc(F̂ (a))

= #Acc(Ta,va) + #Acc(Ta,wa
) + 2 + #Acc(Ta/Ta,va,wa

) + #Acc(F̂ (a)) ,

because the root vertices of Ta,va and Ta,wa
also appear as accessible terms in M(Ta,va , Ta,wa

), while
we have

#Acc(F ) = #Acc(Ta) + #Acc(F̂ (a)) = #Acc(Ta,va) + 2 + #Acc(Ta/Ta,va) + #Acc(F̂ (a))

= #Acc(Ta,wa
) + 2 + #Acc(Ta/Ta,wa

) + #Acc(F̂ (a)) .

Thus, in the first two cases (i) and (ii) of (2.28), we respectively have

#Acc(F ′) =

{
#Acc(F ) + #Acc(Ta,wa

) if Ta,va,wa
= Ta,va

#Acc(F ) + #Acc(Ta,va) if Ta,va,wa
= Ta,wa

This then gives, for these two cases

σ(F ′) =

{
σ(F ) + σ(Ta,wa

) if Ta,va,wa
= Ta,va

σ(F ) + σ(Ta,va) if Ta,va,wa
= Ta,wa

,

since σ(F ′) = b0(F
′) + #Acc(F ′), while σ̂(F ′) = b0(F

′) + σ(F ′) has an additional increase by +1.
The third case (iii) of (2.28) has two possibilities. If there is a vertex ua in Ta that is adjacent to

both the roots of Ta,va and Ta,wa
then the tree Ta contains a subtree with root ua that is isomorphic

to M(Ta,va , Ta,wa
) so that we have, in this case,

F ′ = M(Ta,va , Ta,wa
) ⊔ Ta/M(Ta,va , Ta,wa

) ⊔ F̂ (a) ,

so that the counting of accessible terms satisfies

#Acc(F ′) = #Acc(M(Ta,va , Ta,wa
)) + #Acc(Ta/M(Ta,va , Ta,wa

)) + #Acc(F̂ (a))

= #Acc(Ta)− 2 + #Acc(F̂ (a)) = #Acc(F )− 2 .

The workspace sizes correspondingly change by

σ(F ′) = b0(F
′) + #Acc(F ′) = σ(F )− 1 and σ̃(F ′) = 2b0(F

′) + #Acc(F ′) = σ̃(F ) .

The other possibility for case (iii) is that the vertices above the roots of Ta,va and Ta,wa
are different.

In this case, Ta/Ta,va,wa
= (Ta/Ta,va)/Ta,wa

= (Ta/Ta,wa
)/Ta,va . Thus, we have

#Acc(Ta/Ta,va,wa
) + #Acc(Ta,wa

) + 2 = #Acc(Ta/Ta,va)

= #Acc(Ta)−#Acc(Ta,va)− 2 ,

so that
#Acc(Ta/Ta,va,wa

) = #Acc(Ta)−#Acc(Ta,va)−#Acc(Ta,wa
)− 4 .
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Thus we have

#Acc(F ′) = #Acc(M(Ta,va , Ta,wa
)) + #Acc(Ta/Ta,va,wa

) + #Acc(F̂ (a))

= #Acc(Ta,va) + #Acc(Ta,wa
) + 2 + #Acc(Ta/Ta,va,wa

) + #Acc(F̂ (a))

= #Acc(Ta)− 2 + #Acc(F̂ (a)) = #Acc(F )− 2 ,

so that we obtain the same counting as in the first case of (iii). �

We see from Proposition 2.21 that various requirements on the counting functions of Defini-
tion 2.4 can be used to rule out these forms of Sideward and Countercyclic Merge. In particular
we look at the effect of requirements that the number of accessible terms in the workspace should
be non-decreasing (∆(#Acc) ≥ 0) and the number of syntactic objects should be non-increasing
(∆b0 ≤ 0); that the overall size of the workspace does not decrease and does not increase more
than one (0 ≤ ∆σ ≤ 1), and the requirement that σ̂ is a conserved quantity (∆σ̂ = 0). Note that
all of these conditions are satisfied by Internal and External Merge.

Corollary 2.22. Constraints on counting functions in the cases of Sideward and Countercyclic
Merge are (Y) or are not (N) satisfied according to the following table.

∆b0 ≤ 0 ∆(#Acc) ≥ 0 0 ≤ ∆σ ≤ 1 ∆σ̂ = 0
Sideward (3b) N Y Y N
Sideward (2b) Y Y Y N
Countercyclic (3a) (i) N Y N N
Countercyclic (3a) (ii) N Y N N
Countercyclic (3a) (iii) N N N Y

Thus, all the cases of Sideward and Countercyclic Merge of Proposition 2.21 are ruled out by at
least one of these conditions, but not all of them by the same one, and ∆b0 ≤ 0 and ∆(#Acc) ≥ 0
together do not suffice to rule out all of these cases, but conservation ∆σ̂ = 0 together with any
one of the other conditions suffices.

This shows that constraints based on counting are less efficient than the constraint based on
Minimal Search (the ǫ→ 0 limit in Proposition 2.16), which rules out all of these remaining forms
of Sideward and Countercyclic Merge.

Remark 2.23. Note however that, if one take quotients by contraction to the root vertex, instead
of using the quotient as in Definition 2.5, then the condition that the number of accessible terms
should increase exactly by one (as suggested by Huijbregts, see Remark 2.18) would suffice to rule
out all the cases of Sideward and Countercyclic Merge. Indeed, with the quotient by contraction,
we would obtain that the number of accessible terms for both Sideward and Countercyclic Merge
would always increase by at least two.

2.5.2. Cancellation of copies. In the form (2.23) of the action of Merge on workspaces, the can-
cellation of copies of the accessible terms used by Merge is implemented by the coproduct ∆ of
(2.10) through the quotient terms T/Tv.

Cancellation of copies is usually postulated as an “economy principle” in linguistics, and it is
usually assumed that cancellation always happens in the deeper copies.

A first observation is that, in the formalism we are using, the fact that cancellation is imple-
mented in the deeper copy is directly built into the structure of the coproduct and it does not
have to be included as an additional requirement, since in the terms Tv ⊗ T/Tv the copy of Tv on
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the left-hand-side (the one that contributed to Merge) has lower depth than the copy inside T ,
which is cancelled on the right-hand-side.

A second observation is that cancellation of copies is necessary in order to have a good coasso-
ciative coproduct. Indeed, one needs to quotient out the copy of Tv inside T in the right-hand-side
of the coproduct for coassociativity to work as shown in Lemma 2.7. One can see that a coproduct
of the form T 7→

∑

v Tv ⊗ T without the cancellation would no longer have this property.

Note moreover that, although we refer to the term T/Tv as “cancellation” of a copy of Tv,
nothing is really cancelled, since a copy of Tv remains on the other side of the term Tv ⊗ T/Tv

of the coproduct. The basic structure of the coproduct separates out trees (in all possible ways)
into a subtree and a quotient. One can simply then read the subtree as the “creation of a copy”
and the quotient tree as corresponding “cancellation of the original (deeper) copy” when Internal
Merge is applied.

Also observe that there are distinct roles in the model we are discussing here for copies and
repetitions. Repetitions are accounted for in this setting by the fact that we are defining the
workspace as a forest (a disjoint union of trees, that is, of syntactic objects). This allows for the
presence of repetitions since a forest is not a set but a multiset of trees. Copies, on the other hand
are only created during the application of the coproduct, and ultimately play a role only in the
operation of Internal Merge.

3. The core computational structure of Merge

The description of Merge and its action on workspaces that we described above follows closely
the formulation presented in [7]. We discuss here a further simplification of the structure of Merge,
which extract its core computational structure, as presented in [10].

Let T be the set of binary rooted trees without planar structure (and without labeling of the
leaves), and V(T) the free Z-module (or the Q-vector space) spanned by the set T. The following
description is the analog of Definition 2.1 and Remark 2.2.

Lemma 3.1. The set T is the free non-associative, commutative magma whose elements are the
balanced bracketed expressions in a single variable x, with the binary Merge operation (α, β) 7→
M(α, β) = {α, β}. Correspondingly, V(T) is the free commutative non-associative algebra gener-
ated by a single variable x.

Proof. We can identify the binary rooted trees without planar structure with the balanced brack-
eted expressions in a single variable x. For example

{{x{xx}}x} ←→
x x x

x
.

The Merge operation M(α, β) = {α, β} takes two such bracketed expressions α and β and forms
a new one of the form {α, β}, which correspond to attaching the roots of the two binary trees to
a common root, M(T, T ′) = T ∧ T ′. �

Equivalently, V(T) is the free algebra over the quadratic operad freely generated by the single
commutative binary operation M (see [27]).

The generative process for the set T via the Merge operation can be equivalently described as
a recursive procedure encoded in the form of a fixed point equation.

Proposition 3.2. Let V(T) = ⊕ℓV(T)ℓ with the grading by length (number of leaves) as before,
with M : V(T)ℓ ×V(T)ℓ′ → V(T)ℓ+ℓ′, where M is extended by linearity in each variable. Consider
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formal infinite sums X =
∑

ℓ≥1Xℓ with Xℓ ∈ V(T)ℓ and the recursive equation

(3.1) X = M(X,X) .

Then the generative process for T via the Merge operation is equivalent to the recursive construction
of a solution of (3.1) with initial condition X1 = x.

Proof. We have M(
∑

ℓ Xℓ,
∑

ℓ′ Xℓ′) :=
∑

ℓ,ℓ′ M(Xℓ, Xℓ′). In particular, the term of degree n in

M(X,X) is given by

M(X,X)n =
n−1∑

j=1

M(Xj, Xn−j) ,

so that the fixed point equation (3.1) reduces to the recursive relation

Xn =

n−1∑

j=1

M(Xj, Xn−j) .

starting with X1 = x, the recursion produces X2 = {xx}, X3 = {x{xx}}+ {{xx}x} = 2{x{xx}},
X4 = 2{x{x{xx}}} + {{xx}{xx}}, and so on. These first terms Xn list all the possible non-
planar binary rooted trees with n leaves, with multiplicities that account for the different planar
structures. Given a non-planar binary rooted tree T with n leaves, we can always write it as
T = M(T ′, T ′′) where T ′, T ′′ are the two binary rooted trees with roots at the two internal vertices
of T connected to the root of T , with j = #L(T ′) and n−j = #L(T ′′), for some j ∈ {1, . . . , n−1}.
Since the Merge product is commutative it does not matter in which order we list T ′ and T ′′. Thus,
each T ∈ Tn can be mapped uniquely to an unordered pair {T ′, T ′′} and conversely, any pair of
trees T ′, T ′′ with numbers of leaves ℓ′ and ℓ′′, respectively, determines uniquely a tree M(T ′, T ′′)
with ℓ′ + ℓ′′ leaves. Thus, inductively, if each Xj for 1 ≤ j < n consists of a list (formal sum) of
all the possible non-planar binary rooted tress with j leaves, then Xn also consists of a sum of
all the possible non-planar binary rooted tress with n leaves. One sees similarly that the integer
coefficients in the sum count different planar structures. �

As we discuss further in §6, this shows that the generative process for the core computational
structure of Merge in the Minimalist Model of syntax is in fact the most fundamental basic case of
the Dyson–Schwinger equations in physics. We give a quick summary here of what we will discuss
in more detail in §6.

In general, the Dyson–Schwinger equation implements in perturbative quantum field theory
the construction of solutions of the equations of motion. It is a way of encoding the variational
principle of least action for equations of motion in classical physics in a form suitable for quantum
fields, via a recursive method of solution that can be performed order by order in the perturbative
expansion. There are two main conceptual aspects to single out here. One is the fact that the
construction of solutions of Dyson–Schwinger equations becomes a combinatorial problem, in terms
of Feynman graphs and associated trees, expressible as a solution to a fixed point equation, of
which (3.1) is the most fundamental example. The general such combinatorial Dyson–Schwinger
equation always involves a form of (possible n-ary) Merge operation, given by the grafting operator
B+ of Definition 2.8, and a polynomial fixed point equation in a Hopf algebra, which takes the
general form X = B+(P (X)), for a polynomial P and a variable X =

∑

ℓ Xℓ in (a completion of)
a Hopf algebra of rooted trees. The equation is solved recursively, as in the fundamental case of
(3.1). The other aspect is the usual requirement that for classical solutions of the equations of
motion the action functional is stationary under infinitesimal variations. This is transformed in the
case of quantum fields into corresponding equations for the quantum correlation functions. In the
formulation of perturbative quantum field theory in terms of Hopf algebra, these in turn arise from
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the combinatorial solution, which is entirely determined in terms of the underlying Hopf-algebraic
structure, together with the evaluation of a (renormalized) Feynman rule, to obtain the actual
physical solution from the combinatorial one. As we discuss further in §6, the first observation
identifies the generative process of syntactic objects through Merge with the basic case of the
structure of generative processes of fundamental physics. The second observation suggests that
the optimality that the core computational structure of Merge ought to satisfy is of the same
conceptual nature as the least action principle of physics, when the latter manifests itself in a
combinatorial form.

4. Constraints on Merge: the n-arity question

An important question regarding the Merge operation of syntax is whether the same generative
power would be achievable with a similar operation that is n-ary, for some n ≥ 3, rather than
binary.

Riny Huijbregts presented in [28] strong empirical linguistic evidence for why, for example, a
ternary Merge would be inadequate, in the sense that such a ternary operation would produce
both undergeneration and overgeneration with respect to the binary Merge. Undergeneration
refers to syntactic constructions that can be derived through the binary Merge but would not
be generated by a ternary Merge, while overgeneration consists of ungrammatical sentences that
would be generated by a ternary Merge, but not by binary Merge. While the undergeneration
problem could in principle by bypassed by hypothesizing the simultaneous presence of a binary
and a ternary Merge, the overgeneration problem cannot be similarly dealt with.

We discuss here briefly why any n-ary Merge operation, for any n ≥ 3, would necessarily lead
to both undergeneration and overgeneration, as a simple consequence of the algebraic structure
described in the previous section. In particular, within this formulation one can see that under-
generation and overgeneration have two somewhat different origins. Undergeneration is a direct
consequence of the structure of the magma on the Merge operation, which gives rise to the set of
syntactic objects, while overgeneration involves directly the action of Merge on workspaces.

4.1. The n-ary Merge magma. Here we assume the existence of a hypothetical n-ary Merge,
for some n ≥ 3, and we discuss how the structure of the magma of syntactic objects changes with
respect to the binary case. We assume the same initial set SO0 of lexical terms and syntactic
features.

Definition 4.1. An n-magma consists of a set X together with an n-ary operation

Mn : X × · · ·×
︸ ︷︷ ︸

n-times

X → X , (x1, . . . , xn) 7→Mn(x1, . . . , xn) .

We say that (X,Mn) is an n-magma over a set Y , if all elements of X are obtained by iterated
application of Mn starting with n-tuples of elements in Y .

We write {x1, . . . , xn} := Mn(x1, . . . , xn) for the element of X that is obtained by applying
Mn to the n-tuple (x1, . . . , xn). In particular, the set X consists of a subset X1 consisting of all
elements of the form {y1, . . . , yn} := Mn(y1, . . . , yn) with all the yi ∈ Y , a set X2n−1 consisting of
all elements of the form

Mn(y1, . . . , yi−1,Mn(ai,1, . . . , ai,n), yi+1, . . . , yn) = {y1, . . . , yi−1, {ai,1, . . . , ai,n}, yi+1, . . . , yn}

for i = 1, . . . , n and with all the yi, ai,j ∈ Y , a set X3n−2 consisting of all elements of the form

{y1, . . . , yi−1, {ai,1, . . . , ai,n}, yi+1, . . . , yj−1, {bj,1, . . . , bj,n}, yj+1, . . . yn} and
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{y1, . . . , yi−1, {ai,1, . . . , ai,j−1, {bj,1, . . . , bj,n}, ai,j+1, ai,n}, yi+1, . . . , yn} ,

with i 6= j, i, j = 1, . . . , n, and all the yi, ai,k, bj,k ∈ Y , and so on, so that we have

(4.1) X =
⊔

k≥1

Xk(n−1)+1 .

We refer to the subset Xk(n−1)+1 as the set of elements of length k(n− 1) + 1 in the n-magma.

The n-magma is associative if all the elements of length k(n − 1) + 1 are identified, that is,
if bracketing is irrelevant. It is commutative if elements {x1, . . . , xn} with entries that differ by
a permutation in the symmetric group Sn are identified, that is, if every set within brackets is
unordered.

We then have the following description of the set of syntactic objects produced by a hypothetical
n-ary Merge Mn.

Definition 4.2. The set SO(n) of n-ary syntactic objects is the free, non-associative, commutative
n-magma on the set SO0,

(4.2) SO(n) = Magma(n)na,c(SO0,Mn) ,

with

(4.3) SO(n) =
⊔

k≥1

SO
(n)
k(n−1)+1 .

Remark 4.3. We can identify the elements of SO(n) with rooted n-ary trees,

(4.4) SO(n) ≃ T
(n)
SO0

,

namely trees where all the non-leaf vertices have n descendants, without a planar structure, and
with leaves labelled by elements of the set SO0. (Note that what we call here n-ary trees are full
n-ary trees.)

The set SO
(n)
k(n−1)+1 is the set of rooted n-ary trees (with no assigned planarity) with k(n−1)+1

leaves, and therefore with k non-leaf vertices. The number k of non-leaf vertices is the number of
applications of Mn in the process of generating elements of SO(n), where each non-leaf vertex is
the graphical representation of a Merge operation.

4.2. Undergeneration. Given the structure (4.3) of the set of n-ary syntactic objects, we can
show that there are two different forms of undergeneration (with respect to the binary Merge),
and that both of them inevitably occur for any n-ary Merge with n ≥ 3. The two different forms
of undergeneration correspond, respectively, to certain lengths not being achievable through an
n-ary Merge construction, and to certain syntactic parsing ambiguities not being accountable for
by an n-ary Merge construction.

The first form of undergeneration can be seen as follows.

Lemma 4.4. Only strings of elements of SO0 of length k(n − 1) + 1, for some k ≥ 1, can be
achieved through an n-ary Merge. In particular, only the binary Merge can achive all lengths.

Proof. The number of leaves of an n-ary tree with k non-leaf vertices is k(n − 1) + 1. Thus, the
only possible strings of elements of SO0 that can be obtained through k successive applications
of an n-ary Merge Mn are of length k(n− 1) + 1, as in the decomposition (4.3) of the set of n-ary
syntactic objects. Only in the case n = 2 the set {k(n− 1) + 1}k≥1 contains all positive integers
greater than or equal to 2. �
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Known empirical linguistic examples of this kind of undergeneration include, for instance, the

fact that sentences like “it rains” are in SO2 while SO(3)
2 = ∅.

The second form of undergeneration can be seen through counting and comparing the sizes of the

sets SOk(n−1)+1 and SO
(n)
k(n−1)+1, for n ≥ 3. The counting formulae for rooted trees are simpler in

the case of trees with an assigned planar structure, rather than for abstract trees with no assigned
planarity. Thus, we count the resulting trees after the externalization step that introduces planar
structures.

Let Tpl
SO0

= ⊔ℓT
pl
SO0,ℓ

and T
(n),pl
SO0

= ⊔kT
pl
SO0,k(n−1)+1 denote, respectively, the sets of binary and

of n-ary rooted trees with a choice of planar embedding.

Lemma 4.5. For any given n ≥ 3, and for ℓ = k(n− 1) + 1, for any k ≥ 2, we have

#T
pl
SO0,ℓ

> #T
pl
SO0,ℓ

.

Proof. The number of planar rooted binary trees with ℓ = r + 1 leaves (hence r non-leaf vertices)
is given by the Catalan number

Cr =
1

r + 1

(
2r

r

)

.

Thus, for ℓ = k(n− 1) + 1, we have the counting

Ck(n−1) =
1

(n− 1)k + 1

(
2k(n− 1)

k

)

.

The number of planar rooted n-ary trees with (n − 1)k + 1 leaves (hence k non-leaf vertices) is
correspondingly given by the Fuss–Catalan numbers

C
(n)
k =

1

(n− 1)k + 1

(
nk

k

)

.

The different assignments of labels at the leaves contribute in both cases a factor S(n−1)k+1, where
S := #SO0. When we compare the counting we see that

(4.5) S(n−1)k+1(Ck(n−1) − C
(n)
k ) =

S(n−1)k+1

(n− 1)k + 1

((
2k(n− 1)

k

)

−

(
nk

k

))

> 0

since 2k(n− 1) > nk for n ≥ 3. �

Thus, at the level of planar trees, counting detects an undergeneration phenomenon which is
present at all levels k ≥ 1 of the construction of the sets of syntactic objects. This phenomenon
shows that there are always strings of elements of SO0 of length k(n−1)+1 that have ambiguous
parsing when realized in terms of binary Merge, while the ambiguity cannot be accounted for with
an n-ary Merge.

As a simple example of this type of undergeneration, the two different parsings of the ambiguous
sentence “I saw someone with a telescope” depend on the difference between the two binary trees

δ
α β γ

δ
α β γ

which would disappear entirely if the terms α, β, γ, δ are assembled through a 4-ary Merge to form
the tree

δ α β γ

where the ambiguity would no longer be detectable.
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4.3. The structure of a hypothetical n-ary Merge. Given the set SO(n) of syntactic objects
associated to a hypothetical n-ary Merge, obtained as in (4.3), we can consider the same type of
action of Merge on workspaces that we have introduced above for a binary Merge. We will see in
§4.4 below that, when the same structure is implemented through an n-ary Merge with n ≥ 3, it
inevitably leads to an overgeneration phenomenon.

As in the binary case, we introduce the set of workspaces as finite collections of syntactic objects,

which in the n-ary case are elements of the set SO(n) ≃ T
(n)
SO0

of n-ary non-planar rooted trees.

We again consider the vector space V(F(n)
SO0

), where F
(n)
SO0

is the set of finite forests with connected

components in T
(n)
SO0

. In order to write the extraction of accessible terms and the cancellation of
copies in the form of a coproduct, and the Merge pairing on accessible terms, we consider the

relevant algebraic structure on V(F
(n)
SO0

), namely the product given by disjoint union ⊔ and the
coproduct as in (2.10) and (2.11).

Remark 4.6. In defining a coproduct of the form (2.10) for an n-ary tree, one no longer has the
option of taking the quotient T/Tv in the sense of Definition 2.5, as after removal of the subtree
Tv, contractions of edges in the resulting tree T rTv will produce vertices with either less or more
than n descendants. In order to have a quotient T/Tv that is itself an n-ary tree, one can define
T/Tv as obtained by contracting Tv to its root vertex. This requires that the root vertex of Tv,
which becomes a leaf in T/Tv, need to be labelled by an element in SO0. This requires including
in SO0 syntactic features of the form XP with X ∈ {N, V,A, P, C, T,D, . . .}, and the label of
the new leaf in T/Tv, obtained by projection, needs to be computed by inspecting the structure
of Tv. This computation of labels of root vertices can be avoided in the case of binary Merge, by
performing quotients as in Definition 2.5, but can no longer be avoided in the case of n-ary Merge
with n ≥ 3, where the quotient needs to be taken by contraction to the root vertex.

We can assume that the form of the action of Merge on workspaces will be of the same form as
in the binary case of (2.23). Thus, we can write the desired form for the n-ary Merge action on
workspaces as follows.

Given a collection S = (Si)
n
i=1 of n-ary syntactic objects Si ∈ T

(n)
SO0

, we also define an operator

δS1,...,Sn
: V(F

(n)
SO0

)⊗ V(F
(n)
SO0

)→ V(F
(n)
SO0

)⊗ V(F
(n)
SO0

)

in the same way as the δS,S′ defined in the binary case in (2.18), (2.19), (2.20). As in (2.17) we set

(4.6) F
∆,(n)
SO0

= {(F1, F2) ∈ F
(n)
SO0
× F

(n)
SO0
| ∃F ∈ F

(n)
SO0

, Fv ⊂ F : F1 = Fv and F2 = F/Fv} .

We then set

(4.7) δS1,...,Sn
(F1 ⊗ F2) = 0 for (F1, F2) /∈ F

∆,(n)
SO0

,

(4.8) δS1,...,Sn
(Fv, F/Fv) = S1 ⊔ · · · ⊔ Sn ⊗ Ta1/S1 ⊔ · · · ⊔ Tan/Sn ⊔ F (a1,...,an) ,

for F = ⊔i∈ITi, if there are indices a1, . . . , an ∈ I such that Si ≃ Tai,vi , and with

F (a1,...,an) = ⊔i 6=a1,...,anTi.

As in the binary case, if there is more than one choice of indices a1, . . . , an for which matching
terms Si ≃ Tai,vi exist, then the right-hand-side of (4.8) should be replaced by the sum over all
the possibilities, which we do not write out explicitly. In the remaining case where such matching
of terms does not exist one sets

(4.9) δS1,...,Sn
(Fv, F/Fv) = 1⊗ F .
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Definition 4.7. The action of Merge on workspaces consists of a collection of operators

{MS1,...,Sn
}
S′
i∈T

(n)
SO0

, MS1,...,Sn
: V(F

(n)
SO0

)→ V(F
(n)
SO0

) ,

parameterized by n-tuples (Si)
n
i=1 of n-ary syntactic objects, which act on V(F

(n)
SO0

) by

(4.10) MS1,...,Sn
= ⊔ ◦ (B+ ⊗ id) ◦ δS1,...,Sn

◦∆ ,

with the same operation B+ as in Definition 2.8.

Note that the n-ary analog of Lemma 2.9 also holds, so that (4.10) is obtained analogously.
This action of Merge on workspaces has the same structure as in the binary case, namely, for

each of the n input of the n-ary Merge Mn a search is made over the workspace by extracting
accessible terms and comparing them with the corresponding n-ary syntactic object Si. Non-
matching terms are left unchanged in the new workspace, while the n-ary Merge operation is
applied to n-tuples of matching terms among the extracted accessible terms for each Merge input.
The new workspace then have these Merge outputs along with the terms coming from the quotient
part of the coproducts, where cancellation of the deeper copies of the accessible terms used by
Merge is performed.

One can envision other possible generalizations of the binary Merge action on workspaces to
the n-ary case, using a coproduct with higher arity instead of ∆. We will not discuss them here,
since (4.10) is the simplest direct generalization of (2.23), and it suffices to show the inevitability
of overgeneration (which would occur for the same reasons in other generalizations as well).

4.4. Overgeneration. We can now see the overgeneration phenomenon as a different type of
comparison between the sets SO and SO(n), with respect to the undergeneration discussed above.
Unlike undergeneration, overgeneration depends not only on the structure of the set SO(n) of
syntactic objects, but also on the action of on workspaces as described above.

Indeed, consider the following empirical linguistic example of overgeneration by a hypothetical
ternary Merge. We take a workspace given by an n-ary forest of the form

F = {α, β, γ} ⊔ δ ⊔ η ,

with α, β, γ, δ, η ∈ SO(3) ≃ T
(3)
SO0

Consider the action of ternary Merge on workspaces described
by (4.10) with n = 3 and with S = (S1, S2, S3) given by S1 = α, S2 = β, and S3 = {α, β, γ} gives
the internal Merge

MS1,S2,S3(F ) = {α, β, {α, β, γ}} ⊔ δ ⊔ η .

Similarly, the same action with S1 = δ, S2 = η, and S3 = {α, β, γ} gives the external Merge

MS1,S2,S3(F ) = {δ, η, {α, β, γ}} .

These ternary Merge operations are responsible for generating ungrammatical sentences such as4

peanuts monkeys children will throw (as opposed to children will throw monkeys peanuts), resulting
from

(4.11) {peanuts,monkeys, {children,will, {throw,monkeys, peanuts}}} .

In the example of (4.11) one sees that α and β are accessible terms of {α, β, γ}, hence with a
ternary Merge one can form {α, β, {α, β, γ}}. On the other hand, {α, β} is not an accessible term
of {{α, γ}, β}.

This example indicates that the overgeneration phenomenon it illustrates is caused by a dif-
ference in the size of the sets of accessible terms on which the action of Merge on workspaces

4This example was communicated to us by Riny Huijbregts. For a more detailed discussion, see [28].
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is based. Indeed, in the general case of an arbitrary hypothetical n-ary Merge with n ≥ 3, the
overgeneration phenomenon is caused by the simple fact that, given a binary tree and an n-ary
tree with the same set of leaves, there are fewer pairs of accessible terms (input for binary Merge)
in the binary tree than there are n-tuples of accessible terms (input for the n-ary Merge) in the
n-ary tree. We can see this more explicitly as follows.

Lemma 4.8. Let V o
int(T ) denote the set of vertices that are neither leaves nor root. Suppose given

a set of leaves L with #L = ℓ = k(n − 1) + 1, for some k ≥ 1. Let T and T ′ be, respectively, a
binary and an n-ary tree with L(T ) = L(T ′) = L. Then for k ≥ n we have

(4.12) #(V o
int(T

′)n−1 r Diags) > #V o
int(T ) ,

where Diags ⊂ V o
int(T

′)n−1 is the union of all the diagonals, where two or more of the entries in
(v1, . . . , vn−1) ∈ V o

int(T
′) coincide.

Proof. A binary tree T with ℓ leaves has ℓ − 1 non-leaf vertices, a total of 2ℓ − 1 vertices, and
2(ℓ − 1) non-root vertices. An n-ary tree on the same set of leaves with ℓ = k(n − 1) + 1 has k
non-leaf vertices, a total of kn+ 1 vertices, and kn non-root vertices. Note that, in order to have
n− 1 choices without repetitions in V o

int(T
′) we need to assume that k ≥ n. In (4.12) we are then

comparing #V o
int(T ) = k(n− 1) with

#(V o
int(T

′)n−1 rDiags) = k(k − 1) · · · (k − n+ 1) = n!

(
k

n

)

=
k!

(k − n)!
,

which is larger than k(n− 1). �

We include the leaf-vertices in the counting of accessible terms. The result of Lemma 4.8 is
similar.

Corollary 4.9. If Vint(T ) is the set of all non-root vertices, then

(4.13) #(Vint(T
′)n−1 r Diags) > #Vint(T ) ,

Proof. Note that, unlike in Lemma 4.8, now k ≥ 1 is arbitrary. By the same counting as above of
non-root vertices, in this case we have #Vint(T ) = 2k(n − 1) and #Vint(T

′) = kn. In particular,
#Vint(T ) > #Vint(T

′), but when counting inputs for internal Merge we obtain

#(Vint(T
′)n−1 rDiags) = kn(kn− 1) · · · (kn− n+ 1) = n!

(
kn

n

)

=
(nk)!

(n(k − 1))!

which is now larger than #Vint(T ). �

The left-hand-side of (4.12) (respectively, (4.13)) is the size of the set of possible inputs for
an n-ary internal Merge that can be extracted from the n-ary tree T ′, while the right-hand-side
of (4.12) (respectively, (4.13)) is the size of the set of all possible inputs for a binary internal
Merge that can be extracted from the binary tree T , with the same set of leaves. The discrepancy
between these two sizes shows the inevitable presence of overgeneration with an n-ary Merge and
quantifies precisely the amount of overgeneration that can occur.

5. A model of externalization

The action of Merge on workspaces described in (2.23) and Definition 2.10 can be also interpreted
as a representation of a non-associative algebra in the following way. (All vector spaces and
algebras are taken over Q.)

First observe that the magma structure on SO = TSO0 of (2.1) gives to the vector space
V(TSO0) the structure of a non-associative commutative algebra, see [25], [26], where the binary
Merge operation M gives the product operation.
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Note that the coproduct (2.10) does not induce a bialgebra structure on V(TSO0) because it
does not satisfy the compatibility:

∆ ◦M 6= (M⊗M) ◦ τ ◦ (∆⊗∆) ,

unlike the compatibility of ⊔ and ∆ on V(FSO0) in Lemma 2.7. The reason is because ∆(M(T, T ′))
has only terms of the form M(Tv, T

′) ⊗ T/Tv, M(T, T ′
w) ⊗ T ′/T ′

w, Tv ⊗M(T/Tv, T
′), and T ′

w ⊗
M(T, T ′/T ′

w), while the right-hand-side applied to T⊗T ′ also has all terms of the formM(Tv, T
′
w)⊗

M(T/Tv, T
′/T ′

w). However, a modified form of the coproduct (2.10) does give V(TSO0) the struc-
ture of a non-associative, commutative, co-commutaive, co-associative Hopf algebra (see [25], [26]),
with

(5.1) ∆(T ) =
∑

L⊂L(T )

T |L ⊗ T |Lc ,

where, for a subset L ⊂ L(T ) (with Lc = L(T ) r L) we write T |L to denote the binary rooted
tree obtained by removing all the leaves in L and then performing the edge contractions needed
to obtain a binary tree. The difference between this coproduct and (2.10) lies in the fact that
the coproduct of (5.1) would correspond to a notion of accessible terms that include all possible
subsets of the set of leaves, not just those of the form L = L(Tv).

Here we only need to consider the non-associative commutative algebra structure Ana,c =
(V(TSO0),M), without the comultiplication, but the above remark is included for completeness.

5.1. Merge representation. The notion of representation and module over a non-associative
algebra is much weaker than its associative counterpart. If A is a non-associative algebra and V
is a vector space, an A-module structure on V is simply given by a linear map

ρ : A → End(V) .

This map is not an algebra homomorphism when A is non-associative. We can equivalently view
ρ as a linear map ρ : A×V → V. We say that a vector space V is a module over a non-associative
algebra A if it is endowed with a representation of A on V in the sense described here above.

Lemma 5.1. The vector space V(FSO0) is a module over the algebra Ana,c through the represen-
tation given by the maps

(5.2) ρ(T )(F ) = ⊔ ◦ (MT ⊗ 1) ◦∆(F ) = ⊔a(M(T, Ta,v) ⊔ Ta/Ta,v),

where F = ⊔aTa and MT (Ta) := M(T, Ta).

It then suffices to show that the representation (5.2) is enough to determine the Merge oper-
ators MS.S′ as described in (2.23) in Definition 2.10. The form (2.23) of the action of Merge on
workspaces is designed so as to exactly describe the procedure of searching among the accessible
terms and syntactic objects of the workspace for copies of the chosen objects S and S ′, for each of
the two inputs of Merge, and applying Merge with corresponding cancellation of copies of accessi-
ble terms. The following observation shows that the same internal and external Merges can be also
obtained through the somewhat simplified expression (5.2) of the representation of Lemma 5.1.

Lemma 5.2. The representation (5.2) suffices to determined the Merge operations (2.23) on
workspaces in V(FSO0).

Proof. Consider the operator ρ(T ) of the representation (5.2) restricted to the subspace VT ⊂
V(FSO0) spanned by all the workspaces F ∈ FSO0 that contain T either as a connected component
of F or as an accessible term of one of the connected components. Then the result ρ(T )(F ) of
applying the operator ρ(T ) to elements F ∈ VT gives rise to all the possible Merge operations
MS,S′ with S = T and with S ′ another component or accessible term of F . �



28 MATILDE MARCOLLI, NOAM CHOMSKY, ROBERT C. BERWICK

This rephrasing of the action of Merge on workspaces in terms of algebras and modules has the
advantage that it suggests a possible model for thinking about the process of externalization. This
models how the core computational structure of Merge, when implemented in the human brain,
needs to be followed by what one calls an “externalization procedure”, that allows for interac-
tion with the sensorimotor system (see [3]). It is in this externalization process that additional
constraints are imposed, such as the presence of a linear ordering on sentences (in the form of
planar embeddings of binary rooted trees), as well as constraints coming from UG principles.
One also needs to account for the syntactic diversity across different human languages (syntactic
parameters), see for instance [19].

5.2. Externalization and linear ordering. We can look first at the step of externalization that
introduces planar structures, hence linear ordering on the leaves of the trees, that is, an ordering
on the resulting sentence. At first it may seem, intuitively, that introducing a linear ordering
is a way of imposing a constraint and should therefore give rise to some kind of quotient map,
in fact the quotient map goes in the opposite direction, as the map that identifies the abstract
(non-planar) tree behind all its different planar embeddings. It can also be described as the
quotient that maps non-commuting variables (where order matters) to corresponding commuting
variables (where it does not). This means that one has a non-associative and non-commutative
algebra Ana,nc together with a projection homomorphism Ana,nc → Ana,c that quotients out the
commutators and identifies all different planar embeddings to the same abstract (non-planar) tree.
The part of the externalization process that fixes a planar structures consists of the choice of a
section of this projection morphism. Such a section is not an algebra homomorphism (as that
would not map a commutative to a non-commutative algebra). Indeed, this is not surprising, as
it is simply expressing the fact that the choice of planar embeddings cannot be universal and is
in fact language-dependent, as it involves specific word order structures. Thus, the construction
of this section of the projection Ana,nc → Ana,c is the first instance where one sees the role of
syntactic parameters, in this case specifically in the form of word order parameters.

We denote, as before, by TSO0 and FSO0 the sets of binary rooted trees (respectively, forests)

with leaves labels in SO0, and we denote by T
pl
SO0

and F
pl
SO0

the corresponding sets of planar binary
rooted trees (respectively, forests) with leaves labels in SO0.

Proposition 5.3. At the level of the underlying vector spaces, the quotient map Ana,nc → Ana,c

is the map Π : V(Tpl
SO0

) ։ V(TSO0) that assigns to a planarly embedded tree the underlying
abstract tree, forgetting the planar embedding, that is, identifying together all the different planar
embeddings of the same abstract tree. There is a corresponding quotient map on workspaces

V(Fpl
SO0

) ։ V(FSO0) .

The representation (5.2) extends to a representation ρpl : Ana,nc → End(V(Fpl
SO0

)) so that the
following diagram commutes

(5.3) Ana,nc ⊗ V(F
pl
SO0

)
ρpl //

Π⊗Π

��

V(Fpl
SO0

)

Π

��
Ana,c ⊗ V(FSO0)

ρ // V(FSO0) .

Proof. The algebra Ana,nc is the free non-associative non-commutative algebra generated by the
set SO0 with a non-associative non-commutative product, which we denote by Mnc. Unlike
the non-associative commutative Merge product M of Ana,c, we have in general Mnc(α, β) 6=
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Mnc(β, α). Thus, we can identify Ana,nc with the algebra associated to the non-associative non-
commutative magma Magma(SO0,M

nc). We can identify the elements of this magma with ordered
words in the alphabet SO0 with matched parentheses. Equivalently, we can describe the magma
Magma(SO0,M

nc) through its Malcev representation, where a new variable c is introduced to mark
the opening parenthesis. The position of the closing parenthesis is determined, so for example,
instead of (α, ((β, γ), δ))) one can write cαc2βγδ, see [26]. The magma operation Mnc in the
Malcev representation takes the form

Mnc(α, β) = c α β .

The set of ordered words in SO0 with matched parentheses can be identified with the set of binary
rooted trees with a choice of planar embedding. Thus, we can identify

T
pl
SO0

= Magma(SO0,M
nc) .

In terms of the Malcev representation, the variable c marks the opening parenthesis that corre-
sponds to an internal vertex of the planar tree in T

pl
SO0

. The quotient map Ana,nc → Ana,c that
kills the commutators has kernel the ideal generated by the elements Mnc(T, T ′) −Mnc(T ′, T ).
Elements in this ideal are by construction differences between pairs of trees that differ in planar
embeddings at one (or more) of the internal vertices, since every application of Mnc corresponds to
an internal vertex of the resulting planar tree. Thus, the quotient map is exactly Π that identifies
different planar embeddings of the same tree. Similarly, in F

pl
SO0

forests are now planarly embed-
ded, hence the components Ta form an ordered set, which we describe by writing F = ⊔nca Ta,
where ⊔nc means that the order of the Ta matters, namely ⊔nc is the union as planarly embedded
trees, in a sequential order compatible with an ordering of the union of their leaves. By defining
ρnc as

ρ(T )(F ) = ⊔nc ◦ (MT,nc ⊗ 1) ◦∆(F ) = ⊔nca (Mnc(T, Ta,v) ⊔ Ta/Ta,v)

with F = ⊔nca Ta and MT,nc(Ta) := Mnc(T, Ta), one obtains compatibility as expressed by the
commutativity of the diagram in the statement. �

An assignment of a planar structure can then be seen as a section σL of the projection Π,

(5.4) T
pl
SO0 Π

// TSO0 ,

σL
uu

with Π ◦ σL = id, where the section is dependent on a particular language L and exists as a map
of vector spaces, but not as a morphism of algebras. These properties express the property that
assignment of linear ordering of sentences is not directly genereated by Merge itself, but requires
an additional mechanism, and cannot be implemented in a universal language-independent way,
see the discussion in §5.5.

5.3. Correspondences. There is another role for syntactic parameters in the model of external-
ization process we propose here, where they define a quotient map that significantly cuts down
on the combinatorial explosion of Merge. In order to describe this process more precisely, it is
useful to recall the mathematical notion of correspondence and how it generalizes the concept of
function and mapping.

The notion of correspondence is a natural generalization of the concept of function or map, and
has already played a crucial role in contemporary mathematics. It is generally understood that
correspondences provide a better notion of morphisms than functions. In the case of a category
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of geometric spaces (or the underlying category of sets) one typically replaces the usual notion of
a function f : X → Y with correspondences that are of the form

(5.5) Z

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

  ❇
❇❇

❇❇
❇❇

❇

X Y .

The case of a function is recovered as the special case where Z = G(f) ⊂ X×Y is the graph of the
function G(f) = {(x, y) | y = f(x)}, with the two projection maps to X and Y . Correspondences,
however, are more general than functions. Given a correspondence Z, one can transfer structures
(e.g. vector bundles, spaces of functions, etc.) from X to Y , by pulling them back to Z and then
pushing them forward to Y via the two maps of the correspondence.

Thus, in this setting, given a category C that has pullbacks, one can view correspondences as
1-morphisms in a 2-category of spans in C, namely the 2-category Spans(C) that has:

• objects given by the objects of C;
• 1-morphisms given by C-diagrams of the form (5.5), with the composition given by the
pullback

Z ×Y Z ′

zz✈✈
✈✈
✈✈
✈✈
✈✈

$$■
■■

■■
■■

■■

Z

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

##❍
❍❍

❍❍
❍❍

❍❍
❍ Z ′

zz✈✈✈
✈✈
✈✈
✈✈
✈✈

!!❈
❈❈

❈❈
❈❈

❈

X Y X ′ ;

• 2-morphisms between spans X ← Z1 → Y and X ← Z2 → Y are morphisms Z1 → Z2 in
C that give a commutative diagram

Z1

��

~~⑥⑥
⑥⑥
⑥⑥
⑥

  ❆
❆❆

❆❆
❆❆

X Y

Z2

``❆❆❆❆❆❆❆❆

>>⑥⑥⑥⑥⑥⑥⑥⑥

Since correspondences are usually described in this way as spans in the case of geometric spaces,
they are usually described dually as cospans in the case of algebras, namely as diagrams of the
form

E

A

??⑧⑧⑧⑧⑧⑧⑧
B .

``❆❆❆❆❆❆❆

This construction further extends to the typical case where correspondences of algebras are defined
as bimodules. However, one can also consider the case of correspondences (or co-correspondences)
given by spans of algebras

E

��⑧⑧
⑧⑧
⑧⑧
⑧

  ❆
❆❆

❆❆
❆❆

A B .
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(and co-spans of spaces), with the composition (B
g
← E ′ → A′) ◦ (A ← E

f
→ B) given by the

pullback, that is, the restricted direct sum E ⊕B E
′ = {(e, e′) | f(e) = g(e′)}. This is the kind of

correspondences that we see in the description of the externalization of Merge.

5.4. Externalization as correspondence. The computational mechanism described by the ac-
tion of Merge on workspaces encodes the fundamental computational structure of syntax, which
is independent of the variation of syntactic structures across different languages. Where this vari-
ation actually occurs is only in the externalization process. At the level of the syntactic objects,
given by the trees in T

pl
SO0

, and of the workspaces, given by the forests in F
pl
SO0

, the externalization
that corresponds to a particular language L introduce quotient maps

(5.6)
ΠL : Tpl

SO0
։ T

pl,L
SO0

ΠL : Fpl
SO0

։ F
pl,L
SO0

,

where T
pl,L
SO0

and F
pl,L
SO0

are the set of planar binary rooted trees (respectively, forests) with leaves
labels in SO0, that are possible syntactic trees for the given language L. This quotient map
very significantly reduces the combinatorial explosion of Merge, as only a small fraction of all the
possible binary rooted trees generated by the Merge magma are realizable as syntactic trees of a
specific given language. (We discuss in §5.5 below the role of syntactic parameters in determining
the quotient map (5.6).)

In order to formulate this quotient at the level of the algebra Ana,nc and its action ρpl on the

space V(Fpl
SO0

) of workspaces with planar structure, we need to use the notion of partial algebra,
which is a vector space induced with a partially defined bilinear multiplication. Examples of
partial algebras include the span of paths in a directed graph with the composition product.

Lemma 5.4. The projection map of vector spaces ΠL : V(Tpl
SO0

) ։ V(Tpl,L
SO0

) induced by the
quotient map of (5.6) determines a non-associative non-commutative partial algebra Ana,nc,L, with

an induced action ρpl,L of Ana,nc,L on V(Fpl,L
SO0

), with a commutative diagram

(5.7) Ana,nc,L ⊗ V(F
pl,L
SO0

)
ρpl,L // V(Fpl,L

SO0
)

Ana,nc ⊗ V(F
pl
SO0

)
ρpl //

ΠL

OO

V(Fpl
SO0

) .

ΠL

OO

Proof. As a vector space, V(Tpl,L
SO0

) is spanned by those trees in T
pl
SO0

that are realizable as syntactic
trees of the given language L, as such it can be viewed either as a quotient space, under the
projection Π determined by (5.6), or as a subspace of V(Tpl

SO0
). This subspace V(Tpl,L

SO0
) is not a

priori a subalgebra with respect to the Merge product Mnc. However, it is a partial algebra, where
the induced Merge Mnc,L acts as Mnc on the domain given by the set of pairs T, T ′ ∈ V(Tpl,L

SO0
)

with the property that Mnc(T, T ′) ∈ V(Tpl,L
SO0

). This gives a non-associative, non-commutative

partial algebra Ana,nc,L = (V(Tpl,L
SO0

),Mnc,L). The vector space V(Fpl,L
SO0

) can similarly be regarded

both as a quotient of V(Fpl
SO0

) under the quotient map ΠL or as a subspace. We can consider on

V(Fpl,L
SO0

) a coproduct induced by the coproduct ∆ of V(Fpl
SO0

), determined by setting

∆L(T ) =
∑

v∈Vint(T ):Tv,T/Tv∈Tpl,L

Tv ⊗ (T/Tv) .
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The induced action of Ana,nc,L on V(Fpl,L
SO0

) is given by

ρpl,L(T )(F ) = ΠL ◦ (M
T,nc ⊗ 1) ◦∆L(F ) ,

and satisfies by construction the stated compatibility. �

We then see that the combination of the procedure described in §5.2 for introducing linear
ordering of sentences, with the quotient procedure that eliminates trees that are not realizable
as syntactic trees of a specific language, describes the externalization process in the form of a
correspondence, in the sense outlined in §5.3 above.

Definition 5.5. Externalization is a correspondence given by the span of algebras (or partial
algebras) and associated modules

(5.8) Ana,nc,L ⊗ V(F
pl,L
SO0

)
ρpl,L // V(Fpl,L

SO0
)

Ana,nc ⊗ V(F
pl
SO0

)
ρpl //

Π⊗Π

��

ΠL⊗ΠL

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

V(Fpl
SO0

)

Π

��

ΠL

66♥♥♥♥♥♥♥♥♥♥♥♥

Ana,c ⊗ V(FSO0)
ρ // V(FSO0) .

5.5. The role of syntactic parameters. In the Minimalist Model, where the core structure of
syntax is described by the Merge operation of binary set formation, syntactic parameters, which
account for syntactic variation across languages, become part of the externalization structure.
The notion of syntactic parameters was originally introduced in the context of the Principles and
Parameters model, [12], [13]. A recent extensive study of syntactic parameters can be found in
[46].

For simplicity, we can assume that syntactic parameters are binary variables. This may not
account for phenomena such as some kind of entailment relations between parameters, observed
for example in [31], but it is still, to a large extent, accurate. We can describe the set of syntactic
parameters as a subset P ⊂ FN

2 , where N is a (large) number of binary variables that record various
syntactic features of languages, and the locus P ⊂ FN

2 accounts for the set of “possible languages”
(possible values of parameters that can be realized by actual human languages, see [41]). The set
P incorporates all the possible relations between parameters. One knows a significant number of
relations is expected, for example through the geometric and topological data analysis techniques
applied to databases of syntactic features, see for instance [23], [42], [44], [47]. The exact nature
of these relations is not known, but one can hypothesize that P may be realizable as an algebraic
set (or algebraic variety) over F2, embedded in the affine space FN

2 . Regardless of any specific
assumption on the geometry of the set P, we have that a language L determines a corresponding
point πL ∈ P, which is a vector πL ∈ FN

2 that lists as entries the binary values of the N syntactic
parameters for that particular language.

In the description of externalization proposed in §5.4, one expects that syntactic parameters
will be involved in determining both the section σL of (5.4) and the projection ΠL of (5.6).

Since the first part of externalization, which corresponds to the section σL of (5.4), only depends
on syntactic parameters that govern word order, while the projection ΠL of (5.6) depends on all
other parameters, we can single out a subset of M < N parameters that affect word-order.
We denote by q : FN

2 → FM
2 the corresponding projection map that only keeps the word-order

parameters, and we denote by P̄ = q(P) the image under this projection of the locus of parameters,
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with π̄ = q(π), for π ∈ P. The parameters q(πL)i, i = 1, . . . ,M of a point q(πL) in this space

P̄ ⊂ FM
2 cut out a subset of Tpl

SO0
that consists of those planar structures for trees in TSO0 that

are compatible with the word-order properties of the given language L. These define the range of
the section σL, and similarly for workspaces Fpl

SO0
.

On the other hand, given the set of all planar binary trees and forests in T
pl
SO0

and F
pl
SO0

,
respectively, the syntactic parameters specified by the point πL ∈ P have the effect of selecting
which syntactic trees are realizable in the given language L, thus determining the sets Tpl,L

SO0
and

F
pl,L
SO0

. We can give the following geometric description of this procedure, which has the advantage
that it allows for the possible use of tools from algebraic geometry to model more closely the
externalization process. We give below some example of questions that can be naturally formulated
in this mathematical framework.

As discussed in the vector spaces V(Tpl
SO0

) and V(Fpl
SO0

) are graded by number of leaves (sentence
length),

(5.9) V(Tpl
SO0

) = ⊕ℓV(T
pl
SO0

)ℓ and V(Fpl
SO0

) = ⊕ℓV(F
pl
SO0

)ℓ ,

with finite dimensional graded pieces.

Proposition 5.6. Let L denote the set of languages L ∈ L. Let Gr(d, n) denote the Grassmannian
of d-dimensional linear subspaces in an n-dimensional space. The identification of the spaces
V(Tpl,L

SO0
) and V(Fpl,L

SO0
) by specifying the syntactic parameters πL ∈ FN

2 for a language L is described
by a collection of maps

(5.10) Ei,ℓ : P → Gr(dπi,ℓ, dℓ) ,

where for π = (πi)
N
i=1 ∈ P, the image Ei,ℓ(π) ⊂ V(T

pl
SO0

)ℓ is the subspace spanned by the trees that
are compatible with the constraints imposed by the value of the ith syntactic parameter πi, with
dℓ = dimV(Tpl

SO0
)ℓ. Thus, a point π ∈ P determines a subspace Eℓ(π) = ∩iEi,ℓ(π), and similarly

for V(Fpl
SO0

). The assignment π : L → P of syntactic parameters to languages L 7→ πL in turn

determines V(Tpl,L
SO0

) as

(5.11) V(Tpl,L
SO0

) = ⊕ℓEi,ℓ(πL) ,

and similarly for V(Fpl,L
SO0

).

Proof. As in Lemma 5.4, we can view V(Tpl,L
SO0

) and V(Fpl,L
SO0

) as subspaces (rather than quotient

spaces) of V(Tpl
SO0

) and V(Fpl
SO0

), respectively. Each syntactic parameter πi of a point π = (πi)
N
i=1 ∈

P ⊂ FN
2 determines a subspace V(Tpl

SO0
)πi
⊂ V(Tpl

SO0
) (respectively, V(Fpl

SO0
)πi
⊂ V(Fpl

SO0
), such

that, for π = πL for some language L ∈ L

(5.12)

N⋂

i=1

V(Tpl
SO0

)πL,i
= V(Tpl,L

SO0
) ,

and similarly for the V(Fpl
SO0

)πL,i
. Given the graded structure (5.9), we can consider the procedure

(5.12) of cutting out the subspaces V(Tpl,L
SO0

) and V(Fpl,L
SO0

) step by step by degrees. For a given
ℓ ∈ N, there are integers cπi,ℓ, i = 1, . . . , N that specify the codimensions of the subspaces

V(Tpl
SO0

)πi,ℓ ⊂ V(T
pl
SO0

)ℓ .

If dℓ = dimV(Tpl
SO0

)ℓ with dπi,ℓ = dℓ − cπi,ℓ the dimensions, we then have maps

Ei,ℓ : P → Gr(dπi,ℓ, dℓ)
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to the Grassmannian of dπi,ℓ-dimensional subspaces inside the dℓ-dimensional space V(Tpl
SO0

)ℓ, so
that

Ei,ℓ(πL) = V(T
pl
SO0

)πL,i
∈ Gr(dπL,i,ℓ, dℓ) ,

and similarly for V(Fpl
SO0

)ℓ. Similarly, if dL,ℓ = dimV(Tpl,L
SO0

)ℓ is the dimension of the resulting
intersection (which need not be transversal due to relations between syntactic parameters), the
vector πL ∈ FN

2 of parameters for the language L determines a map

Eℓ ◦ π : L →
⋃

d

Gr(d, dℓ) Eℓ(πL) = V(T
pl,L
SO0

)ℓ ∈ Gr(dL,ℓ, dℓ) ,

with V(Tpl,L
SO0

) = ⊕ℓEℓ(πL). �

There are natural geometric questions that this viewpoint suggests. For instance, when compar-
ing the syntax of different languages L, L′ ∈ L, one can consider the resulting comparison between

the systems of subspaces V(Tpl,L
SO0

) = ⊕ℓEℓ(πL) and V(Tpl,L′

SO0
) = ⊕ℓEℓ(πL′). Syntactic proximity

can be viewed in terms of the geometric position of these subspaces. For example, mathematically
a special case of pairs E,E ′ of infinite dimensional subspaces inside an infinite dimensional space
V is given by the Fredholm pairs, where the intersection E ∩ E ′ is finite dimensional and the
span of the union E ∪E ′ has finite codimension. These would represent the situation of maximal
differentiation. Moreover, there are models of semantics based on the geometry of Grassmanni-
ans, [35], and one can consider in this context the possibility of algebro-geometric models of a
syntactic-semantic inferface.

6. Merge and fundamental combinatorial recursions in physics

In classical physics, a “least action principle” governs the solutions of equations of motion of
physical systems, in the form of minimization (or stationarity) of the action functional, namely a
minimization with respect to energy. The equations of motion are then expressed as the Euler–
Lagrange equations that describe the stationarity of the action functional under infinitesimal
variation. In quantum physics, and more precisely in quantum field theory, the classical equations
of motion become equations in the quantum correlation functions of the fields (see [43], §9.6). More
precisely, the Euler–Lagrange equations are satisfied by the Green functions of the quantum field
theory, up to terms that reflect the noncommutativity of field operators. The resulting quantum
equations of motion are known in physics as Dyson–Schwinger equations. They represent the
optimization process of the least action principle, implemented at the quantum level.

Quantum physics, in the form of perturbative quantum field theory, is governed by a combinato-
rial generative process that determines the terms of the perturbative expansion. The combinatorial
objects involved are the Feynman graphs of the theory, and the generative process can be described
either by formal languages (in the form of graph grammars, see [39]) or in a more efficient way
in terms of Hopf algebras (the Connes–Kreimer Hopf algebras of Feynman graphs and of rooted
trees, see [15], [16]).

These two different descriptions of the generative process that produces the Feynman graphs
of quantum field theory can be compared to what happens with older formulations of the Min-
imalist Model in generative linguistics, where one can give both a formal languages description
(see [49]) and a description in terms of (internal/external) Merge operators, where the latter is
computationally significantly more efficient (see [2]).

We discuss in a separate companion paper [38] how to compare older versions of the Minimalist
Model to the new version of [7], [8] that we analyzed in this paper, at the level of the Hopf algebra
structure, and how one sees in those terms the advantage of the more recent formulation.
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Here the main point we want to stress is that, in the setting of quantum physics, the best
description of the generative process of the hierarchy of Feynman graphs organized by increasing
loop number in the asymptotic expansion is also determined by a Hopf algebra. There are two
main advantages of this algebraic formalism in physics:

(1) The algebraic structure governs the construction of the quantum solutions of the equations
of motion, through the Dyson–Schwinger equations recalled above, so that solutions can
be constructed through a combinatorial recursive procedure.

(2) The Hopf algebra formalism also transparently explains the renormalization process in
physics (namely the elimination of infinities, that is, the consistent extraction of finite
(meaningful) values from divergent Feynman integrals).

We will discuss more in detail here the role of the algebraic formalism in quantum field theory in
the recursive construction of solutions to the Dyson–Schwinger equations, as this is the aspect that
is more closely related to the properties of Merge that we discussed in the previous sections. We
will only sketch briefly in §6.2 the possible relevance of the algebraic formulation of renormalization
to linguistics models, as we plan to return to discuss that in a separate paper.

6.1. The recursive construction of Dyson–Schwinger equations. In the physics of renor-
malization in quantum field theory, the generative process for the hierarchical structure of Feynman
graphs is described equivalently by the Connes–Kreimer Hopf algebra of Feynman graphs men-
tioned above [15], or by a Hopf algebra of planar rooted trees (not necessarily binary), where the
tree structure describes the way in which subgraphs are nested inside Feynman graphs (see [21],
[30]). When formulated in terms of the Hopf algebra of trees, one can obtain a recursive con-
struction of the solutions of the equations of motion of the quantum system, the Dyson–Schwinger
equations, in terms of the combinatorics of trees, see [1], [20], [51].

This happens in the following way, as we outlined briefly in §2.3 and §3. The Hopf algebra H
of planar rooted trees and forests has product given by disjoint union and coproduct given by

∆(T ) =
∑

C

πC(T )⊗ ρC(T ) ,

where the left-hand-side πC(T ) of the coproduct is a forest obtained by cutting subtrees of T using
an “admissible cut” (not two cut legs on the same path from root to leaves) and the right-hand-
side ρC(T ) is the tree that remains attached to the root when the cut is performed. Note that this
is a form of the coproduct that we also used in (2.10).

One defines an operators B+ : H → H, as in Definition 2.8. Namely, B+ acts on a forest
T1⊔· · ·⊔Tm by creating a new rooted tree T where all the roots vr1 , . . . , vrm of the trees T1, . . . , Tm

are attached to a single new root vertex,

B(T1 · · · · · Tm) = T =
T1 T2 · · · Tn

.

As we observed in §2.3 and §3, this has exactly the structure of a Merge operator (though not
necessarily binary, as it can take an arbitrary number of input trees). The operator B+ satisfies
the identity

(6.1) ∆(B+(X)) = B+(X)⊗ 1 + (Id⊗B+) ◦∆(X),

for all X ∈ H. This identity is the Hochschild 1-cocycle condition (see [15], [1], [21]).

The combinatorial Dyson–Schwinger equation then takes the form of a fixed point equation

(6.2) X = B+(P (X)),
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where X =
∑

k≥1 xk is a formal series of elements xk ∈ Hk in the graded pieces of the Hopf algebra,

and P (t) =
∑

k≥0 akt
k with a0 = 1 is a formal power series (or polynomial). The simplest and

most fundamental such equation is the case where P is quadratic, P (X) = X2, which is the form
that we have encountered in (3.1), which governs the generative process of the core structure of
Merge, discussed in §3. The equation (6.2) has a unique solution X =

∑

k≥1 xk ([1], [21]) that can
be written in the recursive form

(6.3) xn+1 =

n∑

k=1

∑

j1+···+jk=n

akB
+(xj1 · · ·xjk),

with initial step x1 = B+(1). It is shown in [1], [21] that the cocycle property (6.1) of the operator
B is required to ensure that the coordinates xn of the solution of a Dyson–Schwinger equation
determine a Hopf subalgebra, though the construction of the solution (6.3) itself does not require
the cocycle condition (6.1). In the case of the linguistic Merge the basic combinatorial structure
is the same, with the recursion (6.3) corresponding to the core generative process of Merge, as we
described in §3.

For a short overview of how this kind of combinatorial Dyson–Schwinger equations recover the
physical equations of motion in quantum field theory, see [50]. For a more detailed treatment of
combinatorial Dyson–Schwinger equations see [51]. A discussion of the use of Dyson–Schwinger
equation in the context of the theory of computation is given in [18], following the approach to
Renormalization and Computation developed in [32], [33].

As we mentioned at the beginning of this section, the classical Euler–Lagrange equations of
motion express an optimality process given by a least action principle, and the quantum equa-
tions of motion given by the recursively solved Dyson–Schwinger equations, reflect this form of
optimization in the quantum setting. In this sense the core computational structure of syntax
defined by the Merge operator can be seen as being optimal and most fundamental, as it reflects
the structure of the physical Dyson–Schwinger equation (for the appropriate Hopf algebra) and
for the most basic (quadratic) form of the recursion.

One can ask whether there are any other characterizations of the syntactic Merge by optimality.
The optimization is usually done with respect to some real-valued cost functional (energy/action
in the case of physical systems). There are also other ways of thinking of optimization that do not
require an evaluation through a function with values in real numbers. For example, it is possible
to formulate optimization processes in a purely categorical framework (see for instance [37]), and
an optimality property for the syntactic Merge may similarly take some more abstract categorical
form. On the other hand it is also possible to consider minimization conditions with respect to
other types of “action functional” that replace energy in the case of computational systems. For
example, it is argued in [34] that complexity provides a suitable replacement for energy in the
context of the theory of computation. We leave these questions to further investigation.

6.2. Algebraic renormalization and its relevance to linguistics models. The second aspect
we mentioned above of the Hopf algebra formalism in physics is related to the mathematical
treatment of renormalization in physics. The renormalization process in quantum field theory is
a fundamental process that allows for the evaluation of Feynman integrals through a subtraction
of infinities that is compatible with the hierarchical generative process of graphs (that is, with the
subdivergences nested inside larger graphs). More precisely, one wants to extract a “meaningful”
(finite) part out of the calculation of a priori divergent Feynman integrals, in such a way that this
extraction of the “meaningful part” can be performed compatibly with what already assigned to
subgraphs inside of larger graphs (that is, renormalization of sub-divergences, in physics terms).



MATHEMATICAL STRUCTURE OF SYNTACTIC MERGE 37

An analogy with the linguistics setting immediately comes to mind, where one literally talks
about assignment of meaning (semantics) to syntactic parsing trees of sentences, discarding pos-
sibilities that are ruled out by semantics. One similarly encounters the requirement that such
assignment be done consistently across subtrees. For the moment this is purely an analogy, but
one can see that this can be enriched with actual precise mathematical content, by considering
an intermediate step between physics and linguistics, which is the extension of the formalism
of renormalization and Hopf algebra from physics to the theory of computation, developed by
Manin in [32], [33]. In this setting, one deals, as in physics, with a problem of subtraction of
infinities, which arise not from divergence of Feynman integrals but from non-computability (in
the form of divergence of computational time in the halting problem). A procedure of extraction
of computable “subfunctions” from non-decidable problems is organized in terms of a Hopf al-
gebra of flow charts (of algorithms) replacing the Hopf algebra of Feynman graphs. The role of
Dyson–Schwinger relations in this context was analyzed in [18].

More precisely, in the mathematical formulation of renormalization (see [15], [16]), the (regu-
larized) Feynman rules are described as a morphism of commutative algebras Φ : H → R, where
H is the Hopf algebra of Feynman graphs and R is an algebra of functions where regularization
of Feynman integrals takes place, such as Laurent series, with the structure of Rota–Baxter (RB)
algebra of weight −1. The RB structure captures the properties of the subtraction of the polar
part of the Laurent series and more general it models a good process of subtraction of a divergent
part. The coalgebra and antipode on H, together with the Rota–Baxter operator on R, determine
a Birkhoff factorization of Φ into a part Φ− that carries all the divergences and a part Φ+ that
gives the finite renormalized Feynman amplitudes (the actual physical quantities). This operation
carries within itself the consistent assignment of the meaningful convergent part across subgraphs,
with the coproduct of the Hopf algebra organizing the subgraphs.

We will not discuss any further in the present paper the linguistic analog for this Birkhoff
factorization, although we can mention a possible interesting direction of investigation. A version
of Birkhoff factorization taking place in semirings, with applications to the theory of computation
was developed in [36], [40]. There are models of syntactic parsing and of semantics that are based
on the same mathematical structure of semirings (see for instance [24], [45]). One can expect that
it should be possible to construct a mathematical model of a syntactic-semantic interface that
resembles the physical model of renormalization, with extraction of semantic meaning replacing
the extraction of renormalized physical values. We will consider this problem elsewhere, as a
separate paper.
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