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Subsequential transducers combine (input) language recognition with transduction and

thereby generalise classic deterministic automata as well as Mealy and Moore type state

machines. These well known subclasses all have a natural coalgebraic characterisation, and

the question arises whether their coalgebraic modelling can be extended to subsequential

transducers and their underlying structures. In this paper, we show that although subse-

quential structures cannot generally be regarded as coalgebras, the subclass of normalised

structures do form a subcategory of coalgebras. Moreover, normalised structures are reflec-

tive in the category of all subsequential structures, and a final normalised structure exists.

The existence and properties of the minimal subsequential transducer can be derived from

this result. We also show that for the class of subsequential structures in which all states are

accepting, an alternative coalgebraic representation is obtained by taking differentials. This

differential representation gives rise to a newmethod of deciding equivalence and comput-

ing minimal representations which does not involve normalisation. Both normalisation and

taking differentials can be formalised as functors into reflective subcategories of coalgebras,

and we can therefore see these constructions as coalgebraisation.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study subsequential transducers from a coalgebraic perspective. Subsequential transducers can be

described as deterministic automata which produce output words on transitions and terminal output at accepting states.

A subsequential transducer realises a partial word function, called its behaviour, by its transformation of accepted input

words to output words. This combination of language recognition and transductionmakes subsequential transducers useful

in areas such as lexical analysis, coding theory, computer arithmetic (cf. [13]) and more recently, in speech and language

processing (cf. [21,29]).

Subsequential transducers were introduced by Schützenberger [40] as a generalisation of sequential transducers [12].

They have since been studied, in particular, by Choffrut [9,10]who showed that subsequential transducers can beminimised

via a normalisation construction; that any partial word function is realised by a minimal subsequential transducer, and that

the Ginsburg–Rose characterisation theorem for sequential functions can be generalised to the subsequential case. Other

results may be found in [4,5,8].

In the abovementioned work, subsequential transducers were studied from the algebraic perspective on automata and

formal languages (cf. [11,12]) where syntax, congruence and initiality are fundamental notions. Coalgebra provides a dual

perspective based on general notions of behaviour, bisimilarity and finality. Many different types of state-based systems

have been identified as coalgebras (cf. [3,15,25,37]), but automata form the archetypical examples of coalgebras (over Set).
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In particular, classic deterministic automata and Mealy/Moore machines can all be modelled coalgebraically such that their

traditional semantics coincideswith the coalgebraic semantics (cf. [35,37]). Thesewell known automata classes formnatural

subclasses of subsequential transducers.

Our motivation for carrying out coalgebraic modelling is that by identifying a class of automata as coalgebras, we obtain

general results regarding bisimulation, minimisation and structural theory (cf. [37]). We also gain a larger mathematical

perspective in which to view existing results and constructions. Moreover, having a coalgebraic modelling opens up the

possibility of applying general results and techniques for specifying properties of coalgebras using logic languages, see for

example [7,26,31]. In this paper we focus on the basic parts of the coalgebraic modelling, and leave logic and specification

as future work.

The main aim of this paper is to place subsequential transducers and their underlying structures in a coalgebraic frame-

work. In particular, Choffrut’s results on the existence of a minimal subsequential transducer [10] strongly suggest that a

final object exists at some level. On the other hand, for someone familiar with coalgebra it is not difficult to see that the

word function semantics of subsequential transducers is not captured by the associated coalgebraic notion of behaviour.

We would like to obtain a clear picture of the mathematical underpinnings of these observations. This paper has three main

parts.

In the first part (Section 3), we define subsequential transducers, structures and morphisms. We show that the sub-

categories of coaccessible, normalised and minimal subsequential structures form a sequence of nested, full, reflective

subcategories of the category of all subsequential structures. Each move to a reflective subcategory can be seen as a step

towards an optimal representation. These results give a clear break-down of the essential steps of minimisation and parallel

known results for deterministic automata (cf. [1,2]).

In the second part (Section 4), we turn to the coalgebraic modelling. Although subsequential structures are easily seen to

have the type of coalgebras for a functor S , the associated notion of S-coalgebramorphismdoes not include all subsequential

morphisms. Hence the category Subseq of subsequential structures and morphisms is not coalgebraic. However, we show

that the subcategory NSubseq of normalised subsequential structures is a full subcategory of Coalg(S). This result is the
basis for our slogan that normalisation is coalgebraisation. Moreover, we prove that NSubseq has a final object �, and since

NSubseq is reflective in Subseq, � is also final in Subseq. Finally, we describe how to adapt the minimisation algorithm of

DFAs to normalised structures.

In the third part (Section 5), we present an alternative coalgebraic modelling for subsequential transducers in which

all states are final. We call such subsequential transducers (and their underlying structures) step-by-step. This coalgebraic

representation is obtained by a structural transformation which corresponds to taking the differential of the behaviour.

These so-called differential representations can be seen as sequential transducers which produce output in the free group

B(∗) rather than the free monoid B∗, and they can be modelled as coalgebras for a functor S (∗)
0 . We can therefore also say

that taking differentials is coalgebraisation. Moreover, like normalisation, taking differentials is functorial and a reflector.

The practical interest of this coalgebraic characterisation is that it provides us with an alternative method for deciding

equivalence of step-by-step transducers which does not require normalisation.

This paper is an extended and improved version of [18], and its main contributions are: (1) The classification of various

subclasses of subsequential structures and transducers in terms of reflective subcategories and their coalgebraic or non-

coalgebraic nature. In particular, the observation that normalisation and taking differentials are reflectors to categories of

coalgebras. (2) The identification of a final subsequential structurewhich explains existing results onminimal subsequential

transducers from [10]. (3) A new approach for deciding equivalence of step-by-step transducers.

2. Preliminaries

2.1. Functions and words

Let X and Y be sets. A (partial) function from X to Y is denoted by f : X ��� Y . We will write f : X → Y when f is a

total function from X to Y . The domain and range of f : X ��� Y are denoted dom(f ) and ran(f ), respectively. For a function

f : X ��� Y , and subsets C ⊆ X and D ⊆ Y , the f -image of C is denoted f (C) = {f (x) ∈ Y | x ∈ C ∩ dom(f )}, the inverse

f -image of D is f−1(D) = {x ∈ dom(f ) | f (x) ∈ D}, and the restriction of f to C is f�C .
The free monoid over a set X is the monoid (X∗, ε, � ) where X∗ is the set of all words over X , ε is the empty word, and

u �w, or simply uw, denotes the concatenation of two words u,w ∈ X∗. For all u,w ∈ X∗, we write u � w if u is a prefix of

w, i.e., there exists a v ∈ X∗ such thatw = uv. The length of a wordw is denoted by |w|. If f , g : X → B∗, then f � g : X → B∗
is the function defined by (f � g)(x) = f (x) � g(x). The free group over X is denoted by X(∗), and the formal inverse of x in

X(∗) is written x. For w ∈ X∗, the inverse of w = x1x2 . . . xk is w = xk . . . x2 x1, and ε = ε. The symbol � also denotes

multiplication in X(∗). Hence, if w = uv ∈ X∗, then u �w = v and w � v = u. An example where u is not a prefix of w ∈ X∗,
is given by aab � ab = ab � b. A subset T ⊆ X∗ is called prefix-closed if whenever u � w and w ∈ T then u ∈ T . A partial

function f : X∗ ��� Y∗ is prefix-preserving if dom(f ) is prefix-closed, and for all u,w ∈ dom(f ), if u � w then f (u) � f (w).
For a set S ⊆ X∗ of words, we denote by lcp(S) the longest common prefix of words in S with the convention that lcp(∅) is
undefined.
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2.2. Coalgebra

Some previous familiarity with coalgebra will be useful to the reader, but we will provide all the basic coalgebraic

definitions relevant for this paper. For a more detailed introduction, including many examples, we refer to Rutten [37]. We

do, however, assume the reader is familiar with basic notions such as category and functor, and the constructions of product,

coproduct and exponentiation. In general, for an object C in a category C, we denote the identity C-morphism on C by idC .

Our coalgebras will be based on Set, the category of sets and total functions. Given a functor F : Set → Set, an F -

coalgebra is a pair S = (S, σ ) where S is a set and σ : S → F (S) is a function, often called an F -coalgebra structure on S.

A function f : S1 → S2 is an F -coalgebra morphism from (S1, σ1) to (S2, σ2) if F (f ) ◦ σ1 = σ2 ◦ f , that is, if the following

diagram commutes:

S1

σ1

��

f �� S2

σ2

��
F (S1)

F (f ) �� F (S2)

F -coalgebras and F -coalgebra morphisms form a category which we denote by Coalg(F ).
Let (S, σ )be anF -coalgebra. AnF -coalgebra (S′, σ ′) is a subcoalgebraof (S, σ ), if S′ ⊆ S and the inclusionmap ι : S′ → S

is an F -coalgebra morphism. Subcoalgebras are determined by their carrier ([37, Proposition 6.1]), meaning that if (S′, σ ′)
and (S′, σ ′′) are subcoalgebras of (S, σ ), then σ ′ = σ ′′. We can therefore think of the subcoalgebras of (S, σ ) as certain

subsets of S. If the intersection of all subcoalgebras containing a state s ∈ S is again a subcoalgebra ofS = (S, σ ), thenwe call

it the subcoalgebra generated by s inS anddenote it by 〈s〉S.Wewill also use the fact that if f is anF -coalgebramorphism from

(S1, σ1) to (S2, σ2), then the image f (S1) is a subcoalgebra of (S2, σ2). If f is injective, then (S1, σ1) is isomorphic to f (S2),
since any bijective S-coalgebra morphism is an isomorphism inCoalg(S). We refer to [37, Proposition 2.3, Theorem 6.3] for

these last two facts.

Given an F -coalgebra S = (S, σ ) a relation R ⊆ S × S is a congruence on S, if R is the kernel of some F -coalgebra

morphism f from (S, σ ) to some (S′, σ ′). The identity relation on S is a congruence, and congruences are closed under

unions. Consequently, a largest congruence on S always exists (cf. [17]). A congruence R is an equivalence relation and we

denote the set of R-equivalence classes on S by S/R. If R is a congruence, then there exists a unique F -coalgebra structure

σR : S/R → F (S/R) such that the quotient map ρR : S → S/R is an F -coalgebra morphism from (S, σ ) to (S/R, σR) (see

e.g. [37, Propositions 5.7 and 5.8]). We denote the quotient structure (S/R, σR) by S/R. An F -coalgebra S is called minimal

if it has no proper quotients, that is, if the largest congruence on S is the identity relation.

Coalgebras come with abstract notions of behaviour and bisimulation. Let two F -coalgebras S1 = (S1, σ1) and S2 =
(S2, σ2) be given. Two states s1 ∈ S1 and s2 ∈ S2 are called behaviourally equivalent if there exist an F -coalgebra (S, σ ) and
F -coalgebra morphisms fj from (Sj, σj) to (S, σ ), j ∈ {1, 2}, such that f1(s1) = f2(s2), in which case we write s1 ≡F s2. On

an F -coalgebra S, the behavioural equivalence relation ≡F is the largest congruence on S, see e.g. [17]. One way of proving

that two states are behaviourally equivalent is to show that they are linked by a bisimulation. A relation Z ⊆ S1 × S2 is an

F -bisimulation between S1 and S2, if Z can be equipped with coalgebraic structure ζ : Z → F (Z) such that the projections

πi : Z → Si, i ∈ {1, 2}, are F -coalgebra morphisms. Two states s1 ∈ S1 and s2 ∈ S2 are F -bisimilar (notation: s1 ∼F s2)

if there exists an F -bisimulation Z between S1 and S2 such that 〈s1, s2〉 ∈ Z. It is always the case that s1 ∼F s2 implies

s1 ≡F s2, however, the converse holds only under certain conditions on F (cf. [37, Theorem 4.3]).

An object � in a category C is a final object in C, if for any C-object C there is a unique C-morphism hC from C to �

called the finalC-morphism (from C). Note that h� = id�. A final F -coalgebra is a final object inCoalg(F ). In general, a final

F -coalgebra need not exist, but if it does, it is unique up to isomorphism, andwewill therefore sometimes speak of the final

coalgebra. The elements of a final F -coalgebra can be thought of as all possible behaviours of F -coalgebras. The following

theorem summarises some fundamental properties of final F -coalgebras. The proof can be found in [37, Section 9].

Theorem 2.1. Let � = (S�, σ�) be a final F -coalgebra.

1. For all s, t ∈ S�: s ∼F t iff s = t.

2. All subcoalgebras of � are minimal.

Example 2.2. Many known structures are identified as being coalgebras (see e.g. [37]). We mention in particular two types

of automata which are special instances of subsequential transducers. The first is classical deterministic automata over an

alphabet A. A classic deterministic automaton can be seen as a map 〈o, d〉 : Q → 2 × QA, where d : Q → QA is the next-

state function and the output function o : Q → 2 = {0, 1} defines whether a state q ∈ Q is accepting (o(q) = 1) or not

(o(q) = 0). Suchmaps are coalgebras for the functor Aut(X) = 2×XA, and it is straightforward to show that Aut -coalgebra
morphisms coincide with the well known morphisms of deterministic automata; that the final Aut -coalgebra consists of

the set of all languages P(A∗), and the final Aut -coalgebra morphism is the map that sends a state q to the set of words

accepted from q (see e.g. [35]).
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The second example is given byMealymachines (cf. [28]). AMealymachine with input in A and output in B is a coalgebra

of the type t : Q → (B×Q)A (cf. [37]), and afinalMealy-coalgebra is obtained by equipping the set {f : A+ → B} of functions
which map non-empty words over A to Bwith the following structure: f �→ λa.〈f (a), fa〉where fa(w) = f (a) � f (aw) for all
w ∈ A+.

In this paper all functors considered are polynomial, i.e., they are constructed from constant sets, identity, product,

coproduct and exponentiation. We will make use of the following facts.

Proposition 2.3. Let F : Set → Set be a polynomial functor.

1. The final F -coalgebra exists.

2. For all F -coalgebras (S, σ ) and all s, t ∈ S: s ∼F t iff s ≡F t.

3. For all F -coalgebras (S, σ ), the bisimilarity relation ∼F is the largest congruence on S, hence S/∼F is a minimal F -

coalgebra.

4. For all F -coalgebras S = (S, σ ) and all s ∈ S, the generated subcoalgebra 〈s〉S exists.

5. For all F -coalgebras S1 and S2 containing states s1 and s2, respectively: s1 ∼F s2 iff κ1(s1) ∼F κ2(s2), where κi : Si →
S1 + S2, i ∈ {1, 2}, are the coproduct injections.

Proof. Theseproperties follow from the fact that polynomial functors are standard, continuous andpreserveweakpullbacks.

Details may be found in [37]. �

2.3. Reflective subcategories

We recall the definition and some facts of reflective subcategories (see e.g. [1,27]). Let C be a subcategory of D, and D an

object in D. A C-reflection arrow for D is a D-morphism rD : D → CD to some C-object CD which has the following universal

property. For any C′ ∈ C and anyD-morphism f : D → C′ there is a uniqueC-morphism f ′ : CD → C′ such that f = f ′ ◦ rD.

That is, the following diagram commutes.

D
rD ��

f
���

��
��

��
� CD

∃!f ′
���
�
�

C′
The subcategoryC ofD is reflective inD if for everyD-objectD there is aC-reflection arrow forD. As an example, wemention

that in the category of deterministic automata (DAs) the subcategory of minimal DAs is reflective (see [2, Chapter VI.1] and

also [1, Example, 4.17]).

Anequivalent formulationof reflective subcategory is the following.A subcategoryCofD is reflective inD if theembedding

functor E : C → D has a left adjoint R : D → C. This left adjoint R is called a reflector. Once a choice of reflection arrow

has beenmade for everyD-object D, the functor R can be defined by R (D) = CD, and for f : D1 → D2, R (f ) is theC-arrow

determined by the following diagram:

D1

f

��

rD1 �� R (D1)

R (f )

��
D2

rD2 �� R (D2)

This implies that ifC is reflective inD, then afinal objectC0 inC is alsofinal inD, due to thebijectionofHom-sets:D(D, C0) ∼=
C(R (D), C0). Namely, the unique morphism hR (D) : R (D) → C0 corresponds to a unique morphism hD : D → C0. Finally,

since reflectors are adjoints, and adjoints compose, if A is a reflective subcategory of B, and B is a reflective subcategory of

C, then A is a reflective subcategory of C.

3. Subsequential structures and transducers

In this sectionwereviewthebasicdefinitionsof subsequential transducers (cf. [9,10]), anddefinesubsequential structures

and their morphisms. We characterise the full subcategories of coaccessible, normalised and minimal subsequential struc-

tures. In particular, we show that they form a sequence of nested, reflective subcategories in the category of all subsequential

structures.

3.1. Basic definitions

Throughout this paper, we assume we are given two (possibly infinite) sets A and B, which we refer to as the input and

output alphabet, respectively. A subsequential transducer can be seen as a deterministic automatonwhich for every accepted
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input word from A∗ produces an output word in B∗. If the input word leads to a non-accepting state, then the output will be

considered undefined. The transition structure is assumed deterministic, but not total, that is, for each state and each input

letter there is at most one transition available. The output is generated by outputting words on transitions and a terminal

output word at final states. Moreover, the subsequential transducer may be equipped with an initial prefix which is a word

that will be prefixed to the output generated from processing the input.

In coalgebra, we usually focus on structures without a designated initial state, and this will also be the case here. The

underlying structure of a subsequential transducer is obtained by leaving out its initial state and initial prefix.

Definition 3.1 (subsequential structure and transducer). A subsequential structure is a 4-tuple S = (Q , o, d, r) where Q is a

set of states, o : Q → (A ��� B∗) is an output function, d : Q → (A ��� Q) is a next-state function and r : Q ��� B∗ is a

terminal output function. We require that for all q ∈ Q , dom(o(q)) = dom(d(q)) =: supp(q), called the support of q. The

set of final (or accepting) states of S is F := dom(r). If q �∈ F then q is called an internal state. The underlying deterministic

automaton of S is the structure (Q , d, F). If Q = ∅, then S is called the empty subsequential structure.

A subsequential transducer is a 6-tupleT = (Q , o, d, r, i,m)where (Q , o, d, r) is a subsequential structure, and if Q �= ∅,
i ∈ Q is the initial state, andm ∈ B∗ is the initial prefix. In case Q = ∅, i andm are considered undefined, and T is called the

empty transducer.

The reasonwe allow the empty subsequential structure/transducer is that later (cf. Definition 3.13)wewant the operation

of taking the coaccessible part to be amap on subsequential structures, and this operation can result in an empty set of states.

A path in a subsequential structure S = (Q , o, d, r) starting in state q0 and ending in state qn is a sequence

(q0, a0,w0), (q1, a1,w1), . . . , (qn−1, an−1,wn−1), qn where n ≥ 0, q0, . . . , qn are states in Q , a0, . . . , an−1 are elements

of A and w0, . . . ,wn−1 are words in B∗ such that for all j < n, d(qj)(aj) = qj+1 and o(qj)(aj) = wj . The parameter n is

called the length of the path, the words a0a1 . . . an−1 and w0w1 . . .wn−1 are called the input and output labels of the path,

respectively. A path is called final if it ends in a final state, and a state q is coaccessible if there exists a final path starting in

q. The set of coaccessible states of a subsequential structure S (or transducer T) will be denoted by Coacc(S) (respectively,
Coacc(T)). In a subsequential transducer, a state q is accessible (or reachable) if there is a path from the initial state to q. The

set of accessible states of a subsequential transducerT are denoted by Acc(T). A subsequential transducer is called trimmed,

if all its states are accessible and coaccessible.

Let S = (Q , o, d, r) be a subsequential structure and q ∈ Q a state.We extend the output and next-state functions at q to

maps o(q) : A∗ ��� B∗ and d(q) : A∗ ��� Q in the following standardmanner. For a state q ∈ Q , a ∈ A andw ∈ A∗, we define

d(q)(ε) = q, d(q)(wa) = d(d(q)(w))(a),

o(q)(ε) = ε, o(q)(wa) = o(q)(w) � o(d(q)(w))(a).

with the proviso that the left side is defined only if the right side is. The set of words accepted from q in the underlying DA

(Q , d, F) is called the input language of q and we denote it by L(q), i.e.,

L(q) = {w ∈ A∗ | d(q)(w) ∈ F}. (1)

A subsequential transducer T realises a partial word function by its transformation of input words to output words.

Similarly, given a subsequential structure S and a state q in S, we can consider the partial word function realised by S when

starting in q.

Definition 3.2 (behaviour). Given a subsequential structure S = (Q , o, d, r) and a state q ∈ Q , the behaviour of q (in S) is

the partial function [[q]]S : A∗ ��� B∗ defined for all w ∈ L(q) by:

[[q]]S(w) = o(q)(w) � r(d(q)(w)). (2)

Given two subsequential structures S and S
′, two states q in S and q′ in S

′ are equivalent if [[q]]S = [[q′]]S′ .
The behaviourof a subsequential transducerT = (S, i,m) is the partial function [[T]] : A∗ ��� B∗ defined for allw ∈ L(i)

by:

[[T]](w) = m � [[i]]S(w). (3)

We say that T realises [[T]], and two subsequential transducers T1 and T2 are equivalent if [[T1]] = [[T2]].
For notational simplicity we sometimes leave out the subscript from [[q]]S when S is clear from the context, or we use

some appropriate indexing, for example, [[q]]1 instead of [[q]]S1
.

Example 3.3. Consider the subsequential transducersT1 andT2 depicted below. The initial state ismarked by an incoming,

sourceless arrow labelled with the initial prefix; a transition from a state q to a state q′ on input letter a with output w is
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illustrated as an arrow from q to q′ with label a|w; and final states are marked with an outgoing double-arrow labelled with

the terminal output.

T1 :
ε
��

q2

a|b
��
q1

a|a
��

b|a �� q3

ε

�� T2 :
a
��

s2

a|ε
��
s1

a|ba
��

b|ε �� s3

ε

��

It is not difficult to see that T1 and T2 compute the same partial function f : {a, b}∗ ��� {a, b}∗, where dom(f ) = {(aa)kb |
k ∈ ω}, and for all k ∈ ω, f ((aa)kb) = (ab)ka. Hence T1 and T2 are equivalent.

Choffrut introduced in [10] a notion of morphism between trimmed subsequential transducers. This definition is based

on his observation in [9] that it is possible to systematically shift some of the output letters “upstream” without changing

the input–output behaviour. For example, in Example 3.3 above, the two transducers realise the same function, and the

underlying DAs are isomorphic. The only difference is that internally T2 produces its output a bit faster than T1. Informally,

Choffrut’s definition of morphism is a map between states which respects transitions of the underlying DAs together with

the requirement that an output shift exists which makes the two subsequential transducers produce their output in a

synchronised manner.

We wish to define a notion of morphism for arbitrary subsequential transducers and in particular for subsequential

structures. We do so by a slight variation on Choffrut’s definition. See Remark 3.12 at the end of this section for details

on how the two relate to each other. 2 Since we view subsequential structures as more fundamental than subsequential

transducers, we will first define morphisms between subsequential structures, and then add conditions for the transducer

case.We note that the conditions (next) and (init) in Definition 3.4 below should be read as saying that the left side is defined

if and only if the right side is, and if both are defined the two must be equal.

Definition 3.4 (subsequential morphism). Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be two subsequential struc-

tures. A functionα : Q1 ��� Q2 is a subsequential morphism from S1 to S2 (notation:α : S1 ��� S2), if there exists a function

β : Q1 → B∗ such that the following conditions are satisfied for all q ∈ Q1:

(next) ∀a ∈ A : α(d1(q)(a)) = d2(α(q))(a),

(out) ∀a ∈ A : if q, d1(q)(a) ∈ dom(α)

then β(q) � o2(α(q))(a) = o1(q)(a) � β(d1(q)(a)),

(acc) α−1(F2) = F1,

(term-out) if q ∈ F1 then β(q) � r2(α(q)) = r1(q).

Given two subsequential transducers T1 = (S1, i1,m1) and T2 = (S2, i2,m2), a subsequential (transducer) morphism from

T1 to T2 is a subsequential morphism α : S1 ��� S2 such that α and its witnessing function β : Q1 → B∗ satisfy:

(init) α(i1) = i2,

(ε-in) if i1 ∈ dom(α) then m2 = m1 � β(i1).

Remark 3.5. We will use the notation (α, β) : S1 ��� S2 to say that α is a subsequential morphism from S1 to S2 with

witnessing function β .

Condition (next) can be illustrated by the diagrams in Fig. 1. The diagrams should be read as follows. The left side of (next)

is defined iff the solid arrows of the (next-left) diagram are given. Consequently, the dotted arrows should exist such that

the resulting diagram commutes. Similarly, for the diagram (next-right).

Onemight have expected that in the (next-left) diagram the upper arrowwith label α should have been solid rather than

the lower one. The next-state condition corresponding to this variation is the condition required of proper state mappings

of partial DAs in [12, III.4], and it ensures that in transducers, α must be defined on all accessible states. Definition 3.4, on

the other hand, ensures that α must be defined on all coaccessible states (Lemma 3.8). We find the (next-left) condition

appropriate since we view subsequential structures as potential subsequential transducers, namely, each state in a subse-

quential structure has the potential to become the initial state of a subsequential transducer. A morphism of subsequential

structures should therefore include all states that have the potential to become a transducer with non-trivial behaviour, i.e.,

all coaccessible states.

2 We remark that our current definition of subsequential morphisms differs from the one given earlier in [18], which turns out to be the correct notion for

coaccessible structures, but not for subsequential structures in general.
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(next-left) (next-right)

q

a

��

α �� α(q)

a

��
d1(q)(a)

α �� α(d1(q)(a))

q

a

��

α �� α(q)

a

��
d1(q)(a)

α �� d2(α(q))(a)

Fig. 1. Diagrammatic description of condition (next).

Example 3.6. We can now verify that in Example 3.3 the map α(qj) = sj , j ∈ {1, 2, 3}, is a subsequential morphism from

T1 to T2 by taking β(q1) = a, β(q2) = ba and β(q3) = ε. For example, to see that the (out) condition holds, we have

β(q1) � o2(s1)(a) = a � ba = a � ba = o1(q1)(a) � β(q2),

β(q2) � o2(s2)(a) = ba � ε = b � a = o1(q2)(a) � β(q1),

β(q1) � o2(s1)(b) = a � ε = a � ε = o1(q1)(b) � β(q3).

We allow a subsequential morphism α to be partial in order to be able to ignore states that have trivial behaviour. This

is the reason why the condition (out) is restricted to states in dom(α). We illustrate with an example.

Example 3.7. Consider the two variations on the subsequential transducers of Example 3.3.

T
′
1 :

ε
��

q4 q2

a|b
��b|a		 q1

a|a




b|a �� q3

ε

�� T
′
2 :

a
��

s4 s2

a|ε
��b|b		 s1

a|ba
��

b|ε �� s3

ε

��

It can easily be confirmed that the (now partial) map α(qj) = sj , j ∈ {1, 2, 3}, is a subsequential morphism from T
′
1 to T

′
2

by defining β as in Example 3.6 for q1, q2, q3, and letting β(q4) be any value in B∗. The states q4 and s4 are not coaccessible,

and hence do not contribute to the behaviour of T
′
1 and T

′
2. In Lemma 3.15 below, we will see that the witnessing function

β of any subsequential morphism is uniquely defined on all coaccessible states. In this example, this implies that q4 cannot

be in the domain of any subsequential morphism from T
′
1 to T

′
2, since there is no value for β(q4) ∈ B∗ which would satisfy

the (out) condition.

We now show that states with trivial behaviour are the only states that are allowed to be ignored by subsequential

morphisms, and that they respect input languages.

Lemma 3.8. Let S1 and S2 be subsequential structures and α : S1 ��� S2 a subsequential morphism.

1. Coacc(S1) ⊆ dom(α).
2. For all q ∈ dom(α): L(q) = L(α(q)).
3. For all q ∈ dom(α): q ∈ Coacc(S1) iff α(q) ∈ Coacc(S2).

Proof. LetS1 = (Q1, o1, d1, r1) andS2 = (Q2, o2, d2, r2), and assumeα : S1 ��� S2. Item (1): By definition, q ∈ Coacc(S1)
iff there exists aw ∈ A∗ such that d1(q)(w) ∈ F1.We show by induction on the length ofw that for all q ∈ Q1, d1(q)(w) ∈ F1
implies q ∈ dom(α). Base case: If d1(q)(ε) = q ∈ F1, then by (acc) we have α(q) ∈ F2, hence q ∈ dom(α). The induction

step follows easily from (next-left) and the induction hypothesis.

Item (2): We prove by induction on the length of w ∈ A∗ that for all q ∈ dom(α): d1(q)(w) ∈ F1 iff d2(α(q))(w) ∈ F2.

Item (2) then follows immediately. The base case follows from (acc). For the induction step, let a ∈ A and v ∈ A∗. We

have:

d1(d1(q)(a))(v) ∈ F1
(IH)⇐⇒ d2(α(d1(q)(a)))(v) ∈ F2

(next)⇐⇒ d2(d2(α(q))(a))(v) ∈ F2

and hence d1(q)(av) ∈ F1 iff d2(α(q))(av) ∈ F2.

Item (3) follows from item (2), since for all q ∈ Q1, q ∈ Coacc(S1) iff L(q) �= ∅, similarly for α(q). �

Subsequential morphisms preserve the behaviour of subsequential transducers, but not necessarily the behaviour of

states, i.e., α : S1 ��� S2 does not imply that for all q in dom(α), [[q]]1 = [[α(q)]]2. This can be observed in Example 3.3.
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Instead, given a subsequential morphism α with witnessing function β , the state behaviour of α(q) can be obtained from

the state behaviour of q by explicit mention of β(q).

Proposition 3.9. Let T = (S1, i1,m1) and T2 = (S2, i2,m2) be subsequential transducers. We have:

1. If (α, β) : S1 ��� S2, then for all q ∈ dom(α) : [[q]]1 = β(q) � [[α(q)]]2.
2. If α : T1 ��� T2, then [[T1]] = [[T2]].

Proof. Item (1): Let S1 = (Q1, o1, d1, r1), S2 = (Q2, o2, d2, r2) and assume that (α, β) : S1 ��� S2. From Lemma 3.8(2) it

follows immediately that for all q ∈ dom(α), dom([[q]]1) = dom([[α(q)]]2), and, in particular, [[q]]1 is the empty map

if and only if [[α(q)]]2 is the empty map. We prove by induction on the length of w ∈ dom([[q]]1) that [[q]]1(w) =
β(q) � [[α(q)]]2(w). Base case:

[[q]]1(ε) = r1(q)
(term−out)= β(q) � r2(α(q)) = β(q) � [[α(q)]]2(ε).

Induction step: Letw = av ∈ dom([[q]]1) where a ∈ A and v ∈ A∗. Note that this implies that q and d(q)(a) are in dom(α).
We have:

[[q]]1(av) = o1(q)(a) � [[d1(q)(a)]]1(v)
(IH)= o1(q)(a) � β(d1(q)(a)) � [[α(d1(q)(a))]]2(v)
(out)= β(q) � o2(α(q))(a) � [[α(d1(q)(a))]]2(v)
(next)= β(q) � o2(α(q))(a) � [[d2(α(q))(a)]]2(v)
= β(q) � [[α(q)]](av).

Item (2): Let T1 = (S1, i1,m2), T2 = (S2, i2,m2) and assume (α, β) : T1 ��� T2. First consider the case where i1 �∈
dom(α). Then (init) implies that i2 is undefined and hence T2 is empty, and by Lemma 3.8(1), i1 �∈ Coacc(T1). Hence [[T1]]
and [[T2]] are both the empty map. Now assume that i1 ∈ dom(α). By definition, for w ∈ A∗: [[T1]](w) = m1 � [[i1]]1(w).
From item (1) and (init), we get [[T1]](w) = m1 � β(i1) � [[i2]]2(w), and finally from (ε-in), [[T1]](w) = m2 � [[i2]]2(w) =
[[T2]](w). �

For a subsequential structure S = (Q , o, d, r), we define the identity morphism idS on S to be the identity map idQ on

the state set Q . It is easily seen that idQ is a subsequential morphism from S to S by taking β = ε (the constant function

equal to ε everywhere). Similarly, for a subsequential transducer T with state set Q , the identity morphism on T is defined

as idT := idQ . The next lemma shows that subsequential morphisms can be composed.

Lemma 3.10. Let Sj , j ∈ {1, 2, 3}, be subsequential structures, and let Tj , j ∈ {1, 2, 3}, be subsequential transducers.
1. If α1 : S1 ��� S2 and α2 : S2 ��� S3 then α2 ◦ α1 : S1 ��� S3.

2. If α1 : T1 ��� T2 and α2 : T2 ��� T3 then α2 ◦ α1 : S1 ��� S3.

Proof. Item (1): Assume (α1, β1) : S1 ��� S2 and (α2, β2) : S2 ��� S3. Let β : Q1 → B∗ be defined by β(q) =
β1(q) � β2(α1(q)) ifq ∈ dom(α)andβ(q) = β1(q) ifq ∈ Q1\dom(α1). It is straightforward tocheck that (α2◦α1, β) : S1 ���
S3. Item (2) can easily be verified using item (1). �

Hence subsequential structures and subsequential morphisms form a category Subseq, and subsequential transducers

and subsequential transducer morphisms form a category SubseqTra. Note that although subsequential morphisms allow

a non-trivial output shift β , isomorphisms in Subseq do not.

Lemma 3.11. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be subsequential structures. A subsequential morphism

α : S1 ��� S2 is an isomorphism iff α is a bijection and its witnessing function β is constant equal to ε on all coaccessible states.

Proof. Suppose (α1, β1) : S1 ��� S2 and (α2, β2) : S2 ��� S1 such that α2 ◦ α1 = idS1
and α1 ◦ α2 = idS2

. Clearly,

α1 : Q1 → Q2 is a bijection. Recall that the free group inverse of a word w ∈ B∗ is denoted w. From condition (term-out)

we get that for all q ∈ F1: β1(q) = r1(q) � r2(α1(q)) and β2(α1(q)) = r2(α1(q)) � r1(q). This means that β1(q) = β2(α(q)).
Since β1 and β2 take values in B∗, we must have that β1(q) = β2(α1(q)) = ε for all q ∈ F1. Using condition (out) and

induction on the distance of a state q to F1, we can extend this argument to show that β1(q) = β2(α1(q)) = ε for all

q ∈ Coacc(S1). �
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Many interesting results on subsequential transducers, subsequential functions3 and their relationship with rational

functions can be found in [5,6,8–10,32], including a characterisation of subsequential functions [9] which generalises the

Ginsburg–Rose theorem for sequential functions, and methods of determinisation [5].

Remark3.12. Definition3.4 is adapted fromChoffrut’sdefinition in [10]ofmorphismsof trimmedsubsequential transducers.

Wemake a few remarks on the differences: (i) Choffrut allows β to take values in B∗ ∪B∗, where B∗ = {w | w ∈ B∗} ⊆ B(∗).

This slightlymoregeneraldefinitionallowsmorphisms toexist fromT1 toT2, also ifT2 sometimesproduces itsoutput slower

thanT1.We find this an unnecessary generalisation, since it is not needed to prove the existence of aminimal subsequential

transducer (cf. Corollary 4.13). (ii) Choffrut also defines a subsequential morphism as a partial map α, however, since all

states in a trimmed subsequential transducer are coaccessible, it follows from conditions (acc) and (next) (cf. Lemma 3.8(i))

that α must be a total function. (iii) Choffrut explicitly includes the witnessing function β in his definition of morphisms

of subsequential transducers, i.e., his subsequential morphisms are pairs. We will see in Lemma 3.15 that a subsequential

morphism α between trimmed transducers, has exactly one witness β , hence β is implicitly given by α.

3.2. Coaccessible structures

We call a subsequential structure (or transducer) coaccessible, if all its states are coaccessible.We denote byCSubseq the

full subcategory ofSubseq consisting of coaccessible subsequential structures; similarly,CSubseqTra is the full subcategory

of SubseqTra consisting of coaccessible subsequential transducers.

It is well known that given a finite (partial) deterministic automaton, one can obtain the coaccessible part by computing

the states that are backwards reachable from the final states, and the same, of course, holds for subsequential structures,

since coaccessibility is a property defined by the underlying DA.

Definition 3.13. Let S = (Q , o, d, r) be a subsequential structure. We define C(S) := (Q ′, o′, d′, r) where Q ′ = Coacc(S)
and o′ and d′ are the restrictions of o and d to Q ′, i.e., for all q ∈ Q ′ and a ∈ A, o′(q)(a) = o(q)(a) and d′(q)(a) = d(q)(a), if
d(q)(a) ∈ Q ′, otherwise o′(q)(a) and d′(q)(a) are undefined.

The following lemma is clear from the definition.

Lemma 3.14. If S is a subsequential structure, then C(S) is a coaccessible subsequential structure.

We now show that Definition 3.4 ensures that the witnessing output shift function β is uniquely defined on coaccessible

states.

Lemma3.15. LetS1 = (Q1, o1, d1, r1)andS2 = (Q2, o2, d2, r2)be subsequential structures andα : S1 ��� S2 a subsequential

morphism. If β : Q1 → B∗ and β ′ : Q1 → B∗ are both witnessing functions for α, then β�Coacc(S1)= β ′�Coacc(S1).

Proof. We show that for all q ∈ Q1 and all w ∈ A∗, if d1(q)(w) ∈ F1 then β(q) = β ′(q). The proof is by induction on the

length of w. In the base case, i.e., q ∈ F1, it follows from (term-out) that β(q) = β ′(q). For the induction step, assume that

a ∈ A and v ∈ A∗ such that d1(q)(av) ∈ F1, and let qa = d1(q)(a). By induction hypothesis (IH) and (out) it follows that

β(q)
(out)= o1(q)(a) � β(qa) � o2(α(q))(a)

(IH)= o1(q)(a) � β ′(qa) � o2(α(q))(a)
(out)= β ′(q). �

In the previous section, we observed in Lemma 3.8(1) that a subsequential morphism must be defined on all coacces-

sible states, hence the morphisms in CSubseq are total maps. Together with Lemma 3.15, this leads us to the following

characterisation of subsequential morphisms between coaccessible structures.

Proposition 3.16. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be coaccessible subsequential structures. A function

α : Q1 ��� Q2 is a subsequential morphism from S1 to S2 if and only if dom(α) = Q1 and there exists a unique function

β : Q1 → B∗ such that the following conditions are satisfied for all q ∈ Q1:

(supp) supp(q) = supp(α(q)),

(next)C ∀a ∈ supp(q) : α(d1(q)(a)) = d2(α(q))(a),

(out)C ∀a ∈ supp(q) : β(q) � o2(α(q))(a) = o1(q)(a) � β(d1(q)(a)),

(acc) α−1(F2) = F1,

(term-out) if q ∈ F1 then β(q) � r2(α(q)) = r1(q).

3 A function f : A∗ ��� B∗ is called subsequential, if f is the behaviour of some finite subsequential transducer T, i.e., T has only finitely many states and

transitions.
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Proof. First assume that α is a subsequential morphismwith witnessing function β . By Lemma 3.8(1), α is total, and hence

condition (next) ensures that (supp) and (next)C holds. The totality of α and (out) together imply that (out)C holds for α
and β . The uniqueness of β follows from Lemma 3.15. Now, assume that α is a total function from Q1 to Q2 satisfying the

conditions of the proposition with unique witness β . Condition (supp) now ensures that in (next) the left side is defined iff

the right side is, and when both are defined, (next)C ensures that they are equal. To see that (out) holds, note that since α is

total, d(q)(a) ∈ dom(α) iff a ∈ supp(q). Hence (out) follows from (out)C. �

We will use the notation α : S1 → S2 rather than α : S1 ��� S2, when S1 is coaccessible, in order to emphasise that α
is a total map.

Next, wewill show thatCSubseq is reflective inSubseq, by showing that the identity on coaccessible states is a reflection

arrow. We first illustrate with a small example that the identity on coaccessible states is a subsequential morphism.

Example 3.17. Consider the subsequential structures S1 and S
′
1 underlying T1 from Example 3.3 and T

′
1 from Example 3.7,

as illustrated below.

S
′
1 :

q4 q2
b|a		

a|b
��
q1

a|a




b|a �� q3

ε

�� S1 :
q2

a|b
��
q1

a|a
��

b|a �� q3

ε

��

Clearly, S1 = C(S′
1), and it is easy to see that idCoacc(S′

1)
: S

′
1 ��� S1 in Subseq with witnessing function β constant equal

to ε.

The following theorem confirms that our definition of subsequential morphisms is the correct one. It is also an argument

for saying that the right way of thinking about subsequential structures is in terms of their coaccessible part. We will see in

the next section that this statement can be sharpened by considering normalised subsequential structures.

Theorem 3.18. Let S be a subsequential structure. We have:

idCoacc(S) : S ��� C(S) is a CSubseq-reflection arrow for S.

It follows that CSubseq is a reflective subcategory of Subseq, and the map C is a functor C : Subseq → CSubseq by defining

C(α) = α�Coacc(S1) for α : S1 ��� S2.

Proof. Let S be a subsequential structure. It is straightforward to check that (idCoacc(S), ε) : S ��� C(S). It remains to show

that idCoacc(S) has the desired universal property, that is, if (α, β) : S ��� S
′ in Subseq where S

′ is in CSubseq, then there

is a unique morphism α′ : C(S) → S
′ in CSubseq such that α = α′ ◦ idCoacc(S). We claim that α′ = α with witnessing

function β ′ = β�Coacc(S) as illustrated in the following diagram.

S

(α,β)
����������������

(idCoacc(S),ε) �� C(S)

(α,β�Coacc(S))

���
�
�

S
′

To prove our claim, we just have to note that by Lemma 3.8(1) and the assumption that S
′ is coaccessible, it follows that

dom(α) = Coacc(S), hence α = α�Coacc(S)= α ◦ idCoacc(S), and α is clearly unique. It is also easy to see that β ′ = β�Coacc(S)

witnesses the fact that α : C(S) → S
′ is a morphism. Moreover, β ′ is unique due to Lemma 3.15. �

3.3. Trimmed transducers

Subsequential transducers are often assumed to be trimmed (cf. [10]), that is, all states are accessible and coaccessible.

We now look closer at the operations involved in trimming a transducer. First we note that for subsequential transducers,

taking the coaccessible part is not always a well defined operation, since doing so on a T in which the initial state is not

coaccessible and the set of final states is not empty will result in an object where the initial state is not an element of the

(non-empty) state set. Such objects are not subsequential transducers by our definition. Still we remark that the category

CSubseqTra is well defined, only C is not a functor from SubseqTra to CSubseqTra. Before we can take the coaccessible

part, we must first make T accessible.

Definition 3.19. LetT = (Q , o, d, r, i,m) be a subsequential transducer.We define A(T) = (Acc(T), o′, d′, r′, i,m)where

o′, d′ and r′ are the restrictions of o, d and r to Acc(T). A(T) is called the accessible part of T, and T is called accessible if
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T = A(T). If T = (S, i,m) is an accessible subsequential transducer, then we define C(T) = (C(S), i,m) with i and m

undefined if Coacc(S) = ∅.
Trimming a subsequential transducer can be achieved by first taking the accessible part and then the coaccessible part.

In particular, note that if T is accessible, then all states are coaccessible iff the initial state is coaccessible.

Lemma 3.20. If T is a subsequential transducer, then A(T) is an accessible subsequential transducer and C(A(T)) is a trimmed

subsequential transducer.

Let ASubseqTra and TSubseqTra denote the full subcategories of SubseqTra consisting of accessible and trimmed

subsequential transducers, respectively.

Thenotionsofaccessibilityandcoaccessibilityarepropertiesof theunderlyingdeterministicautomaton, andthe following

proposition can easily be adapted to a statement about (partial) deterministic automata.

Proposition 3.21. We have:

1. For all T ∈ SubseqTra, idAcc(T) : A(T) ��� T is a subsequential morphism.

2. For all T ∈ ASubseqTra, idCoacc(T) : T ��� C(T) is a TSubseqTra-reflection arrow.

Proof. We only provide a sketch. For item (1), let T = (Q , o, d, r, i,m) and A(T) = (Acc(T), o′, d′, r′, i,m). To see

that idAcc(T) satisfies (next), we have for all q ∈ Acc(T) and all a ∈ A: idAcc(T)(d
′(q)(a)) is defined iff a ∈ supp(q) iff

d(idAcc(T)(q))(a) is defined, and when both are defined they are equal, since d′ is the restriction of d to Acc(T). Condition

(acc) holds since F ′ := dom(r′) = F ∩ Acc(T) = id
−1
Acc(T)(F). The other conditions from Definition 3.4 are checked as easily.

Item (2) can be proved along the same lines as Theorem 3.18. �

Since subsequential transducer morphisms respect behaviour (Proposition 3.9(2)) we have an easy corollary.

Corollary 3.22. For any subsequential transducer T, C(A(T)) is equivalent to T.

Remark 3.23. In fact, it is also possible to show that for any subsequential transducer T, idAcc(T) : A(T) ��� T is an

ASubseqTra-coreflection arrow for T. A coreflection arrow is the dual notion of a reflection arrow. Hence trimming a

transducer can be seen as a composition of a coreflection with a reflection. However, we leave it to the interested reader to

verify this claim, since it will not play any role in the rest of the paper.

3.4. Normalised subsequential structures

As we have seen in the previous section, considering coaccessible subsequential structures allows us to work with mor-

phisms as total maps and unique witnessing functions. Still, in spite of this conceptual simplification, checking whether a

morphism exists between two coaccessible structures, or whether two subsequential transducers are equivalent, is com-

plicated by checking for the existence of a witnessing output shift function β . In this section, we will see that this problem

is eliminated by considering normalised subsequential structures and transducers. Informally stated, a normalised subse-

quential transducer produces its output at maximal speed. Consequently, morphisms between normalised subsequential

transducers can only have β = ε as witnessing function.

Thedefinitionofnormalised subsequential transducers goesback toChoffrut [9]whoshowed that anyfinite subsequential

transducer can be transformed into an equivalent normalised one. Herewe formulate Choffrut’s results for coaccessible sub-

sequential structures, and we show that normalised subsequential structures and transducers form reflective subcategories

of CSubseq and CSubseqTra, respectively.

Definition 3.24 (normalised states, structures and transducers). LetS = (Q , o, d, r)be a coaccessible subsequential structure,

and q ∈ Q . We define a function β̂S : Q → B∗ by

β̂S(q) = lcp({o(q)(w) � r(d(q)(w)) | w ∈ L(q)}). (4)

That is, β̂S(q) is the longest common prefix over all output words on final paths starting in q. A state q ∈ Q is normalised if

β̂S(q) = ε. A subsequential structure S is normalised if all states in S are normalised, and a subsequential transducer T is

normalised if its underlying subsequential structure is normalised.

If T = (S, i,m), then will use the notation β̂T = β̂S, or we may leave out the subscript altogether if no confusion can

arise. Let NSubseq be the full subcategory of CSubseq (and Subseq) consisting of normalised subsequential structures



H.H. Hansen / Information and Computation 208 (2010) 1368–1397 1379

and subsequential morphisms. Similarly, NSubseqTra is the full subcategory of CSubseqTra consisting of normalised

subsequential transducers.

The meaning of β̂ can be explained informally as follows. Suppose a subsequential transducer T is processing an input

word w = vu ∈ dom([[T]]), and after reading v, the output produced so far is x ∈ B∗ and the current state is q. Now β̂(q)
gives us the longest word which will be output by T in the remainder of the computation, no matter what u is. This means

that the output of β̂(q) is unnecessarily delayedwhilewaiting forT to read the next input letter. Normalising a subsequential

transducer consists in changing the output functions such that there is no delayed output anywhere.

Definition 3.25 (normalisation of structures and transducers). Let T = (Q , o, d, r, i,m) be a coaccessible subsequential

transducer. The normalisation of T is the subsequential transducer N (T) = (Q , o′, d, r′, i,m′) where for all q ∈ Q , and all

a ∈ A:

m′ = m � β̂(i), o′(q)(a) = β̂(q) � o(q)(a) � β̂(d(q)(a)), r′(q) = β̂(q) � r(q). (5)

Similarly, for a subsequential structure S = (Q , o, d, r), the normalisation of S is N (S) = (Q , o′, d, r′), where o′ and r′ are
defined as in (5).

Lemma 3.26. If S is a coaccessible subsequential structure then N (S) is a normalised subsequential structure. Consequently, for

all coaccessible subsequential transducers T, N (T) is a normalised subsequential transducer.

Proof. First note that in Definition 3.25, o′(q)(a) and r′(q) take values in B∗ for all states q and a ∈ A, since β̂(q) is a prefix

of o(q)(a) � β̂(d(q)(a)) and of r(q). So N (S) is a subsequential structure. The fact that N (S) is normalised is clear from the

definition of β̂ . �

Example 3.27. The reader can verify that in Example 3.3, T2 is the normalisation of T1, and the β given in Example 3.6 is

equal to β̂T1
.

Before we characterise subsequential morphisms between normalised structures, we note that from Proposition 3.9 it

follows that if (α, β) : S1 → S2 in CSubseq, then for all states q in S1:

β̂1(q) = β(q) � β̂2(α(q)), (6)

where β̂j = β̂Sj
, j = 1, 2. From (6) it follows immediately that:

Lemma 3.28. Let (α, β) : S1 → S2 in CSubseq.

1. If S2 is normalised, then β = β̂1.

2. If S1 and S2 are normalised, then β = ε.

Wecannowprove that subsequentialmorphisms between normalised structures are verymuch likemorphisms between

deterministic automata or Mealy machines.

Proposition 3.29. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be normalised subsequential structures. A function

α : Q1 → Q2 is a subsequential morphism if and only if (α, ε) : S1 → S2, i.e., for all q ∈ Q1:

(supp) supp(q) = supp(α(q)),

(next)C ∀a ∈ supp(q) : α(d1(q)(a)) = d2(α(q))(a),

(out)N ∀a ∈ supp(q) : o1(q)(a) = o2(α(q))(a),

(acc) α−1(F2) = F1,

(term-out)N if q ∈ F1 then r1(q) = r2(α(q)).

Let T1 = (S1, i1,m1) and T2 = (S2, i2,m2) be normalised subsequential transducers. A subsequential (transducer) morphism

from T1 to T2 is a subsequential morphism α : S1 → S2 satisfying:

(init) α(i1) = i2, and

(ε-in)N if i1 ∈ dom(α) then m1 = m2.



1380 H.H. Hansen / Information and Computation 208 (2010) 1368–1397

Proof. First consider the characterisation of subsequentialmorphisms between normalised structures. Ifα : S1 → S2, then

by Lemma 3.28(2) the (unique) witnessing function isβ = ε. The other direction is clear. The characterisation ofmorphisms

between normalised transducers follows easily from the result for structures. �

An easy consequence of Proposition 3.29 is that subsequential morphisms between normalised structures preserve state

behaviour.

Corollary 3.30. Let α : S1 → S2 be a subsequential morphism in NSubseq. For all states q in S1: [[q]]1 = [[α(q)]]2.
Proof. From Proposition 3.9 we have for all q in S1 that [[q]]1 = β(q) � [[α(q)]]2. From Proposition 3.29 it follows that

β(q) = ε, and hence [[q]]1 = [[α(q)]]2. �

We now show that normalisation is a reflector. This result takes the argument from the previous section for coaccessible

structures and transducers a step further, so thatwenowcan say that the rightwayof thinkingabout subsequential structures

and transducers is in terms of their normalisation.

Theorem 3.31. Let S be a coaccessible subsequential structure and T = (S, i,m) a coaccessible subsequential transducer. We

have:

1. idS : S → N (S) is an NSubseq-reflection arrow for S.

2. idT : T → N (T) is an NSubseqTra-reflection arrow for T.

It follows that NSubseq is a reflective subcategory of CSubseq, and NSubseqTra is a reflective subcategory of CSubseqTra.
Moreover, the map N is a functor N : CSubseq → NSubseq and N : CSubseqTra → NSubseqTra by defining N (α) = α
for a subsequential morphism α in CSubseq or CSubseqTra .

Proof. Item (1): Let S be an object in CSubseq. It is straightforward to check that (idS, β̂S) : S → N (S) by using the

characterisation of morphisms in CSubseq (Proposition 3.16) and the definition of N (S) (Definition 3.25). Now it is also

easy to see that for any normalised S
′ ∈ NSubseq, if (α, β) : S → S

′ in CSubseq then α′ = α is the unique NSubseq-
morphism such that α′ : N (S) → S

′ and α′ ◦ idS = α. From Lemma 3.28(2) it follows that the witnessing function β ′ for
α : N (S) → S

′ is just β ′ = ε, and that the diagram below commutes.

S
(idS,β̂S) ��

(α,β)
���������������� N (S)

(α,ε)

���
�
�

S
′

Item (2): Let T = (S, i,m, ) be in CSubseqTra. Hence in particular, i ∈ Coacc(T). It is easy to check that (idT, β̂T) : T →
N (T) in CSubseqTra. Now suppose (α, β) : T → T

′ for some T
′ = (S′, i′,m′) in NSubseqTra. It follows that,

(α, β) : S → S
′, hence by item (1) α : N (S) → S

′ is the unique subsequential morphism such that α = α ◦ idS. To

see that α : N (T) → T
′ in NSubseqTra, note that (α, β) : T → T

′ implies that m′ = m � β(i), and using Lemma 3.28(1)

we getm′ = m � β̂S(i). Hence N (T) and T
′ have the same prefix. The uniqueness of α follows from the uniqueness of α on

the underlying structures. �

Corollary 3.32. For all T in CSubseqTra, we have: [[T]] = [[N (T)]].
Proof. Follows from Theorem 3.31(2), and the fact that subsequential morphisms preserve transducer behaviour. �

Choffrut surveys in [10] anumberofdifferent algorithms for computing β̂. Oneof thesealgorithms is byBéal andCarton [4]

who report that for a normalised S, β̂ can be computed in time O((‖β̂‖ + 1)M), where ‖β̂‖ is the maximal length of β̂(q)
over all states q in S, andM is the number of transitions in S.

3.5. Minimal subsequential transducers

A subsequential structure S is called minimal, if S is normalised and no two states in S are equivalent. A subsequential

transducer is minimal if its underlying structure is minimal. Choffrut remarked in [10, p. 131 and 139] that minimisation

of normalised subsequential transducers can be carried out by generalising existing techniques for minimising determin-
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istic automata [20,24], however, the details were not given. 4 We describe the minimisation of normalised structures and

transducers in Section 4.3.

Choffrut showedalso in [10] that for any function f : A∗ ��� B∗, thereexists aminimal (butpossibly infinite) subsequential

transducer Tf with behaviour f such that for all trimmed subsequential transducers T which also realise f , there is a unique

subsequential morphism α : T → Tf . This result strongly suggests the existence of a final subsequential structure, and in

the next section we will prove that indeed the existence and properties of Tf follow from finality, (Corollary 4.13).

As expected, minimal subsequential structures form a reflective subcategory of normalised subsequential structures.

Proposition 3.33. The full subcategory of minimal subsequential structures (transducers) is reflective in NSubseq
(NSubseqTra).

Proof. The result for structures follows from Proposition 4.4 of the next section, which shows that NSubseq is a full sub-

category of Coalg(S), together with a more general result from [16], where it is proved that for any functor F , minimal

F -coalgebras are reflective in Coalg(F ). To get a reflector for NSubseq, we just have to restrict the reflector for Coalg(S)
to the full subcategory NSubseq. The argument for the transducer case is almost identical. �

4. Coalgebraisation via normalisation

One of our aims is to find out whether subsequential structures can be seen as coalgebras. A fundamental property of a

category of coalgebras is that it comeswith abstract definitions of morphism and state behaviour, which capture the general

idea that coalgebra morphisms are behaviour preserving maps. In order to claim that a class of subsequential structures is

coalgebraic, we would want the notions of subsequential morphism and state behaviour (defined in Section 3.1) to coincide

with the coalgebraic ones. However, we already suspect that, in general, subsequential structures and morphisms are not

coalgebraic, since subsequential morphisms do not preserve state behaviour, unless we find ourselves in the subcategory of

normalised structures.

In this section we will first demonstrate that indeed the category NSubseq can be regarded as a category of coalgebras,

whereas this does not hold for Subseq and CSubseq. This result is the basis for our slogan that normalisation is coalgebrai-

sation. In Section 4.2 we prove that NSubseq has a final object. Since NSubseq is reflective in Subseq, it follows that the

final NSubseq-object is also a final Subseq-object. We also show that the existence and properties of minimal subsequen-

tial transducers (cf. Section 3.5) follow from the existence of this final object. In Section 4.3 we describe how to minimise

normalised structures by adapting the standard minimisation algorithm for deterministic finite automata.

4.1. Coalgebraic modelling

First recall that a partial function f : X ��� Y can be seen as a total function f : X → {.} ∪ Y where . is the undefined

value by taking f (x) = ., if x /∈ dom(f ). We will use the notation 1 = {.} and write 1 + Y instead of {.} ∪ Y .

Let S = (Q , o, d, r) be a subsequential structure. We combine o and d into a transition structure t : Q → (A →
(1 + B∗ × Q)) by defining for all q ∈ Q : t(q)(a) = 〈o(q)(a), d(q)(a)〉 if a ∈ supp(q); otherwise t(q)(a) = .. Similarly,

we view r : Q ��� B∗ as a total function r : Q → 1 + B∗. It is then easy to see that S can be fully described by a single

map:

〈t, r〉 : Q → (1 + B∗ × Q)A × (1 + B∗)
q �→ 〈 t(q) , r(q) 〉. (7)

This map has the type of a coalgebra for the functor S : Set → Set defined by:

S(X) = (1 + B∗ × X)A × (1 + B∗),
S(f : X → Y) = (1 + idB∗ × f )idA × (1 + idB∗).

Clearly, every map 〈t, r〉 of the type given in (7) can also be seen as a subsequential structure, and from now on we will

make no distinction between the two. Instantiating the definition of S-coalgebra morphism yields the following. Let X1 =
(X1, 〈t1, r1〉) and X2 = (X2, 〈t2, r2〉) be S-coalgebras. A function α : X1 → X2 is an S-coalgebra morphism from X1 to X2

if for all x ∈ X1: S(α)(〈t1(x), r1(x)〉) = 〈t2(α(x)), r2(α(x))〉, which is equivalent with:

4 Choffrut states in [10, p. 139] that a normalised subsequential transducer can beminimised byminimising the underlying automaton. This is however not true

(and we assume it was just a misformulation by Choffrut), since it is clearly possible that two states are equivalent with respect to the underlying deterministic

automaton while not having the same behaviour.
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(T1) ∀a ∈ A : t1(x)(a) = . ⇐⇒ t2(α(x))(a) = .,

(T2) ∀a ∈ A : t1(x)(a) �= . ⇒
o1(x)(a) = o2(α(x))(a) and α(d1(x)(a)) = d2(α(x))(a),

(R1) r1(x) = . ⇐⇒ r2(α(x)) = .,

(R2) r1(x) �= . �⇒ r1(x) = r2(α(x)).

The notion of S-coalgebra morphism applies to arbitrary subsequential structures. The following lemma tells us when a

subsequential morphism is also an S-coalgebra morphism.

Lemma 4.1. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be two subsequential structures (S-coalgebras), andα : Q1 →
Q2 a total function. We have:α is an S-coalgebra morphism from S1 to S2 if and only ifα : S1 → S2 is a subsequential morphism

with witness β = ε.

Proof. Using the assumption that α is total, it is easily verified that the conditions (T1), (T2), (R1) and (R2) are equivalent

with the conditions of Definition 3.4 for witnessing function β = ε. �

The following example shows that anS-coalgebramorphismcanexist betweennon-normalised subsequential structures.

Example 4.2. Consider the non-normalised subsequential structures S and S
′ depicted below together with the normali-

sation of S
′.

S S
′ N (S′)

q0
a|a


��

��
� b|a

���
��

��
q′
0

a|a
��

b|a
��

q′
0

a|ε
��

b|ε
��

q1

a|b ���
��

��
q2

a|b

��
��

�
q′
a|b��

q′
a|ε��

q3

ε
��

q′
3

ε
��

q′
3

ε
��

The map α defined by α(q0) = q′
0, α(q1) = α(q2) = q′, and α(q3) = q′

3, is an S-coalgebra morphism between the

coalgebras induced by S and S
′. Hence by Lemma 4.1, α is also a subsequential morphism with witnessing function β = ε,

as can easily be checked directly. On the other hand, the identity map on the states is a subsequential morphism from S
′ to

N (S′) (cf. Theorem 3.31), but not an S-coalgebra morphism.

One immediate consequence of Lemma 4.1 is that S-bisimilarity always implies state equivalence.

Proposition 4.3. Let S be a subsequential structure containing states s1 and s2. If s1 ∼S s2 then [[s1]] = [[s2]].
Proof. Let S, s1 and s2 be as stated. Assume (s1, s2) ∈ Z for some S-bisimulation (Z, ζ ) on S. It follows that the projections

π1, π2 : Z → S are S-coalgebra morphisms. By Lemma 4.1, the projections are subsequential morphisms with witness ε,
and from Proposition 3.9, we get [[s1]]S = [[(s1, s2)]](Z,ζ ) = [[s2]]S. �

In the following proposition we make precise what we mean by saying that normalised subsequential structures can be

properly regarded as coalgebras.

Proposition 4.4. NSubseq is a full subcategory of Coalg(S).

Proof. Follows from the characterisation of NSubseq-morphisms in Proposition 3.29 and Lemma 4.1. �

4.2. The final subsequential structure

In a category of coalgebras, a final object can be thought of as the coalgebra of behaviours. In the case of normalised

subsequential structures, state behaviours are functions f : A∗ ��� B∗ with the property that all words in the range of f have

only a trivial common prefix, i.e., lcp(f (A∗)) = ε. We call an f with this property normalised. We can define a normalised

subsequential structure on the set of normalised functions using the notions of maximal output and derivative.



H.H. Hansen / Information and Computation 208 (2010) 1368–1397 1383

These operations also form the basis of Choffrut’s construction in [10] of the minimal transducer realising a function f . 5

Informally, given a function f : A∗ ��� B∗ and a word w ∈ A∗, the maximal output of f on w is the longest common prefix

over all output words generated by f on inputs that start with w. The derivative of f with respect tow is the function which

maps an input word u to the output word obtained by removing the maximal output on w from f (wu), given that f (wu) is
defined. We point out that other types of derivatives of formal languages, streams and stream functions have been shown

to yield final coalgebra structures (cf. [35,38,39]). We now give the formal definition.

Definition 4.5. Let f : A∗ ��� B∗ and w ∈ A∗. The maximal output of f on input w is defined as

f [w] := lcp(f (wA∗)) = lcp({f (wu) | wu ∈ dom(f )}).
The (word function) derivative of f with respect to w is the partial function f ·w : A∗ ��� B∗ defined for all u ∈ A∗ by

(f ·w)(u) =
⎧⎨
⎩

f [w] � f (wu) if wu ∈ dom(f )

. otherwise
.

Note that lcp(f (A∗)) = f [ε], i.e., f is normalised iff f [ε] = ε. We observe that derivatives are normalised.

Lemma 4.6. For all f : A∗ ��� B∗ and all w ∈ A∗, (f ·w)[ε] = ε.

Proof. We have:

(f ·w)[ε] = lcp({(f ·w)(u) | u ∈ dom(f ·w)})
= lcp({f [w] � f (wu) | u ∈ dom(f ·w)})
= f [w] � lcp({f (wu) | wu ∈ dom(f )})
= f [w] � f [w] = ε. �

Definition 4.7. We define � := (Q�,O,D, R) where

Q� := {f : A∗ ��� B∗ | f [ε] = ε},
and for all f ∈ Q� and a ∈ A:

O(f )(a) = f [a], D(f )(a) = f ·a, R(f ) = f (ε).

We first show that � is an object in NSubseq.

Lemma 4.8. � = (Q�,O,D, R) is a normalised subsequential structure.

Proof. First note thatD, and hence�, iswell-defined due to Lemma4.6. To prove that� is normalised,we showby induction

on |w| that for all f ∈ Q� and w ∈ A∗, [[f ]]�(w) = f (w). The base case follows from the definition of R. Now let a ∈ A,

w ∈ A∗ and f ∈ Q�. We have:

[[f ]]�(aw) = f [a] � [[f ·a]]�(w) =(by IH) f [a] �(f ·a)(w) = f [a] � f [a] � f (aw) = f (aw).

It follows that f is normalised as a state in �, since then β̂(f ) = [[f ]]�[ε] = f [ε]. �

We now show that � is final in NSubseq with the behaviour map [[_ ]] as the unique subsequential morphism into �.

Theorem 4.9. The normalised subsequential structure � is a final object in the category NSubseq.

Proof. Let S = (Q , o, d, r) be a normalised subsequential structure, and let [[_ ]] = [[_ ]]S : Q → Q� be the state behaviour

map. We will show that [[_ ]] is a subsequential morphism, i.e., an S-coalgebra morphism. First of all, since all states in S are

coaccessible, [[_ ]] is a total function. We now check that [[_]] satisfies the conditions from Proposition 3.29. Let q ∈ Q , and

a ∈ A. We have: a ∈ supp(q) iff aw ∈ dom([[q]]) for some w ∈ A∗ iff dom([[q]]·a) �= ∅ iff a ∈ supp([[q]]).
5 Choffrut’s definition is based on the congruence classes of the syntactic congruence of f , but it can easily be reformulated in terms of derivatives of word

functions (also called the residual).
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To see that O([[q]])(a) = [[q]][a] = o(q)(a), we note that for all w ∈ A∗ such that aw ∈ dom([[q]]), [[q]](aw) =
o(q)(a) � [[d(q)(a)]](w), and hence

[[q]][a] = lcp([[q]](aA∗)) = o(q)(a) � lcp([[d(q)(a)]](A∗)) = o(q)(a) � ε = o(q)(a),

since d(q)(a) is normalised. In order to show that [[d(q)(a)]] = [[q]]·a for all a ∈ supp(q), let w ∈ A∗. We then have

[[d(q)(a)]](w) = o(d(q)(a))(w) � r(d(d(q)(a))(w))

= o(q)(a) � o(q)(aw) � r(d(q)(aw))

= [[q]][a] � [[q]](aw)

= ([[q]]·a)(w).

Finally, we have q ∈ dom(r) iff ε ∈ dom([[q]]) iff [[q]] ∈ dom(R), and R([[q]]) = [[q]](ε) = r(q). We leave it to the reader to

verify that [[_]] : (Q , o, d, r) → (Q�,O,D, R) is unique. �

Since NSubseq is reflective in Subseq, � is also final in Subseq.

Corollary 4.10. The normalised subsequential structure � is a final object in Subseq.

Proof. This is an immediate consequence of Theorem 4.9 and the fact that NSubseq is reflective in Subseq, which follows

from Theorems 3.31 and 3.18 and the fact that reflectors compose. For S ∈ Subseq, the final Subseq-morphism hS : S → �

is obtained by composing the reflection arrows with the behaviour map in NSubseq:

hS = [[_ ]]N (C(S)) ◦ idC(S) ◦ idCoacc(S).

Concretely, one can showthathS : S → � is thepartialmapdefined for allq ∈ Coacc(S)byhS(q) = [[q]]S·ε = β̂S(q) � [[q]]S.
As witnessing function take any β which agrees with β̂C(S) on Coacc(S). �

Using the fact that behaviour is a morphism, we can show that in normalised structures, state equivalence coincide with

S-bisimilarity.

Corollary 4.11. Let S be a normalised subsequential structure. For all states q1, q2 in S, we have: [[q1]]S = [[q2]]S if and only if

q1 ∼S q2.

Proof. First assume that [[q1]]S = [[q2]]S. Since S is normalised, [[_ ]]S : S → � is also an S-coalgebra morphism, and it

follows from Proposition 2.3(2) that q1 ∼S q2. The other direction holds by Proposition 4.3. �

Note that � is not final in Coalg(S), since for an arbitrary S in Coalg(S), the final Subseq-morphism will not be an

S-coalgebra morphism (cf. Lemma 3.28(1)). However, since S is polynomial, we know that a final S-coalgebra � exists

(cf. Proposition 2.3(1)). Corollary 4.11 tells us that � is minimal not only with respect to state equivalence, but also with

respect to S-bisimilarity. Consequently, � can be considered a subcoalgebra of �.

Theorem 4.12. The final subsequential structure � is isomorphic to a subcoalgebra of the final S-coalgebra �.

Proof. Let φ� be the final Coalg(S)-morphism from � to �. We will show that φ� is injective. It then follows that � is

isomorphic to the subcoalgebra φ�(�) of �. So assume φ�(f ) = φ�(g) for f , g ∈ Q�. It follows from Proposition 2.3(2)

that f ∼S g, hence by Proposition 4.3 we have [[f ]]� = [[g]]�, and by finality of �, we conclude that f = g. �

We now show that the existence and properties of a minimal transducer Tf realising a function f : A∗ ��� B∗ given in

[10] are a consequence of Theorem 4.9. Recall that 〈f 〉� denotes the subcoalgebra generated by f in �.

Corollary 4.13. Let f : A∗ ��� B∗ be any partial function.

1. Tf = (〈f ·ε〉�, f ·ε, f [ε]) is a minimal subsequential transducer with behaviour f .

2. If T is an accessible subsequential transducer with [[T]] = f , then there is a unique subsequential transducer morphism

from T to Tf .

Proof. Item (1): The subcoalgebra 〈f ·ε〉�, and hence Tf , is minimal since � is minimal. To see that [[Tf ]] = f , we have for

all w ∈ A∗, w ∈ dom(f ) iff w ∈ dom(f ·ε) = dom(Tf ), and for w ∈ dom(f ) we have:

[[Tf ]](w) = f [ε] � [[f ·ε]]�(w) = f [ε] � (f ·ε)(w) = f [ε] � f [ε] � f (w) = f (w).
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Item (2): Let T = (S, i,m) be accessible. The final Subseq-map hS is a subsequential morphism from S to 〈f ·ε〉� with a

witnessing function β such that β�Coacc(S)= β̂C(S) (cf. Corollary 4.10). In the case the initial state of T is not coaccessible,

Tf is the empty transducer, and hS is the empty map. If i ∈ Coacc(T), it follows that hS and β also satisfy (ε-in) since

f [ε] = [[T]][ε] = m � β̂S(i), and (init) since:

hS(i) = β̂S(i) � [[i]]S = β̂S(i) �m � f = m � β̂S(i) � f = f [ε] � f = f ·ε.
Uniqueness follows from uniqueness of hS. �

4.3. Minimisation algorithm for normalised structures

Due to Propositions 2.3(3) and Corollary 4.11, normalised subsequential structures can be minimised by quotienting

with S-bisimilarity. We now describe how we can compute S-bisimilarity on an S-coalgebra (and hence on a normalised

subsequential structure) by adapting the existing method for computing state equivalence on deterministic finite automata

(DFA) (see e.g. ([20,24])).

First of all, working out the details of the definition of S-bisimulation yields the following. Given an S-coalgebra S =
(Q , o, d, r), a relation R ⊆ Q × Q is an S-bisimulation on S, if for any two states q, s ∈ Q , 〈q, s〉 ∈ R implies

(s0) supp(q) = supp(s);
(s1) for all a ∈ supp(q) : o(q)(a) = o(s)(a);
(s2) for all a ∈ supp(q) : 〈d(q)(a), d(s)(a)〉 ∈ R; and

(s3) r(q) = r(s).

In order to make the connection with the algorithm for DFAs clear, we also give the definition of bisimulation which

applies to DFAs. Recall (cf. Example 2.2) that a deterministic automaton (Q , d, F) is a coalgebra 〈o, d〉 : Q → 2× QA for the

functor Aut(X) = 2 × QA. Let A = (Q , d, F) be a finite Aut -coalgebra. A relation R ⊆ Q × Q is an Aut -bisimulation on A,

if for any two states q, s ∈ Q , 〈q, s〉 ∈ R implies that:

(a1) o(q) = o(s) (i.e. q ∈ F iff s ∈ F); and

(a2) for all a ∈ A : 〈d(q)(a), d(s)(a)〉 ∈ R.

We now briefly sketch the algorithm for computing Aut -bisimilarity in a finite deterministic automaton A = (Q , d, F).
The computation starts with the partition P0 = {F,Q \F} of Q . P0 is the largest equivalence relation such that condition

(a1) holds for all P0-related states. In the main loop, P0 is iteratively refined into an equivalence relation which also satisfies

condition (a2). This is done by inspecting the current partition Pk = {Q1, . . . ,Qn} of Q for the existence of some Qi,Qj ∈ Pk
and a ∈ A such that there are q, s ∈ Qi for which d(q)(a) ∈ Qj and d(s)(a) /∈ Qj . In that case, Qi is split (by (Qj, a))

into the two sets Q ′
i = {q ∈ Qi | d(q)(a) ∈ Qj} and Q ′′

i = {q ∈ Qi | d(q)(a) /∈ Qj}, in other words, Pk is refined into

Pk+1 = (Pk \{Qi}) ∪ {Q ′
i ,Q

′′
i }. This refinement process continues until no more splits can be made. When this happens,

the partition stores the Aut -bisimilarity classes on A. By using extra data structures it is possible to choose the splitters

(Qj, a) wisely, and reduce the number of actual splits that must be carried out, resulting in an algorithmwhich runs in time

O(|A| n log(n)) where n is the number of states, and |A| is the size of the input alphabet A (cf. [23], see also [14,19]).

The adaptation of the DFA-algorithm to S-coalgebras consists of changing the initial partition. The refinement part of

the algorithm stays the same. We take as initial partition the (classes of) the largest equivalence relation Ps0 on Q such that

all pairs related by Ps0 satisfy (s0), (s1) and (s3). Running the refinement algorithm starting from this initial partition will

result in the largest equivalence relation which satisfies (s0)–(s3), i.e., the bisimilarity relation on S. This can be proved by

essentially the same argument used for the correctness of the algorithm for DFAs, see e.g. [23, Proof of Proposition 5]. In the

next lemma we describe how to compute Ps0.

Lemma 4.14. Given a finite S-coalgebra S = (Q , o, d, r), we can compute the largest equivalence relation Ps0 on Q which

satisfies (s0), (s1) and (s3) in time O((|A|‖o‖ + ‖r‖)|Q | log(|Q |)), where ‖o‖ := max{|o(q)(a)| | q ∈ Q , a ∈ A} and

‖r‖ := max{|r(q)| | q ∈ Q}.
Proof. We want to group together states which have the same output function and the same terminal output. This can be

done efficiently by a variation on a sorting algorithm which can be implemented using a balanced binary search tree (cf.

[22]). The nodes of a binary search tree T are pairs (c, lc) where c is a key and lc is a value, and it is required that a linear

order <T exists on the set of all keys. Since S is finite, we can assume A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bn} by

enumerating all input and output letters that occur in S. In our case, a key c is a data record which stores the output and

terminal output functions for some state q. We define c(q) := 〈o(q)(a1), . . . , o(q)(ak), r(q)〉. The value lc associated with

a key c will be a list of states q such that c(q) = c. We will use a variation on insertion which does the following. Inserting

(c(q), q) into a tree which contains a node (c′, lc′) with c′ = c(q) will result in adding q to lc , and if c(q) does not occur in
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the tree, then a new node (c(q), {q}) is added. By inserting (c(q), q) for all states q into an initially empty tree. we can obtain

the Ps0-equivalence classes by traversing the resulting tree and retrieving the node values lc .

It remains to define a linear ordering on the key values, which are elements of (1+B∗)k+1. We define a linear order≺ on

B by b1 ≺ b2 ≺ . . . ≺ bn and extend this ordering to the lexicographic ordering on B∗, whichwe also denote≺.We extend≺
to 1+B∗ by definingw ≺ . for allw ∈ B∗. Finally, we can lift≺ to the corresponding lexicographic ordering on (1+B∗)k+1.

We now analyse the complexity of computing Ps0. An insertion in a balanced binary search tree with n nodes can be

done in time O(C log(n)), where C is an upper bound for the cost of comparing keys. In our case, the key size is bounded by

|A|‖o‖ + ‖r‖, so each insertion can thus be done in time O(|A|‖o‖ + ‖r‖) log(|Q |)). We have |Q | elements to insert, hence

the tree T can be constructed in time O((|A|‖o‖ + ‖r‖)|Q | log(|Q |)). �

It is difficult to give a compact description of the overall time complexity of carrying out minimisation via normalisation

due to the many different factors involved. So in the next proposition we just provide the upper bounds for the two main

components of the algorithm. In particular, we do not include the cost of actually constructing the quotient structure.

Proposition 4.15. LetS = (Q , o, d, r) be a finite subsequential structure. The time complexities of normalisingS and computing

S-bisimilarity on S are:

Compute N (S): O((‖β̂‖ + 1)M),

Compute S-bisimilarity on N (S): O((|A| ‖o‖ + ‖r‖)|Q | log(|Q |)),
where ‖β̂‖ = max{|β̂(q)| | q ∈ Q} and M is the number of transitions in S.

Proof. For the normalisation part, we refer to the complexity result given by Béal and Carton [4]. To compute S-bisimilarity

on N (S), we need O((|A| ‖o‖ + ‖r‖)|Q | log(|Q |)) time for computing Ps0 (Lemma 4.14), and O(|A||Q | log(|Q |)) time for

completing the refinement stage. Since O(|A||Q | log(|Q |)) is dominated by O((|A| ‖o‖ + ‖r‖)|Q | log(|Q |)) this gives us the
claimed upper bound for computing S-bisimilarity. �

Remark 4.16. A subsequential structure S = (Q , o, d, r) is sequential if dom(r) = Q and for all q ∈ Q : r(q) = ε.
A subsequential transducer T = (S, i,m) is a sequential transducer if S is sequential and m = ε. Note that sequential

structures/transducers are normalised. The full subcategory Seq of NSubseq with sequential structures as objects is

easily seen to be isomorphic to Coalg(S0 ) where S0 (X) = (1 + B∗ × X)A. Eilenberg [12] gives a detailed treatment of

sequential transducers under the name generalised sequential machines. In particular, in [12, Chapter XII] the existence of

a final sequential structure is proved, although the words ‘final’ and ‘coalgebra’ are never mentioned. The final sequential

structure �Seq can be characterised as the subcoalgebra of � in Coalg(S) carried by the set of prefix-preserving functions

f : A∗ ��� B∗ satisfying f (ε) = ε.
Similarly, the final Mealy-coalgebra (cf. Example 2.2) can be characterised as the subcoalgebra of �Seq in Coalg(S)

whose states are those total maps f : A∗ → B∗ in �Seq that are also length-preserving.

5. Coalgebraisation via differentials

The reason why subsequential structures, in general, cannot be seen as coalgebras essentially comes down to the fact

that their semantics allows for asynchrony at internal computation steps, whereas the coalgebraic notion of equivalence

requires synchrony at all steps. We have seen that normalisation is one way of eliminating internal asynchrony. In this

section, we will see that there is an alternative coalgebraic representation of the class of subsequential structures which

have no internal states, and therefore also no proper internal computations.We call this subclass step-by-step structures. The

coalgebraic representation is obtained by generalising the differential of sequential functions (cf. [12]) to word functions

with prefix-closed domain. Taking differential is thus also a form of coalgebraisation, and the differential representation

gives rise to an alternative method for determining equivalence.

5.1. Step-by-step structures

Definition 5.1. A subsequential structure S = (Q , o, d, r) is called step-by-step if dom(r) = Q (i.e. all states are final). A

subsequential transducer (S, i,m) is step-by-step if S is step-by-step.

Example 5.2. Consider the following two simple step-by-step subsequential transducers.

T3 : ba �� q3

b|a

��

b
��

a|ε �� s3

ab
��

T4 : b �� q4

b|a

��

ab
��

a|aa �� s4

b
��
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The behaviour of both T3 and T4 is the partial function f : {a, b}∗ ��� {a, b}∗ with dom(f ) = {bk, bka | k ∈ ω} where

f (bk) = bak+1b and f (bka) = bak+2b for k ∈ ω.

As we have seen in the above example, step-by-step subsequential transducers are not necessarily normalised, hence

two step-by-step subsequential transducers can realise the same functionwithout being in perfect synchrony. Nevertheless,

their morphisms can be characterised without explicit reference to an output shift function β .

Proposition 5.3. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be step-by-step subsequential structures. A function

α : Q1 → Q2 is a subsequential morphism if and only if for all q ∈ Q1 the following hold:

(supp) supp(q) = supp(α(q)),

(next)C ∀a ∈ supp(q) : α(d1(q)(a)) = d2(α(q))(a),

(out)S ∀a ∈ supp(q) :
r1(q) � o1(q)(a) � r1(d1(q)(a)) = r2(α(q)) � o2(α(q))(a) � r2(d2(α(q))(a)),

(term-out)S r1(q) � r2(α(q)) ∈ B∗.

Let T1 = (S1, i1,m1) and T2 = (S2, i2,m2) be step-by-step subsequential transducers. A function α : Q1 → Q2 is a

subsequential (transducer) morphism from T1 to T2 if and only if α : S1 → S2 is a subsequential morphism and

(init) α(i1) = i2,

(ε-in)S m1 � r1(i1) = m2 � r2(i2).
Proof. First assume α : S1 → S2 is a subsequential morphism with witnessing function β : Q1 → B∗. Note that since

step-by-step structures are coaccessible, α satisfies the conditions from Proposition 3.16, in particular, α must be a total

function. Condition (term-out) implies that for all q ∈ Q1:

β(q) = r1(q) � r2(α(q)). (8)

Hence, as β(q) ∈ B∗, (term-out)S must hold. Using (8), one can also easily verify that (out)C reduces to (out)S.
Conversely, for any total function α : Q1 → Q2 which satisfies the above requirements, we can define β : Q → B∗ using

(8), since condition (term-out)S guarantees that β(q) ∈ B∗. It is now straightforward to verify that (α, β) : S1 → S2.

Finally, a subsequential transducermorphismα : T1 → T2 between step-by-step transducers satisfies (ε-in)S due to (8)

and (ε-in). Conversely, if α : S1 → S2 is a subsequential morphism satisfying (ε-in)S, then (ε-in) must hold for the unique

witnessing function β given in (8). �

Let Step and StepTra denote the full subcategories of CSubseq and StepTra which have step-by-step subsequential

structures and transducers as their objects, respectively.

The behaviours of step-by-step transducers do not preserve prefixes, as illustrated in Example 5.2. However, since all

states are final, the domain is prefix-closed.

Proposition 5.4. A function f : A∗ ��� B∗ is realised by a step-by-step subsequential transducer if and only if dom(f ) is

prefix-closed.

Proof. Clearly, if f is realised by a step-by-step subsequential transducer, then dom(f ) is prefix-closed. To prove the other

direction, it suffices to show that the minimal realisation Tf is step-by-step, that is, for all w ∈ A∗, if w ∈ dom(f ) then

ε ∈ dom(f ·w). But this is immediate from the definition of f ·w, cf. Definition 4.5. �

5.2. Differential representations

Although step-by-step behaviours do not preserve prefixes, they have a property which generalises the following basic

decomposition property of prefix-preserving functions. If f : A∗ ��� B∗ is prefix-preserving then for all w = a1a2 . . . an ∈
A∗, f (w) factors as:

f (w) = f (ε) � f (a1) � (f ·a1)(a2) � (f ·a1a2)(a3) � . . . �(f ·a1a2 . . . an−1)(an). (9)

The differential of a prefix-preserving f describes the growth of f and is formally defined as the map Df : A+ ��� B∗ which

for all wa ∈ dom(f ) is determined by the equation f (wa) = f (w) �Df (wa) (cf. [12]), that is, Df (wa) = f (w) � f (wa).
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It can easily be checked that for a prefix-preserving f , f [w] = f (w), and hence Df (wa) = (f ·w)(a). We can now

rewrite (9) as:

f (w) = f (ε) �Df (a1) �Df (a1a2) � . . . �Df (a1a2 . . . an). (10)

If f does not preserve prefixes, we may not be able to decompose f -values as in (9). For example, if f (a1) is not a prefix

of f (a1a2), then f (a1a2) �= f (a1) � (f ·a1)(a2). However, if f has a prefix-closed domain, f can still be decomposed using the

differential by allowing Df to take values in the free group B(∗) rather than B∗. This generalisation of the differential was

introduced in [32].

Definition 5.5. Let f : A∗ ��� B∗ be a function with prefix-closed domain. The differential of f is the partial function

Df : A+ ��� B(∗) defined on dom(f )\{ε} for all a ∈ A,w ∈ A∗ by

Df (wa) = f (w) � f (wa).

Lemma 5.6. Let f : A∗ ��� B∗ be a function with prefix-closed domain. For all w = a1a2 . . . an ∈ dom(f ), n ≥ 1, we have:

f (w) = f (ε) �Df (a1) �Df (a1a2) � . . . �Df (a1a2 . . . an), (11)

Df (w) = Df ·a1...an−1
(an), (12)

f (w) = f (ε) �Df ·ε(a1) �Df ·a1(a2) �Df ·a1a2(a3) � . . . �Df ·a1...an−1
(an). (13)

Proof. Eq. (11) holds more or less by definition of Df :

f (w) = f (ε) � f (ε) � f (a1) � f (a1) � f (a1a2) � . . . � f (a1a2 . . . an−1) � f (a1a2 . . . an)

= f (ε) �Df (a1) �Df (a1a2) � . . . �Df (a1a2 . . . an).

To see that Eq. (12) holds, let v = a1 . . . an−1. We have:

Df ·v(an) = (f ·v)(ε) � (f ·v)(an) = f [v] � f (v) � f [v]f (van) = f (v) � f (van) = Df (van).

Eq. (13) follows from (11) and (12). �

Example 5.7. We compute the differential of the function f realised by the step-by-step subsequential transducers from

Example 5.2. Recall that f : {a, b}∗ ��� {a, b}∗ with dom(f ) = b∗ ∪ b∗a where f (bk) = bak+1b and f (bka) = bak+2b for

k ∈ ω. We have for k ≥ 1:

Df (b
k) = f (bk−1) � f (bk) = bakb � bak+1b = bab for k ≥ 1,

Df (b
ka) = f (bk) � f (bka) = bak+1b � bak+2b = bab for k ≥ 0.

The analogue of (12) for differentials of state behaviour are shown in the following lemma. Note that this lemma is not

an immediate consequence of (12), since [[q]]·w �= [[d(q)(w)]] if d(q)(w) is not normalised which can be the case in a

step-by-step structure.

Lemma 5.8. Let S = (Q , o, d, r) be a step-by-step subsequential structure, q0 ∈ Q and w = a1 . . . an ∈ dom([[q0]]), n ≥ 1.

For ease of notation, let qk = d(q0)(a1 . . . ak) and uk = o(qk−1)(ak) for k = 1, . . . , n, and let rk = r(qk) for k = 0, . . . , n, as
illustrated in the following picture:

q0

r0

��

a1|u1 �� q1
r1

��

a2|u2 �� q2
r2

��

. . . qn−1

rn−1

��

an|un �� qn
rn

��

We have for all k ∈ {1, . . . , n}: D[[q0]](a1, . . . , ak) = D[[qk−1]](ak).

Proof. For k ∈ {1, . . . , n} we have by definition:

D[[q0]](a1 . . . ak) = [[q0]](a1 . . . ak−1) � [[q0]](a1 . . . ak)

= u1 � . . . � uk−1 � rk−1 � u1 � . . . � uk−1 � uk � rk
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= rk−1 � uk � rk
= [[qk−1]](ε) � [[qk−1]](ak)
= D[[qk−1]](ak). �

Representing behaviour in terms of the differential can be seen as transforming a step-by-step transducer T into a

sequential transducer T
′ with prefix which produces output in the free group B(∗). A computation in T corresponds to a

computation in T
′ as illustrated here:

T : m �� q0
r0

��

a1|u1 �� q1
r1

��

a2|u2 �� q2 . . . qn−1

rn−1

��

an|un �� qn
rn

��

T
′ : m r0 �� q0

a1|r0u1r1 �� q1
a2|r1u2r2 �� q2 . . . qn−1

an|rn−1unrn �� qn

Recall from Remark 4.16 that a subsequential structure is sequential, if the terminal output function r is constant equal

to ε. We will therefore often leave out r from the specification of a sequential structure. Sequential structures with output

in B(∗) are not essentially different from sequential structures with output in B∗, and all previously introduced notions for

sequential structures apply with identity taken in B(∗) where appropriate. This includes extending the transition output

function from letters to words, and the definitions of sequential morphisms and behaviour. Differential representations of

transducers are almost sequential transducers with output in B(∗). The only difference is that differential representations

may have a non-trivial initial prefix, whereas sequential transducers have empty initial prefix by definition.

Definition 5.9. We denote by Seq(∗) the category of sequential structures S = (Q , o, d) in which the transition output

function may take values in B(∗), i.e., o : Q → (A ��� B(∗)). The morphisms of Seq(∗) are the functions which satisfy the

conditions (supp), (next) and (out)N by taking equality in B(∗) in (out)N.

We denote by pSeqTra(∗) the category which has as its objects subsequential transducers T = (S, i,m), where S is an

object in Seq(∗). A morphism in pSeqTra(∗) is a Seq(∗)-morphism of the underlying structures which maps initial state to

initial state and leaves the initial prefix unchanged.

Remark 5.10. Thep inpSeqTra(∗) is used to indicate that the objects can have a non-trivial prefix, since the nameSeqTra(∗)

suggests objects that are sequential transducers which by definition have empty prefix.

The following definition makes the transformation suggested after Lemma 5.8 precise.

Definition 5.11 (differential representation). Let S = (Q , o, d, r) be a step-by-step subsequential structure. The differential

representation of S is the object in Seq(∗) denoted by D(S) = (Q , ∂S, d), where the output function ∂S : Q → (1 + B(∗))A

is defined for q ∈ Q and a ∈ A by:

∂S(q)(a) = r(q) � o(q)(a) � r(d(q)(a)) (14)

if a ∈ supp(q), and . otherwise.

For a step-by-step subsequential transducerT = (S, i,m)whereS = (Q , o, d, r),wedefine thedifferential representation

of T as the object in pSeqTra(∗) defined by D(T) = (D(S), i,m � r(i)).

As with other subscripts, we may leave out S from ∂S and simply write ∂ if S is immaterial, or clear from the context.

When we speak of the differential representation of a structure S or a transducer T, we will always implicitly assume that

S and T are step-by-step.

Example 5.12. It is straightforward to check that the differential representations of the two step-by-step subsequential

transducers T3 and T4 from Example 5.2 are both isomorphic to the object in pSeqTra(∗) depicted below. For example, in

T4, the differential output function at q4 in b is: ∂(q4)(b) = ab � a � ab = bab.

T5 : bab �� q5

b|bab

��
a|bab �� s5
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Taking differential representations of structures is a map from the objects of Step to the objects of Seq(∗), and as with

normalisation, we would like to give a formal argument in the form of a reflectivity result which says that the right way of

looking at step-by-step structures is in terms of their differential representation. However, at first glance there is a problem,

sinceSeq(∗) is not a subcategory ofStep. The solution to this problem is to also generalise step-by-step structures to produce

output in B(∗).

Definition 5.13. The category Step(∗) has as its objects step-by-step structures S = (Q , o, d, r) in which the transition

output function may take values in B(∗), i.e., Q , d and r are as in Definition 5.1 and o : Q → (A ��� B(∗)). The morphisms of

Step(∗) are the functions which satisfy the characterising conditions for Step-morphism given in Proposition 5.3.

The category StepTra(∗) consists of subsequential transducer objects T = (S, i,m) where S is in Step(∗) together with

the functions which satisfy the characterising conditions for StepTra-morphisms given in Proposition 5.3.

Again, previously defined notions and results, including behaviour and differential representations, all apply unchanged

to Step(∗) and StepTra(∗). From the definition of Seq(∗) and Step(∗), and the natural embedding of B∗ in B(∗), it is clear that

Seq(∗) and Step are full subcategories of Step(∗), and pSeqTra(∗) and StepTra are full subcategories of StepTra(∗).

We nowhave a suitable set-up of subcategories, andD defines an objectmap fromStep(∗) toSeq(∗) and fromStepTra(∗)

to pSeqTra(∗).

Theorem 5.14. Let S ∈ Step(∗) and T ∈ StepTra(∗). We have:

1. idS : S → D(S) is a Seq(∗)-reflection arrow for S, and

2. idT : T → D(T) is a pSeqTra(∗)-reflection arrow for T.

HenceSeq(∗) is a reflective subcategoryofStep(∗), andpSeqTra(∗) is a reflective subcategoryofStepTra(∗).Moreover, bydefining

D(α) = α for all morphisms α in Step(∗) and StepTra(∗), D is a functor D : Step(∗) → Seq(∗), and D : StepTra(∗) →
pSeqTra(∗).

Proof. Let S = (Q , o, d, r) be an object in Step(∗). We first check that idS is a Step(∗)-morphism from S to D(S), that

is, idS = idQ satisfies the conditions given in Proposition 5.3 when taking identity in B(∗) in (out)S. The conditions (supp)

and (next)C clearly hold for idQ . In D(S) the terminal output function is constant equal to ε, hence (out)S reduces to the

requirement that for all q ∈ Q and a ∈ supp(q): r(q) � o(q)(a) � r(d(q)(a)) = ∂S(q)(a). This is just the definition of ∂S,

hence true. Similarly, condition (term-out)S reduces to r(q) ∈ B∗ for all q ∈ Q , which also clearly holds.

Wemust nowprove that for anyS
′ = (Q ′, o′, d′) ∈ Seq(∗) andα : S → S

′ inStep(∗), there is a uniqueSeq(∗)-morphism

α′ : D(S) → S
′ such that α = α′ ◦ idQ . As when showing that normalisation is a reflector (Theorem 3.31), we will prove

that α′ = α is the unique choice. If α is a Seq(∗)-morphism from D(S) to S
′, then α is clearly the unique morphism such

that α = α ◦ idQ . To prove that α : D(S) → S
′ we first note that (supp) and (next)N are satisfied since the underlying

DAs of D(S) and S are identical. By the assumption that α is a Step(∗)-morphism, α satisfies (out)S, i.e., for all q ∈ Q and

a ∈ supp(q): ∂S(q)(a) = o′(q)(a), hence (out)N holds and α : D(S) → S
′.

We leave it to the reader to extend the proof for Step(∗) to pStepTra(∗). �

Corollary 5.15. For any T in StepTra, we have: [[T]] = [[D(T)]].
Proof. This is an immediate consequence of Theorem 5.14 and the behaviour preservation of subsequential morphisms

(which also holds in StepTra(∗)). �

Going to thedifferential representationonlypreserves statebehaviourmoduloanoutput shift, sincedifferential structures

are not normalised.

Lemma 5.16. Let S = (Q , o, d, r) be a step-by-step structure, and q ∈ Q. We have: [[q]]S = r(q) � [[q]]D(S).

Proof. The implicitly defined output shift function for the reflection arrow idS : S → D(S) is β = r (cf. equation (8)). The

result now follows from Proposition 3.9. �

Although state behaviour is not preserved, equivalence in the differential structure captures equivalence of differentials.

Proposition 5.17. Let S = (Q , o, d, r) be a step-by-step structure, and q1, q2 ∈ Q. We have: D[[q1]]S = D[[q2]]S iff [[q1]]D(S) =
[[q2]]D(S).
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Proof. Since D(S) is a sequential structure, we always have [[q1]]D(S)(ε) = [[q2]]D(S)(ε) = ε. For w = a1 . . . an ∈ A+,

n ≥ 1, and any q ∈ Q we have

[[q]]D(S)(w) = ∂S(q)(a1) � ∂S(d(q)(a1))(a2) � . . . � ∂S(d(q)(a1 . . . an−1)(an)

= D[[q]](a1) �D[[d(q)(a1)]](a2) � . . . �D[[d(q)(a1...an−1)]](an)
(Lemma 5.8) = D[[q]](a1) �D[[q]](a1a2) � . . . �D[[q]](a1 . . . an).

It follows from the above that D[[q1]] = D[[q2]] if and only if [[q1]]D(S) = [[q2]]D(S). �

5.3. Coalgebras for differentials

Objects fromSeq(∗) can bemodelled as coalgebras in the sameway as sequential structures (cf. Remark 4.16) by changing

the type functor accordingly. Let the functor S (∗)
0 : Set → Set be defined by:

S (∗)
0 (X) = (1 + B(∗) × X)A,

S (∗)
0 (f : X → Y) = (1 + idB(∗) × f )idA .

(15)

Proposition 5.18. Seq(∗) is isomorphic to Coalg(S (∗)
0 ).

Proof. Any structure S = (Q , o, d) in Seq(∗) can be seen as an S (∗)
0 -coalgebra:

〈∂S, d〉 : Q → (1 + B(∗) × Q)A.

Checking that the morphisms of Seq(∗) and Coalg(S (∗)
0 ) coincide is more or less immediate from the definition of Seq(∗)-

morphisms. �

The existence of a final object in Seq(∗) does not follow from the existence of a final sequential structure (Remark 4.16),

but since S
(∗)
0 is a polynomial functor, we know that such a final object exists, and we will see it is straightforward to prove

this from first principles. As expected, the final object will have the state behaviours of structures in Seq(∗) as its carrier.

Nowwe adjust the definition of derivative to functions with codomain B(∗) and prefix-closed domains (as e.g. differentials).

Let f : A∗ ��� B(∗) be a function with prefix-closed domain, and let a ∈ A. The derivative of f with respect to a is the partial

function f ·a : A∗ ��� B(∗) defined for all w ∈ A∗ by (f ·a)(w) = f (a) � f (aw) if aw ∈ dom(f ).

Theorem 5.19. Define

QSeq(∗) = {f : A∗ ��� B(∗) | dom(f ) is prefix-closed, f (ε) = ε}.
For f ∈ QSeq(∗) and a ∈ A, define

O(∗)(f )(a) = f (a), D(∗)(f )(a) = f ·a, R(∗)(f ) = f (ε).

The 4-triple �Seq(∗) = (QSeq(∗) ,O(∗),D(∗), R(∗)) is a final object in Seq(∗), and for all S ∈ Seq(∗), the final morphism is [[_ ]]S.

Proof. We first check that �Seq(∗) is well-defined. The output function O(∗) takes values in B(∗) and the terminal output

function R(∗) is constant equal to ε on QSeq(∗) , hence if QSeq(∗) is closed under taking derivatives, then we can conclude that

�Seq(∗) is a well-defined object in Seq(∗). Let f ∈ QSeq(∗) and a ∈ A. We have w ∈ dom(f ·a) iff aw ∈ dom(f ), so by the

assumption that dom(f ) is prefix-closed, it follows that dom(f ·a) is prefix-closed. Moreover, (f ·a)(ε) = f (a) � f (a � ε) = ε.

We now show that the behaviour map [[_ ]] is the final map, i.e., for any S in Seq(∗), [[_ ]] : S → �Seq(∗) is the unique

Seq(∗)-morphism. Let S = (Q , o, d, r) be a sequential structure in Seq(∗). First of all, since all states in S are final, it is clear

that for any q ∈ Q , dom([[q]]) is prefix-closed, hence [[q]] ∈ QSeq(∗) . The condition (supp) is easily seen to hold, namely, for

q ∈ Q and a ∈ A we have: a ∈ supp(q) iff a ∈ dom([[q]]) iff a ∈ supp([[q]]). Also immediate is the condition (out)N, since

for all q ∈ Q and a ∈ supp(q), [[q]](a) = o(q)(a) by definition. Finally, to see that (next)C holds, we have for all q ∈ Q ,

a ∈ supp(q) and w ∈ A∗:

[[d(q)(a)]](w) = o(q)(a) � [[q]](aw) = ([[q]]·a)(w).
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We have thus shown that for any S in Seq(∗), the map [[_ ]] : S → �Seq(∗) is a Seq(∗)-morphism.We leave uniqueness as an

exercise to the reader. �

Since Seq(∗) is reflective in Step(∗) it follows that �Seq(∗) is also a final object in Step(∗). Hence for any step-by-step

S, considered as an object in Step(∗), there is a unique Step(∗)-morphism from S to �Seq(∗) . By combining the reflectivity

of Seq(∗) in Step(∗) with the coalgebraic modelling of Seq(∗) we can now argue that the differential representation is an

alternative to normalisation which provides an equally correct way of viewing step-by-step structures as coalgebras. From

Theorem 5.19 it also follows that state equivalence is bisimilarity in differential representations.

Corollary 5.20. Let S1 and S2 be a step-by-step structures. For all states q1 in S1 and q2 in S2: q1 ∼S (∗)
0

q2 iff [[q1]]D(S1) =
[[q2]]D(S2).

Proof. By Proposition 5.18 and Theorem 5.19, [[_ ]] is the final Coalg(S (∗)
0 )-map, which implies that q1 ≡S (∗)

0
q2 iff

[[q1]]D(S1) = [[q2]]D(S2). The result now follows from Proposition 2.3(2). �

5.4. Minimising differential representations

ThedefinitionofS (∗)
0 -bisimulation amounts to the following. LetS = (Q , o, d)be anS (∗)

0 -coalgebra. A relationR ⊆ Q×Q

is an S (∗)
0 -bisimulation on S, if for all 〈q, s〉 ∈ R:

(d0) supp(q) = supp(s);

(d1) for all a ∈ supp(q): o(q)(a) = o(s)(a) (in the free group B(∗)); and

(d2) for all a ∈ supp(q): 〈d(q)(a), d(s)(a)〉 ∈ R.

Given a finite S (∗)
0 -coalgebra S = (Q , o, d), we can compute S (∗)

0 -bisimilarity on S by using a small variation on the

algorithm fromSection4.3 for computingS-bisimilarity innormalised structures. The idea is again toperform the refinement

algorithm for DFAs, but this timewe take as the initial partition, the largest equivalence relation Pd0 on Q which satisfies (d0)

and (d1).

Lemma 5.21. Let S = (Q , o, d) be a finite S (∗)
0 -coalgebra. We can compute the largest equivalence relation Pd0 on Q which

satisfies (d0) and (d1) in time O(‖o‖ |A||Q | log(|Q |)) where ‖o‖ := max{|o(q)(a)| | q ∈ Q , a ∈ A}.
Proof. Pd0 can be computed in essentially the sameway as Ps0, sowe only provide a sketch and refer to Lemma 4.14 for details.

We again use a binary search tree, but now a state q is inserted with key value c(q) := 〈o(q)(a1), . . . , o(q)(ak)〉 where

|A| = k. In order to define a linear ordering on key values, it suffices to define a linear ordering on B ∪ {b | b ∈ B}, since we

can then extend this ordering lexicographically to reduced elements of B(∗) and key values as in Lemma 4.14. As before, we

obtain a linear ordering b1 ≺ b2 ≺ . . . ≺ bn on B = {b1, b2, . . . , bn} by enumeration, and we extend ≺ to B ∪ {b | b ∈ B}
by defining b ≺ b′ iff b ≺ b′ and b ≺ b′ for all b, b′ ∈ B, i.e., b1 ≺ b2 ≺ . . . ≺ bn ≺ b1 ≺ b2 ≺ . . . ≺ bn. The size of

c(q)-values is now O(|A|‖o‖) which yields a time complexity of O(‖o‖ |A| |Q | log(|Q |)) for inserting all pairs (c(q), q) into
the tree. �

Lemma 5.21 can be used to give a bound on the complexity of computing S (∗)
0 -bisimilarity on D(S) starting with a finite

step-by-step structure S.

Proposition 5.22. Let S = (Q , o, d, r) be a finite step-by-step structure. The time complexities of computing S (∗)
0 -bisimilarity

on D(S) are:

Compute ∂S: O(M‖r‖),
Compute S (∗)

0 -bisimilarity on D(S): O((2‖r‖ + ‖o‖) |A| |Q | log(|Q |))
where M is the number of transitions in S, ‖r‖ := max{|r(q)| | q ∈ Q} and ‖o‖ := max{|o(q)(a)| | q ∈ Q , a ∈ A}.
Proof. Wemust compute ∂S(q)(a) = r(q) � o(q)(a) � r(d(q)(a)) for each q ∈ Q and a ∈ supp(a). Since wewant to compare

∂S-values, we want to expand r(q) to a string of the form b1 . . . bn where bi ∈ B, i = 1, . . . , n. Hence computing all ∂S-

values can be done in time O(M‖r‖). From Lemma 5.21 we know that we can compute the initial partition Pd0 on D(S)

in time O(‖∂S‖ |A| |Q | log(|Q |)). From the definition of ∂S, we have that ‖∂S‖ ≤ 2‖r‖ + ‖o‖. Hence Pd0 can be computed

in time O((2‖r‖ + ‖o‖) |A| |Q | log(|Q |)). The refinement part of the algorithm can be done in time O(|A||Q | log(|Q |))
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(cf. [23]). Adding up the time needed for computing Pd0 and the time needed for refinement (under the big-O), we find that

S (∗)
0 -bisimilarity can be computed in time O((2‖r‖ + ‖o‖) |A| |Q | log(|Q |)). �

Proposition 5.22 gives us a method to decide equivalence of step-by-step transducers via differentials without normali-

sation.

Theorem 5.23. Let T1 = (S1, i1,m1) and T2 = (S2, i2,m2) be two step-by-step transducers, where S1 = (Q1, o1, d1, r1))
and S2 = (Q2, o2, d2, r2). We have: T1 and T2 are equivalent if and only if

m1 � r1(i1) = m2 � r2(i2) and i1 ∼S (∗)
0

i2.

We can decide whether [[T1]] = [[T2]] in time: O(‖m‖ + (2‖r‖ + ‖o‖)|A|N log(N)), where ‖m‖ = max{|m1|, |m2|}. N =
|Q1| + |Q2|, ‖r‖ = max{|rj(qj)| | qj ∈ Qj, j ∈ {1, 2}}, ‖o‖ = max{|oj(qj)(a)| | qj ∈ Qj, j ∈ {1, 2}, a ∈ A}.
Proof. From the definition of D(T) and Corollary 5.15, we have:

[[Tj]] = [[D(Tj)]] = mj � rj(ij) � [[ij]]D(Sj)
for j ∈ {1, 2}.

From Corollary 5.20 it follows that [[T1]] = [[T2]] iff m1 � r1(i1) = m2 � r2(i2) and i1 ∼S (∗)
0

i2. We can determine whether

i1 ∼S (∗)
0

i2 by computing S (∗)
0 -bisimilarity on the coproduct D(S1) + D(S2), cf. Proposition 2.3(v). By Proposition 5.22, we

can compute ∂S1
and ∂S2

, in time O(M‖r‖), where M is the sum of the number of transitions in S1 and S2. The coproduct

of two S (∗)
0 -coalgebras is just their disjoint union, hence S (∗)

0 -bisimilarity on D(S1) + D(S2) can be computed in time

O((2‖r‖ + ‖o‖)|A|N log(N)). Using that M ≤ |A|N, we can decide i1 ∼S (∗)
0

i2 in time O((2‖r‖ + ‖o‖)|A|N log(N)). Finally,

the equalitym1 � r1(i1) = m2 � r2(i2), can be checked in time O(‖m‖ + ‖r‖). Adding up, we find that the time for the entire

decision method is O(‖m‖ + (2‖r‖ + ‖o‖)|A|N log(N)). �

We now have two ways of constructing a minimal representation of a step-by-step transducer T. One is quotient-

ing N (T) with S-bisimilarity, the other is quotienting D(T) with S (∗)
0 -bisimilarity. We will show in Proposition 5.25

below that for a step-by-step transducer T, the state equivalence relations on D(T) and N (T) are identical (as

relations on the state set). Once this is established, it is easy to prove, in Theorem 5.27, that minimising the differential

representation D(T) yields the differential representation of the minimisation of T. First we make an easy, but useful

observation.

Lemma 5.24. If S1, S2 are in Step, and α : S1 → S2 is a subsequential morphism, then for all states q in S1 and all a ∈ A we

have: ∂S1
(q)(a) = ∂S2

(α(q))(a). In particular, since idS : S → N (S) is a subsequential morphism, ∂S(q)(a) = ∂N (S)(q)(a)
for all q ∈ Q and a ∈ A, which implies that D(S) = D(N (S)).

Proof. Follows from the fact that α : S1 → S2 in Step implies that α : D(S1) → D(S2) in Seq(∗) (Theorem 5.14), and that

Seq(∗)-morphisms satisfy the condition (out)N (cf. page 1389). �

We can now show that for a step-by-step S, the bisimilarity relations on D(S) and N (S) are identical.

Proposition 5.25. Let S be a step-by-step subsequential structure. For all states q1 and q2 in S, we have: q1 ∼S (∗)
0

q2 in D(S)

iff q1 ∼S q2 in N (S).

Proof. Let S = (Q , o, d, r), D(S) = (Q , ∂S, d) and N (S) = (Q , o′, d, r′).
We will use the characterising conditions of S (∗)

0 -bisimilarity and S-bisimilarity, (s0)–(s3) (page 1385) and (d0)–(d2)

(page 1392), respectively.

Assume first that q1 ∼S q2 in N (S). Clearly, (d0) and (d2) follow from (s0) and (s2). For (d1) it suffices by Lemma 5.24 to

show that ∂N (S)(q1)(a) = ∂N (S)(q2)(a). By definition of N and ∂, we have for all q ∈ Q and a ∈ supp(q): ∂N (S)(q)(a) =
r′(q) � o′(q)(a) � r′(d(q)(a)). Now (d1) is easily seen to follow from (s1), (s2) and (s3).

Nowassume that q1 ∼S (∗)
0

q2 inD(S). Now (s0) and (s2) follow from (d0) and (d2). To see that (s3) holds, i.e., that r′(q1) =
r′(q2), suppose first that supp(q1) = supp(q2) = ∅. In this case, β̂(q1) = r(q1) and hence r′(q1) = β̂(q1) � r(q1) = ε. Sim-

ilarly, we get r′(q2) = ε, and so r′(q1) = r′(q2). Now suppose supp(q1) = supp(q2) �= ∅. Since N (S) is normalised, there

must be a1, a2 ∈ supp(q1) such that lcp({r′(q1), o′(q1)(a1)}) = lcp({r′(q2), o′(q2)(a2)}) = ε. From (d1) and Lemma 5.24

it follows that ∂N (S)(q1)(a1) = ∂N (S)(q2)(a1), i.e.,

r′(q1) � o′(q1)(a1) � r′(d(q1)(a1)) = r′(q2) � o′(q2)(a1) � r′(d(q2)(a1)). (16)



1394 H.H. Hansen / Information and Computation 208 (2010) 1368–1397

Letting v = lcp({r′(q2), o′(q2)(a1) � r′(d(q2)(a1))}) it follows from the assumption on a1 and (16) that r′(q2) = v � r′(q1).
Using similar arguments, we get for a2:

r′(q1) � o′(q1)(a2) � r′(d(q1)(a2)) = r′(q2) � o′(q2)(a2) � r′(d(q2)(a2))
= r′(q1) � v � o′(q2)(a2) � r′(d(q2)(a2)).

(17)

Since v � r′(q2)we have by our choice of a2 that lcp({v, o′(q2)(a2)}) = ε. Hence from (17) we can now conclude that v = ε
and hence r′(q1) = r′(q2).

It remains to prove (s1). First note that by the definition of N , r′(q) = r′(s) holds iff

β̂(q) � r(q) = β̂(s) � r(s) and hence β̂(q) = β̂(s) � r(s) � r(q).

We now have,

β̂(q1) � o(q1)(a) � β̂(d(q1)(a))

(s3) = β̂(q2) � r(q2) � r(q1) � o(q1)(a) � r(d(q1)(a)) � r(d(q2)(a)) � β̂(d(q2)(a))

(d1) = β̂(q2) � r(q2) � r(q2) � o(q2)(a) � r(d(q2)(a)) � r(d(q2)(a)) � β̂(d(q2)(a))

= β̂(q2) � o(q2)(a) � β̂(d(q2)(a)).

Hence o′(q1)(a) = o′(q2)(a). �

The next example illustrates the result of Proposition 5.25 and the difference between the two types of minimal realisa-

tions.

Example 5.26 (minimal realisations). Consider the following transition diagram of a step-by-step subsequential structure

S = (Q , o, d, r), and its differential representation D(S):

S : �������	0

b
��

a|ab ��

b|b

���������������� �������	1

a|bab
��

ba
��

b|ba�� D(S) : �������	0 a|babba ��

b|b

���������������� �������	1

a|bb
��

b|ba��

�������	3
a��

a|ab
��

b|ab ��
�������	2

b��
a|abb

		 b|b��
�������	3

a|bb
��

b|ba ��
�������	2

a|babba
		 b|b��

Let R be the least equivalence relation on S which contains {〈0, 2〉, 〈1, 3〉}. It can easily be checked that R is the S (∗)
0 -

bisimilarity relation on D(S). For i ∈ {0, 1, 2, 3}, let Ti = (S, i, ε) and fi = [[Ti]] = [[i]]S.
From Theorem 5.23 and the observation that r(0) = r(2) we can conclude that f0 = f2. For i ∈ {0, 1, 2, 3}, we can

obtain a minimal sequential transducer with output in B(∗) which realises fi by quotienting D(S)with R and initialising this

structure with the R-class containing i, adding initial prefix fi(ε) = r(i). Let 0̄ = {0, 2} and 1̄ = {1, 2}. For f1, this minimal

realisation is:

(D(S)/R, 1̄, ba) :
ba
��


��
����
0̄b|b ��

a|babba
��
��
����
1̄ b|ba��

a|bb
��

Alternatively, we could compute and minimise N (S). It can easily be verified that: β̂(0) = ε, β̂(1) = ba, β̂(2) = ε,

β̂(3) = a. N (S) is illustrated below on the left. We now obtain a minimal normalised realisation of fi by quotienting N (S)

with R, initialisingwith the R-class containing i and adding the initial prefix β̂(i). For f1, theminimal normalised realisation is

shown below on the right:
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N (S) : �������	0
b
��

a|abba ��

b|b

��������������� �������	1

a|b
��

ε
��

b|ba��

�������	3
ε��

a|b
��

b|ba ��
�������	2

b��
a|abba

		 b|b��

(N (S)/R, 1̄, ba) :
ba
��


��
����
0̄

b��

b|b ��

a|abba
��
��
����
1̄

ε��

b|ba��
a|b

��

We can now show that the minimisation of the differential representation is the differential representation of the min-

imisation.

Theorem 5.27. Let S = (Q , o, d, r) be a step-by-step subsequential structure, and T = (S, i,m) a step-by-step subsequential

transducer. Let also

Z = {〈q1, q2〉 ∈ Q × Q | in D(S) : q1 ∼S (∗)
0

q2}
= {〈q1, q2〉 ∈ Q × Q | in N (S) : q1 ∼S q2} (cf. Proposition 5.25).

We have:

D(N (S)/Z) = D(S)/Z and D(N (T)/Z) = D(T)/Z.

Proof. We first show the result for a step-by-step structure S = (Q , o, d, r). Let D(S)/Z = (Q/Z, ∂Z, dZ). Since D and N
do not change the underlying DA, the result follows once we show that ∂Z = ∂N (S)/Z . Let ρ : Q → Q/Z be the quotient map

which sends a stateq ∈ Q to itsZ-classq/Z. Sinceρ : D(S) → D(S)/Z is aSeq(∗)-morphism, andalsoρ : N (S) → N (S)/Z
is a Coalg(S)-morphism, we have for all q ∈ Q and a ∈ supp(q):

∂S(q)(a) = ∂Z(q/Z)(a) and ∂N (S)(q)(a) = ∂N (S)/Z(q/Z)(a).

It follows now from Lemma 5.24 that ∂Z(q/Z)(a) = ∂N (S)/Z(q/Z)(a).
The proof for the transducer case follows from result for structures as soon as we can show that D(T) and D(N (T))

have the same initial prefix. Let T = (Q , o, d, r, i,m) ∈ StepTra. The initial prefix of D(T) is m � r(i) (Definition 5.11).

Letting m′ and r′ denote the initial prefix and the terminal output function in N (T), the initial prefix in D(N (T)) is

m′ � r′(i) = m � β̂T(i) � r′(i) = m � r(i) (cf. Definition 3.25). �

For the class of step-by-step structures, differential representations could offer an interesting alternative to normalised

structures for the purpose of minimisation and deciding equivalence. We base this on the observation that computing β̂ is

a non-trivial task which involves a global fixpoint computation (cf. [4,10]) whereas differentials can be computed locally in

the sense that for each state q and a ∈ supp(q), we only need to know the values of r(q), o(q)(a) and r(d(q)(a)) in order

to determine ∂S(q)(a). This local nature of the differential allows for flexible and straightforward algorithms for computing

differential representations. It would be interesting to see how the two techniques compare in practice, and when applied

to real examples.

6. Conclusion

Although subsequential structures as objects have the type of coalgebras for a functor S : Set → Set their word function

semantics requires a notion of morphism which is more general than the notion of S-coalgebra morphism. Hence the

categoryof all subsequential structures cannotbe seenas a (sub)categoryof coalgebras.However,we showed thatnormalised

structuresanddifferential structuresdohaveacoalgebraicmodelling.Hencenormalisationand takingdifferentials transform

subsequential structures intoanequivalent coalgebraic representation. This iswhatwemeanwhenwesay thatnormalisation

and taking differentials are a form of coalgebraisation. One immediate consequence of this coalgebraisation is that finite

structures can be minimised by quotienting with bisimilarity. We provided a detailed description of how one can adapt the

knownmethod for DFA-minimisation to normalised structures and differential representations. For the purpose of deciding

equivalence of step-by-step transducers, we believe that the decision method obtained by computing state equivalence on

the differential structure is an interesting alternative to the normalise–minimise method. This claim is based on the easy,

local manner in which the differential can be computed, as opposed to the more complicated and global nature of known

normalisation algorithms (cf. [4,10]).

The mathematical properties of the abovementioned transformations were made precise by showing that normalisation

and taking differentials are reflectors N and D , respectively. We can therefore argue that the right way of thinking about
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subsequential structures is in their coalgebraic, normalised form, and for step-by-step structures, the differential represen-

tation yields an alternative, but equally correct coalgebraic description. In the diagram belowwe provide an overview of the

relationships between the various classes of subsequential structures and coalgebras that have been studied in this paper.

The inclusion arrows indicate embeddings of categories; a double-headed arrow indicates that the embedding is surjective

on objects; and the labels ‘full’, ‘refl’ and∼= indicatewhether the embedding is full, reflective or an isomorphism, respectively.

Subseq

C

��

Coalg(S)� �				 Coalg(S0 )
��

∼=
��

� �full		 � � full �� Coalg(S (∗)
0 )

��
∼=
��

CSubseq
��

refl

��

N �� NSubseq��refl
		

� �

full

��

Seq� �full		
� �

full

��

� � full �� Seq(∗)

� �

refl

��

Step� �
full

��

� � full �� Step(∗)

D

��

Asdirections for future research,wemention that in automatic speech recognition, subsequential transducerswithweighted

transitions play an important role (cf. [30]). Since weighted or probabilistic systems can be modelled coalgebraically [3],

one could try to extend the current coalgebraic modelling to weighted subsequential transducers. On the side of formal

languages and transductions, the natural next step would be to try to give a coalgebraic modelling of sequential bimachines

and rational functions [12]. We expect this to be a non-trivial exercise, if at all possible, since a unique canonical minimal

bimachine seems not to exist [33].

The problemswe encountered in the coalgebraic modelling of arbitrary subsequential structures arise from the presence

of internal states and the fact that theword function semantics equates output in the freemonoid. These issues could perhaps

be dealt with by extending the coalgebraic setting from being purely set based, to one in which the monoid identities are

formally included. Another idea would be to look for alternative equivalence notions along the lines of weak bisimilarity.

However, weak bisimilarity in coalgebras is not very well understood, but some results may be found in [34,36,41]. In this

context, we also mention that although subsequential structures seem to allow a kind of internal steps, these steps are not

entirely unobservable since an input letter is always consumed.

Another direction for future researchwould be to find out whether existing coalgebraic specification languages (cf. [7,26,

31]) are useful for expressing properties in the application domains of subsequential transducers. For example, the regular

expressions for polynomial coalgebras given in [7] provide an expressive formal language for specifying normalised and step-

by-step subsequential transducers. We would also like to know if our results on step-by-step transducers and differential

representations are practically useful in this or other application domains.

Finally, we mention that step-by-step transducers are implicitly used in [8] to give a proof of Choffrut’s characterisation

theorem for subsequential functions. It would be interesting to see if Choffrut’s result can be reinterpreted in the coalgebraic

setting presented here.
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