
Theoretical Computer Science 266 (2001) 853–886
www.elsevier.com/locate/tcs

What is the coalgebraic analogue of
Birkho&’s variety theorem?

Robert Goldblatt
School of Mathematical and Computing Sciences, Victoria University, P. O. Box 600,

Wellington, New Zealand

Received December 1999; revised August 2000; accepted October 2000
Communicated by G.D. Plotkin

Abstract

Logical de4nability is investigated for certain classes of coalgebras related to state-transition
systems, hidden algebras and Kripke models. The %lter enlargement of a coalgebra A is intro-
duced as a new coalgebra A+ whose states are special “observationally rich” 4lters on the state
set of A. The ultra%lter enlargement is the subcoalgebra A∗ of A+ whose states are ultra4lters.
Boolean combinations of equations between terms of observable (or output) type are identi4ed
as a natural class of formulas for specifying properties of coalgebras. These observable formulas
are permitted to have a single-state variable, and form a language in which modalities describing
the e&ects of state transitions are implicitly present. A∗ and A+ validate the same observable
formulas. It is shown that a class of coalgebras is de4nable by observable formulas i& the class
is closed under disjoint unions, images of bisimulations, and (ultra)4lter enlargements. (Closure
under images of bisimulations is equivalent to closure under images and domains of coalge-
braic morphisms.) Moreover, every set of observable formulas has the same models as some
set of conditional equations. Examples are constructed to show that the use of enlargements is
essential in these characterisations, and that there are classes of coalgebras de4nable by condi-
tional observable equations, but not by equations alone. The main conclusion of the paper is
that to structurally characterise classes of coalgebras that are logically de4nable by modal lan-
guages requires a new construction, of “Stone space” type, in addition to the coalgebraic duals
of the three constructions (homomorphisms, subalgebras, direct products) that occur in Birkho&’s
original variety theorem for algebras. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Coalgebra; Observationally rich 4lter; Observable formula; Bisimulation

1. Introduction and overview

Certain kinds of coalgebra have proven useful in the modelling of features of object-
oriented programming languages [16, 12]. Since coalgebras are dual to algebras (in

E-mail address: rob.goldblatt@vuw.ac.nz (R. Goldblatt).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00395 -9

854 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

the sense of category theory), this has provided impetus for the study of aspects of
coalgebraic theory that correspond to parts of the general theory of algebras [18, 19].
A notable case is Birkho&’s celebrated variety theorem [3], stating that a class of
algebras is de4nable by equations i& it is closed under homomorphic images, subalge-
bras, and direct products. These three constructions dualise to subcoalgebras, images
of coalgebraic morphisms and disjoint unions, respectively, and hence a class of coal-
gebras closed under the latter operations has been dubbed a covariety. Several papers
[11, 14, 19] explore characterisations of covarieties that involve, variously, abstract du-
alisation of the notion of a variable; axiomatisations of the notions of formula and
satisfaction; and the use of in4nitary logic. Another approach [17] characterises equa-
tionally speci4able classes of coalgebras in terms of constructions, one of which is
itself de4ned in terms of preservation of equations and so is not fully “structural”.

This paper provides a di&erent perspective on questions of de4nability, and has
something to say about both sides of the coin of results like Birkho&’s. On the one
hand, there is the question of the syntactic form of expressions used to de4ne classes
of structures, and on the other there is the nature of the constructions under which
these classes are closed.

The kind of coalgebra to be considered here typically has a set X of states (which
may be thought of as the possible realisations of some notion of object), and a set
of operations which are divided into methods and attributes. Methods are of the type
m :X × I →X and attributes of the type a :X × I →O, where I is a set of inputs and O
a set of outputs. A method can be thought of as a system of state transitions x �→m(x; b)
parameterised by inputs b, while attributes assign outputs or “observable values” a(x; b)
to states x relative to an input. We may also suppress the input set (or regard it as
having one element that can be ignored), to consider methods of type X →X and
attributes of type X →O. Thus, this concept of coalgebra encompasses the idea of a
transition system, such as an automaton or a Kripke frame for modal logic, as well as
modelling the “hidden” state space of a speci4ed class in an object-oriented language.
Indeed the notion can be viewed as a hidden algebra [7, 17] having a single hidden
sort.

On the syntactic side, examples of coalgebra speci4cation in the literature [16, 12]
have a number of distinctive features that have inJuenced our choice of formalism:
(i) Terms and formulas typically contain a single-state variable. We implement this

by using a special symbol
, which, rather than being a variable, may be thought
of as a parameter denoting the “current state”. Variables proper are constrained to
take only data elements, i.e. inputs or outputs, as values.

(ii) An equation between terms is interpreted as meaning equality if those terms take
data elements as values, and is interpreted as bisimilarity when they evaluate to
states. To facilitate this distinction di&erent formal symbols will be used for the
two cases: data equations are written as t1 ≈ t2, while state equations are written
as t1 � t2.

(iii) Signi4cant properties of coalgebras sometimes require logical connectives as well
as equations for their formulation. It is therefore appropriate to study Boolean

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 855

combinations of equations, and our principal result is a characterisation of classes
of coalgebras speci4able by such combinations.

Experience with other kinds of transition system modelling, such as in dynamic logic,
has motivated the use of modal logic in the study of coalgebras [2, 15]. In the present
case it would be natural to employ modalities [m:b] corresponding to state transitions,
with a formula [m:b]’ expressing the statement “after applying method m with param-
eter b; ’ is true”. But in the theory developed here, it turns out that this is expressed
by the formula ’(m(
; b)), obtained from ’ by substituting the term m(
; b) in place of

 (Corollary 4.4&.). Thus by taking Boolean combinations of appropriate equations we
are already dealing with a modal language, one in which the modalities are implicit
and de4nable from other constructs.

Bisimilarity is intended to express the behavioural indistinguishability of states. A
basic principle of the object-oriented philosophy is that states are not directly ac-
cessible. Computationally, all that we know about them is what can be learned by
performing “experiments” and observing the results (outputs). An experiment consists
of the application of a combination of methods, followed by an attribute (observation).
This amounts to the evaluation of a term of output type [7, p. 292], and states prove
to be bisimilar when they assign the same values to all output terms (Theorem 3.2).
Hence, satisfaction of state equations is reducible to satisfaction of certain output equa-
tions (Theorem 4.1) and suggests a prominent role for Boolean combinations of output
equations – which we call observable formulas.

On the structural side, familiarity with modal model theory [10, 8] suggests that to
characterise classes of coalgebras that are de4nable in a modal language will require
some new construction, of “Stone space” type, in addition to the duals of Birkho&’s
three constructions. For this purpose we introduce the notion of the %lter enlargement
of a coalgebra A. This is a coalgebra A+ whose states are certain “observationally rich”
4lters on the state set of A. These 4lters are required to contain special sets of states
de4ned by equations between terms of output type. Then the ultra%lter enlargement
of A is de4ned to be the subcoalgebra A∗ of A+ consisting of those states that are
ultra4lters. We show that consideration of A∗ and A+ in specifying classes of coal-
gebras is unavoidable, because they preserve satisfaction of Boolean combinations of
output equations (see Corollary 8.7). The proof of this fact requires the establishment
of relationships between A and A+ (and A∗) reminiscent of the relationships between
a structure and its reduced powers and ultrapowers that underlie LoNs’s Theorem (see
Theorems 8.3 and 8.4).

The principal result of the paper (Theorem 9.2) is that

a class of coalgebras is de4nable by a set of observable formulas if and only if
it is closed under disjoint unions, images of bisimulation relations, and ultra4lter
enlargements.

(Closure under images of bisimulations is equivalent to closure under images and
domains of coalgebraic morphisms.) Moreover, the proof of Theorem 9.2 shows that
any class de4nable by a set of observable formulas is, in fact, also de4nable by a set

856 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

of conditional observable equations

t ≈ u if t1 ≈ u1 and : : : and tk ≈ uk :

These characterisations are analogous to a theorem from modal logic that appeared
in [10], giving structural conditions under which a 4rst-order axiomatisable class of
Kripke frames is de4nable by modal propositional formulas. That involved the notion
of the ultra%lter extension of a frame. Rutten [18, p. 254] has asked about the extent to
which the result generalises to arbitrary coalgebras, and this article provides a partial
answer to his question. There are some signi4cant di&erences between the present
coalgebraic situation and the modal one. Ultra4lter enlargements of our coalgebras
are instances of ultra4lter extensions of modal frames as far as their treatment of
methods as concerned, but have additional structure produced by the attributes that
is not found in standard modal model theory. Also, whereas a class of coalgebras
de4ned by observable formulas is closed under ultra4lter enlargements and domains
of coalgebraic morphisms, the corresponding properties do not always hold for the
class of frames de4ned by a propositional modal formula. Whereas modal formulas
are constructed from variables that take arbitrary sets of states as values, observable
formulas constitute a language with a more specialised syntax and restricted expressive
power. Further discussion of these comparisons is given at the end of Section 8 of this
paper, and in Section 7 of [9].

Section 10 concludes our work with a series of four examples:
1. It is shown that closure under (ultra)4lter enlargements is independent of the other

closure conditions discussed, by exhibiting a class of coalgebras that is closed under
disjoint unions and images of bisimulations, hence under domains and images of
morphisms, but not closed under ultra4lter or 4lter enlargements.

2. The second example shows that ultra4lter enlargements do not always preserve
satisfaction of negations ¬(t1 � t2) of bisimilarity equations between state-valued
terms (although they do preserve the equations themselves). Thus a characterisa-
tion of classes de4ned by such inequations, or other Boolean combinations of state
equations, would have to use new closure concepts.

3. This example shows that the hypothesis of closure under domains of morphisms in
our main results cannot be weakened to closure under subcoalgebras. A class of
coalgebras is constructed that is closed under disjoint unions, images of morphisms,
subcoalgebras, and 4lter and ultra4lter enlargements, but not closed under domains
of morphisms.

4. The fourth example is a class of coalgebras that is de4nable by conditional observ-
able equations, but not by equations alone.

The paper does not claim to fully resolve the question in its title. Rather it seeks to
view the question in a new light, by proposing a di&erent kind of answer to those
considered so far. Birkho&’s theorem gives a structural characterisation of certain
logically de%nable classes of algebras, and our main point is that simply dualising
Birkho&’s three constructions will not provide a characterisation of classes of coalge-
bras de4nable by modal languages. The coalgebras we consider are extremely simple

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 857

– they come from “monomial” endofunctors Set→Set on the category of sets that
are products of functors of the form X �→X I and X �→OI where I and O are con-
stant sets – but they are already complex enough to demonstrate our main point and
to provide a new “Birkho& theorem”. However many natural speci4cations of object
classes and abstract machines depend additionally on coproducts of functors for their
de4nition [12], and to extend our results in that direction will require the development
of a more sophisticated syntax, perhaps along the lines of [13]. Other problems to be
addressed concern the issues of whether there is, in fact, a structural characterisation
of classes de4ned just by equations ([17] doubts this), or by Boolean combinations of
state equations.

The proof of our principal result is model-theoretic and involves the theory of bisim-
ulation relations. It is possible to take a more algebraic approach (like that of [10]) by
using Boolean algebras with operators (BAOs) based on the powersets of the state
sets of coalgebras. Then the proof can be transformed into an explicit application of
Birkho&’s original theorem to these BAOs. This approach is fully worked out in a
companion paper [9].

2. Coalgebras and terms

A signature for coalgebras is a sequence (In; Out;Meth; Att) with the following prop-
erties:
• In is a collection of input sets.
• Out is a collection of output sets.
• Meth is a collection of method symbols. Each symbol m in Meth is assigned an

input set Im, called the sort of m.
• Att is a collection of attribute symbols. Each a in Att is assigned a pair (I a; Oa) as

its sort, with I a ∈ In and Oa ∈Out.
Let D =

⋃
(In ∪ Out), the collection of all elements appearing in any input or out-

put set. Members of D are data elements. We will assume that there is at least
one output set containing two distinct elements (see Section 9 for the use of this
assumption).

Fix a signature as described. A coalgebra for this signature is a structure

A = (X A; {mA : m ∈ Meth}; {aA : a ∈ Att})

consisting of a set X A of states, a function mA :X A× Im →X A for each method symbol
m of sort Im, and a function aA :X A × I a →Oa for each attribute symbol a of sort
(I a; Oa).

It is appropriate also to consider methods of the form X A →X A and attributes of the
form X A →Oa, without any associated input sets. These can be subsumed under the
present framework by taking Im or I a to be a one-element set {∗}, and identifying X A

with X A × {∗}.

858 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

Table 1

Term t(Qv) Type Value t A[x; Qd]

Variable vi in VP P di
Constant b in I or O I or O b

 X A x
m(t1; t2) X A mA(t A1 [x; Qd]; t A2 [x; Qd])
a(t1; t2) Oa aA(t A1 [x; Qd]; t A2 [x; Qd])

The given de4nition of coalgebra can be equated to the categorical concept by as-
sociating with each set X the product set

T (X) =
∏

m∈Meth
X Im × ∏

a∈Att
(Oa)I

a
:

Then a coalgebra A as above can be identi4ed with the function � :X A →T (X A) having

�(x) = 〈〈mA
x : m ∈ Meth〉; 〈aA

x : a ∈ Att〉〉;
where mA

x ∈X Im is the function b �→mA(x; b) and aA
x ∈ (Oa)I

a
is the function c �→ aA(x; c).

The function T itself lifts naturally to an endofunctor T : Set→Set on the category of
sets, and a coalgebra as a pair (X A; �) with � :X A →T (X A) is precisely a T -coalgebra
as de4ned in category theory [1, p. 100].

In the absence of attribute functions, a coalgebra may be viewed as the collection of
state-transition functions x �→mA(x; b) for all m∈Meth and b∈ Im. This corresponds to
a Kripke frame for modal logic that consists of a collection of functional accessibility
relations. That is a very particular and well understood case in modal semantics. But
the presence of attributes immediately adds a new structural dimension going beyond
the standard modal context, as is manifest in the new concepts of “observationally
rich” ultra4lter and ultra4lter enlargement to be discussed in Section 8.

2.1. Terms

Let {VP :P ∈ In∪Out} be a In∪Out-indexed collection of sets of variables. Members
of VP are called variables of type P, and are intended to take data elements from P as
values. A term is a 4nite string of symbols constructed from these variables, members
of D as constants, and a special symbol
, using method and attribute symbols.
 may
be thought of as a parameter denoting the current state. If Qv= (v1; : : : ; vn) is a tuple of
variables, we write t(Qv) to indicate that all the variables occurring in term t are among
v1; : : : ; vn. The syntax of terms is speci4ed inductively by the rules given below. This
syntax is also summarized in column 1 of Table 1.

Terms are expressions taking either data elements or states as values. They are
therefore classi4ed as data terms or state terms, with data terms further classi4ed
as input terms or observable (i.e. output) terms. A data term is ground if it has no
variables. In any coalgebra each term has an associated type, which is either an input
set, an output set, or X A (see column 2 of Table 1). While it is possible for a given

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 859

Table 2

t(Qv) t(Qd) t(u)

Variable vi di vi
Constant b b b

 u
m(t1; t2) m(t1(Qd); t2(Qd)) m(t1(u); t2(u))
a(t1; t2) a(t1(Qd); t2(Qd)) a(t1(u); t2(u))

set to be both an input set and an output set (i.e. In ∩ Out �= ∅), this should not lead
to confusion about the intended classi4cation of a given term.

Here then are the rules for de4ning terms and their types:
• For each P ∈ In ∪ Out, each v in VP is a data term, called a variable of type P.
• For each P ∈ In ∪ Out, each b in P is a data term, called a constant of type P.
• The symbol
 is a state term.
• If m is a method symbol of sort Im; t1 is a state term, and t2 is an input term of

type Im, then m(t1; t2) is a state term.
• If a is an attribute symbol of sort (I a; Oa); t1 is a state term, and t2 is an input term

of type I a, then a(t1; t2) is an observable term of type Oa.
A term takes a value belonging to its type once values have been given to its variables
and a state has been speci4ed as the denotation of
. To de4ne this we say that a
tuple Qd= (d1; : : : ; dn) of data elements matches a tuple Qv of variables if Qv and Qd are of
the same length and each vi has the same type as the corresponding di. In that case Qd
serves as a valuation, assigning values to the vi’s. The symbol

tA[x; Qd]

denotes the value of term t(Qv) in coalgebra A at state x∈X A under the assignment of
Qd to Qv. This is de4ned inductively in column 3 of Table 1. If t is ground (no variables),

then the value tA[x; Qd] is independent of Qd, and may be abbreviated to tA[x], the value
of t at state x.

The term t(Qd) de4ned in column 2 of Table 2 is the ground term obtained by
replacing each occurrence of vi in t by the constant di. It is readily seen that the value
tA[x; Qd] is the same as the value of t(Qd) at x:

tA[x; Qd] = t(Qd)A[x]:

Thus discussion of the values of terms can, in principle, be reduced to discussion of
the values of ground terms.

Now the value of a term t at a state of the form mA(x; b), resulting from the
application of a method mA, can be expressed as the value of an associated term at
the initial state x. To explain this, we write t(u) for the term obtained by replacing
every occurrence of
 in t by a state term u. This notion is de4ned in column 3 of
Table 2. Note that t and t(u) are always of the same type.

860 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

The result we have in mind (Corollary 2.2 below) is that the value of t at state
mA(x; b) is the same as the value at x of the term t(m(
; b)) obtained by substituting
m(
; b) for
 in t. More generally, evaluation of any state term u at x produces a new
state uA[x], and the value of t at uA[x] is the same as the value of t(u) at x. This
is a relationship between syntactic substitution and semantic evaluation of terms that
is familiar from 4rst-order logic, where it is sometime called the Substitution Lemma
(see for instance [5, p. 52] or [6, p. 126]). In the present context it takes on a more
“dynamic” Javour:

Theorem 2.1. Let u be a state term. Then for any term t; if Qv includes all the variables
of t(u); then

tA[uA[x; Qd]; Qd] = t(u)A[x; Qd]

for all x∈X A; and all Qd matching Qv.

Proof. By induction on the length of t. If t is a variable vi or constant b, then both
sides of the equation evaluate to di, or to b, respectively. If t is
, then t(u) is u and
both sides evaluate to uA[x; Qd].

Now, let t be m(t1; t2) and make the induction hypothesis that the theorem holds for
state term t1 and data term t2. Then

m(t1; t2)A[uA[x; Qd]; Qd]

= mA(tA1 [uA[x; Qd]; Qd]; tA2 [uA[x; Qd]; Qd]) Table 1

= mA(t1(u)A[x; Qd]; t2(u)A[x; Qd]) hypothesis on t1; t2

= m(t1(u); t2(u))A[x; Qd] Table 1

= m(t1; t2)(u)A[x; Qd] Table 2;

showing that the result holds in this case.
Finally, if t is a(t1; t2) and the result is assumed to hold for t1 and t2, then it holds

for t by an argument that looks identical to the previous case, but with a in place of
m.

Corollary 2.2. tA[mA(x; b); Qd] = t(m(
; b))A[x; Qd].

Proof. mA(x; b) =m(
; b)A[x; Qd].

3. Bisimulation, bisimilarity and quotients

Bisimulations and bisimilarities are fundamental to what follows. We begin with a
review of these cornerstone concepts from the theory of computational processes.

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 861

A binary relation �⊆X A ×X B is called a bisimulation from A to B if methods
preserve �-relatedness of states, and attributes assign the same observable values to
�-related states, i.e.

x�y implies mA(x; b) �mB(y; b) and aA(x; c) = aB(y; c)

for all x∈X A; y∈X B; m∈Meth; b∈ Im; a∈Att and c∈ I a.
The union of any collection of such bisimulations is also a bisimulation from A

to B. In particular, the union of all bisimulations from A to B is a bisimulation, to be
denoted ∼, which is thereby the largest such bisimulation. If x∼y we say that x and
y are bisimilar. Thus x and y are bisimilar when there is some bisimulation � with
x�y.

Since bisimilarity can be de4ned between any coalgebras, it would be appropriate
to use a notation like ∼A;B to denote its manifestation as a relation from A to B. In
the case A=B, we may write ∼A for the restriction of this relation to the states of the
coalgebra A. This elaboration of notation will only be used when needed for clarity.

Now the inverse �−1 of a bisimulation � from A to B is itself a bisimulation from
B to A. If �1 is a bisimulation from A1 to A2, and �2 is a bisimulation from A2 to A3,
then their composition �1 ◦ �2 is a bisimulation from A1 to A3. In the case of a single
coalgebra A, these facts can be used to show that ∼A is an equivalence relation on the
state set X A.

Theorem 3.1. Let � be a bisimulation from A to B. Let t(Qv) be a term; and suppose Qd
matches Qv. Then if x�y;
(1) tA[x; Qd]�tB[y; Qd] if t is a state term; and
(2) tA[x; Qd] = tB[y; Qd] if t is a data term.

Proof. By induction on the length of t. Let x�y. If t is
, then (1) just reasserts this
assumption x�y. If t is a variable vi or a constant b, then tA[x; Qd] and tB[y; Qd] are both
either di or b, respectively, and so (2) holds for t.

Now let t be m(t1; t2) and make the induction hypothesis that the theorem holds for
state term t1 and data term t2. This means that tA1 [x; Qd]�tB1 [y; Qd] and tA2 [x; Qd] = tB2 [y; Qd].
Since � is a bisimulation, these last two equations lead to

mA(tA1 [x; Qd]; tA2 [x; Qd])�mB(tB1 [y; Qd]; tB2 [y; Qd]);

i.e. m(t1; t2)A[x; Qd]�m(t1; t2)B[y; Qd], proving (1) in this case.
Similarly, if t is a(t1; t2) and the theorem holds for t1 and t2, the fact that � is a

bisimulation leads to

aA(tA1 [x; Qd]; tA2 [x; Qd]) = aB(tB1 [y; Qd]; tB2 [y; Qd]);

giving (2) for this case of t.

There are a number of logical characterisations of bisimilarity. As explained in
Section 1, a ground observable term describes an “experiment” that can be performed

862 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

upon a state to yield some observable value as output (see, e.g., [7, p. 292], where
these terms are called contexts). Two states are indistinguishable if they exhibit exactly
the same behaviour, in the sense that all experiments on them produce the same re-
sults. This notion of indistinguishability is captured by bisimilarity, as the next theorem
shows.

Theorem 3.2. For any states x∈X A and y∈X B the following are equivalent:
(1) x∼y.
(2) tA[x; Qd] = tB[y; Qd] for all observable terms t(Qv) and all Qd matching Qv.
(3) tA[x] = tB[y] for all ground observable terms t.
(4) tA1 [x] = tA2 [x] i: tB1 [y] = tB2 [y] for all ground observable terms t1; t2.

Proof. (1) implies (2): Suppose x∼y. Then x�y for some bisimulation �. Now (2)
follows by Theorem 3.1(2).

(2) implies (3): Immediate.
(3) implies (4): If (3) holds then tA1 [x] = tB1 [y] and tA2 [x] = tB2 [y], which directly

implies (4).
(4) implies (1): De4ne a relation � by specifying that z�w i&

tA1 [z] = tA2 [z] i& tB1 [w] = tB2 [w] for all ground observable terms t1; t2:

We show that this � is a bisimulation from A to B. Then if (4) holds for a particular x
and y, we have x�y, and hence x∼y since ∼ is the largest bisimulation, so (1) holds.

Let z�w. Firstly we show mA(z; b)�mB(w; b). Noting that if t is a ground observable
term, then so is t(m(
; b)), we have for any ground observable t1; t2 that

tA1 [mA(z; b)] = tA2 [mA(z; b)]

i& t1(m(
; b))A[z] = t2(m(
; b))A[z] by Corollary 2:2

i& t1(m(
; b))B[w] = t2(m(
; b))B[w] by Theorem 3:1(2); as z�w

i& tB1 [mB(w; b)] = tB2 [mB(w; b)] by Corollary 2:2:

This proves mA(z; b)�mB(w; b).
Secondly we must show aA(z; c) = aB(w; c). Let aA(z; c) =d. Then a(
; c)A[z]=dA[z],

so as z�w, a(
; c)B[w] =dB[w], i.e. aB(w; c) =d as required.

This proof also shows that, in view of Theorem 3.1(2), replacing “observable” by
“data” in each of (2)–(4) gives further conditions equivalent to x∼y. More will be
said in the next section about the characterisation of bisimilarity.

Corollary 3.3. Let � be a bisimulation from A to B; and suppose that x�y and x′�y′.
Then x∼ x′ in A i: y∼y′ in B.

Proof. If x∼A x′, then for any ground observable t, by repeated use of Theorem 3.1(2),

tB[y] = tA[x] as x�y

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 863

= tA[x′] as x∼Ax′

= tB[y′] as x′�y′;

showing that y∼By′ by Theorem 3.2(3). Likewise for the converse.
Alternatively, a set-theoretic proof not requiring Theorems 3.1 and 3.2 observes

that if x∼Ax′, then altogether y�−1 x∼A x′�y′. But the composition �−1 ◦ ∼A ◦ � is a
bisimulation on B, so is contained in ∼B, hence y∼B y′, etc.

A new coalgebra can be formed from a given one by identifying bisimilar states.
This is possible because ∼A is an equivalence relation on the state set X A for which

x∼Ay implies mA(x; b)∼AmA(y; b) and aA(x; c) = aA(y; c): (3.1)

These properties allow a coalgebra A“ to be de4ned on the set of ∼-equivalence classes
of X A. A“ will be called the quotient of A. For each x∈X A, put |x|= {y∈X A: x∼Ay}.
Let

A“ = (X A“
; {mA“

: m ∈ Meth}; {aA“
: a ∈ Out});

where

X A“
= {|x|: x ∈ X A};

mA“
(|x|; b) = |mA(x; b)|;

aA“
(|x|; c) = aA(x; c):

mA“
and aA“

are well de4ned in view of (3.1). Their de4nitions ensure that the natural
map f“: x �→ |x| is a bisimulation from A to A“. (This map is an example of the
important concept of morphism, to be studied in Section 5.) Corollary 3.3 can be
applied, with �=f“, to show that bisimilar states of A“ are equal.

4. Formulas and their satisfaction

A data equation is an expression of the form t1≈t2, where t1 and t2 are data terms.
The equation is intended to express the equality of the values of t1 and t2. It is an
observable equation if both of its terms are observable.

A state equation is an expression of the form t1�t2, where t1 and t2 are state terms.
It is intended to express the bisimilarity of the values of t1 and t2.

A formula is any Boolean combination of equations, i.e. any expression built from
equations by the usual logical connectives ¬; ∧; →, ∨; ↔. An observable=data=state
formula is one containing only observable=data=state terms (i.e. built from observable=
data=state equations only), and a ground formula is one without any variables. We will
make particular use of formulas that are both ground and observable.

864 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

The notation

A; x |= ’[Qd]

means that formula ’ is satis%ed in coalgebra A by state x under assignment Qd, and
is de4ned inductively by

A; x |= t1≈t2[Qd] i& tA1 [x; Qd] = tA2 [x; Qd];

A; x |= t1�t2[Qd] i& tA1 [x; Qd]∼AtA2 [x; Qd];

A; x |= ¬’[Qd] i& not A; x |= ’[Qd];

A; x |= ’1 ∧ ’2[Qd] i& A; x |= ’1[Qd] and A; x |= ’2[Qd];

A; x |= ’1 → ’2[Qd] i& A; x |= ’1[Qd] implies A; x |= ’2[Qd];

and similarly for the other Boolean connectives. When A; x |= ’[Qd] we may also say
that ’ is true at, or of, x in A under Qd.

As with terms, we write ’(Qv) to indicate that the variables occurring in ’ are
amongst those of Qv, and use ’(Qd) to denote the ground formula obtained from ’ by
substituting di for vi. ’(Qv) is satis%ed by x per se, written A; x |= ’, if A; x |= ’[Qd]
for all Qd matching Qv.

In general, it is true that

A; x |= ’1 ∧ ’2 i& A; x |= ’1 and A; x |= ’2;

but it may be that neither A; x |=’ nor A; x |= ¬’, since ’ may be satis4ed at x by
some Qd’s and not by others. However if ’ is a ground formula, then its satisfaction is
independent of value assignment to variables, and in that case we get

A; x |= ¬’ i& not A; x |= ’:

It is straightforward to check, for any formula ’, that

A; x |= ’[Qd] i& A; x |= ’(Qd) (4.1)

and so satisfaction of ’ by x reduces to satisfaction of the set of ground formulas

{’(Qd): Qd matches Qv}:
Coalgebra A is a model of formula ’, written A |= ’, if A; x |= ’ for all states x∈X A.
We may also say that A models ’, or that ’ is valid in A, when this occurs. We write
Mod ’ for the class of all models of ’, and

Mod& = {A : A |= ’ for all ’ ∈ &}
for the class of all models of a set & of formulas.

In view of Theorem 3.2(4), we now see that states x∈X A and y∈X B of two
coalgebras are bisimilar precisely when they satisfy the same ground observable equa-
tions, i.e.

A; x |= t1 ≈ t2 i& B; y |= t1 ≈ t2

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 865

for all ground observable terms t1; t2. If this holds, then x and y satisfy exactly the
same ground observable formulas, and hence in view of (4.1) satisfy exactly the same
observable formulas altogether.

Another observational characterisation of bisimilarity is given by the notion of be-
havioural satisfaction of state equations. The equation u1 � u2 is behaviourally satis%ed
when t(u1) ≈ t(u2) is satis4ed for all observable terms t [7, p. 292]. In this sense any
state equation is semantically equivalent to an in4nite conjunction of observable equa-
tions:

Theorem 4.1. Let u1 � u2 be a state equation with variables amongst Qv. Then in any
coalgebra A; if x∈X A and Qd matches Qv; the following are equivalent:

(1) A; x |= u1 � u2[Qd].
(2) A; x |= t(u1) ≈ t(u2)[Qd] for all ground observable terms t.

Proof. By de4nition, A; x |= u1 � u2[Qd] i& state uA
1 [x; Qd] is bisimilar to state uA

2 [x; Qd].
By Theorem 3.2(3), this bisimilarity holds i& tA[uA

1 [x; Qd]] = tA[uA
2 [x; Qd]] for all ground

observable terms t. But tA[uA
i [x; Qd]] = t(ui)A[x; Qd] by Theorem 2.1, so

tA[uA
1 [x; Qd]] = tA[uA

2 [x; Qd]] i& A; x |= t(u1) ≈ t(u2)[Qd]:

We now take up the question of preservation of satisfaction under bisimulation. A
bisimulation � from A to B will be called total if its domain

{x ∈ X A: ∃y ∈ X B(x�y)}
is the whole of X A. � is surjective if its image

{y ∈ X B: ∃x ∈ X A(x�y)}
is the whole of X B.

Theorem 4.2. Let � be a bisimulation from A to B and ’(Qv) any formula.
(1) If x�y; then A; x |= ’[Qd] i: B; y |= ’[Qd]; for all Qd matching Qv.
(2) If x�y; then A; x |= ’ i: B; y |= ’.
(3) If � is surjective and A |= ’; then B |= ’.
(4) If � is total and B |= ’; then A |= ’.

Proof. For (1), let x�y. If ’ is the data equation t1 ≈ t2, then from Theorem 3.1(2),
we have t Ai [x; Qd] = tBi [y; Qd] for i = 1; 2. Hence

t A1 [x; Qd] = t A2 [x; Qd] i& tB1 [y; Qd] = tB2 [y; Qd];

giving A; x |=’[Qd] i& B; y |=’[Qd]. If ’ is the state equation t1 � t2, then from 3.1(1),
we have t Ai [x; Qd] � tBi [y; Qd] for i = 1; 2. Hence by Corollary 3.3,

t A1 [x; Qd] ∼A t A2 [x; Qd] i& tB1 [y; Qd] ∼B tB2 [y; Qd];

866 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

which again gives the desired result. Thus x and y satisfy the same equations under
Qd. From this it follows readily that they satisfy the same Boolean combinations of

equations, proving (1).
Condition (2) follows directly from (1). For (3), suppose A |=’ and � is surjective.

Then for any y∈X B there is some x∈X A with x�y and A; x |=’, and so B; y |=’ by
(2). This shows B |=’.

Condition (4) is similar to (3), but using the fact that for each x∈X A there is some
y∈X B with x�y.

Application of a method causes a state transition x �→mA(x; b) that may change the
values of terms. Corollary 2.2 showed how the new values could be expressed in terms
of values at the initial state x. This can now be extended to show how satisfaction of
any formula by mA(x; b) can be characterised in terms of satisfaction by x. Again this
works more generally for the transition x �→ uA[x] resulting from evaluation of any state
term u. Writing ’(u) for the formula obtained by substituting u(Qv) for
 in formula
’(Qv), we have:

Theorem 4.3.

A; uA[x; Qd] |= ’[Qd] i: A; x |= ’(u)[Qd]

for all Qd matching Qv. Hence if u is ground;

A; uA[x] |= ’ i: A; x |= ’(u):

Proof. If ’ is the data equation t1 ≈ t2, we want

tA1 [uA[x; Qd]; Qd] = tA2 [uA[x; Qd]; Qd] i&

t1(u)A[x; Qd] = t2(u)A[x; Qd];

while if ’ is the state equation t1 � t2, we want the same condition but with ∼ in place
of = . Both of these follow directly from Theorem 2.1, since this gives

tAi [uA[x; Qd]; Qd] = ti(u)A[x; Qd]

for i = 1; 2.
Thus the theorem holds when ’ is any equation. The inductive cases of the con-

nectives are straightforward, using the fact that substitution respects these connectives,
i.e. (¬’)(u) =¬(’(u)), etc.

Corollary 4.4. A;mA(x; b) |=’ i: A; x |=’(m(
; b)).

Associated with each formula ’ is the set ’A of all states in A that satisfy ’:

’A = {x∈X A :A; x |= ’}:

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 867

Relationships between some of these “truth sets” can be expressed by the standard
Boolean set operations. For instance (’1 ∧’2)A =’A

1 ∩’A
2 in general, and if ’ is ground

then (¬’)A =X A − ’A.
Corollary 4.4 asserts that

mA(x; b) ∈ ’A i& x ∈ ’(m(
; b))A: (4.2)

This fact can also be expressed by an operation on sets of states. For any method
symbol m of sort Im and any data element b∈ Im, de4ne the function [m:b]A : P(X A) →
P(X A) (where P denotes powerset), by putting, for each Y ⊆X A,

[m:b]A(Y) = {x∈X A :mA(x; b) ∈ Y}:
This operation preserves intersections, i.e.

[m:b]A(Y1 ∩ Y2) = [m:b]A(Y1) ∩ [m:b]A(Y2)

and has [m:b]A(X A) =X A. It thus has the properties needed to algebraically model a
“box” modality in normal modal logic. In fact [m:b]A preserves set intersections and
complements as well, because of the functionality (determinism) of mA, and so models
a rather special kind of modality with strong properties.

The operation [m:b]A allows result (4.2) above to be given in the form

[m:b]A(’A) = ’(m(
; b))A:

Thus the formula ’(m(
; b)) expresses the modal assertion “after applying method m
with parameter b, ’”.

As a special case of this last equation we have the result

[m:b]A(t ≈ c)A = (t(m(
; b)) ≈ c)A (4.3)

for any data term t and constant c of the same type. The modal operators [m:b] will
be used in a new construction of coalgebras in Section 8, where equation (4.3) plays
an important role (see Theorem 8.1).

The article [4] gives a complete deductive calculus for the valid observable equations
over coalgebras of the kind considered here.

5. Morphisms and subcoalgebras

A morphism from coalgebra A to coalgebra B is a function f :X A →X B between
their state sets that preserves methods and attributes, meaning that for any state x∈X A

the equation

f(mA(x; b)) = mB(f(x); b)

holds for all method symbols m and elements b∈ Im; while

aA(x; c) = aB(f(x); c)

868 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

holds for all attribute symbols a and c∈ I a. If f is surjective, then B is the image of
A under this morphism. If f is bijective then it is an isomorphism, making A and B
isomorphic.

When viewed as the relation {(x; y) :y =f(x)}, a morphism f is a bisimulation
from A to B. Indeed a morphism is precisely a bisimulation that is functional and
total (i.e. its domain is all of X A). In particular, the natural map f“(x) = |x| is a
surjective morphism from A onto its quotient A“, as de4ned at the end of Section 3.

If X A is a subset of X B, then A is called a subcoalgebra of B if the inclusion
function X A ,→X B is a morphism. This holds precisely when
(a) each attribute aA is the restriction of aB to X A × I a; and
(b) X A is closed under all methods of B, i.e. mB(x; b)∈X A whenever x∈X A, and mA

is the restriction of mB to X A × Im.
Associated with any bisimulation � from A to B are two subcoalgebras: its domain and
image. Whenever x�y we have mA(x; b)�mB(y; b), which puts mA(x; b) into the domain
of � and mB(y; b) into the image. Thus, the domain is closed under the methods of
A, while the image is closed under the methods of B. Restricting the methods and
attributes of A to the domain of � de4nes a subcoalgebra Dom � of A, while restricting
the methods and attributes of B to the image of � de4nes a subcoalgebra �(A) of
B.

In the special case of a morphism f :A → B we get that the image f(A) is a
subcoalgebra of the codomain B. Moreover, if f :A→B is injective then it makes A
isomorphic to the subcoalgebra f(A).

Since a morphism is a bisimulation, the following results just reformulate
Theorems 3.1 and 4.2 for morphisms.

Theorem 5.1. Let f :A → B be a morphism. Then for any term t(Qv); any formula
’(Qv); any Qd matching Qv; and any state x∈X A:
(1) f(tA[x; Qd]) = tB[f(x); Qd] if t is a state term;
(2) tA[x; Qd] = tB[f(x); Qd] if t is a data term;
(3) A; x |=’[Qd] i: B; f(x) |=’[Qd];
(4) A; x |=’ i: B; f(x) |=’;
(5) if A |=’; then f(A) |=’;
(6) if B |=’; then A |=’.

An important special case of this is when A is a subcoalgebra of B. When f in
Theorem 5.1 is the inclusion X A ,→X B having f(x) = x, we get the following.

Theorem 5.2. Let A be a subcoalgebra of B. Then for any term t(Qv); any formula
’(Qv); any Qd matching Qv; and any state x∈X A:
(1) tA[x; Qd] = tB[x; Qd];
(2) A; x |=’[Qd] i: B; x |=’[Qd];
(3) A; x |=’ i: B; x |=’;
(4) if B |=’, then A |=’.

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 869

6. Disjoint unions

If {Aj : j∈ J} is a collection of coalgebras, with

Aj = (X Aj ; {mAj :m ∈ Meth}; {aAj : a ∈ Out});

then their disjoint union is the coalgebra

A =
∐
J
Aj =

(⋃
J

(X Aj × {j}); {mA :m ∈ Meth}; {aA : a ∈ Out}
)

;

where mA((x; j); b) = (mAj (x; b); j) and aA((x; j); c) = aAj (x; c).
Thus

∐
J Aj is the union of a set of pairwise disjoint copies Aj ×{j} of the struc-

tures Aj. For each k ∈ J , the correspondence x �→ (x; k) gives an injective morphism
Ak →

∐
J Aj, whose image Ak ×{k} is a subcoalgebra of

∐
J Aj isomorphic to Ak . In

practice it is often convenient to identify this image with Ak , i.e. to regard the Aj’s as
being pairwise disjoint and

∐
J Aj as simply being their union. Then each Aj is itself

a subcoalgebra of the disjoint union.

Theorem 6.1. For any formula ’;∐
J
Aj |= ’ i: for all j ∈ J; Aj |= ’:

Proof. Suppose every Aj is a model of ’. Then for any state (x; k) of the disjoint
union we have Ak; x |=’ and hence under the injective morphism x �→ (x; k) we get∐

J Aj; (x; k) |=’. This shows that
∐

J Aj |=’.
Conversely, if

∐
J Aj is a model of ’, then each Aj, being isomorphic to a subcoal-

gebra of the disjoint union, is also a model of ’ (Theorem 5.2(4)).

7. Closure properties

Let K be a class of coalgebras. The constructions we have de4ned provide several
possible closure properties of K :
1. Closure under images of bisimulations: if A∈K and there is a surjective bisimula-

tion from A to B, then B∈K .
2. Closure under domains of bisimulations: if B∈K and there is a total bisimulation

from A to B, then A∈K .
3. Closure under images of morphisms: if A∈K and there is a surjective morphism

from A to B, then B∈K (special case of 1).
4. Closure under domains of morphisms: if B∈K and there is a morphism from A to

B, then A∈K (special case of 2).
5. Closure under subcoalgebras: if B∈K and A is a subcoalgebra of B, then A∈K

(special case of 4, since the inclusion is a morphism from A to B).
6. Closure under disjoint unions: if {Aj : j∈ J}⊆K then

∐
J Aj ∈K .

870 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

The class Mod ’= {A :A |=’} of all models of any formula ’ enjoys all of these
closure properties, as we have seen from Theorems 4.2 and 6.1 (also Theorems 5.1
and 5.2 for the special cases). However, these properties do not appear to be suScient
to ensure that a class K is of the form Mod ’, or even Mod & for some set & of
formulas.

There are a number of interesting relationships between closure properties. The ones
given next will be used in formulating the main result of this paper.

Theorem 7.1. (1) K is closed under domains of bisimulations if and only if it is closed
under images of bisimulations; and closed under domains of surjective bisimulations
if and only if it is closed under images of total bisimulations.

(2) K is closed under images of bisimulations i: it is closed under both domains
and images of morphisms.

Proof. (1) Coalgebra A is the domain of bisimulation � to B i& it is the image of
bisimulation �−1 from B. Moreover � is surjective i& �−1 is total. Condition (1) follows
readily from these facts.

(2) If K is closed under images of bisimulations, then by (1) it is also closed
under domains of bisimulations, and hence in particular closed under both domains
and images of morphisms.

Conversely, assume that K is closed under domains and images of morphisms. Take
A∈K and let B be the image of a surjective bisimulation � from A. We want B∈K .

Now the subcoalgebra Dom � is the domain of the inclusion morphism to A, so
belongs to K by closure under domains of morphisms. Let f = �◦f“ be the composition
of � with the natural morphism f“(x) = |x| from B onto its quotient B“. Then f is
a bisimulation, being the composition of two bisimulations. Moreover f is functional,
for if x�y and x�y′, then y ∼ y′ (Corollary 3.3), so |y|= |y′|. Thus f is a morphism
from Dom � to B“. Furthermore, f is surjective as � and f“ are surjective. Closure
of K under images of morphisms thus gives B“ ∈K . But then B∈K by closure under
the domain of f“.

8. Filter and ultra,lter enlargements

A %lter on a coalgebra A is a non-empty collection F of subsets of the state set X A that
is closed under intersections and supersets of its members: if Y; Z ∈F then Y ∩ Z ∈F ,
and if Y ⊆Z ⊆X A and Y ∈F then Z ∈F . Every 4lter contains X A. F is proper if
∅ =∈ F .

An ultra%lter is a 4lter that is maximally proper, or equivalently that contains exactly
one of Y and X A − Y for all Y ⊆X A. If an ultra4lter contains a union Y ∪Z , then it
contains either Y or Z .

For every G⊆P(X A) there is a smallest 4lter extending G, known as the 4lter
generated by G. A set Z belongs to this generated 4lter i& there exist 4nitely many
members Y0; : : : ; Yk−1 of G with Y0 ∩ · · · ∩ Yk−1 ⊆Z .

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 871

If Y0 ∩ · · · ∩Yk−1 �= ∅ whenever Y0; : : : ; Yk−1 ∈G, then G has the %nite intersection
property. This is necessary and suScient for the 4lter generated by G to be proper.
Every G with the 4nite intersection property can be extended to an ultra4lter.

A proper 4lter F on A will be called observationally rich, or more brieJy rich, if
it satis4es the following condition:

for any ground observable term t, of type Ot , there exists some b∈Ot such that
(t≈ b)A ∈F .

Recall that (t≈ b)A = {x∈X A :A; x |= t≈ b}= {x∈X A : tA[x] = b}.
The data element b corresponding to t in this condition is unique. For if (t≈ b)A and

(t≈ b′)A belong to F , then their intersection belongs to F and so is non-empty. Taking
x as any member of this intersection gives tA[x] = b and tA[x] = b′, hence b= b′.

It is notable that for a signature in which every output set is 4nite, all ultra4lters on
A are rich. For if Ot = {b1; : : : ; bn}, then

(t ≈ b1)A ∪ · · · ∪ (t ≈ bn)A = X A ∈ F;

so that if F is an ultra4lter then (t≈ bi)A ∈F for some i6n.
The %lter enlargement of A is a new coalgebra A+ whose state set X A+

is the set of
all rich proper 4lters of A. Its attributes are de4ned by

aA+
(F; c) = b i& (a(
; c) ≈ b)A ∈ F

i& {x ∈ X A : aA(x; c) = b} ∈ F

for all F ∈X A+
and c∈ I a. Since a(
; c) is a ground observable term, the required data

element b∈Oa in this condition exists by the de4nition of “rich”, and is unique as just
explained.

The methods mA+
of A+ are de4ned with the help of the modal operators [m:b]A :

P(X A)→P(X A) introduced in Section 4, having

[m:b]A(Y) = {x ∈ X A :mA(x; b) ∈ Y}:

For each F ∈X A+
and b∈ Im, put

mA+
(F; b) = {Y ⊆X A : [m:b]A(Y) ∈ F}:

In other words,

Y ∈ mA+
(F; b) i& {x ∈ X A :mA(x; b) ∈ Y} ∈ F:

Theorem 8.1. mA+
(F; b) is a rich proper %lter; and is an ultra%lter if F is one.

Proof. [m:b]A has the following properties:
[m:b]A(Y ∩Z) = [m:b]A(Y)∩ [m:b]A(Z);
Y ⊆Z implies [m:b]A(Y)⊆ [m:b]A(Z),

872 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

[m:b]A(X A) =X A,
[m:b]A(∅) = ∅.

These, together with the fact that F is a proper 4lter, ensure that mA+
(F; b) is a proper

4lter. The 4rst gives closure under intersections; the second closure under supersets;
the third guarantees that mA+

(F; b) is non-empty (as X A ∈F); and the fourth implies
mA+

(F; b) is proper.
To show it is rich, take any ground observable term t of type Ot . Then t(m(
; b))

is also a ground observable term of type Ot , so as F is rich there is some c∈Ot such
that (t(m(
; b))≈ c)A ∈F . But by Eq. (4.3),

(t(m(
; b)) ≈ c)A = [m:b]A(t ≈ c)A;

so this implies that (t≈ c)A ∈mA+
(F; b), completing the proof that mA+

(F; b) is rich.
Finally, if F is an ultra4lter, the fact that

[m:b]A(Y ∪Z) = [m:b]A(Y)∪ [m:b]A(Z)

can be used to show that if Y ∪Z ∈mA+
(F; b), then either Y or Z is in mA+

(F; b),
proving that mA+

(F; b) is an ultra4lter.

Now let X A∗
be the set of rich ultra4lters of A. The last part of Theorem 8.1 shows

that X A∗
is closed under the methods mA+

. Restricting all the methods and attributes
of A+ to X A∗

thus de4nes a subcoalgebra A∗ of A+ which will be called the ultra%lter
enlargement of A.

Theorem 8.2. (1) A is isomorphic to a subcoalgebra of A∗.
(2) There is a total surjective bisimulation from A∗ to A+.
(3) For any formula ’; A∗ |=’ i: A+ |=’.

Proof. (1) For each x∈X A, the principal ultra4lter Fx = {Y ⊆X A : x∈Y} is rich. In-
deed if b= tA[x], then (t≈ b)A ∈Fx. The map x �→Fx is an injection of X A into X A∗

that proves to be a morphism. The fact that it preserves methods follows because
Y ∈mA∗

(Fx; b) i& [m:b]A(Y)∈Fx i& x∈ [m:b]A(Y) i& mA(x; b)∈Y i& Y ∈FmA(x; b);
which shows that mA(x; b) �→mA∗

(Fx; b). Also if b= aA(x; c), then (a(
; c)≈ b)A ∈Fx,
so aA∗

(Fx; c) = b, showing that the injection preserves attributes.
(2) The claimed bisimulation is the superset relation. For F ∈X A∗

and G ∈X A+
,

de4ne F�G i& F ⊇G. Now suppose that F�G. Then for any Y ∈mA+
(G; b), the set

[m:b]A(Y) belongs to G and therefore to F , hence Y ∈mA+
(F; b) =mA∗

(F; b). This
shows that mA∗

(F; b) �mA+
(G; b). Moreover, if aA+

(G; c) = b, then (a(
; c)≈ b)A ∈G
⊆F , so aA∗

(F; c) = b= aA+
(G; c). Altogether this establishes that � is a bisimulation.

The fact that F�F for any F ∈X A∗
makes it immediate that � is total. Finally, to

show that � is surjective, take any G ∈X A+
: since G is a proper 4lter on X A it can

be extended to an ultra4lter F on X A. This F will automatically be rich because G is
rich, so F ∈X A∗

and F�G.

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 873

(3) If A+ |=’, then by Theorem 5.2(4) A∗ |=’, as A∗ is subcoalgebra of A+ by
de4nition. Conversely, if A∗ |=’, then by Theorem 4.2(3) A+ |=’, as A+ is the image
of a bisimulation from A∗ by (2).

Which model classes are closed under 4lter or ultra4lter enlargements? To explore
that we need to investigate how the value of a term at state F in A+ depends on the
internal properties of the 4lter F .

Theorem 8.3. Let t(Qv) be any term; F ∈X A+
; and Qd match Qv.

(1) If t is a state term; then for all Y ⊆X A;

Y ∈ tA
+
[F; Qd] iff {x ∈ X A : tA[x; Qd] ∈ Y} ∈ F:

(2) If t is a data term; then

{x ∈ X A : tA[x; Qd] = tA
+
[F; Qd]} ∈ F:

Proof. By induction on the length of t, taking cases (1) and (2) together. When t is
a data term (case (2)), we will let

Yt = {x ∈ X A : tA[x; Qd] = tA
+
[F; Qd]}:

Now if t is
, then tA
+
[F; Qd] =F and

{x ∈ X A : tA[x; Qd] ∈ Y} = {x : x ∈ Y} = Y;

so (1) becomes the tautology Y ∈F i& Y ∈F .
If t is a variable vi or a constant b, then tA[x; Qd] and tA

+
[F; Qd] are both either di or

b, independently of state x, so Yt =X A ∈F and (2) holds.
Now let t be m(t1; t2) and make the induction hypothesis that the theorem holds for

the state term t1 and the data term t2. For any Y ⊆X A, we have

Y ∈ m(t1; t2)A
+
[F; Qd] = mA+

(tA
+

1 [F; Qd]; tA
+

2 [F; Qd])

i& (by de4nition of mA+
) the set

Z = {x ∈ X A : mA(x; tA
+

2 [F; Qd]) ∈ Y}
belongs to tA

+

1 [F; Qd]. By hypothesis (1) on t1, this in turn holds i&

W1 = {x ∈ X A : tA1 [x; Qd] ∈ Z} ∈ F:

We have to show that this is equivalent to the statement

W2 = {x ∈ X A : m(t1; t2)A[x; Qd] ∈ Y} ∈ F:

Now

x ∈ W1 i& mA(tA1 [x; Qd]; tA
+

2 [F; Qd]) ∈ Y;

874 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

while

x ∈ W2 i& mA(tA1 [x; Qd]; tA2 [x; Qd]) ∈ Y:

Since

x ∈ Yt2 i& tA2 [x; Qd] = tA
+

2 [F; Qd];

we have W1 ∩ Yt2 =W2 ∩ Yt2 . But Yt2 ∈F by hypothesis (2) on t2, and so as F is a
4lter, W1 ∈F i& W2 ∈F , which completes the proof of (2) when t is m(t1; t2).

The last case is where t is a(t1; t2), with the induction hypothesis that the Theorem
holds for t1 and t2. Let b= a(t1; t2)A+

[F; Qd]. Then

aA+
(tA

+

1 [F; Qd]; tA
+

2 [F; Qd]) = b;

so by de4nition of aA+
,

Z = {x ∈ X A : aA(x; tA
+

2 [F; Qd]) = b} ∈ tA
+

1 [F; Qd]:

Hypothesis (1) on t1 then gives

W = {x ∈ X A : tA1 [x; Qd] ∈ Z} ∈ F:

But x∈W i& aA(tA1 [x; Qd]; tA
+

2 [F; Qd]) = b. Hence,

W ∩ Yt2 ⊆ {x ∈ X A : aA(tA1 [x; Qd]; tA2 [x; Qd]) = b}

= {x ∈ X A : a(t1; t2)A[x; Qd] = a(t1; t2)A
+
[F; Qd] }

= Ya(t1 ;t2):

But Yt2 ∈F by hypothesis (2) on t2, so then Ya(t1 ; t2) ∈F , proving (2) when t is a(t1; t2).

Theorem 8.4. Let t1(Qv); t2(Qv) be terms of the same type; F ∈X A+
; and Qd match Qv.

Then

{x ∈ X A : tA1 [x; Qd] = tA2 [x; Qd]} ∈ F implies tA
+

1 [F; Qd] = tA
+

2 [F; Qd]:

Moreover; if t1; t2 are data terms; the converse is true.

Proof. Let Z12 = {x∈X A : tA1 [x; Qd] = tA2 [x; Qd] }: If t1; t2 are of data type, then for i = 1; 2
put

Zi = {x ∈ X A : tAi [x; Qd] = tA
+

i [F; Qd]}:
By Theorem 8.3(2), Z1; Z2 ∈F . Thus if Z12 ∈ F , then the intersection Z1 ∩ Z12 ∩ Z2

belongs to F , so is non-empty. If x0 is any member of this intersection,

tA
+

1 [F; Qd] = tA1 [x0; Qd] = tA2 [x0; Qd] = tA
+

2 [F; Qd];

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 875

giving the required result. Conversely, if tA
+

1 [F; Qd] = tA
+

2 [F; Qd], then

Z1 ∩ Z2 ⊆Z12

and so Z12 belongs to the 4lter F , because Z1; Z2 ∈ F .
Now for the case where t1; t2 are of state type. For each Y ⊆X A, put

Yi = {x ∈ X A : tAi [x; Qd] ∈ Y}
for i = 1; 2. Then Y1 ∩ Z12 =Y2 ∩ Z12. Thus if Z12 ∈F , we get Y1 ∈F i& Y2 ∈F , which
by Theorem 8.3(1) means

Y ∈ tA
+

1 [F; Qd] i& Y ∈ tA
+

2 [F; Qd]:

Since this holds for all Y ⊆X A, tA
+

1 [F; Qd] = tA
+

2 [F; Qd].

Corollary 8.5. If u1; u2 are state terms; then

{x ∈ X A : A; x |= u1 � u2[Qd]} ∈ F implies A+; F |= u1 � u2[Qd]:

Proof. Let Y = {x∈X A :A; x |= u1 � u2[Qd] }. Assume Y ∈F . If t is any ground ob-
servable term, then for all x∈Y , A; x |= t(u1)≈ t(u2)[Qd] by Theorem 4.1. So the set
{x∈X A :A; x |= t(u1)≈ t(u2)[Qd] } includes Y and therefore belongs to F . Theorem 8.4
then yields A+; F |= t(u1)≈ t(u2)[Qd]. Since this holds for all ground observable t,
Theorem 4.1 again gives A+; F |= u1 � u2[Qd].

The converse of this result is not true. In Section 10 there is an example of a
coalgebra A that validates ¬(m(
) �
) while A+, and indeed A∗, has states F for
which mA∗(F) ∼ F . This shows that the model class Mod ¬’ of a negated formula
need not be closed under enlargements. We therefore look more closely at positive
formulas, which by de4nition are those built from equations (of either type) using
only conjunction ∧ and disjunction ∨.

Theorem 8.6. Let F be a rich ultra%lter of coalgebra A.
(1) If ’ is any ground data formula; then

’A ∈ F i: A∗; F |= ’ i: A+; F |= ’:

(2) If ’ is any ground positive formula; then

’A ∈ F implies A∗; F |= ’:

Proof. (1) Since A∗ is a subcoalgebra of A+ and F ∈X A∗
, A∗; F |=’ i& A+; F |=’

in general by Theorem 5.2(2). Thus it suSces to show ’A ∈F i& A+; F |=’. If t1; t2
are ground data terms, then Theorem 8.4 states that (t1 ≈ t2)A ∈F i& A+; F |= (t1 ≈ t2),
so the desired result holds when ’ is a data equation. If the result holds for ground
formulas ’1; ’2, then (’1 ∧’2)A =’A

1 ∩ ’A
2 ∈F i& ’A

1 ; ’
A
2 ∈F i& A+; F |=’1 ∧’2.

876 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

Also ¬’A
1 = (X A − ’A

1)∈F i& ’A
1 =∈ F (as F is an ultra4lter) i& not A+; F |=’1 i&

A+; F |= ¬’1 (as ’1 is ground). Hence the result holds for ’1 ∧’2 and for ¬’1. This
is enough to ensure that it holds for all Boolean combinations of ground data equations.

(2) ’ is a state equation, then (2) is given by Corollary 8.5. If ’ is a data equation,
(2) is a specialisation of (1).

The induction case of ’ being a conjunction (’1 ∧’2) holds as for (1). Finally,
suppose ’ is a disjunction (’1 ∨ ’2): if (’1 ∨ ’2)A =’A

1 ∪ ’A
2 ∈F , then as F is an

ultra4lter one of ’A
1 ; ’

A
2 belongs to F , so A∗; F |=’i for some i by induction hypothesis,

hence A∗; F |=’1 ∨ ’2.

Corollary 8.7. If ’ is a data formula; or a positive formula; then

A |= ’ i: A∗ |= ’ i: A+ |= ’:

Proof. First, note that A∗ |=’ i& A+ |=’ by Theorem 8.2(3), and that A∗ |=’ implies
A |=’ in general, as A is isomorphic to a subcoalgebra of A∗ (Theorem 8.2(1)). Thus
it suSces to show that A |=’ implies A∗ |=’.

Suppose that ’ is a ground data or positive formula that is valid in A. Then ’A =X A,
so for any F ∈X A∗

, ’A ∈F , implying A∗; F |=’ by Theorem 8.6. Hence A∗ is a model
of ’.

Thus the result holds for all ground data or positive formulas. It then holds for all
such formulas by the reduction of satisfaction of formulas to satisfaction of ground
formulas according to Eq. (4.1).

Preservation of validity by enlargements extends beyond data formulas and posi-
tive formulas to a limited extent by the consideration of certain kinds of conditional
formulas:

Theorem 8.8. If ’ is any formula of the form

’0 ∧ · · · ∧ ’k−1 → ;

where the ’is are any data formulas and is any positive formula; then

A |= ’ i: A∗ |= ’ i: A+ |= ’:

Proof. As in the proof of Corollary 8.7, it is enough to consider ground ’, and to
show that A |=’ implies A∗ |=’. But for ground ’, if A |=’, then

’A
0 ∩ · · · ∩ ’A

k−1 ⊆ A;

so if A∗; F |=’i for all i¡k, Theorem 8.6(1) gives ’A
i ∈F for all i¡k, implying

 A ∈F and so A∗; F |= by Theorem 8.6(2). This shows that A∗; F |=’ for all states
F in X A∗

.

To conclude this section, here are some results that further illustrate the behaviour
of enlargements of coalgebras.

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 877

Theorem 8.9. For any bisimulation � from A to B there is a bisimulation �+ from
A+ to B such that
(1) �+ extends � via the injective morphism x �→Fx from A to A∗.
(2) If � is functional; then so is �+.
(3) If B has %nitely many states and � is total; then the domain of �+ includes all

states of A∗.

Proof. For any y∈X B, let � �y = {x∈X A : x�y}. For F ∈X A+
, put

F�+y i& � � y ∈ F:

First we show that methods preserve �+-relatedness. Suppose F �+ y. Then � �y∈F .
Since methods preserve �-relatedness, for any m∈Meth and b∈ Im,

� �⊆ {x ∈ X A : mA(x; b) �mB(y; b)}

= {x ∈ X A : mA(x; b) ∈ � �B (y; b)};

so {x∈X A :mA(x; b)∈ � �B (y; b)}∈F . This implies � �B (y; b)∈mA+
(F; b), and there-

fore mA+
(F; b) �+ mA(y; b).

Next, �+ preserve attributes: since � preserves attributes,

{x : x�y}⊆{x : aA(x; c) = aB(y; c)}:

Thus if F �+ y; {x : x�y}∈F , so for any c∈ I a, {x : aA(x; c) = aB(y; c)}∈F; which
implies aA+

(F; c) = aB(y; c). Hence �+ is a bisimulation.
(1) If x�y, then x∈ � �y, so � �y∈Fx, showing Fx �+ y. In this sense �+ extends �

via the injective morphism x �→Fx of Theorem 8.2(1).
(2) If F �+ y and F �+ z, then the intersection (� �y) ∩ (� � z) belongs to F , so is

nonempty. If x belongs to this intersection then x�y and x�z, so if � is functional
then y = z, showing �+ is functional.

(3) If � is total, then for any 4lter F ,
⋃

y∈X B(� �y) =X A ∈F . If X B is 4nite, this is
a 4nite union, so then if F is an ultra4lter there is some y∈X B with � �y∈F ,
hence F �+ y. So in this case the domain of �+ includes all members of X A∗

.

Now let KB be the class of all domains of bisimulations to coalgebra B. From the
proof of Theorem 7.1(1), KB can also be described as the class of all images of
bisimulations from B.

Corollary 8.10. KB is closed under disjoint unions and images of bisimulations. If B
is %nite then KB is closed under ultra%lter and %lter enlargements.

Proof. Suppose {Aj : j∈ J}⊆KB. Then for each j∈ J there is a total bisimulation �j

from Aj to B. De4ne (x; j)�y i& x�jy. Then � is a total bisimulation from
∐

J Aj to
B, showing KB is closed under disjoint unions.

878 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

Next, suppose A∈KB, with � a total bisimulation from A to B. Let coalgebra C be
the image of a bisimulation 6 from A. Then 6−1 ◦ � is a bisimulation from C to B
whose domain is C itself since 6 is surjective. Hence C ∈KB, showing KB is closed
under images of bisimulations.

Now if B is 4nite, then any total bisimulation � from A to B lifts by Theorem 8.9
to give a total bisimulation from A∗ to B. In other words, if A∈KB then A∗ ∈KB.
But A+ is the image of a bisimulation from A∗ (Theorem 8.2(2)), so if A∗ ∈KB then
A+ ∈KB.

Ultra4lter enlargements are similar to the canonical extensions (also called ultra%lter
extensions) of Kripke frames for propositional modal languages. BrieJy, a Kripke frame
for monomodal logic is a pair A= (X A; RA) with RA a binary relation on set X A. For a
language with several modal connectives, a frame has such a relation RA for each con-
nective. RA may be identi4ed with the function x �→ {y : xRAy} from X A to the powerset
P(X A), so a frame as de4ned can be viewed as a coalgebra for the powerset endofunc-
tor P : Set→Set. The canonical extension of frame A is the frame A∗ whose points
are the ultra4lters on X A, with FRA∗

G i& {Y : [R]A(Y)∈F}⊆G, where [R]A(Y) = {x ∈
X A : {y : xRAy}⊆Y}. Thus, the ultra4lter enlargement of a coalgebra is essentially an
instance of this modal construction as far as methods are concerned, as may be seen
by identifying method mA with the family of relations RA

b = {〈x; y〉 :y =mA(x; b)} for
all b∈ Im. But the presence of attributes adds additional complexity which requires the
introduction of the new notion of rich ultra4lter, a notion that has its own intricate
analysis as we have seen in Theorem 8.3 and its consequences. Even when all output
sets of a signature are 4nite, so that all ultra4lters are rich, attributes constitute a new
feature not found in the standard modal context.

The fact that ultra4lter enlargements of coalgebras preserve validity of observable
formulas is also a point of distinction with the general modal propositional case. Lan-
guages for the latter have variables taking arbitrary subsets of X A as values, and have
formulas whose validity is not preserved by canonical extensions of Kripke frames.
Further discussion of these comparisons with modal semantics is given in Section 7
of [9].

9. De,nability of classes of coalgebras

A conditional equation is any formula of the form

80 ∧ · · · ∧ 8k−1 → 8;

where the 8i’s and 8 are all equations. 80; : : : ; 8k−1 are called the premises.
Note that 8 could be the equation b≈ c where b; c are distinct elements of the same

observable type (it was assumed at the outset that two such elements exist). In that
case 8 is never satis4ed by any state, and the conditional equation is equivalent to the
formula ¬(80 ∧ · · · ∧ 8k−1).

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 879

Theorem 9.1. Suppose that every ground observable conditional equation valid in
coalgebra A is valid in coalgebra B. Then B is the image of a bisimulation from A+.

Proof. We show that the bisimilarity relation ∼ from A+ to B is surjective (indeed if
any bisimulation from A+ to B is surjective, then ∼, as the largest such bisimulation,
must be surjective).

Let y be any state of B. We must 4nd a state F of A+ with F ∼y. This is done by
applying the characterisation of bisimilarity given in Theorem 3.2.

De4ne &y to be the set of all ground observable equations 8 such that B; y |= 8. Let
F be the 4lter on X A generated by the collection

Fy = {8A : 8 ∈ &y}:

Then for any ground observable equation 8 we have

8A ∈F i& 8∈&y: (9.1)

From right to left this holds by de4nition. To see that the converse also holds, let
8A ∈F . Then since F is generated by Fy there exist 80; : : : ; 8k−1 ∈&y such that

8A0 ∩ · · · ∩ 8Ak−1 ⊆ 8A:

This means that the conditional equation 80 ∧ · · · ∧ 8k−1 → 8 is valid in A, and so by
hypothesis is valid in B. But B; y |= 8i for all i¡k, so B; y |= 8, giving 8∈&y as desired.

Eq. (9.1) allows us to prove that F is proper and rich. First, to show it is proper
let b; c be two distinct observable data elements of the same type. Then the equation
b ≈ c does not belong to &y, and hence ∅= (b ≈ c)A =∈F . Next, let t be any ground
observable term of type Ot . Put b= tB[y]. Then (t ≈ b)∈&y, so (t ≈ b)A ∈Fy ⊆F .
Hence F is rich.

Thus F is a state of A+. Eq. (9.1) can be written as

A+; F |= 8 i& B; y |= 8

(using Theorem 8.4). Hence F and y satisfy the same ground observable equations,
which implies, by Theorem 3.2(4), that F ∼y.

We are now ready to give the main result of this paper.

Theorem 9.2. For any class K of coalgebras; the following are equivalent.
(1) K is the class of all models of some set of ground observable conditional equa-

tions.
(2) K is the class of all models of some set of ground observable formulas.
(3) K is the class of all models of some set of observable formulas.
(4) K is closed under disjoint unions; domains and images of morphisms; and ultra-

%lter enlargements.

880 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

(5) K is closed under disjoint unions; images of bisimulations; and ultra%lter enlarge-
ments.

(6) K is closed under disjoint unions; images of bisimulations; and %lter enlargements.

Proof. By de4nition, (1) implies (2) and (2) implies (3). Condition (3) implies (4) by
Theorems 6.1 and 5.1 and Corollary 8.7. Condtion (4) implies (5) by Theorem 7.1(2).
Condition (5) implies (6) by Theorem 8.2(2), which shows that if A∗ ∈K and K is
closed under images of bisimulations, then A+ ∈K .

Now suppose (6) holds. To prove (1), let & be the set of all ground observable
conditional equations that have all members of K as models. Then K ⊆Mod& by
de4nition. The heart of the matter is to prove the converse inclusion.

Let B be any member of Mod&. Take 9 to be the set of all ground observable
conditional equations that are not valid in B. For each ’∈9 there must be some
coalgebra A’ in K that is not a model of ’, or else ’ would belong to &, implying
B |=’ as B∈Mod&, contradicting ’∈9. Let A=

∐
’∈9 A’ be the disjoint union of

these coalgebras A’ ∈K .
Now A∈K as K is closed under disjoint unions. Moreover each ’∈9 is invalid in

A, by Theorem 6.1, since it is invalid in A’. Hence any ground observable conditional
equations valid in A is not in 9, and so is valid in B. Therefore by Theorem 9.1 there
is a surjective bisimulation from A+ onto B. But A+ ∈K by closure of K under 4lter
enlargements, and so B∈K by closure under images of bisimulations.

This proves that K = Mod&, and so (1) holds.

Recall that KB is the class of all domains of bisimulations to B, or equivalently,
images of bisimulations from B. For 4nite B, Theorem 8.10 leads to a logical char-
acterisation of KB. Let &B be the set of all observable conditional equations valid
in B.

Theorem 9.3. If B is %nite, then KB =Mod&B.

Proof. By Corollary 8.10, KB is closed under disjoint unions, images of morphisms,
and 4lter enlargements, so by the proof of Theorem 9.2, KB =Mod&, where & is the
set of all observable conditional equations valid in all members of KB. But &=&B,
because a formula is valid in B i& it is valid in the domain of all bisimulations
to B.

If ’ is a conditional formula of the form

’0 ∧ · · · ∧ ’k−1 →

described in Theorem 8.8, where the ’i’s are data formulas and is positive, then
Mod’ is closed under disjoint unions, images of bisimulations and (ultra)4lter enlarge-
ments. Hence by Theorem 9.2 ’ is equivalent to some set &’ of observable formulas,
in the sense that ’ and &’ have the same models. But it is not necessary to appeal

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 881

Table 3

 &

t1 ≈ t2 {t1 ≈ t2}
u1 � u2 {t(u1)≈ t(u2) : t is observable}
 1 ∧ 2 & 1∪& 2
 1 ∧ 2 {�1 ∧ �2 : �1 ∈& 1 and �2 ∈& 2}

to Theorem 9.2 to reach this conclusion : an explicit syntactic de4nition of &’ can be
read o& from the form of ’, giving also the stronger conclusion that

A; x |= ’[Qd] i& for all � ∈ &’; A; x |= �[Qd]:

First of all & is de4ned inductively for all positive as Table 3, with the base case
that is a state equation being justi4ed by Theorem 4.1.

Then for conditional ’ as above, &’ is de4ned to be the set

{’0 ∧ · · · ∧ ’k−1 → � : � ∈ & }:
However, Theorem 9.2 allows the stronger conclusion that ’ is equivalent to some set
&′

’ of observable conditional equations. It would be interesting to know if a syntactic
de4nition of such a set &′

’ can be given in similar fashion to that for &’.

10. Four counter-examples

The 4rst example is a class K of coalgebras that is closed under disjoint unions
and images of bisimulations, hence under domains and images of morphisms, but is
not closed under ultra4lter enlargements. Consequently, K is not closed under 4lter
enlargements either, since A∗ is the domain of the inclusion morphism to A+.

The signature involved has two method symbols m and e, and one attribute symbol a.
All three have no input sort, while a has output sort {0; 1}. Thus in any coalgebra A,
mA and eA are functions of the type X A → X A, while aA is of type X A → {0; 1}.

Let != {0; 1; 2; : : :} be the set of natural numbers. For any function f with the same
domain and codomain, and any k ∈!;fk is the k-fold iteration of f, i.e. f0(x) = x
and fk+1 =f(fk(x)).

K is de4ned to be the class of all coalgebras in which any application of eA is
bisimilar to some 4nite number of iterations of mA:

∀x ∈ X A ∃k ∈ ! (mA)k(x) ∼A eA(x): (10.1)

Closure of K under disjoint unions is straightforward: if A is the disjoint union of
some coalgebras Aj from K , and x is a state of A, we may suppose that x is a state of
some Aj, and Aj is itself a subcoalgebra of A. Then as Aj ∈K , there exists k ∈! with
(mAj)k(x) ∼Aj eAj (x). But Aj is closed under the methods of A, so (mAj)k(x) = (mA)k(x)
and (eAj)k(x) = (eA)k(x), implying (mA)k(x) ∼A eA(x).

882 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

For closure under images of bisimulations, let � be a surjective bisimulation from
A to B, with A in K . Then if y∈X B, there is some x∈X A with x�y. By (10.1) there
exists k with (mA)k(x) ∼A eA(x). Since methods preserve �-relatedness, this implies
(mA)k(x) �(mB)k(y) and eA(x) � eB(y) (see Theorem 3.1(1)). Hence (mB)k(y) ∼B eB(y)
by Corollary 3.3. This shows that (10.1) holds for B, and so B∈K .

To show K is not closed under ultra4lter enlargements, we construct a particular
coalgebra A with X A =!.

(i) mA :! → ! is the successor function mA(x) = x + 1.
Hence in general (mA)k(x) = x + k.

(ii) eA :! → ! is any function having eA(x + 1)¿eA(x) + x for all x∈!, and
consequently eA(x)¿x.
For example, take eA(x) =

∑x
i = 0 i.

(iii) Write Ye for the image {eA(x) : x∈!} of eA. Then aA :!→{0; 1} is de4ned to
be the characteristic function of Ye : aA(y) = 1 i& y∈Ye. Thus

(a(
) ≈ 1)A = {x ∈ ! : aA(x) = 1} = Ye:

It is easy to see that A∈K : since eA(x)¿x there exists k with eA(x) = x+k = (mA)k(x),
hence eA(x)∼ (mA)k(x).

Now to show that A∗ =∈K . Informally, the idea is that e grows so fast on ! that
eventually in A∗ it takes a value that cannot be obtained by any 4nite number of
iterations of m. For each Y ⊆!, let

Y − k = {y − k : k6y ∈ Y} = {x ∈ ! : x + k ∈ Y}:
Then for any F ∈X A∗

, by de4nition of mA∗

Y ∈ mA∗
(F) i& {x ∈ X A : x + 1 ∈ Y} = Y − 1 ∈ F:

From this it follows that for k ∈!,

(mA∗
)k(F) = {Y ⊆! :Y − k ∈ F}: (10.2)

Now let Yk = {x∈! : x+k =∈Ye}, the complement of Ye−k in !. Then the collection
{Yk : k ∈!} has the 4nite intersection property. To see this, take any k1; : : : ; kn ∈!.
Choose any x¿k1; : : : ; kn. Then from the assumed properties of eA we get that for each
j6n,

eA(x) ¡ eA(x) + 1 + kj6eA(x) + x ¡ eA(x + 1):

Since eA is a strictly increasing function, it follows that eA(x)+1+kj is not an eA-value,
i.e. eA(x) + 1 + kj =∈Ye, and therefore eA(x) + 1∈Ykj , for all j6n.

Since {Yk : k ∈!} has the 4nite intersection property, it can be extended to an ul-
tra4lter F on X A =!. This ultra4lter is rich, as are all ultra4lters, because there are
only 4nitely many observable data elements: for any term t of output type

(t ≈ 0)A ∪ (t ≈ 1)A = ! ∈ F;

and so (exactly) one of (t ≈ 0)A and (t ≈ 1)A is in F .

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 883

Thus F is a state of A∗. But condition (10.1) fails for A∗ at F . This follows because
for each k ∈!,

Ye ∈ eA
∗
(F) − (mA∗

)k(F):

To see this, 4rst note that by de4nition of Ye,

{x ∈ X A : eA(x) ∈ Ye} = ! ∈ F;

which makes Ye ∈ eA
∗
(F). However Ye =∈ (mA∗

)k(F), or else by (10.2) Ye − k ∈F . But
Ye − k is the complement of Yk ∈F , so this is impossible.

We thus see that the set {x∈! : aA(x) = 1}=Ye belongs to eA
∗
(F), while its com-

plement {x∈! : aA(x) = 0} belongs to (mA∗
)k(F), showing that aA∗

(eA
∗
(F)) = 1 while

aA∗
((mA∗

)k(F)) = 0. Hence the term a(
) takes di&erent values at these states, showing
by Theorem 3.2 that eA

∗
(F) is not bisimilar to (mA∗

)k(F) in A∗ for any k ∈!, and
therefore that A∗ cannot belong to K .

The second example is designed to show that the converse of Corollary 8.5 does
not hold: A+; F |= u1 � u2[Qd] does not imply

{x ∈ X A :A; x |= u1 � u2[Qd]} ∈ F:

Let A be a coalgebra with state set X A =!, having
• a single method mA(x) = x + 1 as in the previous example, and
• a single attribute aA of sort (!; {0; 1}), i.e. aA :! × !→{0; 1}, which is the char-

acteristic function of the 6 relation on !. Thus aA(x; y) = 1 i& x6y.
Take u1 =m(
) and u2 =
. For any x∈!, let t be the ground observable term a(
; x).
Then tA[
A[x]] = 1 as x6x, but tA[m(
)A[x]] = 0 as x + 1 � x. Therefore by Theorem
3.2,
A[x] and m(
)A[x] are not bisimilar, implying

{x ∈ X A :A; x |= m(
) �
}= ∅ =∈ F;

for any F ∈X A+
. This also shows that A |=¬(m(
)�
).

Now take F ∈X A∗
to be any ultra4lter on X A that is non-principal, i.e. F �= Fx for

any x∈X A. (As in the 4rst example, all ultra4lters are rich.) For each k ∈!,

{x ∈ X A : aA(x; k) = 0} = {k + 1; k + 2; : : :} ∈ F;

since a non-principal ultra4lter contains all co4nite sets. Thus aA∗
(F; k) = 0 for all

inputs k ∈ I a.
But mA∗

(F) is also nonprincipal, because F is. For, by the analysis of the 4rst
example, if mA∗

(F) =Fx, then x¿0 and F =Fx−1. Hence also aA∗
(mA∗(F); k) = 0

for all inputs k ∈ I a. This implies that mA∗(F) and F assign the same values to
all ground observable terms, and so are bisimilar, by Theorem 3.2 again. Therefore
A∗; F |= u1 � u2[Qd], which also means A+; F |= u1 � u2[Qd].

This completes the counter-example to Corollary 8.5. It also shows that neither A+

nor A∗ is a model of ¬(m(
)�
), so neither 4lter nor ultra4lter enlargements preserve
satisfaction of negations of state equations.

884 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

Table 4

up down rev up?

x1 x1 x2 x2 t

x2 x1 x2 x1 f

x3 x1 x2 x3 u

The third example shows that in part (4) of our main result Theorem 9.2 the hypoth-
esis of closure under domains of morphisms cannot be weakened to closure under sub-
coalgebras. This is a class K that is closed under disjoint unions, images of morphisms,
subcoalgebras, and 4lter enlargements, hence closed under ultra4lter enlargements, but
not closed under domains of morphisms.

Let Meth= {m} and Att = {a}, with m and a having no input sort and a having
output sort {0; 1}. Let K be the class of coalgebras for this signature that satisfy
mA(mA(x)) = x for all x∈X A. Closure of K under disjoint unions and subcoalgebras is
straightforward to check. For closure under images of morphisms, let B be the image of
A∈K under morphism f. Then mB(mB(f(x)) =f(mA(mA(x)) =f(x) in general. Since
every member of X B is of the form f(x), this shows that B∈K .

For closure under 4lter enlargements, let A∈K and take any F ∈X A+
. Then Y ∈mA+

(mA+
(F)) i& {x∈X A :mA(mA(x))∈Y}∈F i& {x : x∈Y}=Y ∈F , showing that mA+

(mA+
(F)) =F . Hence A+ ∈K .

Now let A be the coalgebra having X A =!, mA(x) = x + 1, and aA(x) = 1 i& x is
even. Let B be the “quotient of Amod 2”, de4ned by X B = {0; 1}, mA(0) = 1, mA(1) = 0,
aA(0) = 1, and aA(1) = 0. The characteristic function f :! → {0; 1} of the set of
even numbers is a morphism A → B. Here f(x) = 1 i& x is even, so f is in fact
identical to aA. But B∈K while A =∈ K , showing that K is not closed under domains
of morphisms.

Notice that K is de4ned by a simple equation (m(m(x))≈ x) asserting equality of
states. The characterisation of classes de4ned by (Boolean combinations of) such equa-
tions is a matter for further study, although there is less interest for coalgebraic theory
in this type of equation than in those expressing bisimilarity (t1 � t2) of states.

The fourth example is a class of coalgebras that is de4nable by conditional equations,
but not by equations alone. It is based on a pair of coalgebras presented in [17] for a
similar purpose, and is motivated by the speci4cation of a class of objects called @ags
(e.g. [7, p. 291]).

There are three method symbols up, down and rev (for “reverse”) and a single
attribute symbol up? all of which have empty input sort. The output sort of up? is
{t,f,u}, representing the truth-values true, false and unknown. Let B be the coalgebra
with three states x1; x2; x3 and methods and attribute as in Table 4.

No two states are bisimilar, since they assign di&erent values to the observable term
up?(
). Thus state equations are interpreted in B by the equality relation.

The subset {x1; x2} is closed under the three methods, so de4nes a subcoalgebra A of
B. Note that all four operations in the table are either constant or injective, a property

R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886 885

that is preserved by composition of operations. Hence the operation x �→ tB[x] de4ned
by any ground term is either constant or injective. From this it follows that any two
terms that agree on x1 and x2 will agree on x3 as well, and therefore that A and B
validate exactly the same equations.

Now let & be the set of all observable conditional equations valid in A and put
K =Mod&. Then K is closed under disjoint unions, images of bisimulations, and 4lter
and ultra4lter enlargements. If K were de4nable by equations, then since A is in K
and equationally indistinguishable from B, B would be in K too.

But B =∈ K , because B is not a model of &, as shown by the formula

up?(rev(
)) ≈ up?(
) → up?(
) ≈ t:

This conditional observable equation is not satis4ed at x3 in B, but is valid (“vacu-
ously”) in A since its antecedent is not satis4ed at x1 or x2. An even simpler, though
perhaps less natural, example is

rev(
) ≈
 → t ≈ f:

Acknowledgements

I would like to thank the referees for their positive responses and helpful comments.

References

[1] M. Barr, C. Wells, Toposes, Triples and Theories, Springer, Berlin, 1985.
[2] J. Barwise, L. Moss, Vicious circles, CSLI Lecture Notes No. 60. CSLI Publications, Stanford,

California, 1996. Distributed by Cambridge University Press.
[3] G. Birkho&, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935) 433–454.
[4] A. Corradini, A complete calculus for equational deduction in coalgebraic speci4cation Tech. Report

SEN-R9723, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1997.
[5] H.-D. Ebbinghaus, J. Flum, W. Thomas, Mathematical Logic, Springer, Berlin, 1984.
[6] H.B. Enderton, A Mathematical Introduction to Logic, Academic Press, New York, 1972.
[7] J.A. Goguen, G. Malcolm, Hidden coinduction: behavioural correctness proofs for objects, Math. Struct.

Computer Sci. 9 (1999) 287–319.
[8] R. Goldblatt, Mathematics of Modality, CSLI Lecture Notes No. 43. CSLI Publications, Stanford, CA,

1993. Distributed by Cambridge University Press.
[9] R. Goldblatt, Duality for some categories of coalgebras, Research Report 00-2, School of Mathematical

and Computing Sciences, Victoria University of Wellington, 2000. http:==www.mcs.vuw.ac.nz=
∼rob =papers=duality.ps Algebra Universalis, to appear.

[10] R.I. Goldblatt, S.K. Thomason, Axiomatic classes in propositional modal logic, in: J.N. Crossley (Ed.),
Algebra and Logic, Lecture Notes in Mathematics, Vol. 450, Springer, Berlin, 1975, pp. 163–173.

[11] H.P. Gumm, T. SchrVoder, Covarieties and complete covarieties. Electronic Notes in Theoretical
Computer Science, Vol. 11, 1998. http:==www.elsevier.nl=locate/entcs.

[12] B. Jacobs, Objects and classes, coalgebraically, in: B. Freitag, C.B. Jones, C. Lengauer, H.-J. Schek
(Eds.), Object-Orientation with Parallelism and Persistence, Kluwer Academic Publishers, Dordrecht,
1996, pp. 83–103.

[13] B. Jacobs, Towards a duality result in coalgebraic modal logic, Electronic Notes in Theoretical
Computer Science, Vol. 33, 2000. http:==www.elsevier.nl=locate=entcs.

886 R. Goldblatt / Theoretical Computer Science 266 (2001) 853–886

[14] A. Kurz, Coalgebras and modal logic, Proc. Advances in Modal Logic ’98, Uppsala, 1998a, pp. 222–
230.

[15] A. Kurz, Specifying coalgebras with modal logic. Electronic Notes in Theoretical Computer Science,
Vol. 11, 1998b. http:==www.elsevier.nl=locate=entcs.

[16] H. Reichel, An approach to object semantics based on terminal co-algebras, Math. Struct. Comput.
Sci. 5 (1995) 129–152.

[17] G. RoWsu, A Birkho&-like axiomatisability result for hidden algebra and coalgebra, Electronic Notes in
Theoretical Computer Science, Vol. 11, 1998. http:==www.elsevier.nl=locate=entcs.

[18] J.J.M.M. Rutten, A calculus of transition systems (towards Universal coalgebra, in: A. Ponse, M. de
Rijke, Y. de Venema (Eds.), Modal Logic and Process Algebra, CSLI Lecture Notes, Vol. 53, CSLI
Publications, Stanford, CA, 1995, pp. 231–256.

[19] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (1) (2000)
3–80.

