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A Formalization of Minimalist Syntax
Chris Collins and Edward Stabler

Abstract. The goal of this paper is to give a precise, formal account of certain fundamental
notions in minimalist syntax. Particular attention is given to the comparison of token-based
(multidominance) and chain-based perspectives on Merge. After considering a version of
Transfer that violates the No-Tampering Condition (NTC), we sketch an alternative, NTC-
compliant version.

1. Introduction

The goal of this paper is to give a precise, formal account of certain fundamental
notions in minimalist syntax, including Merge, Select, Transfer, occurrences,
workspace, labels, and convergence. Many issues are not treated for reasons of
space, including head movement, Pair-Merge (adjunction), Quantifier Raising, Agree,
locality conditions, feature inheritance, and so forth. We hope that the framework in
this paper will be a useful first step toward these topics. We would like this
formalization to be useful as a toolkit for minimalist syntacticians in formulating new
proposals and evaluating their own proposals, both conceptually and empirically.

Our basic approach bears a resemblance to formal proposals of Gartner (2002) and
other foundational studies,' but we stick to simpler (and more mainstream) structures
and operations. Less directly, this work is similar to the minimalist grammars devised
by Stabler (1997) and the work that it has given rise to.” Those grammars were
simplified to facilitate computational assessment, but here we make an effort to stay
close to mainstream formulations. The goal here is to precisely understand and assess
some of the most fundamental grammatical proposals.

We use basic set theory to represent syntactic objects, with standard notation: € (is an
element of), U (set union), € (is a subset of), and C (is a proper subset of). The empty set
is written {} or . Given sets S and T, the difference S - T = {x|x € S, x € T}. Angle
brackets are used for sequences (SI,SZ,. . .,Sn), and when n = 0, the empty sequence is
written () or &. We call sequences of length 2 “pairs,” and sequences of length 6 “6-tuples.”
As usual, free variables in definitions are understood to be universally quantified.
For example, “W is a workspace iff. ..” means “For all W, W is a workspace iff.. . .”

We would like to thank Noam Chomsky, Yoshi Dobashi, Thomas Graf, Erich Groat, Kevin Guzzo, Greg
Kobele, Terje Lohndal, Jens Michaelis, Yohei Oseki, Paul Postal, T. Daniel Seely, and Vera Zu for
comments on the ideas found in this paper. We presented this work at the European Summer School in
Logic, Language, and Information (July 2009), the MIT Syntax—Semantics Reading Group (September
2009), the Fifth International Conference on Formal Linguistics (Guangzhou, China, December 2011), and
a seminar on syntax at New York University (Spring 2014).

! See also the foundational studies of Veenstra (1998), Kracht (1999, 2001, 2008), and Frampton (2004).
More detailed comparisons will be made at a later point in the paper.
2 See Michaelis 2001, Harkema 2001, Kobele 2006, Stabler 2010, Hunter 2011, Salvati 2011, and Graf 2013.
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44 Chris Collins and Edward Stabler
2. Preliminary Definitions

Definition 1
Universal Grammar is a 6-tuple: (PHON—F,SYN—F,SEM—F,Select,Merge,Transfer).

PHON-F, SYN-F, and SEM-F are universal sets of features. Select, Merge, and
Transfer are universal operations. Select is an operation that introduces lexical items
into the derivation. Merge is an operation that takes two syntactic objects and
combines them into a syntactic object. Transfer is an operation that maps the syntactic
objects built by Merge to pairs (PHON,SEM) that are interpretable at the interfaces.
Select, Merge, and Transfer are defined later in the paper. Another operation to add to
Definition 1 is Agree, but for reasons of space, we do not formalize Agree here.
Definition 1 is intended to capture what is invariant in the human language faculty.

We assume that Universal Grammar (UG) specifies three sets of features (Chomsky
1995:230, 2000b:170): semantic features (SEM-F; Chomsky 2000b:120), phonetic
features (PHON-F), and syntactic features (SYN-F). SEM-F may include features
pertaining to aktionsart, thematic roles, negation, focus, topic, tense, aspect, quantifi-
cation, definiteness, plurality, causation, and so forth. PHON-F may contain phono-
logical features such as [+voiced] or [+ATR]. PHON* is the set of strings of segments,
each of whose features are chosen from PHON-F. SYN-F includes features that play a
role in the syntactic derivation. SYN-F may include syntactic categories suchas N, V, P,
and Adj but also subcategorization features, Extended Projection Principle (EPP)
features, Case features, and unvalued features [uF] (e.g., ¢p-features of T and perhaps
pronouns; see Collins & Postal 2012). We call the features of SYN-F that are satisfied by
Merge (i.e., subcategorization features and EPP) trigger features (see sect. 7).

As noted earlier, we do not focus here on the theory of features. For our present
purposes, we do not need to be clearer about what the features are, but we assume that
they are basic elements, different from the sorts of syntactic objects we will derive in
the syntax.

Definition 2

A lexical item is a triple: LI = (SEM,SYN,PHON)
where SEM and SYN are finite sets such that SEM € SEM-F, SYN € SYN-F, and
PHON € PHON-F*.

For some lexical items, SEM, SYN, or PHON could be empty. We have simplified
greatly at this point, putting aside many interesting questions (e.g., What is the
relation between SEM and SYN for a particular lexical item? How are the feature sets
in SEM and SYN structured?). For more on features in minimalist syntax, see Adger
2010.

Definition 3

A lexicon is a finite set of lexical items.

© 2016 John Wiley & Sons Ltd



A Formalization of Minimalist Syntax 45

Definition 4

An I-language is a pair {(Lex,UG) where Lex is a lexicon and UG is Universal
Grammar.

In order to allow structures in which a given lexical item occurs twice in a
structure, the lexical items in our structures are indexed with integers (which is
basically equivalent to Chomsky 1995:227,% contra Kitahara 2000). For example, in
the sentence The dog saw the other dog, there are two tokens of the single lexical item
dog, tokens with different numerical indices. The integer in the lexical item token
plays no other role in the syntactic computation. For example, the integer will not be
used in “counting.” In fact, any other infinite set of distinguishing marks would serve
just as well (e.g., (dog,!), (dog,!!), (dog,!!!), etc.; see Groat 2013 for critical
discussion).

As discussed later (see Theorem 6), when lexical items are indexed, there is no
need for additional coindexing of elements related by movement, because the lexical
indices suffice to unambiguously represent the results of movement relations. We do
not take up the question of how lexical indices relate to the “referential indices” of the
binding theory. The referential indices of binding theory play no role in this paper.

Definition 5

A lexical item token is a pair {LIk) where LI is a lexical item and k is an integer.

When context makes our intentions clear, we will use LI to mean either lexical item
or lexical item token. For convenience, when the integer of a lexical item token is
indicated, we usually write it as a subscript: (John,k) = John,, where John is itself an
abbreviation for a triple of SEM, SYN, and PHON features.

A lexical array is a set of lexical item tokens with distinct indices:

Definition 6

A lexical array (LA) is a finite set of lexical item tokens.

A lexical array LA could contain two tokens of dog, for example dog; and dogys.
These two tokens are distinct, both for syntactic operations and at the interfaces.
Given a lexical array with tokens explicitly marked in this way, we do not need an
additional notion of numeration. Chomsky (1995:225) defines a numeration as “a set
of pairs (LI,i), where LI is an item of the lexicon and i is its index, understood to be
the number of times that LI is selected.” For example, if the pair (dog,2) is in the
numeration, dog will be selected twice in the derivation, as in the sentence The dog

3 “But the syntactic objects formed by distinct applications of Select to LI must be distinguished; two
occurrences of the pronoun fe, for example, may have entirely different properties at [Logical Form]. [ and
I are thus marked as distinct for Cyy_ if they are formed by distinct applications of Select accessing the same
lexical item of N.” In this quote, N is the numeration. In our formalization, the items are always already
distinct in the “lexical array”; see Definition 6. A chain-based alternative is considered in section 6.
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46 Chris Collins and Edward Stabler

sees the other dog. Our notion of lexical item token also allows the lexical item dog to
be selected twice (once when the token dog; is selected and once when the token
dogys is selected). Hence there is no need for a numeration.

Definition 7
X is a syntactic object iff

(i) X is a lexical item token, or
(i) X is a set of syntactic objects.

The Merge function, defined in section 2, maps syntactic objects to syntactic objects.
Chomsky (1995:243) offers a definition of syntactic object that incorporates the
notion of label, but we separate the definition of syntactic objects and introduce labels
later (see sect. 7).

We also need some definitions to refer to the relations between syntactic objects
(cf. Chomsky 2000a:116, in which “contain” is taken to be reflexive).

Definition 8

Let A and B be syntactic objects, then B immediately contains A iff A € B.

Definition 9
Let A and B be syntactic objects, then B contains A iff

(i) B immediately contains A, or
(i1) for some syntactic object C, B immediately contains C and C contains A.

Notice that with these definitions, “immediately contains” is the “has as a member”
relation, and “contains” is the transitive closure of that relation. That is, if A contains
B, then B is a member of A, or a member of a member of A, and so on. Definitions 8
and 9 also cover the case of workspaces, so that one may talk of a workspace W
containing a syntactic object A.

3. Workspaces, Select, and Merge

A derivation of a syntactic object is a series of stages that constructs a single syntactic
object from some lexical item tokens. Each stage in the derivation is defined by a
lexical array and a workspace (cf. Chomsky 1995:226, 2013:41; Collins 1997:3;
Epstein, Kitahara & Seely 2012:254, 269):

Definition 10

A stage is a pair S = (LA, W), where LA is a lexical array and W is a set of syntactic
objects. We call W the workspace of S.

A derivation will be defined later (Definition 14) as a sequence of stages meeting
certain requirements. The lexical array includes all the lexical item tokens that may be
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A Formalization of Minimalist Syntax 47

introduced into a particular derivation at a particular stage. A workspace includes all
the syntactic objects that have been built up at a particular stage in the derivation.
Note that by Definition 7, a workspace is a syntactic object. However, by convention,
we reserve the term “syntactic object” for those elements built up in the course of the
derivation and contained in the workspace.

In minimalist literature, the term “workspace” is also used in a sense where two
syntactic objects that are being built in parallel occupy two different workspaces.
These two different workspaces are combined at some point in the derivation (see
Nunes 2004:140). We do not use the term “workspace” in this sense, although
formalizing this alternative in our framework would not be difficult.

Definition 11

For any syntactic object X and any stage S = (LA,W) with workspace W, if X € W,
X is a root in W.

The Merge operation is constrained to apply to a root (see the definition of derivation
in Definition 14), and the operation acts at the root in the sense that it embeds a root
into a more complex syntactic object.

Before defining the operation Merge, we first define an operation that selects a
lexical item token from the lexical array in a stage:

Definition 12

Let S be a stage in a derivation S = (LA,W).
If lexical token A € LA, then Select(A,S) = (LA — {A},W U {A})

Select is an operation that takes a lexical item token from the lexical array and places
it in the workspace, at which point it is a root, available to be merged. Note that Select
is only defined on stages that contain nonempty lexical arrays.*

Merge is defined on syntactic objects. It is a function that maps pairs of syntactic
objects to new syntactic objects in the following simple way, as argued for in Collins
2002 (see also Chomsky 1995:243, 2007:8):

Definition 13
Given any two distinct syntactic objects A, B, Merge(A,B) = {A,B}.
Merge takes two syntactic objects and combines them into a single syntactic object.

According to Definition 7, lexical item tokens are syntactic objects, so Merge can
combine them. This is the basic structure building operation of syntax.

* Collins (1997:89-90) and Frampton & Gutmann (2002:93) argue against the existence of a numeration/
lexical array. On such a theory, a stage in a derivation is simply defined as a workspace. The operation
Select would then need to introduce a lexical item token directly into the workspace: Select(LI,W) = W U
{LI}.
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48 Chris Collins and Edward Stabler

The distinctness clause means that no syntactic object A can be merged with itself.
In other words, Merge(A,A) is undefined. Ultimately, the distinctness clause
implements the lack of “nonbranching projections.” For example, Merge(A,A) =
{A,A}, and by set theory, {A,A} = {A}. Therefore, Merge(A,A) = {A}. So ruling
out Merge(A,A) prevents {A}, which is nonbranching, from being generated.’

We make no distinction between external Merge and internal Merge.® They are not
two separate operations (see, e.g., Chomsky 2005:12). Rather, external Merge
corresponds to the case of Merge where A, B € W (a workspace). Internal Merge
corresponds to the case of Merge where A € W, and A contains B. In the latter case,
A is called the “target of movement.”

Consider the following example of Merge. Let see; and John, be lexical item
tokens in some workspace W, then:

(1) Merge(see;,John;) = {see;,John,}

The result of this operation, {see;,John;}, has no syntactic category label (e.g., VP).
The formalism for labels will be developed at a later point in this paper, after the
operation of “triggered merge” is defined.

Now suppose that the workspace W is {{Johnj,see;}}, then the following Merge
operation is also possible:

(2) Merge({Johny,see;},John;) = {Johny,{Johny,see;}}

When the second argument of Merge, the syntactic object John,, occurs inside the
first argument, it appears in two places in the result (a multidominance structure).
This falls under the internal Merge subcase of Merge. Graph-theoretically, either of
the two following representations are possible (see Gartner 2002:sect. 3.3.2 on the
fact that sets allow for alternative ways of being pictured by graphs).

# >l</\John
/N /N |

seeq John, seeq John,

In this kind of “set membership” diagram, the internal nodes labeled * are sets,
syntactic objects, with arcs pointing to their elements. We regard the two
representations in (3) as equivalent. In both cases, there are two arcs pointing to

5 Guimaraes (2000) argues that Merge(A,A) (“Self-Merge”) is possible. His main motivation is to show
how a version of Bare Phrase Structure theory allowing Self-Merge is consistent with the Linear
Correspondence Axiom (LCA). However, we note that our linearization algorithm (see Definition 41 for
Transferpg), which is based on the LCA, has no need of nonbranching projections.

6 Compare early minimalism, where there is a distinction between GT (generalized transformation) and
Move o (Chomsky 1995:189). Similar distinctions existed in earlier frameworks (e.g., phrase-structure
rules versus transformations).
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A Formalization of Minimalist Syntax 49

the syntactic object John,. In both cases, a single syntactic object John; has two
occurrences in a sense to be defined later.

For comparison, consider the following example of Merge, given a workspace W =
{{Johny,see;},John,}:

(4) Merge({Johny,see;},John,) = {{John;,see;},John,}
In this structure, two distinct lexical item tokens correspond to the lexical item John.

These lexical item tokens appear in two different positions in the structure. Graph-
theoretically, it can be represented as in (5).

/\ John,
seeq John,

We can now define a derivation as a sequence of stages, where a stage includes a
workspace and a lexical array.

Definition 14

A derivation from lexicon L is a finite sequence of stages (Sl,. . .,Sn), for n>1, where
each S; = (LA,-,W,-), such that

(i) For all LI and & such that {LLk) € LA,, LI € L,

(i) W; = {} (the empty set),

(iii) for all i, such that 1 <i < n, either
(derive-by-Select) for some A € LA,, (LA; , ;| W, , 1) = Select(A,(LA; W,)), or
(derive-by-Merge) LA; = LA ; , | and the following conditions hold for some
A,B:
(@ AeW,
(b) either A contains B or W; immediately contains B, and
(©) Wiy 1=(W;-{AB})U {Merge(A,B)}.

Condition (b) is a disjunction. The first disjunct is called internal Merge and the
second disjunct is external Merge. Internal and external Merge both involve exactly
the same operation. They differ only in where the argument B is found.

This definition has as a consequence that operations cannot apply in parallel,
because a derivation is a sequence of stages and two consecutive stages are related by
one operation. How to formalize a derivation in which operations can apply in
parallel, and whether there are empirical differences between the sequential and
parallel approach, are matters for future research.
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50 Chris Collins and Edward Stabler

In this definition of derive-by-Merge, the lexical array does not change from one
stage to the next, because it is not altered by Merge (only by Select). If A, B € W (the
external Merge subcase), then the effect of the derive-by-Merge relation is to remove
both A and B from W. If A € W, and B is contained in A (the internal Merge
subcase), then the effect of the derive-by-Merge relation is to remove only A from W
(because B is not a member of W). In this case, we say that B undergoes internal
Merge.

The condition that A € W; in Definition 14 encodes the fact that Merge is “at the
root” (Chomsky 1995:248). Various modifications of derive-by-Merge would yield
other possibilities. For example, if the condition were “A € W, and B € W,” then
only external Merge would be allowed. If the condition were “Ae W, and B is
contained in Wy,” then in addition to internal and external Merge, sideward Merge
would also be possible. If the condition were “A and B are contained in W;,” then
Merge would be possible between nonroots. We have chosen the most conservative
possible condition in this formalization (see Nunes 2004, Citko 2005, Riemsdijk
2006, and Wilder 2008 for empirical arguments for sideward Merge). However, it is
important to highlight that relatively minor changes in our assumptions about derive-
by-Merge would allow sideward Merge.

Definition 15

A syntactic object A is derivable from lexicon L iff there is a derivation ((LA,
Wi, . (LA, W,)), where LA, = {} and W,, = {A}.

This definition says that a derivation of A is a sequence of stages such that in the
first stage, no syntactic structure has yet been built, and in the last stage all the
lexical items in the initial lexical array have been used up, as in this example:

(6) Derivation of (4)
S1 = {{John,,see;,John;},{}) — Select John;
S2 = ({John,,see,},{John,}) — Select see,
S3 = ({John,},{see;,John,}) — Merge(see;,John,)
S4 = ({Johnz},{{seel,Johnl}}) — Select John,
S5 = ({}.{John,,{see;.John,}})  — Merge(John, {see;,John,})
S6 = {{},{{John,,{see;,John;}}})

Note that W = {}, LAg = {}, and W¢ contains one element, so this sequence of stages
is a derivation of {John,,{see;,John;}}.
Written more succinctly, the derivations of (2) and (4) can be given as follows:

(7) { {{see;.John,},{}).({see}, {John,}).({},{see; John,}).({},{{see;.John,}}),
({}.{{John,, {see;.John;}}}))

(8) { ({Johny,see;,John,},{}),{{John,,see;},{John,}),({John,},{see;,John;}),
({Johny},{{see;.John;} }),{{},{John, {see;John,} } ).{{},{ {Johny, {see;,John,}}}))
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A Formalization of Minimalist Syntax 51

Focusing on (8), notice that other derivations produce the same structure, {John,,
{see,John;}}. For example, we could select see; before selecting John;, or we could
select all three lexical items before doing any merges. In addition to those
possibilities, notice that we could “renumber” the lexical items in infinitely many
different ways to obtain essentially equivalent derivations, deriving {John,{see,,
Johns}}, {Johny,{sees,Johng}}, and so on.

4. Occurrences

The definition of Merge has the effect that a particular syntactic object can occur two
times (or more) in a structure, at different positions. This happens when Merge(A,B)
applies and B is contained in A, the subcase of internal Merge. It is often useful to
talk about the different occurrences (which occupy different positions) of a particular
syntactic object. Related notions will also play a role in our discussion of chains in
section 5.

Chomsky (2000a:115) proposes two ways to define the position of an occurrence in
a structure. First, he takes “an occurrence of o in K to be the full context of o in K.”
Alternatively, he suggests a simplification where “an occurrence of o is a sister of o.”
Chomsky does not develop the first definition based on “full context.” The second
definition, which is based on sisterhood, runs into the problem that the sister of o might
also have several occurrences. Therefore, defining the notion of occurrence in terms of
sisterhood does not specify (in the general case) a unique position in the structure
being built. For example, consider a VP [yp V DP]. Both the V and the DP can undergo
internal Merge. Hence defining the position of V as the sister of DP does not specify a
particular position, given that the syntactic object DP has more than one position.

Consider a syntactic object SO = {S,{S,S,}}. We say that S; occurs twice in SO.
The position of an occurrence is given by a “path” from SO to the particular occurrence.
A path is a sequence of syntactic objects {SO;,S0.. . .,SO,,) where for every adjacent
pair SO;,SO; , | of objects in the path, SO; , | € SO; (i.e., SO; , | is immediately
contained in SO;). With this definition, the two occurrences of S; in SO are identified by
the two different paths that begin with SO and end with S, (cf. the notion of “dominance
path” in Wilder 2008:239 and the notion of “position” in Kracht 1999:261):

(9) Position of highest occurrence of S; in SO = ({S1,{S1,S,}},S1)
(a sequence of two syntactic objects)
Position of lowest occurrence of S; in SO = {{S1,{S1.S5}},{S1.55}.,S;)
(a sequence of three syntactic objects)

We define the notions of position and occurrence in a structure as follows:

Definition 16

The position of SO,, in SO, is a path, a sequence of syntactic objects (SO;,S0,.. . .,
SOn) where for all 0 <i <n, SO, , | € SO,.
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Definition 17

B occurs in A at position P iff P = (A,. . B) We also say B has an occurrence in A at
position P (written Byp).

Sometimes we will say “an occurrence of X’ when we mean “an occurrence of X
in position P of syntactic object SO,” when the position P and object SO are implicit
in the discussion. When talking about a syntactic object A contained in a workspace
W, we will define A’s position in W with respect to one of the roots (undominated
syntactic objects) of W (e.g., A occurs at position P of B € W).

Given these definitions of position and occur, it is important to revisit the
definitions of sister, immediately contain, contain, and c-command. These terms are
commonly used in the syntax literature for relations between occurrences of syntactic
objects. We have already given the definitions of immediately contain and contain as
relations between syntactic objects in Definitions 8 and 9. Reformulating these as
relations between occurrences, we have:

Definition 18

Let A, B and C be syntactic objects, then, in C, occurrence Bp immediately
contains occurrence Ap (for paths P, P’ in C) iff P = (X,,...,X,,) and P’ = (X,.,.. .,
Xan+l>'

Note that if B occurs in position P = (X e - .,X,,) in C, and A occurs in position P’
=(X,.,.. .,X,LX,,H) in C, by the definition of paths, it follows that X; = C, X,, = B,
X1 = A, and A € B. Clearly, we can relate the immediately contains relation
between occurrences to the corresponding relation between syntactic objects as
follows:

Theorem 1

If occurrence Bp immediately contains occurrence Ap in C (for some paths P, P’ in C)
then, in C, B immediately contains A. If B immediately contains A, then every
occurrence of B immediately contains some occurrence of A.

Similarly for sisterhood, one can define it as a relation between syntactic objects:

Definition 19

Let A, B, C be syntactic objects (where A # B), then A and B are sisters in C iff A, B
e C.

But a definition corresponding to actual use in the syntax literature makes reference
to occurrences:
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Definition 20

Let A, B, C be syntactic objects (where A # B), then in C, Ap is a sister of Bp iff P =
(Xi,.. . X, 1,X,,) (where X,, ; = C and X,,= A) and P’ =(X,.. . ..X,,_1.X',.) (where X,
= B).

Theorem 2

If in C, Ap is a sister of Bp, then A and B are sisters in C.
Similarly, c-command can be defined as a relation between syntactic objects:’

Definition 21

Let A and B be syntactic objects, then A c-commands B in D, iff there is a syntactic
object C, such that:

(i) C is a sister of A in D, and
(ii) either B = C or C contains B.

A asymmetrically c-commands B iff A c-commands B and A and B are not sisters.

In SO = {S1,{S1.S,}}, according to this definition, S; c-commands S;. We would
usually say that one occurrence of S; c-commands the other. That is, the occurrence
of S| in position P; c-commands the occurrence of S; in position P, (where positions
are defined by paths). The occurrence-based definition is:

Definition 22

In D, Ap c-commands By iff there is an occurrence Cp~ such that:
(1) Cpr is a sister of Ap in D, and

(ii) either Bpr = Cp» or Cpr contains By, in D.

Theorem 3

If in C, Ap c-commands Bp, then A c-commands B in C.

5. Digression: Syntactic Objects Built from Chains
The indices of lexical tokens allow us to distinguish between the results of internal

and external merge, as in (2) and (4), repeated here:

(2) by internal merge: {{Johnj,see,},John;}
(4) by external merge: {{John;,see;},John,}

7 Adger (2003:117) offers a similar definition (also cf. Chomsky 2000a:116). Our definition differs from
those considered in Barker & Pullum 1990:4, 10, in which command relations are reflexive and it is not the
case that “commanders neither dominate commanded nodes nor are dominated by them.”
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We follow Epstein & Seely (2006:chap. 2) in dispensing with the notion of Chain,
giving rise to a multidominance approach based on lexical item tokens. An alternative
is to distinguish the result of internal and external Merge by the use of Chains (see
Chomsky 1995:253 and also Chomsky 2008). In this section, we briefly compare
these two ways of looking at movement.

One could say that in (2) a Chain links the two occurrences of John and in (4) there
are no nontrivial Chains. If Chain links are explicitly indicated, the indices of lexical
item tokens (which distinguish otherwise identical lexical items in a tree) can be
dispensed with.

A standard way to define a chain is as a sequence (n-tuple) of occurrences (see
Chomsky 1995:43 and also Chomsky 2001:39). However, in the course of a
derivation, the occurrences (defined by paths) would change each time Merge takes
place. Therefore, we have chosen an equivalent formulation that redefines syntactic
objects to include the chains formed at each stage in the derivation.

For example, each set {A,B} formed by internal Merge could be indexed with a
path from A to B, a “link” to the preceding element B:

(2') by internal merge: {{John,see},John} ({yonn,see},sohn)
(4') by external merge: {{John,see},John}

Various versions of this idea have been proposed in the literature (Nunes 2004:165, n.
15; Kracht 2001; Stabler 2001), but here we briefly develop an especially simple
approach for comparison with our token-based perspective.

Because this alternative does not use lexical tokens, we can dispense with lexical
arrays, workspaces, and the Select operation, so UG is slightly simplified. Our
syntactic objects are pairs SO = (S,P), where P is a path, where paths are defined in
essentially the same way as before, except that the SOs are pairs:

Definition 16’

A sequence of syntactic objects ((S1,P1),.. .{S,,P.)) is a path iff for every
adjacent pair ((S,-,P,-),(S,- + P NS+ 1 €S When n = 0 we have the trivial
path &. Otherwise, when n > 1, the path is also called a position of {S,,P,) in
(SI’P1>'

Definition 7’
A pair (S,P) is a (Chain-based) syntactic object iff
(1) S is a lexical item and P is a path, or

(i) S is a set of syntactic objects and P is a path.

We often write Sp for (S,P). And when the path P = &, we often omit it, writing just S.
The definition of Merge has the same form as before but operates on the new
syntactic objects:
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Definition 13’
Given distinct Chain-based syntactic objects A, B, Merge(A,B) = {A,B}.

Definition 14’

A (Chain-based) derivation from lexicon L is a finite sequence of syntactic objects
(SOl,. . .,SO,,), for n > 1, where each SO, = (Si,P,), such that either

(i) S; € L, a lexical item, and P; = ¢, or
(i) S; = Merge(A,B) = {A,B} where
(a) A and B appear earlier in the derivation,
(b) either P; is a position of B in A or P; = ¢, and
(c) if P;=(S0y,...,S0.), for k> 1, then B & S; where SO; = <S,,P;> for any i < k.

Condition (b) is a disjunction. The first disjunct is called (Chain-based) internal
Merge and the second disjunct is (Chain-based) external Merge. Internal and external
Merge both involve exactly the same operation. They differ only in where the
argument B is found. Note that (c) is a locality condition. It disallows a path to B that
skips a c-commanded B. In the token-based derivation, the question of which
occurrence of B is internally merged, when there is more than one, never arises
because no indication is provided one way or the other.

Definition 15’

A Chain-based syntactic object A is derivable from lexicon L iff there is a derivation
(S0;....,S0,) with SO, = A.

With these definitions, corresponding to (7) and (8), which are derivations of (2)
and (4), respectively, we have these corresponding Chain-based derivations (dropping
the empty path, subscript €, from the “trivial” chains):

(7 (John,see, {John,see},{{John,see} ,John}gbhmsee}John))
(8") {John,see, {John,see},{John,{John,see}})

Derivation (8') is a sequence of four syntactic objects, all trivial chains indexed with
e. Derivation (7'), on the other hand, derives {{John,see},John} ((jonn see} John). Which
has the nontrivial path {{John,see},John), a position of the internally merged John in
the structure {John,see}.

It might seem obvious that these Chain-based derivations are equivalent to our
token-based derivations, but that impression is not quite right. Recall that there is a
nonidentity requirement on Merge (see Definition 13). Merge(A,B) is only defined if
A and B are distinct (but see fn. 5 on self-Merge). The nonidentity requirement on
Merge (see Definition 13) has different effects in the token-based and Chain-based
accounts. Token-based Merge allows any two distinct elements to Merge, even if one
is a renumbering of the other. For example, if A is a lexical item, token-based Merge
can derive {A{,A,}. In a system that does not introduce indices on lexical items, there
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is no such distinction among lexical items. For example, the nonidentity requirement
on Chain-based Merge blocks merging A, with itself to form {A;A:}: = {A:}e

The lack of indices on lexical items is the main appeal of the Chain-based system,
but it means that, in a sense, the Chain-based merge is more restrictive: there is no
way to Merge a lexical item with itself. Which perspective is right for human
language?

If the Chain-based restriction is the right one, then the token-based restriction is too
weak. On this view, we should strengthen the nonidentity condition of Definition 13
to say that Merge(A,B) is defined only when A and B are distinct under all
renumberings.

If the token-based restriction is the right one, then for lexical items A; and A,
Merge(A,A,) is defined even if A, is just a renumbering of A,. On this view, the
Chain-based nonidentity restriction would be blocking derivations that should be
allowed. We could modify Chain-based Merge by removing the distinctness
condition. This would allow us to form the nonbranching{A.A.}. = {A.},
corresponding to the token-based structures {A;A;} where i # j. This might seem
reasonable, but notice that the Chain-based system will still be unable to make
distinctions that are present in the token-based grammar. For example, in the
structure {A;A;}, A; and A; could both potentially undergo internal Merge, each
with its own landing site. In sum, even without the distinctness requirement,
positions in the Chain-based structures cannot be brought into a unique correspon-
dence with positions in token-based structures. Structure could be added to the
Chain-based account to preserve the distinct identities of these parts (cf. Gartner
2002:sect. 3.3.3), but that would make the Chain-based approach more complex and
less appealing.

Given that it is not clear what to do here, let us maintain both definitions of Merge
with their distinctness requirements. The correspondence between token-based and
Chain-based derivations is then restricted. Merge of token-based elements that are
renumberings of each other will have no Chain-based equivalents. But apart from
that, the following natural correspondence holds (proof in Appendix):

Theorem 4

Let T(Lex) be the set of syntactic objects with derivations in which Merge never
applies to two objects A,B where A is a renumbering of B. And let [T(Lex)] be the set
of equivalence classes of those objects in T(Lex) with respect to renumbering. Let C
(Lex) be the set of syntactic objects with Chain-based derivations. There is a one-to-
one, onto, structure-preserving correspondence between [T(Lex)] and C(Lex).

To recap, the key reason that the correspondence must be stated on equivalence
classes of structures is that Chain-based structures do not care about the renumberings
of token-based structures. If we put renumberings into token-based equivalence
classes, then we get a natural one-to-one correspondence between the approaches, up
to the different effects of the distinctness condition of the Merge operation.
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This theorem represents the natural result that in some sense Chain-based theories
and multidominance-based theories are equivalent in the structures that they produce.
We return to the token-based formulation in the following sections.

6. General Properties of Derivations

This section establishes some basic properties of derivations and then considers four
constraints on grammar that have been discussed in the literature. These results hold
for all lexicons, so we use notion of being derivable (from some lexicon),

Definition 23

A syntactic object is derivable iff it is derivable from some Lexicon L. Similarly, a
workspace W is derivable iff for some Lexicon L, there is some derivation

(LA, W)),....{LA,,W,)) from L such that W = W,,.

The fact that Merge blocks the formation of unary branching has already been
mentioned, but we can be more specific:

Definition 24

Syntactic object A is binary branching iff both A and everything contained in A is
either a lexical item token or a syntactic object immediately containing exactly two
syntactic objects.

Theorem 5 (Binary branching)

Every derivable syntactic object is binary branching.

There are many binary-branching structures that cannot be built, though, and many
workspaces that cannot be derived. For example, it is not possible to derive a
workspace W = {A,B} where B occurs as a root of W and B also occurs somewhere
in A. In other words, B has two occurrences, but they are not in the same syntactic
object, the same “tree.” Workspaces like (10) are not derivable.

(10)  An underivable workspace

B A

VAN

B
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There is no way to generate the two occurrences of B in (10). It is easy to state and
prove the following general claims (proofs in Appendix):

Theorem 6

In every derivable workspace W, if A is a root in W (A € W), then there is no other
root B € W such that A contains an occurrence of B.

Theorem 7

A derivable workspace contains two occurrences of A iff either A or some B
containing A has undergone internal Merge.

We now turn to four widely discussed conditions that fall out as theorems from our
framework: the No-Tampering Condition (NTC), the Extension Condition, Inclusive-
ness, and Local Economy. These conditions do not filter out unacceptable derivations
(which would be the normal interpretation of a constraint or condition in syntactic
theory); rather, they make explicit certain properties of the derivations already defined.
Syntactic operations and derivations could in principle have been defined in such a way
that one or more of these conditions would fail. We will also show how the NTC and the
Extension Condition are independent conditions (and so should not be conflated).

Consider first the NTC, which Chomsky (2007:8) defines as follows: “Suppose X
and Y are merged. Evidently, efficient computation will leave X and Y unchanged
(the No-Tampering Condition [NTC]). We therefore assume that NTC holds unless
empirical evidence requires a departure from SMT [strong minimalist thesis] in this
regard, hence increasing the complexity of UG. Accordingly, we can take Merge(X,
Y) = {X,Y}.” As made clear in Chomsky (2005:13), there is a close connection
between the NTC and the Copy Theory of Movement: “The no-tampering condition
also entails the so-called copy theory of movement, which leaves unmodified the
objects to which it applies, forming an extended object.”

Theorem 8

For any two consecutive stages in a derivation S; = (LA LW 1) and S, = (LAz,W2>,
for all A contained in W, A is contained in W,.

This says that every syntactic object contained in W; must find a place in W,. No
element of W, can be destroyed or tampered with.® For example, it is easy to see that
the trace theory of movement violates the NTC. Suppose A contains B, and A is a root
in W, (a workspace) and Merge(A,B) = {A’,B}, where A’ is exactly the same as A
except that the occurrence of B contained in A is replaced by a trace t. Then A € W,

8 Suppose an operation were introduced that makes of a copy of A, call it A’, to form {A’,{B,A}}.
Regardless of whether A’ is identical to A, this does not violate the NTC as we have formulated it here, but
one might think that this violates the NTC that was originally intended. Depending on how the copy differs
from the original, it could violate Inclusiveness, discussed later, or perhaps another plausible NTC-like
constraint could be formulated to block implausible copying operations.
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but A &€ W5, nor is there a C € W5, such that A € C. In fact, A is not contained in W, at
all (only A’ with the trace is).”

Consider next the Extension Condition, which demands that the syntactic
structures in a workspace be extended by Merge (preventing so-called countercyclic
operations). As Chomsky (1995:190) notes: “A second consequence of the extension
condition is that given a structure of the form [x X YP], we cannot insert ZP into X’
(yielding, e.g., [x» X YP ZP]), where ZP is drawn from within YP (raising) or inserted
from outside by GT [Generalized Transformation].”

Theorem 9

For any two consecutive stages S| = (LAI,WI) and S, = (LAz,W2>, if S; derives S,
by Merge, then there is some A € W, and C € W, such that

(i) C ¢ W, (C is created by Merge)
(i) A € W, (A is extended)
(iii) A € C € W, (A is extended to form C)

This says that A in W is extended to C in W,. On this formulation, the trace theory
also violates the Extension Condition. Suppose once again that A contains B, and A is
a root in W, (a workspace) and C = Merge(A,B) = {A’,B}, where A’ is exactly the
same as A except that the occurrence of B contained in A is replaced by a trace .
Then in W5, A & C. (Instead, A’ € C.) Therefore, A has not been extended.

In many cases, the NTC and the Extension Condition prohibit the same kinds of
illicit derivations. For example, both conditions would prevent defining Merge so as
to allow so-called countercyclic movement, as shown in (11). In the derivation,
Merge applies countercyclically, forming Merge(A,B) = C (see Collins 1997:84,
where it is argued that Merge cannot replace terms).

(11) Derivational diagram of Merge violating NTC and Extension Condition

Workspace 1 Workspace 2
X!
X T
/\ Y C
Y A Merge (A,B) T~
i i B A
B A
B

° One immediate consequence of the NTC is that the tucking-in derivations of N. Richards (2001:38-46)
are not possible. Similarly, Lasnik’s (1999:207) claim that A-movement does not leave a trace is
inconsistent with the NTC (“A-movement, unlike A’-movement, does not leave a trace, where a trace is,
following Chomsky, a copy of the item that moves”). It remains to be seen how the system could be
changed to allow these alternatives.
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This is not a possible derivation given our definitions, intuitively because it does not
“act at the root,” as made explicit by the Extension Condition. Furthermore, this
operation of Merge tampers with the internal structure of X, violating the NTC.

Other derivations would violate the Extension Condition but not the NTC, which
shows that these conditions are conceptually distinct and should not be confused.
Consider a slight modification to the countercyclic derivation, where B merges
with A, forming C, but C does not replace A.

(12) Derivational diagram of Merge violating Extension Condition but not NTC

Workspace 1 Workspace 2

X
A

Y A Merge (A,B)
/\ 5
B

Again, this is not a possible derivation, as we have defined it (because A & W; see
Definition 14). Note that it violates the Extension Condition: no constituent in W, is
extended (in the sense of a root X becoming a dominated X). However, the derivation
does not violate the NTC.

Next, we take up the inclusiveness condition, defined by Chomsky in several
works as follows:

“Another natural condition is that outputs consist of nothing beyond properties of items
of the lexicon (lexical features)—in other words, that the interface levels consist of
nothing more than arrangements of lexical features.” (Chomsky 1995:225)

Inclusiveness “permits rearrangement of LIs and of elements constructed in the course of
derivation, and deletion of features of LI—but optimally, nothing more.”  (Chomsky
2000a:113)

Inclusiveness “bars introduction of new elements (features) in the course of computation:
indices, traces, syntactic categories or bar levels, and so on.” (Chomsky 2001:2-3)

We define inclusiveness in the following way:

Theorem 10

In any derivation (LA, W)),.. .{LA,,W,.)) where W,, = {A}, the only elements
contained in W, are the lexical item tokens from LA and syntactic objects containing
them.
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A discrepancy between Chomsky’s version of Inclusiveness and ours is that our
version allows indices on lexical item tokens, whereas Chomsky’s version does not, a
problem noted by Chomsky (1995:227): “I and [’ are marked as distinct for CHL if
they are formed by distinct applications of Select accessing the same lexical item of
N. Note that this is a departure from the inclusiveness condition, but one that seems
indispensable: it is rooted in the nature of language, and perhaps reducible to bare
output conditions.”

As we observed in the discussion of (2) and (4), the structures in (13) are
importantly different, if i is distinct from m.

(13) S2 = {John; {John;,see;}} and
S4 = {John,, {John;see;}}

Here, S2 has two paths to one token of John, whereas S4 has two paths to two
different tokens of John. As discussed, this distinction can be indicated with the
indices on the lexical items as in S2 and S4 (as in the representations of the graph
structures in (3) and (5)).10 This distinction is arguably essential at the CI interface
(to allow for the representation of the output of internal Merge) and so Inclusiveness
must be formulated so as to allow it (which is exactly what we have done in
Theorem 10).11 If the indices on lexical item tokens were eliminated, then some
other device would have to distinguish between S2 and S4 in (13). One possibility is
to introduce Chains indicated by path indices (see sect. 5); another is to let Merge
build more complex graphs (see Gartner 2002). For a phase-based approach, see
Groat 2013.

The last general condition we consider is Local Economy, first proposed by
Collins (1997:4) and reformulated slightly here to make it consistent with our
terminology:

Theorem 11

Given a stage in a derivation S; = (LA;,W;), which is part of a derivation D = (Sy,. . .,
S, . .,Sn), whether an operation OP applies to elements of W; (as part of a derivation)
is determined completely by W; and the syntactic objects it contains.

Suppose that A and B are roots of some workspace W;. According to Local
Economy, whether or not Merge applies, forming {A,B}, could not depend on
information contained in another workspace (from a stage either earlier or later in the
derivation, or from a different derivation altogether). The way we have defined
derivations, this result follows trivially. But the point is that we could have defined

10" See Girtner 2002 and Kracht 2008 for other approaches to multidominance in directed acyclic graphs
like those in (3) and (5).

1 Kitahara (2000) argues that such distinctness markings are not needed, and hence Chomsky’s original
formulation of the Inclusiveness Condition, which refers to lexical items (and not lexical item tokens), can
be maintained. We simply note that Kitahara’s proposed solution only distinguishes distinct pronoun tokens
with Case features and was not extended to distinguishing distinct tokens of lexical items in general.
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Merge and derivations otherwise, in such a way that Local Economy would not
hold."*

7. Labels

In this section we define a labeling algorithm. We start by defining triggered Merge.
Then, we define labels in terms of triggered Merge. We believe we have captured the
standard account of labeling of the principles and parameters framework and early
minimalism (putting aside adjuncts, which we have not formalized). Future discussions
of labeling algorithms could take our formalization as the baseline for comparison.

Some selected quotes from the literature are given here to show some basic ideas
about how Merge might be triggered:'?

“For an LI to be able to enter into a computation, merging with some SO, it must have

some property permitting this operation. A property of an LI is called a feature, so an LI

has a feature that permits it to be merged. Call this the edge feature (EF) of the LL.”
(Chomsky 2008:139)

“[T]here is a Last Resort condition that requires all syntactic operations to be driven by
(structure-building or probe) features.” (Muller 2010:38)

“I propose that the same Agree relation underlies all instances of Merge.”
(Boeckx 2008:92)

“Summarizing, the (syntactic) head of a constituent built up by Merge is the lexical item
that projects its features to the new constituent. That lexical item will be the one that
triggered application of Merge in the first place by being specified with c-selectional
features that need to be checked. All c-selectional features must be checked by
applications of Merge.” (Adger 2003:96)

We call the features involved in triggering Merge “trigger features.” We assume that
such features are to be identified with subcategorization features, EPP features, and
OP features for movement to Spec,CP (see discussion after Definition 1).

Definition 25

A lexical item token {{Sem,Syn,Phon),i) contains a trigger feature TF iff some TF €
Syn is a trigger feature.

The following familiar feature sets could be modeled as trigger features:'*

'2 Local Economy restricts dramatically the information accessible to determine whether an operation
applies. Therefore, a better name for the condition might be Local Determination. However, we retain the
name for historical reasons (it is the original name from Collins 1997).

13 See also Stabler 1997, Hornstein 1999:78, Collins 2002, and Frampton & Gutmann 2002.

4 A reviewer comments, “It is not necessarily obvious that sets rather than multisets will be sufficient for
Syn. The exact format of ‘subcategorization features,” in particular of verbs like German lehren (‘to teach’)
requiring two accusative objects, is relevant in this regard. Equally the possibility of multiple EPP features
and a treatment of multiple-wh-movement would have to be considered here.” We leave open this
possibility here.
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(14) a. T: Syn = {T,[__vP],EPP'" }
(T requires a specifier and takes a vP complement)
b. Comp: Syn = {Comp,[__TP],OP}
(Comp requires an operator as specifier and takes an TP complement)

We do not assume that the trigger features of (14a,b) are ordered (contra Miiller
2010:38, Stabler 1997). This raises the problem of determining what is generated
as complement and specifier. For example, what would prevent the following:
[tp VP [ T DP]], where VP is in the specifier of TP, and DP is in the
complement (see definitions of complement and specifier in Definitions 32 and 33,
respectively). We assume such unattested merging orders are blocked by other
constraints (e.g., in the case at hand, internal Merge of DP from VP to the
complement of TP would violate the NTC). We leave more careful consideration
of this issue for future work.

We provide definitions of Triggers and Triggered Merge as follows. We assume
that there is a function Triggers that, for any SO, yields the total set of unchecked TF
tokens contained in that SO. Furthermore, because each syntactic object determines
its derivational history (and the NTC guarantees that nothing in that history is ever
tampered with), we can tell, in every derived structure, which trigger features have
been checked. When a syntactic object SO has no trigger features left, Triggers(SO)
will be empty.

Definition 26

Triggers is any function from each syntactic object A to a subset of the trigger
features of A, meeting the following conditions:

(1) If Ais alexical item token with n trigger features, then Triggers(A) returns all of
those n trigger features. (So when n = 0, Triggers(A) = {}.)

(i) If A is a set, then A = {B,C} where Triggers(B) is nonempty, and Triggers(C) =
{}, and Triggers(A) = (Triggers(B)) — {TF}, for some trigger feature TF &
Triggers(B).

(iii) Otherwise, Triggers(A) is undefined.

Definition 26 is not the definition of a particular function but of a class of functions,
each of which satisfies the three properties listed in Definition 26. Devising a
particular Trigger function would depend on such issues as how the EPP and
subcategorization features are checked. For example, can a head have two identical
trigger features (e.g., two EPP features, two [__DP] features)? How do trigger
features impose category constraints and what kinds of category constraints do they
impose? How many trigger features can a particular lexical head have? In answering
these questions we could devise a particular Trigger function. Therefore, when
Triggers(B) has more than one element, we assume that Triggers({B,C}) will check a

' On the EPP as a requirement that a clause must have a specifier, see Lasnik 2001:360. For extensive
arguments against postulating an EPP feature, see Epstein & Seely 2006.
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particular one, determined by B and C, and we leave aside the question of which one
it is. However, none of these issues bears on the adequacy of the notion of a Trigger
function for our formalism.

We define Triggered Merge as follows, replacing Definition 13:

Definition 27

Given any syntactic objects A, B, where Triggers(A) # {} and Triggers(B) = {},
Merge(A,B) = {A,B}.

Notice that the triggering condition entails that A,B are distinct. Another consequence
is that only one trigger feature can be checked by each Merge operation. As before,
this definition of triggered Merge makes no distinction between the two subcases of
Merge: internal Merge and external Merge. Lastly, no features are actually deleted,
and hence there is no violation of the NTC.

Suppose a lexical item token see; has two trigger features and token John, has no
trigger features. Then we could have a derivation like this:

(15) Derivation involving lexical item token with two trigger features

a. ({John,,see,},{}) — Select John,

b. ({see,},{John,}) — Select see;

C. ({},{Johnl,see2}> — Merge(see,,John;)

d. ({},{{Johnl,seez}}) — Merge({Johny,see,},John;)
e. {{}.{{John,{John;.sees}}})

This derives the previously discussed structure (2). After the first Merge operation,
Triggers({John,see,}) will have just one feature available. After the second Merge
operation, {John,{Johny,see,}} will not have any trigger features available. That is,
Triggers({John,{John,see,}}) = {}. The two trigger features of see, are both
unavailable because they were checked by the two Merge operations.

The definition of triggered Merge entails the following asymmetry:

Theorem 12
If triggered Merge(A,B) is defined, triggered Merge(B,A) is undefined.

In our approach, the structural relation important for feature checking is sisterhood
(created by Merge). There is no reference to either m-command or specifiers in these
definitions. In fact, m-command plays no role in our formalization, and specifiers are
defined purely in terms of triggered Merge (see below).

Given that Merge is triggered, it is trivial to define syntactic category labels. We
will formalize the intuition that the label is always the head that triggers Merge. Some
quotes from the literature give background on this approach:
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“Set-Merge of (a.,3) has some of the properties of Agree: a feature F of one of the merged
elements (say, o) must be satisfied for the operation to take place. . .the label of the
selector projects.” (Chomsky 2000a:134)

“Headedness: The item that projects is the item that selects.” (Adger 2003:92)

Within this general approach, the question remains as to how to represent the label.
We adopt a functional approach. There is a function that has the set of syntactic
objects as its domain, and the set of lexical items tokens as its range (see Chomsky
1995:244, 398 on some earlier approaches to labels in the minimalist framework, see
Collins 1997:64, who proposed the functional approach to labels, see Collins 2002
for an approach dispensing with labels, and see Seely 2006 on criticisms of earlier
minimalist approaches to labels).

Definition 28

Label is a syntactic function from syntactic objects to lexical items tokens, defined in
the following way:

(i) For all lexical item tokens LI, Label(LI) = LI.
(i) Let W be a derivable workspace. If {A,B} is contained in W, and Triggers(A) is
nonempty, then Label({A,B}) = Label(A).

Label(SO) is often called the head of SO. It is now easy to establish (proof in
Appendix):
Theorem 13
Let A, B, C be syntactic objects. If C = Merge(A,B), then Label(C) = Label(A).
Another general property of labels is that if a constituent B undergoes internal
Merge, targeting A, then A projects not B (Chomsky 1995:256). This result follows
immediately from our definitions.
Our formalization allows natural definitions of all the X’ Theory concepts:
Definition 29

For all C a syntactic object and LI a lexical item token, both contained in a derivable
workspace W, C is a maximal projection of LI (written Maxy/(LI)) iff Label(C) =LI and
there is no D contained in W which immediately contains C such that Label(D)=Label(C).

For example, when Merge(see;,John,) = {see;,John,} (which is an element of W),
Label({see,,John,}) = see;, and Maxy(see|) = {see|,John,}, the maximal projection
of see.

Definition 30

For all C, C is a minimal projection iff C is a lexical item token.
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Definition 31

For all syntactic objects C contained in workspace W, LI a lexical item token, C is an
intermediate projection of LI iff Label(C) = LI, and C is neither a minimal projection
nor a maximal projection in W.

The complement is the first element merged with a head, and a specifier is any
subsequent element merged with a projection of the head.

Definition 32

Y is the complement of X in C iff C = Merge(X,Y) and X is a lexical item token.

Definition 33

Y is the specifier of X in C iff C = Merge(X,Y) where X is not a lexical item token.
When LI = Label(X), we also say Y is a specifier of LI in C. If XP is the maximal
projection of LI, and Y is a specifier of LI, then we also say Y is a specifier of XP, and
write Y = Spec XP.

Definition 27 of Triggered Merge and Definition 33 of specifier allow a lexical
item to have multiple specifiers. Such multiple specifiers have been empirically
argued for in the domain of multiple wh-questions (see Richards 2001, among many
others).

On this account, there is a close relation between triggered Merge and labels: both
are ways to indicate that Merge is asymmetric, and furthermore, the Label function is
defined purely in terms of how features are checked. Given this close connection, it
may be that one or the other is redundant, which was, in essence, the argument of
Collins 2002. We hope the formalization in this section will be useful in ongoing
debates about labeling algorithms (see Collins 2002; Seely 2006; Chomsky 2008,
2013; Citko 2008; Cecchetto & Donati 2010; Donati & Cecchetto 2011).

8. Transfer

The syntactic objects generated by Merge must be mapped to the interfaces: the
conceptual-intentional (CI) interface and the sensorimotor (SM) interface. The
operation that does this mapping is called Transfer (see Chomsky 2004:107). We will
treat Transfer as relativized to a phase P and composed of two operations: Transferpg
and Transfery ,

Definition 34

For syntactic object SO with Triggers(SO) = {}, Transfer(P,SO) =
(Transferpp(P,SO), Transfer; x(P,SO)).

Transfer; g is the first operation of the semantic component, which maps the SO to

a form that can be interpreted by the CI interface. Transferpr (also referred to as
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Spell-Out) is the first operation of the phonological component, which maps the SO
to a form that can be interpreted by the SM interface. An important question, which
we do not address, is where (truth conditional) semantic rules of interpretation and
familiar phonological rules fit into this framework.

An important aspect of minimalist syntax is that information interpreted by the
interfaces is computed cyclically.'® Now suppose that at some point in the derivation
the syntactic object SO is formed, and Transfer(P,SO) applies. Once a PF sequence is
formed (see below), it can never be broken up again in the derivation. In order to
permit internal Merge after Transfer, it must be the case that Transfer(P,SO) may
leave an escape hatch: “Applied to a phase P, S-O must be able to spell out P in full,
or root clauses would never be spelled out. But we know that S-O cannot be required
to spell out P in full, or displacement would never be possible.” (Chomsky 2004:108)
We implement this escape hatch with Cyclic-Transfer, the first version is given in
Definition 36.

Uriagereka (1999:sect. 10.2) discusses the issue of relating “a structure that has
already been spelled out to the still ‘active’ phrase marker.” We dub this the Assembly
Problem and note that it has received little attention in the minimalist literature.
Uriagereka sketches several solutions to this problem. On the conservative approach,
“the collapsed Merge structure is no longer phrasal, after Spell-Out; in essence, the
phrase marker that has undergone Spell-Out is like a giant lexical compound” (p.
256). Our formulation in which {Transferpr(P,Y), Transfer; x(P,Y)) is inserted back
into the tree is similar to his conservative approach to this issue. We call this the plug-
back-in model. This model has the virtue that the phase impenetrability condition
(PIC) becomes a theorem (see Theorem 14). Unfortunately, as our formalization
clearly reveals, the plug-back-in model has a number of undesirable properties. First,
it requires a complication of the definition of syntactic object (see Definition 37).
Second, it entails that derivations involving Cyclic-Transfer violate the NTC. Third, it
complicates the treatment of remnant movement (see sect. 11). For these reasons, we
believe that the plug-back-in model should be rejected. In section 12, we sketch a
non-NTC-violating alternative.

To define Cyclic-Transfer, we first need to define strong phase. We assume the
extensional definition of strong phase heads given in Definition 35. Something like
this should eventually follow from more basic assumptions (see Chomsky 2007:19 on
the status of TP as a nonphase). Given our formalization of Transfer, it should be
possible to compare various definitions of strong phases.'” We leave the notions
“transitive” and “unergative” undefined.

16 See Uriagereka 1999, which first introduced the notion of Multiple Spell-Out; see Epstein & Seely
2006 for a different conception of cyclic spell-out (one incompatible with Chomsky 2004:122, in particular
the discussion before (20)). See Miiller 2010:40 for an analysis where every XP is a phase (contra
Definition 35). Also see Obata 2010 for discussion. There is need of a critical overview of these various
approaches, which we are unable to give for reasons of space.

'7 See Legate 2003:506, where it is argued that “unaccusatives and passive VPs are phases as well”; see
Collins 2005:98 for discussion of the phasal status of passives; and see Dobashi 2003 on the relationship
between derivation by phase and phonological phrases.
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Definition 35

A syntactic object SO is a strong phase iff SO is a maximal projection with label LI
and either: (a) the syntactic category of LI is Comp, or (b) the syntactic category of LI
is transitive or unergative v.

Definition 36

For any derivable workspace W where SO is a strong phase and SO € W and A is the
complement of the label of the phase, let Cyclic-Transfer(SO) = SO’ where SO’ is
obtained from SO by replacing A by (Transferpr(SO,A), Transfer; (SO,A)).

The result of Cyclic-Transfer must feed further syntactic rules. For example, if a
wh-word moves to Spec,CP, the resulting CP can be embedded under another verb.
Given that Merge is only defined for syntactic objects, the result of Cyclic-Transfer
must be a syntactic object:

Definition 37 (replacing Definition 7).
X is a syntactic object iff

(i) X is a lexical item token, or
(i) X = Cyclic-Transfer(SO) for some syntactic object SO, or
(iii) X is a set of syntactic objects.

With this definition, for example, if SO = {H,XP} and Cyclic-Transfer applies to
produce SO’ = {H,Transfer(SO,XP)}, then Transfer(SO,XP) is not a syntactic object
but SO’ is.

Lastly, we need to fit the operation Transfer into the derivation, just as we did with
Merge and Select.

Definition 38

A derivation from lexicon L is a finite sequence of stages (S Lne - .,S,,), for n > 1, where
each S; = (LA, W,), such that

(i) For all LI and k such that {LLk) € LA, LI € L,

(i) W; = {} (the empty set),

(iii) for all 7, such that 1 <i < n, one of the following three conditions holds:
(derives by select) for some A € LA, (LA, , 1 Wi D= Select(A,(LAi,W,)), or
(derives by merge) LA; = LA; , | and the following conditions hold for some
A, B:

(A AeWw;
(b) Either A contains B or W; immediately contains B, and
(© Wiy 1 =(W;—{AB})U {merge(A,B)}, or

(derives by transfer) SO € W; is a strong phase containing no other strong phase
whose complement has not yet been transferred, and either
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(@) W; . 1=W;—{SO}) U {Transfer(SO,SO)} (ends the derivation), or
(b) W; .1 =(W,;-{SO}) U {Cyclic-Transfer(SO)}.

The basic idea of this approach is to use the workspace as the place where the outputs
of Transfer and Cyclic-Transfer are stored, by plugging them back into the syntactic
tree.

An important consequence of this definition is that it forces Transfer of a strong
phase before it is embedded in another strong phase, because derives-by-Transfer
only takes place if SO does not contain any strong phase with an untransferred
complement.

With this definition of Transfer, even without the definitions of Transferpr and
Transfer; g, we have the PIC as a theorem. The PIC is given by Chomsky (2000a:108)
as follows: “In phase o with head H, the domain of H is not accessible to operations
outside o, only H and its edge are accessible to such operations.” For us, UG
(Definition 1) has only three operations. Select applies to a lexical item in the array,
so it cannot apply to any complex in the workspace. And Transfer can be regarded as
an interface operation. So PIC is relevant only for Merge, and it is a trivial matter to
prove (proof in Appendix):

Theorem 14 (PIC)

In phase o with head H, in Cyclic-Transfer(o) = {...{H,Z}...} (the output of the
Cyclic-Transfer function applied to o), Merge cannot apply to Z or anything
contained in Z.

For a phase SO with domain A, Cyclic-Transfer removes A, and replaces it with
(Transferpp(SO,A), Transfer; 5(SO,A)), which is not a syntactic object and does not
contain syntactic objects. As a consequence, the PIC follows as a theorem.

9. Transfer;

The next two sections deal with Transfer;y and Transferpp. These sections are
necessarily more sketchy and speculative than the preceding material, because
minimalist syntacticians have given relatively little attention to the inner workings of
Transfer. With this caveat in mind, we start with Transfer; .

The effect of Transfery g is to strip away the phonetic features and to create a
structure where every feature remaining is interpretable at the CI interface (see
Chomsky 2000a:118). If any uninterpretable features remain at the point where the CI
interface is reached, the derivation will crash (see sect. 13 for definitions of converge
and crash). We make the simplifying assumption that the trigger features are ignored
at Transfer and stripped off just like the phonetic features and all the other syntactic
features.

We present a bare-bones definition of Transfer; p, glossing over many important
issues (e.g., the proper representation of movement structures at the CI interface,
reconstruction, copy deletion, condition C, and Quantifier Raising, among others):
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Definition 39

For any derivable workspace W with syntactic object Phase € W such that Label
(Phase) is a strong phase head, for all syntactic objects SO such that either SO =
Phase or SO is contained in Phase, Transfer; z(Phase,SO) is defined as follows:

(a) If SO is a lexical token ((Sem,Syn,Phon),k), Transfer; x(Phase,SO) = (Sem,k).
(b) If SO = {X,Y},

Transfer; g(Phase,SO) = {Transfer; p(Phase,X), Transfer; (Phase,Y)}.
(©) TransferLF(Phase,(PHON,SEM)) = SEM.

Clause (a) specifies how lexical item tokens are transferred. Clause (b) specifies how a
constituent of the form {X,Y} is transferred. Clause (c) is needed because of Cyclic-
Merge. Because (PHON,SEM) is inserted into the syntactic object being built, later
Transfer operations must be able to apply to it. In this preliminary treatment, none of
clauses (a)—(c) crucially refer to Phase, but in a more sophisticated treatment that is
sensitive to the relations between internal merge and scope, the Phase would be relevant.

The following simplified example shows how Transfer; p works, on the assumption
that the indicated SO is the VP complement of vP, a phase:

(16) [vp see Chris]
LI, = ({(SEE,Syn,./see/),1), LI, = ((CHRIS,Syn,,/chris/),2)
SO = Merge(LI,,LI,) = {LI, LL,}
Phase = vP (not shown)
Transfer; g(VP,LI;) = (SEE,I) (deleting Phon and Syn from LI;)
Transfer; g(VP,LI,) = (CHRIS,Z) (deleting Phon and Syn from LI,)
Transfer; z(vP,SO) = {Transfer; z(vP,LI,), Transfer; s(vP,LL,)} = {(SEE,1),
(CHRIS,2)}

Note that Transfer g preserves both the lexical indices and the hierarchical set
structure of the syntactic objects it applies to. The outputs of Transfer;  are sent to the
CI interface and form the basis of semantic interpretation.

10. Transferpp

Transferpr deletes any information from a lexical item that cannot be interpreted at
the SM interface, including semantic information and syntactic information. Unlike
Transfer; g, the index of the lexical item token is not retained in the output of
Transferpg. Transferpr constructs a PF sequence by concatenating lexical phonetic
features in order.'®

We formalize the intuition that for economy reasons a syntactic object should, at
least in the normal case, only be spelled out once, no matter how many occurrences it
has. In this, we agree with Chomsky (2005:13): “If language is optimized for

'® See Frampton 2004 for a related approach. See Corcoran, Frank & Maloney 1974 for a formal theory
of the binary associative, noncommutative operation of concatenation that we indicate with the symbol *.
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satisfaction of interface conditions, with minimal computation, then only one will be
spelled out, sharply reducing phonological computation.” We put aside issues such as
how to handle the copies formed in predicate clefts in which lower occurrences do
seem to be spelled-out (see Kandybowicz 2008, Kobele 2006, Hiraiwa 2005).

We first define the notion of final, which will be used throughout the definition of
Transferpg. A syntactic object A in {A,B} is final in a phase P, if {A,B} is not c-
commanded by A in P (cf. Gartner 2002:150-152):

Definition 40

A €{A,B} is final in SO iff there is no C contained in (or equal to) SO such that A €
C, and C contains {A,B}. Otherwise, A is nonfinal in SO.

We are now ready to define Transfer at the PF interface:

Definition 41

For any derivable workspace W with syntactic object PhaseeW such that Label
(Phase) is a strong phase head, and for all syntactic objects SO such that either
SO = Phase or SO is contained in Phase, Transferpp(Phase,SO) is defined as
follows:

(a) If SO is a lexical item token ((Sem,Syn,Phon),k), then Transferpr(Phase,SO) =
Phon;

(b) If SO = {X,Y} and X and Y in SO are final in Phase, Transferpp(Phase,SO) =
Transferpr(Phase,X) » Transferpp(Phase,Y) if either Y is the complement of X, or
X is the specifier of Y;

(¢) If SO = {X,Y} and X in SO is final in Phase but Y is not, Transferpp(Phase,SO) =
Transferpr(Phase,X);

(d) If SO = {X,Y} where both X and Y in SO are nonfinal in Phase, then
Transferpr(Phase,SO) = the empty sequence €.

(e) Transferpp(Phase,(PHON,SEM)) = PHON.

Clause (a) specifies how lexical item tokens are spelled out. Clause (b) entails the
order specifier-head-complement is universal, given that no other orderings are
provided for (see Kayne 1994 and Aboh 2004). It should be possible to formalize
other linear ordering algorithms based on headedness, but we do not explore them
here. Clauses (c,d) specify that the lower nonfinal occurrence of a syntactic object is
simply ignored at spell-out."® One important consequence is that there is no operation
like the Chain Reduction of Nunes 2004:27. Clause (e) is needed because of Cyclic-
Merge. Because (PHON,SEM) is inserted into the syntactic object being built, later
Transfer operations must be able to apply to it.

Examples of Transferpr are given in (17) and (18). In (17), LI, is the complement
of LI;, and so /see/ precedes /chris/ (see Definition 41b).

19 See Kandybowicz 2008:15 for a list of different approaches to the spell-out of occurrences.
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(17) [vp see Chris]
LI, = ({(SEE,Syn,./see/),1), LI, = ((CHRIS,Syn,,/chris/),2)
SO = Merge(LI,,LI,)
Phase = vP (not shown)
Transferpe(vP,LI;) = /see/, Transferpp(vP,LI,) = /chris/
Transferpr(vP,SO) = Transferpp(vP,LI;)  Transferpp(vP,LI,) = /see/  /chris/

In the following example, we show how Transferpg applies to a structure involving
internal Merge. We assume fall is unaccusative, so that John raises from the
complement of fall to Spec TP.

(18) [tp John T [yp fell <John>] where SO = [yp fell <John>]
LI, = ((FALL,Syn,/fall/),1), LI, = ((JOHN,Syn,,/john/),2) (nonfinal)
SO = Merge(LI;,LI,)
Phase = CP (not shown)
Transferpr(CP,LI;) = /fall/,  Transferpr(CP,LI,) = /john/
Transferpr(CP,SO) = Transferpp(LI;) = /fall/

11. Remnant Movement

Remnant movement poses a challenge to the above formulation of Transfer and to the
phase-based theory in general, as shown in (21). The problem is formulating
Transferpg in such a way that the gap in the moved remnant is not spelled-out (on
alternatives, see Stabler 1997 and Collins & Sabel 2015). Consider the following
classic illustration of remnant movement (using <...> to denote nonfinal occur-
rences):

(19) How likely to win is John?
In the following derivation, we omit I-to-C movement:

(20) a. is how likely John to win — Merge
b. John is how likely <John> to win — Merge
c. Comp John is how likely <John> to win — Merge
d. [how likely <John> to win] John is <how likely <John> to win>

In this derivation, Transfer must apply at step (20d). If Transfer applied at step (20c),
nothing would be able to undergo internal Merge out of TP, which is the complement
of the strong phase head Comp.

Recall Definition 40 regarding final occurrence. Given this definition, consider
again (20d): SO = (20d) and A = John and {A,B} = {John,to win}. Now C = TP,
where John € TP and TP contains {John,to win}. So John € {John,to win} counts as
nonfinal in both occurrences of {John,to win} (the one dominated by AdjP in Spec
CP and the one in situ). Hence, the leftmost occurrence of John in (20d) is not spelled
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out. On the other hand, the occurrence of John with the sister {is,{how,{likely,
{Johny,{to,win}}}}} is final and will be spelled out.

This solution runs up against a problem imposed by the plug-back-in model of
Transfer. Once the complement of Comp is transferred, the syntactic structure of the
complement is gone. This is what allowed us to derive Theorem 14 (PIC). But if an
occurrence A were nonfinal before Transfer, it may become final after Transfer (because
relevant structure has been transferred). This problem does not affect (20d), because there
is only one phase (the matrix CP) in the structure. However, consider a longer example:

(21) [cp How likely <John> to win do you [,p think [cp that John is]]]

By the time that the matrix clause phase is transferred, the embedded TP will have
been transferred, and all the structure relevant at that level for determining whether a
John is final or nonfinal will be lost.

We take the difficulty in finding a simple analysis of remnant movement to be a
lethal problem for the plug-back-in model of Transfer. The problem is fundamental,
as we can see by reviewing the assumptions: (i) A phrase SOLI is not altered when
some syntactic object SO2 that it contains is merged to a higher position (by the
NTC). (ii) The “remnant” SO1 is not altered when it merges to a higher position.
These two assumptions have the consequence that Transferpr cannot know how to
spell out the higher occurrence of the remnant SO1 unless it can see lower structure in
which the moved SO1 occurs (to see if there are any nonfinal occurrences). So if we
assume that the lower structure is removed or replaced as in the plug-back-in model
(as described for (21)), the lower structure becomes unavailable to any applications of
Transferpr at higher phases. Therefore, Transferpr will be unable to spell-out the
occurrences correctly. A plug-back-in model can avoid this result only by somehow
sacrificing either (i) or (ii), or else by giving up standard assumptions about cyclic
Transfer. In the next section, we sketch an alternative.

12. NTC-Respecting Transferpg

Given that respecting the NTC is one of the fundamental, motivating ideas of the
minimalist approach to grammar,>® we should consider whether it is possible to
define Cyclic-Transfer in a way that respects the NTC and does not require allowing
new sorts of syntactic objects. Although we cannot give a full account here, we
outline one possibility because the issue has been highlighted by our formalization.

An alternative is to regard Cyclic-Transfer as an operation that does not affect
syntactic objects at all but simply affects what is available in the workspace. Instead
of thinking of a workspace as containing a set of syntactic objects, all of which are
accessible to Merge, we can think of a workspace as providing access to certain
occurrences of syntactic objects. One way to do this is to keep a set of syntactic

20 Nothing definitive can be said about Agree and feature inheritance (Chomsky 2007, Richards 2007)
with respect to the NTC until these operations are formalized. We hope our work will make such
formalization possible.
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objects that have been transferred, and then block all access to those transferred
elements. In each step of the derivation, the accessible parts of workspace W are
given by W minus those already transferred. This NTC-respecting approach to
Cyclic-Transfer would not change the syntactic objects constructed by Merge, and so
we do not need the new Definition 37 of syntactic object any more and could return to
the original simple Definition 7. Furthermore, such a new account would open the
way for a simpler treatment of remnant movement, avoiding the problems mentioned
in the discussion after (21).

One thing that the plug-back-in approach gets right is that each syntactic object in a
workspace can contain one or more substructures that have already been transferred.
We need to keep that association between objects contained in the workspace and
their interface outputs. To do that without deleting and replacing the transferred
objects, we regard transfer as the establishment of an association between objects in
the workspace and interface outputs, or more precisely, as a pair of functions LF, PF.
At the beginning of a derivation, the transfer functions LF and PF both have empty
domains—that is, they both begin as the empty set of argument-value pairs. In the
course of a derivation, they are gradually extended with new argument-value pairs.
The list of already transferred elements is given exactly by the domains of these
functions. A tentative first formalization of these proposals is briefly sketched in the
Appendix. Of course, because this approach does not delete structure, the PIC must
come from some stipulation to the effect that although transferred structure is still
present, it is not visible to syntactic operations.

13. Convergence

The derivation converges when only the pair (PHON,SEM) remains in the
workspace, where PHON is interpretable by the SM interface, and SEM is
interpretable by the CI interface: “The last line of each derivation D is a pair (PHON,
SEM), where PHON is accessed by SM and SEM by C-I. D converges if PHON and
SEM each satisfy IC [interface condition]; otherwise it crashes at one or the other
interface.” (Chomsky 2004:106).

Minimally, this requirement entails that all material is transferred and that all
transferred material is interpretable at the respective interfaces.

Definition 42

A derivation D = (<LA{,W>,...<LA,,W,>) where W, = {<PHON,SEM>}
converges at the CI interface iff SEM is interpretable at the CI interface. Otherwise,
it crashes at the CI interface.

Definition 43

A derivation D = (<LA,W>,...,<LA,,W,>) where W, = {<PHON,SEM>}
converges at the SM interface iff PHON is interpretable at the SM interface.
Otherwise, it crashes at the SM interface.
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Definition 44

A derivation converges iff it converges at the CI interface and the SM interface.
Otherwise, it crashes.

14. Conclusion

To explain why human languages have movement relations, minimalism proposes
that the basic operation, Merge, has in its domain both independently derived
structures (external merge) and also the substructures of derived structures (internal
merge). This step raises several puzzles, two of which are considered here. First, the
results of internal and external Merge are pronounced and interpreted differently,
which suggests some difference in their representation. We explored token-based and
chain-based proposals about the difference and showed that, although similar on a
range cases, they are not identical. We hope that our presentation encourages others to
look for empirical consequences of these two ways of looking at movement. We also
hope that our investigation will prompt researchers to look for ways to represent the
difference between internal and external Merge that do not use either chains or lexical
item tokens (see Groat 2013 and Collins & Stabler 2014).

Second, internal Merge raises puzzles about how to enforce the idea that each
constituent is transferred to the interfaces just once and how that could connect with
phase impenetrability effects. Various versions of Transfer are suggested in the
literature. We formalized a plug-back-in model (inspired by Uriagereka’s [1999:256]
“conservative” approach). As noted, such an approach has several drawbacks (e.g., in
the analysis of remnant movement). As an alternative, we proposed an NTC-
compliant version in section 12 (and the Appendix).

These preliminary formalizations focus on Merge, Transfer, occurrences, work-
spaces, and derivations. One lesson from this exercise is that it is not possible to define
Merge in isolation, independently from a network of definitions articulating the notion
of aderivation. To define Merge and its recursive application properly, we had to define
lexical item, lexical item token, syntactic object, a stage in a derivation, the operation
Select, and the derive-by-Merge relation between stages, among other notions.

Our formalization assumes that Transfer is an operation in the derivation. An
alternative, adopted by researchers working in the Minimalist Grammar framework
(see Stabler 1997) is that Transfer is not an operation in the derivation (ordered among
Merge operations) but takes place in parallel to the syntactic operations in a derivation.
We hope our work prompts further research into the consequences of this choice.

Clearly, our treatment of Transfer is more speculative than the treatment of Merge
and raises a number of problems that are not resolved here. Transfer, as opposed to
Merge, is a relatively recent addition to minimalist syntax and hence not as well
understood.

We did not discuss many other important notions, such as Agree, unvalued
features, head movement, and covert movement. In particular, we did not address the
important issue of feature representation and the “resource paradox” explored by
Gartner (2002:110) and Nunes (2004). Given a structure formed by internal Merge

© 2016 John Wiley & Sons Ltd



76 Chris Collins and Edward Stabler

{B,{A,B}}, if some features of the higher occurrence of B are checked/deleted, how
are those features checked/deleted in the lower occurrence of B? As with Transfer, it
is easy to see that there will be NTC-respecting and NTC-violating approaches. We
leave a more careful study to future work.

Our investigation has revealed hidden complexity by formally defining notions that
have not previously been given formal definitions (e.g., chain, occurrence,
workspace, derivation, Transfer). We hope that this exercise leads minimalist
syntacticians to try reformulations and alternatives that avoid this complexity and
keep to what is essential in order to capture the unbounded capacity that humans have
for producing and understanding syntactic structures: Merge(X,Y) = {X,Y}.

Appendix.

Available from the authors.
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