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MILNOR-MOORE THEOREMS FOR BIALGEBRAS IN

CHARACTERISTIC ZERO.

JOEY BEAUVAIS-FEISTHAUER, YATIN PATEL, ANDREW SALCH

Abstract. Over fields of characteristic zero, we construct equivalences be-
tween certain categories of bialgebras which are generated by grouplikes and
generalized primitives, and certain categories of structured Lie algebras. The
relevant families of bialgebras include many which are not connected, and
which fail to admit antipodes.
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1. Introduction

1.1. The Milnor-Moore theorem, and some generalizations. Let k be a
field of characteristic zero. The characteristic zero case of the classical theorem of
Milnor and Moore [23] tells us that the category of Lie k-algebras is equivalent to the
category of primitively-generated Hopf k-algebras. The equivalence of categories is
given by the two functors

P : PrimGenHopf Algpkq Ñ Liepkq

U : Liepkq Ñ PrimGenHopf Algpkq,

where P sends a Hopf algebra to its Lie algebra of primitives, and where U sends a
Lie algebra to its universal enveloping algebra. While many generalizations of this

1

http://arxiv.org/abs/2208.10774v2
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theorem can be found in the literature1, we have not been able to find any gen-
eralizations to bialgebras which are not necessarily connected, and which do not
necessarily admit antipodes, i.e., bialgebras which are not necessarily Hopf algebras.
The purpose of this paper is to formulate and prove several such generalizations.
We are particularly focused on the bialgebras with non-invertible grouplike ele-
ments. Such bialgebras necessarily cannot admit antipodes. While we think these
generalizations of the Milnor-Moore theorem are of some interest for purely alge-
braic reasons, we also have some motivation from examples in algebraic topology;
see the end of this introduction for the relevance to topology.

It is clear that a sufficiently näıve attempt to generalize the Milnor-Moore theo-
rem to bialgebras cannot possibly succeed. If we are to generalize the Milnor-Moore
theorem to bialgebras, we must decide what category appears on the “Lie side” of
the correspondence, and what category appears on the “bialgebra side” of the cor-
respondence. Primitively-generated bialgebras, however, are Hopf algebras; see
section 5, below, for a proof (which is certainly not new). So the bialgebra side of
the equivalence cannot simply be primitively-generated bialgebras.

We propose that the bialgebra side ought to be the generalized-primitively-

generated bialgebras. Recall that a primitive in a bialgebra A is an element a P A
such that ∆paq “ a b 1 ` 1 b a. Meanwhile, a grouplike in A is an element a P A
such that ∆paq “ ab a and εpaq “ 1. If Q is a grouplike element of A, we define a
Q-primitive2 to be an element a P A such that Qb a` abQ. A generalized prim-

itive is a linear combination of Q-primitives for various grouplikes Q P A. Finally,
a bialgebra is generalized-primitively-generated if it is generated, as an algebra, by
grouplikes and generalized primitives3.

Now recall that, for a bialgebra A, the set of grouplikes ΓpAq of A forms a monoid
under multiplication. When we turn to the Lie side of our equivalence of categories,
we will find that the relevant type of extra structure on the Lie algebras will depend
on the structure of the monoid ΓpAq. So it is convenient, on the bialgebra side of our
equivalence of categories, to consider not only the generalized-primitively-generated
bialgebras. Instead, we fix a commutative monoid G, and we want to work with
bialgebrasA which are generalized-primitively-generated and equipped with a choice

1See for example [4], [5], [10], [13], [17], [29], and [30]. Some of these references are written
in terms of bialgebras or generalizations of bialgebras, but as far as we have been able to deter-
mine, these and all other currently-available generalizations of the Milnor-Moore theorem make
an assumption of one kind or another which amounts, in the classical setting of bialgebras (rather
than an abstract generalization of bialgebras in some categorical setting), to connectedness, hence
admitting an antipode. Connectedness assumptions are quite reasonable if one is already willing
to assume the existence of an antipode, since in the presence of an antipode, the connected part
and the grouplikes can be treated separately. In the bialgebra setting, no such decomposition is
available, so the grouplikes and primitives have to be treated in a “mixed” way, as the reader can
see from the methods developed in this paper.

2This is a special case of a “skew-primitive,” an element a such that ∆paq “ Qba`abQ1 for
grouplikes Q,Q1 of A. Skew-primitives are well-studied, appearing already in Bourbaki’s volume
on Lie theory [7].

3Generalized-primitively-generated bialgebras are automatically co-commutative; see Proposi-
tion 2.12. So to be generalized-primitively-generated is equivalent to being co-commutative and

generated by grouplikes and skew-primitives. The condition of being generated by grouplikes and
skew-primitives is a natural one, due to substantial interest in the Andruskiewitsch-Schneider
conjecture [1], i.e., the conjecture that every finite-dimensional Hopf algebra over an algebraically
closed field of characteristic zero is generated by grouplikes and skew-primitives.
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of isomorphism ΓpAq – G. We call bialgebras with such a choice of isomorphism
G-rigid bialgebras; see Definition 4.1 for the full definition4.

Now we turn to the Lie side of our equivalence of categories. Fixing a com-
mutative monoid G, we find that the set of generalized primitives of a G-rigid
k-bialgebra A is not only a Lie algebra, but in fact a G-suspensive Lie k-algebra. A
G-suspensive Lie k-algebra, defined in Definition 2.7, is a G-graded Lie k-algebra
which is furthermore equipped with an action of G which respects the G-grading
and such that the Lie bracket is kG-bilinear. Section 3 has some general remarks
and discussion on the subject of this kind of “suspensive algebra,” i.e., familiar
algebraic gadgets like Lie algebras but which are equipped with both a G-grading
and a G-action. The idea of “suspensive algebra” is elementary, but we do not
know of anywhere where it has been examined before.

In Definition-Proposition 2.9, we define the universal G-rigid enveloping algebra

WL of a G-suspensive Lie algebra L. In Proposition 4.2, we find that

W : SuspG Liepkq Ñ CocommRigGBialgpkq

is left adjoint to the functor

GP˚ : CocommRigG Bialgpkq Ñ SuspG Liepkq

that sends a cocommutative G-rigid k-bialgebra to its G-suspensive Lie k-algebra
of generalized primitives. Our first generalization of the characteristic zero Milnor-
Moore theorem is Theorem 6.9, which states that W and GP restrict to an equiv-
alence of categories between

‚ torsion-free G-suspensive Lie k-algebras, and
‚ torsion-free generalized-primitively-generated G-rigid k-bialgebras.

A G-suspensive Lie k-algebra L is torsion-free if, for each nonzero homogeneous
element x P L of degree Q P G, we have Q ¨x ‰ 0. Similarly, a G-rigid bialgebra A is
torsion-free if its G-suspensive Lie algebra of generalized primitives is torsion-free.
This curious kind of “torsion” is only defined because G-suspensive Lie algebras
are equipped with both a G-grading and a G-action. To be clear, when G is not a
group, not every torsion-free G-suspensive Lie k-algebra is free (or projective) as a
kG-module, so G-suspensive Lie algebras are not a special case of Lie R-algebras
projective over R, as studied already in [23].

If the commutative monoid G is a group, then the whole theory reduces to
the well-known classical one: every G-suspensive Lie algebra is torsion-free, and
furthermore Theorem 6.9 is a case of the classical Milnor-Moore theorem. See
Corollary 6.10 for discussion. We emphasize that the results in this paper, and
in particular Theorem 6.9, are only of consequence in the case when the monoid
G has noninvertible elements, i.e., the case of bialgebras with some noninvertible
grouplikes.

Theorem 6.9 does require the torsion-freeness hypothesis, as we explain with an
explicit example in Example 6.11. In section 7 we explain what would be necessary
to formulate a completely general Milnor-Moore theorem for bialgebras, one that
drops the torsion-freeness hypothesis. We explain that, in order for the “bialgebra

4To be clear, the definition of a G-rigid bialgebra includes the condition that the grouplikes
ΓpAq of A are contained in the center of A. Bialgebras with noncentral grouplikes do not lie within

the scope of the Milnor-Moore-type theorems proven in this paper.
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side” of the equivalence to be all generalized-primitively-generated G-rigid bialge-
bras, the “Lie side” would have to be G-suspensive Lie algebras equipped with a
truly ponderous structure, an n-ary product for each n “ 2, 3, . . . , satisfying some
inconvenient associativity conditions as well as conditions enforcing compatibility
with the Lie bracket and the suspensive structure. This structure is truly burden-
some to work with, and we regard such a wide generalization of the Milnor-Moore
theorem as unfruitful: one might as well just work with the bialgebras, if the Lie
side of the equivalence is so complicated.

Nevertheless, there are other classes of bialgebras and suspensive Lie algebras,
besides the torsion-free ones, for which a Milnor-Moore-type equivalence holds. In
Theorem 8.9 we prove a Milnor-Moore-type theorem for torsion G-suspensive Lie
algebras, i.e., G-suspensive Lie algebras L in which Qx “ 0 for all homogeneous
x P L in degree Q P G. Such suspensive Lie algebras are at the opposite extreme
from those considered in Theorem 6.9, which were torsion-free. Theorem 8.9 es-
tablishes that, when the commutative monoid G is linear5, the category of torsion
G-suspensive Lie k-algebras is equivalent to the category of left-sided generalized-
primitively-generated G-rigid k-bialgebras. A G-rigid k-bialgebra A is left-sided if,
for all Q,Q1 P G such that Q divides Q1, for all x P GPQpAq and all y P GPQ1 pAq
we have xy “ 0. Left-sidedness is a very strong condition, but satisfied by the
associated graded bialgebra of a natural filtration on the Dyer-Lashof algebra, as
explained in Proposition 8.1.

Throughout, we work over a field of characteristic zero. Presumably it is possible
to generalize the results in this paper to fields of positive characteristic, by keeping
track of a restriction map on the “Lie side” of each equivalence. We have found
ourselves already with enough to say in characteristic zero that we chose not to
pursue the positive-characteristic case in this paper.

1.2. Topological examples and motivations. There are two topological sources
of non-Hopf bialgebras which motivated the authors to consider Milnor-Moore-like
theorems for bialgebras:

(1) For each prime number p, the p-primary Dyer-Lashof algebra, written R,
is an N-graded co-commutative Fp-bialgebra of operations on the mod p

homology of infinite loop spaces. (There is a different Dyer-Lashof algebra
R for each prime p, but the choice of prime p is suppressed from the no-
tation.) The degree zero subring of R is isomorphic to FprQ0s with Q0 a
noninvertible grouplike element, so the bialgebra R clearly cannot admit an
antipode. See the appendix to this paper for a review of basic properties
of R, including generators and relations.

Basterra [6] and Miller [22] have constructed spectral sequences whose
input involves Tor and Ext groups over the Dyer-Lashof algebra. Basterra’s
spectral sequences, in particular, are one of very few available tools for the
calculation of topological André-Quillen cohomology groups of commutative
ring spectra. While one can use Priddy’s Koszul duality from [25] to obtain
a complete description of Ext˚,˚

R pFp,Fpq (at p “ 2, in [22], and all primes
p in [15]), nevertheless one may hope to arrive a new (hopefully useful!)

5Linearity of G is defined in Definition 8.6. The motivating example of a linear commutative
monoid G is the free commutative monoid N, since this case appears prominently in motivating
topological examples, like the Dyer-Lashof algebra.
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perspective on the homological algebra of R-modules by understanding R
in terms of Lie algebras.

Recall that, for each prime p, the Steenrod algebraA is a co-commutative
Hopf Fp-algebra. It is not the case that A is primitively-generated. In May’s
thesis [20], May filters A so that its associated graded Hopf algebra E0A is

primitively-generated. Consequently May gets a spectral sequence whose
input is Ext over E0A, and whose output is Ext over A, and since E0A

is primitively-generated, May is able to use techniques from Lie algebra
cohomology6 to understand and calculate ExtE0A.

Similarly, while the Dyer-Lashof algebra R is not generalized-primitively-
generated, if we filter it by powers of the ideal consisting of all elements in
positive degrees, its associated graded bialgebra is generalized-primitively-
generated7. In fact E0R is, at p ą 2, a left-sided N-rigid Fp-bialgebra,
so our Milnor-Moore-type theorem for left-sided rigid bialgebras, Theorem
8.9, nearly applies to E0R. The only trouble is that Theorem 8.9 is for
fields of characteristic zero! If the Lie-algebra-theoretic methods in this
paper can indeed shed any light on homological questions about the Dyer-
Lashof algebra, it will have to wait until positive-characteristic versions of
our theorems are proven.

(2) We now sketch one more topological application of the ideas in this pa-
per. Given a path-connected homotopy-associative unital H-space X , a
classical result of Cartan and Serre [9] identifies the primitives in the ratio-
nal homology H˚pX ;Qq of X as the image of the rational Hurewicz map
π˚pXq bZ Q Ñ H˚pX ;Qq. The Lie bracket of primitives in H˚pX ;Qq then
agrees with the Samelson product on homotopy groups. A classical appli-
cation of the characteristic zero Milnor-Moore theorem then proves:

Theorem 1.1. (Milnor-Moore; see appendix of [23].) If X is a path-

connected homotopy-associative unital H-space, then the rational homology

of X is isomorphic to the universal enveloping algebra of the rational ho-

motopy π˚pXq bZ Q, regarded as a Lie algebra via the Samelson product.

It is natural to ask how to generalize Theorem 1.1 to handle a homotopy-
associative H-space X which is not path-connected. Here are some of the
obstacles to formulating such a generalization:
Algebraic obstacle: If X is not path-connected, then H0pX ;Qq will

typically have nontrivial grouplikes. ThenH˚pX ;Qq will not be primitively-
generated, so the classical characteristic zero Milnor-Moore theorem
cannot offer a complete description of H˚pX ;Qq in terms of some
kind of Lie-algebraic data. We might deal with the grouplikes in
H0pX ;Qq by using the Cartier-Gabriel-Kostant-Milnor-Moore theo-
rem which identifies every cocommutative Hopf algebra over an alge-
braically closed field of characteristic zero as the twisted tensor product

6The Lie-algebra-theoretic content of May’s thesis is glossed over in some treatments, such
as [28], where the focus is on using May’s spectral sequence for explicit calculations of relevance
for topology. See [18] and [21] for published accounts of the Lie-algebra-theoretic techniques and
results from May’s thesis.

7Note that, unlike the Steenrod algebra, the augmentation ideal of R is not the ideal of all
elements in positive degrees. For example, 1 ´Q0 is in the augmentation ideal, but also in degree
zero.
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of a group algebra and the universal enveloping algebra of some Lie
algebra. However, this requires the Hopf algebra to indeed be a Hopf

algebra, not just a bialgebra: the antipode plays an essential role in
the proof of the Cartier-Gabriel-Kostant-Milnor-Moore theorem.
Our point is that, when X is a non-connected homotopy-associative
unital H-space but not an H-group, we really need some analogue of
the characteristic zero Milnor-Moore theorem which applies to bial-
gebras without antipode. Such a theorem is the main result of this
paper.

Topological obstacle: In the proof of the Cartan-Serre theorem on
primitives in H˚pX ;Qq, an essential role is played by the fact that the
rational k-invariants of a path-connected homotopy-associative unital
H-space X are all trivial, so the rational homotopy type of X splits
as a product of Eilenberg-Mac Lane spaces. See section 9.1 of [19] for
a nice modern exposition. If we lift the hypothesis that X is path-
connected, then we are no longer guaranteed to have such a splitting:
for example, consider the case where X is the free topological monoid
on any space with a rationally nontrivial k-invariant.
Our point is that there is a topological obstacle to identifyingH˚pX ;Qq
in terms of the Lie algebra π˚pXq bZ Q: one ought to formulate and
prove some appropriate analogue of the Cartan-Serre theorem on prim-
itives in H˚pX ;Qq, in the case of X not path connected. Dealing with
that obstacle goes beyond the scope of this paper, however.

1.3. Acknowledgments. This paper has its origins in conversations that A. Salch
had with Sean Tilson several years ago, motivated by the desire to better understand
the input for Basterra’s spectral sequences from [6]. Salch thanks Tilson for those
conversations and for his hospitality during a visit to Wuppertal.

2. Q-primitives.

2.1. Basic definitions. Throughout, let k be a field, and let A be a bialgebra over
k with coproduct ∆ : A Ñ A bk A and augmentation ε : A Ñ k.

Definition 2.1. An element Q P A is grouplike if ∆pQq “ QbQ and εpQq “ 1.

Definition 2.1 is classical and standard, as are the following facts:

(1) The set of grouplike elements of A forms a monoid under multiplication,
since ab is grouplike if a and b are each grouplike.

(2) If A is furthermore a Hopf algebra, then the antipode χ : A Ñ A yields an
inverse operation on the monoid of grouplike elements of A, making that
monoid into a group.

(3) A cocommutative bialgebra over an algebraically closed field (or, more gen-
erally, a pointed cocommutative bialgebra over any field) is a Hopf algebra
if and only if its monoid of grouplikes forms a group. See Proposition 9.2.5
of [32] for this result, and Lemma 8.0.1 of [32] for a proof that algebraic
closure of the ground field implies pointedness of the bialgebra.

There exist non-Hopf bialgebras whose grouplikes are all invertible, hence form
a group: see Example 2 in [26] for an example of a cocommutative bialgebra over
the real numbers which is not a Hopf algebra, but whose only grouplike is 1. Of
course a non-Hopf cocommutative bialgebra cannot be primitively-generated.
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Definition 2.2 is not new: it is a natural idea, and it appears, with slightly
different terminology and notation, in section 1.1 of chapter II of Bourbaki’s book
[7]. However, Bourbaki very quickly restrict their attention to classical primitives,
so the more general theory of generalized primitives does not get developed very
far in [7].

Definition 2.2.

‚ We write ΓpAq for the monoid of grouplike elements of A.
‚ Suppose Q P ΓpAq. An element a P A is Q-primitive if ∆paq “ abQ`Qba.
‚ An element a P A is a homogeneous generalized primitive if a is Q-primitive
for some Q P ΓpAq.

‚ An element a P A is a generalized primitive if a is a k-linear combination
of homogeneous generalized primitives. We write GP˚pAq for the k-vector
space of generalized primitives in A.

‚ Suppose that the monoid ΓpAq is commutative8. For each Q P ΓpAq, we
write GPQpAq for the k-vector space of Q-primitives in A. Then

GP˚pAq “
à

QPΓpAq

GPQpAq,

that is, we regardGP˚pAq as a graded k-vector space, graded by the monoid
ΓpAq.

2.2. Structure of the set of generalized primitives. In general, the commu-
tator of two generalized primitives does not have to be a generalized primitive, so
unlike classical primitives, generalized primitives in A are not guaranteed to form
a sub-Lie-algebra of A under the commutator bracket! However, under some rea-
sonable hypotheses, we do get that the commutator of generalized primitives is a
generalized primitive, as we prove in Proposition 2.5. The relevant hypotheses are
laid out in Definition 2.3:

Definition 2.3. We say that the bialgebra A has primitive-grouplike compatibility

if, for every pair of grouplikes Q,Q1 in A, every Q-primitive a P A, and every
Q1-primitive a1 P A, we have:

(1) 0 “ aQ1 bQa1 `Qa1 b aQ1 ´ a1QbQ1a ´Q1ab a1Q P A bk A.

Example 2.4. In order of increasing generality:

‚ Every commutative bialgebra has primitive-grouplike compatibility.
‚ If every grouplike in A is contained in the center of A, then A has primitive-
grouplike compatibility. When the grouplikes of a bialgebra A are contained
in the center of A, we say that A has central grouplikes.

‚ If every noncentral grouplike Q in A has the property that Qa “ 0 for every
generalized primitive a P A, then A has primitive-grouplike compatibility.
We refer to this last condition as strong primitive-grouplike compatibility.

For example, the Dyer-Lashof algebra R does not have central grouplikes9: its
noncentral grouplikes are the positive powers of Q0. However, R does have strong

8Perhaps this assumption is not really necessary, but if we do not assume it, then we wind
up talking about graded vector spaces which are graded by a noncommutative monoid. That is a
pretty exotic kind of grading, so it seems safest to avoid it. The only reason to assume that ΓpAq
is commutative here is so that we do not have to talk about G-gradings for noncommutative G.

9Appendix A reviews the basic properties of the Dyer-Lashof algebra, in case this may be
useful to the reader.
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primitive-grouplike compatibility, since its generalized primitives are all in the two-
sided ideal of elements in positive degree, and since Q0Qi “ 0 and Q0βQi for all
i ą 0, by the excess relations in R.

However, R is not generated by its grouplikes and generalized primitives. For
example, the element Q2 P R is not in the subalgebra of R generated by the
grouplikes and generalized primitives. We can fix this situation by filtering R by
the K-adic filtration, where K is10 the two-sided ideal K “ pQ1, Q2, Q3, . . . q of
elements in positive degree. With this filtration, the associated graded bialgebra
E0R does have central grouplikes. This is because, for n ą 0, the Adem relations
yield that QnQ0 is a sum of products of the form QrQs for positive r, s. Since
QnQ0 is a product of an element in K-adic filtration 1 and an element of K-adic
filtration 0, while each of the terms QrQs in the sum has K-adic filtration 2, we
get that the product Qn ¨ Q0 is zero in the associated graded bialgebra E0R, for
n ą 0. Meanwhile, Q0 ¨ Qn is zero already in R, by the excess condition. So:

‚ Q0x “ 0 “ xQ0 in E0R if x is homogeneous and of positive degree, while
‚ Q0x “ xQ0 if x is homogeneous of degree 0, since the degree 0 subring of
E0R is simply FprQ0s.

Hence E0R has central grouplikes.

Proposition 2.5. Suppose that k is a field and A is a k-bialgebra whose monoid

ΓpAq of grouplikes is commutative. Then A has primitive-grouplike compatibility if

and only if the generalized primitives in A are closed under the commutator bracket.

Proof. Suppose that a, b P A, andQa, Qb are grouplikes inA, and a is aQa-primitive
and b is a Qb-primitive. Then we have

∆ pra, bsq “ pa bQa `Qa b aqpb bQb `Qb b bq

´ pb bQb `Qb b bqpa bQa `Qa b aq

“ aQb bQab`Qabb aQb ´ bQa bQba´Qbab bQa

` ra, bs bQaQb `QaQb b ra, bs

so ra, bs is a QaQb-primitive if and only if the equation (1), which defines primitive-
grouplike compatibility, is satisfied. �

Corollary 2.6. If A has primitive-grouplike compatibility, then GP˚pAq is a sub-

Lie-algebra of A, regarded as a Lie algebra via the commutator bracket. Further-

more, GP˚pAq is a ΓpAq-graded Lie algebra over k. That is, given grouplikes Q,Q1

in A, the Lie bracket of a Q-primitive and a Q1-primitive lies in GPQ¨Q1 pAq.

Suppose that A has primitive-grouplike compatibility. Then the ΓpAq-graded
Lie algebra GP˚pAq has additional structure: given an element Q P ΓpAq and a
Q1-primitive a P A, we have

∆pQaq “ pQbQqpQ1 b a` a bQ1q

“ QQ1 bQa`QabQQ1,

that is, Qa is a QQ1-primitive. So the monoid ΓpAq acts on the left on GP˚pAq
by k-linear endomorphisms which are grading preserving, in the sense that Qa P

10For simplicity, the rest of this paragraph is written under the assumption that p “ 2, but an
analogous argument also works at odd primes.
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GPQQ1 pAq if a P GPQ1 pAq. For the same reasons, ΓpAq also has a right action on
GP˚pAq.

If A furthermore has central grouplikes, then the left and the right actions of
ΓpAq on GP˚pAq coincide, and we furthermore have

(2) rQa, bs “ Qra, bs “ ra,Qbs

for any Q P ΓpAq, i.e., the Lie bracket on GP˚pAq is krΓpAqs-bilinear.
Evidently GP˚pAq is endowed with various algebraic structures, more than sim-

ply the Lie bracket enjoyed by the classical primitives in A. This is especially
true when A has central grouplikes. Our next task, accomplished in Definition-
Proposition 2.9, is to say precisely what kind of structured algebraic gadgetGP˚pAq
is.

Definition 2.7. Let G be a commutative monoid, and let k be a field. We use
multiplicative notation for the monoid operation on G.

‚ By a G-graded Lie algebra over k we mean a Lie algebra L over k whose
underlying k-vector space is equipped with a G-grading such that, if x, y are
homogeneous elements of L such that x P Lm and y P Ln, then rx, ys P Lmn.

‚ By a G-suspensive Lie algebra over k we mean a G-graded Lie algebra L
over k equipped with an action of G on L such that

– the G-action preserves gradings, in the sense that, if g P G and x is a
homogeneous element of L with x P Ln, then g ¨ x P Lg¨n; and

– the Lie bracket is kG-bilinear.
A homomorphism of G-suspensive Lie algebras over k is a homomorphism
of the underlying Lie algebras which preserves the grading and commutes
with the G-action. We denote the resulting category of G-suspensive Lie
k-algebras by SuspG Liepkq.

When G fails to have inverses, then G-suspensive Lie algebras are much more in-
teresting than when G is a group. In particular, there are many examples where the
G-action is far from free. Consequently the results of [23] do not straightforwardly
apply to such examples.

If A is a k-bialgebra with central grouplikes, then the generalized primitives in A
form a ΓpAq-suspensive Lie k-algebra. A nice puzzle for the interested reader is to
decide whether there is any further structure enjoyed by the generalized primitives
in A. In other words:

Question 2.8. The set of generalized primitives in A has a k-vector space structure,

a Lie bracket, a G-grading, and a G-action. Is there any other natural structure on

the set of generalized primitives in A?

In Corollary 6.10 we find that the answer to Question 2.8 turns out be “no” under
certain hypotheses. These hypotheses are automatically satisfied if the monoid G
is a group, for example. However, in section 7 we find that, if G has noninvertible
elements, then the answer to Question 2.8 is “yes”: the generalized primitives in A
form a very richly structured algebraic gadget. See section 7 for discussion.

Definition-Proposition 2.9. Let k be a field. Let G be a commutative monoid,
and let L be aG-suspensive Lie algebra over k. LetW pLq be the k-bialgebra defined
as follows. As a k-algebra,

W pLq “ pkG bk T pLqq {
`

1 b pℓℓ1 ´ ℓ1ℓq ´ 1 b rℓ, ℓ1s, g b ℓ´ 1 b pg ¨ ℓq
˘

,
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where T pLq is the tensor k-algebra (i.e., free associative k-algebra) on L.
In order to define the coproduct on W pLq, it is convenient to introduce a nota-

tional novelty: we will write d for the internal tensor product in W pLq, and we
will write b for the external tensor product in W pLq bk W pLq. So, to specify an
element of W pLq, we can give a k-linear combination of elements of the form gd ℓ,
and to specify an element of W pLq bkW pLq, we can give a k-linear combination of
elements of the form pg d ℓq b pg1 d ℓ1q . With this notation in place, the coproduct
on W pLq is given by

∆pg d 1q “ pg d 1q b pg d 1q, g P G,

∆p1 d ℓq “ p1 d ℓq b pQd 1q ` pQ d 1q b p1 d ℓq, ℓ P LQ.

The augmentation on W pLq is given by εpg d 1q “ 1 and εp1 d ℓq “ 0 for all g P G
and ℓ P L.

We call W pLq the11 universal G-rigid enveloping bialgebra of L.

Proof. It is routine to check that W pLq is indeed a bialgebra, as follows. One
verifies that ε and ∆ are k-algebra morphisms by regarding W pLq as a quotient
of kG tensored with the free associative k-algebra on L, and checking that ∆ and
ε each vanish on the relations 1 d pℓℓ1 ´ ℓ1ℓq ´ 1 d rℓ, ℓ1s and g d ℓ ´ 1 d pg ¨ ℓq.
Counitality and coassociativity are also straightforwardly verified. �

Example 2.10. Suppose that G is the free monoid on a single generator σ. Let L
be the abelian G-suspensive Lie k-algebra consisting of a single copy of k in each
degree, with the action of G freely permuting the copies of k. Then:

UL – krx0, x1, x2, . . . s,

WL – krσ, x0s,

where xn is the element 1 P k “ Lσn

, the degree σn summand of L. The map

UL Ñ WL(3)

sends xn to σnx0. While xn P UL is a primitive for each n, its image σnx0 in WL

is a σn-primitive. So, while the natural map (3) is a k-algebra morphism, it does
not preserve the coproduct. The map (3) is also neither surjective (it does not hit
σ, for example) nor injective.

2.3. Generalized-primitive generation. It is classical that, given a Lie algebra
L, its universal enveloping algebra UL is primitively-generated. However, if L is
a G-suspensive Lie algebra, it is almost never the case that WL is primitively-
generated. Instead, WL is easily seen to be generalized-primitively-generated, in
the following sense:

Definition 2.11. Let A be a k-bialgebra. We say that A is generalized-primitively-

generated if every element of A is a k-linear combination of products of grouplikes
in A and generalized primitives in A.

11While this definition of a “universal G-rigid enveloping bialgebra” makes sense without
having a definition of a “G-rigid bialgebra” in general, we do provide a definition of G-rigid
bialgebras below, in Definition 4.1.



MILNOR-MOORE THEOREMS FOR BIALGEBRAS IN CHARACTERISTIC ZERO. 11

Note that being generalized-primitively-generated is a much weaker condition
than being primitively-generated. For example, a bialgebra with no nonzero primi-
tives, and also no nonzero generalized primitives, can still be generalized-primitively-
generated, simply by being generated by grouplikes. This happens for group rings,
for example.

Nevertheless, not all bialgebras are generalized-primitively-generated. For exam-
ple, non-co-commutative bialgebras cannot be generalized-primitively-generated, as
we now show:

Proposition 2.12. If A is a generalized-primitively-generated k-bialgebra, then A

is co-commutative.

Proof. Straightforward: the coproduct in A is commutative on grouplikes and on
generalized primitives. So if grouplikes and generalized primitives generate A, then
the coproduct is commutative on all elements of A. �

The converse of Proposition 2.12 fails, however. That is, it is not the case that
every co-commutative k-bialgebra is generalized-primitively-generated. An example
is as follows:

Example 2.13. Let C3 be the cyclic group of order three, and let R be the field
of real numbers. Consider the linear dual RrC3s˚ of the group algebra RrC3s. By
explicit, elementary calculation, one finds that

‚ the only grouplike in the Hopf algebra RrC3s˚ is 1,
‚ so the only generalized primitives in RrC3s˚ must be primitives,
‚ and there are no nonzero primitives in RrC3s˚,
‚ so the subalgebra of RrC3s˚ generated by grouplikes and generalized prim-
itives is R Ď RrC3s˚.

Therefore RrC3s˚ is not generalized-primitively-generated. The argument extends
to Cn for any odd n ě 3, because R is missing all odd-order roots of unity except
for 1.

The bialgebra of Example 2.13 is cocommutative but not generalized-primitively-
generated. However, after base change to the algebraic closure, it does become
generalized-primitively-generated. This suggests the idea that perhaps cocommuta-
tive bialgebras over algebraically closed fields are generalized-primitively-generated,
or more generally, that pointed cocommutative bialgebras are generalized-primitively-
generated12. This would be a kind of converse to Proposition 2.12. We know no
reason to expect such an idea to actually be true, however: for example, the Dyer-
Lashof algebra is cocommutative but fails to be generalized-primitively-generated,
even after base change to Fp. It is probably a very difficult problem to find a
reasonable and useful sufficient condition on pointed cocommutative coalgebras
which ensures that they are generalized-primitively-generated, since this begins to
resemble the Andruskiewitsch-Schneider conjecture, which states that every finite-
dimensional pointed Hopf algebra over an algebraically closed field of characteristic
zero is generated by grouplikes and skew-primitives. See Conjecture 1.4 of [1] for
the conjecture, and Theorem 5.5 of [3] for recent progress on it.

12See Definition 5.1 for the definition of pointedness for bialgebras and coalgebras. See Def-
inition 2.1 for a statement of the relationship between pointedness and algebraic closure of the
ground field.
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3. G-suspensive vector spaces.

We continue to let G be a commutative monoid. In Definition 2.7, we defined
G-suspensive Lie algebras. Recall that a G-suspensive Lie algebra is a vector space
with a G-grading, a G-action, and a Lie bracket, satisfying some compatibility
conditions between these three pieces of structure. In this section we make some
observations about slightly weaker objects, “G-suspensive vector spaces,” which
have the G-grading and G-action but not the Lie bracket. See Definition 3.2 for
the full definition.

First, we recall (e.g. as in Proposition 5.12 in Dwyer’s chapter of [12]) the
definition of the transport category of a monoid:

Definition 3.1. By the transport category of G we mean the category TrpGq whose
set of objects is G itself, and such that the set of morphisms homTrpGqpg, hq from g

to h in TrpGq is the set of elements f of G such that fg “ h. The composite j ˝ f
of f P homTrpGqpg, hq with j P homTrpGqph, iq is defined to simply be the product
jf in G.

Definition 3.2. Let k be a field. By a G-suspensive k-vector space we mean a
functor φ : TrpGq Ñ Vectpkq.

Equivalently, a G-suspensive k-vector space consists of a G-graded k-vector space
V “

À

gPG φpgq together with a unital, associative action of G, such that, if y P G
and x P V is in degree h P G, then y ¨ x P V is in degree yh.

Examples 3.3. For various commonly-occurring commutative monoids G, here
are alternative descriptions of the category of G-suspensive k-vector spaces.

‚ Let G “ xσy, the free commutative monoid on one generator σ. Then a
G-suspensive k-vector space consists of a sequence φp1q, φpσq, φpσ2q, . . . of
k-vector spaces together with a k-linear function

σn,n`1 : φpσnq Ñ φpσn`1q(4)

for each nonnegative integer n. (Of course there is also a morphism σn,m :
φpσnq Ñ φpσmq for each n ď m, but this morphism is equal to the com-
posite σm´1,m ˝ σm´2,m´1 ˝ ¨ ¨ ¨ ˝ σn`1,n`2 ˝ σn,n`1, so it is determined by
the morphisms of the type (4).)

In other words, the category ofG-suspensive k-vector spaces is equivalent
to the category of sequences V0 Ñ V1 Ñ . . . of k-vector spaces.

‚ Let G “ xσ | σ2y, the cyclic group with two elements. By a similar analysis,
the category of G-suspensive k-vector spaces is equivalent to the category
of k-linear isomorphisms, i.e., the subcategory of the category of arrows in
Vectpkq such that the arrow is an isomorphism.

Here is one more perspective on what “G-suspensive algebra” is about. Given
a k-vector space V , it is classical that the data of a G-grading on V is equivalent
to the data of a coassociative, counital map V Ñ V bk kG, i.e., the structure
of a kG-comodule on V . If V is also equipped with a k-linear action of G, then
given a coassociative counital map ψ : V Ñ V bk kG, we have a G-action on the
domain of ψ and also the diagonal G-action on the codomain of ψ. To give the
structure of a G-suspensive vector space on V is equivalent to giving a choice of
coassociative counital map ψ : V Ñ V bk kG which commutes with the G-action.
So: a G-suspensive vector space is a vector space equipped with an action of kG and

a compatible coaction of kG.
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4. Rigid bialgebras.

Throughout, we continue to let G be a commutative monoid, and let k be a field.
We begin with the notion of a G-rigid bialgebra, i.e., a bialgebra with central

grouplikes which is furthermore equipped with a choice of isomorphism between its
monoid of grouplikes and G. The definition, in more detail, is as follows:

Definition 4.1. By a G-rigid k-bialgebra we mean a k-bialgebra A equipped with
a homomorphism of k-bialgebras η : kG Ñ A satisfying each of the following
conditions:

‚ The monoid map ΓpkGq
–

ÝÑ ΓpAq induced by η is an isomorphism.
‚ The image of η lies in the center of A.

We refer to the homomorphism η as the rigid unit map of A. A homomorphism

of G-rigid k-bialgebras is a homomorphism of the underlying k-bialgebras which
commutes with the rigid unit maps. We denote the resulting category of G-rigid
k-bialgebras by RigG Bialgpkq, and the full subcategory of cocommutative G-rigid
k-bialgebras by CocommRigG Bialgpkq.

It is worth being explicit about this point: if A is a G-rigid k-bialgebra, then
the elements of G are grouplike in A, and consequently are central. Hence A is a
kG-algebra. However, a G-rigid k-bialgebra is in general not a kG-bialgebra. The
failure of a G-rigid k-algebra to be a kG-bialgebra is visible in the action of kG
on the tensor product A bk A, as follows: if A is a G-rigid k-bialgebra, then for
any g P G and any a1 b a2 P A bk A, we have g ¨ pa1 b a2q “ ga1 b ga2. This is
because g is grouplike in kG and because the rigid unit map kG Ñ A is a bialgebra
map. On the other hand, if A were instead a kG-bialgebra, then we would have
∆pgq “ g b 1 “ 1 b g “ gp1 b 1q, which is not equal to g b g unless g “ 1.

Proposition 4.2. The functorW : SuspG Liepkq Ñ CocommRigGBialgpkq defined
in Definition-Proposition 2.9 is left adjoint to the functor

GP˚ : CocommRigGBialgpkq Ñ SuspG Liepkq.

Proof. Suppose that L is a G-suspensive Lie k-algebra, and suppose that A is a
cocommutative G-rigid k-bialgebra. It is elementary to check that the function

α : homCocommRigG Bialgpkq pWL,Aq Ñ homSuspG Liepkq pL,GP˚pAqq

is well-defined, where α is given by letting pαpfqqpℓq “ fpℓq for each morphism
f : WL Ñ A of G-rigid k-bialgebras. To show that GP˚ is right adjoint to W , all
we need is an inverse to α. Such an inverse is the function

β : homSuspG Liepkq pL,GP˚pAqq Ñ homCocommRigG Bialgpkq pWL,Aq

given on an element f P homSuspG Liepkq pL,GP˚pAqq as follows: by the universal
property of the free associative k-algebra T pLq, there exists a unique k-algebra

homomorphism f̃ : T pLq Ñ A such that f̃pℓq “ fpℓq P GP˚pAq Ď A for each ℓ P L.
Since the grouplikes in A are central, we get a well-defined k-algebra homomorphism
f : kGdk T pLq Ñ A given by fpgd ℓq “ g ¨ f̃pℓq. (See Definition-Proposition 2.9 for
the definition of the d notation.) Since fp1d rℓ1, ℓ2sq “ fp1d ℓ1qfp1d ℓ2q ´ fp1d
ℓ2qfp1d ℓ1q and since fpgd ℓq “ f p1 d pg ¨ ℓqq, the map f factors as the projection
kGdk T pLq ։W pLq followed by a unique kG-algebra homomorphism W pLq Ñ A,
which is the desired morphism βpfq.
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We need to verify that βpfq : WL Ñ A is not only a morphism of kG-algebras,
but in fact a morphism of G-rigid k-bialgebras. That βpfq commutes with the G-
action is straightforward from the relation gd ℓ “ 1 d g ¨ ℓ in W pLq. Consequently
βpfq commutes with the rigid unit maps. SinceW pLq is generated, as a kG-algebra,
by the elements of L Ď W pLq, to check that βpfq is a coalgebra morphism it suffices
to check that ∆pβpfqpℓqq “ pβpfq b βpfqq∆pℓq for all ℓ P L. This is straightforward:
suppose that ℓ P L is homogeneous of degree Q. Then we have:

∆pβpfqpℓqq “ ∆pfpℓqq

“ fpℓq bQ`Qb fpℓq P Abk A

“ pβpfq b βpfqqpℓ bQ`Qb ℓq

“ pβpfq b βpfqqp∆pℓqq,

as desired.
We have βpαpfqqpℓq “ αpfqpℓq “ fpℓq and αpβpfqqpℓq “ βpfqpℓq “ fpℓq straight-

forwardly from the definitions of α and β, so α and β are indeed mutually in-
verse. �

5. Injectivity and generalized primitives.

A classical result, Proposition 3.9 of [23], establishes that a map of augmented13

k-coalgebras A Ñ B, with A connected and k a field, is injective if and only if its
induced map PA Ñ PB is injective. We will need an analogue of that classical
result which applies to certain G-rigid bialgebras. That analogue is Proposition
5.5, and it is an easy consequence of two classical results on coalgebras and one
classical result on bialgebras. We recall the three results below, as Theorems 5.2
and 5.3 and 5.4. First, we recall a classical definition (see chapter 5 of [24] for an
excellent treatment of these ideas):

Definition 5.1. Let k be a field, and let A be a k-coalgebra.

‚ Given grouplikes g, h of A, a pg, hq-primitive of A is an element x P A such
that ∆pxq “ g b x ` x b h. An element x P A is skew-primitive if x is
pg, hq-primitive for some grouplikes g, h of A.

‚ The coradical of A, written A0, is the sum of all simple coalgebras of A.
‚ The coradical filtration of A is the filtration of A by subcoalgebras

A0 Ď A1 Ď A2 Ď ¨ ¨ ¨ Ď A

of A, defined by letting An be the preimage of A b An´1 ` A0 b A under
the coproduct map A Ñ A bk A.

‚ We say that A is pointed if every simple subcoalgebra ofA is one-dimensional
as a k-vector space. That is (see the paragraph following 5.1.5 of [24]), A
is pointed if and only if the coradical of A coincides with the k-linear span
of the grouplike elements of A.

Theorem 5.2. (Heyneman-Radford.) Suppose that k is a field, and suppose

that A,B are k-coalgebras. Let f : A Ñ B be a coalgebra morphism whose restric-

tion to A1 is injective. Then f is injective.

13To avoid possible confusion, we point out that here we are using the phrase “augmented
coalgebra” in the same way as how the phrase is used in [23], i.e., a coalgebra A equipped with a
suitable unit map k Ñ A.
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Proof. The original 1974 paper of Heymeman and Radford is [14]. See Theorem
5.3.1 in [24] for a presentation (with proof) in the context of related results. �

The statement of the Taft-Wilson theorem given below, in Theorem 5.3, is only
one part of the original Taft-Wilson result, but we will not need to make use of the
other parts of the result in this paper.

Theorem 5.3. (Taft-Wilson.) Suppose that k is a field, and suppose that A

is a pointed k-coalgebra. Then A1 is k-linearly spanned by the grouplikes and the

skew-primitives of A.

Proof. The original paper of Taft and Wilson, also from 1974, is [33]. It also
appears, with proof, as Theorem 5.4.1 in [24], again usefully in the context of
related results. �

We do not know the original reference for Theorem 5.4. We learned of it from
[16], which in turn cites Lemma 1 of [27]. We do not know of an earlier reference.
At least in its form for Hopf algebras rather than bialgebas, it seems to be quite
well-known (e.g. “It is easy to see that any Hopf algebra generated by grouplike
and skew-primitive elements is automatically pointed” in [2]).

Theorem 5.4. Let k be a field, and let A be a k-bialgebra which is generated, as a

k-algebra, by its grouplike and skew-primitive elements. Then A is pointed.

Proof. See Corollary 1.7.3 of [16]. �

Now here is an easy consequence14 of Theorems 5.2, 5.3, and 5.4:

Proposition 5.5. Let k be a field, let G be a commutative monoid, and let A,B

be G-rigid k-bialgebras. Suppose that A is generalized-primitively-generated. Let

f : A Ñ B be a homomorphism of G-rigid k-bialgebras. Then f is injective if and

only if GP˚f : GP˚A Ñ GP˚B is injective.

Proof. Clearly the injectivity of f implies the injectivity of GP˚f . For the converse,
suppose that GP˚f is injective. Since A,B are G-rigid and f is a morphism of G-
rigid bialgebras, f is an isomorphism on grouplikes. Since A is co-commutative (by
Proposition 2.12), every skew-primitive in A must be a generalized primitive. Since
A is generalized-primitively-generated, it is consequently generated by grouplikes
and skew-primitives, so Theorem 5.4 implies that A is pointed. Hence, by Theorem
5.3, f is injective on A1. Then Theorem 5.2 immediately gives us that f is injective.

�

Proposition 5.5 plays an important role in the proof of Theorem 6.9, below.

6. Milnor-Moore for bialgebras in characteristic zero, torsion-free

case.

Definition 6.1 recalls the Lie filtration, defined by Milnor and Moore in Definition
5.12 of [23], and offers a generalization of it.

Definition 6.1. Let k be a field.

14This consequence is not new: it is, for example, nearly the same as Proposition 3 of [34].
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‚ Given a Lie k-algebra L, the Lie filtration on UL is the increasing filtration
of UL by k-vector subspaces

UL Ě ¨ ¨ ¨ Ě F2UL Ě F1UL Ě F0UL

given by:
– F0UL “ k, i.e, F0UL is the image of the unit map k Ñ UL,
– and for each positive integer n, FnUL is the image of the multiplication

map

Lbk Fn´1UL Ď ULbk UL Ñ UL.

‚ Given a commutative monoid G and a G-suspensive Lie k-algebra L, by the
Lie filtration on WL we mean the increasing filtration of WL by k-vector
subspaces

WL Ě ¨ ¨ ¨ Ě F̃2WL Ě F̃1WL Ě F̃0WL

given by letting F̃nWL be the kG-linear span of the image of FnUL Ď UL

in WL under the map

UL Ñ WL “ pkG bk ULq{ pg b ℓ´ 1 b pg ¨ ℓqq .

Following Milnor and Moore, we write IE0UL for the associated graded of the Lie
filtration on UL. Similarly, we write IẼ0WL for the associated graded of the Lie
filtration on WL.

Observation 6.2. Here are some observations about Definition 6.1.

(1) It is classical that the elements in Lie filtration n in UL are those which are
expressible as a linear combination of products of pď nq-tuples in L Ď UL.
Similarly, the elements in Lie filtration n inWL are the linear combinations
of products of grouplikes and pď nq-tuples in L Ď WL.

(2) It is straightforward that, if f : L Ñ L1 is a homomorphism of G-suspensive
Lie k-algebras, then f is compatible with the Lie filtration, in the sense
that Wf sends elements of F̃nWL to elements of F̃nWL1. Consequently f
induces a homomorphism IẼ0f : IẼ0WL Ñ IẼ0WL1 of associated graded
bialgebras.

Let L be a Lie algebra. In section 5 of [23], Milnor and Moore define L# to
be the underlying k-vector space of L equipped with the trivial Lie bracket. Then
IE0UL is isomorphic to IE0UpL#q. We now consider an analogue in the suspensive
setting:

Definition 6.3. Suppose we are given a commutative monoid G, a field k, and

a G-suspensive Lie k-algebra L. Let L#̃ denote the abelian G-suspensive Lie k-

algebra with the same underlying G-suspensive vector space as L. That is, L#̃ is
the k-vector space underlying L, with the same G-grading as L, the same G-action
as L, and with zero Lie bracket.

In Proposition 6.4 and elsewhere, when we deal with IẼ0W pLq, it pays to use

terminology which clearly distinguishes the two gradings on IẼ0W pLq: there is a
G-grading coming from the fact that L is G-suspensive, and there is a N-grading
coming from the fact that IẼ0W pLq is the associated graded of the Lie filtration.
Whenever there is risk of confusion, we will refer to degrees in the first grading as
suspensive degree and degrees in the second grading as Lie degree.
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One form (see Theorems 5.15 and 5.16 of [23]) of the classical Poincaré-Birkhoff-
Witt theorem states that, if L is a Lie algebra over a field k of characteristic zero,
then IE0UL is isomorphic to the symmetric k-algebra SkpL#q on the underlying
k-vector space L# of L. Here is the relevant G-suspensive version:

Proposition 6.4. Let G be a commutative monoid, let k be a field of characteristic

zero, and let L be a G-suspensive Lie k-algebra. Regard the underlying G-suspensive

k-vector space L# of L as a kG-module via the action of G on L. Equip the sym-

metric kG-algebra SkGpL#q with the structure of a G-rigid k-bialgebra, by letting

the elements of L# Ď SkGpL#q in suspensive degree Q be Q-primitives, and let-

ting the elements G Ď kG Ď SkGpL#q in degree 0 be grouplike. Then we have an

isomorphism of G-rigid k-bialgebras

IẼ0WL – SkGpL#q.

Proof. Clearly IẼ0WL – IẼ0W pL#q by the definition of the Lie filtration on WL.

In Lie degree 0, IẼ0W pL#q is the image of the rigid unit map, while in Lie degree 1,
IẼ0W pL#q is a copy of kGbkG L

# – L#. In Lie degree n ě 1, IẼ0W pL#q consists
of the k-linear combinations of formal products of n elements of L#, modulo the
relations enforcing multilinearity of the G-action, i.e.,

Q ¨ pℓ1 ¨ ¨ ¨ ¨ ¨ ℓnq “ pQℓ1q ¨ ℓ2 ¨ ¨ ¨ ¨ ¨ ℓn(5)

“ ℓ1 ¨ pQℓ2q ¨ ¨ ¨ ¨ ¨ ℓn(6)

“ . . .

“ ℓ1 ¨ ℓ2 ¨ ¨ ¨ ¨ ¨ pQℓnq.(7)

This is precisely the nth symmetric power of the kG-module L#. �

Corollary 6.5. Let G be a commutative monoid, let k be a field of characteristic

zero, and let L be a G-suspensive Lie k-algebra. Then the canonical map L Ñ WL

is injective.

Proof. We have the commutative diagram of k-vector spaces

L // IE0UL //

–

��

IẼ0WL

–
��

IE0UpL#q //

–

��

IẼ0W pL#̃q

–

��

SkpL#q // SkGpL#̃q

and the composite L Ñ SkGpL#̃q is an isomorphism onto the (Lie) degree 1 sum-

mand in SkGpL#̃q. So the composite L Ñ IẼ0WL Ñ SkGpL#̃q is one-to-one. So

L Ñ IẼ0WL is one-to-one, so L Ñ WL is one-to-one. �

Definition 6.6. Suppose we are given a commutative monoid G and a field k.

‚ We say that a k-linear action of G on a k-vector space V is strictly torsion-

free if, for every v P V and every Q P G such that Qv “ 0, we have v “ 0.
‚ Suppose that V is a G-suspensive k-vector space. We say that an element
x P V in degree Q is torsion if Q ¨ x “ 0.
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‚ We say that a G-suspensive k-vector space V is torsion-free15 if the only
torsion element of V is zero. That is, V is torsion-free if and only if, for
every Q P G and every v P VQ such that Qv “ 0, we have v “ 0.

‚ At the opposite extreme, we say that a G-suspensive k-vector space V is
torsion if every element of V is torsion.

Note that the definition of a strictly torsion-free action of G requires only an
action of G, while the definition of a torsion-free action of G requires both an
action of G and a G-grading on V , i.e., a G-suspensive structure on V .

It is clear that, if a G-suspensive k-vector space is strictly torsion-free, then it is
also torsion-free. It is not difficult to come up with counterexamples to the converse
claim.

The action of G on a torsion-free G-suspensive k-vector space V may be far from
free. The torsion-freeness condition enforces that Q P G acts faithfully on degree
Q in V , but Q may act quite non-faithfully on other degrees in V . Consequently
the remarks following Definition 2.7 apply here as well: torsion-free G-suspensive
Lie k-algebras are not necessarily free (or projective) as kG-modules, so general
results about Lie R-algebras projective over R (as in [23]) do not apply to general
torsion-free G-suspensive Lie k-algebras.

Proposition 6.7. Let G be a commutative monoid, let k be a field of characteristic

zero, and let L be a torsion-free abelian G-suspensive Lie k-algebra. Then the

natural inclusion L Ñ GP˚pWLq is an isomorphism.

Proof. Since L is abelian, by Proposition 6.4 we have GP˚WL – GP˚SkGpLq.
Choose a k-linear basis txi : i P Iu for L consisting of elements homogeneous
with respect to the G-grading. A homogeneous element of SkGpLq of Lie degree
0 is simply an element of kG. An element of SkGpLq of Lie degree n ą 0 is a
polynomial of degree n in the variables txi : i P Iu, modulo the relations (5) through
(7) enforcing multilinearity of the G-action. We use the symbol ~x to denote such a
monomial in SkGpLq.

Similarly, an element of SkGpLq bk SkGpLq is describable as a sum of products
of elements Qℓ “ Qb 1 and Qr “ 1 bQ and ~xℓ “ ~xb 1 and ~xr “ 1 b ~x.

From this perspective, the coproduct on SkGpLq sends a polynomial fp~xq to

f
´

|~x|
ℓ

¨ ~xr ` |~x|
r

¨ ~xℓ
¯

,

i.e., the same polynomial f but with each instance of xi replaced by |xi|
ℓ ¨xri `|xi|

r ¨
xℓi , where |xi| is the suspensive degree of xi. Consequently, if f is a Q-primitive,
then

Qℓfp~xrq `Qrfp~xℓq “ f
´

|~x|
ℓ

¨ ~xr ` |~x|
r

¨ ~xℓ
¯

.(8)

Applying the multiplication map SkGpLq bk SkGpLq Ñ SkGpLq to (8) yields the
equation

2Q ¨ fp~xq “ f p2 |~x| ¨ ~xq .(9)

Both the coproduct and the G-action on SkGpLq are homogeneous with respect
to the Lie grading, so if (9) is true, then it must be true of each Lie-degree-
homogeneous summand on each side. In other words, if we let fn denote the sum

15As far as we know, this particular notion of torsion-freeness is not the same as that studied
anywhere else in the literature, including that studied in [31].
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of the monomials of Lie degree n in f , then we must have

2Q ¨ fnp~xq “ fn p2 |~x| ¨ ~xq(10)

“ 2n |~x|
n
fn p~xq .(11)

Since the G-action on SkGpLq respects the G-grading on L, the only way for (10)
and (11) to be satisfied is for Q to be equal to |~x|n. So we finally have

0 “ p2n ´ 2q |~x|
n
fn.(12)

Since k is a field of characteristic zero, the only way for (12) to be satisfied is for
either n to be equal to 1, or for fn to be annihilated by |~x|

n
. But L is torsion-free,

and fnp~xq is in suspensive degree |~x|n. So, unless n “ 1, the only way for fn to be
annihilated by |~x|

n
is if fn “ 0.

Consequently the only nonzero Q-primitives inW pLq – SkGpLq are in Lie degree
1, i.e., they are elements of L Ď WL. �

Definition 6.8. Let G be a commutative monoid and let k be a field. A G-rigid
k-bialgebra A is said to be torsion-free if, for every Q P G and every Q-primitive
a P A such that Q ¨ a “ 0, we have a “ 0.

In other words, a G-rigid k-bialgebra A is torsion-free if and only if the G-
suspensive k-vector space GP˚A is torsion-free.

We now introduce some abbreviations for various categories of objects we have
considered in this section, and functors between them:

‚ We denote by GPGenRigG Bialgpkq the full subcategory of CocommRigGBialgpkq
whose objects are the generalized-primitively-generated bialgebras.

‚ Similarly, we denote by TFGPGenRigG Bialgpkq the full subcategory of
CocommRigGBialgpkq whose objects are the torsion-free generalized-primitively-
generated bialgebras.

‚ We denote by TFSuspG Liepkq the full subcategory of SuspG Liepkq gener-
ated by the torsion-free G-suspensive Lie k-algebras.

Theorem 6.9. Let k be a field of characteristic zero, and let G be a commuta-

tive monoid. Then the functors GP˚ and W , with their domains and codomains

restricted as follows:

W : TFSuspG Liepkq Ñ TFGPGenRigG Bialgpkq(13)

GP˚ : TFGPGenRigG Bialgpkq Ñ TFSuspG Liepkq(14)

are mutually inverse. Consequently the category of torsion-free G-suspensive Lie k-

algebras is equivalent to the category of torsion-free generalized-primitively-generated

G-rigid k-bialgebras.

Proof. Let L be a torsion-free G-suspensive Lie k-algebra. The canonical map
L Ñ GP˚pWLq is injective by Corollary 6.5. We need to show that it is also
surjective. Suppose that x is a Q-primitive in WL. Passing to the associated
graded of the Lie filtration on WL, we have that x represents a Q-primitive x in

(15) IẼ0pWLq “ IẼ0W pL#q “ W pL#q,

with (15) due to Proposition 6.4. By Proposition 6.7, x is in Lie filtration 1 in

W pL#q “ IẼ0WL. So x is in Lie filtration 1 in WL.
Lie filtration 1 in WL consists of k-linear combinations of elements in L and

elements in the image of the rigid unit map kG Ñ WL. The elements of L are
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certainly generalized primitives. If x “
ř

g αgg `
ř

g ℓg for some
ř

g αgg P kG and
for some ℓg P Lg for each g P G, then since x is assumed to be a Q-primitive, we
have

ÿ

g

pαgQb g `Qb ℓg ` αgg bQ` ℓg bQq “ Qb x` xbQ

(16)

“ ∆pxq

“
ÿ

g

αgg b g `
ÿ

g

pg b ℓg ` ℓg b gq .(17)

Reading off the QbQ terms from the left-hand side of (16) and from (17), we have
the equality

2αQQbQ “ αQQbQ,

i.e., αQ “ 0. For any g P G such that g ‰ Q, reading off the g b g terms from the
left-hand side of (16) and from (17) instead yields the equality

0 “ αgg b g,

so αg “ 0. So all the α coefficients are zero, i.e., x is an element of L Ď GP˚pWLq.
Consequently the natural embedding L Ñ GP˚WL is an isomorphism, i.e., GP˚ is
a left inverse functor to W , with domains and codomains as in (13) and (14).

We also need to show that GP˚ is a right inverse functor for W , but this is
straightforward: if A is a G-rigid k-bialgebra, then the image of the natural map
W pGP˚Aq Ñ A is the subalgebra of A generated by the generalized primitives.
So for A to be generalized-primitively-generated is precisely for the natural map
W pGP˚Aq Ñ A to be surjective. Since GP˚pW pGP˚Aqq Ñ GP˚A is an isomor-
phism, the mapW pGP˚Aq Ñ A is injective after applying GP˚. SoW pGP˚Aq Ñ A

is injective, by Proposition 5.5. So GP˚ is both right inverse and left inverse to W ,
with domains and codomains as in (13) and (14). �

If G is a group, then every G-suspensive vector space is torsion-free, and every
G-rigid k-bialgebra is torsion-free. Consequently, when G is a group, Theorem 6.9
reduces to:

Corollary 6.10. Let k be a field of characteristic zero, and let G be an abelian

group. Then the category of G-suspensive Lie k-algebras is equivalent to the category

of generalized-primitively-generated G-rigid k-bialgebras. The equivalence is realized

by the functors GP˚ and W .

Corollary 6.10 is not very remarkable. If G is an abelian group and if a k-
bialgebra A is co-commutative, pointed, and G-rigid, then A is a Hopf k-algebra;
see the remarks immediately following Definition 2.1. Generalized-primitively-
generated rigid bialgebras are automatically pointed, by Theorem 5.4. Kostant’s
theorem splits every co-commutative Hopf k-algebra as the smash product of the
group algebra of its grouplikes with the irreducible component of 1; see Theorem
8.1.5 of [32] for a textbook treatment. Since A is assumed to be G-rigid, the grou-
plikes in A are in the center of A, so this smash product in fact is simply a tensor
product over k. If k furthermore has characteristic zero, then the irreducible com-
ponent of 1 in A coincides with the sub-bialgebra of A generated by the primitives.

The conclusion is this: Corollary 6.10 amounts to only a rephrasing of the clas-
sical isomorphism of k-bialgebras A – UPA bk kG that we have when G is an
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abelian group. Hence the only new cases of Theorem 6.9 are those in which the
monoid G has noninvertible elements.

However, for topological applications, Theorem 6.9 does not go quite as far as
one would like: we want to be able to handle suspensive Lie algebras and rigid
bialgebras which are not torsion-free. For example, the associated graded bialgebra
E0R of the K-adic filtration on the Dyer-Lashof algebra is one of our motivating
examples of a non-Hopf bialgebra. The bialgebra E0R is N-rigid, but it is very far
from being torsion-free.

Omitting the adjective “torsion-free” from Theorem 6.9 results in a false claim.
Here is a counterexample to the statement of Theorem 6.9 with the torsion-freeness
hypothesis omitted:

Example 6.11. Let G be the free monoid generated by a single element Q. That is,
G is isomorphic to N, but we write G multiplicatively, as the monoid of nonnegative
powers t1, Q,Q2, Q3, . . . u of Q. Let k be a field of characteristic zero, and let L be
the abelianG-suspensive Lie k-algebra which is one-dimensional as a k-vector space,
concentrated in degree Q. The G-action on L is necessarily trivial. In particular,
the G-suspensive Lie k-algebra L is not torsion-free.

Now consider the G-rigid k-bialgebra WL. It is isomorphic to16

pkGdk ULq{ pg d ℓ´ 1 d pg ¨ ℓqq – krQ, xs{pQxq.

Of course x is Q-primitive in WL. But consider x2:

∆px2q “ x2 bQ2 ` 2QxbQx`Q2 b x2

“ x2 bQ2 `Q2 b x2,

so x2 is a Q2-primitive in WL. A similar argument shows that all the positive
powers of x inWL are generalized primitives. So GP˚WL is an infinite-dimensional
G-suspensive Lie k-algebra, and L Ñ GP˚WL is not surjective. So GP˚ andW can
fail to be mutually inverse, if we allow non-torsion-free G-suspensive Lie algebras.

In the next section we consider what additional structure on suspensive Lie alge-
bras one would have keep track of, in order to have a completely general analogue
of Theorem 6.9 which would apply to all generalized-primitively-generated rigid
bialgebras.

7. The prospects for a completely general Milnor-Moore theorem

for bialgebras.

In Example 6.11, we saw a G-suspensive Lie algebra whose canonical map L Ñ
GP˚pWLq failed to be surjective. This failure of surjectivity came about because
L contained a torsion element, i.e., an element x P LQ such that Q ¨ x “ 0.

Perhaps it is becoming clear that, in a rigid bialgebra A which isn’t torsion-free,
the collection of generalized primitives is richly structured:

‚ If x P GPQpAq and Qx “ 0, then x2 is in GPQ2pAq. So there is a squaring
operation on the torsion elements of GP˚pAq.

‚ More generally, if x1 P GPQ1
pAq and x2 P GPQ2

pAq and Q1x2 “ 0, then
x1x2 P GPQ1Q2

pAq.

16The notation d was defined in Definition-Proposition 2.9.
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‚ More generally, if x1 P GPQ1
pAq and x2 P GPQ2

pAq and Q1x2 b Q2x1 `
Q2x1 bQ1x2 “ 0 in AbkA, then x1x2 P GPQ1Q2

pAq. So there is a product
operation on GP˚pAq defined on those pairs px1, x2q on which the operation

s2px1 b x2q “ |x1|x2 b |x2|x1 ` |x2|x1 b |x1|x2

vanishes, where |x| denotes the degree of x in GP˚pAq.
‚ More generally, we have a n-ary product operation defined on n-tuples

px1, . . . , xnq of elements in GP˚A which are in the kernel of the k-linear
function sn : Lbkn Ñ Lbk2 defined as follows:

– Given a subset U Ď t1, . . . , nu, an element i P t1, . . . , nu, and an
element ℓ P L, write xpU, ℓ, iq for the element of WL given by letting
xpU, ℓ, iq be |ℓ| if i P U , and letting xpU, ℓ, iq be ℓ if i R U .

– Let snpℓ1 b ¨ ¨ ¨ b ℓnq be the element

ÿ

UĎt1,...,nu:0ă|U |ăn

˜

n
ź

i“1

xpU, ℓ, iq

¸

b

˜

n
ź

i“1

xpU 1, ℓ, iq

¸

of WLbk WL, where U 1 is the complement of U Ď t1, . . . , nu.
If px1, . . . , xnq P ker sn, then x1 ¨ ¨ ¨ ¨ ¨ xn is a generalized primitive in A.

The reason that these strange functions sn arise is that, if x1, . . . , xn P A have the
property that xi is a |xi|-primitive for each i, then snpx1 b ¨ ¨ ¨ b xnq is equal to the
difference

∆px1 ¨ ¨ ¨xnq ´ |x1 ¨ ¨ ¨xn| b px1 ¨ ¨ ¨xnq ´ px1 ¨ ¨ ¨xnq b |x1 ¨ ¨ ¨xn| .

Hence the vanishing of snpx1 b ¨ ¨ ¨ b xnq is equivalent to the product of the gener-
alized primitives x1, . . . , xn also being a generalized primitive.

To give a full theory of structured Lie algebras which is equivalent (over a field
of characteristic zero) to generalized-primitively-generated rigid bialgebras, those
Lie algebras would need to be equipped with a large amount of structure: for
each element x P ker sn Ď WLbkn, we would need to record a product element
mnpxq P L. We could then impose the relation mnpxq ´ x on WL to get a quotient
bialgebra of WL in which the “spurious” (i.e., not in the image of L ãÑ WL)
generalized primitives in WL are identified with elements in Lie filtration 1, i.e.,
elements in the image of L ãÑ WL.

But this is a tall order. It means keeping track of an n-ary operationmn on L for
each n ě 2. It would not be enough to confine our attention to the case n “ 2, i.e.,
the generalized primitives inWL which are linear combinations of products of pairs
of elements in L. Recording only the data of such linear combinations of products
of pairs would only enable us to impose the correct relations onWL to quotient out
the generalized primitives in Lie filtration 2. To capture the “spurious” generalized
primitives in WL which are in Lie filtration n, we need the data encoded by the
n-ary product operation mn : ker sn Ñ L.

Recording the data of these n-ary product operations m2,m3, . . . , and axiom-
atizing the various properties and compatibilities that they satisfy, involves some
ugly bookkeeping. While the authors worked out some of the resulting theory and
surmise that it can be made to work, we do not feel that it winds up being valuable,
because the resulting structured Lie algebras are such a headache to use that one
is better off just working with the bialgebras.
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This is made clear already in one of our motivating examples, the associated
graded bialgebra E0R of the K-adic filtration on the Dyer-Lashof algebra R, where
K is the ideal of R generated by all homogeneous elements in positive degree. For
simplicity, consider the case p “ 2. Then Q0Qn “ 0 “ QnQ0 for all n ą 0, and
consequently ∆pxq “ pQ0qn b x ` x b pQ0qn for all x in internal degree n ą 0 in
E0R. In other words, every homogeneous element of positive internal degree in E0R

is a generalized primitive. Furthermore, the vanishing of Q0x for all x in positive
degree means that the operations s2, s3, . . . vanish completely on elements of E0R

in positive suspensive degrees. Consequently, to use the theory suggested in the
previous paragraph, the products m2,m3, . . . would need to record the full data
of all of the products of homogeneous elements of positive internal degree in E0R.
This is a ridiculous situation: rather than the Lie algebra of generalized primitives
offering a simpler and more familiar algebraic structure than the bialgebra, we find
ourselves needing to supplement the Lie bracket on E0R with essentially the full
structure of all multiplications on E0R, encoded in an unfamiliar way! We might
as well have stuck with E0R itself.

Our conclusion is that we do not have much confidence in the possibility of a
useful Milnor-Moore theorem for arbitrary rigid bialgebras over a field of character-
istic zero. However, for some families of rigid bialgebras (e.g. the torsion-free rigid
bialgebras), we saw already in Theorem 6.9 that a useful and satisfying Milnor-
Moore theorem can indeed be obtained. So our next task is to formulate and prove
a useful Milnor-Moore theorem for a family of bialgebras including E0R and others
which structurally resemble E0R.

8. Milnor-Moore for left-sided bialgebras in characteristic zero.

The associated graded bialgebra E0R of the pQ1, Q2, . . . q-adic filtration on the
Dyer-Lashof algebra R is a generalized-primitively-generated N-rigid bialgebra, but
since it is not torsion-free, Theorem 6.9 does not apply to it. Indeed, every gener-
alized primitive in E0R is torsion17.

Despite its extreme failure to be torsion-free, E0R has a special property which
makes it much better suited to a Lie-algebra-theoretic analysis than many other
non-torsion-free rigid N-bialgebras. The essential property is the following:

Proposition 8.1. Let x, y P E0R be homogeneous elements of internal degrees |x|
and |y|, respectively. Suppose |x| and |y| are each positive.

‚ If p ą 2 and |x| ď |y|, then xy “ 0.
‚ If p “ 2 and |x| ă |y|, then xy “ 0.

Proof. This is simply a consequence of the fact that all monomials of negative excess
are zero in R; see appendix A. �

Definition 8.2. Let G be a commutative monoid.

‚ Given Q,Q1 P G, we say that Q divides Q1 if there exists some g P G such
that gQ “ Q1.

‚ Suppose that k is a field and that A is a G-rigid k-bialgebra. We say that A
is left-sided if, for all Q,Q1 P G such that Q divides Q1, for all x P GPQpAq
and all y P GPQ1 pAq we have xy “ 0.

17See Definition 6.6 for the definition of torsion elements in suspensive Lie algebras.
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‚ A morphism of left-sided G-rigid k-bialgebras is simply a morphism of G-
rigid k-bialgebras whose domain and codomain are each left-sided. We
write LeftSidedRigGBialgpkq for the resulting category of left-sided G-rigid
k-bialgebras.

The advantage of working with left-sided bialgebras is that, even when they fail to
be torsion-free (in the sense of Definition 6.8), there is no need to bring in the arcane
product structure m2,m3, . . . from section 7. Use of the products m2,m3, . . . is
unnecessary since in a left-sided bialgebra, the product of two (or finitely many)
generalized primitives is describable entirely in terms of the Lie bracket. That is,

xy “

"

rx, ys if |x| ą |y|
´ ry, xs otherwise.

As a consequence of Proposition 8.1, E0R is left-sided for primes p ą 2. If p “ 2,
then we have some nonzero products of elements in E0R of the same internal degree
(e.g. Q1Q1). So while E0R is not left-sided for p “ 2, all such nonzero products
arise from the squaring operation in E0R. Consequently the full product structure
of E0R is recoverable even when p “ 2 by a combination of the Lie bracket and the
restriction map on the generalized primitives. The presence of the restriction is a
feature of generalized primitives in bialgebras over fields of positive characteristic.
Ultimately we would like to develop the theory of the present paper (including
left-sided bialgebras) in positive characteristic, for the sake of understanding Lie-
algebraic aspects of the Dyer-Lashof algebra. However, in this paper we confine
ourselves to the characteristic zero case, where there is already much to be said.

The definition of left-sidedness for a rigid bialgebra A is a condition on the
vanishing of certain products of generalized primitives. This condition also has
consequences for other products. For example, Proposition 8.3 establishes that
certain products of grouplikes and generalized primitives vanish as well:

Proposition 8.3. Let G be a commutative monoid, and let k be a field of charac-

teristic not equal to 2. Then the following are each true:

(1) In a left-sided G-rigid k-bialgebra, every generalized primitive is torsion.

(2) If V is a torsion G-suspensive k-vector space, then VQ “ 0 for each element

Q P G which has an inverse.

Proof.

(1) Let Q P G, and let x P A be a Q-primitive. We have x2 “ 0 by the definition
of left-sidedness. Now apply the coproduct:

0 “ ∆px2q

“ pQb x` xbQq
2

“ Q2 b x2 ` x2 bQ2 ` 2QxbQx

“ 2QxbQx.

Since k is a field of characteristic not 2, the only way for an element a P A
to have the property that 2a b a P A b A is zero is for a itself to be zero.
So we must have Qx “ 0.

(2) If Q P G has an inverse Q´1, then for each x P VQ, we have x “ Q´1pQxq “
Q´1 ¨ 0 “ 0.

�
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Definition 8.4. Let k be a field, let G be a commutative monoid, and let L be a G-
suspensive Lie k-bialgebra. By the universal left-sided G-rigid enveloping algebra of

L, written ZL, we mean the k-algebra which is the quotient ofWL by the two-sided
ideal I generated by:

‚ all products of the form ℓ1ℓ2, where ℓ1 P GPQ1
pWLq and ℓ2 P GPQ2

pWLq
and Q1 divides Q2 in G,

‚ and all products of the form Qℓ, where Q P G and ℓ P GPQpWLq.

While the vanishing of the products ℓ1ℓ2 in Definition 8.4 is clearly necessary in
order for ZL to be a left-sided bialgebra, the vanishing of the products Qℓ is also
necessary, due to Proposition 8.3. (Specifically, if we fail to include the products Qℓ
in the ideal I, then the resulting ideal would fail to be a bi-ideal, so the resulting
quotient ZL{I would fail to be a bialgebra.)

Proposition 8.5. Let k be a field, let G be a commutative monoid, and let L be

a G-suspensive Lie k-bialgebra. The two-sided ideal I of WL, defined in Definition

8.4, is a bi-ideal in WL. Consequently ZL is a k-bialgebra, and WL Ñ ZL is a

surjective k-bialgebra morphism.

Proof. For I to be a bi-ideal, it must satisfy ∆pIq Ď IbWL`WLbI and εpIq “ 0.
Suppose ℓ1 P GPQ1

pWLq and ℓ2 P GPQ2
pWLq and Q1 divides Q2 in G. Then there

exists a g P G such that Q2 “ gQ1. Consequently we have

∆pℓ1ℓ2q “ ∆pℓ1q∆pℓ2q

“ ℓ1ℓ2 bQ1gQ1 ` ℓ1gQ1 bQ1ℓ2 `Q1ℓ2 b ℓ1gQ1 `Q1gQ1 b ℓ1ℓ2

Ď I bWL`WLb I,

since ℓ1ℓ2 and Q1ℓ1 are each in I. Similarly, if ℓ P LQ, then:

∆pQℓq “ QℓbQ2 `Q2 bQℓ

Ď I b WL`WLb I,

since Qℓ P I. So ∆pIq Ď WLb I ` I bWL.
As for the augmentation, since εpℓq “ 0 for all ℓ P LQ, and since ε is an algebra

homomorphism, we have that ε vanishes on the generators of the ideal I, hence on
all elements of I, as desired. �

Since ZL is a quotient of WL by elements contained in positive Lie filtration,
the map WL Ñ ZL is an isomorphism in Lie filtration 0, i.e., an isomorphism on
grouplikes. So, since WL is G-rigid, the k-bialgebra ZL is also G-rigid. In fact,
under a certain reasonable hypothesis on the monoid G, the bialgebra ZL enjoys
much stronger properties, proven below in Proposition 8.8.

The associated graded bialgebra E0R of the K-adic filtration on the Dyer-Lashof
algebra R is N-rigid. The commutative monoid N has the property that its divis-
ibility ordering is total. That is, given two elements Q,Q1 of N, either Q divides
Q1 or Q1 divides Q. (This statement looks strange because of course it is not true
that, given two nonnegative integers, one is necessarily a divisor of the other. This
strangeness is an artifact of mixing additive and multiplicative notation. For the
sake of the terminology of Definition 8.2, it is better to regard N as the free monoid
on one generator, and to use multiplicative notation for it.) Hence N is linear in
the following sense:
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Definition 8.6. We say that a commutative monoid G is linear if, for each pair
Q,Q1 P G, either Q divides Q1 or Q1 divides Q.

Lemma 8.7. Let k,G, L be as in Proposition 8.5. Suppose that G is linear. Then

the map of Lie algebras GP˚pWLq Ñ GP˚pZLq is surjective.

Proof. By the linearity of G, given any pair of elements ℓ1, ℓ2 in Lie degree 1 in
WL, either the degree of ℓ1 divides the degree of ℓ2, or vice versa. Without loss of
generality, assume that the degree of ℓ1 divides that of ℓ2. Then, in the quotient ZL
of WL, we have ℓ1ℓ2 “ 0 and consequently ℓ2ℓ1 “ rℓ2, ℓ1s. Hence, in ZL, a product
of elements in Lie filtration 1 is also in Lie filtration 1, i.e., the Lie filtration of ZL
collapses after the first stage. Hence every element of ZL is a linear combination of
grouplikes and grouplikes multiplied by elements of L. In particular, the generalized
primitives of ZL—those elements of Lie filtration 1 which do not lie in Lie filtration
0—are in the image of the composite map L Ñ GP˚pWLq Ñ GP˚pZLq, hence in
the image of the map GP˚pWLq Ñ GP˚pZLq. �

Proposition 8.8. Let k,G, L be as in Proposition 8.5. Suppose that G is linear.

Then the G-rigid k-bialgebra ZL is left-sided and generalized-primitively-generated.

Proof. Let Q,Q1 P G, suppose that Q divides Q1, and suppose that x P GPQpZLq
and y P GPQ1 pZLq. Use Lemma 8.7 to lift x to an element x̃ P GPQpWLq, and lift
y to an element ỹ P GPQ1 pWLq. Then x̃ỹ is in the kernel of WL Ñ ZL. So xy “ 0,
i.e., ZL is left-sided.

As for the claim of generalized-primitive generation: since WL is generalized-
primitively-generated, every quotient bialgebra of WL is generalized-primitively-
generated. In particular, ZL is generalized-primitively-generated. �

Theorem 8.9. Let G be a linear commutative monoid, and let k be a field of

characteristic zero. Write TSuspG Liepkq for the category of torsion G-suspensive

Lie k-algebras, and write LeftSidedGPGenRigG Bialgpkq for the category of left-

sided generalized-primitively-generated G-rigid k-bialgebras. Then the functors

GP˚ : LeftSidedGPGenRigG Bialgpkq Ñ TSuspG Liepkq and

Z : TSuspG Liepkq Ñ LeftSidedGPGenRigGBialgpkq

are mutually inverse. Consequently the category of torsion G-suspensive Lie k-

algebras is equivalent to the category of left-sided generalized-primitively-generated

G-rigid k-bialgebras.

Proof. Given a G-suspensive Lie k-algebra L, we have the composite map of k-
bialgebras L ãÑ GP˚pWLq Ñ GP˚pZLq. Write f for this composite map L Ñ
GP˚pZLq. If L is torsion, then we claim that f is an isomorphism. The proof is as
follows:
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Injectivity of f : We have the commutative diagram of k-vector spaces

L // IE0UL //

–

��

IẼ0WL

–
��

// IẼ0ZL

��

IE0UpL#q //

–

��

IẼ0W pL#̃q

–

��

// IẼ0ZpL#̃q

–

��

SkpL#q // SkGpL#̃q // kG‘ L#̃.

The composite L Ñ kG ‘ L#̃ is an isomorphism of k-vector spaces onto

Lie degree 1 in kG‘ L#̃. So L Ñ IẼ0ZL composed with a map IẼ0ZL Ñ

kG‘L#̃ is injective, so L Ñ IẼ0ZL is injective, and consequently L Ñ ZL

is injective.
Surjectivity of f : This is a consequence of the argument given in the proof

of Lemma 8.7.

So Z : SuspG Liepkq Ñ LeftSidedGPGenRigG Bialgpkq is right inverse to GP˚.
Now suppose that A is a left-sided G-rigid k-bialgebra. Then ZpGP˚Aq is the

free left-sided G-rigid k-bialgebra on the G-suspensive Lie k-algebra GP˚A, so we
have a canonical map g : ZpGP˚Aq Ñ A. If A is furthermore assumed to be
generalized-primitively-generated, then ZpGP˚Aq is the free left-sided rigid bial-
gebra on a set of generators for A, so g : ZpGP˚Aq Ñ A is surjective. Since
GP˚pgq : GP˚pZpGP˚Aqq Ñ GP˚pAq is an isomorphism by the previous part of
this theorem, it is in particular injective, so by Proposition 5.5, g itself is injective.
So g is an isomorphism. So Z : SuspG Liepkq Ñ LeftSidedGPGenRigG Bialgpkq is
also left inverse to GP˚. �

Appendix A. Review of the Dyer-Lashof algebra.

The material in this appendix is classical; see Theorem 1.1 of Steinberger’s chap-
ter “Homology operations for H8 and Hn ring spectra” in [8], or the first chapter
of [11], for example.

We recall a presentation for the Dyer-Lashof algebra. If p “ 2, let Rp´8q
denote the free associative graded F2-algebra on generators Q0, Q1, Q2, . . . , with
Qi in grading degree i, modulo the Adem relation

QrQs “
ÿ

i

ˆ

i´ s´ 1

2i´ r

˙

Qr`s´iQi

for all r ą 2s.
For an odd prime p, let Rp´8q denote instead the free associative graded Fp

algebra on generators Q0, Q1, Q2, . . . and βQ0, βQ1, βQ2, . . . with Qi in grading
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degree 2ipp´1q and βQi in grading degree 2ipp´1q´1, modulo the Adem relations

QrQs “
ÿ

i

p´1qr`i

ˆ

pi´ pp ´ 1qs´ i´ 1

pi´ r

˙

Qr`s´iQi,

QrβQs “
ÿ

i

p´1qr`i

ˆ

pi´ pp ´ 1qs´ i

pi´ r

˙

βQr`s´iQi

´
ÿ

i

p´1qr`i

ˆ

pi´ pp ´ 1qs´ i´ 1

pi´ r ´ 1

˙

Qr`s´iβQi,

βQrβQs “ ´
ÿ

i

p´1qr`i

ˆ

pi´ pp´ 1qs ´ i´ 1

pi´ r ´ 1

˙

βQr`s´iβQi.

for all r ą ps.
When p “ 2, a useful notational convention which is sometimes used (e.g. in

[15]) is to write

‚ Qr rather than Q2r for the generator for Rp´8q in degree 2r, and
‚ βQr rather than Q2r´1 for the generator for Rp´8q in degree 2r ´ 1.

With these conventions, the Adem relations and degrees for the generators of
Rp´8q at the prime 2 are the same as the Adem relations and degrees for the
generators of Rp´8q at odd primes.

Let βε1Qi1βε2Qi2 ¨ ¨ ¨βεdQid be a monomial in this free associative graded alge-

bra. The excess of this monomial is defined to be i1 ´
řd

j“2 ij when p “ 2 and

2i1 ´ ε1 ´
d

ÿ

j“2

p2ijpp´ 1q ´ εjq

when p is odd. For an integer e, let Je be the two-sided ideal of Rp´8q generated
by all monomials of excess ă e. We let Rpeq “ Rp´8q{Je. The special case e “ 0
is called the Dyer-Lashof algebra. We often write R for Rp0q.

The coproduct and augmentation on R are given by

∆pQnq “
n

ÿ

j“0

Qj bQn´j ,

∆pβQn`1q “
n

ÿ

j“0

`

βQj`1 bQn´j ` βQj bQn`1´j
˘

,

εpQ0q “ 1,

εpQnq “ 0 if n ą 0.

A nice reference for the coproduct is Theorem 2.3 in the first chapter of [11]. Since
Q0 is a grouplike but not invertible, one sees immediately that R cannot be a Hopf
algebra.
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[6] M. Basterra. André-Quillen cohomology of commutative S-algebras. J. Pure Appl. Algebra,
144(2):111–143, 1999.

[7] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 1–3. Elements of Mathematics
(Berlin). Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989
English translation.

[8] R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger. H8 ring spectra and their
applications, volume 1176 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986.

[9] Henri Cartan and Jean-Pierre Serre. Espaces fibrés et groupes d’homotopie. I. Constructions
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[10] Frédéric Chapoton. Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendri-
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