822

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 9, SEPTEMBER 1985

A Digital Orrery

JAMES H. APPLEGATE, MICHAEL R. DOUGLAS, YEKTA GURSEL, PETER HUNTER, CHARLES L. SEITZ,
MEMBER, IEEE, AND GERALD JAY SUSSMAN, MEMBER, IEEE

Abstract — We have designed and built the Orrery, a special
computer for high-speed high-precision orbital mechanics com-
putations. On the problems the Orrery was designed to solve, it
achieves approximately 10 Mflops in about 1 ft’ of space while
consuming 150 W of power. The specialized parallel architec-
ture of the Orrery, which is well matched to orbital mechanics
problems, is the key to obtaining such high performance. In this
paper we discuss the design, construction, and programming of
the Orrery.

Index Terms — Computer architecture, N-body computations,
numerical computation, orbital mechanics, parallel computation.

INTRODUCTION

HE Orrery is a specialized but programmable high-
performance computer designed for finding solutions
with high numerical precision to the equations of motion for
systems with a small number of bodies which move in nearly
circular orbits, such as the solar system. At each step in such
a calculation, the bodies in the system are considered pair-
wise to compute the acceleration of each due to the others,
and the total acceleration of each body is accumulated. These
accelerations are then integrated, using a traditional inte-
gration algorithm such as Cowell’s method (Cowell and
Crommelin [8], Brouwer and Clemence [3]) to compute the
next state of the system. This method has been used success-
fully (by Cohen, Hubbard, and Oesterwinter [6]) to compute
the orbital elements of the outer planets for one million years.
We built the Orrery as a cost-effective instrument to attack
questions about the dynamical state and long-term stability of
the solar system. For example, the stability of the orbit-of
Pluto is an open question. The perihelion of the orbit of Pluto
lies within the orbit of Neptune. Unless prevented by some
mechanism, a close encounter between the two planets will
eventually occur, and the orbit of Pluto will be disrupted. In
2120000 year numerical integration, Cohen and Hubbard [5]
discovered a stabilization mechanism based on the fact that

Manuscript received November 22, 1984. This work was supported in part
by the National Science Foundation under Grant AST 831-3725, in part by
NASA under Grant NGL 05-002-003, and in part by the Defense Advanced
Research Projects Agency, ARPA Order 3771, monitored by the Office of
Naval Research under Contract N00014-79-C-0579.

J. H. Applegate is with the Department of Astronomy, Columbia University,
New York, NY 10027.

M. R. Douglas is with the Department of Physics, California Institute of
Technology, Pasadena, CA 91125.

Y. Giirsel is with the Artificial Intelligence Laboratory, Massachusetts Insti-
tute of Technology, Cambridge, MA 02139.

P. Hunter and C.L. Seitz are with the Department of Computer Science,
California Institute of Technology, Pasadena, CA 91125.

G.J. Sussman is with the Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, Cambridge, MA 02139.

the orbits of Pluto and Neptune are in a 3/2 resonance — that
is, Pluto makes two orbits for every three of Neptune. The
origin and stability of this resonance over the age of the solar
system is still an open question (Brouwer [2], Williams and
Benson [22], Nacozy and Diehl [16]). Indeed, did Pluto form
in the resonance or was it later captured into it? The solution
will shed light on the formation and evolution of the solar
system.

For another example, the distribution of asteroids in the
asteroid belt is uneven. Pronounced gaps (the Kirkwood
gaps) exist in the inner belt at periods resonant with Jupiter.
The distribution in the outer belt is characterized by concen-
trations of asteroids at periods resonant with Jupiter. While
the origin of these features is still a subject of debate (e.g.,
Greenberg and Scholl [9]), the idea (Wisdom [23], [24]) that
the gaps are chaotic regions in phase space has had consid-
erable success in describing the 3/1 Kirkwood gap. Numer-
ical integrations with the Orrery will provide an important
check on Wisdom’s approximate theory. Understanding the
nature of the Kirkwood gaps will solve a long-standing as-
tronomical problem, and in addition, it may shed light on
questions concerning the occurrence of chaotic motion in
small dynamical systems (e.g., Chirikov [4], Hellerman
(12]). '

In an N-body problem, the interaction of each body with
the N — 1 other bodies determines the resultant force, hence
the acceleration, that will influence the body on each step. In
a serial computer this force computation and accumulation
step takes O(N?) time, while the integration for the N bodies
requires O(N) time. The parallel architecture of the Orrery
allows the force computation to be performed in O(N') time,
and the integration in O(1) time, by the concurrent use of N
identical hardware units, called “planet computers.”

The Orrery is composed of N = 10 planet computers, each
of which has one body assigned to it in the simplest pro-
grams. More generally, one can compute M-body problems
by assigning (M/N) bodies to each planet computer. All the
planet computers execute the same instruction, broadcast
from a central control computer, in parallel. This architecture
is referred to in the parallel processing literature as a single-
instruction multiple-data (SIMD) organization. An earlier
example of this class of architecture was the Illiac IV
(Bouknight [1]), a machine that was of similar performance
for a more general class of problems, although with its earlier
technology its volume and power consumption were several
orders of magnitude greater than those of the Orrery.

The planet computers are connected in a ring, by which
each can send data to one neighbor. This simple commu-
nication plan is sufficient to communicate the position and

0018-9340/85/0900-0822$01.00 © 1985 IEEE

APPLEGATE et al.: A DIGITAL ORRERY

mass for a body in one computer to all the other computers,
so each can calculate its acceleration due to the other bodies.
The ring is also sufficient for sending results of these force
computations back to the original computer, so that for sym-
metrical forces, the force between each pair of bodies is
calculated only once. For a ring with an odd number of planet
computers, say seven, body 1 interacts with bodies 2, 3, and
4 in their computers, while bodies 7, 6, and 5 interact with
body 1 in its computer, similarly for all seven bodies, for
(N(N — 1))/2 force calculations, after which four commu-
nication steps return each mass, position, and accumulated
force to its home computer.

The Orrery is used as a back-end processor, attached to a
small conventional host computer (e.g., an IBM PC or an
HP 9826). The host computer is used to set up and access the
states of the particles, and to set up the control sequences for
the Orrery.

A RING OF PROCESSORS FOR N-BoDY CALCULATIONS

For a small number of bodies (such as the sun and major
planets of the solar system, N = 10) we allocate one planet
machine to each body. The N planet machines are connected
in a ring, such that data can be sent from machine i,
i=0,---,(N — 1), to machine (i + 1) mod N, as shown
in Fig. 1. The SIMD controller sequences through a stored
program whose execution produces a sequence of microcode
instructions that are broadcast to and executed in parallel by
all the planet computers. There are no data-dependent steps
in the program, so the SIMD controller needs no inputs from
the planet computers. The best way to understand how an
N-body problem maps to the ring architecture of the Orrery
is to follow through a simplified (each force is computed
twice) N-body code (see the flowchart in Fig. 2).

The computation starts by initializing the accelerations. It
then performs N — 1 acceleration accumulation cycles
(AAC’s), during which the accelerations of each body due to
the others are accumulated. At the end of the N — 1 AAC’s
each planet computer independently does an integration step
(IS), which gives each body its new state. The pattern of
initialization followed by N — 1 AAC’s followed by an IS is
repeated until the dynamical system being studied has
evolved the desired number of steps.

Initially, each body has a well-defined state. The system
starts up in fixed field mode. Each body must initialize its
acceleration to respond to the fixed fields. Fixed fields pro-
duce accelerations that depend only on the state of each body
in isolation, without considering the accelerations due to
interactions with other bodies. Fixed fields may model ambi-
ent gravitational potentials, velocity-dependent drag, am-
bient electric or magnetic fields, etc. In the solar-system
problem, if the sun is considered a body, the fixed fields are
zero, so each body must initialize its acceleration to zero.
(One may also fix the sun and write the equations as a fixed
field, perturbed by the major planets.)

After initializing the accelerations, the system enters the
acceleration accumulation mode. The state of the body in
each computer is put into its “R buffer,” a register which

823

Data

Planet
Machine
(o}

Planet
Machine
N-1

uoyjdonisuy

Planet
Machine

Planet
Machine

Controller

Planet
Machine
3

Machine
2

®leqQ

Fig. 1. Ring of computers.

Initialize
accelerations:
acc

Y

it= 1

OUT: my-state

my-state:=
g(my-state,acc)

his-state: = IN

/

acc: = acc +
f(my-state,his-state)

, L

time: = time+ h

Y

OUT: = his-state

L

Fig. 2.

Simplified N-body code.

contains the message it will send to its right neighbor. In each
AAC, the computer sends out the old contents of its R buffer
to its right neighbor and reads in the new value from its left

824

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 9, SEPTEMBER 1985

~ =]

..
N
NS
-

D D D [}
Elatch lel3) L L
b -
>—E tatch lela qOE L OE [—qo—s s GG
Q Q Q Q
12 12 12
12 12
- A: 0-11 —_ A: 0-11
> M write Jals _ wE
[o taten LJWE MA: 4K X 18 5z MB: 4K X 18
LdoE 1/0: 0-18 1/0: 0-15
E latch
> L
D D latch
18y
D
o MB—B__
Q OE
w/ I
Q
(Ao >—0 |
aQ
A
>Elnc1
-E latch I 1 1
> D: 0-18 4 Vv
A: 0-18 . 0-15—
2
Saal N —e oo
lOFun >4 4 F DEN o
o| a L
|oCycl- _D I
A D: 0-18
p—A: 0-18 B: 0-16}—4
\ +
L+ Fun o 5 F DEN p—
o| Q Y2\
2
[oCyclo >-—D)_ L"—l
D: 0-15 L
L] A: 0-18 B: 0- 16— Yo
F box Y Dmux
@—+ A F DEN p—--{Y2
D Q I : A D+ _|va
j) K ;i

[

D -x start 153

15
e >

Fig. 3. Planet computer design.

neighbor. The computer also computes and accumulates the
acceleration on its own planet due to the planet whose state
it is accepting into its R buffer. Thus, in N — 1 AAC’s each
body sees and accumulates accelerations due to the states of
each of the N — 1 other bodies. Actually, as mentioned
above, one can be more clever with the algorithms and avoid
the redundant computation of symmetric forces.

After the accelerations are accumulated, the commu-

nications stop, and each planet computer independently com-
putes the next state of the body for which it is responsible. We
use linear multistep algorithms, which form the next state
from a linear combination of previous states and accelera-
tions. These are efficient algorithms, in terms of the number
of force calculations required per step, and they are easy to
program for the Orrery. We can program these integrations
either as pure predictor or predictor—corrector algorithms

APPLEGATE et al.: A DIGITAL ORRERY

825

5] 1 2 3 4 5] 1 2
4L 20ne 1 80ns ' 20ns | 40ns l 40ns l 20ns 1 80ns
E latch / \ /

MA >@L A.B read address >@ D write -ddru-)@ A.B read address

M data @

D latch I ’

-M wvlu}
X start ;

|

'

I

]

85ns |
>

F clock

F addr, Fdata)@ .

The critical constraints shown are

1: HP SOS chip time to D output from clock

2: HP SOS chip setup time A,B,F to clock
3: TMM2018D address select time

Fig. 4. Timing of Orrery.

(see Hamming [11]), although the latter requires a second
acceleration accumulation per step for the corrector. The
solar-system problems are especially amenable to this kind of
integration because the nearly circular orbits can be effi-
ciently integrated with constant step size.

THE PLANET COMPUTERS

Each planet computer is a data path machine, with most of
the instruction decoding “factored out” into the SIMD con-
troller. It has a relatively general-purpose three-bus architec-
ture with a two-port memory and three execution units. (See
Fig. 3.)

Two of the execution units are Hewlett—Packard (HP)
floating-point adders and multipliers, which have generously
been provided for this project by the HP CICO division (Ware
[21]). These advanced silicon-on-sapphire (SOS) chips can
perform a 64 bit floating add or floating multiply in about
1.25 us (although we do not run them quite at full speed).
The third execution unit, the “function box,” is a table lookup

device (designed to have the same timing as an HP floating-
point chip) that stores approximations to important special
functions such as raising to the —3/2 power. These approxi-
mations are used as starting values for Newton’s method
iterations. The function box may be used to perform various
simple functions that only change the exponent, such as di-
viding a number by 2, or that change the top eight mantissa
bits of a floating number. In addition, communication with
the neighboring machines is accomplished by routing a value
from the function box of one machine to the D bus of the
next. ‘

The HP chips can be run in either “scalar” or *“vector” mode.
In scalar mode an add or multiply operation takes four micro-
cycles: a cycle to accept the input operands, two “think”
cycles, and a cycle for extracting the result. In vector mode,
the first think cycle after taking in new operands can be over-
lapped with the extraction of the result from computation
with the previous set of operands. The control structure al-
lows a programmer to use the HP chips in either scalar or
vector mode, or in any combination that may be most effec-

826

tive. The data path allows a result to be presented as an
operand to another execution unit and to be stored in memory
in a single microcycle. It also allows the think cycles for any
execution unit to be used for data transfers among the other
execution units and memory.

The Orrery is organized around these microcycles —each
line of code in a program for the Orrery specifies the actions
that happen in one 800 ns microcycle.

Each execution unit has two input ports and one output
port. These ports, as well as all the data buses of the planet
computers, are 16 bits wide. The transfer of the 64 bit oper-
ands and the results in a microcycle is accordingly performed
in four nanocycles, each taking 200 ns. Each nanocycle is itself
broken into two phases, a read phase and a write phase. (The
detailed timing diagram is shown in Fig. 4.) In the read
phase, values specified by the A and B addresses are fetched
from the memory and held in the memory-buffer latches
(MA — A,MB — B). Simultaneously, a result is taken from
an execution unit (or the left-neighbor machine) and stored in
the result-buffer (D - A,D - B,D - MA,D — MB)
latches. The A and B arguments are selected from either the
result-buffer latches or the memory-buffer latches by en-
abling the correct tristate outputs. In the write phase, the
selected arguments are latched by the target execution units,
and simultaneously, the result picked up in the read phase is
stored in the memory location given by the D address.

The function box contains a 4K X 16 RAM, whose ad-
dresses can be constructed from the bits of the input data.
There is an internal bus (the F bus) for the RAM’s address
and data. The bits of the function box A or B arguments are
distributed to various address-part registers. They are then
recombined to make up the table addresses for the various
functions that may be stored in the RAM. The function box
is timed to accept its argument in four 16 bit chunks and store
them in its memory. It then uses a “think” cycle to perform
the required lookups in its tables and arrange the answers for
output. After one think cycle it is ready to put out the new
floating point answer as four 16 bit chunks on the D bus.

As an example, we describe the process of computing the
starting approximation for the Newton—Raphson iteration
that computes the —3/2 power of an argument. The starting
approximations are stored in two tables, each 1K X 16 in
size, a new mantissa table, and a new exponent table. The
computation of the starting approximation consists of com-
puting the addresses used in the table lookups.

The new mantissa table is a table whose elements are the
mantissas of the —3/2 power of the number at the midpoint
of the interval defined by the address and address + 1, where
the addresses are interpreted as mantissas of floating point
numbers. The starting approximation must be accurate to
9 bits for the Newton—Raphson iteration to converge to
55 bits of accuracy in three iterations. A new mantissa accu-
rate to 9 bits requires knowing the old mantissa to 10 bits of
accuracy. However, one of these bits comes for free; the most
significant bit of the old mantissa is always a one since the
argument of the —3/2 power is always positive. Nine of the
ten bits of the new mantissa address are the second through
tenth most significant bits of the old mantissa. The tenth bit

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 9, SEPTEMBER 1985

of the address is the even/odd bit of the old exponent. Sepa-
rate new mantissa tables are required for even and odd old
exponents because, apart from a bias, the new exponent is
—3/2 times the old exponent. If the old exponent is even,
multiplication by —3/2 yields an integer; in this case, the old
mantissa is on the interval [1/2,1), and the new mantissa
table is constructed -accordingly. If the old exponent is odd,
one is added to it, and the old mantissa is divided by 2; in this
case, the new mantissa table is constructed assuming the old
mantissa lies on the interval [1/4, 1/2).

One further complication arises because the starting ap-
proximation must be a normalized floating-point number.
Allowing for odd old exponents, the old mantissa lies on the
interval [1/4,1). This interval is mapped onto the interval
(1, 8] by the function x ~*2; thus, 1, 2, 3, or 4 must be added
to the new exponent, depending on the value of the new
mantissa. Actually, the case of bias = 4 never arises because
the midpoints of intervals are used in the new mantissa table.
The amount by which the new exponent must be biased is
encoded in the bottom two bits of the new mantissa and is
used in forming the new exponent address.

The new exponent address consists of the 8 bit old ex-
ponent and the 2 bit exponent bias from the new mantissa.
The elements of the table are (—3/2) (oldexponent) + bias if
the old exponent is even, and (—3/2) (oldexponent + 1) +
bias if the old exponent is odd. The flow of data in the
process of computing the starting approximation is shown
in Fig. 5.

THE CONTROLLER ENGINE

The Orrery controller has two purposes: 1) storing, se-
quencing, and broadcasting the microcode instructions, and
2) communicating with the host computer. The commu-
nication with the host computer includes both the programs
and the data in the ring.

The microcode is broadcast by a rather elaborate state
machine, consisting of two coupled state machines, the
“microengine,” and the “nanoengine” (see Fig. 6). The mi-
croengine is responsible for generating those bits of the mi-
croinstruction that change only on microcycle boundaries: for
example, the top bits of the A, B, and D addresses, whether
or not the A, B, or D addresses are modified by the index
register, whether or not the index register is to be loaded or
is to count in this cycle, whether or not the host computer
should be awakened in this cycle, how the microengine
should compute its next state in this cycle, and what the
nanoengine should do in this microcycle. The nanoengine is
responsible for generating those bits of the microinstruction
that change on nanocycle boundaries: for example, which
16 bit chunk of a floating-point number is currently being
addressed,- which parts control the buses, the opcode that
must be sent to each execution unit, and other detailed logical
controls. The nanoinstruction also determines whether the
microengine is to be resumed in its sequence. There may be
up to 16 nanoinstructions for each microinstruction (although
we have found no use for long sequences of nanoinstructions

APPLEGATE et al.: A DIGITAL ORRERY

827

s Input floating point number 2.5
E
- <€
c E Mantissa Exponent g
s S S¢e
a Z A A x 2
won
[0J]1 0o 1000000000000 < <Joooo0o01 0]o0]
63 62 61 60 59 58 57 56 55 54 53 62 51 50 49 48 7 6 5 4 3 2 1 o0
- ~
New mantissa N4 — VY
table base (from nano) 4 'f
2 l 7 * .
7
N
,_L —
(o ofofoJo 1 0 0 0 0 0 0
V
U/,/
12
Address
4K X 16 RAM
New exponent table base
Data
(from nano)
18
New mantissa
-,

[01 0000001011000 1]

- |

S—

S

—

(o}
N

g PR

1/1 ofo 0 00 0 1t 0 of

o,
[o

N~

\/
12

Address

4K X 16 RAM

Data

[of]1 oo 000010110001 2200000000[1 1 1111 1]1]

63 62 61 60 50 58 57 66 B85 84.53 52 81 50 49 48

Output approximation ,252701

Fig. 5.

as yet). The formats of the micro- and nanoinstructions are
shown in Fig. 7.

The controller also contains the host-computer interface.
The host computer must be able to start and stop the Orrery,
to fill the microcode and nanocode memories, and to put data
into and extract data from the ring. The host interface is an
8 bit parallel bidirectional data bus controlled by eight paral-
lel control wires. Six of the control wires are set by the host
and two are set by the Orrery. The host uses five of the six
control wires to set up a port instruction and the remaining
wire to strobe that instruction into the Orrery, which then
acknowledges the port instruction with a handshake on one of

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Error 2 X 1074

Initial approximation.

its response wires. The other response wire is used by the
Orrery to asynchronously call the attention of the host. The
port instructions allow the host to change the values of special
control registers and to set up or read out microcode instruc-
tions or ring data from 8 bit segments. All of this serial data
movement is organized around a long shift register.

CONSTRUCTION AND PACKAGING

We packaged the Orrery as one board for each planet com-
puter (see Fig. 8) and one board for the controller/host inter-
face, all plugged into a common back plane. The boards are

828

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 9, SEPTEMBER 1985

Backplane Connector

Backplane bus drivers

- ~ °
e Sw - e
4 ooad ioa® N\
I < n o '0: 2\
3 Index 3| | Index ‘t: Index
-
: adder o adder ol | adder
x
M { 1] 3
N -—
[[L ?
w
Index I . I ?an; .
— n
counter Micro instruction latch struction
latch
f py 9] 9| ©
o| & §| &
=] €| o 8 &
— S| S 8l 8|
o *| x| <| =] © Nano op
z
< N\L—\ﬁ\ 2210 Sa $2 52 ¥
3 BX2K X8 ' 6X2KX8 System
S Microcode RAM e Nanocode RAM timing
£ 2 control
H -
@ -\ - - :\
Microcode Nanocode
address <—-CI::‘ address
register register
Selector
B n N\
L_m’::ﬁor
13
2 >
- °
3 -
s e In latch Out latch
<
16y 18\
‘ l FYDI.&
Je N~ N
A Y | Y
Host interface

Ring in

U

Ring out

Fig. 6. Controller engine.

a standard multibus outline, and the card frame and back
plane are standard multibus assemblies. The planet computer
boards have 70 packages on each, and the controller board
has 84 packages. The power dissipation is low, so cooling is
easily accomplished with muffin fans mounted on the card
cage. :

The separation of data and control in the Orrery is reflected
inthe packaging. The back-plane side of the circuit boards is
used for control signals, like pins being bused for instruction
broadcast (and for power distribution). The interplanetary
ring communication is provided by ribbon cable inter-

connects on the opposite side of the board (see Fig. 9), which
allows for simple expansion of a machine and rearrangement
of boards.

Since only one SIMD controller board was required, it is
constructed on a standard wire-wrap multibus board with
power and ground planes. The planet computers are assem-
bled in four-layer printed-circuit technology. The inner lay-
ers are power and ground planes, and the outer layers are
signal runs with 8 mil traces and 8 mil spacing. The boards
were made by MOSIS (Cohen [7], Lewicki et al. [15]) from
a symbolic description produced with the Earl (Kingsley

APPLEGATE et al.: A DIGITAL ORRERY

Microcode instruction
Field name Possible values
63 signal ready to host § No signal, signal { _

62-61 branch condition { normal, ring bit 15, attention,
index=15}{
680-48 | next-micro-address
47-44 index-literal ERCIH15
43 load-index-register § load, no load }
42 count-index { no count, count }
41-32 | . a-address-bits 11-2 § floating number address {

31 a-address-add-index § no index, index {

b-address-bits 11-2 § floating number address }

20 b-address-add-index § no index, index {
d-address bits 11-2 § floating number address {
9 d-address-add-index { no index, index {
opcode times 4 gives nanocode address

Nanocode instruction

Bits Field name Possible values

47 next micro instruction § continue nano, continue micro {
48-43 next nano address § 0 .. 15} (the high bits of the nano

address are constant throughout a
microinstruction.)

42-41 abd-chunk address §0538

40 a bus source { from memory, from d bus }

39 b bus source § from memory, from d bus {
38-37 d bus source § * +, fbox, neighbor's R buffer {
36-32 * operation § see HP documentation }

31 * clock _§ no clock, clock
30-26 + operation § see HP documentation {

| 28 + clock § no clock, clock {
24 f box in § no clock, clock {
23-21 | f bus part destination | { none, unused, unused, unused, old
mantissa, old exponent, new mantissa,
low byte buffer }
20-18 | f bus byte destination | { none, unused, unused, unused, R
buffer, F memory, D bus, high byte
buffer {
17-16 f bus source § F memory, byte buffer, A arg, B arg {
15-14 | f address select (bits | { literal, new mantissa, old exponent,
8-9) unused {

13-12 | f address select (bits | §{ unused, literal, old mantissa, old
0-7) exponent }

11-0 f literal address § literal address when selected {

Fig. 7. Microcode instruction formats.

[13]) computer-aided layout system. All of the logic of the
planet computers (with the exception of the HP SOS chips
and 74L.S244 output buffers for the HP chips) are 74 Fxxx
technology.

One of the reasons why this machine was so easy to bring
up is that each board has a good ground plane, so signals are
clean and there are no significant noise problems. Another
way we avoid noise problems is to have only slow signals on
the back plane. There are no signals on the back plane that
change more often than 200 ns, except the system clock,
which has a cycle time of 200 ns and a duty cycle of about
50 percent. The planet boards need many signal transitions
and time references in each 200 ns interval. These signals are
derived on each planet board independently with a lumped
parameter delay line, although all these signals are entrained
by the 200 ns system clock. Another design principle that we
followed to improve reliability is that all registers are posi-
tively timed. We do not use the standard technique of clock-
ing a register on data that are allowed to change on the same
clock edge. This conservatism costs a bit in hardware and in
speed, but the insensitivity of the design to skew and other
timing problems is well worth the price. In fact, we are
pleased to report that, although the machine was designed for
a 200 ns cycle time, we have been running the machine with
a 150 ns clock without any sign of unreliable behavior.

829

Fig. 8.

The planet computer board.

REsuLTS

We have measured the performance of the Orrery on the
problem of Cohen, Hubbard, and Oesterwinter [6] — a high-
precision integration of the orbits of the outer planets
(Jupiter, Saturn, Uranus, Neptune, and Pluto). This can be
configured as a five-body problem in heliocentric coordi-
nates, or it can be configured as a six-body problem in
center-of-mass coordinates. Tremaine (private communica-
tion) has run the heliocentric problem on a DEC VAX-11/780
in Fortran. The VAX does a 40 000 year integration in about
1 h of CPU time. The Orrery, configured with six planet
boards to do the problem in center-of-mass coordinates, does
the same integration in about 100 s (using the 150 ns clock).
This makes each board about 6 VAX equivalents, and thus,
a full 10-board Orrery is about 60 VAX equivalents.

WHAT WE DID WRONG

Although the Orrery is a good computer, there are a num-
ber of bad choices we made in the design. Some of these are
minor points which could easily be fixed; others are more
‘major—fixing them would require a significant redesign.

830

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 9, SEPTEMBER 1985

Fig. 9. The digital Orrery.

We never use the function box to compute a binary func-
tion, thus it need not latch both the A and B arguments. In
addition, the interplanetary communications need not go
through the function box. We could have the function box
latch the A argument and the communications latch the B
argument, thus decoupling them and allowing the com-
putation of a function to go on in parallel with commu-
nication. Such a modification would marginally improve the
performance and reduce the chip count on the planet board.

A more serious problem is that we did not make any flex-
ible provisions for conditionals computed on the planet com-
puters to influence the flow of control in the controller. The
only planet board condition that the microcode can currently
branch on is the high bit of the value on the interplanetary
ring. (This can be used to look at the sign of a floating-point
number being passed on the ring.) We should have allowed
for more general conditionals, communicated by open-
collector logic on the back plane. These would be useful for
testing for error conditions such as floating overflow or un-
derflow, or for changing step size when locally determined
to be necessary by a planet computer. This change is easy,
and we may patch our planet computers to put out such
information.

A much more serious problem is that we currently have no
good way of implementing higher precision computation than
the 55 bit precision provided by the HP parts. This is a real
problem in that the high-order integrators we are using are
sensitive to roundoff error in the low-order bits. In particular,
Cowell’s predictor is of the form

Xn+1 = 2xn @ Xn—1 @ hZ[COGn o C1Qp-1 e Cmarhm]

where x; are the positions and a; are the associated accelera-
tions. To get high accuracy with this scheme we must store a
high-precision value for x;, and we must perform some of the

operations (marked with a “O”) in high precision. Because,

we do not have any built-in mechanism for high-precision
computation, we use an expensive procedure (see Knuth
[14, pp. 220, 221, Theorems B, C]) to do the required
high-precision computations. These few high-precision
computations cost about 20 percent of the total time used in
integrating orbits. Prior thought would have revealed this
problem early in the design when we could have done some-
thing about it. (@# %!)

The controller could be significantly improved, as well.
The current controller design does not allow similar program
segments to share code. What is needed is a mechanism for
microcode subroutines, and a set of base registers to point at
the segments of memory that are the arguments of those
subroutines. This change will be necessary to allow the ma-
chine to manipulate many particles on each board. We cur-
rently must have multiple copies of almost identical programs
in the microcode memory to manipulate multiple particles on
each board. Thus, the number of particles we can handle is
limited by the amount of microcode memory available.

ACKNOWLEDGMENT

The authors are grateful to the Hewlett—Packard Company,
Cupertino Integrated Circuits Organization (HP-CICO), for
supplying the special floating-point adder and multiplier
chips which made this project possible. F. Ware, W.
McAllester, and D. Zuras of HP-CICO took great interest in
this project. They were helpful and supportive. They pro-
vided the necessary documentation, and they made them-
selves available to answer questions about the use of their
chips. In addition, Hewlett—Packard Laboratories supplied
computation in support of the design process. The authors
also thank K. Fry and D. Cohen of the MOSIS crew for
fabrication of the planet computer printed circuit cards.
T. Knight and S. Tremaine of M.I.T., and J. Lamping of
Stanford participated in initial discussions of the feasibility

APPLEGATE et al.: A DIGITAL ORRERY

and uses for such a computer. The authors thank B. Heepe for
drawing the diagrams. The initial impetus to make such a
machine came from reading the work of J. Wisdom on the
Kirkwood gaps in the asteroid belt.

REFERENCES

[1] W.J. Bouknight et al.,
p- 369, 1972.

[2] D. Brouwer, “The theory of orbits in the solar system and in stellar
systems,” in Proc. IAU Symp. 25, G. Contopoulos, Ed. New York:
Academic, 1966.

[3] D. Brouwer and G.M. Clemence, Methods of Celestial Mechan-
ics. New York: Academic, 1961.

[4] B.V. Chirikov, “A universal instability in many-dimensional oscillator
systems,” Phys. Rep., vol. 52, p. 283, 1979.

[5] C.J. Cohen and E.C. Hubbard, “Libration of the close approaches of
Pluto to Neptune,” Astron. J., vol. 70, no. 10, 1965.

[6] C.J.Cohen, E. C. Hubbard, and C. Oesterwinter, “Elements of the outer
planets for one million years,” in Astron. Papers Amer. Ephemeris Nau-
tical Almanac, vol. XXII, pt. I, U.S. Naval Observatory.

[7]1 D. Cohen, “The MOSIS story,” in Proc. 4th Jerusalem Conf. Inform.
Technol., IEEE cat. 84CH2022-2, 1984, p. 650.

[8] P.H. Cowell and A.C.D. Crommelin, “Investigation of the motion of
Halley’s Comet from 1759-1910,” in Appendix, Greenwich Obser-
vations 1909, Bellevue, England: Neill, 1910.

“The Illiac IV system,” Proc. IEEE, vol. 60,

[9] R. Greenberg and H. Scholl, “Resonances in the asteroid belt,” in Aster-
oids. Tucson, AZ: Univ. Arizona Press, 1979, p. 310.
[10] P. Goldreich and S. Tremaine, “Dynamics of planetary rings,” Annu.

Rev. Astron. Astrophys., vol. 20, p. 249, 1982.

[11] R.W. Hamming, Numerical Methods for Scientists and Engineers.
New York: McGraw-Hill, 1973.

[12] R.H.G. Hellerman, “Self-generated chaotic behaviour in nonlinear me-
chanics,” in Fundamental Problems in Statistical Mechanics V, E.G.D.
Cohen, Ed. New York: North-Holland, 1981.

[13] C. Kingsley, “Earl: An integrated circuit design language,”

Comput. Sci., Calif. Inst. Technol.,

May 1982.

D.E. Knuth, The Art of Computer Programming, Vol. 2.

MA: Addison-Wesley, 1981.

[15] G. Lewicki, D. Cohen, P. Losleben, and D. Trotter, “MOSIS: Present
and future,” in Proc. M.I.T. Conf. Adv. Res. VLSI. Dedham, MA:
Artech Books, 1984, pp. 124-128.

[16] P.E. Nacozy and R.E. Diehl, “On the long term motion of Pluto,”

Astron. J., vol. 83, p. 522, 1978.

C. Oesterwinter and C. J. Cohen, “New orbital elements for the moon and

planets,” in Celestial Mechanics 5. Dordrecht, The Netherlands: D.

Reidel, 1972, pp. 317-395.

H. Scholl, “Recent work on the origin of the Kirkwood gaps,” in Dynam-

ics of the Solar System, R. Duncombe, Ed. Dordrecht, The Nether-

lands: D. Reidel, 1979.

[19] E.L. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics,

Perturbed Two-Body Motion. New York: Springer-Verlag, 1971.

V. Szebhely, Theory of Orbits, The Restricted Problem of Three Bod-

ies. New York: Academic, 1967.

[21] E. A. Ware, “A 64-bit floating point processor chip set,” in Proc. ISSCC,
vol. 24, 1982.

[22] J.G. Williams and G.S. Benson, “Resonances in the Neptune—Pluto
system,” Astron. J., vol. 76, p. 167, 1971.

[23] J. Wisdom, “The origin of the Kirkwood gaps, etc.,” Astron. J., vol. 87,

p. 577, 1982,

—, “Chaotic behavior and the origin of 3/1 Kirkwood gap,” Icarus,

vol. 56, pp. 51-74, 1984.

Dep.
Pasadena, Tech. Rep. 5021:TR:82,

[14] Reading,

[17]

(18]

[20]

[24]

James H. Applegate received the B.S. degree in
astrophysics from Michigan State University, East
Lansing, in 1976 and received the Ph.D. degree in
physics in 1980 from the State University of New
York at Stony Brook.

He was a Postdoctoral Fellow at NORDITA, Co-
penhagen, Denmark, and then became a Bantrell
Research Fellow at the California Institute of Tech-
nology, Pasadena, from 1981 to 1984. He is now
Assistant Professor of Astronomy at Columbia Uni-
versity, New York. His principal research inter-
ests lie in dense-matter astrophysics and in stellar dynamics.

831

Michael R. Douglas received the B.A. degree in
physics from Harvard University, Cambridge, MA,
in 1983. He is currently working on the Ph.D. degree
in physics at the California Institute of Technology,
Pasadena.

His research interests include theoretical particle
physics, programming languages, and artificial
intelligence.

Yekta Giirsel was born in Samsun, Turkey. He re-
ceived the Ph.D. degree in theoretical physics from
the California Institute of Technology, Pasadena.

He worked in the Gravitational Physics Labora-
tory at the California Institute of Technology. He
now works on computer architecture design in the
Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology
(M.L.T.), Cambridge.

Peter Hunter was a technician in the Department of Computer Science Labo-
ratory at the California Institute of Technology, Pasadena. He has worked on
a number of architecture and layout projects. He did most of the printed-circuit
layout for the Orrery planet computer card.

Charles L. Seitz (S’68-M’69) received the B.S.,
M.S., and Ph.D. degrees from the Massachusetts
Institute of Technology (M.1.T.), Cambridge.

He is now a Professor of Computer Science at the
California Institute of Technology, Pasadena, where
his research and teaching activities are in the areas of
VLSI architecture and design, concurrent com-
putation, and self-timed systems. Prior to joining the
faculty of the California Institute of Technology, he
worked as an industrial consultant from 1972 to
1977, principally for the Burroughs Corporation,
was an Assistant Professor of Computer Science at the University of Utah, Salt
Lake City, from 1970 to 1972, and was a Member of the Technical Staff of the
Evans and Sutherland Computer Corporation from 1969 to 1971. While at
M.ILT. he was an Instructor of Electrical Engineering.

Dr. Seitz is a member of the Association for Computing Machinery and of
the IEEE Computer Society, and was the recipient of the Goodwin Medal
for “conspicuously effective teaching” at M.I.T.

Gerald Jay Sussman (M’80) received the S.B. and
Ph.D. degrees in mathematics from the Massachu-
setts Institute of Technology (M.I.T), Cambridge, in
1968 and 1973, respectively.

He has been involved in artificial intelligence re-
search at M.I.T. since 1964. He has also worked in
computer languages and in computer architecture.
He spent the 1983-1984 academic year in the Theo-
retical Astrophysics Group at the California Insti-
tute of Technology, Pasadena. He is presently a
Professor of Electrical Engineering at M.L.T.

Dr. Sussman has recently coauthored (with H. Abelson and J. Sussman) the
introductory computer science textbook used at M.L.T.

