
An Attempt at a Gentle Introduction to Hopf Algebras
for Syntax∗

Avery Andrews
ANU, Sep 27 2023

Marcolli et al. (2023b), henceforth MCB, and Marcolli et al. (2023a),
henceforth MBC, use a kind of mathematical system called a Hopf alge-
bra to present certain aspects of (recent) Minimalist syntactic theory in a
new way. Hopf algebras are normally encountered by people at a consid-
erably later stage of mathematical development than the average ‘ordinary
working grammarian’1 is likely to have attained, and that would most def-
initely include me. However, after a certain amount of poking around, it
began to seem evident that they really were not that much different from
polynomials in multiple variables as encountered in secondary school. So
here I will attempt to present the basics, assuming secondary school algebra
plus typical ‘math for linguists’ course content, including the rudiments of
abstract algebra (groups, rings and fields, as terminology for things you have
already encountered), basic set theory including functions, composition of
functions, and cartesian products, isomorphisms and homomorphisms, and
the Σ notation for sums.

There are four sections. In the first, we develop algebras as found in
Hopf algebras as an elaboration of polynomials in SSA. In the second, we
consider the tensors, in third, coalgebras, and begin on their integration
with algebras to produce bialgebras. The fourth section finishes this, and
waves a hand at what you need to add to a bialgebra to get a Hopf algebra,
which the system developed in MCB already has. There is then an appendix
detailing a few typoes in MCB.

A particularly useful source for further study is Frederico Ardila’s lec-
tures from 2012, with notes, homeworks and more at https://fardila.com/Clase/Hopf/lectures.html
and lectures starting at https://www.youtube.com/watch?v=FzVhjCRuXus.2

1 Polynomials in SSA vs. Algebras in MCB

Secondary school algebra (SSA) polynomials are made of numbers and vari-
ables, with operations of addition and multiplication, and the taking of
additive and multiplicative inverses. In the contexts we will be using them

∗The major acknowledgement here so far would be to András Kornai for running a
course on this topic over Zoom, and Blanka Kóvër for discovering the Ardila lectures, and
also LaTeXing and giving a presentation on Tim Gowers’ very useful discussion of tensor
products

1Term by Chris Potts http://ordinaryworkinggrammarian.blogspot.com/2023/.
2The webpage contains links to the lectures, but they don’t seem to load; get them

from youtube.

1

https://fardila.com/Clase/Hopf/lectures.html
https://www.youtube.com/watch?v=FzVhjCRuXus
http://ordinaryworkinggrammarian.blogspot.com/2023/

in, the numbers would tend to be called ‘scalars’, and can be taken to be
either the so-called ‘field’ Q of rational numbers, or ‘ring’ Z of integers.3

1.1 Scalar Rules

The operations on scalars are stipulated to obey a variety of laws, which are
all true in terms of elementary school arithmetic:

(1) Addition Laws (where a, b, c are arbitrary numbers/scalars):

a. Addition is commutative: a+ b = b+ a

b. Addition is associative: (a+ b) + c = a+ (b+ c)

c. There is an ‘additive identity’ 0, such that a+ 0 = a

d. Evey a has an ‘additive inverse’ −a, such that a+(−a) = 0. Usually,
a+ (−b) is written a− b.

A system in which all of these laws, and possibly others, are obeyed is called
a ‘commutative’, or ‘Abelian’ group.4

Moving on to multiplication, we find these laws:

(2) Multiplication Laws (where a, b, c are arbitrary numbers/scalars):

a. Multiplication is commutative: ab = ba

b. Multiplication is associative: (ab)c = a(bc)

c. There is an ‘multiplicative identity’ 1, such that a1 = a

d. Every a other than 0 has an ‘Multiplicative inverse’ 1
a
, such that

a 1
a
= 1. Usually, a1

b
is written a

b
.

So we see that the nonzero scalars also form an Abelian group.
And, finally, these two operations are tied together by the Distributive

Law:

(3) Distributive Law:
a(b+ c) = ab+ ac

3MCB starts by talking about a vector space over Z, which is terminologically wrong,
because the equivalent of a vector space over a ring is a ‘module’, but later switches to
Q, while MBC refers to Q from the beginning. I don’t think this makes any substantive
difference at all, although it is certainly distracting to people who are not very developed
as mathematicians.

4Non-commutative groups exist, and are extremely important, but some of the other
laws need to be made more complicated to make up for the lack of commutativity.

2

Versions of this one play a large role in developments to come.
It is perhaps worth noting that I am being a bit sloppy about parentheses:

somebody who was being more meticulous would say that all the operations
put parentheses around the items operated on or combined, but that we
leave off the outermost ones, and any others which make no difference to
the result, given the laws. That is, we can write a+b+c instead of (a+(b+c))
or ((a+ b) + c), which are identical due to the associativity of addition.

Much of the subject matter of ‘abstract algebra’, covered by undergrad-
uate math majors, often also to some extent in math for linguists courses),
is about what happens when various of these laws are missing. Some more
terminology:

(4) a. If they are all present, we have a ‘field’. The fields you run into
in SSA would be the rational numbers (Q), the real numbers, and
perhaps the complex numbers. (These too have their fancy one-
letter symbols, but they are irrelevant here.)

b. If everything is present but perhaps multiplicative inverses, we have
a ‘commutative ring with identity’, of which the most prominent
example would be the integers (Z). So every field is also a commu-
tative ring with identity.

c. Losing commutativity of multiplication and the multiplicative iden-
tity, we get rings in general, not relevant here.

A useful consequence of the ring axioms is that 0a = 0 for any a, which can
be proved by the following chain of equalities, each with its justification:

(5) 0a=(1− 1)a additive inverse
=1a− 1a distributive law
=a− a multiplicative identity
=0 additive inverse

We’re not going to spend much time on proofs, but this is a useful one to
have under your belt, and a basic abstract algebra course will introduce
many more like this.

1.2 Vector Spaces

The next step in our climb is ‘vector spaces’, where we will start with some-
thing very familiar to most children, ’concrete collections’, such as of Barbie
dolls & accessories, Star Wars figures, etc (and, on a more adult level, collec-
tions of nuts, bolts and screws). The critical thing here is that you are not
just interested in the number of objects in the collection, but the number
of objects of each kind. 2 Luke Skywalkers & 1 Princess Leia, or whatever.
Then we can plausibly describe the collection as a kind of sum of products
of scalars and a kind of item:

3

(6) 2LS + 1PL + . . .

A practical reason for describing it in this way is that we might want to know
how many figures of all kinds are in it, which we can ascertain by adding
up the numerical coefficients. In math, such things tend to be called ‘formal
sums’ (ignoring the scalar multiplications), and you can learn techniques for
managing them abstractly from books on Universal Algebra,5 but perhaps
a term such as ‘typed sums’ would be better, since what they are about is
counting the number of things of various kinds that are currently of interest.
The idea of ‘sum’ becomes relevant when we group all the types under a
supertype, and want to know how many items of that type the collection
contains.

In fact, at this point, we almost have something called a ‘Module’, but
for that, one more thing is needed: negative coefficients. These would not
appear in descriptions of a normal childs’ collection, but a more advanced
and adventurous collector might do something like promise to provide a Han
Solo Frozen in Carbonite at some future date, believing he could source a
relatively cheap one. Before he has actually obtained it, we could describe
his collection as involving a term −1HNFiC. We now have a ‘module over
the (ring of) integers Z’. Modules over the integers share a lot of behavior
with ‘vector spaces’, the difference being that the latter involve a field rather
than a ring.

A real life example of a concrete type-based vector space as opposed to
a module would be a collection of cooking ingredients, involving fractional
amounts of various kinds of flour, etc, with perhaps some negative coeffi-
cients arising from the cook borrowing and using some ingredients that they
will have to provide replacements, no substitutions allowed. Here the field
could be the rational numbers Q, since there is probably no concrete use for
non-rational real amounts such as

√
2 tablespoons of butter. I am not (yet)

aware that negative coefficients play any role in the syntactic application of
Hopf Algebras, but they do play a role in defining the ‘antipode’, the feature
that distinguishes Hopf Algebras from the more general Bialgebras, as we
will mention later. The antipode also has not been assigned any definite
role in the syntactic application (so far, as far as I know).

So much for examples, now for a definition. For a module/vector space
you need:

(7) a. an abelian group (recall that group needs an additive identity and
inverses for all). For a short time, we will put little arrow symbols
over vectors, eg ~v, ~w.

b. a ring/field, called ‘scalars’, usually represented here by r, s, t.

5Such as Burris & Sankappanavar (1981), or the more hardcore Grätzer (1978).

4

c. There is a ‘scalar product’ such that for scalar r and vector ~v, r~v
is a vector.

d. 0~v = ~0 (the identity element of the group)

e. 1~v = ~v

f. (rs)~v = r(s~v)

g. (s+ r)~v = r~v + s~v

h. r(~v + ~w) = r~v + r ~w

When all this holds, we say that we have a vector space/module over the
field/ring. Note that (d) allows us to omit terms with 0 as scalar coefficient
from the typed sums, and (e) allows us to leave off 1 as scalar coefficient.
E.g. LS = 1LS.

A very important feature of vector spaces is that they have one or more
‘bases’, which are sets of elements such that:

(8) a. Any element of the space can be expressed in a unique way as a
formal sum of members of the basis.

b. (a) ceases to hold if any member of the basis is dropped.

A basis for a typed sum vector space will be the number of different types
that are available in it, since any collection can be expressed as a finite sum
of scalar multiples of the types. For the workspace algebras to come, the
basis will be infinite, while for Star Wars figures collections, it is presumably
finite, at least at any one time (and will probably not grow indefinitely in
the future).

And the most important fact about bases is that they all have the same
number of elements, called the ‘dimensionality’ of the space. The proof of
this is a significant part of courses on linear algebra, although how it is done
in general is well beyond the scope of this presentation.

Another point is that any field or ring with identity is a vector space or
module over itself, since all the laws of (8) hold. This is sometimes useful.
(What will be the dimensionality of this space?) Observe also that the
elements of a module or vector space do not cease to be such if there is also
a way of multiplying them rather than just adding.

1.3 Algebras and Variables

And that is exactly what we do to get an ‘algebra’ (over a field or ring), as
a term for a specific type of mathematical system, alongside of groups, rings
etc., rather than a subject in the math curriculum). And the non-trivial
algebra, in this sense, that most people encounter in secondary school is the

5

one you get by adding ‘variables’ to the system, to produce polynomials.
When these are presented in school, it is not really all that clear (or at any
rate, wasn’t clear to me), what they ‘really’ were, but it is clear that they
are meant to be manipulated in accord with pretty much all of the rules
applying to ordinary numbers, with the aim of reducing expressions to the
simplest possible form that is useful for finding solutions to equations. Eg
4 + y = 3x and be converted into y = 3x − 4, which can then be used
to easily program a computer to produce a graph of solutions for some
values of x. They are in fact genuine formal sums, with unrestricted rather
than only scalar multiplication thrown in (and I cannot (yet) think of any
concrete manifestation of them in everyday life and experience; note that
multiplication of inventories, collections, etc. by each other does not make
sense).

The basic idea of an algebra over a field or ring is that it is a system that
is simultaneously a ring (not necessarily commutative) and a vector space
or module. ‘Simultaneously’ means that we can multiply the vectors (if only
formally), rather than just add them. So note that there will be two rings
involved, the base ring/field, participating in scalar multiplication with the
vectors, and the multiplication of the vectors. In SSA polynomial algebras,
these look the same, but in the ‘workspace algebra’ proposed for syntax,
they are completely different.

There are however a number of different definitions of algebras in circu-
lation, whose relationships are discussed by Ardila (Lecture notes pg 7-9).
For SSA polynomials, it is probably best to use his simpliest/least flexible
definition:

(9) The vector space (or module) A is a K-algebra if

a. K ⊆ Z(A), Z(A) being the subset of A for which multiplication
with anything in A is commmutative.

b. 1K = 1A (the multiplicative identities of the ring and vector space
are the same)

This is very natural, because we want to think of SSA polynomials as con-
sisting of ordinary numbers with variables thrown in.

It might be useful however to consider them as vector spaces, to help
develop Ardila’s second characterization of algebras, which is more suited to
the ‘workspace polynomials’ found in MCB. Suppose we have one variable,
x, and disallow multiplication of any expression containing a variable. Then
we have a 2 dimensional space, because anything in it can be expressed
as a sum of a scalar and a scalar multiplied by a vector, but losing either
kind of element will leave somethings unexpressable. Then, if we allow
multiplication of expressions containing variables, the dimensionality of the
vector space goes to infinite, since we have expressions in x, x2, x3, But

6

we can also regard the expressions without any variable as actually having
the variable component x0 = 1, which makes at least some sense because
we have a more uniform system and characterization of the basis: x with a
non-negative exponent (and we could let in negative exponents if we wanted
to).

This makes the vectors more different from the scalars, making a different
characterization (Ardila’s 2nd) natural, although not truly required:

(10) (The ring) A is aK-algebra if there is a ring homomorphism u :K → A

such that:

a. u(K) ⊆ Z(A)

b. u(1K) = 1A

In case you have forgotten the notation u :K → A, it says that u is a function
from K to A, and ‘ring homomorphism’ means that it preserves the addition
and multiplication of the field (or commutative ring with identity) K. That
is:

(11) a. u(r + s) = u(r) + u(s)

b. u(rs) = u(r)u(s)

We can now regard u, so named because it is the ‘unit’ of the algebra,
as the map taking r to rx0. It should be evident that we can apply this
characerization to cases where we want to consider A as an extension of K
by taking u to be the identity map, from K, a commutative subring of A
that contains the identity, into all of A.

A slight subtlety is that to regard A as a vector space over K, we might
want to define scalar multiplication as:

(12) r~a = u(r)~a
where multiplication on the right is the one in A.

This lets us think of the scalars and vectors as different kinds of things, for
which a multiplication does not exist by any kind of conceptual necessity.

1.4 Workspaces in Polynomials

In SSA, when variables are multiplied, they just sit next to each other in
a formal combination with no ‘substantive meaning’, only that provided
by the magic of equivalence classes in Universal Algebra, a topic we won’t
go into here.6 Whereas, if we multiply two scalars, we get another scalar.

6Until, of course, we substitute numerical values for the variables, in which case they
get added and multiplied in the normal way. Substitution is another complex topic we
won’t look into.

7

In MCB polynomials, instead of SSA variables, we have workspaces, and
there is again a ‘multiplication’ with a substantive meaning, usually called
a ‘product’, but a different in nature than multiplication of scalars. This
product is ‘disjoint union’. Unfortunately, to procede, it is probably best
to spend some time contemplating what workspaces actually are, a topic
presented with less than the highest possible degree of clarity in MCB.

The basic idea is that they are collections of binary trees of some kind,
but Chomsky has always been enthusiastic about the use of sets, with the
result that his current idea of the output of Merge has been that Merge(X,Y)
= {X,Y }. There are some recent changes to Minimalism involved in this, for
example that labelling is no longer accomplished by ‘projecting’ a label into
the structure produced by Merge, but simply by searching the items merged
(Chomsky et al., 2019). But physicists and mathematicians writing on this
topic seem to prefer graphs, which are sets of nodes connected by links (e.g.
Ardila and Foissy (undated)). One reason for going with graphs is that
people have a reasonable amount of experience working with them, including
representing trees with them, whereas there clearly needs to be some work
done on using raw sets to build trees as components of workspaces. For
example, to implement trees in a workspace, there needs to be a constraint
that a set can appear as a subset of at most one other set in that workspace
(one, if it’s a daughter of something, none, if it’s the root of a tree). I won’t
speculate about what more needs to be done; somebody should do it, but it
would be an unnecessary distraction for Hopf algebra beginners.

But MCB’s trees have two further restrictions over those of Foissy:

(13) a. The trees are strictly binary (a node has 2 daughters, or none).

b. If a node has no daughters, it has ‘content’ of some kind, presum-
ably provided by the lexicon.

There is a minor terminological issue associated with (b): MCB describe
the terminals as being either ‘features’, or ‘lexical items’, without clarifying
exactly what they mean. My suggestion is that the lexical items should be
roots in the sense of Harley (2014), the features, everything else. This is
consistent with the specific examples MCB provides.

Here are a few sample workspaces, aka forests:

(14) a.

b. John

c.

◦

n John

◦

n John

8

d.

◦

n Percy

◦

v trip

(a) is the empty forest (the 1 in the algebra), (b) is the root ‘John’, (c) two
copies of ‘John’ combined with the categorizer for ‘noun’, and (d) a noun
and verb in a forest unmerged. Observe, for the reason noted above, that
nodes with daughters have no inherent properties, only such as can be found
by searching their daughters.

But there is however a foundational issue we should consider before pro-
ceeding, which is that a workspace is not just a set of trees, but an iso-
morphism class of such collections, constituted by all such sets that are
isomorphic (according to whatever definition of isomorphism your account
of the graphs makes appropriate). This is a problem because due to Russell’s
paradox, a class cannot be a member of a set. The most straightforward fix
for this problem is to choose our nodes from some infinite set that is gener-
ally accepted as existing, such as the natural numbers. Evidently, nobody
actually worries about this issue, so neither shall we (“If it is a problem for
everybody, it is not a problem for you” – wise advice to PhD students (and
probably, these days, ECRs) from Howard Lasnik, once upon a time).

So we finally define the multiplication/product. This is simply ‘disjoint
union’, which is set union of sets that have no members in common, with
replacement of any sets that do overlap with other, isomorphic ones that
don’t. This is actually a bit of an intrusion from category theory, where it
is a basic idea that isomorphic objects are essentially the same, and can and
should be regarded as equal for (almost) all practical purposes. So we can
immediately see that (a) above is the multiplicative identity, and that (c)
above would be the results of multiplying (15) below by itself:

(15) ◦

n John

It should be evident that this product is intrinsically associative and com-
mutative, and also has an identity, the empty workspace. However it does
not have inverses: once something is in a workspace, there is no way to re-
move it. The definition of an algebra requires the product to be associative
and have a unit, but not for it to be commutative, only for there to be a
subset of the algebra for which the product is commutative, into which the
field or commutative ring with unity can be embedded.

However, we have only defined the product on pairs of workspaces, not
the whole algebra. To fix this, we extend it to the entire algebra by decreeing
it to be ‘bilinear’, which means ‘linear’ in each of its two arguments/inputs,

9

but since workspace and SSA polynomial algebras are commutative, we only
have to worry about one, say, the first, meaning that the following two
equations hold, where p, q, r are workspace polynomials (including scalars),
a, b scalars only:

(16) a. p(q + r) = pq + pr

b. a(pq) = (ap)q

In the more general case, where the product does not have to be commuta-
tive, we would need two more equations to manage the second input to the
product.

2 Tensors

Further progress demands that we get more comfortable with tensors, which
can be seen as a way of ‘multiplying’ (in yet another sense of multiplication)
two vectors spaces (or modules) to get a third one, along with a way of
multiplying the vectors of the original two spaces to get vectors in the third.
This form of ‘multiplication’ is completely different from the multiplication
in a ring or algebra, since it is from two systems to a third, rather than within
a single system. Tensors are a bit of a stumbling block for many people,
given the prevalence of documents and lectures such as Gowers (undated)
concerning how to lose your fear of them, but the good news for us is that
we can stop with the easier characterization of tensor products in terms of
bases rather than the more advanced one that is less reliant on them. We will
also present the Universal Property of the tensor, and showing how it allows
linear mappings to be tensored, as commonly encountered in presentations
of Hopf algebras. This is a significantly more advanced kind of topic than
what we have attempted previously.

2.1 Bases

We have already observed that vector spaces have a ‘basis’, and, happily
for us, workspace algebras have a very natural, although infinite, basis, the
workspaces.7 These and many other vector spaces furthermore have the
property that any of their members can be expressed in a unique way as a
finite sum of basis elements. A further point is that if our algebra is over Z,
then its basis is also unique, but if it is over Q, it is only ‘natural’, since we

7On the other hand, 3d space, although having a dimensionality of only 3, lacks any
truly natural choice of bases, since any three perpendicular vectors of length one, with
their origin anywhere, will serve as an adequate one, although in certain situations, some
particular three might stand out as the best choice. Lots of entertainment here for a linear
algebra course, with applications to computer graphics.

10

can in a basis substitute for any workspace a scalar multiple of that element,
and then get the original element back, if we want it, by division.

In linear algebra, particular importance is attached to the ‘linear’ func-
tions from one vector space to another; these are the functions that obey
the following two laws, already stated for the product above, but here put
in a more general form:

(17) f is a linear function from vector space V to vector space W over the
field F iff, for all v,w ∈ V, a ∈ F :

a. f(v + w) = f(v) + f(w)

b. f(av) = af(v)

Proving that a function is linear tends to be an exercise in applying the
distributive and associative laws.

A very important result is that the linear functions have the property
that if we define them on the basis elements of an vector space, we have
defined them on every element of that vector space. And, since we can
restate any workspace polynomial as a sum of scalar products of workspaces,
once the value of a linear function is determined for the workspaces, it
is thereby determined for the entire workspace algebra (since the algebra
product doesn’t create any new workspaces that wouldn’t exist anyway).
And every assignment of values to the workspaces defines a linear function
on the workspace algebra.

Linear functions have many interesting properties, and it would further-
more be handy, for various reasons, to be able to turn bilinear functions
into linear ones. And there turns out to be a way to do this: tensor prod-
ucts. These, with their intimidating symbol ⊗, have a bit of a reputation,
as evidence by the existence of various documents, sections of lectures etc.
devoted to helping people ‘lose their fear of them’.8 Happily for us, we
need only the easiest path to tensors, through bases. The basic facts are as
follows.

Suppose vector spaces V and W have bases B and C respectively, such
that any member of either space can be expressed as a finite linear combi-
nation of elements of its basis. Then it is the case that:

(18) a) There is a vector space notated as V ⊗W whose basis is the set
of ordered pairs whose first member is from B and second from
C. The basis elements are conventionally written as b ⊗ c, for

8There are a considerable variety of things called ‘tensors’ floating around in math, for
example, in even the simplest forms of linear logic; exactly what unifies them sufficiently
to motivate the use of a single term is an interesting question to which I don’t really
know the answer, but part of it seems to me to be that it is sort of like multiplication
but not necessarily commuative, and produces an object that is in some intuitive way
‘more complex’ than the combined ingredients, which often preserve a degree of partial
autonomy, but not full autonomy.

11

arbitrary basis elements b ∈ B, c ∈ C. But they are really just
ordered pairs, and could be written <b, c>.

b) There is a bilinear function Φ taking a pair of vectors from V and
W into a single vector in V ⊗W , conventionally written v ⊗ w.

c) Any bilinear function from V andW can be expressed in a unique
way as Φ followed by a linear function from V ⊗W .

a) follows from the fact that there is a vector space consisting of all formal
linear combinations of the pairs, over the field. b) can be constructed as
follows: If v ∈ V , it can be expressed as the sum s1b1 + . . . s1bm, where the
si are scalars, the bi basis elements of V , and likewise, if w ∈ W ,it can be
expressed as t1c1+. . . t1cn. We can then define Φ(v,w) to be

∑
i,j(sitj)bi⊗cj .

Here we have used the summation notation, in which the indexes appear-
ing on the Σ and repeated on the terms are taken to range over whatever
limits are specified, explicitly or contextually, and the results added up.
Here the limits are contextually determined, i ranging from 1 to m, j from
1 to n. A very tedious notation without the Σ would be, where V has m

basis elements and W n:

(19) s1t1 + . . .+ s1tn + . . .+ smt1 + . . . + smtn

We need to show that Φ is bilinear, which means that the following four
equations hold, for v,w, z vectors and r a scalar:

(20) a. Φ(v + w, z) = Φ(v, z) + Φ(w, z)

b. Φ(v,w + z) = Φ(v,w) + Φ(v, z)

c. Φ(rv,w) = rΦ(v,w) = Φ(v, rw)

For (a), we have:

(21) Φ(v + w, z)=Φ((Σisibi) + (Σiribi),Σjtjcj) reexpress inputs
=Φ(Σi(si + ri)bi,Σjtjcj) sum shuffle
=Σij((si + ri)tj)bi ⊗ cj def. of Φ
=Σij(sitj + ritj)bi ⊗ cj distributive law
=Σij(sitj)bi ⊗ ai +Σij(ritj)ni ⊗ cj sum shuffle
=Φ(v, z) + Φ(w, z) reexpress output

The main driver of the proof is the distributive law of the field of the vector
space. The proof for (b) is the same, but with the sums in the second
argument of Φ rather than the first.

And for the first equation in (c) we have:

(22) Φ(rv,w)=Φ(r(Σisibi),Σjtjcj)
=Φ(Σirsiai,Σjtjbj)
=Σij(rsitj)bi ⊗ vj
=r(Σij(sitj)bi ⊗ cj)
=rΦ(v,w)

12

The second equation is the same idea. As a consequence, we can write out
the scalar coefficients in front of a tensor without indicating the grouping,
that is, sitjbi ⊗ cj instead of (sitj)bi ⊗ cj as above. This approach is used in
Ardila’s third definition of an algebra.

Note that the well-definedness of Φ, given bases for W and V , depends
on the fact that the vectors in W and V have unique representations as
linear combinations of basis vectors. If they didn’t, the construction would
not determine unique values for pairs of vectors w and v.

So what does Φ do? What it does is allow us to convert bilinear functions
from from the set of ordered pairs with first member in W and second in
V , called the cartesian product of W and V , symbolized W × V , into linear
functions from V ⊗W , and, furthermore do this in a unique way. For suppose
we have bilinear f :V ×W → Z. Then:

(23) f(u, v)=f(Σiribi,Σjsjcj)
=Σijrisjf(bi, cj)

But now we see that the value of f is determined by its values on the basis
pairs, so we get get the same values from a linear function f̃ :V ⊗W → Z

defined by setting f̃(bi ⊗ cj) = f(bi, cj) (recalling that a tensor of basis
elements can be regarded as an ordered pair). Therefore, for any v ∈ V ,
f(v) = f̃(Φ(v)), which would often be written with the ‘function composi-
tion’ symbol ‘◦’, where g ◦f means ‘the function defined by applying first f ,
and then g’. So we get the following statement of the extremely important
‘universal property’ of the tensor product:

(24) For any bilinear function f :U×V → W , there is a unique f̃ :U ⊗ V → W

such that f̃ ◦Φ = f

The difference between f and f̃ is slight enough so that people tend to forget
to notate it, according to Ardila.

For this reason, in presentations of algebras and Hopf algebras, the prod-
uct is sometimes presented as a bilinear function from the cartesian product
A × A of the algebra A, other times as a linear function from the tensor
product A⊗A.

I will close up this section by observing that tensoring obeys all the rules
for multiplication in SSA except for commutativity, and so therefore can be
regarded as a somewhat exotic form of multiplication, but one that exists for
all pairs of vector spaces, and takes things from pairs of vector spaces into a
third, rather than operating within a single system. It is also important to
note that b⊗ c can be regarded as essentially an ordered pair only if b and c

are elements of the bases, in which case the tensor is called a ‘pure tensor’.
Otherwise, they can be multiplied out as a sum of scalar products of pure
tensors, whereas mere ordered pairs have no multiplication.

‘Universal Property’ is a more sophisticated concept than what we have
previously encountered; what gives it its utility is that there is more than

13

one way to construct something that has the universal property of the tensor
product, but all such constructions have the property that they are isomor-
phic, so can be regarded as ‘essentially’ the same, even if they are not exactly
the same as delivered by the Axiom of Extensionality in set theory. Note,
in passing, that if a syntax teacher draws a syntax gree and starts talking
about ‘that tree’, they are probably really referring to the class of trees that
are isomorphic to (an abstract representation of) what they drew, rather
than the literal marks on the board at that place and time. The relations
between isomorphism and identity are investigated in a rather advanced sub-
ject called ‘Homotopy Type Theory’ (HOTT), which I have not managed to
get a grip on.

One use for the universal property of the tensor is the possibility of
defining a useful way of combining linear maps, which play a substantial role
in formulating Hopf algebras. Suppose we have two linear maps, f :U → V

and g :W → Z. Then we have a function designated f × g from U ×W to
V ×W , defined by applying f to the first member of a pair in U × V and g

to the second, and then sticking the results into an ordered pair, which will
be in W ×Z. So then we have ΦW,Z ◦ f × g :U × V → W ⊗Z. But now, by
the universal property of the tensor product, we can define f ⊗ g as:

(25) f ⊗ g = ˜ΦW,Z ◦ (f × g)

It would be rather tedious to get this defined by cranking through linear
identities, but, effectively, all this work is packed into the definition of Φ for
a given pair of vector spaces, plus a proof of the universal property, which we
can then just use without messing around with the details. Tensored linear
maps are rather frequently encountered in expositions of Hopf algebras.

A simple example that also introduces us to the use of diagrams in
category theory is a statement of the associativity of the algebra product,
which is written as ‘⊔’ in MBC. So here is the diagram:

(26)
A⊗A⊗A A⊗A

A⊗A A

⊔⊗IdA

IdA⊗⊔ ⊔

⊔

In spite of the fact that we already know what associativity is, quite a few
things about this might require explanation.

The easiest place to start is probably the two items on the right, con-
nected by a downward pointing arrow labelled with ‘⊔’. This posits a linear
map from A⊗ A to A, which is what the product is, according to the defi-
nition of an algebra. In general, arrows in diagrams designate functions or
‘function-like things’; for us, they will only designate functions. The hori-
zontal arrow along the bottom is the same story. The more challenging bits
start at the upper left corner. Here we have a triple tensor, which seems

14

odd because we have introduced tensoring as a binary operation, so might
expect to see either (A ⊗ A) ⊗ A or A ⊗ (A ⊗ A), or perhaps even both. I
suspect that the latter would be what would happen in a formally fussier
Category Theory presentation, but it is not really necessary, because the
two ways of building a triple tensor produce results that are isomorphic, so
the normal practice with (Hopf) algebras at least is to leave out the paren-
theses. But they are in a sense implicitly present with the label on the upper
arrow heading right: since ⊔ applies to a tensor, it takes the first two A’s,
while the third is processed by the identity function on A, designated IdA,
which does nothing, leaving A unaltered. This produces A ⊗ A, which the
rightmost downward arrow takes onto A. Then we have the same story with
the left downard arrow, except that IdA applies to the first A, ⊔ to the
second. Then, what the entire diagram says is that whichever path we take,
the results are the same, that is, both paths through the diagram describe
the same function. Such diagrams are widely employed in discussion of Hopf
algebras, including MCB.

Diagrams like this can be presented as rigorous formal objects, but also
understood as informal presentations of equations, in this case:

(27) ⊔ ◦ (⊔ ⊗ IdA) = ⊔ ◦ (IdA ⊗ ⊔)

Diagrams of this nature are a major feature of Category Theory, which we
won’t go into here, but a slowish introduction to basic category theory for
people who aren’t highly capable in math would be Barr & Wells (1999a),
while more capable people will probably prefer Awodey (2006).

3 Coalgebras

A Hopf algebra is two different species of mathematical system combined
into one, one of them is an algebra of the kind we have been discussion,
the other a different kind of system called a ‘coalgebra’. In general, in
my experience so far, co-things are always harder than mere things, and,
unfortunately coalgebras are no exception to this. Their critical feature is a
‘co-product’, which is a kind of opposite, technically called a ‘dual’, to the
product, obeying a compatibility constraint.9 In this section we consider
coalgebras. The treatment will be heavily based on Foissy (undated), which
I think is a clearer presentation, although of a different system that that
used in MCB.

One basic characteristics of cothings is that theirs diagrams have ar-
rows going in the opposite direction from the corresponding ‘non-co’s, and

9My wild and probably ignorant conjecture as to why cothings are harder than things
is that, being easier, the things are discovered first, and then somebody notices the cothing
and the duality relationship between them. Duality is a very interesting topic, but beyond
the scope of this exposition.

15

when considering an isolated specimen, it is customary to change the letters
used. For the coproduct, we have (28) below to compare with (26), the
associativity diagram:

(28)
C C ⊗C

C ⊗ C C ⊗C ⊗ C

∆

∆ Id⊗∆

∆⊗Id

After considerable discussion of the coproduct, we will give a much brief
consideration of the considerably simpler counit.

3.1 The Coproduct

Linguistically, the function of the coproduct ∆ is to remove subtrees from
lower positions, making them available for Merge to attach them to other
trees, thereby implementing Internal Merge. It is an interesting feature of
this kind of approach that the extracted subtrees will have no memory of
their previous position, except as encoded in the features of their terminal
elements (case, for example). The image that I suggest is pruning in an
orchard. Suppose a competent orchardist, who does not make useless cuts,
prunes a tree. We then have a collection of cut off branches (with their
sub-branches), and the original tree. Including the possibility that they did
nothing (no branches, tree unaltered), or removed the entire tree. And,
being competent, they did not cut off a branch, and then decide that they
had to remove more and cut off some branch that the first removed branch
was a sub-branch of, thereby making the first cut redundant. And it makes
no difference whether we think of the pruning as applied to individual trees,
with the branches and remainders of the trees gathered together later, or of
it as applying to the entire orchard or subdivisions of the orchard which are
then gathered together later. So that is not too hard, but the next step is
harder: all the different ways the orchardist can do it, presented as a formal
sum (adding up the scalar coefficients gives the number of different ways
that the pruning could happen).10

So what the coproduct does is apply to a forest, work out all the ways
of removing nonoverlapping (sub) trees from the trees in that forest, and
present the results as a sum of tensors, where a term with scalar coefficient
1 represents a single way of doing this, other than 1, that number of ways of
doing it that produce results that look the same.11 The tensors themselves

10There is however an interesting difference between this application of formal sums and
the application to collections and inventories, which is that the latter are things that are
all present at once, whereas the former are alternative results from a body of resources,
which suggests to me that linear logic might have an application here.

11This suggests to me that fractional coefficients will not arise, that is, there is no use for
the field Q, and that consequently we want our algebra to be a module over the integers,
not an actual vector space.

16

present the removed subtrees as a forest (a heap of cut off branches), and
the pruned trees as another forest (which can be empty, in the case of the
‘total cut’, where every tree is fully removed). In Foissy’s version, nothing
more happens, but in MCB’s, there is a ‘cleanup’ phrase, whereby nodes left
with only one daughter are ‘contracted’ with their mothers, leaving a strictly
binary tree behind (with at least one potentially problematic residue, to be
discussed below). Before defining it formally, I will first suggest a concrete
image, and then some simple linguistic examples.

For an ultrasimple example, concider the following workspace:

(29) ◦

n Percy

The basic conceptualisation of how ∆ works with trees (in both MCB and
Foissy) is that it cuts links connecting a subtree to the whole, with the
product of the subtrees on under the cut links put on the left of the tensor,
and the remainder, with or without cleanup (‘the quotient’) on the right.
So in terms of the orchard-pruning image, the tensor expresses the orga-
nizational difference between the prunings and the trees with the prunings
removed. The cleanup, used in MCB but not Foissy, consists of ‘contract-
ing’12 the now single-daughtered node that used to immediately dominate
the removed node, with its surviving daughter taking over its position in
the tree. So three of the things we get from (29) are:

(30) a. n ⊗ Percy (n’s link is snipped, leaving Percy as the quotient)

b. Percy ⊗ n (the other way around)

c. n Percy ⊗ ◦ (snip both links, producing two disconnected

nodes and leaving behind a single node.13)

But there are two more options consistent with the definition (MCB Lemma
2.7, page 7), the ‘total cut’ in which the entire tree is removed, so that (29)

12MCB are not clear about exactly what ‘contraction’ consists of, but if it is mapping
the old workspace onto a new one such that contracted nodes are mapped onto the same
thing in the new space as what they are contracting with, things should work out as long
as the disappearing nodes have no properties based on labelling, which appears to be the
case.

13There is actually an interpretive issue here. MCB motivate cleanup on the basis of
problems with labels, but here we have a node with no label. As it happens, given the
way the coproduct is actually used, this situation will not arise in a normal derivation. A
bit more will be said about this below.

17

appears on the left of the tensor and 1 on the right, and the ‘null cut’,
where we do nothing, and so the same things appear in the opposite order.
Then the result of this is the (formal) sum of all five ways of cutting up the
workspace.

There is a further constraint, which requires a more complex tree to
illustrate usefully:

(31) ◦

◦

n Percy

◦

v trip

It says that the subtrees pulled out by ∆ should not overlap. In terms of link
removal, this means that no path from a terminal to the root should have to
cross more than one link targetted for removal.14 In the orchardry image,
this is represented by the stipulation that the orchardist is competent and
does not make unnecessary cuts any particular pruning of the trees. This
restriction is encoded into MCB’s Lemma 2.6, pg 6.

The definition of ∆ then says that we take all possible ways of cutting
up the workspace, and then add them up as a formal sum of tensors. A
final example that might help solidify a useful point is what ∆ does to this,
a branching tree with two identical terminals (this represents nothing that
occurs naturally in syntax):

(32) ◦

n n

The sum consists of the total and null cuts plus 3 ‘interesting’ terms, two of
which come up looking as identical, i.e. are isomorphic, and so produce the
coefficient 2 (or, we could, equivalently, just add the term in twice; here, as
in grade school, 1+1=2). With contraction, the total sum is:

(33) ◦

n n
⊗ 1+ 2 n ⊗ n + n n ⊗ ◦ +1⊗

◦

n n

14To my mind, this has a slightly eerie resemblance to the notion of ‘analysability’ in
classic TG. However, it is found in Foissy (undated), which does not draw on generative
grammar as a source at all, but is absent from Ardila’s discussion of Hopf algebras for
general graphs. So something to do with trees is presumably behind it, but what?

18

The term with scalar coefficient 2 arises because there is no difference be-
tween the results of cutting the right and the left branch. But if the two
terminals carried unique indexes that were ‘visible’ to whatever is assessing
isomorphism, then there would be three different terms in the sum, all with
scalar coefficient 1, and no possibility of scalar multiplication because they
would be different.

As a final example, it might be useful to have look at the equality (a)
below, and the non-equality (b):

(34) a. n + n = 2 n

b. n n 6= 2 n

Although (b) as equation is false, the right hand side will appear in some of
the terms of what the coproduct will produce from it.

Before pushing on to a more formal presentation, I’ll make two more
general remarks. First, there is a possible glimmer of an actual empirical
issue in the cleanup process, a major difference between MCB and Foissy,
which is that there is also a recent idea that Internal Merge is driven by
failure of labelling of of the mother: if the mother gets no label, it seems
more reasonable to contract it with something else than if it does, due to
the possibility of a label conflict. But I think there is more work to be done
here. (And we need more guidance as to how the other things needed to
make syntax actually work are to be integrated into the system.)

Another observation is that in spite of large range of outputs produced by
∆, the only ones that are used is when a single subtree is extracted, for later
application of Merge. The discrepancy between the power of the means and
the limited range of what is used reminds me a bit of Sapir’s observation “It
is somewhat as though a dynamo capable of generating enough power to run
an elevator were operated almost exclusively to feed an electric doorbell.”
(Sapir, 1921, 14).

Now we move on to a more formal presentation, also extending our treat-
ment from single trees to workspaces in general. I find Foissy’s presentation
clearer than MCB’s, so will mostly follow that. First (Foissy p4), we define
the notion of a ‘non-total cut’, which is a choice of edges to be deleted,
‘admissible’ if no path from any leaf to the root crosses at most one chosen
edge. We have already discussed this requirement.15 To these admissible
cuts is added one more admissible cut, the ‘total cut’, in which the entire
forest is removed, and the empty one left behind. Given an admissible cut c,
the product of all the removed subtrees from a tree t is denoted by P c(t) (P
for product/pieces/prunings?), the residue/remainder Rc(T). So if c is the

15Foissy also suggests regarding the links as oriented upward, consistent with my thought
that we want them to be directed, from daughter to mother.

19

total cut, then the resulting term is t ⊗ 1.16 So for individual trees we get
the following definition, where, in general, P c is a forest, while Rc is always
a tree:

(35)

∆(t) =
∑

c∈Adm(t)

P c(t)⊗Rc(t)

The fact that we have a product on the left side of the tensor here, which
is simply the disjoint union of all the removed pieces, indicates that there
is no ‘tracking’ of what part of the residue the original pieces came from.17

This defines ∆ for the ‘generators’, but not the basis, of the algebra (and,
therefore, not the whole algebra).

But this definition applies only to the generators of the coalgebra, that
is, individual trees, whereas a forest can have multiple trees, and ∆ also
has to work on formal sums of forests. The requirement that ∆ be linear
extends (35) to formal sums of trees without effort, but to get the multitree
forests, we need to extend it through the multiplication. One thing we need
for this is to construct from the algebra A the tensor algebra A ⊗ A. We
already have the vector space A⊗A; to make it an algebra we need a unit,
which will come later, and a product, which is what we are doing now. The
requirement that must be satisfied for ∆ to be an algebra homomorphism
is (36) below, where the product symbols are subscripted for which algebra
they are the product of:

(36) ∆(w ⊔A z) = ∆(w) ⊔A⊗A ∆(z)

In the case where w and z are single trees, in accordance with (35), this will
expand out to:

(37)

∆(w ⊔A z) =
∑

c∈Adm(w)

P c(w)⊗Rc(w) ⊔A⊗A

∑

d∈Adm(z)

P d(z)⊗Rd(z)

And then, because a product must obey the distributive law, this is equiv-
alently:

16There is a bit of puzzling notation whereby the set of admissible cuts is denoted by
Adm∗(t), this set minus the total and null cut, Adm(t). Seems a bit perverse to me,
but there is probably a good explanation for the reversal of where I would expect the ∗

subscript to be.
17Contrary to what I would have thought as the author of Andrews (1971) back in the

day, I now think that no memory of the past is a highly desireable property of a deriv-
iational system: if such memory seems to be required, that suggests that some different
kind of system architecture is called for. See Quicoli (1982) for a different account of that
material.

20

(38)

∆(w ⊔A z) =
∑

c∈Adm(w),d∈Adm(z)

(P c(w)⊗Rc(w))⊔A⊗A (P d(z)⊗Rd(z))

So how do we define ⊔A⊗A? The story that works is:

(39)
(a⊗ b) ⊔ (c⊗ d) = (a ⊔ c)⊗ (b ⊔ d)

Applied to the coproduct, this fits in with the orchard imagary. We want
to think of the prunings and remainder of two one-tree orchards as being
those those of a two-tree orchard. Therefore, we think of the prunings all
together as one thing, and there remainders all together as another thing,
and, because we are representing these things as tensors with the prunings
first and the remainders second, the result is:

(40)

∆(w ⊔ z) =
∑

c∈Adm(w),d∈Adm(z)

(P c ⊔ P d)⊗ (Rc ⊔Rd)

where the sum is ranging over all combinations of prunings from w and those
from z.

One thing I’m not sure of is whether there is any alternative to (39) for
making the tensor algebra at all, or whether (39) is just the one that works
properly with ∆. And maybe want to think a bit more about why it is
well-defined.

3.2 Counit (and unit)

An algebra has a unit, so it is not a surprise that a coalgebra has a counit,
and neither would it be a surprise that this is a bit harder than the algebra
unit, although it is easier than the coproduct. What the counit does in a
tree algebra is map every forest but the empty one onto 0, and the latter
onto the 1 of the field (the δ is the Kronecker δ, which is a test for equality).

The above satisfies the genearal condition for the counit, of correct inter-
action with the coproduct, formulated by Ardila at some length,18 and more
concisely by Foissy:5. Note that K (often in a fancier font), is a popular
choice of letter to designate the field:

(41)

C ⊗ C

K ⊗ C H ⊗K

C

Id⊗ǫǫ⊗Id

∆

18Notes pg 1 gives a diagram for the counit, but he goofed and wrote ǫ instead of ∆ on
the central arrow going from H to H ×H . This is fixed in Lecture 5:54:00.

21

From the upper part of the diagram we see that ǫ goes from the algebra
to its field (and, unsurprisingly, the unit, when we get to it, goes in the
opposite direction), but what about the unlabelled arrows going up from H

at the bottom? This is, as discussed by Ardila in Lec 5:54, the trivial map
(‘natural isomorphism’) that takes an element h of the algebra to 1⊗ h, so
perhaps it would be better to draw these arrows going both ways.

Staring at this in light of what has already been said about ǫ for the
tree coalgebra, we can grasp why it’s true. ∆ produces a sum of terms of
the form H ⊗H with perhaps some scalar coefficient but ǫ maps all of the
tensor factors but 1 into 0 (of the field), so that they disappear from the
sum, and we are left, effectively, with the original from H on either side.
Foissy presents exactly this as an equation.

By what we’ve said about cothings, the unit ought have a diagram with
arrows going in the opposite direction, and here it is, with the lower arrows
bidirecional:

(42)

A⊗A

K ⊗A A⊗K

A

Id⊗υυ⊗Id

⊔

3.3 A Coassociativity Proof (optional, or maybe for later)

Here I will try to provide some hints to understand a coassociativity proof.
I so far find the one in MCB to be completely unintelligible, but the one
in Foissy seems more manageable. This unfortunately is for a somewhat
different system, with no binarity restriction on the trees, and therefore,
also, no cleanup. This will hopefully not make any serious difference, but
even if it does, perhaps working through it will improve one’s facility with
this kind of material.

First, there is an important Lemma 1 on page 4, which defines the op-
erator B+ (which also appears in MCB), which converts a forest t1, . . . , tn
to a tree by creating a new mother node and setting all the trees (maximal
ones, not any subtrees tthey might have) to be its daughters. The Lemma
then says that ∆ almost commutes with B+, except for a slight discrepancy,
so that if x is the forest, then:

(43) ∆ ◦B+(x) = B+(x)⊗ 1 + (Id ⊗B+) ◦∆(x)

The discrepancy is that all the different ways of extracting subtrees from the
forest x do not include the result of extracting the entire new tree B+(x),
requiring the first term of (43). Then the first component of the second term
will cover all the bits removable from the trees of x (including entire ones),

22

passed through unchanged by Id, and then the second is the remainder trees
put together with B+. I won’t go through the actual proof on Foissy pg 5,
but it is an exercise in shuffling sums and products.

The issue of exactly how cleanup works is relevant here: my impression is
that if it was deletion rather than contraction that is used in MCB, Lemma
1 would not hold there, because it would be possible for some of the trees
in the forest to disappear. Then, because of the role of the lemma in the
proof, the proof would then definitely not apply to the MCB system.

On to the proof. Coassociativity means that this identity holds:

(44) (∆⊗ Id) ◦∆ = (Id ⊗∆) ◦∆

The proof starts by defining A is the set of forests for which (44) holds.
It is then observed that whatever A is, it’s a subalgebra (closed under the
algebra operations). Then we have two equations, each converting one side
of (44) to an identical expression, provided that x ∈ A. For me, the key to
understanding the first equation was as follows:

(45) a. The first line of the first equation gets its first term by applying
(∆ ⊗ Id) to the first term of Lemma 1, while not going beyond
formal function concatenation for the second term.

b. In the second line, the first two terms are produced by application
of Lemma 1 to the first term of the first line, while the last term
is justified by the fact that to do nothing to something and then
apply ∆ to it produces the same result as first apply ∆ and then do
nothing to the resulting components (it is a ∆-elaborated version
of the ‘interchange law’ from baby category theory).

And for the second equation:

(46) a. For the first line, apply Lemma 1 to expand ∆(B+(x)). Then
observe that the first component of the first term on the right hand
side of that equation is the first component of the first term of
the result of that application,, and that the other two components
are what ∆ does to 1, and the second term resuls from the fact
that Id ⊗∆ will do nothing to the first component of the result of
applying ∆ to x, and apply B+ and apply B+ and then ∆ again
to the second.

b. Then the second line, equal to the second line of the first equation,
has the first term from the first line unaltered. The second two
terms are basically Lemma 1 again, but with ∆(x) in the place of
x, and Id stuck onin the front. So the second term of this line is
the first term of Lemma 1 sitting in this environment, the third
term the second of Lemma 1.

23

Well this may or may not help; this may be one of those cases where everyone
has to find their own way. But the rest of the proof is a straightforward
induction to the effect that A is in fact the entire workspace algebra.

4 Bialgebras and Hopf Algebras

We have now amassed most of the stuff we need to make a Hopf algebra, but
there are a few more pieces and a general plan of organization that we need
to complete this. A Hopf algebra is a Bialgebra that has a gadget called
an ‘antipode’, which our system already has, but what is a Bialgebra? It
is a system that is both an algebra and a coalgebra, meaning that it has a
product, a unit, a coproduct and a co-unit, all of which we have looked at.
But there is an additional requirement, that the algebra and coalgebra be
‘compatible’ in the following sense, which can be formulated either as (a) or
(b) below:

(47) a. The coproduct and counit must be algebra homomorphisms

b. The product and unit must be coalgebra homomorphisms.

Since the first is easier to understand, and we have already started on it,
we will take that path; the second is covered in Ardila’s lectures. We have
already shown that the coproduct is an algebra homomorphism into the ten-
sor algebra, so what’s left is to show that the counit also is one, and provide
a unit for the tensor algebra. This latter will be (using H to designate the
algebra):

(48) u(1K) = 1H ⊗ 1H

Then, the coproduct to be an algebra homomorphism, it must take the
algebra unit onto the tensor algebra unit, which it does:

(49) ∆(1H) = 1H ⊗ 1H

And then we also have the requirement that the counit be an algebra
homomorphism:

(50) a. ǫ(1) = 1

b. ǫ(w ⊔ z) = ǫ(w) ⊔ ǫ(z)

Both of these are true for the product and counit as defined, and not too
hard to check.

So far, we have worked through the criteria for being a bialgebra; a Hopf
algebra requires one more thing, an ‘antipode’, which is a function from the
algebra to algebra satisfying yet another condition. The detailed specifica-
tion of the antipode seems to be rather complex, but its presence turns out

24

to follow from the existence of a simpler property, which actually has some
relevance to the syntactic application, a grading. A grading is a classifica-
tion of the elements of the algebra in terms of some kind of complexity, such
that:

(51) a. Each grade is a vector space (the product will tend to produce
something in a different grade)

b. The grades are disjoint (a partition of the vector space)

c. The union of all the grades constitutes the entire algebra

Foissy uses the number of nodes in the forest as the grade, while MCB use
the number of terminals; I am aware of no significant difference between
these choices (but could have missed something later in MCB).

But the happy result is that a graded Bialgebra whose lowest grade is
the underlying field has an antipode, and is therefore a Hopf algebra. I’ll
point out that although the antipode does not appear to play a direct role
in syntax (so far), its definition does make use of negative scalar coefficients.

And finally, another source for this material, heavily based on Ardila but
at an overall more advanced level, is the earlier sections of Ebert (2014).

Appendix A Typoes, Minor Unclarities, and Tex-
tual Explication

Here are a few typoes etc. in MCB and MBC:

1. MCB:2 has syntactic features and lexical items as the terminal ele-
ments of trees, while MBC:18 has lexical items and syntactic objects.

2. MCB:5 seems to have wrong definition for Acc(T), I think it should
be: Acc(T) = {Tv|v ∈ Vint(T)}.

3. MCB:8 δS,S′ being a ‘linear operator’ means that it preserves the vec-
tor space operations, but not the product. ‘matching’ appears to be
isomorphism. I don’t know why they didn’t just call it that.

4. MCB:9 Def 2.8 “labels labelled by the set . . .” → “leaves labelled by
the set . . .”

5. MBC:19 (3.9) a typo where the v under Σ wants an underscore, since
it’s a list of nodes, as seen by comparison with the corresponding
formula (2.10) in MCB:7.

25

References

Andrews, Avery D. 1971. Case agreement of predicate modifiers in Ancient
Greek. Linguistic Inquiry 2. 127–152.

Awodey, Stephen. 2006. Category theory. Oxford University Press.

Barr, Michael & Charles Wells. 1999a. Category theory for computing

science. Montréal: Centre de Recherches Mathématiques 3rd edn. URL:
http://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf. The
most essential content for linguists, but no exercises, can be found in
Barr & Wells (1999b).

Barr, Michael & Charles Wells. 1999b. Cate-
gory theory lecture notes for ESSLLI. URL:
http://www.let.uu.nl/esslli/Courses/barr-wells.html. a con-
densed version, without exercises, of Barr & Wells (1999a). It is
impressively well targeted on material that seems likely to be useful to
linguists.

Burris, Stanley & H.P. Sankappanavar. 1981. A course in universal alge-

bra. Springer Verlag. Updated editions available online (latest 2012) at
http://www.thoralf.uwaterloo.ca/htdocs/ualg.html.

Chomsky, Noam, Ángel Gallego & Dennis Ott. 2019. Genera-
tive grammar and the faculty of language: Insights, questions,
and challenges. Catalan Journal of Linguistics special issue.
https://revistes.uab.cat/catJL/article/view/sp2019-chomsky-gallego-ott.

Ebert, Becca. 2014. A basic introduction to Hopf algebras. URL:
http://mathcs.pugetsound.edu/~bryans/Current/Spring_2014/3_Becca_HopfAlgebraFinal.

Foissy, Löıc. undated. An introduction to the hopf algebras of trees.
https://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/Foissy.pdf.

Gowers, Tim. undated. How to lose your fear of tensor products.
https://www.dpmms.cam.ac.uk/~wtg10/tensors3.html, very usefully
LaTeXed version at https://nessie.ilab.sztaki.hu/~kornai/2023/Hopf/Resources/gowers_te
(LaTeXed by Blanka Kövér and ??).

Grätzer, G. 1978. Universal algebra, 2nd edition. New York: Springer.

Harley, Heidi. 2014. On the identity of
roots. Theoretical Linguistics 40. 225–276.
http://heidiharley.com/heidiharley/wp-content/uploads/2016/09/Harley2014IdentityOfR

Marcolli, Matilde, Robert Berwick & Noam Chomsky. 2023a.
Old and new minimalism: a Hopf Algebra comparison.
https://arxiv.org/abs/2306.10270.

26

http://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf
http://www.let.uu.nl/esslli/Courses/barr-wells.html
http://www.thoralf.uwaterloo.ca/htdocs/ualg.html
https://revistes.uab.cat/catJL/article/view/sp2019-chomsky-gallego-ott
http://mathcs.pugetsound.edu/~bryans/Current/Spring_2014/3_Becca_HopfAlgebraFinal.pdf
https://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/Foissy.pdf
https://www.dpmms.cam.ac.uk/~wtg10/tensors3.html
https://nessie.ilab.sztaki.hu/~kornai/2023/Hopf/Resources/gowers_tensors.pdf
http://heidiharley.com/heidiharley/wp-content/uploads/2016/09/Harley2014IdentityOfRootsPublished.pdf
https://arxiv.org/abs/2306.10270

Marcolli, Matilde, Noam Chomsky & Robert Berwick. 2023b. Mathematical
structure of syntactic merge. https://arxiv.org/abs/2305.18278.

Quicoli, Carlos A. 1982. The structure of complementation. Ghent: Story-
Scientia.

Sapir, Edward. 1921. Language. Harcourt, Brace and World.

27

https://arxiv.org/abs/2305.18278

	Polynomials in SSA vs. Algebras in MCB
	Scalar Rules
	Vector Spaces
	Algebras and Variables
	Workspaces in Polynomials

	Tensors
	Bases

	Coalgebras
	The Coproduct
	Counit (and unit)
	A Coassociativity Proof (optional, or maybe for later)

	Bialgebras and Hopf Algebras
	Typoes, Minor Unclarities, and Textual Explication

