
Mathematical structure of syntactic Merge

Matilde Marcolli

lecture at Utrecht University, June 2023

Matilde Marcolli Mathematical structure of syntactic Merge

Lecture based on:

1 Matilde Marcolli, Noam Chomsky, Robert C. Berwick,
Mathematical structure of syntactic Merge, arXiv:2305.18278

2 Matilde Marcolli, Robert C. Berwick, Noam Chomsky, Old and
new Minimalism: a Hopf algebra comparison, preprint 2023

Matilde Marcolli Mathematical structure of syntactic Merge

Generative Linguistics (a very quick outline for the
mathematicians)

Chomsky from mid 1950s onward

key idea: syntax as a computational process

Early phase: formal languages types of grammars (regular,
context-free, context-sensitive, recursively enumerable);
non-terminal/terminal symbols and production rules;
Chomsky hierarchy: recognizable by automata (finite state,
pushdown stack, linear-bounded Turing, Turing)

issues: class of actual natural languages? involved production
rules even for small modules of syntax, etc

need for simpler, more natural generative models

other problem with formal languages: strings versus structures
⇒ Minimalism

Matilde Marcolli Mathematical structure of syntactic Merge

Original picture: Syntax as recursive structure

key idea from the formal languages approach: investigate the
recursive structures that can be generated by a given
grammar/automaton

example: not all human languages are context-free grammars
(Huijbregts, Shieber): cross-serial dependencies

in general syntactic parse trees of sentences are a recursive
structure: can see formal languages as generating ordered lists
(sentences) but also (better) as generating trees

Matilde Marcolli Mathematical structure of syntactic Merge

Formal languages describe properties of ordered sequences (strings)

time-ordered sequence of transition in an automaton that
computes the language, oriented paths in a graph

but is this what languages look like?

Matilde Marcolli Mathematical structure of syntactic Merge

what languages appear to look like

00220100211120001212100220000200211 . . .

what languages actually look like

Matilde Marcolli Mathematical structure of syntactic Merge

The Minimalist Model: Merge as fundamental structure

introduced by Chomsky in the early ’90s; various versions and
revisions over the years; New Minimalism developed by
Chomsky starting around 2013

Jumping directly to the most recent formulation (comparison
with old Minimalism in our second paper)

key idea: syntax as a computational process depends on a
single key operation called Merge

Two step process: core computational structure (Merge) +
externalization (language variation, syntactic parameters,
word order/planar embedding of trees, etc)

Matilde Marcolli Mathematical structure of syntactic Merge

Goals of this work:

The core computational structure of Merge (syntactic objects)
has a very simple mathematical description

The action of Merge on workspaces is related to a Hopf
algebra structure

Desirable linguistic properties of Merge follow directly from
this algebraic structure (they don’t have to be imposed as
additional requirements)

The core structure is the same as the core structure
underlying Dyson–Schwinger equations in physics
(fundamental nature and optimality of Merge can be seen as
analogous to the “least action principle” of physics)

Any higher n-arity Merge would both massively undergenerate
and overgenerate with respect to binary (Huijbregts): here
quantifiable and directly following from algebraic structure

Matilde Marcolli Mathematical structure of syntactic Merge

Core computational structure of Merge

free non-associative commutative magma T

elements are balanced bracketed expressions in a single
variable x , with the binary operation (binary set formation)

(α, β) 7→M(α, β) = {α, β}

where α, β are two such balanced bracketed expressions

equivalent description: elements are finite binary rooted trees
(without any choice of planar structure!)

{{x{xx}}x} ←→
x x x

x

operation on trees

M(T ,T ′) =
T T ′

Matilde Marcolli Mathematical structure of syntactic Merge

Generative process of T

a formal trick: take vector space V(T) (say over Q) spanned
by elements of T (convenient for writing a list of possibilities
as a sum)

note for the mathematicians: the magma operation M on T
identifies V(T) with the free commutative non-associative
algebra generated by a single variable x (free algebra over the
quadratic operad freely generated by the single commutative
binary operation)

assign a grading (a weight, measuring size) to the binary
rooted trees by the number of leaves, ` = #L(T), so the
vector space decomposes V(T) = ⊕`V(T)`

in a formal infinite sum X =
∑

` X` of variables X` in V(T)`

X = M(X ,X)

fixed point equation

Matilde Marcolli Mathematical structure of syntactic Merge

the equation X = M(X ,X) can be solved recursively by
degrees

Xn = M(X ,X)n =
n−1∑
j=1

M(Xj ,Xn−j)

solution X1 = x , X2 = {xx},
X3 = {x{xx}}+ {{xx}x} = 2{x{xx}},
X4 = 2{x{x{xx}}}+ {{xx}{xx}}, and so on

coefficients: {x{xx}} and {{xx}x} same abstract tree (while
two different planar embeddings)

recursive solution describes the generative process of T
through the Merge operation M

Matilde Marcolli Mathematical structure of syntactic Merge

Sneak preview

special fundamental case of Dyson–Schwinger equations

X = B(P(X))

with X =
∑

` X` by degrees, P(X) a polynomial function
(here a single quadratic term) and B a type of (possibly
n-ary) Merge operation

recursive construction of solutions of equations of motion in
quantum field theory (more on this later!)

Matilde Marcolli Mathematical structure of syntactic Merge

Next step: Syntactic Objects

extend the core computational structure to the generative
process of syntactic objects

an assigned (finite) set SO0 of lexical items and syntactic
features such as N,V , . . .

set SO of syntactic object obtained as

SO = Magmana,c(SO0,M)

free, non-associative, commutative magma over the set SO0

small technical note: both in the core magma (T,M) and in
the magma (SO,M) of syntactic objects it’s convenient to
formally add an “empty tree” as multiplicative unit 1 with
M(T , 1) = T = M(1,T)

Matilde Marcolli Mathematical structure of syntactic Merge

equivalent description:

SO ' TSO0

finite binary rooted trees with leaves labelled by elements of
SO0 (with no assigned planar embedding)

{a, {{b, c}, d}} ↔
a

b c d

operation on trees

M(T ,T ′) =
T T ′

Matilde Marcolli Mathematical structure of syntactic Merge

Next step: Workspaces

material (lexical items and syntactic objects) available for
computation

Merge operation updates workspace for the next step of
structure formation

mathematically workspaces are forests (finite disjoint unions
of binary rooted trees with leaves labelled by SO0, no planar
structure)

set of all workspaces is set FSO0 of binary rooted forests with
no assigned planar structure

given a workspace F ∈ FSO0 , the material in F that is
accessible for computation consists of the lexical items and all
the trees that were obtained through previous applications of
Merge

inductive definition encoded in the notion of accessible terms

Matilde Marcolli Mathematical structure of syntactic Merge

Accessible terms

tree T ∈ TSO0 and v ∈ V (T): subtree Tv rooted at v

Vint(T) non-root vertices of T

accessible terms of T

Acc ′(T) = {Tv | v ∈ Vint(T)} and Acc ′(T) = {Tv | v ∈ V (T)}

workspace F ∈ FSO0 with F = ta∈ITa

Acc(F) =
⊔
a∈I

Acc ′(Ta)

What structure do accessible terms correspond to?

answer: Workspaces form a Hopf algebra

Matilde Marcolli Mathematical structure of syntactic Merge

What is a Hopf algebra?

mathematical method of describing
composition–decomposition

product: an “assemble operation” (two inputs one output) for
how to assemble different objects together

coproduct: a “decomposition operation” (one input two
outputs) listing all possible ways of decomposing an objects
into parts

compatibility between these two operations

Matilde Marcolli Mathematical structure of syntactic Merge

A formal definition of Hopf algebra

Hopf algebra H is a vector space over a field K, endowed with

multiplication m : H⊗K H → H;
unit u : K→ H;
comultiplication ∆ : H → H⊗K H;
counit ε : H → K;
antipode S : H → H

multiplication is associative

comultiplication is coassociative

u is multiplicative unit and ε is comultiplicative counit

S relates m and ∆ and u and ε

all this expressed by diagrams

these formal requirements ensure a good pair of
composition/decomposition operations

Matilde Marcolli Mathematical structure of syntactic Merge

multiplication: associativity and unit

H⊗K H⊗K H
m⊗id //

id⊗m
��

H⊗K H
m
��

H⊗K H m // H

H⊗K H

m

��

K⊗K H

u⊗id
88

'

&&

H⊗K K

id⊗u
ff

'

xxH
commutativity of these diagrams

Matilde Marcolli Mathematical structure of syntactic Merge

comultiplication: coassociativity and counit

H⊗K H⊗K H H⊗K H
∆⊗id
oo

H⊗K H

id⊗∆

OO

H
∆

oo

∆

OO

H⊗K H
ε⊗id

xx

id⊗ε

&&
K⊗K H H⊗K K

H

'
ff ∆

OO

'
88

commutativity of these diagrams

Matilde Marcolli Mathematical structure of syntactic Merge

antipode: compatibility: commutativity of diagram

H⊗K H m // H H⊗K Hm
oo

H⊗K H

id⊗S

OO

H
∆
oo

u◦ε

OO

∆ // H⊗K H

S⊗id

OO

Note: if the Hopf algebra is graded H = ⊕`≥0H` with H0 = K
and m, ∆ compatible with grading, antipode comes for free

S(X) = −X −
∑

S(X ′)X ′′

inductively for ∆(X) = X ⊗ 1 + 1⊗ X +
∑

X ′ ⊗ X ′′ with X ′,X ′′

terms of lower degree

Matilde Marcolli Mathematical structure of syntactic Merge

Workspaces as a Hopf algebra

same trick as before: form vector space V(FSO0) to write
possibilities as sums (grading by number of leaves as for trees)

product on forests simply given by disjoint union t (put two
forests together to form a new one)

unit of product is formal “empty tree”

coproduct is the interesting part: extract accessible terms on
one side, and remove them on the other side (i.e. what’s left)

Tv ⊗ T/Tv

a few delicate points here: sum over all possibilities, how to
take quotient T/Tv , coassociativity

Matilde Marcolli Mathematical structure of syntactic Merge

taking quotients: T/Tv

Two possibilities: contracting or deleting

contracting: T/Tv obtained by shrinking subtree Tv to its root
vertex

deleting: T/Tv obtained by removing Tv and taking the unique
maximal binary tree obtained from T r Tv by shrinking edges

difference: Tv = T first case quotient • single vertex, second case
quotient empty tree; linguistic relevance: in first case remaining
root vertex needs labeling, need a labeling algorithm for internal
vertices (projection)

Matilde Marcolli Mathematical structure of syntactic Merge

coproduct and coassociativity

T ∈ TSO0 , subforest Fv ⊂ T union of disjoint subtrees
Tv1 , . . . ,Tvk for v = (v1, . . . , vk), quotient given by

T/Fv = (· · · (T/Tv1)/Tv2 · · ·)/Tvk

coproduct on trees

∆(T) =
∑
v

Fv ⊗ (T/Fv)

on forests F = taTa by ∆(F) = ta∆(Ta)

coproduct is coassociative (id⊗∆) ◦∆ = (∆⊗ id) ◦∆

parts of coproduct

∆(T) =
∑
n≥2

∆(n)(T) with ∆(2)(T) =
∑
v

Tv ⊗ T/Tv

∆(2) needed for single application of binary Merge

Matilde Marcolli Mathematical structure of syntactic Merge

compatibility of product and coproduct

∆ ◦ t = (t ⊗ t) ◦ τ ◦ (∆⊗∆)

τ flips middle two terms of H⊗H⊗H⊗H
Note: cancellation of copies via T/Tv terms: automatically
distinguishes copies from repetitions; only copies (that will be
the ones produced by Internal Merge) get cancellation

Size of workspaces different measures of size

b0(F) number of connected components (trees) of the forest F
(number of syntactic objects in the workspace)
α(F) = #Acc(F) number of accessible terms
σ(F) = #V (F) = b0(F) + α(F) number of vertices
(components plus accessible terms)
σ̂(F) = b0(F) + #V (F)
`(F) number of leaves (grading of Hopf algebra)

How these change under Merge action on workspaces

Matilde Marcolli Mathematical structure of syntactic Merge

Next step: Action of Merge on Workspaces

pair of syntactic objects S ,S ′ ∈ SO

MS,S ′ = t ◦ (B⊗ id) ◦ δS,S ′ ◦∆

use all Hopf algebra structure ∆, t but not algebra/coalgebra
morphism

if simultaneously look at all the possible Merge operations on
a given workspace just take

t ◦ (B⊗ id) ◦∆

Unpacking the expression of MS ,S ′ in a more explicit form...

Matilde Marcolli Mathematical structure of syntactic Merge

MS,S ′ = t ◦ (B⊗ id) ◦ δS,S ′ ◦∆

1 ∆ produces the list of accessible terms along with the
quotients that represent cancellation of deeper copies

2 δS ,S ′ searches in the list of accessible terms for matching
copies of S and S ′

3 if not found, replaces coproduct terms Tv ⊗ T/Tv with 1⊗ T
so workspace remains unchanged

4 use of B for Merge of syntactic objects just because

V(TSO0)⊗ V(TSO0)
M //

t ((

V(TSO0)

V(FSO0)

B

88

5 if found B⊗ id merges the two terms creating a new
component M(S , S ′) and keeps cancellation of deeper copies

6 t assembles back the new workspace

Matilde Marcolli Mathematical structure of syntactic Merge

Cases of Merge (too many forms of Merge?)
The modified part of work space looks like

M(Tv ,Tw) t (Ta/Tv) t (Tb/Tw)

Various cases M(α, β)

1 α = Ti and β = Tj with Ti ,Tj ∈ F and i 6= j ;
2 α = Ti ∈ F and β ∈ Acc(Tj) for some Tj ∈ F , with two

sub-cases:

a) i = j
b) i 6= j

3 α ∈ Acc(Ti) and β ∈ Acc(Tj) for some Ti ,Tj ∈ F , with two
sub-cases:

a) i = j
b) i 6= j

(1) External Merge; (2a) Internal Merge; (2b) and (3b) Sideward
Merge; (3a) Countercyclic Merge

Matilde Marcolli Mathematical structure of syntactic Merge

Comment on Internal Merge

We have a formal empty tree 1 which satisfies

M(T , 1) = M(1,T) = T

Note: language does not incorporate arithmetic

a unary Merge is needed in the first step of the successor
function of Peano arithmetic ∅ 7→ {∅}
then von Neumann description of the nonnegative integers is
just (Internal) Merge ∅, {∅}, {∅, {∅}}, {∅, {∅, {∅}}}, . . .
but in syntactic objects (as binary rooted trees) merging with
the empty tree just leaves T unchanged

If β ∈ Acc(Ta) for a component Ta of workspace F the
Merge Mβ,1 produces a new workspace with the component
Ta replaced by β t Ta/β; External Merge on this workspace
then gives M(β,Ta/β) giving Internal Merge

Note: we’ll see that Mβ,1 does not “exist in isolation” only in
composition as Internal Merge

Matilde Marcolli Mathematical structure of syntactic Merge

Minimal Search

Problem: Sideward and Countercyclic Merge have undesirable
linguistic properties

in Minimalism these undesirable forms of Merge are
eliminated on a principle of Minimal Search

key idea: efficient search for matching terms (our δS ,S ′) would
first look for matching components of workspace (External
Merge) then for a single component and an accessible term of
the same (Internal Merge): everything else is a less efficient
search

How to formalize Minimal Search in our Hopf algebra setting?

Minimal with respect to what? Cost function? Leading order
term in an expansion?

Matilde Marcolli Mathematical structure of syntactic Merge

Need a cost function / order degree justifying why finding the copy
of β deep inside T1 is “more efficient” than finding the copy of β
high up into another component (regardless of number of
components of F and of depth of T1)

Matilde Marcolli Mathematical structure of syntactic Merge

Minimal Search as Leading Order Extraction

introduce degrees in the coproduct

∆(ε,η)(T) =
∑
v

εdv Fv ⊗ ηdv (T/Fv)

v = {v1, . . . , vn} take dv = dv1 + · · ·+ dvn with dv the
distance of a vertex v to the root of T

Merge action correspondingly weighted

Mε
S ,S ′ = t ◦ (Mε ⊗ id) ◦ δS,S ′ ◦∆(ε,ε−1)

Mε(εdα, ε`β) = ε|d+`|M(α, β)

Take the leading term for ε→ 0

only Merge derivations that survive in the limit are
compositions of only External and Internal Merge

Matilde Marcolli Mathematical structure of syntactic Merge

Another proposal in Minimalism: get rid of unwanted Merges by
their effect on Workspace size functions
Good operations should not increase the number of components of
workspace (derivation converges) and not decrease number of
accessible terms (no syntactic information gets destroyed)

External and Internal Merge

b0 #Acc σ σ̂

External −1 +2 +1 0

Internal 0 0 0 0

External: components decrease by one in M(T ,T ′) and two
roots become new accessible terms
Internal: same components and because of how quotient
defined

#Acc(Tv) + #Acc(T/Tv) + 2 = #Acc(T)

in T/Tv all the vertices of Tv and one additional vertex of T
removed

Matilde Marcolli Mathematical structure of syntactic Merge

This counting of size agrees with the counting for Internal Merge in
S. Fong, R. Berwick, J. Ginsburg, The combinatorics of merge and
workspace right-sizing, Evolinguistics Workshop, 2019

i.e. same way of taking “quotient tree”

Matilde Marcolli Mathematical structure of syntactic Merge

Merge Mβ,1 ruled out except in composition to Internal Merge

b0 #Acc σ σ̂

MS,1 +1 −2 −1 0

Sideward and Countercyclic Merge

b0 #Acc σ σ̂
Sideward (3b) +1 0 +1 +2
Sideward (2b) 0 +1 +1 +1
Countercyclic (3a) +1 #Acc(Ta,wa) σ(Ta,wa) σ(Ta,wa) + 1
Countercyclic (3a) +1 −2 −1 0

Matilde Marcolli Mathematical structure of syntactic Merge

Possible constraints on workspace size functions

number of accessible terms non-decreasing (∆α ≥ 0)

number of syntactic objects non-increasing (∆b0 ≤ 0)

size of the workspace not decreasing and not increasing more
than one (0 ≤ ∆σ ≤ 1)

σ̂ is a conserved quantity (∆σ̂ = 0)

Internal and External Merge satisfy all of these; other cases:

∆b0 ≤ 0 ∆α ≥ 0 0 ≤ ∆σ ≤ 1 ∆σ̂ = 0

Sideward (3b) N Y Y N

Sideward (2b) Y Y Y N

Countercyclic (3a) N Y N N

Countercyclic (3a) N N N Y

Observation (by Riny Huijbregts): quotient by contraction only
Internal/External Merge increase accessible terms by exactly one

Matilde Marcolli Mathematical structure of syntactic Merge

Why is Merge binary?

Also an optimization: a Merge with any other n ≥ 3 arity
would both undergenerate and overgenerate with respect to
binary Merge (observed by Riny Huijbregts)

syntactic objects of a hypothetical n-ary Merge

SO(n) = Magma
(n)
na,c(SO0,Mn)

rooted n-ary trees (without planar structure)

SO(n) ' T
(n)
SO0

(T1, . . . ,Tn) 7→M(T1, . . . ,Tn) =
T1 T2 · · · Tn

by number of leaves

SO(n) =
⊔
k≥1

SO(n)
k(n−1)+1

Matilde Marcolli Mathematical structure of syntactic Merge

two forms of undergeneration

achievable lengths only ` = k(n − 1) + 1 for k ≥ 1 (excludes
examples like it rains)

ambiguities are not detected: example

δ
α β γ

δ
α β γ

(ambiguity of I saw someone with a telescope) become
unambiguous

δ α β γ

undergeneration depends on syntactic objects, overgeneration
depends on action on workspaces

Matilde Marcolli Mathematical structure of syntactic Merge

action on workspaces of n-ary Merge and overgeneration

workspaces are n-ary forests F ∈ F
(n)
SO0

, same form of product
and coproduct

but for n-ary trees need to take quotients as contraction (so
problem with labels reappears)

Merge operations depending on an n-tuple of n-ary syntactic
objects (with n-ary B)

MS1,...,Sn = t ◦ (B⊗ id) ◦ δS1,...,Sn ◦∆

overgeneration: example (by Riny Huijbregts) with n = 3 and
F = {α, β, γ} t δ t η S = (S1,S2, S3) given by S1 = α,
S2 = β, and S3 = {α, β, γ} gives new workspace
{α, β, {α, β, γ}} t δ t η and further application with S1 = δ,
S2 = η, and S3 = {α, β, γ} gives {δ, η, {α, β, γ}} (responsible
for examples like *peanuts monkeys children will throw)

can count explicit amount of undergeneration and of
overgeneration as a function of size of trees (number of leaves)

Matilde Marcolli Mathematical structure of syntactic Merge

Linguistic Merge versus Physical DS equations: a useful parallel

in quantum field theory generative process involving graphs
(Feynman graphs)

can be described in terms of formal languages
(using graph grammars)

however not the best way to think of Feynman graphs

Hopf algebra structure: product t, coproduct
∆(Γ) =

∑
γ ⊗ Γ/γ subgraphs and quotient graphs

better for factorization problems (extraction of meaningful
physical values = renormalization) with consistency across
subgraphs

better for recursive solutions of equations of motion
X = B(P(X)) Dyson–Schwinger equation

known in QFT that solutions of DS are quantum
implementation of “least action principle” for classical
solutions: optimization

Matilde Marcolli Mathematical structure of syntactic Merge

Examples: recursive solutions of Dyson–Schwinger equations in
quantum electrodynamics

Matilde Marcolli Mathematical structure of syntactic Merge

the formalism of Hopf algebras and extraction of finite parts
was adapted to the theory of computation (Manin, 2009) as
extraction of computable parts from undecidable problems

“extraction of meaning” (finite values from divergent integrals
in physics; computable parts of non-computable functions in
theory of computation) via the formalism of renormalization
(factorization of maps from Hopf algebras to Rota–Baxter
algebras)

suggests a possible strategy to extend the computational
model of syntax to a computational model of the
syntactic-semantic interface

Matilde Marcolli Mathematical structure of syntactic Merge

Final step: Externalization

core computational mechanism of syntax works on structures
and does not require planar embeddings (linear ordering)

realization of language through speech is time-oriented
(ordered set) requires planarization

different languages have different word-order structure

language specific non-canonical choice of planarization of the
binary rooted trees (depending on syntactic parameters)

externalization happens after all Merge computations have
taken place

Matilde Marcolli Mathematical structure of syntactic Merge

Observation: morphisms of magmas

free symmetric Merge: free commutative non-associative
magma of syntactic objects

SO = Magmana,c(SO0,M)

also have a free non-commutative, non-associative magma on
the same set SO0

SOnc := Magmana,nc(SO0,M
nc)

it generates the planar binary rooted trees with leaves labelled
by SO0

SOnc ' Tpl
SO0

write these as Tπ (with T for abstract tree, π for choice of
planar embedding)

there is a morphism if magmas SOnc → SO that forgets the
planar embedding Tπ 7→ T

Matilde Marcolli Mathematical structure of syntactic Merge

but... there is no morphism of magmas going the other way
from SO to SOnc

because since (SO,M) is commutative it should map to a
commutative sub-magma of (SOnc ,Mnc)

but (SOnc ,Mnc) does not have nontrivial commutative
sub-magmas: if a nonempty planar tree Tπ is in a
commutative sub-magmas then Mnc(Tπ,Tπ) also is but this
contradicts commutativity since

Mnc(Tπ,Mnc(Tπ,Tπ)) 6= Mnc(Mnc(Tπ,Tπ),Tπ)

linguistic consequence: you can either have a symmetric
Merge acting before assignments of planar structure (linear
ordering) as in new Minimalism, or you can have asymmetric
Merge acting on planar trees (old Minimalism) but not both
at the same time consistently

Matilde Marcolli Mathematical structure of syntactic Merge

Externalization: first step

observed languages have a linear ordering (time-ordering in
speech) and have different word-order structures (syntactic
parameters)

in the new Minimalism model all Merge derivations happen at
the level of free symmetric Merge (syntactic objects and
action on workspaces)

assignment of linear ordering (planar structure of trees)
happens only after all Merge computations have taken place

assignment of planar structures to trees is seen as a step
necessary to make core syntactic computations compatible
with the need for linear ordering due to the mechanics of
speech (externalization)

so assignment of planar structure is a non-canonical section
(non-unique and language-dependent through syntactic
parameters) of the projection SOnc → SO
this section is not a morphism of magmas

Matilde Marcolli Mathematical structure of syntactic Merge

Externalization: second step

planarization σL via a language-dependent non-unique section
of the projection

Tpl
SO0 proj

// TSO0 ,

σL
uu

only requirement on σL is compatibility with word-order
parameters of given language L
obtain in this way a planar tree TπL = σL(T) for every
syntactic object T ∈ SO with no further restriction
(for instance no restriction on assignment of labels in SO0 at
the leaves)

so need further elimination of those objects TπL ∈ SOnc that
violate linguistic constraints (more syntactic parameters) of

language L: quotient map ΠL : V(Tpl
SO0

)→ V(Tpl ,L
SO0

)

two-step externalization: section of a projection followed by
another projection ... correspondence

Matilde Marcolli Mathematical structure of syntactic Merge

correspondences

in mathematics the simplest way of describing transformation
is through functions f : X → Y single valued assignments
x 7→ f (x)

sometimes functions are not the best way of going from X to
Y and a better notion is correspondences

Z

�� ��
X Y

climbing one arrow “the wrong way” then going down the
other one (includes the case of multivalued functions)

Matilde Marcolli Mathematical structure of syntactic Merge

What happens to action on workspaces in externalization?

since all Merge operations happen with symmetric Merge
before externalization it seems one cannot see at all this
action after externalization (because magma structure not
preserved by planarization σL)

but one can still see part of it

Ana,c = (V(TSO0),M) non-associative commutative algebra

representations for a non-associative algebras A are just linear
maps (not algebra hom) ρ : A → End(V) on vector space V
fix an argument of Merge: MT (T ′) := M(T ,T ′)

then representation (in the above sense) from action on
workspaces F = taTa

ρ(T)(F) = t◦ (MT ⊗1)◦∆ (F) = ta(M(T ,Ta,v)tTa/Ta,v)

suffices to determine full action if known for all T

Matilde Marcolli Mathematical structure of syntactic Merge

the projection part is compatible with action of asymmetric
Merge

but section σL is not a magma morphism so only projection in
the other direction is compatible with Merge action

Ana,nc,L ⊗ V(Fpl ,L
SO0

)
ρpl,L // V(Fpl ,L

SO0
)

Ana,nc ⊗ V(Fpl
SO0

)
ρpl //

Π⊗Π

��

ΠL⊗ΠL
55

V(Fpl
SO0

)

Π

��

ΠL

77

Ana,c ⊗ V(FSO0)
ρ // V(FSO0) .

but climbing up the projection Π with the section σL leads to
only a partially defined Merge action on the image

indeed in old Minimalism, with Merge after planarization,
partially defined with specific conditions on domains

Matilde Marcolli Mathematical structure of syntactic Merge

Discussing alternatives to externalization

proposal of passing from free symmetric merge (SO,M) to
planar trees via a canonical choice of planarization (language
independent) determined by additional data on trees (head)

Richard Kayne’s LCA (Linear Correspondence Axiom):
“linearization” here means assignment of planar embedding to
binary rooted trees

what is expected in terms of magma structure?

Tpl
SO0 proj

// TSO0 ,

σLCA

uu

1 either define a merge on the image as

MLCA(σLCA(T1), σLCA(T2)) := σLCA(M(T1,T2))

but then just an isomorphic copy of (SO,M) with no effect
2 or σLCA simply a section as in externalization with Merge only

acting before planarization

Matilde Marcolli Mathematical structure of syntactic Merge

problem with head-driven planarization

vertex v in T c-commands another vertex w if neither
dominates the other and the lowest vertex that dominates v
also dominates w ; asymmetrically c-commands if c-commands
and not sister vertices

LCA procedure: assign ordering v precedes v ′ iff
1 v asymmetrically c-commands v ′ or
2 a maximal projection w dominating v (Tw not in any larger

tree with same head) c-commands v ′

difficulty: cannot have σLCA defined on all of SO (even if just
a section that is not a morphism of magmas as in
externalization)

to see this: abstracting the formal properties of the syntactic
head

Matilde Marcolli Mathematical structure of syntactic Merge

head function hT : V o(T)→ L(T) from non-leaf vertices to
leaves

if Tv ⊆ Tw and hT (w) ∈ L(Tv) ⊆ L(Tw), then
hT (w) = hT (v)

write h(T) for value of hT at root of T

for a pair (T , hT) and (T ′, hT ′), there are two possible
hM(T ,T ′): marking one or the other of the two edges attached
to new root

i.e. choices of h(M(T ,T ′)) = h(T) or h(M(T ,T ′)) = h(T ′)

so total of 2#V o(T) possible head functions on a tree T

head of a subtree Tv ⊂ T is leaf hT (v) reached by following
path of only marked edges (that determine hT) from v

Matilde Marcolli Mathematical structure of syntactic Merge

head functions and planar embeddings

a head function hT : V o(T)→ L(T) determines a planar

embedding TπhT of T : put the marked edge below each
vertex to the left of the other

question of a special (canonical) choice of planarization σLCA

becomes a canonical choice of a head function

TSO0 3 T
hLCA7→ hT

this mapping hLCA should be determined by the labels
λ(`) ∈ SO0

note that in TSO0 leaves labels are arbitrary (only in quotient
map ΠL step of externalization some are ruled out)

so to have σLCA defined on all SO should be able to choose
one of the two hM(T ,T ′) based on λ(hT (T)) and λ(hT ′(T

′))

Problem: if λ(hT (T)) = λ(hT ′(T
′)) cannot distinguish two

possible hM(T ,T ′) even if SO0 were totally ordered

Matilde Marcolli Mathematical structure of syntactic Merge

additional material: old forms of Minimalism and Hopf algebras

constructing I/E Merge directly on planar trees

including labeling and domains for applicability based on labels

Hopf algebras of planar binary rooted trees (Loday–Ronco
Hopf algebra)

role of I/E Merge in terms of LR Hopf alg

different structures for Internal and External Merge (not
coming from same operation)

Internal Merge determines system of right-ideal coideals (weak
notion of quotient)
External Merge determines partially defined operated algebra

Matilde Marcolli Mathematical structure of syntactic Merge

planar binary rooted trees

V = ⊕k≥0Vk vector space spanned by planar bunary rooted
tree, k = number of non-leaf vertices (k + 1 leaves)

now will have labeling of internal vertices also DV set of labels

for d ∈ DV grafting operator ∧d

∧d : V ⊗ V → V, T1 ⊗ T2 7→ T = T1 ∧d T2 = d

T1 T2

S\T (S under T) grafting root of T to rightmost leaf of S

T/S (S over T) grafting the root of T to leftmost leaf of S

T1 ∧d T2 = T1/S\T2 with S planar binary tree with single
non-leaf vertex decorated by d ∈ DV

each planar rooted tree is T = T` ∧d Tr (left and right
subtrees below root)

Matilde Marcolli Mathematical structure of syntactic Merge

Loday–Ronco Hopf algebra of planar binary rooted trees HLR

product and coproduct defined inductively by degrees

can also see graphically

coproduct sum ∆(T) =
∑

T ′ ⊗ T ′′ over all decompositions of
tree along paths from one of leaves to root

product T ? T ′ =
∑

(T0,...,Tn) γ(T0, . . . ,Tn;T ′) using same
decompositions of first tree into as many pieces as leaves of
second tree then grafting to leaves

antipode inductively constructed by degrees

Matilde Marcolli Mathematical structure of syntactic Merge

Stabler’s Computational Minimalism

example of old formulation of Minimalism (also relation to
formal languages)

planar binary rooted trees with labels:

leaves labelled by lexical items and syntactic features
X ∈ {N,V ,A,P,C ,T ,D, . . .}
also “selector” features σX for head selecting a phrase XP
can also have labels that are strings (ordered finite sets)
α = X0X1 · · ·Xr of syntactic features
labels “licensor” ω and “licensee” ω̄
internal vertices labelled by {>,<} following head of subtree

Matilde Marcolli Mathematical structure of syntactic Merge

External and Internal Merge: combinatorial structure

External Merge

E(T1 ⊗ T2) =

{
• ∧ T2 T1 = •

T2 ∧ T1 otherwise,

Internal Merge

I(T) = πC (T) ∧ ρC (T)

C elementary admissible cut of T with ρC (T) pruned tree
containing root of T and πC (T) part severed by cut
(elementary cut: tree not forest)

Matilde Marcolli Mathematical structure of syntactic Merge

External Merge: domain

T [α] for tree where head label starts with α

domain of External Merge

Dom(E) = spanQ{(T1[β],T2[α]) |β = σα}

for α = X0X1 · · ·Xr or α = σX0X1 · · ·Xr take α̂ = X1 · · ·Xr

External Merge

E(T1[σα],T2[α]) =

{
T1[σ̂α] ∧< T2[α̂] |T1| = 1
T2[α̂] ∧> T1[σ̂α] |T1| > 1

Matilde Marcolli Mathematical structure of syntactic Merge

Internal Merge: domain

tree T [α] where α = X0 · · ·Xr or α = σX0 · · ·Xr or
α = ωX0 · · ·Xr or α = ω̄X0 · · ·Xr

domain of Internal Merge

Dom(I) = spanQ

{
T [α] | ∃T1[β] ⊂ T [α],with

β = ω̄X0β̂,
α = ωX0α̂

}
Internal Merge (Stabler’s notation and admissible cuts
notation)

I(T [α]) = TM
1 [β̂] ∧> T{T1[β]M → ∅} = πC (T) ∧> ρC (T)

Note: there are issues with EM and IM in this form (unlabelable
exocentric constructions)

Matilde Marcolli Mathematical structure of syntactic Merge

domains under iteration (compounding problem)

iterations of the internal merge, DN+1 ⊂ DN with
DN := Dom(IN)

N (complete) subtrees T1, . . . ,TN in T
TM

1 , . . . ,TM
N maximal projections of subtrees (also complete

subtrees)
subtrees TM

i are disjoint.

Dom(IN) =
{
T [α]

∣∣∃T1[β(1)], . . . ,TN [β(N)]

with

(1), (2), (3) are satisfied

β
(1)
0 = ω̄X0, . . . , β

(N)
0 = ω̄XN−1

α = ωX0ωX1 · · ·ωXN−1 · · ·

I#C (T [X]) =

1+#C∧ (
πC (T)[Ŷ] ρC (T)[X̂N]

)
πC (T)[Ŷ] = TM

N [β̂(N)] · · ·TM
1 [β̂(1)]

label [α̂N] of tree ρC (T): what remains of original label X after
removing initial terms ωX0ωX1 · · ·ωXN−1

Matilde Marcolli Mathematical structure of syntactic Merge

Internal Merge and coproduct and product in HLR

coproduct ∆(T) =
∑

T ′ ⊗ T ′′ decompositions: in each one
side contains head of tree T (both if on boundary line of cut)

if head of T and head of πC (T) same side then that side is in
Dom(I)

so pieces of the coproduct are in
Dom(I)⊗Hling +Hling ⊗Dom(I)

other terms (different sides) are in Hling ⊗Hling

T in Dom(I) and C elementary admissible determined by
label condition; set of partitions

PI(T) = {T = (T ′,T ′′) | (h(T) ∈ T ′ and h(πC (T)) ∈ T ′) or
(h(T) ∈ T ′′ and h(πC (T)) ∈ T ′′)

}

modify coproduct

∆I(T) :=
∑

(T ′,T ′′)∈PI(T)

T ′ ⊗ T ′′

and remains same outside of Dom(I)

Matilde Marcolli Mathematical structure of syntactic Merge

with this modified coproduct Dom(I) is a coideal of the
coalgebra Hling

∆I(Dom(I)) ⊂ Dom(I)⊗Hling +Hling ⊗Dom(I)

modified product ?I on Hling : for trees T ,T ′ where T ′ has
n + 1 leaves: decompositions where head of T in component
grafted to head of T ′

PI(T ,T ′) := {(T0, . . . ,Tn) | h(T) and h(πC (T)) ∈ Th(T ′)}

T ?I T
′ =

∑
(T0,...,Tn)∈PI(T ,T ′)

γ(T0, . . . ,Tn;T ′)

h(T ?I T
′) = h(T) as head of each γ(T0, . . . ,Tn;T ′) same

as the head of T
component Th(T ′) is in Dom(I) when T ∈ Dom(I) so
T ?I T

′ also in Dom(I)
Dom(I) right-ideal of algebra (Hling , ?I)

Dom(I) ?I Hling ⊂ Dom(I)

not left-ideal
Matilde Marcolli Mathematical structure of syntactic Merge

form of Internal Merge I(T ?I T
′) =∑

(T0,...,Tn)∈PI(T ,T ′)

πC (Th(T ′)) ∧> γ(T0, . . . , ρC (Th(T ′)), . . . ,Tn;T ′)

internal merge I defines a right (Hling , ?I)-module given by
the cosets

MI := Dom(I)\Hling

combined with iteration of domains: DN+1\DN determines a
coideal in the coalgebra DN+1\Hling

this gives a projective system of right-module coalgebras

MIN := Dom(IN)\Hling

quotient right-module coalgebras or “generalized quotients” of
Hopf algebras: suitable notion of quotients in the case of
noncommutative Hopf algebras

Conclusion: the implementation of Merge at the level of
planar trees introduces significant complications in algebraic
structure compared to free symmetric Merge

Matilde Marcolli Mathematical structure of syntactic Merge

