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Preface to the Second Edition

In view of recent development in perturbation theory, supplementary
notes and a supplementary bibliography are added at the end of the new
edition. Little change has been made in the text except that the para-
graphs V-§ 4.5, VI-§ 4.3, and VIII-§ 1.4 have been completely rewritten,
and a number of minor errors, mostly typographical, have been corrected.
The author would like to thank many readers who brought the errors to
his attention.

Due to these changes, some theorems, lemmas, and formulas of the
first edition are missing from the new edition while new ones are added.
The new ones have numbers different from those attached to the old
ones which they may have replaced.

Despite considerable expansion, the bibliography is not intended to
be complete.

Berkeley, April 1976 Tosio KaTto

Preface to the First Edition

This book is intended to give a systematic presentation of perturba-
tion theory for linear operators. It is hoped that the book will be useful
to students as well as to mature scientists, both in mathematics and in
the physical sciences.

Perturbation theory for linear operators is a collection of diversified
results in the spectral theory of linear operators, unified more or less
loosely by their common concern with the behavior of spectral properties
when the operators undergo a small change. Since its creation by Ray-
LEIGH and SCHRODINGER, the theory has occupied an important place in
applied mathematics; during the last decades, it has grown into a
mathematical discipline with its own interest. The book aims at a mathe-
matical treatment of the subject, with due consideration of applications.

The mathematical foundations of the theory belong to functional
analysis. But since the book is partly intended for physical scientists,
who might lack training in functional analysis, not even the elements of
that subject are presupposed. The reader is assumed to have only a basic
knowledge of linear algebra and real and complex analysis. The necessary
tools in functional analysis, which are restricted to the most elementary
part of the subject, are developed in the text as the need for them arises
(Chapters I, IIT and parts of Chapters V, VI).

An introduction, containing a brief historical account of the theory,
precedes the main exposition. There are ten chapters, each prefaced by a
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summary. Chapters are divided into sections, and sections into para-
graphs. I-§ 2.3, for example, means paragraph three of section two of
chapter one; it is simply written § 2.3 when referred to within the same
chapter and par. 3 when referred to within the same section. Theorems,
Corollaries, Lemmas, Remarks, Problems, and Examples are numbered
in one list within each section: Theorem 2.1, Corollary 2.2, Lemma 2.3,
etc. Lemma I-2.3 means Lemma 2.3 of chapter one, and it is referred
to simply as Lemma 2.3 within the same chapter. Formulas are numbered
consecutively within each section; I-(2.3) means the third formula of
section two of chapter one, and it is referred to as (2.3) within the same
chapter. Some of the problems are disguised theorems, and are quoted
in later parts of the book.

Numbers in [ ] refer to the first part of the bibliography containing
articles, and those in { ) to the second part containing books and mono-
graphs.

There are a subject index, an author index and a notation index at the
end of the book.

The book was begun when I was at the University of Tokyo and
completed at the University of California. The preparation of the book
has been facilitated by various financial aids which enabled me to pursue
research at home and other institutions. For these aids I am grateful
to the following agencies: the Ministry of Education, Japan; Com-
missariat Général du Plan, France; National Science Foundation,
Atomic Energy Commission, Army Office of Ordnance Research, Office
of Naval Research, and Air Force Office of Scientific Research, U.S.A.

I am indebted to a great many friends for their suggestions during
the long period of writing the book. In particular I express my hearty
thanks to Professors C. CLARK, K. O. FriEDRICHS, H. FujITa, S. GOoLD-
BERG, E. HiLLE, T. IKEBE, S. KAKUTANI, S. T. KURODA, G. NEUBAUER,
R.S. PuiLrips, J. and O. Topop, F. WoLF, and K. Yosipa. I am especially
obliged to Professor R. C. RIDDELL, who took the pains of going through
the whole manuscript and correcting innumerable errors, mathematical
as well as linguistic. I am indebted to Dr. J. HowLAND, Dr. F. MCGRATH,
Dr. A. McIntosH, and Mr. S.-C. LiN for helping me in proofreading
various parts of the book. I wish to thank Professor F. K. ScamipT who
suggested that I write the book and whose constant encouragement
brought about the completion of the book. Last but not least my
gratitudes go to my wife, MizuE, for the tedious work of typewriting
the manuscript.

Berkeley Tosio Karo
August, 1966
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Introduction

Throughout this book, ‘‘perturbation theory” means ‘“perturbation
theory for linear operators”. There are other disciplines in mathematics
called perturbation theory, such as the ones in analytical dynamics
(celestial mechanics) and in nonlinear oscillation theory. All of them
are based on the idea of studying a system deviating slightly from a
simple ideal system for which the complete solution of the problem
under consideration is known; but the problems they treat and the tools
they use are quite different. The theory for linear operators as developed
below is essentially independent of other perturbation theories.

Perturbation theory was created by RAYLEIGH and SCHRODINGER
(cf. Sz.-NaGyY [1]). RAYLEIGH gave a formula for computing the natural
frequencies and modes of a vibrating system deviating slightly from a
simpler system which admits a complete determination of the frequencies
and modes (see RaYLEIGH (1}, §§ 90, 91). Mathematically speaking,
the method is equivalent to an approximate solution of the eigenvalue
problem for a linear operator slightly different from a simpler operator
for which the problem is completely solved. SCHRODINGER developed a
similar method, with more generality and systematization, for the
eigenvalue problems that appear in quantum mechanics (see SCHRODIN-
GER (1}, [1]).

These pioneering works were, however, quite formal and mathe-
matically incomplete. It was tacitly assumed that the eigenvalues and
eigenvectors (or eigenfunctions) admit series expansions in the small
parameter that measures the deviation of the ‘““perturbed’” operator
from the ‘“‘unperturbed’’ one; no attempts were made to prove that the
series converge.

It was in a series of papers by RELLICH that the question of con-
vergence was finally settled (see ReLLICH [1]—[5]; there were some
attempts at the convergence proof prior to RELLICH, but they were not
conclusive; see e. g. WiLsoN [1]). The basic results of RELLICH, which
will be described in greater detail in Chapters IT and VII, may bestated
in the following way. Let T (%) be a bounded selfadjoint operator in a
Hilbert space H, depending on a real parameter » as a convergent power
series

(1 TH)=T+xTO+2TO 4 -+,
Suppose that the unperturbed operator T = T (0) has an isolated eigen-

value A (isolated from the rest of the spectrum) with a finite multi-
plicity m. Then T (¥) has exactly m eigenvalues y;(x), j=1, ..., m
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(multiple eigenvalues counted repeatedly) in the neighborhood of 4 for
sufficiently small ||, and these eigenvalues can be expanded into con-
vergent series

2 pi) = A+ e pud 42 P40, j=1,...,m.

The associated eigenvectors g;(x) of I (x) can also be chosen as con-
vergent series

@  wW—ptreP P, =1 m,
satisfying the orthonormality conditions
“) (95(%), r(%)) = O ,

where the @; form an orthonormal family of eigenvectors of T for the
eigenvalue A.

These results are exactly what were anticipated by RAYLEIGH,
ScHRODINGER and other authors, but to prove them is by no means
simple. Even in the case in which H is finite-dimensional, so that the
eigenvalue problem can be dealt with algebraically, the proof is not at
all trivial. In this case it is obvious that the u,(x) are branches of al-
gebroidal functions of #, but the possibility that they have a branch
point at % = 0 can be eliminated only by using the selfadjointness of
T (). In fact, the eigenvalues of a selfadjoint operator are real, but a
function which is a power series in some fractional power »!'/? of % cannot
be real for both positive and negative values of #, unless the series reduces
to a power series in %. To prove the existence of eigenvectors satisfying
(8) and (4) is much less simple and requires a deeper analysis.

Actually RELLICH considered a more general case in which T (x) is an
unbounded operator; then the series (1) requires new interpretations,
which form a substantial part of the theory. Many other problems related
to the one above were investigated by RELLICH, such as estimates for the
convergence radii, error estimates, simultaneous consideration of all the
eigenvalues and eigenvectors and the ensuing question of uniformity, and
non-analytic perturbations.

Rellich’s fundamental work stimulated further studies on similar
and related problems in the theory of linear operators. One new develop-
ment was the creation by FRIEDRICHS of the perturbation theory of
continuous spectra (see FRIEDRICHS [2]), which proved extremely
important in scattering theory and in quantum field theory. Here an
entirely new method had to be developed, for the continuous spectrum
is quite different in character from the discrete spectrum. The main
problem dealt with in Friedrichs’s theory is the similarity of T (x) to T,
that is, the existence of a non-singular operator W (x) such that T (x)
= W(x) TW (%)
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The original results of RELLICH on the perturbation of isolated
eigenvalues were also generalized. It was found that the analytic theory
gains in generality as well as in simplicity by allowing the parameter »
to be complex, a natural idea when analyticity is involved. However,
one must then abandon the assumption that T (%) is selfadjoint for all #,
for an operator T (x) depending on x analytically cannot in general be
selfadjoint for all % of a complex domain, though it may be selfadjoint
for all real #, say. This leads to the formulation of results for non-self-
adjoint operators and for operators in Banach spaces, in which the use of
complex function theory prevails (Sz.-NaGy [2], WoLF [1], T. KaTo [6)).
It turns out that the basic results of RELLICH for selfadjoint operators
follow from the general theory in a simple way.

On the other hand, it was recognized (TiTcHMARSH [1], [2], T. KATO
[1]) that there are cases in which the formal power series like (2) or (3)
diverge or even have only a finite number of significant terms, and yet
approximate the quantities u;(x) or ¢;(x) in the sense of asymptotic
expansion. Many examples, previously intractable, were found to lie
within the sway of the resulting asymptotic theory, which is closely
related to the singular perturbation theory in differential equations.

Other non-analytic developments led to the perturbation theory of
spectra in general and to stability theorems for various spectral properties
of operators, one of the culminating results being the index theorem
(see GoHBERG and KRrEIN [1]).

Meanwhile, perturbation theory for one-parameter semigroups of
operators was developed by HILLE and PHILLIPS (see PHILLIPS [1],
Hiiie and PHIiLLips (1)). It is a generalization of, as well as a mathe-
matical foundation for, the so-called time-dependent perturbation theory
familiar in quantum mechanics. It is also related to time-dependent
scattering theory, which is in turn closely connected with the perturba-
tion of continuous spectra. Scattering theory is one of the subjects in
perturbation theory most actively studied at present.

It is evident from this brief review that perturbation theory is not
a sharply-defined discipline. While it incorporates a good deal of the
spectral theory of operators, it is a body of knowledge unified more by
its method of approach than by any clear-cut demarcation of its province.
The underpinnings of the theory lie in linear functional analysis, and an
appreciable part of the volume is devoted to supplying them. The
subjects mentioned above, together with some others, occupy the
remainder.






Chapter One

Operator theory in finite-dimensional vector spaces

This chapter is preliminary to the following one where perturbation theory for
linear operators in a finite-dimensional space is presented. We assume that the
reader is more or less familiar with elementary notions of linear algebra. In the
beginning sections we collect fundamental results on linear algebra, mostly without
proof, for the convenience of later reference. The notions related to normed vector
spaces and analysis with vectors and operators (convergence of vectors and opera-
tors, vector-valued and operator-valued functions, etc.) are discussed in somewhat
more detail. The eigenvalue problem is dealt with more completely, since this will
be one of the main subjects in perturbation theory. The approach to the eigenvalue
problem is analytic rather than algebraic, depending on function-theoretical
treatment of the resolvents. It is believed that this is a most natural approach in view
of the intended extension of the method to the infinite-dimensional case in later
chapters.

Although the material as well as the method of this chapter is quite elementary,
there are some results which do not seem to have been formally published elsewhere
(an example is the results on pairs of projections given in §§ 4.6 and 6.8).

§ 1. Vector spaces and normed vector spaces

1. Basic notions

We collect here basic facts on finite-dimensional vector spaces,
mostly without proofl. A wvector space X is an aggregate of elements,
called vectors, u, v, ..., for which linear operations (addition u + v of
two vectors %, v and multiplication & # of a vector # by a scalar «) are
defined and obey the usual rules of such operations. Throughout the
book, the scalars are assumed to be complex numbers unless otherwise
stated (complex vector space). a# is also written as # o« whenever
convenient, and «~! # is often written as u/a. The zero vector is denoted
by 0 and will not be distinguished in symbol from the scalar zero.

Vectors #,, . . ., u, are said to be linearly independent if their linear
combination oy 4y + *+ * * + &, #, isequal tozeroonlyifay =+ - = o, = 0;
otherwise they are linearly dependent. The dimension of X, denoted by
dim X, is the largest number of linearly independent vectors that exist in
X. If there is no such finite number, we set dim X = co. In the present
chapter, all vector spaces are assumed to be finite-dimensional (0 =
< dim X < o) unless otherwise stated.

! See, e. g., GELFAND (1], Harmos (2], HorFmaN and Kunze (1].
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A subset M of X is a linear manifold or a subspace if M is itself a
vector space under the same linear operations as in X. The dimension
of M does not exceed that of X. For any subset S of X, the set M of all
possible linear combinations constructed from the vectors of S is a
linear manifold; M is called the linear manifold determined or spanned
by S or simply the (linear) span of S. According to a basic theorem on
vector spaces, the span M of a set of # vectors #,, ..., u, is at most
n-dimensional; it is exactly #-dimensional if and only if u,, ..., %, are
linearly independent.

There is only one 0-dimensional linear manifold of X, which consists
of the vector 0 alone and which we shall denote simply by 0.

Example 1.1. The set X = C¥ of all ordered N-tuples u = (§;) = (&, ..., &y)
of complex numbers is an N-dimensional vector space (the complex euclidean
space) with the usual definition of the basic operations « # + fv. Such a vector
u is called a numerical vector, and is written in the form of a column vector (in ver-
tical arrangement of the components §;) or a row vecfor (in horizontal arrangement)
according to convenience.

Example 1.2. The set of all complex-valued continuous functions % : x— u (%)
defined on an interval I of a real variable » is an infinite-dimensional vector space,
with the obvious definitions of the basic operations « # + fv. The same is true
when, for example, the  are restricted to be functions with continuous derivatives
up to a fixed order #. Also the interval I may be replaced by a region! in the m-
dimensional real euclidean space R™.

Example 1.3. The set of all solutions of a linear homogeneous differential
equation

um + al(x) un—1 4o u"(x) =20
with continuous coefficients a, (¥) is an #n-dimensional vector space, for any solution
of this equation is expressed as a linear combination of » fundamental solutions,
which are linearly independent.

2. Bases

Let X be an N-dimensional vector space and let x;, ..., xy be a
family? of N linearly independent vectors. Then their span coincides
with X, and each # € X can be expanded in the form

N
(L.1) u= 3 &2
i=1
in a unique way. In this sense the family {x,} is called a basis® of X,
and the scalars &; are called the coefficients (or coordinates) of u with
respect to this basis. The correspondence u — (&;) is an isomorphism

1 By a region in R™ we mean either an open set in R™ or the union of an open
set and all or a part of its boundary.

2 We use the term ‘“family’”’ to denote a set of elements depending on a para-
meter.

8 This is an ordered basis (cf. HorrmaN and Kunzk (1], p. 47).
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of X onto C¥ (the set of numerical vectors, see Example 1.1) in the sense
that it is one to one and preserves the linear operations, that is, % — (&,)
and v > () imply & u + fv > (x & + 7).

As is well known, any family #,, ..., %, of linearly independent
vectors can be enlarged to a basis %, ..., %,, %544, . .., ¥y by adding
suitable vectors %514, . . ., ¥x.

Example 1.4. In C¥ the N vectors #; = (..., 0, 1, 0, ...) with 1 in the j-th
place,j =1, ..., N, form a basis (the canonical basis). The coefficients of u = (&;)

with respect to the canonical basis are the &; themselves.
A.ny two bases {x;} and {x/} of X are connected by a system of linear
relations

(1.2) xk=2y,-kx;-, k=1,...,N.
7

The coefficients £; and &/ of one and the same vector » with respect to the
bases {#,} and {} respectively are then related to each other by

(1.3) £;=‘§y"k§h’ ]‘=1,...,N.
The inverse transformations to (1.2) and (1.3) are
(1.4) % = %‘ Vritn, En=2 P&,
1
where (§;;) is the inverse of the matrix (y;;):
. . 1(j=4)
(L5) 127/:‘57/5;:=127/i57¢k=5n={0(j#:k),

(1.6) det (y;5) det (7;5) = 1.

Here det (y;;) denotes the determinant of the matrix (y;;).
The systems of linear equations (1.3) and (1.4) are conveniently
expressed by the matrix notation

(17) () =(C) (W), (u)=(C)""(w),

where (C) is the matrix (y,;), (C)~! is its inverse and (#) and ()’ stand
for the column vectors with components &; and & respectively. It should
be noticed that (#) or ()’ is conceptually different from the “abstract”
vector # which it represents in a particular choice of the basis.

3. Linear manifolds

For any subset S and S’ of X, the symbol S + §’ is used to denote
the (linear) sum of S and §’, that is, the set of all vectors of the form
u+ o' with u€ S and «' € S'2. If S consists of a single vector %, S + §'

1 § 4 $’should be distinguished from the union of S and S, denoted by S\ §’.
The intersection of S and S’ is denoted by S N\ §”.
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is simply written # -+ S’. If M is a linear manifold, # + M is called the
inhomogeneous linear manifold (or linear variety) through « parallel to M.
The totality of the inhomogeneous linear manifolds # + M with a
fixed M becomes a vector space under the linear operation

(1.8) ax(w+M + Bv+M=(cu+ Bv)+M.

This vector space is called the guotient space of X by M and is denoted
by X/M. The elements of X/M are also called the cosets of M. The zero
vector of X/M is the set M, and we have » + M = v + M if and only if
# — v € M. The dimension of X/M is called the codimension or deficiency
of M (with respect to X) and is denoted by codim M. We have

(1.9) dimM + codimM = dim X .

If M, and M, are linear manifolds, M, + M, and M, N\ M, are again
linear manifolds, and

(1.10)  dim (M, + My) + dim (M, A My) = dimM, -+ dimM, .

The operation M; + M, for linear manifolds (or for any subsets of X)
is associative in the sense that (M; + M) + M; =M, + (M; + M;),
which is simply written M, + M, + M,. Similarly we can define M, +
+ M, + + - - + M, for s linear manifolds M;.

X is the direct sum of the linear manifolds M,, ..., M if X =M, +
+ -+ M, and 3 u; = 0 (»;€ M,) implies that all the »; = 0. Then we
write
(1.11) ' X=M®o oM.
In this case each # € X has a unique expression of the form

(1.12) w=2u;, w;€M;, j=1,...5s.
i
Also we have
(1.13) dimX = 3 dimM; .
i

Problem 1.5. If X = M, ® M,, then dimM, = codimM,.

4. Convergence and norms

Let {,} be a basis in a finite-dimensional vector space X. Let {u,},
n=1,2, ..., be a sequence of vectors of X, with the coefficients &,;
with respect to the basis {x,}. The sequence {u,} is said to converge to O

or have limit 0, and we write %, -0, # — oo, or lim #, = 0, if
Nn—» 00

(1.14) lim &,;,=0, j=1,...,N.
n—» 00
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If u, — u — 0 for some u, {u,} is said to converge to # (or have limit #),
in symbol %, - % or limw,, = #. The limit is unique when it exists.

This definition of convergence is independent of the basis {x;}
employed. In fact, the formula (1.3) for the coordinate transformation
shows that (1.14) implies lim§,; = 0, where the &,; are the coefficients
of u, with respect to a new basis {x/}.

The linear operations in X are continuous with respect to this notion
of convergence, in the sense that o, - o, B, B, #, > % and v, >v
imply o, 4 + Py thy > a1 + B 0.

For various purposes it is convenient to express the convergence of
vectors by means of a norm. For example, for a fixed basis {#,} of X, set

(1.15) ] = max|g;|,

where the §; are the coefficients of # with respect to {x;}. Then (1.14)
shows that u, — u is equivalent to |u, — %] — 0. |«| is called the norm
of u.

(1.15) is not the only possible definition of a norm. We could as well
choose

(1.16) el = X 1441
i
or
(1.17) - lu] = (2’ |§,|2)1/2 .
i
In each case the following conditions are satisfied:
(1.18) l#] =2 0; |u|=0 ifandonlyif #=0.
Joeu] = | Jul  (homogeneity) .

%+ v| < || + |v] (the triangle inequality) .

Any function |%| defined for all # € X and satisfying these conditions is
called a norm. Note that the last inequality of (1.18) implies

(1.19) e = 2] | = |lu —o|

as is seen by replacing # by # — v.

A vector # with |u|| =1 is said to be normalized. For any u =+ 0,
the vector u, = |u||~! # is normalized; u, is said to result from # by
normalization.

When a norm || | is given, the convergence %, — « can be defined in a
natural way by |4, — u|| - 0. This definition of convergence is actually
independent of the norm employed and, therefore, coincides with the
earlier definition. This follows from the fact that any two norms | |
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and || |’ in the same space X are equivalent in the sense that
(1.20) o« ul = Jul” = Bl ueX,

where o, 8’ are positive constants independent of #.
We note incidentally that, for any norm | | and any basis {x,},
the coefficients &; of a vector # satisfy the inequalities

(1.21) &Iy, =1,
(122) Jul < " max &,

where y, 9’ are positive constants depending only on the norm || | and
the basis {x,}. These inequalities follow from (1.20) by identifying the
norm || || with the special one (1.15).

A norm ||u| is a continuous function of u. This means that u, — u
implies |u,| — ||#|, and follows directly from (1.19). It follows from the
same inequality that #, — u implies that {u,} is a Cauchy sequence,
that is, the Cauchy condition

(1.23) %y — ]| =0, m,n—>o0,

is satisfied. Conversely, it is easy to see that the Cauchy condition is
sufficient for the existence of limu,,.

The introduction of a norm is not indispensable for the definition
of the notion of convergence of vectors, but it is a very convenient
means for it. For applications it is important to choose a norm most
suitable to the purpose. A vector space in which a norm is defined is
called a normed (vector) space. Any finite-dimensional vector space can
be made into a normed space. The same vector space gives rise to dif-
ferent normed spaces by different choices of the norm. In what follows
we shall often regard a given vector space as a normed space by intro-
ducing an appropriate norm. The notion of a finite-dimensional normed
space considered here is a model for (and a special case of) the notion
of a Banach space to be introduced in later chapters.

5. Topological notions in a normed space

In this paragraph a brief review will be given on the topological
notions associated with a normed space!. Since we are here concerned
primarily with a finite-dimensional space, there is no essential difference
from the case of a real euclidean space. The modification needed in the
infinite-dimensional spaces will be indicated later.

! We shall need only elementary notions in the topology of metric spaces. As a
handy textbook, we refer e. g. to RoYpEN (1]
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A normed space X is a special case of a metric space in which the
distance between any two points is defined. In X the distance between
two points (vectors) #, v is defined by |# — v|. An (open) ball of X is the
set of points #€ X such that |u — 2, < 7, where u, is the center and
7 > 0 is the radius of the ball. The set of « with |u — u,| < 7 is a closed
ball. We speak of the unit ball when uy= 0 and r = 1. Given a u¢€ X,
any subset of X containing a ball with center « is called a neighborhood
of u. A subset of X is said to be bounded if it is contained in a ball. X
itself is not bounded unless dim X = 0.

For any subset S of X, # is an tnterior point of S if S is a neighborhood
of u. u is an exterior point of S if u is an interior point of the complement
S’ of S (with respect to X). u is a boundary point of S if it is neither an
interior nor an exterior point of S. The set S of all boundary points of S
is the boundary of S. The union S of S and its boundary is the closure
of S. S is open if it consists only of interior points. S is closed if S’ is open,
or, equivalently, if S =S. The closure of any subset S is closed: S = §.
Every linear manifold of X is closed (X being finite-dimensional).

These notions can also be defined by using convergent sequences.
For example, S is the set of all # ¢ X such that there is a sequence #, € S
with #, - #. S is closed if and only if #,€ S and #, - » imply %€ S.

We denote by dist (#, S) the distance of # from a subset S:

(1.24) dist (», S) = II€1£ | — ] .

If S is closed and # ¢ S, then dist (%, S) > 0.

An important property of a finite-dimensional normed space X is
that the theorem of BoLzANO-WEIERSTRASS holds true. From each
bounded sequence {u,} of vectors of X, it is possible to extract a sub-
sequence {u,} that converges to some v ¢ X. This property is expressed by
saying that Xis locally compact!. A subset S C X is compact if any sequence
of elements of S has a subsequence converging to an element of S.

6. Infinite series of vectors
The convergence of an infinite series
(1.25) 3 u,
n=1
of vectors u,€ X is defined as in the case of numerical series. (1.25)
is said to converge to v (or have the sum v) if the sequence {v,} consisting

”
of the partial sums v, = 3’ #; converges (to v). The sum v is usually
E=1

denoted by the same expression (1.25) as the series itself.

1 The proof of (1.20) depends essentially on the local compactness of X.
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A sufficient condition for the convergence of (1.25) is

(1.26) Sl < oo

If this is true for some norm, it is true for any norm in virtue of (1.20).
In this case the series (1.25) is said to converge absolutely. We have

(1.27) 12 wall = 2 4] -

Problem 1.6. If #,, and v have respectively the coefficients &, i and 17, with respect
to a basis {x,}, (1.25) converges to v if and only if Z‘ Eni=muji=1,..., N.(1.25)

converges absolutely if and only if the N numencal series }' &,5, =1, ..., N,
n

converge absolutely.

In an absolutely convergent series of vectors, the order of the terms
may be changed arbitrarily without affecting the sum. This is obvious
if we consider the coefficients with respect to a basis (see Problem 1.6).
For later reference, however, we shall sketch a more direct proof without
using the coefficients. Let 3 u, be a series obtained from (1.25) by
changing the order of terms. It is obvious that } |u,|| = 3 |u,] < oo.

For any ¢ >0, there is an integer 7 such that 3 |[u,| <e. Let p be so

n=m+1

large that %, ..., %, are contained in %, . . ., u;,. For any # > m and
0
g > p, we have then 2 u — Z up)| < ' |lua] <e, and going

k=m+1

< ¢ for ¢ > p. This

j=1
to the limit # — oo we obtain Z,' w, — 3 uy

=1 k=1
proves that 3 u, = 3 u,. ’

This is an example showing how various results on numerical series
can be taken over to series of vectors. In a similar way it can be proved,
for example, that an absolutely convergent double series of vectors may
be summed in an arbitrary order, by rows or by columns.or by trans-
formation into a simple series.

7. Vector-valued functions

Instead of a sequence {u,} of vectors, which may be regarded as a
function from the set {} of integers into X, we may consider a function
u; = u(#) defined for a real or complex variable ¢ and taking values in X.
The relation }1_13‘1z u(f) = v is defined by ||%(f) — v]| - 0 for ¢t —>a (with

the usual understanding that ¢ & @) with the aid of any norm. %(f) is
continuous at t=a if }im % (f) = u(a), and »(¢) is continuous in a region E
—>a

of ¢ if it is continuous at every point of E.
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The derivative of #(f) is given by
(1.28) W (t) =220 Tim At + ) — u ()
whenever this limit exists. The formulas
ai (“ +o(@)=u'@)+ (),
a L) ult) =) w0 + ¢ 0) ul)

are valid exactly as for numerical functions, where ¢ (#) denotes a complex-
valued function.
The integral of a vector-valued function #(f) can also be defined as
for numerical functions. For example, suppose that «(f) is a continuous
b

(1.29)

function of a real variable ¢, a < ¢ < b. The Riemann integral [ «(f) d¢

is defined as an appropriate limit of the sums 2 (8 — t;—y) u(t;) con-
structed for the partitions a = t0< b <--+<t,=0b of the interval
[, b]. Similarly an integral f 1) dt can be defined for a continuous

function # (f) of a complex varlable ¢t and for a rectifiable curve C. The
proof of the existence of such an integral is quite the same as for numerical
functions; in most cases it is sufficient to replace the absolute value of a
complex number by the norm of a vector. For these integrals we have
the formulas

J(eu@®) + Bo@)di=oafult)di+ [
IIf u(t) at] = [u@] |d¢] .

There is no difficulty in extending these definitions to improper integrals.
We shall make free use of the formulas of differential and integral
calculus for vector-valued functions without any further comments.

Although there is no difference in the formal definition of the deriva-
tive of a vector-valued function #(f) whether the variable ¢ is real or
complex, there is an essential difference between these two cases just as
with numerical functions. When #« (f) is defined and differentiable every-
where in a domain D of the complex plane, u(f) is said to be regular
(analytic) or holomorphic in D. Most of the results of complex function
theory are applicable to such vector-valued, holomorphic functions?.

(1.30)

1 Throughout this book we shall make much use of complex function theory,
but it will be limited to elementary results given in standard textbooks such as
Knopp (1, 2). Actually we shall apply these results to vector- or operator-valued
functions as well as to complex-valued functions, but such a generalization usually
offers no difficulty and we shall make it without particular comments. For the
theorems used we shall refer to Knopp whenever necessary.
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Thus we have Cauchy’s integral theorem, Taylor’s and Laurent’s expan-
sions, Liouville’s theorem, and so on. For example, if £ = 0 is an isolated
singularity of a holomorphic function # (), we have

+ o 1
(1.31) wlt)= 3 tra,, ay=g7 [trtuldt,

o ‘
re c

where C is a closed curve, say a circle, enclosing ¢ = 0 in the positive
direction. ¢ = 0 is a regular point (removable singularity) if a, = 0 for
n < 0, a pole of order 2 > 0 if a_; # 0 whereas a, = 0 for n < —&, and
an essential singularity otherwise?.

Problem 1.7. If # = 0 is a pole of order %, then ||« ()| = O (|¢|™*) for t— 0.

Problem 1.8. Let &, (#) be the coefficients of u(f) with respect to a basis of X.
u(f) is continuous (differentiable) if and only if all the &;(f) are continuous (dif-
ferentiable). »’(f) has the coefficients £;(¢) for the same basis. Similarly, fu(f) d¢
has the coefficients [ &;(#) dt.

§ 2. Linear forms and the adjoint space
1. Linear forms

Let X be a vector space. A complex-valued function f[#] defined for
u ¢ X is called a linear form or a linear functional if

(2.1) flaw+ Bv]=af[u] + B[]

for all #, v of X and all scalars «, §.

Example 2.1. If X = C¥ (the space of N-dimensional numerical vectors),
a linear form on X can be expressed in the form

N
(2.2) 10 = X ety for u=(5).
7=

Itis usual to represent f as a vow vecfor with the components o;, when # is represented
as a column vector with the components §;. (2.2) is the matrix product of these two
vectors.

Example 2.2. Let X be the space of continuous functions # = % (¥) considered
in Example 1.2. The following are examples of linear forms on X:

(2.3) f[u] = u(%), =%, being fixed.
b
(2.4) flul = [P () u(¥)dx, ¢ () being a given function.

Let {x;} be a basis of X(dimX =N <o0). If u =} &;x; is the
expansion of #, we have by (2.1)

(2.5) flu] =X o &
where a; = f[x;]. Each linear form is therefore represented by a numerical
vector (a;) with respect to the basis and, conversely, each numerical

1 See Knorp (1], p. 117.
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vector («;) determines a linear form f by (2.5). (2.5) corresponds exactly
to (2.2) for a linear form on C¥.

The same linear form f is represented by a different numerical
vector () for a different basis {x}. If the new basis is connected with the
old one through the transformatlon (1.2) or (1.4), the relation between
these representations is given by

a}=f[x;]=k2’77kif[xk]=§77’“'“"’

’
“k=):7ik“i-
i

(2.6)

In the matrix notation, these may be written
(2.7) =N Nh=01W©,

where (C) is the matrix (y;;) [see (1.7)] and where (f) and (f)’ stand for
the row vectors with components (a;) and () respectively.

2. The adjoint space

A complex-valued function f[«#] defined on X is called a semilinear
(or conjugate-linear or anti-linear) form if

(2.8) flaw+ Bol=2aflu]l + /],

where & denotes the complex conjugate of «. It is obvious that f[«] is a
semilinear form if and only if f[«] is a linear form. For the sake of a
certain formal convenience, we shall hereafter be concerned with semi-
linear rather than with linear forms.

Example 2.3. A semilinear form on C¥ is given by (2.2) with the &; on the right
replaced by the Z;,, where u = (§;).

Example 2.4. Let X be as in Example 2.2. The followmg are examples of semi-
linear forms on X:

(2.9) Flu) = ulx)
| 2
(2.10) fu] = [ ¢(x)ux) dx.

The linear combination « f + f g of two semilinear forms f, g defined
by
(2.11) (f+ Bg)[u]=aflu]+ Bglu]

is obviously a semilinear form. Thus the set of all semilinear forms on X
becomes a vector space, called the adjoint (or conjugate) space of X and
denoted by X*. The zero vector of X*, which is again denoted by 0,
is the zero form that sends every vector # of X into the complex number
zZero.
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It is convenient to treat X* on the same level as X. To this end we
write

(2.12) Hlu] = (f, u)

and call (f, #) the scalar product of f ¢ X* and « ¢ X. It follows from the
definition that (f, ) is linear in f and semilinear in u:

(@f+Bgu)=alf,u) + Blg u),
(fout po)=alf,u) + B(fv).

Example 2.5. For X = C¥, X* may be regarded as the set of all row vectors
f = («;) whereas X is the set of all column vectors # = (£;). Their scalar product is
given by
(2.14) (tu)=Zaé.

Remark 2.6. In the algebraic theory of vector spaces, the dual space
of a vector space X is defined to be the set of all linear forms on X.
Our definition of the adjoint space is chosen in such a way that the
adjoint space of a unitary space (see §6) X can be identified with X
itselfl.

(2.13)

3. The adjoint basis

Let {x;} be a basis of X. As in the case of linear forms, for each
numerical vector (o) there is an f€ X* such that (f, x;) = o. In particu-
lar, it follows that for each j, there exists a unique ¢; € X* such that

(2.15) (ej,xk)zajk, j,k= 1,...,N.

It is easy to see that the ¢; are linearly independent. Each f€ X* can be
expressed in a unique way as a linear combination of the e¢;, according to

(2.16) f=2 o;e; where a;=(f,x,).
i

In fact, the difference of the two members of (2.16) has scalar product
zero with all the x; and therefore with all # € X; thus it must be equal
to the zero form.

Thus the N vectors ¢; form a basis of X*, called the basis adjoint
to the basis {x;} of X. Since the basis {¢;} consists of N elements, we have

(2.17) dimX* = dimX =N .
For each # € X we have
(2.18) w=2'&x; where & = (¢;u).
i

1 See e. g. HaLMoOs [2). Sometimes one defines X* as the set of all linear forms f
on X but defines af by («f) [#] = &f [#], so that f[«] is linear in % and semilinear
in f (see e. g. LorcH ([1)). Our definition of X* is the same as in R1esz and Sz.-Nacy
(1) in this respect.
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It follows from (2.16) and (2.18) that
(2.19) (hw)=Xa; &=23 (1) (e u) .

Let {x,;} and {x'} be two bases of X related to each other by (1.2).
Then the corresponding adjoint bases {¢;} and {¢j} of X* are related
to each other by the formulas

(2.20) ¢ = TFJ Finewr =2 Pri¢ -
1

Furthermore we have

(2.21) Fin= (¢, %), Vrs= (en %) -

4. The adjoint space of a normed space

Since X* is an N-dimensional vector space with X, the notion of
convergence of a sequence of vectors of X* is defined as in § 1.4. For the
same reason a norm could be introduced into X*. Usually the norm in X*
is not defined independently but is correlated with the norm of X.

When a norm ||u|| in X is given so that X is a normed space, X* is by
definition a normed space with the norm |/f|| defined by?

(2.22) 1= sup 19l sup (7, w).
oxuex Nl =1

That ||f| is finite follows from the fact that the continuous function
|(f, #)| of w attains a maximum for |#| = 1 (because X is locally compact).
It is easily verified that the norm |f| thus defined satisfies the conditions
(1.18) of a norm. There is no fear of confusion in using the same symbol
| || for the two norms.

Example 2.7. Suppose that the norm in X is given by (1.15) for a fixed basis {#,}.
If {e;} is the adjoint basis in X*, we have |(f, w)| = (X' |o|) |#]| by (2.19). But the

equality holds if # is such that |§]| = |&| = - -+ = |&y| and all «; &; are real and
nonnegative. This shows that
(2.23) Il = 2 el -

Similarly it can be shown that, when the norm in X is given by (1.16), the norm in
X* is given by

(2.24) [l = max|ey| .

Thus we may say that the norms (1.15) and (1.16) are adjoint to each other.

(2.22) shows that
(2.25) Il = Ifl el fEX*, ueX.

This is called the Schwarz inequality in the generalized sense. As we have
deduced it, it is simply the definition of ||f| and has an essential meaning
only when we give ||f| some independent characterization (as, for
example, in the case of a unitary space; see § 6).

1 Here we assume dim X > 0; the case dimX = 0 is trivial.
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(2.25) implies that ||u| = |(f, #)|/|f]. Actually the following stronger
relation is true!:

(2.26) lul = sup 19— sup (7, ).

0 feX* llf" il =
This follows from the fact that, for any #,€ X, there is an f € X* such that
(2.27) (f, uo) = |uol , |l =1.

The proof of (2.27) requires a deeper knowledge of the nature of a norm
and will be given in the following paragraph.

Problem 2.8. (f, #) = 0 for all #€ X implies f = 0. (f, #) = 0 for all f€ X*
implies # = 0.

A simple consequence of the Schwarz inequality is the fact that the
scalar product (f, u) is a continuous function of f and u. In fact?,

(7)) = () = |(F = fo) + (b =)+ (F = £, — )]
< 1f— 1) ol + U o= el 1 = ) o= ]

In particular, #, -« implies (f, #,) — (f, #) for every f€ X* and
fn— f implies (f,,, u) — (f, ) for every u € X. Similarly, the convergence
of a series } u, = » implies the convergence 3 (f, #,) = (f, «) for every
f€ X* (that is, term by term multiplication is permitted for the scalar
product). Conversely, (f, #,) — (f, ) for all f€ X* implies u, - »; this
can be seen by expanding u, and # by a fixed basis of X.

(2.28)

5. The convexity of balls

Let S be an open ball of X. S is a convex set: for any two points
(vectors) #, v of S, the segment joining # and v belongs to S. In other
words,

(2.29) Au+(1—ANveS if uw,veS and 011,

In fact, denoting by %, the center and by » the radius of S, we have
Aw+ (1= 2 v — gl = [ = ) + (1= 2) (= ug)] < A7+ (1= A7
= 7, which proves the assertion. In what follows we assume S to be the
unit ball (%, =0, = 1).

Since X is isomorphic with the N-dimensional complex euclidean
space C¥, X is isomorphic with the 2N-dimensional real euclidean
space R?*¥N as a real vector space (that is, when only real numbers are
regarded as scalars). Thus S may be regarded as a convex set in R?¥,
It follows from a well-known theorem?2 on convex sets in R”* that, for

1 Again dim X* = dim X > 0 is assumed.

2 The continuity of (f, #) follows immediately from (2.19). But the proof in
(2.28) has the advantage that it is valid in the co-dimensional case.

3 See, e. g., EGGLESTON (1]
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each vector #, lying on the boundary of S (that is, |#,| = 1), there is
a support hyperplane of S through u, This implies that there exists a
real-linear form g [u] on X such that

(2.30) glug) =1 whereas glu]l<1 for u¢S.

That g is real-linear means that g[#] is real-valued and g[o# + § v]
= agu] + B g[v] for all real numbers «, § and #, v€ X.

g is neither a linear nor a semilinear form on the complex vector
space X. But there is an f € X* related to g according tot!

(2.31) (hu)=ful=glu]+igliu].

To see that this f is in fact a semilinear form on X, it suffices to verify
that f{(x + ¢ B) u] = (« — ¢ B) f[u] for real «, B, for it is obvious that
flu + v] = f[u] + f[v]. This is seen as follows: ‘

fllatipul=glau+iBul+igliou— fu]

=aglu]l+ Bgliu] +iagliu] —ipfglu]
(@—if) (gl +iglinl) = (x—1ip)f[u].
Now this f has the following properties:

(2.32) (fbu)=1, Ifl=1.

To see this, set (f, #) = Ret?, § real and R = 0. It follows from what
was just proved that (f, ¢! u) = ¢~%°(f, u) = R and hence that |(f, )|
=R=Re(f, e!®u) = g[et®u] <1 if |¢!®u| = |u| < 1. This shows that
|/l < 1. In particular we have |(f, up)| = 1. But since Re(f, u,) = g [1,]
= 1, we must have (f, #,) = 1. This implies also ||f| = 1.

Note that (2.32) is equivalent to (2.27) in virtue of the homogeneity
of the norm.

6. The second adjoint space

The adjoint space X** to X* is the aggregate of semilinear forms
on X*. An example of such a semilinear form F is given by F [f] = (/,_u)
where » € X is fixed. With each # € X is thus associated an element F
of X**, This correspondence of X with X** is linear in the sense that
o«u+ Bv corresponds to o« F + G when u, v correspond to F, G,
respectively. The fact that dim X** = dim X* = dim X shows that the
whole space X** is exhausted in this way; in other words, to each
F ¢ X** corresponds a #¢ X. Furthermore when X and therefore X*,
X** are normed spaces, the norm in X** is identical with the norm in
X: |F|| = |||, as is seen from (2.26). In this way we see that X** can be
identified with X, not only as a vector space but as a normed space.

1 ¢ is the imaginary unit.
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In this sense we may write F [f] as #[f] = (%, f), so that

(2.33) (w, /) = (f, u) .

It should be noted that these results are essentially based on the
assumption that dim X is finite.

Problem 2.9. If {¢;} is the basis of X* adjoint to the basis {#,} of X, {#,} is the
basis of X** = X adjoint to {e;}.

We write f | # or # | f when (f, w) = 0. When f | » for all # of a
subset S of X, we write f 1 S. Similarly we introduce the notation » | S’
for u € X and S’ ¢ X*. The set of all /€ X* such that f | S is called the
annihilator of S and is denoted by S+i. Similarly the annihilator §'L
of a subset S’ of X* is the set of all w¢€ X such that » | §’.

For any Sc X, SL is a linear manifold. The annihilator SLL of SL
is identical with the linear span M of S. In particular we have ML1L1 =M
for any linear manifold M of X.

Problem 2.10. codimM = dimML.

§ 3. Linear operators

1. Definitions. Matrix representations

Let X, Y be two vector spaces. A function T that sends every vector
u of X into a vector v = Tu of Y is called a linear transformation or a
linear operator on X to Y if T preserves linear relations, that is, if

(3.1) T (oty w0y + oty tg) = 0ty Tuuy + oty Tty

for all u,, u, of X and all scalars ay, . X is the domain space and Y
is the range space of T. If Y = X we say simply that T is a linear operator
tn X. In this book an operator means a linear operator unless otherwise
stated.

For any subset S of X, the set of all vectors of the form T# with
u € S is called the ¢mage under T of S and is denoted by T'S; it is a subset
of Y. If M is a linear manifold of X, TM is a linear manifold of Y. In
particular, the linear manifold T X of Y is called the range of T and is
denoted by R(T). The dimension of R(T) is called the rank of T; we
denote it by rank T. The deficiency (codimension) of R(T) with respect
to Y is called the deficiency of T and is denoted by def T. Thus

(3.2) rankT + defT = dimY .

For any subset S’ of Y, the set of all vectors # € X such that Tu¢ S’
is called the ¢nverse tmage of S’ and is denoted by T-'S§’'. The inverse
image of 0 C Y is a linear manifold of X it is called the kernel or null space
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of T and is denoted by N(T). The dimension of N(T) is called the
nullity of T, which we shall denote by nul T. We have

(8.3 rankT + nulT = dim X .

To see this it suffices to note that T maps the quotient space X/N(T)
(which has dimension dim X — nul T') onto R(T) in a one-to-one fashion.

If both nul T and def T are zero, then T maps X onto Y one to one.
In this case the inverse operator T—1 is defined; T-1 is the operator on Y
to X that sends T# into #. Obviously we have (T-Y)~! = T. T is said to
be nonsingular if T-! exists and singular otherwise. For T to be non-
singular it is necessary that dimX = dimY. If dimX = dimY, each of
nulT =0 and defT = 0 implies the other and therefore the non-
singularity of T.

Let {x,} be a basis of X. Each # € X has the expansion (1.1), so that

N
(3.4) Tu= ) & Tx,, N=dimX.
k=1
Thus an operator T on X to Y is determined by giving the values of
Tx,, k=1, ..., N. Furthermore, these values can be prescribed ar-

bitrarily in Y; then it suffices to define T by (3.4) to make T linear.
Tf {y,} is a basis of Y, each T, has the expansion

M
(8.5) Tx,= } typy;, M=dimY.
i=1

Substituting (8.5) into (3.4), we see that the coefficients #; of v=Tu
with respect to the basis {y;} are given by

(3.6) ni=§rik£k' j=1,...,M.

In this way an operator T on Xto Y is represented by an M X N matrix
(t;z) with respect to the bases {x3}, {y,} of X, Y, respectively. Conversely,
to each M X N matrix (r;;) there is an operator T on X to Y represented
by it with respect to the given bases.

Let (z/,) be the matrix representing the same operator T with respect
to a new pair of bases {x;}, {y/}. The relationship between the matrices
(t/x) and (7;) is obtained by combining (8.5) and a similar expression for
Tx, in terms of {y;} with the formulas (1.2), (1.4) of the coordinate
transformation and the corresponding formulas in Y. The result is

8.7) T;k = Zhy 7’7"1' Tin %k .

Thus the matrix (/) is the product of three matrices (y/3), (v;3) and
Psn)-
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If T is an operator on X to itself, it is usual to set y; = x; and 3] = #;;
we have then

(3.8) (Tix) = (viz) (Tsn) Pin) -
It follows by (1.6) that
(3.9) det (7];) = det(z;3) .

Thus det (t,,) is determined by the operator T itself and does not depend
on the basis employed. It is called the determinant of T and is denoted by
det T. Similarly, the trace 3 1;; of the matrix (z;;,) does not depend on
the basis; it is called the trace of T and is denoted by trT.

Problem 3.1. If {f;} is the basis of Y* adjoint to {y,}, then
(3.10) Tir= (T x, 1)) .

Problem 3.2. Let {#,} and {¢,} be the bases of X and X*, respectively, which are
adjoint to each other. If T is an operator on X to itself, we have

(3.11) T =X (Txe).
i

2. Linear operations on operators

If T and S are two linear operators on X to Y, their linear combination
o« S + B T is defined by

(8.12) S+ BT)u=a(Su)+ p(Tu)

for all # € X, and is again a linear operator on X to Y. Let us denote by

Z (X, Y) the set of all operators on X to Y; #(X,Y) is a vector space

with the linear operations defined as above. The zero vector of this

vector space is the zero operator 0 defined by 0 # = 0 for all ¢ X.
Problem 3.3. rank (S 4+ T) < rankS 4 rankT.

The dimension of the vector space # (X, Y) is equal to N M, where
N =dimX and M = dimY. To see this, let {x;} and {y,} be bases of X
and Y, respectively, and let P;, be the operator on X to Y such that

(3.13) P”xh=6khy5, k,h—_-l,...,N; j=1,...,M.

These M N operators Py, are linearly independent elements of # (X, Y),
and we have from (3.5)

(3.14) T=Etjkpfk'

Thus {P;;} is a basis of Z(X, Y), which proves the assertion. {P;,} will
be called the basis of #(X,Y) associated with the bases {,} and {y;}
of X and Y, respectively. (3.14) shows that the matrix elements t;; are
the coefficients of the “vector” T with respect to the basis {P;,}, and
(8.7) or (3.8) is the formula for coordinate transformation in & (X, Y).
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The product T'S of two linear operators T, S is defined by
(3.15) (TS)u=T(Su)

for all #¢ X, where X is the domain space of S, provided the domain
space of T is identical with the range space Y of S. The following relations
hold for these operations on linear operators:

(T'S) R = T(SR), which is denoted by TSR,
(¢T) S = T («S) = a(TS), denoted by « TS,
(Ty+ Ty S=T,S+T,S,
T(S;+Sy) =TS, +TS,.

Problem 3.4. rank (T S) < max (rank T, rank S).

Problem 3.5. If S, T have the matrices (0;;), (7;;) with respect to some fixed
bases, S + T and T S have the matrices (oy;) + (t;12), (T;») (0;) respectively
(whenever meaningful). If T-! exists, its matrix is the inverse matrix of (z;3).

(3.16)

3. The algebra of linear operators

If S and T are operators on X to itself, their product T'S is defined
and is again an operator on X to itself. Thus the set #(X) = Z (X, X)
of all linear operators in X is not only a vector space but an algebra.
% (X) is not commutative for dim X = 2 since TS = ST is in general not
true. When TS = ST, T and S are said to commute (with each other).
Wehave TO0=0T =0and T1=1T= T for every T € #(X), where 1
denotes the identity operator (defined by 14 = u for every u € X). Thus 1
is the unit element of & (X). The operators of the form « 1 are called
scalar operators? and in symbol will not be distinguished from the
scalars «. A scalar operator commutes with every operator of % (X).

We write TT =712 TTT = T2 and so on, and set T°=1 by
definition. We have

(317) TmTn=Tmtn, (Tmr=Tmn, m,n=012,...

For any polynomial p(2) = otg + 0y 2 + * * * + e, 2* in the indeterminate
2z, we define the operator

(3.18) PN =g+ T+ +a,Tn.

The mapping p(2) - p(T) is a homomorphism of the algebra of poly-
nomials to #(X); this means that p(2) + g(2) = 7(2) or p(2) g(2) =7(2)
1 Note that 1 == 0 if (and only if) dimX = 1.
2 This should not be confused with the notion of scalar operators in the theory
of spectral operators due to DUNFORD (see DUNFoRD [1]).
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inplies p(T) + q(T)=7(T) or p(T)q(T)=7r(T) respectively. In
particular, it follows that 4 (T) and ¢(T) commute.

Problem 3.6. The operators P;, € % (X) given by (3.13) with Y = X, y; = #;
satisfy the relations

(3.19) Py Pin=0u P, jhih=1,..,N.

Problem 3.7. Set R, = R(T") and N, = N(T"),» =0, 1, 2, ... . The sequence
{R,} is nonincreasing and {N,} is nondecreasing. There is a nonnegative integer
m < dim X such that R, == R, 4, for » < m and R, = R, 4, for n = m.

If T¢€ #(X) is nonsingular, the inverse 71 exists and belongs to
2 (X); we have

(3.20) T-1T=TT1=1.

If T has a left inverse T’ (that is, a T’ € #(X) such that 7" T = 1), T has

nullity zero, for T = 0 implies u = T' Tu = 0. If T has a right inverse

T" (that is, TT" = 1), T has deficiency zero because every %€ X lies

in R(T) by w =T T" u. If dimX is finite, either of these facts implies

that T is nonsingular and that 7’ = T-! or T"” = T-1, respectively.
If S and T are nonsingular, so is TS and

(3.21) (TS)-1=S-1T-1,

For a nonsingular T, the negative powers T-%, n=1, 2, ..., can be
defined by T-* = (T-1)". In this case (3.17) is true for any integers m, .

The following relations on determinants and traces follow directly
from Problem 3.5:

detTS = (detT) (detS),
(3-22) tr(S + T)=atrS+ ptrT,
trST=trTS.

Problem 3.8. The last formula of (3.22) is true even when S¢€ #Z(X,Y) and
Tc#(Y,X)sothat ST ¢ Z(Y) and T S¢€ Z(X).

4. Projections. Nilpotents

Let M, N be two complementary linear manifolds of X; by this we
mean that

(3.23) X=Ma N;

see § 1.3. Thus each #€ X can be uniquely expressed in the form u
=u' + #” with '€ M and %" € N. o’ is called the projection of u on M
along N. If v = v’ + v" in the same sense, « # + £ v has the projection
«u’ + v on M along N. If we set 4’ = Pu, it follows that P is a linear
operator on X to itself. P is called the projection operator (or simply the
projection) on M along N. 1 — P is the projection on N along M. We have



§ 3. Linear operators 21

Py =unifand only if € M, and P« = 0 if and only if # € N. The range of
P is M and the null space of P is N. For convenience we often write
dim P for dimM = dimR(P). Since Pu¢€ M for every »€ X, we have
PPy = Pu, that is, P is idempotent:

(3.24) Pr=P.

Conversely, any idempotent operator P is a projection. In fact, set
M= R(P) and N = R(1 — P). ' ¢ M implies that %' = P« for some %
and therefore Py’ = P*u = Pu = 4'. Siniilarly "' € N implies Pu"" = 0.
Hence #€ M N N-implies that ¥ = Pu = 0, so that Mn N = 0. Each
u ¢ X has the expression # = «’ + «” with#'= Pu€¢Mand #”’=(1— P)u
€ N. This shows that P is the projection on M along N.

Problem 3.9. If P is a projection, we have

(3.25) trP = dimP.
The above results can be extended to the case in which there are

several linear manifolds M,, . . ., M, such that

(3.26) X=M®o- - oM,.

Each #¢ X is then expressed in the form o = u, + + 4+ u, u;€ M,
j=1, ..., s in a unique way. The operator P; defined by P; u = u; is
the projection on M; along Nj=M;® - dM,_; & M;1;®---Dd M,
Furthermore, we have

(3.27) yp=1,
(328) P];Pj=6jkpjo

Conversely, let P,, ..., P, be operators satisfying the conditions (3.27)
and (3.28). If we write M; = R(P;), it is easily seen that (3.26) is satisfied
and the P; are the projections defined as above. In particular consider
the case s =3 and set P = P, + P,. Then P, =P, P= PP, = PP, P;
P, is a projection commuting with P and with R(P;) CR(P). Such a P,
will be called a subprojection of P (a proper subprojection if P, == P in
addition), in symbol P, < P.

A basis {x;} of Xeis said to be adapted to the decomposition (3.26)
if the first several elements of {#;} belong to M,, the following several ones
belong to M,, and so on. With respect to such a basis {x,}, each P; is
represented by a diagonal matrix with diagonal elements equal to 0
or 1, the number of 1’s being equal to dim M;. Conversely, such a matrix
always represents a projection.

1 Such a family is sometimes called a complete orthogonal family of projections.
We do not use this term to avoid a possible confusion with the notion of an ortho-
gonal projection to be introduced in a unitary or Hilbert space.
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For each linear manifold M of X, there is a complementary manifold N
[such that (3.23) is true]. Thus every linear manifold has a projection
on it. Such a projection is not unique, however.

A linear operator T € #(X) is called a nilpotent (operator) if T =0
for some positive integer #. A nilpotent is necessarily singular.

Let us consider the structure of a nilpotent T in more detail. Let #
be such that 7 =0 but T"~! = 0 (we assume dimX = N > 0). Then
R(T™-1) = 0; let {#}, ..., #}} be a basis of R(T-%). Each x} has the
form x} = T»-14? for some 27¢ X, ¢=1, ..., p. lf n> 1, set Tn-247
= x? so that Tx? = x!. The vectors ¥, k= 1,2,7 = 1,..., p,, belong
to R(T7-2) and are linearly independent; in fact }; a;22 + 3 ;2! =0
implies } a;x} = 0 on application of T and hence «; = 0 for all 7, hence
2 B:x} = 0and B; = 0 for all 7. Let us enlarge the family {x*} to a basis
of R(7"-%) by adding, if necessary, new vectors 3 ,;, . . ., ¥, ; here we
can arrange that T x? = 0 for > p,.

If > 2 we can proceed in the same way. Finally we arrive at a
basis {#f} of X with the following properties: 2= 1,...,%,7=1,..., ps
Ph=EpP="""= Pu

k-1 <ji<
(3.29) Tx}‘={x’ P LSTE P
. 0; pk—l+l§]§pk’
where we set p, = 0.

If we arrange the basis {#/} in the order {x}, ..., ¥, &, ..., 2, .. .},
the matrix of T with respect to this basis takes the form
01
01
01
(all unspecified
(3.30) o . elements are zero)
01
.1

Problem 3.10. If T is nilpotent, then T% = 0 for N = dim X.
Problem 3.11. If T is nilpotent, then trT = 0 and det(1 + T) = 1.

5. Invariance. Decomposition

A linear manifold M is said to be ¢nvariant under an operator T € & (X)
if TMCM. In this case T induces a linear operator Ty on M to M,
defined by Ty = Tu for u€ M. Ty, is called the part of T in M.

Problem 3.12. R, = R(T"), n =0, 1, 2, ..., are invariant under 7. If m is

defined as in Problem 3.7, the part of T in R, is singular if » << m and nonsingular if
n= m. .
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Problem 3.13. If M is invariant under T, M is also invariant under p (T) for
any polynomial p (z), and p (T)m = P (TMm)-

If there are two invariant linear manifolds M, N for T such that
X=M@e N, T is said to be decomposed (or reduced) by the pair M, N.
More generally, T is said to be decomposed by the set of linear manifolds
My, ..., M, if (3.26) is satisfied and all the M; are invariant under T
[or we say that T is decomposed according to the decomposition (3.26)].
In this case T is completely described by its parts Tiy, j=1, ..., s.
T is called the direct sum of the Ty . If {P;} is the set of projections
corresponding to (3.26), 7 commutes with each P;. In fact we have,
successively, P;u€ M;, TP;u€M;, P, TP;u = d;;, TP;u, and the
addition of the last equalities forj=1, ..., s gives P, Tu = T P, u or
P, T = TP,. Conversely, it is easy to see that T is decomposed by
M,, ..., M, if T commutes with all the P;.

If we choose a basis {x;} adapted to the decomposition (3.26), T is
represented by a matrix which has non-zero elements only in s smaller
submatrices along the diagonal (which are the matrices of the Ty,).
Thus the matrix of T is the direct sum of the matrices of the Ty,

Problem 3.14. With the above notations, we have
(3.31) detT = JTdetTy,, trT = X trTnm,.
i 7
Remark 3.15. The operator P; T = T P; = P; T P, coincides with T
and also with Ty, when applied to a #¢ M;; it is sometimes identified
with Ty, when there is no possibility of misunderstanding.

6. The adjoint operator

Let T€¢#(X,Y). For each g€ Y* and u€ X, the scalar product
(g, Tu) is defined and is a semilinear form in #. Therefore, it can be
written as f[u] = (f, ) with an f€ X*. Since f is determined by g,
a function T* on Y* to X* is defined by setting f = T*g. Thus the
defining equation of T* is
(3.32) (T*g, u)= (g, Tu), geY*, ucX.

T* is a linear operator on Y* to X*, that is, T*¢ Z(Y*, X*). In fact,
we have (T*(a 8 + 08), %) = (08 + %8 T4) = oy (g1, Tu) +
+ g (8a Tu) = oy (T* gy, %) + g (T*gp, ) = (0y T* & + ot T* gy, %)
so that T*(ay g + oty &) = oy T* gy + g T* g,. T* is called the adjoint
(operator) of T.

The operation * has the following properties:

333)  (xS+BT*=aS*+ fT*, (TS)*=S*T*.
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In the second formula it is assumed that T ¢ #(Y,Z) and S€ Z(X,Y)
so that T'S is defined and belongs to # (X, Z); note that S* ¢ Z(Y*, X*)
and T*¢€ % (Z* Y*) so that S* T*¢ #(Z*, X*). The proof of (3.33) is
simple; for example, the second formula follows from ((T'S)* A, u)
= (h, TSu) = (T*h, Su) = (S*T* h, w) which is valid for all ¢ Z*
and u¢ X.

Problem 3.16. 0* = 0, 1* = 1 (the 0 on the left is the zero of & (X, Y) while the 0
on the right is the zero of #(Y*, X*); similarly for the second equality, in which we
must set Y = X).

If Te#(X,Y), we have T*¢ B (Y*, X*) and T** ¢ B (X**, Y**),
If we identify X** and Y** with X and Y respectively (see §2.6), it
follows from (3.32) that

(3.34) T+ =T.

If we take bases {x;} and {y;} in X and Y respectively, an operator
T€ % (X,Y) is represented by a matrix (t;;) according to (3.5) or (3.6).
If {e;} and {f;} are the adjoint bases of X* and Y*, respectively, the
operator T* ¢ #(Y*, X*) can similarly be represented by a matrix (#;).
These matrix elements are given by 7;, = (T %3, f;) and % = (T*};, %)
= (f;, T x3) in virtue of (3.10). Thus

k=1,...,N=dimX,

. —
(8.35) T =Tk 5o 1,..,M=dmY,

and T and T* are represented by mutually adjoint (Hermitian conjugate)
matrices with respect to the bases which are adjoint to each other.

Problem 3.17. If T € #(X), we have
(3.36) detT* =detT, trT*=+trT.

Let T¢#(X,Y). A g€ Y* belongs to the annihilator of R(T) if
and only if (g, Tu) = 0 for all » ¢ X. (3.32) shows that this is equivalent
to T* g = 0. Thus the annihilator of the vange of T is identical with the
null space of T*. In view of (3.34), the same is true when T and T* are
exchanged. In symbol, we have
(8.37) N(T*) = R(T)L, N(T)=R(T*L.

It follows that [see (3.2), (3.3) and (2.17)]
(8.38) nulT*=defT, nulT =defT*, rankT* =rankT .

If in particular Y = X, (8.38) shows that T* is nonsingular if and only if
T is; in this case we have

(3.39) (T*)-t = (T-H)*.
For the proof it suffices to note that T*(T-1)* = (T17)* = 1*= 1.
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Problem 3.18. If T € #(X), we have
(3.40) nul7T* = nulT, defT* =defT.

If Pe #(X) is a projection, the adjoint P*¢ £ (X*) is likewise a
projection, for P?= P implies P*% = P* The decompositions of the
spaces X and X*

(8.41) X=Me N, M=R(P), N=R(1 - P),

(3.42) X* = M* @ N*, M* = R(P*), N*=R(1— P*%,

are related to each other through the following equalities:

(843) N*=ML, M*=Nl, dimM*=dimM, dimN*=dimN,

as is seen from (83.37) and (3.40).

Similar results hold when there are several projections. If {P;} is a
set of projections in X satisfying (3.27—3.28), {P}} is a similar set of
projections in X*. The ranges M; = R(P;), M = R(P}) are related by

(3.44) dimM* = dimM;, j=1,2,...,
(3.45) Mf= M@+, ML=(Mf@- )L, etc
Problem 3.19. Let {x,} be a basis of X adapted to the decomposition X = M, ®

@ - +@® M,, and let {¢;} be the adjoint basis of X*. Then {¢;} is adapted to the
decomposition X* = M¥ @ - - - @ M¥. For any % ¢ X we have

il
(3.46) Pyu= 3 (u,ey) %,,
r=1
where {%;y, . . ., %;,,} is the part of {#;} belonging to M, and m; = dimM,.

§ 4. Analysis with operators

1. Convergence and norms for operators

Since the set Z (X, Y) of all linear operators on X to Y is an M N-
dimensional vector space, where N = dimX < o0 and M = dimY < oo,
the notion of convergence of a sequence {T,,} of operators of #(X, Y) is
meaningful as in the case of a sequence of vectors of X. If we introduce
the matrix representation (z,;;) of T, with respect to fixed bases {x;},
{5;} of X, Y, respectively, T,,—~ T is equivalent to 7, ;,—7;; for each j, &,
for the 7,;, are the coefficients of T, for the basis {P;;} of Z(X,Y)
(see §3.2). But the 7,,;; are the coefficients of T x; with respect to the
basis {y,}; hence T, — T is equivalent to T, x; — T x; for all & and
therefore to T,, # — T u for all u¢ X. This could have been used as the
definition of T,, — T.

As it was convenient to express the convergence of vectors by means
of a norm, so it is with operators. But an operator-norm is usually
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introduced only in correlation with the vector-norms. More precisely,
when X and Y are normed spaces £ (X, Y) is defined to be a normed space
with the norm given by

1) 171 = sup I sup |Tu| = sup |Tu], Tea(X,Y).
oxuex ¥l =i =1

The equality of the various expressions in (4.1) is easily verified!. We
can replace “sup” by ‘“max’’ in (4.1) because the set of % with |ju| =1
or |u| = 1 is compact (see a similar remark for the norm of an f¢€ X*
in § 2.4); this shows that | T is finite. It is easy to verify that | T|| defined
on # (X, Y) by (4.1) satisfies the conditions (1.18) of a norm. Hence it
follows that T, — T is equivalent to |T,, — T|| - 0. A necessary and
sufficient condition that {T,} converge to some T is given by the Cauchy
condition | T, — T,,] = 0, #n, m — cc.
Another convenient expression for | T is2

(4.2) IT) = sup %M _ sup (Tu, ).
oduex A llee] el = 1
SEueX =i

The equivalence of (4.2) with (4.1) follows from (2.26).

If we introduce different norms in the given vector spaces X and Y,
% (X, Y) acquires different norms accordingly. As in the case of norms
in X, however, all these norms in #(X,Y) are equivalent, in the sense
that for any two norms | | and || ||, there are positive constants «’, §’
such that

(4.3) T =|T)" = p' 171 -

This is a special case of (1.20) applied to Z (X, Y) regarded as a normed
space. Similarly, the inequalities (1.21) and (1.22) give the following
inequalities:

(4.4) el < 91T, j=1,.. . M;k=1,.. N,

(4.5) 1T = y" max |zl ,

where (t;;) is the matrix of T with respect to the bases of X and Y.
The constants y and 9’ depend on these bases and the norm employed,
but are independent of the operator T.

As in the case of vectors, « S + g T is a continuous function of the
scalars «, B and the operators S, T € #(X, Y), and | T is a continuous
function of T. As a new feature of the norm of operators, we should note
the inequality
4.8) TS| =|T|)S} for Te#(Y,Z) and SEZ(XY).

1 The second and third members of (4.1) do not make sense if dimX = 0;

in this case we have simply || T| = 0.
2 Here we assume dimX = 1, dimY = 1.
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This follows from |TSu| < |T| |S«| < |T) |S||#]; note also that
(4.6) would not be valid if we chose arbitrary norms in Z (X, Y) etc.
regarded simply as vector spaces.

Problem 4.1. ||1|| = 1 (1 € #(X) is the identity operator, dim X > 0). If P ¢ & (X)
is a projection and P = 0, then | P|| = 1.

TS is a continuous function of S and T. In other words, T, - T
and S, - S imply T, S, — T'S. The proof is similar to (2.28); it suffices
to use (4.6). In the same way, it can be shown that T« is a continuous
function of T and #. In particular #, - » implies Tu, — T%. In this
sense a linear operator T is a continuous function. It is permitted, for
example, to operate with T term by term on a convergent series of
vectors:

4.7) T(Z u,,) = %‘ Tu,.

If X is a normed space, Z (X) = Z (X, X) is a normed algebra (or ring)
with the norm given by (4.2). In particular, (4.6) is true for T, S € Z(X).
If TeZ(XY), then T* = Z(Y*, X*) and

(4.8) 1T =17] .

This follows from (4.2), according to which |T*| = sup|(T*f, u)|
=sup|(f, Tu)| = | T| where u¢€ X** =X, |u| =1 and f€ X*, ||f| = 1.

2. The norm of T*
As an example of the use of the norm and also with a view to later
applications, we consider the norm | T™| for T € Z(X). It follows from
(4.6) that

@9) T =TT, T = 1T, mon=0,1,2,... .
We shall show that lim || T%|/" exists and is equal to 1P£ | T»|¥=. This
H—> 00, n=12...
limit is called the spectral radius of T and will be denoted by sprT. As is
seen later, spr T is independent of the norm employed in its definition.
Set a,, = log| T"|. What is to be proved is that
(4.10) apjn—>b= 1inf a,/n.
n=12,...
The inequality (4.9) gives
(411) Am+n = am + Gy

(Such a sequence {a,} is said to be subadditive.) For a fixed positive
integer m, set n = mgq + v, where ¢, » are nonnegative integers with
0 < 7 < m. Then (4.11) gives a, < g9 a,, + a, and

4 _ 4

1
n = Ot



28 1. Operator theory in finite-dimensional vector spaces

If > oo for a fixed m, g/n — 1/m whereas 7 is restricted to one of the

numbers 0, 1, ..., m — 1. Hence lim sup a,/n < a,,/m. Since m is arbi-
n—» 0O

trary, we have lim sup 4,/n <b. On the other hand, we have a,/n = b
and so lim inf 4,/#» = b. This proves (4.10)2.

Remark 4.2. The above result may lead one to conjecture that || 7%/ is mono-
tone nonincreasing. This is not true, however, as is seen from the following example.
Let X = C? with the norm given by (1.17) (X is a two-dimensional unitary space,
see § 6). Let T be given by the matrix

T=(Ig'(‘;), a>5>0.
It is easily seen that (1 is the unit matrix)
T2n — g2np2n ] ) T2n+1 a:np2n T “ T!n“l/!n =ab s
ITh =at, [Trifpuensn = ab(apienn > ab.

Next let us consider |7-1| and deduce an inequality estimating
|7 in terms of |T|| and det T, assuming that T is nonsingular. The
relation T« = v is expressed by the linear equations (3.6). Solving these
equations for &;, we obtain a fractional expression of which the denomina-
tor is det T and the numerator is a linear combination of the #, with
coefficients that are equal to minors of the matrix (r;;). These minors are
polynomials in the 7;, of degree N — 1 where N = dimX. In virtue of
the 1nequa11t1es lu]| < 9" max|&| [see (1.22)], |wjr|l = ¥ |T| [see
(4.4)] and |n;| < 9" |v| [see (1.21)], it follows that there is a constant
y wueh that [l < 1ol | T 3det T or

(A
[det 7]

(4.12) 1T = »

The constant y is independent of T, depending only on the norm
employed?2.

3. Examples of norms

Since the norm || T|| of an operator T is determined in correlation with the norms
adopted in the domain and the range spaces X, Y, there is not so much freedom in
the choice of || T|| as in the choice of the norms for vectors. For the same reason
it is not always easy to compute the exact value of | T|. It is often required, how-
ever, to estimate an upper bound of || T||. We shall illustrate by examples how such an
estimate is obtained.

Most commonly used among the norms of vectors is the p-norm defined by

(.19 ol = el = (2 18

with a fixed p = 1, where the &; are the coefficients of # with respect to a fixed
basis {#,} (which will be called the canonical basis). The conditions (1.18) for a

1 See P6LyA and SzEGO (1], p. 17. Cf. also HiLLE and Pairries (1], pp. 124, 244.
2 We can set y = 1 if X is a unitary space; see T. KaTo [13].
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norm are satisfied by this p-norm [the third condition of (1.18) is known as the
Minkowski inequality]. The special cases p = 1 and 2 were mentioned before;
see (1.16) and (1.17). The norm [ju| = max|§;| given by (1.15) can be regarded as
the limiting case of (4.13) for p = oo.

Suppose now that the p-norm is given in X and Y with the same p. We shall
estimate the corresponding norm || T|| of an operator T on X to Y in terms of the
matrix (z;;) of T with respect to the canonical bases of X and Y. If v = Tu, the
coefficients & and #; of # and v, respectively, are related by the equations (3.6). Let

(4.14) 7= %: e, 7% = z [Tial »
7
be the row sums and the column sums of the matrix (|7,,|). (3.6) then gives
[l [75a]
5 =7y o

Since the nonnegative numbers |t;,]/tj for 2 = 1, ..., N with a fixed j have the
sum 1, the right member is a weighted average of the |£;]. Since A? is a convex
function of A > 0, the p-th power of the right member does not exceed the weighted
average of the |£,|? with the same weights2. Thus

I’hl)’ [7s2]
—) = X —1&l*,
( 2] kz 7] 16l
and we have successively

[nilr = T;’_l%' [raal |&al? = (m?'x";)’_l kZ [Tial 1€a]?
7
o)t =X It < (maxr})"“ Dy &t = (maxﬁ)"1 (maxt;,') ll#]|?,
i i k i k

hence

1 1
(4.15) 174 = o] = (mgxr,)‘ F(m’?xr;)p o]l -

7

This shows that?

1 1
4.16 T| < (maxz)\' "5 (maxy\? .
10 1715 (mpx) ™ (max

If p = 1, the first factor on the right of (4.16) is equal to 1 and does not depend on
the 7;. On letting p — oo, it is seen that (4.16) is true also for p = oco; then the
second factor on the right is 1 and does not depend on the 5.

Problem 4.3. If (7;;) is a diagonal matrix (7;, = 0 forj == %), we have for any p

(4.17) [T = max|z;, .
7

4. Infinite series of operators

The convergence of an infinite series of operators ' T, can be

defined as for infinite series of vectors and need not be repeated here.
Similarly, the absolute convergence of such a series means that the series

1 The proof may be found in any textbook on real analysis. See e. g. HARDY,
LirLEwoop and Pérva (1], p. 31; RovpeN (1), p. 97.

? For convex functions, see e. g. HARDY, LirTLEWooD and Pérya (1), p. 70.

3 Actually this is a simple consequence of the convexity theorem of M. Riesz
(see HarpY, LITTLEWOOD and Pérya (1), p. 203).
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2 I T,)| is convergent for some (and hence for any) norm || ||. In this
case J; T, is convergent with | 3 T, < 3 | T.|.

Owing to the possibility of multiplication of operators, there are
certain formulas for series of operators that do not exist for vectors.
For example, we have

418  S(ET)=XST, (ZT)S=XT.S,

whenever 3 T, is convergent and the products are meaningful. This
follows from the continuity of S T as function of S and T. Two absolutely
convergent series can be multiplied term by term, that is

(4.19) (X Sw) (X To) = X S T

if the products are meaningful. Here the order of the terms on the right

is arbitrary (or it may be regarded as a double series). The proof is not

essentially different from the case of numerical series and may be omitted.
Example 4.4 (Exponential function)

1
n!

(4.20) T —exp(tT)= 3 —tTr, TEHX).
n=0

This series is absolutely convergent for every complex number ¢, for the
n-th term is majorized by |¢|* | T|?/»n! in norm. We have
(4.21) letT] < e Tl

Example 4.5 (Neumann series)

Ms

422 (1—T)1=

n

N 11 =1 = @[T, TeA(X).

I

This series is absolutely convergent for | T|| < 1 in virtue of | T < | T|™
Denoting the sum by S, we have TS =ST =S — 1 by term by term
multiplication. Hence (1— T)S=S(1—-7T)=1 and S=(1- 1)L
It follows that am operator R€ B (X) is nonsingular if |1 —R| < 1.

It should be noted that whether or not |7 <1 (or |1 —R|| <1)
may depend on the norm employed in X; it may well happen that
17| < 1 holds for some norm but not for another.

Problem 4.6. The series (4.22) is absolutely convergent if | 77| <1 for some

positive integer m or, equivalently, if spr T < 1 (for spr T see § 4.2), and the sum is
again equal to (1 — T)-1

In the so-called iteration method in solving the linear equation

n
(1—T)u=v for u, the partial sums S, = 3' T* are taken as ap-
E=0

proximations for S = (1 — 7)-! and %, =S, v as approximations for
the solution # = Sv. The errors incurred in such approximations can be
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estimated by

423  IS—S.d= l S i iy

kil < ) J— .
k=‘;-'l- 1T Tk =Zn7+ 1" i 1—|7]

For n=0 (4.23) gives |(1—-T)*— 1| = |T| (1 —|T|)-*. With
R=1-T, this shows that R— 1 implies R~!~> 1. In other words,
R-1is a continuous function of R at R = 1. This is a special case of the
theorem that T-! ¢s a comtinuous function of T. More precisely, if
T€eR(X, Y) is nonsingular, any S€ Z(X, Y) with sufficiently small
|S — T| is also nonsingular, and |S-* — T -0 for |T — S| - 0. In
particular, the set of all nonsingular elements of & (X, Y) is open. [Of course
X and Y must have the same dimension if there exist nonsingular
elements of # (X, Y).]

To see this we set A = S — T and assume that | 4| < 1/|T-1|. Then
14T-Y < |4l |T-Y < 1, and so 1+ .4 T-1is a nonsingular operator of
2% (Y) by the above result. Since S=T + 4= (1+AT-Y) T, S is also
nonsingular with S-1 = T-1 (1 + 4 T-1)-.,

Using the estimates for |[(1+ AT-Y)~Y and |(1+AAT-YH)1— 1|
given by (4.22) and (4.23), we obtain the following estimates for |S—|
and |S-1 — T-Y:
2a) s s Il s oy g LHAUTOE

= [4[17T ° T—[4[T7-7]
forS=T+4, |4|<l|TY.

" Remark 4.7. We assumed above that |4]| < |77 to show the
existence of S—1. This condition can be weakenedif X =Yand TS=ST.
In this case A commutes with T and hence with T-1. Therefore

sprA T = lim| (4 T-1)?|"/* = lim||4» T-*|Y» <
< [lim||4»[/*] [lim]| T-"}] = (spr 4) (spr T-Y) .
It follows that S—1 = T-1(1 + A T-1)-1 exists if
(4.26) sprd < (spr7-1)-1.

L4l gz

(4.25)

5. Operator-valued functions

Operator-valued functions T, = T (f) defined for a real or complex
variable ¢ and taking values in (X, Y) can be defined and treated just
as vector-valued functions #(¢) were in § 1.7. A new feature for T (¢)
appears again since the products T'(¢) #(f) and S(f) T () are defined.
Thus we have, for example, the formulas
]
‘at
d
at

T ul) = T'() w®) + T(O) w' (),
(4.27)
T® SO =T"0) SO +TO S0,
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whenever the products are meaningful and the derivatives on the right
exist. Also we have

(4.28) LIl =T T'() TO
whenever T (t)-! and T’ (f) exist. This follows from the identity
(4.29) S1-T1=-8§31S-TT1

and the continuity of 7! as function of T proved in par. 4.
For the integrals of operator-valued functions, we have formulas
similar to (1.30). In addition, we have

[Sutydt=S [uydt, [TOudt=(T{#d)u,
[ST@®)dt=S[T@dt, [T@#)Sdt=(T(t)dtS

Of particular importance again are holomorphic functions T (f) of a
complex variable ¢; here the same remarks apply as those given for
vector-valued functions (see § 1.7). It should be added that S(#) T (f) and
T (t) u(¢) are holomorphic if all factors are holomorphic, and that T (f)-!
is holomorphic whenever T () is holomorphic and T (f)-! exists [the
latter follows from (4.28)].

Example 4.8. The exponential function e!T defined by (4.20) is an
entive function of ¢ (holomorphic in the whole complex plane), with
(4.31) -dd—te”’ =TetT = etTT .

Example 4.9. Consider the Neumann series

(4.30)

(4.32) SO =(1—tT)1= 3 T

with a complex parameter {£. By Problem 4.6 this series is absolutely
convergent for |¢| < 1/spr7. Actually, the convergence radius v of (4.32)
s exactly equal to 1/sprT. Since S(#) is holomorphic for [¢| <7, the
Cauchy inequality gives | T"| < M, #'~* for all » and #' < » asin the case
of numerical power series! (M, is independent of #). Hence sprT
= lim| T"|¥» < #'-1 and, going to the limit ' - 7, we have spr T < »~!
or » < 1/sprT. Since the opposite inequality was proved above, this
gives the proof of the required result. Incidentally, it follows that sprT
is independent of the norm used in its definition.

6. Pairs of projections

As an application of analysis with operators and also with a view to
later applications, we shall prove some theorems concerning a pair of
! We have T" = (2zm4)~! [ ¢~"-1S(t)dt andso||T"| < (2n)? f r"'" -1.

[t =

[t =7

IS @] |4¢ < » - M., where M, = I:inax' I1S®| < oco.
=71
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projections (idempotents)!. As defined in § 3.4, a projection P is an
operator of #(X) such that P2 = P.1 — P is a projection with P.
Let P, Q€ #(X) be two projections. Then

(4.33) R=(P-QP=P+Q—-PQ—-QP

commutes with P and Q; this is seen by noting that PR=P — PQP
= R P and similarly for Q. For the same reason (1 — P — Q)2 commutes
with P and Q because 1 — P is a projection. Actually we have the
identity

(4.34) (P—Q2+(1—-P—-0Q2=1
as is verified by direct computation. Another useful identity is
(4.35) (PQ—-QPP=(P—-Q*—(P-QP=R—R,

the proof of which is again straightforward and will be left to the reader.
Set

436 U =QP+(1-Q(1—P), VV=PQ+(1—-P)(1-0).
U’ maps R(P) = PX into @ X and (1 — P) X into (1 — Q) X, whereas

V'’ maps Q@ X into PX and (1 — Q) X into (1 — P) X. But these mappings
are not inverse to each other; in fact it is easily seen that

(4.37) VU =UV =1-R.

A pair of mutually inverse operators U, V with the mapping properties
stated above can be constructed easily, however, since R commutes
with P, Q and therefore with U’, V"' too. It suffices to set

U=U'(1-R)-"2=(1—R-1U",

(4.38) V=V(1-R-=(1—R-12V,

provided the inverse square root (1 — R)~%/2 of 1 — R exists. A natural
definition of this operator is given by the binomial series

S (—1/2
(4.39) (1—R)-12 = é‘o( i ) =R
This series is absolutely convergent if |R| < 1 or, more generally, if

(4.40) sprR<1,

1 The following results, which are taken from T. KaTo [9], are true even when X
is an co-dimensional Banach space. For the special case of projections in a unitary
(Hilbert) space, see §6.8. For related results cf. AKHIEZER and GLazmaN (1],
Sz.-Nagy [1], [2], WoLF [1].
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and the sum 7T of this series satisfies the relation 72 = (1 — R)~! just
as in the numerical binomial series. Thus!?

(4.41) VU=UV=1, V=U", U=V,

Since U'P=QP=QU' and PV'=PQ=V'Q as is seen from
(4.36), we have UP = QU and PV = VQ by the commutativity of R
with all other operators here considered. Thus we have

(4.42) Q=UPU-!, P=U-1QU.

Thus P and Q are similar to each other (see § 5.7). They are isomorphic
to each other in the sense that any linear relationship such as v = Pu
goes over to v’ = Qu’' by the one-to-one linear mapping U: #' = Uu,
v' = Uv. In particular their ranges PX, QX are ¢somorphic, being
mapped onto each other by U and U-*. Thus

(4.43) dimP = dimQ, dim(I — P) = dim(1 — Q).

An immediate consequence of this result is

Lemma 4.10. Let P(f) be a projection depending continuously on a
parameter t varying in a (connected) rvegion of real or complex numbers.
Then the ranges P(t) X for different t are isomorphic to one another. In
particular dim P (¢) X is constant.

To see this, it suffices to note that |P(#) — P(#')| <1 for suf-
ficiently small | — #’| so that the above result applies to the pair
P(), P(t").

Problem 4.11. Under the assumption (4.40), we have PQX = PX,QPX = QX
[hint: PQ = PV’ = PU-(1 — R)V%].

Problem 4.12. For any two projections P, Q, we have
(4.44) (1—P+QP)(1—Q+ PQ)=1—R [Risgiven by (4.33)],
(4.45) (1—P+QP)-1=(—~R-1(1—-Q+ PQ) if sprR<1.
IfsprR<1,W =1~ P 4+ Q Pmaps PXontoQXand Wu = uforuc (1 — P)X,
while W-! maps QX onto PX and W-1u = u for u€ (1 — P)X, and we have
X=0Q0X® (1 — P X.

Problem 4.13. For any two projections P, Q such that spr(P — Q)2 <1,
there is a family P(f), 0 < ¢ < 1, of projections depending holomorphically on ¢
such that P(0) = P, P(1) = Q. [hint: set 2P() =1 + (2P — 1 + 2¢(Q — P)) -
< (1 — 41(1 —t) R)-12]

§ 5. The eigenvalue problem

1. Definitions

In this section X denotes a given vector space with 0 < dimX
= N < o0, but we shall consider X a normed space whenever convenient
by introducing an appropriate norm.

1 Asis shown later (§ 6.7), U and V are unitary if X is a unitary space and P, Q
are orthogonal projections. The same U appears also in Sz.-NAGy [1] and WoLF [1]
with a different expression; its identity with the above U was shown in T. KaTo [9].
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Let T € #(X). A complex number A is called an eigenvalue (proper

value, characteristic value ) of T if there is a non-zero vector #¢ X such that
(5.1) Tu=24u.
u is called an eigenvector (proper vector, characteristic vector) of T belonging
to (associated with, etc.) the eigenvalue A. The set N; of all #¢€ X such
that Tu = A# is a linear manifold of X; it is called the (geometric)
eigenspace of T for the eigenvalue 4, and dim N; is called the (geometric)
multiplicity of A. N, is defined even when 4 is not an eigenvalue; then we
have N; = 0. In this case it is often convenient to say that N; is the
eigenspace for the eigenvalue 4 with multiplicity zero, though this is not
in strict accordance with the definition of an eigenvaluel,

Problem 5.1. A is an eigenvalue of T if and only if 4 — { is an eigenvalue of

T — {. N, is the null space of T — A, and the geometric multiplicity of the eigen-
value A of Tis the nullity of T— A. T — Ais singular if and only if Ais an eigenvalue of T.

It can easily be proved that eigenvectors of T belonging to different
eigenvalues are linearly independent. It follows that there are at most N
etgenvalues of T. The set of all eigenvalues of T is called the spectrum
of T; we denote it by X (7). Thus X(7) is a finite set with not more
than N points.

The eigenvalue problem consists primarily in finding all eigenvalues
and eigenvectors (or eigenspaces) of a given operator T. A vector # 5 0
is an eigenvector of T if and only if the one-dimensional linear manifold
[#] spanned by # is invariant under T (see §3.5). Thus the eigenvalue
problem is a special case of the problem of determining all invariant
linear manifolds for T (a generalized form of the eigenvalue problem).

If M is an invariant subspace of T, the part T\, of T in M is defined.
As is easily seen, any eigenvalue [eigenvector] of T is an eigenvalue
[eigenvector] for T. For convenience an eigenvalue of Ty is called an
etgenvalue of T in M.

If there is a projection P that commutes with T, T is decomposed
according to the decomposition X=M®& N, M= PX, N= (1 - P) X
(see §3.5). To solve the eigenvalue problem for T, it is then sufficient
to consider the eigenvalue problem for the parts of 7 in M and in N 2

1 There are generalized eigenvalue problems (sometimes called nonlinear
eigenvalue problems) in which one seeks solutions of an equation T (4) # = 0, where
T () is a linear operator depending on a parameter A; for example, T (1) = T, +
+ ATy, + -+ + A* T,. In general a solution # == 0 will exist only for some particu-
lar values of A (eigenvalues). A special problem of this kind will be considered later
(VII, § 1.3).

21f Tu=Awu, then TPu = PTu = APu so that Pu€M is, if not 0, an
eigenvector of T (and of T)) for the eigenvalue A, and similarly for (1 — P) u.
Thus any eigenvalue of T must be an eigenvalue of at least one of Ty and TN,
and any eigenvector of T is the sum of eigenvectors of Ty and TN for the same

eigenvalue. The eigenspace of T for A is the direct sum of the eigenspaces of Ty
and TN for A.
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The part T\, of T in M may be identified with the operator PT = T P
= PTP in the sense stated in Remark 3.15. It should be noticed,
however, that T P has an eigenvalue zero with the eigenspace N and
therefore with multiplicity N — m (where m = dim P X) in addition to the
eigenvalues of Ty L.

Problem 5.2. No eigenvalue of T exceeds | T| in absolute value, where | |
is the norm of #(X) associated with any norm of X.

Problem 5.3. If T has a diagonal matrix with respect to a basis, the eigenvalues
of T coincide with (the different ones among) all its diagonal elements.

2. The resolvent

Let T ¢ #(X) and consider the inhomogeneous linear equation
(5.2) (T—-0u=wv,

where { is a given complex number, v€ X is given and # ¢ X is to be
found. In order that this equation have a solution # for every v, it is
necessary and sufficient that T — ¢ be nonsingular, that is, { be different
from any eigenvalue 4, of T. Then the inverse (T — {)~! exists and the
solution # is given by

(5.3) u=(T—0)"1v.
The operator-valued function
(5:4) R@) =R T)=(T -5

is called the resolvent® of T. The complementary set of the spectrum X (T)
(that is, the set of all complex numbers different from any of the eigen-
values of T) is called the resolvent set of T and will be denoted by P (T).
The resolvent R ({) is thus defined for ¢ € P(T).

Problem 5.4. R ({) commutes with T. R ({) has exactly the eigenvalues (4, — {)~1.

An important property of the resolvent is that it satisfies the (first)
resolvent equation

(55) R(&) — R(Zp) = (& — &o) R(G) R(Cy) -

This is seen easily if one notes that the left member is equal to R((;) -
(T — &) R(C2) — R(G) (T — &) R(Ly). In particular, (5.5) implies that
R(L,) and R(L,) commute. Also we have R({;) = [1 — ({a— &) R(G)] -

1 Strictly speaking, this is true only when T4 has no eigenvalue 0. If T4 has
the eigenvalue 0 with the eigenspace L, the eigenspace for the eigenvalue 0 of T P
isN@ L.

2 The resolvent is the operator-valued function { — R ({). It appears, however,
that also the value R ({) of this function at a particular { is customarily called the
resolvent. Sometimes ({ — T)~! instead of (T — {)-! is called the resolvent. In
this book we follow the definition of StonE [1].



§ 5. The eigenvalue problem 37

* R(£,). According to the results on the Neumann series (see Example 4.5),
this leads to the expansion

(5.6) R(L)=[1— (=L RE)ITR() = é' (€ — Co)" R(Eo)"*1,
the series being absolutely convergent at least if

(5.7) & — &l < IR

for some norm. We shall refer to (5.6) as the first Neumann series for the
resolvent.

(5.6) shows that R({) is holomorphic in { with the Taylor series?
shown on the right; hence
(5.8 (;C—)”R(C) — RO, n=1,23....
According to Example 4.9, the convergence radius of the series of (5.6)
is equal to 1/sprR(¢,). Hence this series is convergent if and only if

(5.9 & — ol < 1/sprR(&,) = (Lim| R (&o)?[7)~2
- For large ||, R({) has the expansion
(5.10) RO = —gH1 =g Tt = = 3 fnt T

which is convergent if and only if || > spr T'; thus R({) is holomorphic
at infinity.

Problem 5.5. We have
(5.11) IROI= (= ITh-*, [RQ + &= -2 = 1Th-Tl

&> 17 -

The spectrum Z(T) is never empty; T has at least one eigenvalue.
Otherwise R ({) would be an entire function such that R () - 0 for { - oo
[see (5.11)]; then we must have R({) = 0 by Liouville’s theorem?2. But
this gives the contradiction 1 = (T —{) R({) = 03.

It is easily seen that each eigenvalue of T is a singularity4 of the
analytic function R({). Since there is at least one singularity of R({)
on the convergence circle® || = spr T of (5.10), spr T coincides with the

1 This is an example of the use of function theory for operator-valued functions;
see Knorp (1), p. 79.

2 See Knopp (1], p. 113. Liouville’s theorem implies that R({) is constant;
since R ({) = 0 for { — oo, this constant is 0.

3 Note that we assume dim X > 0.

4 Suppose 4 is a regular point (removable singularity) of the analytic function
R({). Then imR({) = R exists and so (T — 1) R = lim (T — {) R({) = 1. Thus

> A —>A

(T — A)~! = R exists and 4 is not an eigenvalue.
8 See Knorp (1], p. 101.
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largest (in absolute value) eigenvalue of T':
(5.12) sprT = max |Aa] -

This shows again that sprT is independent of the norm used in its
definition.

Problem 5.6. spr T = 0 if and only if T is nilpotent. [hint for “‘only if’’ part:
If spr T = 0, we have also spr T = 0 for any part T M of T in an invariant sub-
space M, so that T is singular. Thus the part of T in each of the invariant sub-

spaces T*X (see Problem 3.12) is singular. Hence X D TX D T2X -+ with all
inclusions D being proper until 0 is reached.]

3. Singularities of the resolvent

The singularities of R ({) are exactly the eigenvalues 4,, k=1, ..., s,
of T. Let us consider the Laurent series! of R({) at { = 4,. For simplicity
we may assume for the moment that 4, = 0 and write

(5.13) RO = 3 t4,.

n=—oo

The coefficients 4, are given by
(5.14) A= [CmRQ) 4L,
T

where I is a positively-oriented small circle enclosing ¢ = 0 but excluding
other eigenvalues of T. Since I' may be expanded to a slightly larger
circle I without changing (5.14), we have

Ap A= (%)r / rj g-ntg-m-iRQ) R dgdY

271
rr

= () [ [ &t em - O RE) - RQ) AL L

B
where the resolvent equation (5.5) has been used. The double integral
on the right may be computed in any order. Considering that I lies
outside I', we have

o [ - O ar =g g
(5.15) F

2ni
r

U - = (=)

where the symbol 7, is defined by
(5.16) fo=1 for =0 and %,=0 for n<0.

1 See Knorp (1), p. 117.
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Thus
(5.17) A, A, =Tt m=1 f n=m=2R(E)d¢ = On+ m—1) Apimsr-
r

2ni

For #n = m = — 1 this gives 42, = — 4_,. Thus — 4 _, is a projection,
which we shall denote by P. For %, m <0, (5.17) gives A2, = —A4_,,
A_4A_3=—A_, ... . On setting —A4_, =D, we thus obtain 4_,
= —D*-! for k =z 2. Similarly we obtain 4, = S**+! for » = 0 with
S =4,

Returning to the general case in which ¢ = 4, is the singularity
instead of { = 0, we see that the Laurent series takes the form

(o)

(5.18) RO ==C—=M) ' Pp— X (= A) ' Di +

n=1
+ Z; (€ — )" Syt
Setting in (5.17) #=—1,m= —2 and then n =—1,m =0, we see that
(5.19) PyDy=D,Py=D,, Py,S,=S5,P,=0.
Thus the two lines on the right of (5.18) represent a decomposition of the
operator R({) according to the decomposition X = M, & M;, where
M, = P,X and My = (1 — P,)X. As the principal part of a Laurent
series at an isolated singularity, the first line of (5.18) is convergent for
¢ — Ay =+ 0, so that the part of R({) in M, has only the one singularity
¢ = Ay, and the spectral radius of D, must be zero. According to Problem
5.6, it follows that D, is nilpotent and therefore (see Problem 3.10)
(5.20) D=0, m,=dmM,=dimP,.
Thus the principal part in the Laurent expansion (5.18) of R () is finite,
{ = A, being a pole of order not exceeding ;. Since the same is true of
all singularities 4, of R(£), R({) is a meromorphic functiont.
The P, for different % satisfy the following relations:

(521) Pth=(s;,kP,,, ZPh=1, PhT=TPh.
h=1

The first relation can be proved in the same way as we proved P} = P,
above [which is a special case of (5.17)]; it suffices to notice that

(5.22) Pr=—5 [RO) 4L
Ta

where the circles I', for different % lie outside each other. The second
equality of (5.21) is obtained by integrating R({) along a large circle
enclosing all the eigenvalues of T and noting the expansion (5.10) of
R({) at infinity. The commutativity of P, with T follows immediately
from (5.22).

1 See Knorpp (2], p. 34.
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Since R({) is meromorphic and regular at infinity, the decomposition
of R({) into partial fractions! takes the form

s mp—1
(5.23) R(0)= —hZ [(C — )Pyt X (C— A DZ] :
=1 n=1
Problem 5.7. sprR ({) = [min]Z; - 1,,]]"1 = [dist (¢, Z(T))].
3

Problem 5.8. We have
(5.24) PhD,,=D,,P,,=(5,,,,D,,; Dth=0, h‘—":k‘

Problem 5.9. For any simple closed (rectifiable) curve I' with positive direction
and not passing through any eigenvalue 4,, we have

1
(5.25) mfR(C) dl= — X Py,
r

where the sum is taken for those # for which 4, is inside T'.

Multiplying (5.14) by T from the left or from the right and noting
that TR({)=R()T=1+ ¢ R({), weobtain TA, = A, T = 6,9+ An_;.
If the singularity is at { = A, instead of { = 0, this gives for # = 0 and

n=—1
(526)‘ (T—lh)shzsh(T_Ah)zl_Ph»
' Po(T — 2) = (T — Za) Pp =Dy
Foreach s = 1,.. ., s, the holomorphic part in the Laurent expansion

(5.18) will be called the reduced resolvent of T with respect to the eigen-
value 4,; we denote it by S, ()

(o]

(5.27) Sal6) = 4:‘:; (€ — )" S+t

It follows from (5.19) and (5.26) that

(5.28) Sn="SaA), Sa(l) Pa=Pr5:() =0,
(5.29) (T=0S()=Ss)(T=0) =1-P,.

The last equalities show that the parts of T — { and of S,({) in the
invariant subspace My, = (1 — P,) X are inverse to each other.
Problem 5.10. We have

(5.30) (T—24)Dp=D+1, n=12,....
(5.31) (T — A)™ Pp=0.
mp—1
(5.32) SO =-3 [(c — WPyt T (= A D;] .
k=+h n=1
Problem 5.11. Each S,({) satisfies the resolvent equation [see (5.5)] and
(5.39) (35) 5@ =msom, n=12....

4. The canonical form of an operator

The result of the preceding paragraph leads to the canonical form of
the operator T. Denoting as above by M, the range of the projection

1 See Knorr (2], p. 34.
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P,,h=1,..., s, wehave
(5.34) X=Meo---dM,.

Since the P, commute with T and with one another, the M,, are invariant
subspaces for T and T is decomposed according to the decomposition
(5.34) (see §3.5). M, is called the algebraic eigenspace (or principal
subspace) for the eigenvalue 4, of T, and m, = dimM, is the algebraic
multiplicity of A,. In what follows P, will be called the eigenprojection
and D, the eigennilpotent for the eigenvalue A, of T. Any vector u = 0
of M, is called a generalized eigenvector (or principal vector) for the eigen-
value A, of T.
It follows from (5.26) that

(5.35) Tth‘PhT:P’lTPh:}'hPh-i_DhJ h=1,...,s.

Thus the part Ty, of T in the invariant subspace M, is the sum of the
scalar operator 4, and a nilpotent D,, y,, the part of D, in M;. As is
easily seen, Ty, has one and only one eigenvalue 4,.

Addition of the s equations (5.35) gives by (5.21)

(5.36) T=S+D

where

(5.37) S = 2 }"l Ph
h

(5.38) D=XD,.
h

An operator S of the form (5.37) where 4, = A, for & + k and the P,
satisfy (3.27—3.28) is said to be diagonalizable (or diagonable or semisimple).
S is the direct sum (see § 3.5) of scalar operators. D is nilpotent, for it
is the direct sum of nilpotents D, and so D* = 3 D} = 0 for » = max m,,.
It follows from (5.24) that D commutes with S.

(5.36) shows that every operator T € B(X) can be expressed as the
sum of a diagonable operator S and a nilpotent D that commutes with S.

The eigenvalue 4, of T will also be said to be semisimple if the associat-
ed eigennilpotent D, is zero, and simple! if m, = 1 (note that m, = 1
implies D, = 0). T is diagonable if and only if all its eigenvalues are
semisimple. T is said to be simple if all the eigenvalues A, are simple;
in this case T has N eigenvalues.

(5.36) is called the spectral representation of T. The spectral representa-
tion is unique in the following sense: if T is the sum of a diagonable
operator S and a nilpotent D that commutes with S, then S and D must
be given by (5.37) and (5.38) respectively. To show this, we first note
that any operator R that commutes with a diagonable operator S of
the form (5.37) commutes with every P, so that M, is invariant under R.

1 An eigenvalue which is not simple is said to be degenerate.
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In fact, multiplying RS = SR from the left by P, and from the right
by Pk, we have by Pth= 6;,};

lkPhRPIG:AhPhRPk or PhRPk=0 fOr hr=l=k.

Addition of the results for all % = 4 for fixed % gives P,R(1 — P,) =
or P,R = P,RP,. Similarly we obtain RP, = P,RP, and therefore
Suppose now that

T=S+D, S=)3 &P,, DS =5D,
r=1

is a second expression of T in the form (5.36). By what was just
proved, we have D’ = 3’ D; with Dy = P,D'= D’'P;. Hence T —¢{
= 2'[(A& — &) Pr + Dj] and therefore

(5.39) (T-19 ‘=~2[(C M)~ Py + (E— M)~ Dy +

+ 4 (C— )Y DN

this is easily verified by multiplying (5.39) from the left or the right by
the expression for T — ¢ given above (note that D;¥ = D'¥ = 0 since D’
is nilpotent). Since the decomposition of an operator-valued mero-
morphic function into the sum of partial fractions is unique (just as for
numerical functions), comparison of (5.39) with (5.23) shows that s’,
s Pp and D; must coincide with s, 4,, P, and D, respectively. This
completes the proof of the uniqueness of the spectral representation.

The spectral representation (5.36) leads to the Jordan canonical
form of T. For this it is only necessary to recall the structure of the nil-
potents D, (see § 3.4). If we introduce a suitable basis in each M,, the
part Dy, u, of D, in M, is represented by a matrix of the form (3.30).
Thus Ty, is represented by a triangular matrix (z{%)) of the form (3.30)
with all the diagonal elements replaced by 4,. If we collect all the basis
elements of My, . . ., M, to form a basis of X, the matrix of T is the direct
sum of submatrices (1:"") In particular, it follows that (see Problem 3.14)

s

s
(5.40) det(T —0)= JT (A =0"™, trT = 3 myh,.
h=1 h=1

It is often convenient to count each eigenvalue 4, of T repeatedly m,,
times (m;, is the algebraic multiplicity of 4;) and thus to denote the eigen-
values by p;, g, ..., uy (for example M= =l = Hm+
=***= Uy +m = Ay ...). For convenience we shall call y,, . .., uy the
repeated eigenvalues of T. Thus every operator T € #(X) has exactly N
repeated eigenvalues. (5.40) can be written

N N
(5.41) det(T—&) = IT m~0), T = ;El M -
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Problem 5.12. The geometric eigenspace N, of T for the eigenvalue 4 is a
subset of the algebraic eigenspace M;. N, = M, holds if and only if A is semisimple.

Problem 5.13. 1, is semisimple if and only if { = 4, is a simple pole (pole of
order 1) of R ().

Problem 5.14. If » is sufficiently large (» = m, say), rank T* is equal to N — m,
where m is the algebraic multiplicity of the eigenvalue 0 of T (it being agreed to
set m = 0 if 0 is not an eigenvalue of T, see § 1.1).

Problem 5.15. We have

(5.42) ltrT| < (rankeT) [T < N T

Problem 5.16. The eigenvalues 4, of T are identical with the roots of the
algebraic equation of degree N (charactevictic equation)

(5.43) det(T —¢) =0.
The multiplicity of 4, as the root of this equation is equal to the algebraic multi-
plicity of the eigenvalue A,.

Let (r;;) be an N X N matrix. It can be regarded as the representation
of a linear operator T in a vector space X, say the space C¥ of N-dimension-
al numerical vectors. This means that the matrix representing 7" with
respect to the canonical basis {x,} of X coincides with (z;;). Let (5.36)
be the spectral representation of T, and let {x} be the basis of X used in
the preceding paragraph to bring the associated matrix (z;) of T into
the canonical form.

The relationship between the bases {x,;} and {x/} is given by (1.2)
and (1.4). Since the x; are eigenvectors of T in the generalized sense,
the numerical vectors ($yz, ..., Pnz), B=1, ..., N, are generalized
eigenvectors of the matrix (z;;). The relationship between the matrices
(t;») and (7];) is given by (3.8). Thus the transformation of (t;;) into the
simpler form (z];) is effected by the matrix (9,), constructed from the
generalized eigenvectors of (7;,), according to the formula (/) =
= (Pin) " (i) Pin)-

If the eigenvalue 4, is semisimple, the A-th submatrix of (z/3) is a
diagonal matrix with all diagonal elements equal to 4,. If T is diagon-
able, (7j,) is itself a diagonal matrix with the diagonal elements 4,
..., Ag, where 1, is repeated m, times (that is, with the diagonal elements

Uy - - My, where the u; are the repeated eigenvalues). In this case
(Prrs - - Par), B=1,..., N, are eigenvectors of (t;;) in the proper sense.
Problem 5.17. (y;1, ..., ¥55),J = 1, .. ., N, are generalized eigenvectors of the

transposed matrix of (z;,).

5. The adjoint problem

If T ¢ % (X), then T* ¢ Z#(X*). There is a simple relationship between
the spectral representations of the two operators T, T*. If (5.36) is the
spectral representation of T, then that of T* is given by

(5.44) T*=S*+D*= Y (1, Pt + Df),
K=1
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for the P¥ as well as the P, satisfy the relations (3.27—3.28) and the D}
are nilpotents commuting with the P¥ and with one another (note the
uniqueness of the spectral representation, par. 4). In particular, it
follows that the eigenvalues of T* are the complex conjugates of the eigen-
values of T, with the same algebraic multiplicities. The corresponding
geometric multiplicities are also equal; this is a consequence of (3.40).

Problem 5.18. R*({) = R({, T*) = (T* — {)~! has the following properties:
(5.45) RE)*=R*({),

s mp—1
(5.46)  R*(Q)= ‘;.‘El[@ — R+ Z €~ R Drn].

6. Functions of an operator

If ({) is a polynomial in {, the operator p(T) is defined for any
TecRB(X) (see §3.3). Making use of the resolvent R({) = (T — {)-},
we can now define functions ¢ (7)) of T for a more general class of func-
tions ¢ (). It should be noted that R((,) is itself equal to ¢ (T) for ¢ ()
= (=)

Suppose that ¢ ({) is holomorphic in a domain A of the complex plane
containing all the eigenvalues 4, of T, and let I' C A be a simple closed
smooth curve with positive direction enclosing all the 4, in its interior.
Then ¢ (T) is defined by the Dunford-Taylor integral

(5.47) $(T) = 2m/¢ dC—szqSt) (- T)1dt.

This is an analogue of the Cauchy integral formula! in function theory.
More generally, I' may consist of several simple closed curves I', with
interiors A}, such that the union of the A;, contains all the eigenvalues of
T. Note that (5.47) does not depend on I' as long as I' satisfies these
conditions.

It is easily verified that (5.47) coincides with (3.18) when ¢({) is a
polynomial. It suffices to verify this for monomials ¢ ({) =¢{*, » =0, 1,
2, ... . The proof for the case # = 0 is contained in (5.25). For n = 1,
write (*=({— T+ T)*=({ — T)*+ ---+ T* and substitute it into
(5.47); all terms except the last vanish on integration by Cauchy’s
theorem, while the last term gives 7.

Problem 5.19. If ¢({) = Y a, (" is an entire function, then ¢(T) = X a, T*

The correspondence ¢({) - ¢(T) is a homomorphism of the algebra
of holomorphic functions on A into the algebra %#(X): y

(548) () = oy $1(0) + g $3(¢) implies $(T) = ey ,(T) + oz $a(7T)
(5.49)  ¢(0) = 41(0) $a(C) implies §(T) = ¢,(T) ¢(T)

1 See Knorr (1), p. 61.
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This justifies the notation ¢(T) for the operator defined by (5.47). The
proof of (5.48) is obvious. For (5.49), it suffices to note that the proof is
exactly the same as the proof of (5.17) for », m < 0 (so that %, + #,, —
— 1= —1). In fact (5.17) is a special case of (5.49) for ¢, () =¢{—"-1
and ¢, () =¢-m-L

The spectral representation of ¢(7T) is obtained by substitution of
(5.;3) into (5.47). If T = } (A, P, + D;) is the spectral representation
of T, the result is

(5.50) ¢(T) =h§'1 (¢(A4) Py + Dyl
wherel

, , (mh—1) (A _—
(551) Dj= ¢ (i) Dy + -+ + T paa,

Since the Dj, are nilpotents commuting with each other and with the P,
it follows from the uniqueness of the spectral representation that (5.50)
is the spectral representation of ¢ (7).

Thus ¢(7) has the same eigenprojections P, as T, and the eigen-
values of ¢(T) are ¢(4,) with multiplicities m,. Strictly speaking, these
statements are true only if the ¢(4,) are different from one another.
If ¢(A) = ¢(4,), for example, we must say that ¢(4,) is an eigenvalue
of ¢(T) with the eigenprojection P, + P, and multiplicity m, + m,.

That the ¢(4,) are exactly the eigenvalues of ¢(7T) is a special case
of the so-called spectral mapping theorem.

(5.48) and (5.49) aretobesupplemented by another functional relation

(5-52) $(L) = ¢1(#:(C)) implies ¢(T) = ¢, ($2(7)) -

Here it is assumed that ¢, is holomorphic in a domain A, of the sort
stated before, whereas ¢, is holomorphic in a domain A, containing all the
eigenvalues ¢@y(4;) of S = @,(T). This ensures that ¢,(S) can be con-
structed by

(5.53) $:(5) = 5 [ 1) (e — S)1dz
T,

where T'| is a curve (or a union of curves) enclosing the eigenvalues
&5(4;) of S. But we have
1
(559 (2= )= (2~ d(D) =57 [ (— o)~ T)2aL
Ty
for z¢€ IY}; this follows from (5.49) and the fact that both z — ¢,({) and

(# — ¢5(0))"! are holomorphic in ¢ in an appropriate subdomain of A,
containing all the 4, (the curve I, should be taken in such a subdomain

! Note that (27 4)=1 [ ({ — A)~"-1 $({) d¢ = ¢™ (A)/n! if A is inside T
r
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so that the image of I', under ¢, lies inside I'). Substitution of (5.54)
into (5.53) gives

(6555 41 = (57) [ [ 60 = g€~ T L dz
I, T,

[ $1(420) € = Dz = $(T)

i
T,

J

1
2n

as we wished to show.

Example 5.20. As an application of the Dunford integral, let us define the
logarithm
(5.56) S=1logT
of an operator T € #(X), assuming that T is nonsingular. We can take a simply
connected domain A in the complex plane containing all the eigenvalues 4; of T
but not containing 0. Let I" be a simple closed curve in A enclosing all the 4,. Since

¢ (£) = log{ can be defined as a holomorphic function on A, the application of (5.47)
defines a function

(5.57) S=1ogT = ¢(T) = —ﬁflogCR(Z;)dC.
T

Since exp (log{) = ¢, it follows from (5.52) that
(5.58) exp(logT) =T.

It should be noted that the choice of the domain A and the function ¢ ({) = log{
is not unique. Hence there are different operators log T with the above porperties.
In particular, each of the eigenvalues of log T with one choice may differ by an
integral multiple of 27 ¢ from those with a different choice. If m; is the algebraic
multiplicity of 4, it follows that
(5.59) tr(log T) = Y mylogd, + 2n i, = = integer,

(5.60) exp(tr(log T)) = JT Arh = det T .

7. Similarity transformations

Let U be an operator from a vector space X to another one X’ such
that U-1¢€ (X', X) exists (this implies that dim X = dimX’). For an
operator T € 4 (X), the operator T' ¢ #(X') defined by

(5.61) T'=UTU-Y

is said to result from T by transformation by U. T’ is said to be similar!
to T. T’ has the same internal structure as T, for the one-to-one cor-
respondence # — %' = Uwn is invariant in the sense that Tw—» T'u’
= UTu. If we choose bases {x;} and {#/} of X and X', respectively, in
such a way that 4/ = Ux;, then T and T’ are represented by the same
matrix.

1 We have considered in § 4.6 an example of pairs of mutually similar operators.
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If
(5.62) T =23 (APn+ Dy)

is the spectral representation of T, then
(563) T'=2 (A Py+Dy), P,=UP U, D,=UD, U,

is the spectral representation of 7”.

§ 6. Operators in unitary spaces
1. Unitary spaces

So far we have been dealing with general operators without introduc-
ing any special assumptions. In applications, however, we are often
concerned with Hermitian or normal operators. Such notions are defined
only in a special kind of normed space H, called a unitary space, in which
is defined an inner product (u, v) for any two vectors », v. In this section
we shall see what these notions add to our general results, especially in
eigenvalue problems. We assume that 0 < dimH < oc.

The inner product (%, v) is complex-valued, (Hermitian) symmetric:

(6.1) (u, v) = (v, )
and sesquilinear, that is, linear in # and semilinear in v. (6.1) implies
that (u, #) is always real; it is further assumed to be positive-definite:

(6.2) (v, ) >0 for u=01.

We shall see in a moment that the inner product (%, v) may be regarded
as a special case of the scalar product defined between an element of a
vector space and an element of its adjoint space. This justifies the use
of the same symbol (%, v) for the two quantities.

Since a unitary space H is a vector space, there could be defined
different norms in H. There exists, however, a distinguished norm in H
(unitary norm) defined in terms of the inner product, and it is this one
which is meant whenever we speak of the norm in a unitary space.
[Of course any other possible norms are equivalent to this particular
norm, see (1.20).] The unitary norm is given by

(63) el = (w, )22

Obviously the first two of the conditions (1.18) for a norm are satisfied.
Before verifying the third condition (triangle inequality), we note the
Schwarz inequality

(64) [, )] < o] 0],

1 In any finite-dimensional vector space X, one can introduce a positive-definite
sesquilinear form and make X into a unitary space.
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where equality holds if and only if # and v are linearly dependent.
(6.4) follows, for example, from the identity

(65) IH1ol® % — (s, ©) 9] = (o] [0)* — (s, ) ) 0]

The triangle inequality is a consequence of (6.4): |u + v|2= (¥ + v,
%+ v) = |u]>+2 Re(w, v) + [o]* = [[u]® + 2] u] |0l + [2]* = (J=] + |o])*.
Example 6.1. For numerical vectors u = (&}, ..., §y) and v = (i, . . ., ny) set

(6.6) o) =X &7, |ul2=24°.
With this inner product the space C¥ of N-dimensional numerical vectors becomes
a unitary space.

Problem 6.2. The unitary norm has the characteristic property

(6.7) le + ofl? + flu — o]|* = 2|u]* + 2{o]*.
Problem 6.3. The inner product (%, v) can be expressed in terms of the norm by

1 ) . ) .
(6.8) (%, v) = T (|l + v||2 — JJlu — v||2 + i]luw + i 0|2 — ilu — i v]?).
Problem 6.4. For any pair (£;), (5,) of numerical vectors, we have
1 1
|2 &ml = (215192 (2 Inl)?,

(6.9) 1 1 1
& +nlr=s (ZIEPE + &)z

2. The adjoint space

A characteristic property of a unitary space H is that the adjoint
space H* can be identified with H itself: H* = H.

For any u € H set f, [v] = («, v). f, is a semilinear form on H so that
fo € H*. The mapu — f, is linear, for if u = &; #; + oy #, then f,[v]
— (4, 9) = oy (11, 9) + g (3, V) = 0 fu,[0] + g o, [0] S0 that fy = a fu, +
+ oy fy,. Thus w— f, = Tu defines a linear operator T on H to H*.

T is isometric: |Tu| = [u]. In fact |Tu] = |f] = sup|(w,)|/Jo]

= Ju] by (2.22) [note the Schwarz inequality and (u, #) = |#|?]. In
particular T is one to one. Since dimH* = dimH, it follows that T
maps H onto the whole of H* isometrically. This means that every
f€ H* has the form f, with a uniquely determined #€ H such that
I7l = |#|. It is natural to identify f with this ». It is in this sense that
we identify H* with H.

Since (#, v) = f[v] = (f, v), the inner product (%, v) is seen to coincide
with the scalar product (f, v).

We can now take over various notions defined for the scalar product
to the inner product (see §2.2). If (u, v) =0 we write » | v and say
that #, v are mutually orthogonal (or perpendicular). u is orthogonal to a
subset S of H, in symbol % | S, if % | v for all v€ S. The set of all u¢ H
such that » | S is the annihilator of S and is denoted by SL. Two subsets
S, S’ of H are orthogonal, in symbol S | §', if every » € S and every v€ S’
are orthogonal.
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Problem 6.5. (u, v) is a continuous function of #, v.
Problem 6.6. The Pythagorean theorem:

(6.10) lu + v]|2 = o) + v]2 if »lo.

Problem 6.7. # | Simplies# | M where M is the span of S. S is a linear manifold
and S1 = ML,

Consider two unitary spaces H and H’. A complex-valued function
t[u, v'] defined for € H and «'€ H’ is called a sesquilinear form on
H x H’ if it is linear in % and semilinear in #'. If in particular H' = H,
we speak of a sesquilinear form on H. The inner product of H is a special
case of a sesquilinear form on H. For a general sesquilinear form t [«, v]
on H, there is no relation between t [#, v] and t [v, #] so that the quadratic
form t[u] = t[u, u] need not be real-valued. In any case, however, we
have the relation (polarization principle)

(6.11) t[u,v]=%(t[u+v]——t[u—v]+it[u+iv]—it[u—iv])

similar to (6.8). Thus the sesquilinear form t [, v] is determined by the
associated quadratic form t[«#]. In particular t[«, v] = 0 identically if
t[#] = 0 identically. t [«, v] is called the polar form of t [u].

Problem 6.8. If |t[%]| < M| u|? for all u € H, then |t[«, v]| < 2M|u| ||v|.

Problem 6.9. If T is a linear operator on H to H’, | T2 is a quadratic form on H
with the polar form (Tu, Tv).

Remark 6.10. The validity of (6.11) is closely related to the existence
of the scalar 7. The quadratic form t [#] does not determine t[%, v] in a
real vector space.

3. Orthonormal families

A family of vectors #,, ..., x,€ H is called an orthogonal family if
any two elements of this family are orthogonal. It is said to be ortho-
normal if, in addition, each vector is normalized:

(6.12) (%5, %) = Osn -

As is easily seen, the vectors of an orthonormal family are linearly
independent. An orthonormal family {x,, ..., x,} is complete if n = N
= dimH. Thus it is a basis of H, called an orthorormal basis.

Let M be the span of an orthonormal family {x,, ..., #,}. For any
# € H, the vector

(6.13) U = 1§”l (u, x,) X3

has the property that «'€ M, u — «'€ ML, «' is called the orthogonal
projection (or simply the projection) of # on M. The Pythagorean theorem
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(6.10) gives
(614)  Juf =o' + Ju — P = X [ %) [* + Ju — ]2,
i=
and hence
(6.15) 2 |(w, %) |2 < |u||® (Bessel’s inequality) .
i=1

For any linearly independent vectors u,, ..., #,, it is possible to
construct an orthonormal family x,, ..., %, such that for each 2= 1,
..., m, the & vectors #,, . .., %; span the same linear manifold as the %
vectors %y, . .., uy. This is proved by induction on %. Suppose that x;,
. .., %x—; have been constructed. If M, _; denotes the span of %,, . . ., %,
then by hypothesis M,_, is identical with the span of #,, ..., #;_,.
Set u}’ = u, —u;, where u;, is the projection of u;, on My—; (if 2= 1 set
#;’ = u;). The linear independence of the u; implies that u; + 0. Set
%, = |uy/|~* u’. Then the vectors x,, . . ., %, satisfy the required condi-
tions. The construction described here is called the Schmidt orthogonaliza-
tion process.

Since every linear manifold M of H has a basis {#,}, it follows that M
has an orthonormal basis {x,}. In particular there exists a complete
orthonormal family in H. An arbitrary vector x; with || = 1 can be the
first element of an orthonormal basis of H.

It follows also that any # € H has an orthogonal projection #’ on a
given linear manifold M. #’ is determined uniquely by the property that
#' €M and #”’ = u — «' € ML. Thus H is the direct sum of M and ML:

(6.16) H=Mo ML,
In this sense ML is called the orthogonal complement of M. We have
(6.17) MLiLi =M, dimML=N—dimM.

When N cM, MNA N1 is also denoted by M© N; it is the set of all u€ M
such that » | N.

In the particular case M= H, we have ML =0 and so %" = 0.
Thus (6.13) gives

(6.18) %=
7

This is the expansion of u in the orthonormal basis {x;}. Multiplication

of (6.18) from the right by v gives

(6.19) (w0, v) = X (w, %5) (%, v) = X (u, %)) (v, %) -

7 J

M=

(w, %5) %5 .
1

In particular
(6.20) |2 =3 |(w, x;)|2 (Parseval’s equality) .
7
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The following lemma will be required later.

Lemma 6.11. Let M, M’ be two linear manifolds of H with dimensions
n, n' respectively. Then dim(M' N\ ML) = #' — n.

This follows from (1.10) in view of the relations dimM’ = »’, dimML
=N — n,dim(M’ + ML) < N.

Let {x;} be a (not necessarily orthonormal) basis of H. The adjoint
basis {¢;} is a basis of H* = H satisfying the relations

(6.21) (e, %) = 04

(see §2.3). {x;} and {e;} are also said to form a biorthogonal family of
elements of H. The basis {,} is selfadjoint if ¢;=%;,j=1, ..., N. Thus
a basis of H s selfadjoint if and only if it is orthonormal.

4. Linear operators

Consider a linear operator T on a unitary space H to another unitary
space H’. We recall that the norm of T is defined by || T = sup|| T u||/]«|
— sup (T, ) |[[u] || [see (4.1), (4.2)].

The function

(6.22) tlu, u'] = (Tu,u)

is a sesquilinear form on H X H’. Conversely, an arbitrary sesquilinear
form t[%, '] on H X H’ can be expressed in this form by a suitable
choice of an operator T on H to H’. Since t [«, #'] is a semilinear form on
H’ for a fixed u, there exists a unique @’ € H’ such that t [, 4'] = (»’, #')
for all #’ € H’. Since w’ is determined by #, we can define a function T
by setting w’ = Tu. It can be easily seen that T is a linear operator
on H to H'. If in particular t is a sesquilinear form on H(H’= H), then T
is a linear operator on H to itself.
In the same way, t [#, #'] can also be expressed in the form

(6.23) tu, w'] = (u, T*u'),

where T* is a linear operator on H’ to H, called the adjoint (operator)
of T. T* coincides with the adjoint operator defined in § 3.6 by the
identification of H*, H'* with H, H’ respectively.

T*T is a linear operator on H to itself. The relation

(6.24) (u, T*Tv) = (T*Twu, v) = (Tu, Tv)

shows that T*T is the operator associated with the sesquilinear form
(Tw, Tv) on H. Note that the first two members of (6.24) are the inner
product in H while the last is that in H'. It follows from (6.24) and (4.2)
that |T* T| = sup|(Tw, Tv)|/|u] |v| = sup|Tw|?/|u|*=|T|* Since,
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on the other hand, |T*T| < | T*| | T| = | T2 we have
(6.25) |T*T) =|7]*.
In particular, T*T = 0 implies T = 0.
Problem 6.12. N(T*T) = N(T).
Problem 6,13. We have the polarization principle for an operator T on H to H
1
(6.26) (Tu,v)=—4—[(T(u +v),u+v)— (T(u—v),u—1v)+

+i(Tw+iv),u+iv) —i(T(u—iv),u—iv)].

Problem 6.14. If T is an operator on H to itself, (T%, ) = 0 for all » implies
T=0.

The matrix representation of an operator is related to a pair of
adjoint bases in the domain and range spaces [see (3.10)]. This suggests
that the choice of selfadjoint (orthonormal) bases is convenient for the
matrix representation of operators between unitary spaces.

Let T be an operator from a unitary space H to another one H' and
let {x,}, {#;} be orthonormal bases of H, H’, respectively. The matrix
elements of T for these bases are then

(6.27) Tin = (Txp, %)) = (%, T* %) ,

as is seen from (3.10) by setting f; = #;. More directly, (6.27) follows from
the expansion
(6.28) Ty =2 (Txp %) %] .
i
Recall that if H' = H it is the convention to take x/ = x,.

Problem 6.15. If {#,} is an orthonormal basis of H and if T is an operator on H
to itself,

(6.29) trT = 3 (T, #3) -
k
The matrix of T* with respect to the same pair of bases {x/}, {xs}
is given by 1§; = (T* /, ;). Comparison with (6.27) gives
(6.30) T;';" = m .

Thus the ‘'matrices of T and T* (for the same pair of orthogonal bases)
are Hermitian conjugate to each other.

5. Symmetric forms and symmetric operators

A sesquilinear form t[%,v] on a unitary space H is said to be sym-
wmetric if
(6.31) t(v,u] =t[u,v] forall wu,vcH.
If t [u, v] is symmetric, the associated quadratic form t [«] is real-valued.
The converse is also true, as is seen from (6.11).
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A symmetric sesquilinear form (or the associated quadratic form) t is
nonnegative (in symbol t = 0) if t [#] = O for all #, and positive if t [u] > 0
for # # 0. The Schwarz and triangle inequalities are true for any non-
negative form as for the inner product (which is a special positive ses-
quilinear form):

[t [, 91| < t[W]2 E[0]V2 < 5 (t[u] + t[0]) ,
(6.32) t[u + o2 < t[u]2 + t[o]V2,
tlu+v] < 2t[u] + 2t[v].

Note that strict positivity was not used in the proof of similar inequalities
for the inner product.

The lower bound y of a symmetric form t is defined as the largest real
number such that t [#] = y |u|%. The upper bound y' is defined similarly.
We have

(6.33) Itlw, ]| = Mu] Jo , M =max(|y|. y']) -

To see this, we note that the value t[#, v] under consideration may be
assumed to be real, for (6.33) is unchanged by multiplying # with a
scalar of absolute value one. Since t [#] is real-valued, we see from (6.11)
that t(u,v] =41 (t[u + v] — t[# —v]). Since [t[u]| < M|u|? for all
, it follows that |t [u,v]| < 4= M (|u+ |2+ | —v||?) =21 M (J»|2+]v]?).
Replacement of #, v respectively by « %, v/, with o2 = ||v||/|| %], yields
(6.33).

The operator T associated with a symmetric form £ [«, v] according
to (6.22) has the property that

(6.34) T*=T

by (6.22), (6.23) and (6.31). An operator T on H to itself satisfying (6.34)
is said to be (Hermitian) symmetric or selfadjoint. Conversely, a sym-
metric operator T determines a symmetric form t[%, v] = (T%, v) on H.
Thus (Tu, u) is real for all u€ H if and only if T is symmetric. A sym-
metric operator T is nonnegative (positive) if the associated form is
nonnegative (positive). For a nonnegative symmetric operator T we have
the following inequalities corresponding to (6.32):

(Twu,v)| < (Tu, w)2(Tv, v)1/2,

O3 (Tt o) u+ S (Tu,upn ot (To,pn

We write T = 0 to denote that T is nonnegative symmetric. More
generally, we write

(6.36) T=S or ST
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if S, T are symmetric operators such that T — S = 0. The upper and
lower bounds of the quadratic form (T#, #) are called the upper and
lower bounds of the symmetric operator T.

Problem 6.16. If T is symmetric, « T + f is symmetric for real &, f. More
generally,  (T) is symmetric for any polynomial p with real coefficients.

Problem 6.17. For any linear operator T on H to H’ (H, H’ being unitary spaces),
T*T and T T* are nonnegative symmetric operators in H and H’, respectively.

Problem 6.18. If T is symmetric, then T2 = 0; T2 = 0 if and only if T = 0.
If T is symmetric and T* = 0 for some positive integer #, then T = 0.

Problem 6.19. R< Sand S Timply RS T.S< TandS= TimplyS=T.

6. Unitary, isometric and normal operators

Let H and H’ be unitary spaces. An operator T on H to H’is said to be
isometrict if
(6.37) |Tu|=|u]| forevery ucH.

This is equivalent to ((T*T — 1) #, u) = 0 and therefore (see Problem
6.14)

(6.38) T*T =1.
This implies that
(6.39) (T, Tv) = (u,v) forevery u,v€H.

An isometric operator T is said to be unitary if the range of T is the whole
space H’. Since (6.37) implies that the mapping by T is one to one, it is
necessary for the existence of a unitary operator on H to H’ that dimH’
= dim H. Conversely, if dimH’ = dimH < oo any isometric operator on
H to H’ is unitary. As we shall see later, this is not true for infinite-
dimensional spaces.

Problem 6.20. A T € #(H, H’) is unitary if and only if T-1 € # (H’, H) exists and
(6.40) T-1=T*.

Problem 6.21. T is unitary if and only if T* is.

Problem 6.22. If T ¢ Z(H’, H”) and S € #(H, H’) are isometric, TS € # (H, H")
is isometric. The same is true if “‘isometric” is replaced by “‘unitary”’.

Symmetric operators and unitary operators on a unitary space into
itself are special cases of normal operators. T ¢ 4 (H) is said to be normal
if T and T* commute:

(6.41) T*T =T T*.
This is equivalent to (again note Problem 6.14)

(6.42) |T*u| = |Tu| forall u¢H.

1 Isometric operators can be defined more generally between any two normed
spaces, but we shall have no occasion to consider general isometric operators.
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An important property of a normal operator T is that

(6.43) 1T =|Tj*, n=12,....

This implies in particular that (spr denotes the spectral radius, see § 4.2)
(6.44) sprT = |T| .

To prove (6.43), we begin with the special case in which T is sym-
metric. We have then |T2| = | T|? by (6.25). Since T? is symmetric,
we have similarly | T4 = | T?|2 = | T||*. Proceeding in the same way,
we see that (6.43) holds for » = 2™, m = 1,2, ... . Suppose now that T
is normal but not necessarily symmetric. Again by (6.25) we have | 7|2
= |T»*T"|. But since T"*T*= (T*T)* by (6.41) and T*T is sym-
metric, we have |T%|2= |(T*T)"| =|T*T|*=|T|?" for »n=2m.
This proves (6.43) for n = 2™. For general #, we take an m such that
2m —n =7 = 0. Since (6.43) has been proved for # replaced by # + 7
=27, we have |T|™" = |T**| < | T |T"] = |T*||T|" or |T|" =
< | T*||. But since the opposite inequality is obvious, (6.43) follows.

Problem 6.23. If T is normal, p (T) is normal for any polynomial p.

Problem 6.24. T-1is normal if T is normal and nonsingular.

Problem 6.25. If T is normal, T* = 0 for some integer » implies T = 0. In other
words, a normal operator T is nilpotent if and only if T = 0.

7. Projections

An important example of a symmetric operator is an orthogonal
projection. Consider a subspace M of H and the decomposition H =M &
® M- [see (6.16)]. The projection operator P = Py on M along M< is
called the orthogonal projection on M. P is symmetric and nonnegative, for
(with the notation of par. 3)

(6.45) (Pu,u)= (', u +u')=(u,u") =0

in virtue of #’ 1 «'’. Thus

(6.46) P*=P, P=z0, P*=P.

Conversely, it is easy to see that a symmetric, idempotent operator
P ¢ #(H) is an orthogonal projection on M = R(P).

Problem 6.26. 1 — P is an orthogonal projection with P. If P is an orthogonal
projection, we have
(6.47) OSPZI', |P|=1 if P=0.

Problem 6.27. [|[(1 — Ppm) 4| = dist(», M), u€ H.
1 The notation 0 < P < 1, which is used to denote the order relation defined

for symmetric operators [see (6.36)], does not conflict with the notation introduced
earlier for projections (see § 3.4).
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Problem 6.28. M | N is equivalent to Py, PN = 0. The following three conditions
are equivalent: MO N, Py = P\, PM PN = PN.

Let Py, ..., P, be orthogonal projections such that

(6.48) P,-Pk=6,-,,P5.

Then their sum

(6.49) P=) P,
i=1

is also an orthogonal projection, of which the range is the direct sum of
the ranges of the P;.

Orthogonal projections are special kinds of projections. We can of
course consider more general “oblique’’ projections in a unitary space H.
Let H= M ® N with M, N not necessarily orthogonal, and let P be the
projection on M along N. Then P* is the projection on N< along MLt
[see (3.43)].

Problem 6.29. || P|| = 1 for a projection P == 0; || P|| = 1 holds if and only if P
is an orthogonal projection. [hint for ‘‘only if’’ part: Let u € N.L. Thenu | (1 — P)u.
Apply the Pythagorean theorem to obtain |[Pu|2? = |u|2 + [(1 — P) »||>. From
this and || P|| =1 deduce NLC M. Consider P* to deduce the opposite inclusion.]

Problem 6.30. A normal projection is orthogonal.

Problem 6.31. If P is a projection in a unitary space with 0 = P 5= 1, then
12 =it — P~

8. Pairs of projections

Let us now consider a pair P, Q of projections in H and recall the
results of §4.6 that R(P) and R(Q) are isomorphic if P — Q is suf-
ficiently small. A new result here is that the operator U given by (4.38)
is unitary if P, Q are orthogonal projections. This is seen by noting that
U'* = V' and R* = R [see (4.36) and (4.33)], which imply U* = V =U-1.
Thus

Theorem 6.32. Two orthogonal projections P, Q such that |P—Q| <1
are wunitarily equivalent, that is, there is a unitary operator U with the
property Q = UPU-L,

Problem 6.33. |P — Q|| < 1 for any pair P, Q of orthogonal projections [see
(4.34)].

A similar but somewhat deeper result is given by the following
theorem.

Theorem 6.34.2 Let P, Q be two orthogonal projections with M = R(P),
N = R(Q) such that

(6.50) I0-Q) P|=06<1.

1 See T. KaTo [13].
3 See T. Kato [12], Lemma 221. This theorem is true even for dim H = oo.
A similar but slightly weaker result was given earlier by AKHIEZER and GLAZMAN

(1), § 34.
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Then there are the following alternatives. Either
i) Q maps M onto N one to one and bicontinuously, and

(6.51) IP—Ql=11-P)Ql=1(1-0Q) P|=8; o

ii) Q maps M onto a proper subspace N, of N one to one and biconti-
nuously and, if Qq is the orthogonal projection on N,

12— Qo =1(1— P) Qoll = [(1— Qo) P| =[(1—-0Q) P| =9,
1P—Ql=I(1 -P)Q]=1.

Proof. For any #¢ M, we have |u — Qu| = ||(1 — Q) Pu| < 8|
so that |Qu| = (1 — &) |«|. Thus the mapping » — Qu of M into N is
one to one and bicontinuous (continuous with its inverse mapping).
Therefore, the image QM = N, of this mapping is a closed subspace of N.
Let Q, be the orthogonal projection on N,.

For any w¢€ H, Qyw is in N,y and hence Q,# = Qu for some u¢ M.
If Qyw = 0 then % = 0 and, since (1 — P) » =0,

(1= P) Q| = [(1 — P) Qu| = | (1 — P) (Qu — |Qu* |u|~* )]
=< (Qu — 1Qu|® |ul =2 w)] -

(6.52)

(6.53)

Hence

(6.54) (1 — P) Qo = |Qu|* — |Qu|* ]2 =
= |Qull® |lul =2 (l]® — [Qul?) = [l#]| =2 [Qowl? | (1 — Q) %] =
< ul =2 wf? (1 — Q) Pu|® < & |w|?®.

This inequality is true even when Q,% = 0. Hence

(6.55) (1= P) Q| = 6=[(1-0Q) P|.
For any w € H, we have now
(6.56) (P — Qo) 2|* = [ (1 — Qo) Pw — Qo(1 — P) w]?

= (1 — Qo) Pw|?+ [ Qo(1 — P) w|?
since the ranges of 1 — Q, and Q, are orthogonal. Noting that P = P?
and 1 — P = (1 — P)?, we see from (6.56) that
657) (P — Qo) wl® < [(1—Q0) Pl | Pwf? + [Qo(1— P)|2](1 — P) w]2
Since Qo P = QoQ P = Q P by the definition of Q,, we have |(1 — Q,) P|

=[(1—Q) P| = 4,and [Qo(1 — P)| =[(Qo(1 — P))*|| = (1 — P) Qo] =
< 0 by (6.55). Hence

(6:58) (P — Qg »|* = (| Pw|® + |[(1 — P) w|?) = & |w]?.
This gives | P — Qq| < d. Actually we have equality here, for
(6:59) d=(1—0Q) P|=[(1—-Qo) Pl =[(P—Qo) Pl = [ P—Qf =8.
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The fact that |[P — Q| = d < 1 implies that P maps N, = R(Q,) onto M
one to one (see Problem 4.11). Applying the above result (6.55) to the
pair P, Q replaced by Q,, P, we thus obtain |[(1 — Qp) P| < |(1 — P)Q, |
Comparison with (6.59) then shows that we have equality also in (6.55).

If Np = N, this completes the proof of i). If N, == N, it remains to
prove the last equality of (6.52). Let v be an element of N not belonging
to Ny Since PNy= M as noted above, there is a v,€ Ny such that
Py, = Py. Thus w=v — 1€ N, w &= 0 and Pw = 0, so that (P — Q) w
=—wand Q(1 - P)w=Qw=w. Thus [P— Q| =1 and |(1— P) Q]
= ||Q(1 — P)|| = 1. Since we have the opposite inequalities (see Problem
6.33), this gives the desired result.

As an application of Theorem 6.34, we deduce an inequality concern-
ing pairs of oblique and orthogonal projections.

Theorem 6.35. Let P’', Q' be two oblique projections in H and let M
=R(P"), N=R(Q"). Let P, Q be the orthogonal projections on M, N
respectively. Then
(6.60 IP-0l =17 -Q].

Proof. Since | P — Q| never exceeds 1 (see Problem 6.33), it suffices
to consider the case ||P’ Q| = ¢ < 1. For any #€H, we have (see
Problem 6.27) |(1 — Q) Pu| = dist (Pu, N) s ||Pu — Q' Pu|=|(P -
— Q) Pu| < &|Pu| < &|u|. Hence I(1—0Q)P| < & < 1. Similarly
we have ||(1 — P) Q| £ ¢’ < 1. Thus Theorem 6.34 is applicable, where
the case ii) is excluded, so that [P — Q| = [[(1— P) Q| = ¢’ = |P' — Q']
by (6.51).

Problem 6.36. If P’, Q' are oblique projections with |[P’ — Q’|| < 1, then there
is a unitary operator U such that UM = N, U~ N = M, where M = R(P’),
N = R(Q’). (This proposition can be extended directly to the infinite-dimensional
case, in which it is not trivial.)

Problem 6.37. Let P’(x) be an oblique projection depending continuously on %
for 0 < 2 < 1, and let P (x) be the orthogonal projection on M(x) = R(P’(x)). Then
P (%) is also continuous in %, and there is a family of unitary operators U (x), depend-
ing continuously on #x, such that U (x) M(0) = M(x), U (x)~* M (x) = M(0).

9. The eigenvalue problem

We now consider the eigenvalue problem for an operator in a unitary
space H. For a general operator T, there is not much simplification to be
gained by the fact that the underlying space is unitary; this is clear if
one notes that any vector space may be made into a unitary space by
introducing an inner product, whereas the eigenvalue problem can be
formulated without reference to any inner product, even to any norm.
The advantage of considering a unitary space appears when the operator
T has some special property peculiar to the context of a unitary space,
such as being symmetric, unitary or normal.
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Theorem 6.38. A normal operator is diagonable, and its eigenprojections
are orthogonal projections.
Proof. Let T be normal. Since T and T* commute, we have

(6.61) (T=0(T*=8)=(T*=8)(T-9).

If { is not an eigenvalue of T and ¢’ is not an eigenvalue of T*, the
inverse of (6.61) exists and we have

(6.62) R*({") R(C) = R(§) R*(")

where R({) and R*({) are the resolvents of T and T* respectively.
(6.62) shows that these resolvents commute. In view of the expression
(5.22) for the eigenprojection P, associated with the eigenvalue 4, of T,
a double integration of (6.62) along appropriate paths in the { and ¢’
planes yields the relation

(6.63) P*P,=P,P¥, hk=1,...s;

recall that T* has the eigenvalues 1, and the associated eigenprojections
P¥ (§5.5). In particular P, and P§ commute, which means that the P,
are normal. This implies that the P, are orthogonal projections (see
Problem 6.30) :

(6.64) Pr=>"P,, h=1,...,s.

The eigennilpotents are given by D, = (T — A;) P, and Df = (T* —
— 1) P¥ = (T* —1,) P, by (5.26). Since P, and T commute, P, = P}
commutes with 7* and T* commutes with T, it follows that D, commutes
with D¥, that is, D, is normal. As a normal nilpotent D, must be zero
(Problem 6.25). Thus T is diagonable.

The spectral representation of a normal operator T thus takes the
form

s s
T= 2 Py, T*= 2 IhPh:
(6.65) K=1 =1 ]
P)f:Ph, Pth=6hkPhD ZPh=1'
h=1
T and T* have the same set of eigenspaces, which are at the same time

algebraic and geometric eigenspaces and which are orthogonal to one
another. It follows further from (6.65) that

s
(6.66) T*T=TT*= 3 |M)2P;.
h=1

Hence
ITul2 = (T*Tw, u) = 3 |42 (Pass, w) < (max |A4]2) X (Ppu, u) =
P

= (max [2,[%) [«]*,
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which shows the |T| < max|4;]. On the other hand |Tu| = |4 ||
for u € M, = R(P;). Thus we obtain

(6:67) 17} = max 4]

for a normal operator T.

If we choose an orthonormal basis in each M,, the elements of these
bases taken together constitute an orthonormal basis of H. In other
words, there is an orthonormal basis {g,} of H such that

(6.68) T @Qp=thy @, n=1..,N,

in which p,, n =1, ..., N, are the repeated eigenvalues of T. The matrix
of T for this basis has the elements

(6.69) Tin = (T @r @5) = pa Os;

this is a diagonal matrix with the diagonal elements u;.

Problem 6.39. An operator with the spectral representation (6.65) is normal.

Problem 6.40. A symmetric operator has only real eigenvalues. A normal
operator with only real eigenvalues is symmetric.

Problem 6.41. Each eigenvalue of a unitary operator has absolute value one.
A normal operator with this property is unitary.

Problem 6.42. A symmetric operator is nonnegative (positive) if and only if its
eigenvalues are all nonnegative (positive). The upper (lower) bound of a symmetric
operator is the largest (smallest) of its eigenvalues.

Problem 6.43. If T is normal, then

(6.70) IR@I = Umin]¢ ~ A = Ydist(c, (D).
1Sall = 1/min |2 — 4],
k+h

where R ({) is the resolvent of T and S is as in (5.18).

10. The minimax principle

Let T be a symmetric operator in H. T is diagonable and has only
real eigenvalues (Problem 6.40). Let

(6.71) N PR

be the repeated eigenvalues of T arranged in the ascending order.
For each subspace M of H set

- - 1 —_ 3 (Tu: u)
(6.72) #IM] = p[T, M] = min (Tw, u) = min
lidl =1
The minimax (or rather maximin) principle asserts that
679 = e #MI= e e,
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where the max is to be taken over all subspaces M with the indicated
property. (6.73) is equivalent to the following two propositions:

(6.74) Un = u[M] forany M with codmM=<n-—1;
6.75 n <= u[M,] for some M, with codimM,=#n—1.
K H1M o o

Let us prove these separately.
Let {p,} be an orthonormal basis with the property (6.68). Each
# € H has the expansion

(6.76) w=2 npn, En=(u @), [u]2=2 |&l2,
in this basis. Then

(6.77) Tu=2E T @n=2 tnkn @n, (T, u) =3 py |E,]?.

Let M be any subspace with codimM < # — 1. The n-dimensional
subspace M’ spanned by ¢,, ..., @, contains a nonzero vector % in
common with M (this is a consequence of Lemma 6.11, where M is to be
replaced by M1). This » has the coefficients &,,,, &40, - .. equal to
zero, so that (Tu, u) =3 up|&x|? < pn 3 |Ex|? = ua|%|2. This proves
(6.74).

Let M, be the subspace consisting of all vectors orthogonal to ¢, . . .,
@n-1, S0 that codimM, = » — 1. Each # € M, has the coefficients &, . . .,
&n—1 zero. Hence (Tu, u) = p, 3 |&x|? = pa| |2, which implies (6.75).

The minimax principle is a convenient means for characterizing the
eigenvalues yu, without any reference to the eigenvectors. As an applica-
tion of this principle, we shall prove the monotonicity principles.

Theorem 6.44. If S, T are symmetric operators such that S < T,
then the eigenvalues of S are not larger than the corresponding eigenvalues
of T, that is,

(6.78) Un[S] S u,[T), n=1,...,N.
Here u,[T] denotes the n-th eigenvalue of T in the ascending order as in
(6.71).

The proof follows immediately from the minimax principle, for
S = T implies (Su,u) < (Tw,u) and therefore u[S, M] =< u(T, M)
for any subspace M.

Problem 6.45. For every pair of symmetric operators S, T,

(6.79) S+ mlTI= ;IS + T1= i (S] + wuxl(T].

Let M be a subspace of H with the orthogonal projection P. For any
operator T in H, S = P T P is called the orthogonal projection of T on M.
M s invariant under S, so that we can speak of the eigenvalues of Sin M
(that is, of the part Sy of S in M). Note that Sy, has N — r repeated
eigenvalues, where 7 = codim M.



62 I1. Perturbation theory in a finite-dimensional space

Theorem 6.46. Let T, S, Sy be as above. If T 1s symmetric, S and Sy
are also symmetric, and

(6.80) n[T] € pn(SMm] < ptn+,.[T], n=1,.. ,N—r.

Proof. The symmetry of S and of Sy is obvious. u,[Su] is equal
to maxu [ Sy, M’] taken over all M’ C M such that the codimension of M’
relative to M is equal to #» — 1 (dimM/M'=# — 1). But we have
WISm M'] =[S, M] = u[T, M']because (Sy u, ) = (Su, u) = (Tu, u)
for any 4€M, and dimM/M’ =# — 1 implies codimM’ = dimH/M’
= n + r — 1. Therefore u, [Sy] does not exceed yy,+,[T] = maxu [T, M’]
taken over all M’ ¢ H with codimM’ = # 4 » — 1. This proves the second
inequality of (6.80).

On the other hand we have u, [T] = u [T, My] where M, is the same
as in (6.75). Hence u,[T] < u[T, Myn M] = u[Su, My M]. But
My " M has codimension not larger than » — 1 relative to M because
codimM, =n — 1. Thus u[Sm, Mgn M] =< u,[Su] by (6.74). This
proves the first inequality of (6.80).

Chapter Two

Perturbation theory in a finite-dimensional space

In this chapter we consider perturbation theory for linear operators in a finite-
dimensional space. The main question is how the eigenvalues and eigenvectors (or
eigenprojections) change with the operator, in particular when the operator depends
on a parameter analytically. This is a special case of a more general and more
interesting problem in which the operator acts in an infinite-dimensional space.

The reason for discussing the finite-dimensional case separately is threefold.
In the first place, it is not trivial. Second, it essentially embodies certain features of
perturbation theory in the general case, especially those related to isolated eigen-
values. It is convenient to treat them in this simplified situation without being
bothered by complications arising from the infinite dimensionality of the underlying
space. The modifications required when going to the infinite-dimensional case will be
introduced as supplements in later chapters, together with those features of perturba-
tion theory which are peculiar to the infinite-dimensional case. Third, the finite-
dimensional theory has its own interest, for example, in connection with the numeri-
cal analysis of matrices. The reader interested only in finite-dimensional problems
can find what he wants in this chapter, without having to disentangle it from the
general theory.

As mentioned above, the problem is by no means trivial, and many different
methods of solving it have been introduced. The method used here is based on a
function-theoretic study of the resolvent, in particular on the expression of eigen-
projections as contour integrals of the resolvent. This is the quickest way to obtain
general results as well as to deduce various estimates on the convergence rates of the
perturbation series. In a certain sense the use of function theory for operator-
valued functions is not altogether elementary, but since students of applied mathe-
matics are as a rule well-acquainted with function theory, the author hopes that its
presence in this form will not hinder those who might use the book for applications.
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§ 1. Analytic perturbation of eigenvalues

1. The problem

We now go into one of our proper subjects, the perturbation theory
for the eigenvalue problem in a finite-dimensional vector space XI.
A typical problem of this theory is to investigate how the eigenvalues and
eigenvectors (or eigenspaces) of a linear operator T change when T is
subjected to a small perturbation2 In dealing with such a problem,
it is often convenient to consider a family of operators of the form

(1.1) T)=T+xT

where x is a scalar parameter supposed to be small. T (0) = T is called
the unperturbed operator and x T the perturbation. A question arises
whether the eigenvalues and the eigenvectors of T (x) can be expressed
as power series in #x, that is, whether they are holomorphic functions of »
in the neighborhood of » = 0. If this is the case, the change of the
eigenvalues and eigenvectors will be of the same order of magnitude as
the perturbation » T itself for small |%|. As we shall see below, how-
ever, this is not always the case.
(1.1) can be generalized to

(1.2) To)=T+xTO+x2TE 4 -,

More generally, we may suppose that an operator-valued function
T (x) is given, which is holomorphic in a given domain D, of the complex
»-plane3,

The eigenvalues of T (x) satisfy the characteristic equation (see
Problem I-5.16)

(1.3) det(T(x) — ) =0.

This is an algebraic equation in { of degree N = dimX, with coefficients
which are holomorphic in #%; this is seen by writing (1.3) in terms of the
matrix of T (x) with respect to a basis {x;} of X, for each element of this
matrix is a holomorphic function of x [see I-(3.10)]. It follows from a well-

1 In this section we assume that 0 << dimX = N << oco. Whenever convenient,
X will be considered a normed space with an appropriately chosen norm.

2 There are very few papers that deal specifically with perturbation theory in a
finite-dimensional space; see parts of ReLricH [1] and [8], Davis [1], B. L. Liv8ic
[1], Vi8ik and LyusTERNIK [1]. Reference should be made to papers dealing with
analytic perturbation theory in Banach spaces. Basic papers in this direction are:
Rervicn [1]—[5], Sz.-Nagy [1], [2], WorF [1], T. Karo [1], [3], [6], DUNFORD-
ScuwaRr1z (1), Riesz and Sz.-NAGY ((1]. See also BAUMGARTEL [1], PoratH [1], [2],
RevrricH [6], RosENBLoOM [1], SCHAFKE [3]—[5], SCHRODER [1]—[3], Smur’van
1.

8 One can restrict % to real values, but since (1.2) given for real » can always
be extended to complex %, there is no loss of generality in considering complex x.
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known result? in function theory that the roots of (1.3) are (branches of)
analytic functions of » with only algebraic singularities. More precisely,
the roots of (1.3) for x € D, constitute one or several branches of one or
several analytic functions that have only algebraic singularities in D,

It follows immediately that the number of eigenvalues of T (x) is a
constant s independent of x», with the exception of some special values
of %. There are only a finite number of such exceptional points » in each
compact subset of D, This number s is equal to N if these analytic
functions (if there are more than one) are all distinct; in this case 7T (x)
is simple and therefore diagonable for all non-exceptional x. If, on the
other hand, there happen to be identical ones among these analytic
functions, then we have s < N; in this case T (x) is said to be per-
manently degenerate.

Example 1.1. Here we collect the simplest examples illustrating the various
possibilities stated above. These examples are concerned with a family T (%) of the
form (1.1) in a two-dimensional space (N = 2). For simplicity we identify T (x)
with its matrix representation with respect to a basis.

1 %
a) T(u):—-(“ __1) .
The eigenvalues of T () are
(1.4) Ay (%) = 4+ (1 + x?)12
and are branches of one double-valued analytic function (1 + #2)1/2, Thuss = N = 2
and the exceptional points are ¥ = 44, T (4 ¢) having only the eigenvalue 0.

0 %
b) T(u)=(“0), s=N=2.
The eigenvalues are + %; these are two distinct entire functions of » (the charac-
teristic equation is {2 — %2 = 0 and is reducible). There is one exceptional point
% = 0, for which T (x) has only one eigenvalue 0.
0 %
c) T(u)=(oo), s=1.

T (%) is permanently degenerate, the only eigenvalue being 0 for all %; we have
two identical analytic functions zero. There are no exceptional points.

01
d) T(")=(u0)’ s=2.
The eigenvalues are 4 x!/2, constituting one double-valued function #!/2. There is
one exceptional point ¥ = 0.

|
e) T(n)=(00), s=2.
The eigenvalues are 0 and 1. There are no exceptional points.
% 1
f) T(n)=(00), s=2.

The eigenvalues are 0 and %, which are two distinct entire functions. There is one
exceptional point ¥ = 0.

1 See KNoPP (2], p. 119, where algebraic functions are considered. Actually (1.3)
determines { as algebroidal (not necessarily algebraic) functions, which are, how-
ever, locally similar to algebraic functions. For detailed function-theoretic treatment
of (1.3), see BAUMGARTEL [1].
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2. Singularities of the eigenvalues

We now consider the eigenvalues of T (x) in more detail. Since these
are in general multiple-valued analytic functions of x, some care is
needed in their notation. If x is restricted to a simply-connected! sub-
domain D of the fundamental domain D, containing no exceptional
point (for brevity such a subdomain will be called a simple subdomain),
the eigenvalues of T (x) can be written

(1.5) M), As(x), . . ., Ag(3) ,

all s functions 4,(x), =1, .. ., s, being holomorphic in D and 1, (x) =
= Ay (%) for b = k.

We next consider the behavior of the eigenvalues in the neighborhood
of one of the exceptional points, which we may take as » = 0 without
loss of generality. Let D be a small disk near % = 0 but excluding » = 0.
The eigenvalues of T (x) for x€ D can be expressed by s holomorphic
functions of the form (1.5). If D is moved continuously around » = 0,
these s functions can be continued analytically. When D has been
brought to its initial position after one revolution around x = 0, the s
functions (1.5) will have undergone a permutation among themselves.
These functions may therefore be grouped in the manner

(16) 6, -« o A0}, Phgsa 00)s -« o Apra (), - -
in such a way that each group undergoes a cyclic permutation by a
revolution of D of the kind described. For brevity each group will be
called a cycle at the exceptional point % = 0, and the number of elements
of a cycle will be called its period.

It is obvious that the elements of a cycle of period p constitute a
branch of an analytic function (defined near » = 0) with a branch point
(if p = 2) at x = 0, and we have Puiseux series such as?

(1.7)  Au(e) = A+ oq o 5M®? + oty 2P 5?4 ---, h=0,1,...,p—1,

where w = exp(2x ¢/p). It should be noticed that here no negative
powers of x%!/? appear, for the coefficient of the highest power {¥ in (1.3)
is (—1)¥ so that the 4,(x) are continuous at » = 03. 1 = 1,(0) will be
called the center of the cycle under consideration.

(1.7) shows that |4, (x) — 4| is in general of the order |x['/# for small
|| for k=1, ..., p. If p = 2, therefore, the rate of change at an excep-
tional point of the eigenvalues of a cycle of period # is infinitely large
compared with the change of T (x) itself4.

1 See Knoep (1), p. 19.

* See Knorp (2], p. 130.

3 See Knopp (2], p. 122.

¢ This fact is of some importance in the numerical analysis of eigenvalues of
matrices.
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Problem 1.2. The sum of the A;(x) belonging to a cycle is holomorphic at the
exceptional point in question.

In general there are several cycles with the same center A. All the
eigenvalues (1.7) belonging to cycles with center A4 are said to depart
from the unperturbed eigenvalue A by splitting at x = 0. The set of these
eigenvalues will be called the A-group, since they cluster around A for
small |%]|.

Remark 1.3. An exceptional point need not be a branch point of an
analytic function representing some of the eigenvalues. In other words,
it is possible that all cycles at an exceptional point x = %, are of period 1.
In any case, however, some two different eigenvalues for » = %, must
coincide at x» = %, (definition of an exceptional point). Thus there is
always splitting at (and only at) an exceptional point.

Example 1.4. Consider the examples listed in Example 1.1. We have a cycle of
period 2 at the exceptional points ¥ = -+ ¢ in a) and also at # = 0 in d). There are

two cycles of period 1 at # = 0 in b) and f). There are no exceptional points in c)
and e).

3. Perturbation of the resolvent

The fesolvent
(1.8) R(G, %) = (T () =)~

of T (x) is defined for all { not equal to any of the eigenvalues of T (x)
and is a meromorphic function of { for each fixed » € D,. Actually we have
Theorem 1.5. R(, ) vs holomorphic in the two variables {, » in each
domain in which { is not equal to any of the esgenvalues of T (x).
Proof. Let { = {,, » = %, belong to such a domain; we may assume
%o = 0 without loss of generality. Thus {, is not equal to any eigenvalue
of T(0) =T, and

(1.9) T)—C=T—C8— (—C) + 4(x)
=[1—(C—8%—A40)RC)I(T—2C),
(1.10) AW=TwW~T= 3 T,

where R({) = R(L, 0) = (T — {)~! and we assumed the Taylor expansion
of T (x) at % = 0 in the form (1.2). Hence

(1.11) R, %) =R(G) [1— (€ — L — 4 () R,

exists if the factor [ ]~! can be defined by a convergent Neumann series
(see Example I-4.5), which is the case if, for example,

(1.12) 6= Gl + Z " IT®] <IREGI
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since |& — &o| + [|4 ()] is not greater than the left member of (1.12).
This inequality is certainly satisfied for sufficiently small | — {,| and
|¢|, and then the right member of (1.11) can be written as a double
power series in { — {, and %. This shows that R({, x) is holomorphic in
and x in a neighborhood of { = {,, » = 0.

For later use it is more convenient to write R((, %) as a power series
in » with coefficients depending on {. On setting {, = ¢ in (1.11), we
obtain

(1.13) R(C, %) = R() [1+ 4 (x) R(()]

= R() 3 46 ROP = RO) + 5 2" RO),
where - -
(L14) RW(O) = X (=12 RQ) T RE) T ...TeHR(0),
nd e rp=n
21

the sum being taken for all combinations of positive integers $ and
v,..,vsuchthat 1< p<m, v +---4+9v,=n.

(1.13) will be called the second Neumann series for the resolvent.
It is uniformly convergent for sufficiently small » and (¢ I'if I'is a
compact subset of the resolvent set P(T) of T = T (0); this is seen from
(1.12) with £, =, where |R({)|~* has a positive minimum for € I

Example 1.6. The resolvent for the T (x) of Example 1.1, a) is given by
(1.15) R %) =(—1—x)1 (_1_; ¢ 1__"5) :

Problem 1.7. Find the resolvents of the T (x) of b) to f) in Example 1.1.

4. Perturbation of the eigenprojections

Let A be one of the eigenvalues of T = T (0), with multiplicity? .
Let I' be a closed positively-oriented curve, say a circle, in the resolvent
set P(T) enclosing A but no other eigenvalues of T. As noted above,
the second Neumann series (1.13) is then convergent for sufficiently
small || uniformly for {€ I'. The existence of the resolvent R((, x)
of T (x) for {€ I'" implies that there are no eigenvalues of T (x) on I'.

The operator

(1.16) Pl)=—gav [ R dL?
r

is a projection and is equal to the sum of the eigenprojections for all the
eigenvalues of T (x) lying inside I' (see Problem I-5.9). In particular

1 By “multiplicity’’ we mean the algebraic multiplicity unless otherwise stated.

% This integral formula is basic throughout the present book. In perturbation
theory it was first used by Sz.-NaGy [1] and T. Karo [1], greatly simplifying the
earlier method of RELLICH [1]— [5].
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P (0) = P coincides with the eigenprojection for the eigenvalue 1 of T.
Integrating (1.13) term by term, we have

(1.17) P()=P+ 3 x" P®
n=1
with
1
(1.18) Po = — o [Re () az.
r

The series (1.17) is convergent for small |%| so that P (x) is holomorphic
near % = 0. It follows from Lemma I-4.10 that the range M(x) of P(x)
is isomorphic with the (algebraic) eigenspace M = M(0) = PX of T for
the eigenvalue A. In particular we have

(1.19) dim P (x) = dimP = m .

Since (1.19) is true for all sufficiently small ||, it follows that the
eigenvalues of T (x) lying inside I" form exactly the A-group. For brevity
we call P(x) the total projection, and M(x) the total eigenspace, for the
A-group.

If 2 =0 is not an exceptional point, there is no splitting at x =0
of the eigenvalue 4 in question. In this case there is exactly one eigen-
value A (x) of T (x) in the neighborhood of 4, and P (x) is itself the eigen-
projection for this eigenvalue A(x). (1.19) shows that the multiplicity of
A(%) is equal to m. Similar results hold when » = 0 is replaced by any
other non-exceptional point » = .

Now consider a simple subdomain D of the x-plane and the set (1.5)
of the eigenvalues of T (x) for » € D, and let P, (x) be the eigenprojection
for the eigenvalue A, (x), =1, . . ., s. The result just proved shows that
each P, (x) is holomorphic in D and that each A, (x) has constant multi-
plicity ;. Here it is essential that D is simple (contains no exceptional
point); in fact, P, (%,) is not even defined if, for example, 4, (%,) = 45 (%)
which may happen if %, is exceptional.

Let M, (%) = P, (x) X be the (algebraic) eigenspace of T (x) for the
eigenvalue 4, (x). We have [see I-(5.34)]

(1.20) X=M@x) e o M),
dim My, (%) = m,, , Zs,‘m,,=N, x€D.
i=1

The eigennilpotent D, (%) for the eigenvalue 4, (%) is also holomorphic for
%€ D, for

(L.21) Dy () = (T (x) — A3 () Py ()
by I-(5.26).
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5. Singularities of the eigenprojections

Let us now consider the behavior of the eigenprojections P, (x)
near an exceptional point, which we may again assume to be » = 0.
As was shown above, each eigenvalue 4 of T splits in general into several
eigenvalues of T (x) for x & 0, but the corresponding total projection is
holomorphic at » = 0 [see (1.17)]. Take again the small disk D near
» = 0 considered in par. 2; the eigenvalues A, (x), the eigenprojections
P, (%) and the eigennilpotents D, (x) are defined and holomorphic for
% € D as shown above. When D is moved around » = 0 and brought to the
initial position in the manner described in par. 2, each of the families
{24 ()}, {Pn (%)} and {D,, (%)} is subjected to a permutation by the analytic
continuation. This permutation must be identical for the three families,
as is seen from the following consideration.

The resolvent R((,%) of T (x) has the partial-fraction expression

D; () Dy ()82 ]

oS Py (x) ) -
(122 R@G#=-X% [ * ettt

[see I-(5.23)], where { is assumed to be somewhere distant from the
spectrum of T so that ¢ € P(T (x)) for all x considered. If 4, (x), . . ., 4,(x)
constitute a cycle (see par. 2) of eigenvalues, the permutation mentioned
above takes 1, (x) into A,4,(%) for 1 < A < p — 1 and 1,(x) into 4, (x).
But as R((, %) should be unchanged by the analytic continuation under
consideration, the permutation must take P,(x) into P,y,(x) for
1< h<p—1and P,(x) into P, (x)?; the possibility that P, (x) = Py (x)
for some % + % is excluded by the property Pj(x) Py (%) = sz Py (%).
Similar results hold for the eigennilpotents D, (x) by (1.21), except that
some pair of the D, (x) may coincide [in fact all D,(x) can be zero).

We shall now show that P,(x) and D,(x) have at most algebraic
singularities. Since D, (%) is given by (1.21), it suffices to prove this for
Py (x). To this end we first note that

1

. = ||——rv <

02 1Pl =7 (/ R d:” < es() max [R(C, )]
B (%

where T’ (%) is a circle enclosing 1,(») but excluding all other 4, (x)

and where g, (») denotes the radius of I'; (x). On the other hand, we see
from I-(4.12) that

(1.24)  [RE )| =1(T0C) =) =
S yIT () — L7 -Y|det(T () — {)| =

< y(IT 6] + £V~ /n &= A,

1 This is due to the uniqueness of the partial-fraction representation of R ({, »)
as a function of {. A similar argument was used in I-§ 5.4.
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where ¥ is a constant depending only on the norm employed. Hence

(125) [Pl = v eale) max (1T (9] + ICDN-I/ Tt — 6.
A% k=1

Suppose that » — 0, assuming again that » = 0 is an exceptional
point. Then we have to choose the circle I, (x) smaller for smaller |x|
in order to ensure that it encloses 4, (x) but no other A, (x), for the 4, (%)
of the A-group will approach 1, (x) indefinitely. But we know that the
distances |4, () — A, ()| between these eigenvalues tend to zero for
»# — 0 at most with some definite fractional order of |%| because all
Az (%) have at most algebraic smgularltles at %z = 0 [see (1.7)]. By choosing
or (%) = |x|* with an appropriate « > 0, we can therefore ensure that
IT|E — 24 ()|™ = ' |x|*¥ for € T',(x) with some constant 3’ > 0.
Then we have
(1.26) | P(%)| < conmst. ||~ ¥ -De=,

This shows that, when P, (%) is represented by a Laurent series in »'/?,
the principal part is finite.

These results may be summarized in

Theorem 1.8. The esgenvalues Ay, (x), the eigenprojections P, (x) and the
etgenmilpotents Dy (%) of T (x) are (branches of) analytic functions for
% € Dy with only algebraic singularities at some (but not necessarily all)
exceptional points. A, (x) and P, (x) have all branch points in common
(including the order of the branch points), which may or may not be branch
points for Dy (x). If in particular A, (%) is single-valued near an exceptional
point x = x, (cycle of period 1), then P, (x) and D, (x) are also single-
valued there.

6. Remarks and examples

Although the P, (x) and D, (x) have algebraic singularities as well
as the 4, (x), there are some important differences in their behavior at the
singular points. Roughly speaking, P,(x) and D,(x) have stronger
singularities than 4, ().

We recall that these singular points are exceptional points, though
the converse is not true. As we have already noted, the 4, (%) are conti-
nuous even at exceptional points and, therefore, have no poles. But
P, (%) and D,(x) are in general undefined at exceptional points. In
particular they may be single-valued and yet have a pole at an excep-
tional point (see Example 1.12 below).

Even more remarkable is the following theorem?!.

Theorem 1.9. If % = %, is a branch point of A, (x) (and therefore also
of Py(x)) of order p — 1 = 1, then P, (x) has a pole there; that is, the

1 This theorem is due to BuTLER [1].
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Laurent expansion of Py (x) tn powers of (x — x,)Y/? necessarily contains
negative powers. In particular | P, (x)| — oo for x — x,.

Proof. Suppose that this were not the case and let
Ph(’ﬂ)=Ph+’ﬂl/’P]:+"', h=1,...,p,

be the Laurent expansions of the P,(x) belonging to the cycle under
consideration. Here we again assume for simplicity that %, = 0. When »
is subjected to a revolution around x = 0, P, (x) is changed into P, ., (x)
for1 < A £ p — 1and P,(x) into P, (x). Hence we must have P, , = P,
for 1 £ A < p — 1. On the other hand, the relation P (%) Py4+q(%) = 0
for x - 0 gives P, P,,, =0, and the idempotent character of P, (x)
gives P} = P,. Hence P, = P} = P, P,,, = 0. But this contradicts the
fact that dim P, (x) X = m, > 0, which implies that | P,(x)| = 1 (see
Problem I-4.1).

As regards the order p — 1 of the branch point x» = %, for 4, (%) or,
equivalently, the period p of the cycle {,(x), . .., 4,(x)}, we have the
following result. An eigenvalue A of T with multiplicity m does not give
rise to a branch point of order larger than m — 1. This is an obvious
consequence of the fact that such an eigenvalue can never split into
more than m eigenvalues [see (1.19)].

Theorem 1.10. Let X be a unitary space. Let xy€ Dy (possibly an
exceptional point) and let there exist a sequence {x,} converging to », such
that T (x,) 1s normal for n =1, 2, ... . Then all the A, (x) and P, (x) are
holomorphic at x = xy, and the D, (x) = 0 identically.

Proof. We have | P;(x,)| = 1 since T (x,) is normal [see I-(6.64)].
Thus %;= %, is not a branch point for any 4, (») by Theorem 1.9. Con-
sequently the 4, (x) are holomorphic at % = x,. Then the P, (x) are single-
valued there and, since they cannot have a pole for the same reason as
above, they must be holomorphic. Then the D, (x) vanish identically,
since the holomorphic functions D, (x) = (T (%) — A, (%)) Py () vanish
at % = 5, = %,.

Remark 1.11. In general the P, (») and D, (x) are not defined at an
exceptional point %, But they can have a removable singularity at s,
as in Theorem 1.10. In such a case P, (x,) and D (x,) are well-defined,
but they need not be the eigenprojection and eigennilpotent for the
eigenvalue 4, (x,) of T (x,). If, for example, A, (%y) = A;(%,) + Az (%),
k = 3, then P, (xy) + Py(x,) (and not P, (%)) is the eigenprojection for
A, (%p). Again, the eigennilpotent for 4,(x,) need not vanish even if
D, (%) = 0, as is seen from Example 1.12 a), d), f) below.

Example 1.12. Consider the eigenprojections and eigennilpotents of T (x) for
the operators of Example 1.1.
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a) The resolvent R ({, %) is given by (1.15), integration of which along small
circles around 14 (x) gives by (1.16)

1 1 (14
(1.27) Pi(x)=im’_( ( ”x) _1:!:(;‘4'”2)1/2)

The reader is advised to verify the relations P (x)? = P (x) and P (x) P_(x)
= P_(x) P+(x) = 0. The eigenprojections P (x) are branches of a double-valued
algebraic function with branch points x = 4-¢. Since s = N = 2, T (x) is simple
and the eigennilpotents D4 (x) are zero for »x #= 4-7. At the exceptional points
» = 4 1, we have quite a different spectral representation of T (x); there is a double
eigenvalue 0, and the spectral representation of T (4 {) is

(1.28) T(+4) =0+ Dy,

that is, T (4 ¢) is itself the eigennilpotent.
b) Integration of the resolvent as in a) leads to the eigenprojections

(1.29) P, (%) =%(; ;) P, (%) =—;—(_: _:)

for the eigenvalues 4, (x) = x» and 1,(x) = — ». Again we have D, (x) = D,(x) = 0
for x == 0. The exceptional point » = 0 is not a singular point for any of A;(x),
P].(K) or D,,(x).

c) The eigenprojection and eigennilpotent for the unique eigenvalue 4 (x). = 0
of T (x) are given by P(x) = 1, D (x) = T (x).

d) We have

1 1 —1/2
(1.30) P:i:(")='2‘(ixuzix1 ) Di(¢) =0, x50,

for A4 (x) = +x!/2. The exceptional point » = 0 is a branch point for the eigen-

values and the eigenprojections. For x = 0, the eigenvalue is zero and the spectral

representation is T (0) = 0 4+ D with D = T = T (0). The operator of this example

resembles that of a), with the difference that there is only one exceptional point here.
e) We have

(1.31) P, (%) = ((1) ’(;) P,() = (g ""1‘) Di) =0,

for 4, (x) = 1 and A,(x) = 0. Everything is holomorphic for finite » since there are

no exceptional points. Note that the Pj(x) are not holomorphic at » = oo whereas

the A;(x) are. This is a situation in a sense opposite to that of the following example.
f) The eigenprojections are

(1.32) P, (x) = ((1) ’(;_l), Pyx) = (g _’1‘_1) . %0,

for 2, (x) = » and A,(x) = 0. Note that the P,(x) have a pole at the exceptional
point x = 0 notwithstanding that the A,(x) are holomorphic there. The situation
is reversed for » = oo. At » = 0 the spectral representation is the same as in d).

7. The case of T (x) linear in x

The foregoing general results are somewhat simplified in the case (1.1)
in which T () is linear in %. Then T (x) is defined in the whole complex
plane, which will be taken as the domain D, The coefficients of the
characteristic equation (1.3) are polynomials in x of degree not exceeding
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N. Hence the eigenvalues 1, (x) are branches of algebraic functions of
». If the algebraic equation (1.3) is s77eductble, there is only one N-valued
algebraic function so that we have s = N. If (1.3) is reducible, the eigen-
values 4, (%) can be classified into several groups, each group correspond-
ing to an algebraic function. If there happen to be identical ones among
these algebraic functions, we have s < N (permanent degeneracy)?.

The algebraic functions 4,(x) have no pole at a finite value of x.
At % = oo they have at most a pole of order 1; this is seen by writing
(1.1) in the form

(1.33) T() = x(T" + %1 T),

for the eigenvalues of T + %1 T are ‘continuous for »~1— 0. More
precisely, these eigenvalues have the expansion u; + B (¢~ 1)V? + - -+
(Puiseux series in x~1), so that the eigenvalues of T (x) have the form

(1.34) A = x4 P 3+, x>0,

Note that P, (%) or D, (x) may be holomorphic at % = co even when 4, (x)
is not [see Example 1.12, f)].

8. Summary

For convenience the main results obtained in the preceding para-
graphs will be summarized here2.

Let T (x) € #(X) be a family holomorphic in a domain D, of the
complex x-plane. The number s of eigenvalues of T (x) is constant if
is not one of the exceptional points, of which there are only a finite
number in each compact subset of D,. In each simple subdomain (simply
connected subdomain containing no exceptional point) D of D,, the
eigenvalues of T (x) can be expressed as s holomorphic functions 4, (x),
h=1, ..., s, the eigenvalue A,(») having constant multiplicity m;.
The 4, (x) are branches of one or several analytic functions on Dy, which
have only algebraic singularities and which are everywhere continuous
in D,. [For simplicity these analytic functions will also be denoted by
Ax(%).] An exceptional point #x, is either a branch point of some of the
A» (%) or a regular point for all of them; in the latter case the values of
some of the different 4, (%) coincide at » = »,.

The eigenprojections P,(x) and the eigennilpotents D, (x) for the
eigenvalues 4,(x) of T (x) are also holomorphic in each simple sub-
domain D, being branches of one or several analytic functions [again
denoted by P,(x) and D, (x)] with only algebraic singularities. The
analytic functions P, (x) and 4,(») have common branch points of the

1 The results stated here are also true if T (x) is a polynomial in % of any degree.
2 For more detailed and precise statement see BAUMGARTEL (1].
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same order, but P, (x) always has a pole at a branch point while 4, (x) is
continuous there. P, (x) and D, (x) may have poles even at an exceptional
point where 4, (x) is holomorphic.

If 2,(x%), . .., A,(%) are the A-group eigenvalues [the totality of the
eigenvalues of T (x) generated by splitting from a common eigenvalue 4
of the unperturbed operator T = T (0), x = 0 being assumed to be an
exceptional point] and if P;(x), ..., P,(x) are the associated eigen-
projections, the total projection P(x) = P(x) + - -+ P,(x) for this
A-group is holomorphic at % = 0. The total multiplicity m, + - - - + m,
for these eigenvalues is equal to the multiplicity » of the eigenvalue 4
of T. The A-group is further divided into several cycles {4,(x), ...,
A5(2)}, {Ap4+10¢), ...}, ..., {-..} and correspondingly for the eigen-
projections. The elements of each cycle are permuted cyclically among
themselves after analytic continuation when x describes a small circle
around » = 0. The sum of the eigenprojections in each cycle [for example
P, (%) + -+ - + P,(x)] is single-valued at x = 0 but need not be holo-
morphic (it may have a pole).

§ 2. Perturbation seties

1. The total projection for the 4-group

In the preceding section we were concerned with the general proper-
ties of the functions A,(x), P,(») and D, (x) representing respectively
the eigenvalues, eigenprojections and eigennilpotents of an operator
T (%) € #(X) depending holomorphically on a complex parameter x.
In the present section we shall construct explicitly the Taylor series
(if they exist) for these functions at a given point % which we may assume
to be % = 0. Since the general case is too complicated to be dealt with
completely, we shall be content with carrying out this program under
certain simplifying assumptions. Furthermore, we shall give only formal
series here; the convergence radii of the series and the error estimates
will be considered in later sections?.

We start from the given power series for T (x):

(2.1 To)=T+xTO+2T® 4 ---,

Let A be one of the eigenvalues of the unperturbed operator T = T (0)
with (algebraic) multiplicity », and let P and D be the associated eigen-

1 The perturbation series have been studied extensively in quantum mechanics,
starting with SCHRODINGER [1]. Any textbook on quantum mechanics has a chapter
dealing with them (see e. g. KEMBLE 1), Chapter 11 or Scuirr [1) Chapter 7). In
most cases, however, the discussion is limited to selfadjoint (symmetric) operators
T (x) depending on a real parameter ». In this section we shall consider general
nonsymmetric operators, assuming 0 < dimX = N < oo as before.
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projection and eigennilpotent. Thus (see I-§ 5.4)
(22) TP=PT=PTP=AP+D,dmP=m, D*=0, PD=DP=D.

The eigenvalue 1 will in general split into several eigenvalues of T (x)
for small % = 0 (the A-group), see § 1.8. The total projection P (x) for this
A-group is holomorphic at % = 0 [see (1.17)]

(2.3) Px)= Y »"P®, PO=P,

n=0

with P™ given by (1.18). The subspace M (%) = P (x) X is m-dimensional
[see (1.19)] and invariant under T (x). The A-group eigenvalues of T (x)
are identical with all the eigenvalues of T (%) in M(x) [that is, of the
part of T (x) in M(x)]. In order to determine the A-group eigenvalues,
therefore, we have only to solve an eigenvalue problem in the subspace
M (%), which is in general smaller than the whole space X.

The eigenvalue problem for T (x) in M(x) is equivalent to the eigen-
value problem for the operator
(2.4) T,(s¢) = T (%) P(x) = P(x) T(x) = P(x) T(x) P(x),
see I-§ 5.1. Thus the A-group eigenvalues of T (x) are exactly those eigen-
values of T, (x) which are different from zero, provided that || is large
enough to ensure that these eigenvalues do not vanish for the small |x|
under consideration!. The last condition does not restrict generality,
for T could be replaced by T + o with a scalar « without changing the

nature of the problem.
In any case it follows that

1 1
25) Ax)= (T () Pl)) =4+ - tr((T(x) ) P(x))
is equal to the weighted mean of the A-group eigenvalues of T (x), where
the weight is the multiplicity of each eigenvalue [see I-(5.40) and

I-(3.25)]. If there is no splitting of A so that the A-group consists of a
single eigenvalue A (x) with multiplicity #, we have

(2:6) - Ae) = A(x) ;

in particular this is always true if m = 1. In such a case the eigen-
projection associated with A (x) is exactly the total projection (2.3) and
the eigennilpotent is given by [see I-(5.26)]

(27) D) = (T () — 209) P ) .
These series give a complete solution to the eigenvalue problem for the

A-group in the case of no splitting, A(x), P(») and D (x) being all holo-
morphic at » = 0.

1 Note that T,(x) has the eigenvalue 0 with multiplicity N — m, with the
eigenprojection 1 — P (x). Cf. also footnote 1 on p. 36.
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Let us now consider the explicit form of the series (2.3) and (2.5) in
terms of the coefficients T of (2.1). It should be remarked at this
point that we could use as well the coefficients of the series (2.4) instead
of T™, for the eigenvalues and eigenprojections are the same for T (x)
and T, (x) so far as concerns the A-groupl.

The coefficients P®™ of (2.3) are given by (1.14) and (1.18). Thus

28 Po=— L 3 (1 [RQTORETe)...TIRE) AL,
v.+---+;;;z’lz K

where T' is a small, positively-oriented circle around A. To evaluate the

integral (2.8), we substitute for R({) its Laurent expansion I-(5.18)

at { = A, which we write for convenience in the form

(2:9) RO = X (t— HrSt+y
with B
(2.10) SO =—-P, SWm=8" SC"=-D" nz1l.

Here S = S(4) is the value at { = 4 of the reduced resolvent of T (see
loc. cit.); thus we have by I-(5.19) and (5.26)

@211 SP=PS=0, (T—-)S=S(T—-2)=1-P.

Substitution of (2.9) into the integrand of (2.8) gives a Laurent
series in { — A, of which only the term with the power (£ — 4)-! contri-
butes to the integral. The result is given by the finife sum

”
(212) PM=—_3 (—1)» X  SE)Te)SE) St TSt
p=1 it tvp=n
kit ot Rppr=1p
2L k=2 —m+1

forn = 1. For example

(213) PO = X S&)T® Sk

kit k=1 .
=—Dm-1T®)Sm —..._DTH S PTOS -STO P
_SzT(l)D_..._SmT(l)Dm-—l.
PO = 3 StT@SE)— ' SE) TO Sk TO Se),
kit k=1 kit Ryt k=2

If in particular A is a semisimple eigenvalue of T (see I-§ 5.4), we
have D = 0 and only nonnegative values of %; contribute to the sum

1 This remark will be useful later when we consider eigenvalue problems for
unbounded operators in an infinite-dimensional space; it is then possible that the
series (2.1) does not exist but (2.4) has a series expansion in ». See VII-§ 1.5.
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(2.12). Thus we have, for example,
(2.14) PO = —PTOS —STO P,

P®=_PT®S —STA P+ PTOSTOS 4 STO PTO S 4
+STOSTO P - PTOPTOS2 - PTOS2TO P - S2TH PTOP,

P®=—-PT®S—-STO P+ PTOST®S + PTOSTO S +
+STOPTAS+STOPTOS +STOSTO P4 STOSTO P —
— PTOPT®S2— PTOPTOS:— PTOS:T®OP - PT®S2TOP—
—S2TOPTAOP - S2TAOPTOP - PTOSTOSTOS —
—STOPTOSTOS —STOSTOPTOS —STOSTOSTO P+
+ PTOPTOSTOS2H PTOPTOS2TOS+ PTOSTO PT® S24
+ PTOS2TOPTOS+ PTOSTOS?TOP + PTOS2TOSTOP+
+STOPTOS2TO P+ S2TO PTOSTOP+STOPTOPTMS2+
+S2TOPTO PTOS+STOS2TOPTO P4 S2TOSTO PTOP —
—PTOPTOPTOS— PTOPTOS3TO P —

—PTOSSTO PTO P _SSTO PTOPTO P,

2. The weighted mean of eigenvalues

We next consider the series (2.4) for T,(x) = T (%) P(x). For com-
putation it is more convenient to consider the operator (T (x) — 1) P (x)
instead of T, (x) itself. We have from (1.16)

1
(2.15) (T — D) Pl) = — 5 f C— DR x)dC
r
since (T'(x) —A)R(,%)=1+((— 1) R(,») and the integral of 1
along I vanishes. Noting that (T — 1) P = D by (2.2), we have

(2.16) (T() —A) Py =D+ 3 »n T
n=1
with
Fmy — _ 1 _ 1 vp —
(2.17) T™ = T 71+”§%=n( I)PI‘/R(C) Ted, . TeHR() (C—A)dL
=21

forn = 1; this differs from (2.8) only by the factor { — Ain the integrand.
Hence it follows that
(2.18) T =— 3 (-1 X

p=1 it trp=n
kit oo+ hppr=p—1
vyl khz—m41

with the same summand as in (2.12). For example

2.19) T® = —Dpm-1TO Sm-1_ ... _DTO S+ PT® P - STOD
—eee - Sm-1TQ) Dm-1



78 II. Perturbation theory in a finite-dimensional space

Again these expressions are simplified when 4 is a semisimple eigen-
value of T (D = 0); for example
(2200 To=pTOP,
T® = PTOP_PTOPTOS—_PTOSTOP_STOPTOP,
T®=PT®P_ PTO PT®S — PT® PT® S —
— PTOST® P - PTOSTOP —STOPTOP - STO® PTO P 4
+ PTOPTOSTOS + PTOSTO PTM S +
+ PTOSTOSTO P+ STOPTOPTOS + STOPTOSTO P +
+STOSTOPTOP—PTOPTOPTOS2_PTOPTOHS2TO P —
— PTOS2TO PTOP - S2TO PTO PTO P
The series for the weighted mean 4 (%) of the A-group eigenvalues is
obtained from (2.5) and (2.16):

00

(2.21) Ao =2+ X wr A
n=1

where

(2.22) I = To, nzl.

The substitution of (2.18) for 7 will thus give the coefficients A,
But there is another expression for () which is more convenient for
calculation, namely

(2.23) A(x) —A=— ,M+mtr [ log [1 + ( X oun T<")) R(L')] ¢ .
I‘: n=1
Here the logarithmic function log (1 + 4) is defined by
(2.24) log(1+4)= Y #Alf
. p=1

which is valid for | 4] < 1. Note that (2.24) coincides with I-(5.57) for a
special choice of the domain A (take as A a neighborhood of { =1
containing the eigenvalues of 1 + 4).
To prove (2.23), we start from (2.5) and (2.15), obtaining
(2.25) Ap) = A= —gtr [ (€= DR %) dL.
r
Substitution for R ({, ) from (1.13) gives

226) 46) = 4=~ grrts [ 3 €= DRE) (A0 RQOPdL;
T =1

2nim

note that the term for p = 0 in (2.26) vanishes because trD = 0 (see
Problem I-3.11).
Now we have, in virtue of the relation d R ({)/d{ = R({)? [see I-(5.8)],

227) - (AERQP =5 AW RE) ... 46 RQ)]
—AWRQ)...AG) RO+ + A RO?... AR R(Q) .
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Application of the identity tr4 B = tr B4 thus gives

(228) tr47 (409 RQ)? = $ rR() (4 () RO’
and (2.26) becomes?!

(229) 09— A= —gomtr [ pfj;(:—A)%(—A(n)R(c»» a
P

= 2nlim trf f '},’(—A (%) R(¢))? 4, (integration by parts)
r ?=1

which is identical with (2.23) [recall the definition (1.10) of 4 (x)].

If the logarithmic function in (2.23) is expanded according to (2.24)
and the result is arranged in powers of %, the coefficients in the series
for A(x) are seen to be given by

(2.30)
1 —1)
R s D) ‘%rf TeIR(E)...RO) TR dtnz 1.

vt tvp=n

This can be treated as (2.8) and (2.17); the result is

@31) Am—>L » EV 5y e sea . Ten St
st P Tan
kit oo kg =p—1

This formula is more convenient than (2.22), for the summation involved
in (2.31) is simpler than in (2.18). For example,

(232) AW =_tTOP,
i1 [tr ToP+ L ¥ twrwse To s(k-)]
m 2 Lim=1
= L {trT® P — tr(T® Sm T® D=1 4 - 4 TO STWP)],
where we have again used the identity tr4 B = trB4 2.

These formulas are simplified when the eigenvalue 1 is semisimple.
Again making use of the identity mentioned, we thus obtain

(233) A0 =ltTOP,
A® = Ltr[T® P — TO ST® P]

Ao =Ly [TOP - TOSTO P - T®STO P 4
m
+ TOSTO STO P — TO S2TH PTH P,

1 The trace operation and the integration commute. The proof is similar to
that of I-(4.30) and depends on the fact that tr is a linear functional on % (X).

2 For example (1/2) (ttT® ST® P 4 trT® PTW S) = tr T® ST® P, Simi-
lar computations are made in the formulas (2.33).
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A9 = Ltr[T® P— TOST® P— T® ST® P— T® ST P
+ TOSTOSTAO P+ TOSTAOSTOP L TAOSTOSTO P —
—TOS2TOPTO P -TOS2TO PTOP _T@S2TO PTO P —
—TOSTOSTOSTO P4+ TOS2TOSTO PT® P 4+
+ TOSTOS2TO PTO P4+ T®S2TO PTOSTO P —
—TOSITO PTO PTO® P].
Problem 2.1. If T (x) is linear in % (T™ = 0 for » = 2), we have

- 1
(2.34) M = ——tr(TO Po-D), n=1,2,3,....

[hint: Compare (2.8) and (2.30).]

Remark 2.2. These expressions for the 2™ take more familiar (though more
complicated) form if they are expressed in terms of bases chosen appropriately.
For simplicity assume that the unperturbed operator T is diagonable. Let 4;, Pj,
h=1,2, ..., be the eigenvalues and eigenprojections of T different from the ones 4,
P under consideration. Let {#,, . .., #,} be a basis of M = R(P) and let {x,, ...,
Zymp} be a basis of M, = R(P}) for each 4. The union of all these vectors x; and #3;
forms a basis of X consisting of eigenvectors of T and adapted to the decomposition
X=M® M, ® - of X. The adjoint basis of X* is adapted to the corresponding
decomposition X* = M* @ M @ -+, where M* = R(P*), M} =R(P}), ...;
it consists of a basis {ey, ..., en} of M¥, {613, ..., €1 m,} Of M}, etc. (see Problem
1-3.19).

Now we have, for any # € X,

m mp
Pu= X (u,¢) %, Pyu= X (w,e) %y, h=12,...,
i=1 i=1 ¢
and for any operator 4 € Z (X),

m ml.
ttAP= X (Ax,¢), ttAPy= XY Ay e), h=12,....

i= i=1
The operator S is given by I-(5.32) where the subscript 4 should be omitted. Hence
Su = %‘ (Ax — A~ Pyu =k2 (A — )1 (u, egy) %35 -
%

Thus we obtain from (2.33) the following expressions for the A

. 1
(2.35) 0= — 3 (TW ),
1

o= LZ‘ (T® 2, ¢5) — — Z‘ (Ax = A~H(T® 2, e5) (T 2y, €))
] ™ ik

Suppose, in particular, that the eigenvalue A of T is simple: m = 1. Let ¢

be an eigenvector of T for this eigenvalue; then we can take #; = ¢@. Then ¢; = g
is an eigenvector of T* for the eigenvalue A. We shall renumber the other eigen-
vectors #,; of T in a simple sequence ¢;, @,, . . ., with the corresponding eigenvalues
M1, Mg, - . - which are different from A but not necessarily different from one another
(repeated eigenvalues). Correspondingly, we write the ¢;; in a simple sequence y;
so that {y, ¥y, ¥ . . .} is the basis of X* adjoint to the basis {¢, @1, @5, ...} of X.
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Then the above formulas can be written (note that J® = A™ since there is no
splitting)
(2.36) = (TW g, ),
M= (T® @, 9) — X (; — N~ (TV @, ;) (TV @3, ) .
i

These are formulas familiar in the textbooks on quantum mechanics?, except that
here neither T nor the T are assumed to be symmetric (Hermitian) and, there-
fore, we have a biorthogonal family of eigenvectors rather than an orthonormal
family. (In the symmetric case we have y = @, y; = @;.)

3. The reduction process
If 1 is a semisimple eigenvalue of T, D = 0 and (2.16) gives

(2.37) TW () = (T() — ) Pl = X wT 40,
n=0

Since M(x) = R(P(x)) is invariant under T (x), there is an obvious
relationship between the parts of T(x) and 7® () in M(x). Thus the
solution of the eigenvalue problem for T (x) in M(x) reduces to the same
problem for 7® (x). Now (2.37) shows that 7‘® (x) is holomorphic at
» = 0, so that we can apply to it what has so far been proved for T (x).
This process of reducing the problem for T (x) to the one for 7' (x)
will be called the reduction process. The ‘“unperturbed operator” for this
family T'® (x) is [see (2.20)]

(2.38) TooO) =T®=PTO P,

It follows that each eigenvalue of 7'® splits into several eigenvalues of
T (x) for small |x|. Let the eigenvalues of 7® in the invariant subspace
M = M(0) = R(P) be denoted by M, j=1,2, ... [the eigenvalue zero
of T® in the complementary subspace R(1 — P) does not interest us].
The spectral representation of 7' in M takes the form

To=PpPT® P =3 (A P + DY),
i

(2.39)
P=Y PP, P{ PP =6, PP.
i
Suppose for the moment that all the A" are different from zero.
By perturbation each A{") will split into several eigenvalues (the A{"-
group) of 7™ (x), which are power series in »!/# with some p; = 1.2 The
corresponding eigenvalues of T (x) have the form

1+L
2.40 A4 xdAD 4 o teee, R=12....
i 4]

1 See KEMBLE (1] or ScurFr (1], loc. cit.

2 In general there are several cycles in the A{Y-group, but all eigenvalues of
this group can formally be expressed as power series in x!/?j for an appropriate
common integer p;.
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If some A is zero, the associated eigenspace of 7'® includes the sub-
space R(1 — P). But this inconvenience may be avoided by adding to
T (%) a term of the form a %, which amounts to adding to 7'® (x) a term
ot P(x). This has only the effect of shifting the eigenvalues of T(1> (%) in
M(x) [but not those in the complementary subspace R(1 — P(x))] by
the amount «, leaving the eigenprojections and elgenmlpotents unchang-
ed. By choosing a appropriately the modified A"’ can be made different
from zero. Thus the assumption that A" < 0 does not affect the genera-
lity, and we shall assume this in the following whenever convenient.

The eigenvalues (2.40) of T'(x) for fixed 4 and A will be said to
form the 4 4 x A{-group. From (2.40) we see immediately that the
following theorem holds.

Theorem 2.3. If A is a semisimple eigenvalue of the unperturbed operator
T, each of the A-group eigenvalues of T (x) has the form (2.40) so that it
belongs to some A+ x AN-group. These eigenvalues are continuously
differentiable near x = 0 (even when % = 0 is a branch point). The total
projection P (x) (the sum of eigenprojections) for the A+ x KV-group
and the weighted mean of this group are holomorphic at x = 0.

The last statement of the theorem follows from the fact that P{® (x)
is the total projection for the A(l)—group of the operator T'® (x). The
same is true for the weighted mean 1(1)( ) of this A{V-group.

The reduction process described above can further be applied to the
eigenvalue AfY of T'® if it is semisimple, with the result that the A{"-
group e1genva1ues of T®(x) have the form A{ + %A% + o(x). The
corresponding eigenvalues of T"(x) have the fom

(2.41) At n A0 + 22 AR + o (x?) .

These eigenvalues with fixed j, £ form the A + » A" + %2 A3-group of
T (x). In this way we see that the reduction process can be continued,
and the eigenvalues and eigenprojections of T (x) can be expanded into
formal power series in #, as long as the unperturbed eigenvalue is semi-
simple at each stage of the reduction process.

But it is not necessary to continue the reduction process indefinitely,
even when this ts possible. Since the splitting must end after a finite
number, say #, of steps, the total projection and the weighted mean of
the eigenvalues at the n-th stage will give the full expansion of the
eigenprojection and the eigenvalue themselves, respectively.

Remark 2.4. But how can one know that there will be no splitting
after the »n-th stage? This is obvious if the total projection at that stage
has dimension one. Otherwise there is no general criterion for it. In most
applications, however, this problem can be solved by the following
reducibility argument.
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Suppose there is a set {4} of operators such that 4 T (x) = T (x) 4
for all x. Then 4 commutes with R({, %) and hence with any eigen-
projection of T (x) [see I-(5.22)]. If there is any splitting of a semisimple
eigenvalue 1 of T, then, each P! (%) in Theorem 2.3 commutes with 4
and so does P{ = P{M(0) . Since PP is a proper subprojection (see
1-§3.4) of P, we have the followmg result If 2 is semisimple and P is
srreductble in the sense that there is no subprojection of P which commutes
with all A, then there is no splitting of A at the first stage. If it is known
that the unperturbed eigenvalue in question is semisimple at every
stage of the reduction process, then the irreducibility of P means that
there is no splitting at all. Similarly, if the unperturbed eigenprojection
becomes irreducible at some stage, there will be no further splitting.

4. Formulas for higher approximations

The series P{(x) for the total projection of the A+ x AP-group of
T (%) can be determined from the series (2.37) for 7® (%) just as P (x)
was determined from T (x). To this end we need the reduced resolvent
for T®, which corresponds to the reduced resolvent S of T used in the
first stage. This operator will have the form

(2.42) S — ,151, (1-P)

where the second term comes from the part of 7® in the subspace
(1 — P) X in which 7'® is identically zero, and where

P DY
(2.43) ?) = 2 A0 — 2D + (D __i ;_g))a o ]

comes from the part of T(l) in M= PX [see I-(5.32)]. We note that
(244) = SPP=PSM =5, SO PH = PHSH =0

Application of the results of § 1.1 now gives
(2.45) P () = P + 5 PV 4 52 PRD 4

where the coefficients are calculated by (2.12), in which the T® are to be
replaced by 7'¢+1 given by (2.18) and S® by (S{ — P)[A1)* for
k = 1, by — P{ for k = 0 and by — (D{")~*for k =< —l If for example,
MY is semisimple (D{") = 0), we have by (2.14)

(2.46) P = — PO IO (SP — o (1 = P)) + (i)

where (inv) means an expression obtained from the foregoing one by
inverting the order of the factors in each term. Substitution of T'®
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from (2.20) gives

P = — PO TA SO — 7(; POTOPTOS+ POTOSTOSD + (inv).

But we have P T® P = PN T PM = IV PO because AV is a
semisimple eigenvalue of P T® P. Hence

(247) PIV=_POT@®SH _ PO TO S + PO T ST® SO + (inv).

Note that the final result does not contain A{" explicitly. Similarly P{*?
can be calculated, though the expression will be rather complicated.

The weighted mean A() (x) for the A{¥-group eigenvalues of 7'® (x) is
given by

(2.48) IV () = AP 5 40D 4 22 309 4 - -
where the coefficients A('") are obtained from (2.31) by replacing =,

P, S, T® by m)) = dim 'POX, P®, (2.42) and T¢+Y respectively. For
example, assummg that A® is semlslmple

(249) A2 = m;_,, trT'® po

= o tr[T® PN — T ST® PO],
109 — —m% tr [T@ PP — Tor (s — Zﬁ (1-P)T® ]
1
= —m;—l)tr (T® P;.l) — T®OST® P;.l) —T®STO® P;.l) +
+ TOSTOST® P’(I) — 1}1) T S2 T P;.I) —
— T® Sgl) T@ P}” + TOST® Sl(l) T@® P}” +
+ T@ SM TO ST PM — TO ST SO TO ST P,
Here we have again used the identity tr4 B = tr BA and the relations
(2.44) and (2.11). The weighted mean of the 4 + x A{V-group eigenvalues
of T (x) is given by
(2.50) Ai () = A+ % 20 (%)
=2 + % 1}1)‘_'_ 22 1§12) + %3 1§13) 4o
If there is no splitting in the A 4 x AM-group (that is, if this group

consists of a single eigenvalue), (2.50) is exactly this eigenvalue. In
particular this is the case if m{® = 1.

Remark 2.5. At first sight it might appear strange that the third order coefficient

7§19 of (2.49) contains a term such as — (1/m{V) tr T® S® T® PP which is quadratic
in T@, But this does not involve any contradiction, as may be attested by the
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following example. Let N = 2 and let
r=0, o=} 0), o = (° “), T® =0 for nZ 3.
0—1 « 0
The eigenvalues of T (x) are

1
+x(l 4 o2 x212 = 4 (” +?u’x’ + ) ,
in which the coefficient of the third order term is «?/2 and is indeed quadratic in &
(that is, in T®),
5. A theorem of MoOTZKIN-TAUSSKY

As an application of Theorem 2.3, we shall prove some theorems
due to MotzkiN and Taussky [1], [2].

Theorem 2.6. Let the operator T (x) = T + »T' be diagonable for
every complex number x. Then all eigenvalues of T (x) are linear in »
(that is, of the form A, + % o), and the associated eigenprojections are
entire functions of x.

Proof. The eigenvalues A, (%) of T (x) are branches of algebraic func-
tions of x (see § 1.7). According to Theorem 2.3, on the other hand, the
An(%) are continuously differentiable in » at every (finite) value of x.
Furthermore, we see from (1.34) that the dA,(x)/dx are bounded at
% = oc. It follows that these derivatives must be constant (this is a simple
consequence of the maximum principle for analytic functions!). This
proves that the A, (x) are linear in x.

Since 4,(¢) has the form A, + x a,, the single eigenvalue 1, (%)
constitutes the 4, + % ay-group of T (x). Thus the eigenprojection P, (x)
associated with 4, (x) coincides with the total projection of this group
and is therefore holomorphic at » = 0 (see Theorem 2.3). The same is
true at every x since T (x) and 4, (x) are linear in %. Thus P, (x) is an
entire function.

D, (») may have a pole at % = oo [see Example 1.12, e)]. But if T’
is also diagonable, P, (x) must be holomorphic even at x = oo because
the eigenprojections of T (x) = »(T' + %~ T) coincide with those of
T’ + %1 T, to which the above results apply at » = cc. Hence each
P, (x) is holomorphic everywhere including » = cc and so must be a
constant by Liouville’s theorem2. It follows that T and 7" have common
eigenprojections [namely P, (0) = P, (c0)] and, since both are diagonable,
they must commute. This gives

Theorem 2.7. If T' is also diagonable in Theorem 2.6, then T and T’
commute.

1 Since u(x) = d Ay(x)/dx is continuous everywhere (including x = 00), |u(x)|
must take a maximum at some x = %, (possibly %, = 00). Hence u(x) must be
constant by the maximum principle; see KNopp (1], p. 84. [If x, is a branch point
of order p — 1, apply the principle after the substitution (% — 3,)Y/? = %’; if %, = oo,
apply it after the substitution x~! = %'.]

2 See Knoep (1], p. 112.
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These theorems can be given a homogeneous form as follows.

Theorem 2.8. Let A, B € #(X) be such that their linear combination
A + BB s diagonable for all ratios «: f (including o) with possibly a
single exception. Then all the eigenvalues of aA + BB have the form
o Ay + B un with A,, u, independent of «, B. If the said exception is
excluded, then A and B commule.

Remark 2.9. The above theorems are global in character in the sense
that the diagonability of T (x) (¢4 + §B) for all finite » (all ratios
o : B with a single exception) is essential. The fact that T (x) is diagonable
merely for all % in some domain D of the x-plane does not even imply
that the eigenvalues of T (x) are holomorphic in D, as is seen from the
following example.

Example 2.10. Let N = 3 and

0x0
(2.51) Tx) =100 x

» 01
It is easy to see that T (x) is diagonable for all x with the exception of three values
satisfying the equation x® = — 4271, Thus T (x) is diagonable for all x in a certain

neighborhood of ¥ = 0. But the Puiseux series for the three eigenvalues of T (x)
for small % have the forms

(2.52) Fx¥ e, 1 B e,

two of which are not holomorphic at » = 0.

Remark 2.11. Theorem 2.6 is not true in the case of infinite-dimensional spaces
without further restrictions. Consider the differential operator

a2
T(x)=——‘m+x2+2xx

regarded as a linear operator in the Hilbert space L%(— 0o, 4 o0) (such differential
operators will be dealt with in detail in later chapters). T (x) has the set of eigen-
values A, (x) and the associated eigenfunctions ¢, (¥, x) given by

An(x) = 2n — %2, n=012...,

@n (%, %) = exp (—— —-;—x* - xx) H,(x + %),

where the H, () are Hermite polynomials. The eigenfunctions ¢, form a complete
set in the sense that every function of L? can be approximated with arbitrary
precision by a linear combination of the ¢,. This is seen, for example, by noting that
the set of functions of the form exp(— (¥ + Rex)?/2) X (polynomial in #) is
complete and that multiplication of a function by exp(—+¢x Imx) is a unitary
operator. Therefore, T(x) may be regarded as diagonable for every finite ». Never-
theless, the A, (x) are not linear in »x.

6. The ranks of the coefficients of the perturbation series

The coefficients P™ and T'™ of the series (2.3) and (2.16) have
characteristic properties with respect to their ranks. Namely

1 The characteristic equation for T (x) is {® — {? — %3 = 0. This cubic equation

has 3 distinct roots so that T (x) is diagonable, except when % = 0 or »® = —4/27.
But T (0) is obviously diagonable (it has already a diagonal matrix).
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(253) rankP®™ < (n+ 1)m, rankT® < (n+ 1)m,
n=1,2,....
This follows directly from the following lemma.
Lemma 2.12. Lot P(x) € #(X) and A (x) € B(X) depend on x holo-

morphically near x = 0 and let P (x) be a projection for all x. Let A (x) P (%)
have the expansion

(2.54) AW Py = 3 = B,.

Then we have
(2.55) rankB, < (n+1)m, =0,1,2,...,
where m = dim P (0). Simslar results hold when the left member of (2.54)
1s replaced by P (x) A (x).

Proof. Let
(2.56) Px)= ) »P,.

n=0

The coefficients P, satisfy recurrence formulas of the form
(257) P,=PyP,+Qu PyPp_ 1+ +QuPy, n=0,12,...,
where Q,, is a certain polynomial in Py, P,, . .., P,. (2.57) is proved by
induction. The identity P (x)? = P (x) implies that -
(2.58) P,=PyP,+P P, ;+:-+ P, P,
which proves (2.57) for n = 1. If (2.57) is assumed to hold with » replaced
by 1,2, ..., n— 1, we have from (2.58)

Py= Py Pp+ Py(PyPp_y+ Qnoyg PoPnst+ "+ Qn_y,naPo) +
+ Py(Po Pp_g+ Quoza PoPns+ "+ Qu_gn_z Po) +++ P Py

=PyP,+ Py PyPy_y+ (PyQnya+ Pg) Po Py_g+ "+

+ (Py@n-rn-1t PaQuognat "+ Py) Py,
which is of the form (2.57). This completes the induction.

Now if 4 (%) = J »™ A, is the expansion of 4 (x), we have from (2.54),
(2.56) and (2.57)
(2.59) B,=A,P,+A, P, ;++:-++ 4, P,

=Ag Py Pyt (AgQn1+ A1) Py Pp_y + (AgCQna+ 4y Ongn +
+ Ag) Py Pp_g+ -+ + (Ao Qun+ 41 On_gna+ - + 4s) Py

Thus B, is the sum of # + 1 terms, each of which contains the factor P,
and therefore has rank not exceeding rank P, (see Problem I-3.4). This
proves the required inequality (2.55). It is obvious how the above

argument should be modified to prove the same results for P (x) 4 (x)
instead of 4 (x) P ().
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§ 3. Convergence radii and error estimates
1. Simple estimates?!

In the preceding sections we considered various power series in #x
without giving explicit conditions for their convergence. In the present
section we shall discuss such conditions.

We start from the expression of R ({, %) given by (1.13). This series is
convergent for

(3-1) 146 R =

(f n :r<n>) R(Z;)” <1,

n=1

which is satisfied if

o]

32) 3 W IT® RO <1.
Let 7 () be the value of |%| such that the left member of (3.2) is equal to 1.
Then (3.2) is satisfied for |x| < 7 ().

Let the curve I" be as in § 1.4. It is easily seen that (1.13) is uniformly
convergent for ¢ € I if

33) el < 70 = minr(2),

so that the series (1.17) or (2.3) for the total projection P (x) is convergent
under the same condition (3.3). Thus 7, is a lower bound for the con-
vergence radius of the series for P (x). Obviously 7, is also a lower bound
for the convergence radii of the series (2.21) for A(x) and (2.37) for
To (#). T may be any simple, closed, rectifiable curve enclosing { = 4
but excluding other eigenvalues of T, but we shall now assume that I’
is convex. It is convenient to choose I' in such a way that 7, turns out as
large as possible.

To estimate the coefficients A® of (2.21), we use the fact that the
A-group eigenvalues of T (x), and therefore also their weighted mean
A(x), lie inside I as long as (3.3) is satisfied2. On setting

(3.4) e=max|l— 4|,

we see that the function 4(x) — 1 is holomorphic and bounded by g for
(8.8). It follows from Cauchy’s inequality 3 for the Taylor coefficients that

(3.5) Am| < orgn, n=12,....

1 The following method, based on elementary results on function theory, is
used by Sz.-Nagy [1], [2], T. Karo [1], [3], [6], ScHAFKE [3], [4], [5].

2 The convexity of I is used here.

8 See Knoee (1], p. 77.
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Such estimates are useful in estimating the error incurred when the
power series (2.21) is stopped after finitely many terms. Namely

'l+l

(r —-—]x])

3.6)  |A(x)— A— 2 x? J®) s Z el 129] = <

Example 3.1. Assume that
(3.7) [TW| < aen-t, n=12,....
for some nonnegative constants a, c. Such constants always exist since (1.2) is
assumed convergent. Now (3.2) is satisfied if a|x| (1 — ¢|x|)~}| R({)|| < 1, that is,

if x| < (@R ()| + ¢)~* Thus we have the following lower bound for the con-
vergence radius

(3.8) 7o = min (a|R({)] + ¢)-!.
tel

2. The method of majorizing series

Another method for estimating the coefficients and the convergence
radii makes systematic use of majorizing series!. We introduce a majoriz-
ing function (series) @ (¢ — A, ») for the function 4 (x) R({) that appears
in (1.13) and (2.29):

(3.9) AWRQ) =3 T RE) <D — 4 %)
= 3 X - Wx

By this we mean that each coefficient ¢, on the right is not smaller
than the norm of the corresponding coefficient in the expansion of the
left member in the double series in { — A and x. Since R({) has the
Laurent expansion I-(5.18) with 4,, P,, D, replaced by A, P, D, re-
spectively, this means that

IT® D < ¢ poyn, [T P| < cyn,
IT® SH < cp_yn, k>0.

We assume that c;,, = 0 for £ < —m so that @ (z, ) has only a pole at
2 = 0; this is allowed since D™ = 0.
In particular (3.9) implies

(3.10)

T T® R()

n=1

(3.11) < G|t~ Al, [x]) -

Thus the series in (1.13) is convergent if @ (| — 4|, |#|) < 1. If we choose
as I the circle |.— A| = p, it follows that a lower bound 7 for the con-

1 The use of majorizing series was begun by RELLICH [4], and was further
developed by SCHRODER [1]—[3]. Their methods are based on recurrence equations
for the coefficients of the series, and differ from the function-theoretic approach
used below.
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vergence radius of the series for P (x) as well as for 4 (x) is given by the
smallest positive root of the equation

(3.12) B r)=1.

It is convenient to choose g so as to make this root 7 as large as possible.
Also @ can be used to construct a majorizing series for A(x) — A.
Such a series is given by

1
271

[ —log(1— @t —2,1)dt.

k-4 =e

To see this we first note that, when the integrand in (2.29) is expanded
into a power-Laurent series in » and { — 4 using (2.9), only those terms
which contain at least one factor P or D contribute to the integral.
Such terms are necessarily of rank < m and, therefore, their traces do
not exceed m times their norms [see I-(5.42)]. Thus a majorizing series
for A () — A is obtained if we drop the factor 1/m and the trace sign on the
right of (2.29) and replace the coefficients of the expansion of the inte-
grand by their norms. Since this majorizing function is in turn majorized
by (3.13), the latter is seen to majorize 4 (x) — A.

As is well known in function theory, (3.13) is equal to the sum of the
zeros minus the sum of the poles of the function 1 — @(z, %) contained
in the interior of the circle |z| = p1. But the only pole of this function is
2z =10 and does not contribute to the sum mentioned. In this way we
have obtained

Theorem 3.2. A majorizing series for A(x) — A is given by (the Taylor
series representing) the sum of the zeros of the function 1 — @ (2, %) (as a
function of z) in the neighborhood of z = 0 when » — 0, multiple zeros being
counted repeatedly. This majorizing series, and a fortior: the series for
P (x) and A(x), converge for |x| <r, where r is the smallest positive root of
(3.12); here o is arbitrary as long as the circle |{ — A| = o encloses no
esgenvalues of T other than A.

(3.13) P () =

Example 3.3. Consider the special case in which T® = 0 for » = 2and Ais a
semisimple eigenvalue of T (D = 0). From (3.10) we see that we may take c_,
= |T® P|, ¢z, = || T® S*+1||, k = 0, all other c,, being zero. For the choice of
31, We note that S*¥+! = S(S — « P)* for any « because SP = PS = 0. Thus
we can take ¢y, = |[T® S| ||S — o« P||* and obtain

(3.14) Dz, %) =x (—f— + 1 )

1—s2z
as a majorizing series, where
(3.15) p=|TOP|, ¢=|T®S||, s=|S— aP| foranye.

1 See Knopp (1), p. 134; note that flogf(z) dz = — _/‘]"(/z)f(/z)-1 zdz by
integration by parts.
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For small |x| there is a unique zero z = ¥(x) of 1 — @ (z, %) in the neighborhood of
z=0. This ¥(x) is a majorizing series for A(x) — A by Theorem 3.2. A simple
calculation gives

1
(3.16) Vo) =px+ 5,1~ (ps+9) x—2(d]

=px+2pqx2[1 — (ps+q)x + 20c)]!
B 2pq(ps + q)x® + 2p2 g2 st
=px+pgx®+ 1—(ps+q)xe—2pgsx®+ Qx)°

where
(8.17) Q) ={[1 — (ps+q)x]* — 4p gs P2,

Each coefficient of the power series of ¥(x) gives an upper bound for the cor-
responding coefficient of the series for i(x) — A. Hence the remainder of this series
after the #-th order term majorizes the corresponding remainder of i (%). In this
way we obtain from the second and third expressions of (3.16)

(318)  |AG) — A — % AV < 2p g/l — (ps + 9) bl + Q)]
> 3 3 20 g |x*(ps +q +pgs|x)
(3.19) [A0) — & — 2 A — 52 J®| < 1—(ps+q) x| —2pgs x> + Q(x)

Substitution of (3.14) into (3.12) gives a lower bound # for the convergence
radii for the series of P (x) and ﬁ.(x). The choice of

(3.20) 0 = P2 s—V2[(p )2 4 gliz]-1
gives the best value!
(3.21) v = [(p s)V? + gl2]-2.

Note that the choice of (3.20) is permitted because ¢ < s~! = ||S — aP|-1< 4,
where d is the isolation distance of the eigenvalue A of T (the distance of 4 from other
eigenvalues A, of T). In fact, I-(5.32) implies (S — aP) u = — (A — Ax)~1u if
u = P, u (note that P;P, =0,j ==k, PP, =0). Hence |S — aP| = |1 — 4!
for all A.

Problem 3.4. In Example 3.3 we have

(3.22) o< p, A< pg, A< paps+a).... .

Remark 3.5. The series for P(x) can also be estimated by using the
majorizing function @. In virtue of (1.16), (1.13) and (3.9), we have

i | PE-DA-DE—Ax)rar

. i—4=¢e

where @, (¢ — 1) is a majorizing series for R ({). The right member can be
calculated by the method of residues if @ and @, are given explicitly as
in Example 3.3.

(323)  P(x) <

3. Estimates on eigenvectors

It is often required to calculate eigenvectors rather than eigen-
projections. Since the eigenvectors are not uniquely determined, how-
ever, there are no definite formulas for the eigenvectors of T (x) as

1 This is seen also from (3.16), which has an expansion convergent for |x| < #
with » given by (3.21).
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functions of ». If we assume for simplicity that m = 1 (so that D = 0),
a convenient form of the eigenvector ¢ (x) of T (x) corresponding to the
eigenvalue A(x) is given by

(3-24) @) = (P @ 9) Plo) @,

where @ is an unperturbed eigenvector of T for the eigenvalue 4 and »

is an eigenvector of T* for the eigenvalue 1 normalized by (g, ¢) = 1.
Thus

(3-25) Po=9¢, Pry=9p, (py)=1.
That (3.24) is an eigenvector of T (x) is obvious since P(x) X is one-

dimensional. The choice of the factor in (3.24) is equivalent to each of
the following normalization conditions:

(326) (9. 9)=1, (p(¥)— @ ¥)=0, P(p()—¢)=0.

The relation (T (x) — A(%)) ¢ (x) = 0 can be written
(3-27) (T—2)(p0) — @)+ (40 —A(x) + 4) (#) =0,
where A (x) = T (x) — T [note that (T' — 1) ¢ = 0]. Multiplying (3.27)
from the left by S and using S(T'— 4) =1 — P and (3.26), we have
(328  gld— g+ S[Al) —Ab) + A gl = 0.
Noting further that S ¢ =0, we obtain [write @(x) = @(x) — ¢ + @
in the last term of (3.28)]
(3.29) @) —p=— 1+ S[A () — A(x) + A])"2 SA(x) ¢

— — S[+46)S— (A6 — A SJ 1 46)

if % is sufficiently small, where S,= S — « P and « is arbitrary. This is
a convenient formula for calculating an eigenvector.

In particular (3.29) gives the following majorizing series for ¢ (x) —
(3-30) @) — @ <[S| (1 — Py() — |Sell ¥'())~* Py () , )

where @,(x) and P;(x) are majorizing series for 4 (x) S and 4 (x) ¢!

respectively [note that ¥(x) is a majorizing series for A(x) — A]. The

eigenvector @(x) is useful if |%| is so small that the right member of

(8.30) is smaller than || ¢|, for then ¢ () is certainly not zero.
Multiplication of (3.29) from the left by T — A gives

(831) (T—N)gl)=—(1—P) [1+406)S—(At)—2) S 4() ¢
and hence
(3.32) (T — 2) @) < (1 — Dy(2) — ||Sef| P(e))~2 Dy () .

1 A majorizing series (function) for a vector-valued function can be defined in
the same way as for an operator-valued function.
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Example 3.6. If T™ = 0 for » = 2, we have 4 (x) = » T™ so that we may take

(3.33) Dyl) = x| TS| =g, Bul) = x| T g] .

Thus (3.30) and (3.32), after substitution of (3.16), give (s, = ||S|})
2x5[T ¢f

B30l =< TG gn T (1= (s + 90 — dpgswPn

(8.35) (T — A) ¢(x) < [the right member of (3.34) with the factor s, omitted] .

Problem 3.7. Under the assumptions of Example 3.6, we have for |x| <7
[ is given by (3.21)]

(3.36) PH) =@ — STV @ 4+ x2S(TV — D) STV @ — -+ -+,
(3.37) P — @ <sox(1+ (ps+q)x+--) [TV g,
(3.3 Mm—ﬂéM@%WWWH¢WWWL

(339) @) —@+xSTV | < |x[* —577 ? qs)uz (@92 + g2 (ps + g + (P g1,
(3.40) T — 2) (p(¢) — @)| < s;7* [right member of (3.38)],
(B41) (T =4 (pt) — ¢ + % ST® g)| < sg* [right member of (3.39)] .

[hint for (3.38) and (3.39): Set x = r after taking out the factor |x| and |x|?, re-
spectively, from the majorizing series.]

4, Further error estimates

In view of the practical importance of the estimates for the remainder
when the series of 4(x) is stopped after finitely many terms, we shall
give other estimates of the coefficients 4™ than those given by (3.5)
or by the majorizing series (3.13).

We write the integral expression (2.30) of A in the following form:

b ‘“‘T‘)’ftr[rm R()... T R() —

v+ tvp=n

(3.42) Aim = 5

nim

~TEIS(Z)... Ten Q)] L.
Here S () is the reduced resolvent of T with respect to the eigenvalue 4
(see I-§ 5.3), that is,
(343)  R())=Ry(l) +S(), Ry(¢)=PR({)=R()P,

is the decomposition of R ({) into the principal part and the holomorphic

part at the pole { = A. Note that the second term in the [ ] of (3.42) is

holomorphic and does not contribute to the integral. Now this expression

in [ ]is equal to

Te)Ry() TIR(Q)... TR () + TS () TEIRy(0)... TAR(0)+
G T S() ... TCe-0 S(L) Tt Ry (L),

each term of which contains one factor R, () = PR (). Since this factor
has rank < m, the same is true of each term of (3.44) and, consequently,

(3.44)
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the rank of (3.44) does not exceed min(p m, N), where N = dimX.
Thus the trace in (3.42) is majorized in absolute value by min (p m, N)
times the norm of this expression [see I-(5.42)]. This leads to the estimate

1 . N

(n) —_— — (1) ... T —_

(3.45) |Am| < 2nh+m%'%=”mln (LM)rfnT R()... T R()
—Te)S(Q) ... Ten S 1ag] .

A somewhat different estimate can be obtained in the special case

in which T™ = 0 for » = 2. In this case we have (2.34), where P(»-1)

has rank < min(z m, N) by (2.53). Hence we have, again estimating
the trace by min (# m, N) times the norm,

(346) 4@ < min (1,550) IT® Pe-D], n=12,... .
On the other hand (2.8) gives
1
(347) |T® Po-| < 5 f I(T® R@)| 2] < 5= [ITORE)|" L.
T

1
< 5 | TO| f IR@I" 14¢] -

Substitution of (3.47) into (3.46) gives an estimate of 4.

Remark 3.8. Under the last assumptions, the T® in (3.46—47) for
n = 2 may be replaced by T® — « for any scalar «. This follows from
the fact that the replacement of T®W by T'® — & changes T (x) only by the
additive term —a» and does not affect A® for » = 2. In particular,
the | T®| in the last member of (3.47) may be replaced by

(3.48) ag=min|T® — « .

5. The special case of a normal unperturbed operator

The foregoing results on the convergence radii and error estimates
are much simplified in the special case in which X is a unitary space
and T is normal. Then we have by I-(6.70)

(3.49) IR(@)] = 1/dist(¢, =(T))

for every ¢ € P(T).
If we further assume that the T( satisfy the inequalities (3.7),

then (3.8) gives

-1
(3.50) "o = Tin (dlst@ (7)) )

as a lower bound for the convergence radii for P (x) and 4 (x). If we choose
as I' the circle | — A| = d/2 where d is the isolation distance of the
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eigenvalue A of T (see par. 2), we obtain
2 -1
(3.51) 7o = (—d‘i + c) .

In the remainder of this paragraph we shall assume that 7™ = Q
for n = 2. Then we can take ¢ =0 and a = | T®], and (3.51) becomes

(3.52) ro=d|2a = d/2|TO] .

In other words, we have

Theorem 3.9.1 Let X be a unitary space, let T(x) =T + x T® and
let T be normal. Then the power series for P(x) and A(x) are convergent if
the ““magnitude of the perturbation” |» TN is smaller than half the isolation
distance of the eigenvalue A of T.

Here the factor 1/2 is the best possible, as is seen from

Example 3.10. Consider Example 1.1, a) and introduce in X the unitary norm
1-(6.6) with respect to the canonical basis for which T (x) has the matrix a). It is
then easy to verify that T is normal (even symmetric), |T®| = 1 and d = 2 for
each of the two eigenvalues + 1 of T. But the convergence radii of the series (1.4)
are exactly equal to 7, = 1 given by (3.52).

Remark 3.11. a = |T®| in (3.52) can be replaced by a, given by
(8.48) for the same reason as in Remark 3.8.

For the coefficients 4™, the formula (3.5) gives

(3.53) poj e, Jolsg(3)7, nze2,

for we have g = d/2 for the I' under consideration (see Remark 3.11).
The formulas (3.46—47) lead to the same results (3.53) if the same I'
is used.

But (3.46) is able to give sharper estimates than (3.53) in some special
cases. This happens, for example, when T is symmetric so that the eigen-
values of T are real. In this case, considering the eigenvalue 4 of T,
we can take as I' the pair I'}, I'; of straight lines perpendicular to the
real axis passing through (1 + 4,)/2 and (4 + 4,)/2, where 4, and 1,
denote respectively the largest eigenvalue of T below 4 and the smallest
one above. On setting

(3.54) dl=2‘—}'l' d2=2.2—2',
we have
a? - .
355 [RQI=(F+)7" ter,, j=12, y=Tme.

1 See T. KaTo [1], SCHAFKE [4].
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Hence (3.46—47) with Remark 3.8 give for n = 2

(8.56) o0 ,. oo .
. a3 ) "2
por= demins )] 1) v 1800
n—1
S R I
> nm V;T(%) 0 2 |\4q, dy ’
in which I" denotes the gamma function. It should be noted that if 1
is the smallest or the largest eigenvalue of T, we can set d;, = oo or
d, = oo, respectively, thereby improving the result.
It is interesting to observe that (3.56) is ‘‘the best possible”, as is
seen from the following example.

Example 3.12. Again take Example 3.10. We have N=2, A=1, m=1,
dy =2, dy = oo and a, = | T®| = 1 and (3.56) gives

n—1
(3.57) |Am| = |dm| < _(—2)— .
V:'t nI (—é—)
The correct eigenvalue A (x) is
(3.58) Ko = (1= 50700 (lf) we.

1/2
The coefficient A™ of x* in this series is (n;Z) for even % and is exactly equal to the

right member of (3.57).

The factor o, =1 (”;1 ) / V;F(—g—) in (3.56) has the following

values for smaller #:

n Oy

2 1 = 1.0000
3 2/n = 0.6366
4 1/2 = 0.5000
5  4/3n = 0.4244
6 3/8 = 0.3750

a, has the asymptotic value # -2 for # - col. Thus (3.56) shows that 1
is at most of the order

(3.59) const (—z—)n—l n=%2, d=min(d,d,) .
But #—3/2 must be replaced by #~1/2 if N = oo, and this should be done
for practical purposes even for finite N if it is large.

1 The I'-function has the asymptotic formula I'(x + 1) = (2m)/2 x5+ 13 ¢~5(1 4
+ 0 (¥°1)). .
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Problem 3.13. (3.56) is sharper than (3.53).

Problem 3.14. Why do the equalities in (3.57) hold for even % in Example 3.10?

Let us now compare these results with the estimates given by the method of
majorizing series. We first note that

(3-60) D=0, |P[=1, [S|=1a,

since T is assumed to be normal. If we replace (3.15) by p = | TW|| = a, g = | TV|||| S|
=ald and s = |S| = 1/d, (3.21) gives » = d[4a as a lower bound for the con-
vergence radii, a value just one-half of the value (3.52). On the other hand, the

majorizing series (3.16) for j(n) — A becomes after these substitions

1 2a® x?
(3-61) V) = ax+ ra 2ax ( 4a")m
1— + |1 -
a
x 1/2 an
=n§1(_ 1)n-1 ( n ) 22':—1_2"__,1_%9»‘

The estimates for A® obtained from this majorizing series are
(362) i< a, |i®< afa, |i®|< 2ayar, |A@|< Sayar, ...

(replacement of a by a, is justified by Remark 3.8). (3.62) is sharper than (3.53)
for n < 5 but not for » = 6. It is also sharper than (3.56) (with d, and d, replaced
by d) for n =< 3 but not for » = 4. In any case the majorizing series gives rather
sharp estimates for the first several coefficients but not for later ones. In the same
way the majorizing series (3.34) for the eigenfunction becomes (in the case m = 1)
2% | T ¢|/a

2ax 4ax\le

-5 (-2

) o] ¢ n—
"T(;‘P" Z( )(lfl)zznﬂ(__:) l’f”'

For the first several coefficients of the expansion ¢@(x) — @ = X'x%" g™, this
gives (replacing a by a, as above)

3.64) [l < |7 glja, 9] < 27 ] aga?,
Il < SIT® gl affar, [99] S 14] T ] s .

Here | T @|| may also be replaced by min|(T® — «) ¢| for the same reason as
o

(3.63) Pl — @<

abovel.

6. The enumerative method

An estimate of A can also be obtained by computing directly the
number of terms in the explicit formula (2.31)2. To illustrate the method,
we assume for simplicity that X is a unitary space, T™ = 0 for n = 2
and that T is normal. Recalling that S® = S*, S@® = — P and S®
=DF¢=0,%k>0,and noting (3.60), we obtain

(3.65) M(")[ < — ) trT® SE) | TO SEa)|
R e hp=n—1

1 For related results see RELLICH [4] and SCHRODER [1]— [3].
2 Cf. BrocH [1].
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Now the expression after the tr sign in (3.65) contains at least one
factor S® = — P, so that this expression is of rank < m. Hence this
trace can be majorized by m times the norm of this operator as we have
done before, giving

(2n — 2)! ap 2\n-1
(3.66) lim| < 7,(—”_—1)12,,—0_7 = B, a; (—d—-) , n=2.
Here we have replaced | T®)| by a, for the same reason as above. The

numerical factor 2"~z 8, = (2n — 2)!/((» — 1)!)? is the number of
solutions of & + +- -+ k, =% — 1. For smaller values of » we have

n i

2 1 = 1.0000
3 1/2 = 0.5000
4 5/8 = 0.6250
5 7/8 = 0.8750
6 21/16 = 1.3125

This shows that the estimate (3.66) is sharper than the simple estimate
(8.53) only for » < 5. In fact §, has the asymptotic value 5z—1/2 5—3/2 27 ~1
for # — oo, which is very large compared with unity.

Actually (3.66) is only a special case of the result obtained by the
majorizing series: (3.66) is exactly the n-th coefficient of (3.61) for » = 2
(again with a replaced by a,).

Thus the enumerative method does not give any new result. Further-
more, it is more limited in scope than the method of majorizing series,
for it is not easy to estimate effectively by enumeration the coefficients
A™ in more general cases.

Summing up, it may be concluded that the method of majorizing
series gives in general rather sharp estimates in a closed form, especially
for the first several terms of the series. In this method, however, it is
difficult to take into account special properties (such as normality) of the
operator. In such a special case the simpler method of contour integrals
appears to be more effective. The estimates (3.50), (3.51) and (3.52)
have so far been deduced only by this method.

§ 4. Similarity transformations of the eigenspaces
and eigenvectors
1. Eigenvectors
In the preceding sections on the perturbation theory of eigenvalue
problems, we have considered eigenprojections rather than eigenvectors
(except in § 3.3) because the latter are not uniquely determined. In some
cases, however, it is required to have an expression for eigenvectors
@n (%) of the perturbed operator T (x) for the eigenvalue 4, (x). We shall
deduce such formulas in the present section, but for simplicity we shall be
content with considering the generalized eigenvectors; by this we mean
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any non-zero vector belonging to the algebraic eigenspace M, (x) = P,(x)X
for the eigenvalue 4, (x) (see I-§ 5.4). Of course a generalized eigenvector
is an eigenvector in the proper sense if 4, (x) is semisimple.

These eigenvectors can be obtained simply by setting

(4.1) Par(6) = Pa(%) r,

where the @, are fixed, linearly independent vectors of X. For each %
and R, @,x(%) is an analytic function of » representing a generalized
eigenvector of T (x) as long as it does not vanish. This way of constructing
generalized eigenvectors, however, has the following inconveniences,
apart from the fact that it is rather artificial. First, @, () may become
zero for some x» which is not a singular point of 1, (%) or of P, (x). Second,
the @, (%) for different %z need not be linearly independent; in fact there
do not exist more than m; linearly independent eigenvectors for a 4, (x)
with multiplicity m;.

These inconveniences may be avoided to some extent by taking the
vectors @, from the subspace M, (x,) where »x, is a fixed, non-exceptional
point. Thus we can take exactly m; linearly independent vectors ¢, €
€ M, (%), and the resulting m; vectors (4.1) for fixed % are linearly
independent for sufficiently small |% — x,| since P, (») is holomorphic at
% = %y Since dimM,(x) = m,, the m, vectors @,;(x) form a basis of
M, (%). In this way we have obtained a basis of M, (x) depending holo-
morphically on #.

But this is still not satisfactory, for the @,(*) may not be linearly
independent (and some of them may vanish) for some % which is not
exceptional. In the following paragraphs we shall present a different
procedure which is free from such inconveniences.

2. Transformation functions?!

Our problem can be set in the following general form. Suppose that a
projection P (x) in X is given, which is holomorphic in % in a domain D
of the x-plane. Then dim P (x) X = m is constant by Lemma I-4.10.
It is required to find m vectors g, (x), k=1, ..., m, which are holo-
morphic in % and which form a basis of M(x) = P(x) X for all € D.

We may assume without loss of generality that x = 0 belongs to D.
Our problem will be solved if we construct an operator-valued function
U (%) [hereafter called a fransformation function for P(x)] with the
following properties:

(1) The inverse U (x)~! exists and both U (x) and U (x)~! are helo-
morphic for € D;

(2) Ufe) P(0O) U ()1 = P ().

1 The results of this and the following paragraphs were given by T. Kato [2]
in connection with the adiabatic theorem in quantum mechanics.
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The second property implies that U (x) maps M(0) onto M(x) one
to one (see I-§5.7). If {¢;}, k=1, ..., m, is a basis of M(0), it follows
that the vectors
4.2) o) =U@) pp, B=1,...,m,
form a basis of M(x), which solves our problem.

We shall now construct a U (x) with the above properties under the
assumption that D is simply connected. We have

(4.3) P(x)? = P (x)
and by differentiation
4.4) Px) P'(x) + P'(x) P(x) = P' (%),

where we use ' to denote the differentiation d/d». Multiplying (4.4)
by P(x) from the left and from the right and noting (4.3), we obtain
[we write P in place of P(x), etc., for simplicity]

(4.5) PP'P=0.

We now introduce the commutator Q of P’ and P:
(4.6) Q (%) = [P"(x), P ()] = P’ () P (o) — P () P’ (o) .
Obviously P’ and Q are holomorphic for € D. It follows from (4.3),
(4.5) and (4.6) that

(4.7) PQ=—-PP', QP=P'P.
Hence (4.4) gives
(4.8) : P' =9, P].

Let us now consider the differential equation
(4.9) X'=0x) X

for the unknown X = X (x). Since this is a /inear differential equation,
it has a unique solution holomorphic for » € D when the initial value
X (0) is specified. This can be proved, for example, by the method of
successive approximation in the same way as for a linear system of ordinary
differential equations?.

1 In fact (4.9) is equivalent to a system of ordinary differential equations in a
matrix representation. But it is more convenient to treat (4.9) as an operator
differential equation without introducing matrices, in particular when dimX = oo
(note that all the results of this paragraph apply to the infinite-dimensional case
without modification). The standard successive approximation, starting from the
zeroth approximation X,(x) = X (0), say, and proceeding by X,(x) = X (0) +

%
+ f Q%) Xpu—y(x) dx, gives a sequence X,(x) of holomorphic operator-valued
0

functions; it is essential here that D is simply-connected. It is easy to show that
X, (x) converges to an X (x) uniformly in each compact subset of D and that X (x)
is the unique holomorphic solution of (4.9) with the given initial value X (0). Here
it is essential that the operation X — Q(x) X is a linear operator acting in £ (X).
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Let X (x) = U(x) be the solution of (4.9) for the initial condition
X (0) = 1. The general solution of (4.9) can then be written in the form

(4.10) X () = U () X(0) .
In fact (4.10) satisfies (4.9) and the initial condition; in view of the

uniqueness of the solution it must be the required solution.
In quite the same way, the differential equation

4.11) Y' = —YQ (%)

has a unique solution for a given initial value Y (0). Let Y = ¥V (x) be the
solution for Y (0) = 1. We shall show that U(x) and V() are inverse
to each other. The differential equations satisfied by these functions
give (VU)Y=V'U+VU =-VQU+VQU=0. Hence VU is a
constant and

(4.12) V) U@x) =V (0)U(@©0) =1.

This proves that ¥V = U-! and, therefore, we have also

(4.13) Ux)Vx)y=1.

We shall give an independent proof of (4.13), for later reference,
for (4.13) is not implied by (4.12) if the underlying space is of infinite
dimension. We have as above

(4.14) (UV) =QUV —UVQ=[Q, UV].

This time it is not obvious that the right member of (4.14) is zero.
But (4.14) is also a linear differential equation for Z = UV, and the
uniqueness of its solution can be proved in the same way as for (4.9)
and (4.11). Since Z (x) = 1 satisfies (4.14) as well as the initial condition
Z(0)=1=U(0) V(0), UV must coincide with Z. This proves (4.13).

We now show that U (x) satisfies the conditions (1), (2) required
above. (1) follows from U (x)~-!= V (x) implied by (4.12) and (4.13).
To prove (2), we consider the function P (x) U (x). We have

(4.15) (PU)Y' = P'U + PU’' = (P’ + PQ)U=QPU

by (4.9) and (4.8). Thus X = PU is a solution of (4.9) with the initial
value X (0) = P(0) and must coincide with U (x) X (0) = U (x) P(0) by
(4.10). This is equivalent to (2).

Remark 4.1. In virtue of (4.7), the Q in the last member of (4.15)
can be replaced by P’. Thus the function W (x) = U (x) P (0) = P (x) U (x)
satisfies the differential equation

(4.16) W =P @)W,

1 (4.13) can also be deduced from (4.12) by a more general argument based on
the stability of the index; cf. X-§5.5.
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which is somewhat simpler than (4.9). Similarly, it is seen that Z(x)
= P(0) U (x)~! satisfies
(4.17) Z'=ZPx).

Remark 4.2. U (x) and U (x)~! can be continued analytically as long
as this is possible for P (x). But it may happen that they are not single-
valued even when P (x) is, if the domain of % is not simply connected.

Remark 4.3. The construction of U (x) can be carried out even if x
is a real variable. In this case P (x) need not be holomorphic; it suffices
that P’ (x) exists and is continuous (or piecewise continuous). Then U (x)
has a continuous (piecewise continuous) derivative and satisfies (1), (2)
except that it is not necessarily holomorphic in .

Remark 4.4. The transformation function U (x) is not unique for a
given P (x). Another U (x) can be obtained from the result of I-§ 4.6, at
least for sufficiently small |x|. Substituting P (0), P (x) for the P, Q of
I-§ 4.6, we see from I-(4.38) that!

(4.18)
U(x) = [1 — (P(x) — P(0))*]"2[P(x) P(0) + (1 — P(x)) (1 — P(0))]

is a transformation function if |%| is so small that | P (x) — P(0)| < 1.
(4.18) is simpler than the U (x) constructed above in that it is an algebraic
expression in P(x) and P(0) while the other one was defined as the
solution of a differential equation. But (4.18) has the inconvenience that
it may not be defined for all x€ D.

3. Solution of the differential equation
Since we are primarily interested in the mapping of M(0) onto M (x)
by the transformation function U (x), it suffices to consider W(x)
= U(x) P(0) instead of U (x). To determine W it suffices to solve the
differential equation (4.16) for the initial condition W (0) = P (0).
Let us solve this equation in the case where P (x) is the total projec-
tion for the A-group eigenvalues of T (x). P (x) has the form (2.3), so that

(4.19) Po)= 3 (n+1)wn PotD.

n=20

Since W (0) = P(0) = P, we can write
(4.20) WH)y=P+ 3 xnWm

n=1
Substitution of (4.19) and (4.20) into (4.16) gives the following recur-
rence formulas for W®:
(4.21) wW® =nP® P 4 (n— 1) Pe-D WO 4 ... 4 PO -1,
n=12,....
1 (4.18) was given by Sz.-NaGy [1] in an apparently different form.
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The W can be determined successively from (4.21) by making use
of the expressions (2.12) for P, In this way we obtain

(4.22) WO =pop,
W® = P® P4+ [PO]2 P,

W® — P® P4 2 P® PO P 4 o POP® P 4 - [POPP.
If the eigenvalue A of T is semisimple, we have by (2.14)

(4.23) WO =_-STOP,
WA =—-STAPH+STOSTO P - S2TO PTOH P —

— 3 PTOS:TO P,

In case the A-group consists of a single eigenvalue (no splitting),
M(x) = P(x) X is itself the algebraic eigenspace of T (x) for this eigen-
value, and we have a set of generalized eigenvectors

(4.24) or(0) =W(n) @r, k=1,...,m,

where {@;}, k=1, .. ., m, is a basis of M(0). According to the properties
of W (x), the m vectors (4.24) form a basis of M(x).

The function Z (x) = P (0) U (x)~! can be determined in the same way.
Actually we need not solve the differential equation (4.17) independently.
(4.17) differs from (4.16) only in the order of the multiplication of the
unknown and the coefficient P’(x). Thus the series X x" Z( for Z (x) is
obtained from that of W (x) by inverting the order of the factors in each
term. This is true not only for the expression of Z( in terms of the P()
but also in terms of P, S, T®, T®, ... as in (4.23). This is due to the
fact that the expressions (2.12) for the P( are invariant under the
inversion of the type described. This remark gives, under the same
assumption that 1 is semisimple,

(4.25) ZO =—-PTO S,
Z®=—-PT®S + PTOSTOS — PTO) PTM S2 —
— 5 PTOSITO P,
Remark 4.5. The other transformation function U (x) given by (4.18)
can also be written as a power series in » under the same assumptions.

As is easily seen, the expansion of U (x) P coincides with that of W (x)
deduced above up to the order x2? inclusive.
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4. The transformation function and the reduction process

The transformation function U (x) for the total projection P (x) for
the A-group constructed above can be applied to the reduction process
described in § 2.3. Since the A-group eigenvalues are the eigenvalues of
T (x) in the invariant subspace M(x) = R(P(x)) and since U (x) has the
property P(x) = U(x) PU(x)~!, the eigenvalue problem for T (x) in
M(x) is equivalent to the eigenvalue problem for the operator
(4.26) U(x)=2 T (%) Ulx)
considered in the subspace M = M(0) = R(P) (which is invariant under
this operator). In fact, (4.26) has the same set of eigenvalues as T (x),
whereas the associated eigenprojections and eigennilpotents of (4.26)
are related to those of T (x) by the similarity transformation with U (»)~1.
Since we are interested in the A-group only, it suffices to consider the
operator
(4.27) PU@x) 2T (%) Ux) P=2Z(x) T () Wi(x)
with the Z and W introduced in the preceding paragraphs.

(4.27) is holomorphic in % and in this sense is of the same form as the
given operator T (x). Thus the problem for the A-group has been reduced
to a problem within a fixed subspace M of X. This reduction of the original
problem to a problem in a smaller subspace M has the advantage that M
is independent of %, whereas in the reduction process considered in § 2.3
the subspace M (x) depends on %. For this reason the reduction to (4.27)
is more complete at least theoretically, though it has the practical
inconvenience that the construction of U (x) is not simple.

In particular it follows that the weighted mean A (x) of the A-group
eigenvalues is equal to m~! times the trace of (4.27):

(4.28) Aoe) = m—1 trZ () T (%) W (%)
=A+mtrZ (x) (T (x) — X) W(x) .

Substitution of (4.23) and (4.25) for the coefficients of W (x) and Z (x)
leads to the same results as in (2.33).

Problem 4.6. Verify the last statement.

5. Simultaneous transformation for several projections

The U (x) considered in par. 2 serves only for a single projection P (x).

We shall now consider several projections Py (x), 2 =1, . . ., s, satisfying
the conditions
(4.29) Py (%) Py () = Opn Pa(%) ,

and construct a transformation function U (x) such that
(4.30) U(x) Po(0) U(x)"=Py(x), h=1,...5.
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As a consequence, we can find a basis {@s; (%), . . ., @am, (%)} of each
subspace M, (x) = R(P} (%)) by setting

(4.31) @ns (%) = U (%) @y,

where {@n1, . - ., Pam,} IS a basis of M, = M, (0).

As before we assume that the P,(x) are either holomorphic in a
simply-connected domain D of the complex plane or continuously
differentiable in an interval of the real line. We may assume that the
set {P;(x)} is complete in the sense that

(4.32) 2 Pyx)=1.

Otherwise we can introduce the projection Py(x) =1— 2 Py (%);

the new set {P,(%)}, #=0, 1, ..., s, will satisfy (4.29) as well as the
completeness condition, and U (x) satlsﬁes (4.30) for the old set if and
only if it does the same for the new set.

The construction of U(x) is similar to that for a single P(x). We
define U (x) as the solution of the differential equation (4.9) for the
initial value X (0) = 1, in which Q (x) is to be given now by

1
2h

M.

(4.33) Q%) [P (), Pa()] = Z,' Py, (x) Py (x)

I
-

M.

Py, () Py (x) .

h

The equality of the three members of (4.33) follows from (4.32), which
implies that X' P; P, + X P, P, = X(P})’ = X P; = 0. Note also that
this Q (%) coincides with (4.6) in the case of a single P (x); the apparent
difference due to the presence in (4.33) of the factor 1/2 arises from the
fact that in (4.33) we have enlarged the single P (x) to the pair {P(x),
1 — P(x)} so as to satisfy the completeness condition (4.32).

The argument of par. 2 [in particular (4.15)] shows that (4.30) is
proved if we can show that

]
-

(4.34) Pr(x)=[Q(x), Po(0)], B=1,...,s
To prove this we differentiate (4.29), obtaining
(4.35) P},;Pk'l"PhP),z:éhkP}:'

Multiplication from the left by P, gives P, P; P, + P, P, = 6, P, P;
= Py P, P;, which may be written

(4.36) — [P, P,, P,]= P, P,.

Summation over =1, .. ., s gives (4.34) in virtue of (4.33).
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Obviously a simultaneous transformation function U(x) can be
constructed in this way for the set of all eigenprojections P, (x) of T (x)
in any simply connected domain D of the x-plane in which the P, (x)
are holomorphic?.

6. Diagonalization of a holomorphic matrix function

Let (t;x(x)) be an N X N matrix whose elements are holomorphic
functions of a complex variable x. Under certain conditions such a
matrix function can be diagonalized, that is, there is a matrix (y;; (x))
with elements holomorphic in % such that

(4.37) (Tik (0)) = (v ()~ (T3 () (vin (%))
is a diagonal matrix for every » considered.

This problem can be reduced to the one considered in this section.
It suffices to regard the given matrix as an operator T (x) acting in the
space X = C¥ of numerical vectors and apply the foregoing results.
If the value of x is restricted to a simply-connected domain D containing
no exceptional points, we can construct the U (x) and therefore a basis
(4.31) consisting of vector functions holomorphic for » ¢ D and adapted
to the set { P, (x)} of eigenprojections of T (x). With respect to such a basis,
the matrix representation of T (x) takes the simple form described in
I-§ 5.4. In particular it is a diagonal matrix with diagonal elements
An (%) if the D, (%) are all identically zero [which happens, for example, if
all m, =1 or T (x) is normal for real %, say]. As is seen from I-§ 5.4,
this is equivalent to the existence of a matrix function (y;, (x)) with the
required property (4.37). Note that the column vectors (y;;(x), ...,
vy (%)) are eigenvectors of the given matrix (z; (x)).

§ 5. Non-analytic pertutbations

1. Continuity of the eigenvalues and the total projection

In the preceding sections we considered the eigenvalue problem for
an operator T (x) € #(X) holomorphic in % and showed that its eigen-
values and eigenprojections are analytic functions of x. We now ask
what conclusions can be drawn if we consider a more general type of
dependence of T (x) on x2.

First we consider the case in which T (x) is only assumed to be
continuous in ». » may vary in a domain D, of the complex plane or in

1 The transformation function U (x) has important applications in the adiabatic
theorem in quantum mechanics, for which we refer to T. KaTo [2], GARRIDO [1],
GARRIDO and SaNcHO [1].

2 This question was discussed by RerrIcH [1], [2], [8] (in greater detail in [8])
for symmetric operators.
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an interval I of the real line. Even under this general assumption, some
of the results of the foregoing sections remain essentially unchanged.

The resolvent R({, %) = (T (x) — {)~! is now continuous in ¢ and »
jointly in each domain for which { is different from any eigenvalue of
T (x). This is easily seen by modifying slightly the argument given in
§ 1.3; we need only to note that the 4 (x) = T(x) — T in (1.11) is no
longer holomorphic but tends to zero for » — 0 (T = T (0)).

It follows that R((, x) exists when { is in the resolvent set P(T) of T
provided that x| is small enough to ensure that

(5.1) IT@) =TI <RI R() =R(0);

see (1.12). Furthermore, R({, #) — R({) for % — 0 uniformly for { belong-
ing to a compact subset of P(T).

Let A be one of the eigenvalues of T, say with (algebraic) multiplicity
m. Let T" be a closed curve enclosing A but no other eigenvalues of 7.
|R(&)]-! has a positive minimum § for € I, and R(C, ») exists for all
(el if |T(x) — T| < 8. Consequently the operator P(x) is again
defined by (1.16) and is continuous in » near » = 0. As in the analytic
case, P(x) is the total projection for the eigenvalues of T (x) lying
inside I'. The continuity of P (x) again implies that

(52)  dimM(x) = dimM=m, M@x) = P(x) X, M=M(0)= PX,

where P = P(0) is the eigenprojection of T for the eigenvalue 4. (5.2)
implies that the sum of the multiplicities of the eigenvalues of T (x)
lying inside T is equal to m. These eigenvalues are again said to form the
A-group.

The same results are true for each eigenvalue 4, of T. In any neigh-
borhood of 4,, there are eigenvalues of T (x) with total multiplicity
equal to the multiplicity s, of 4, provided that |x| is sufficiently small.
Since the sum of the m, is N, there are no other eigenvalues of T (x).
This proves (and gives a precise meaning to) the proposition that the
etgenvalues of T (x) are continuous in x.

We assumed above that T (x) is continuous in a domain of ». But
the same argument shows that the eigenvalues of T (x) and the total
projection P (x) are continuous at % = 0 if T (x) is continuous at » = 0.
To see this it suffices to notice that R({, ») - R({), x — 0, uniformly for
¢ € I'. We may even replace T (x) by a sequence {T,} such that T,, > T,
n — oo. Then it follows that the eigenvalues as well as the total projec-
tions of T, tend to the corresponding ones of T for # — cc.

Summing up, we have

Theorem 5.1. Let T (x) be continuous at x = 0. Then the eigenvalues of
T (%) are continuous at x = 0. If A is an eigenvalue of T = T (0), the
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A-group is well-defined for sufficiently small |x| and the total projection
P (x) for the A-group is continuous at x = 0. If T (x) is continuous in a
domain of the x-plane or in an interval of the real line, the resolvent
R (L, %) vs continuous in { and x jointly in the sense stated above.

2. The numbering of the eigenvalues

. The fact proved above that the eigenvalues of T (x) change contin-
uously with % when T (x) is continuous in #x is not altogether simple
since the number of eigenvalues of T (¥) is not necessarily constant.
It is true that the same circumstance exists even in the analytic case,
but there the number s of (different) eigenvalues is constant for non-
exceptional %. In the general case now under consideration, this number
may change with » quite irregularly; the splitting and coalescence of
eigenvalues may take place in a very complicated manner.

To avoid this inconvenience, it is usual to count the eigenvalues
repeatedly according to their (algebraic) multiplicities as described in
1-§ 5.4 (repeated eigenvalues). The repeated eigenvalues of an operator
form an wunordered N-tuple of complex numbers. Two such N-tuples
&= (uy, ..., uy) and &" = (u;, ..., uy) may be considered close to each
other if, for suitable numbering of their elements, the |u, — u,| are small

forallz =1, ... N. We can even define the distance between such two
N-tuples by
(5.3) dist (&, &') = min max |, — uy|

" N

where the min is taken over all possible renumberings of the elements of
one of the N-tuples. For example, the distance between the triples
(0,0, 1) and (0, 1, 1) is equal to 1, though the set {0, 1} of their elements
is the same for the two triples. It is easy to verify that the distance thus
defined satisfies the axioms of a distance function.

The continuity of the eigenvalues of T (x) given by Theorem 5.1
can now be expressed by saying that the N-tuple & (x) consisting of the
repeated eigenvalues of T (x) changes with x continuously. This means that
the distance of & (x) from & (x,) tends to zero for % — %, for each fixed x,.

The continuity thus formulated is the continuity of the repeated
eigenvalues as a whole. It is a different question whether it is possible to
define N single-valued, continuous functions u, (%), » =1, ..., N, which
for each » represent the repeated eigenvalues of T (x). Such a para-
metrization is in general impossible. This will be seen from Example
1.1, d), in which the two eigenvalues are 4 2Y/2; here it is impossible to
define two single-valued continuous functions representing the two
eigenvalues in a domain of the complex plane containing the branch
point % = 0.
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A parametrization is possible if either i) the parameter » changes
over an interval of the real line or ii) the eigenvalues are always real.
In case ii) it suffices to number the eigenvalues u, (%) in ascending (or
descending) order:

(5.4) () S pg(x) < v 00 = uy () .

It should be noted, however, that this way of numbering is not always
convenient, for it can destroy the differentiability of the functions which
may exist in a different arrangement.

The possibility of a parametrization in case i) is not altogether
obvious. This is contained in the following theorem.

Theorem 5.2. Let & (x) be an unordered N-tuple of complex numbers,
depending continuously on a real variable x in a (closed or open) interval 1.
Then there exist N single-valued, continuous functions u,(x),n=1,..., N,
the values of which constitute the N-tuple & (x) for each € 1. [(u,(x))
is called a representation of S (x).]

Proof. For convenience we shall say that a subinterval I, of I has
property (A) if there exist N functions defined on I, with the properties
stated in the theorem. What is required is to prove that I itself has
property (A). We first show that, whenever two subintervals I, I, with
property (A) have a common point, then their union Iy = I, U I, also
has the same property. Let (u{ (x)) and (u{? (x)) be representations of
& (%) in I, and I,, respectively, by continuous functions. We may assume
that neither I, nor I, contains the other (otherwise the proof is trivial) and
that I, lies to the left of I,. For a fixed %, lying in the intersection of I, and
I,, we have u( (%) = u@ (%), » = 1, . .., N, after a suitable renumbering
of (u), for both (u (%)) and (u? (%)) represent the same & (x,). Then
the functions u{’ (x) defined on I, by

(0) _ lu'stl) (%) , ®= *o »
(55) My (") - { ”5‘2) (M) , % = %o »

are continuous and represent & (x) on I,

It follows that, whenever a subinterval I' has the property that each
point of I' has a neighborhood with property (A), then I’ itself has
property (A).

With these preliminaries, we now prove Theorem 5.2 by induction.
The theorem is obviously true for N = 1. Suppose that it has been
proved for N replaced by smaller numbers and for any interval I. Let T’
be the set of all x€ I for which the N elements of & (x) are identical,
and let A be the complement of I" in I. T is closed and A is open relative
to I. Let us now show that each point of A has a neighborhood having
property (A). Let %,€ A. Since the N elements of &(x,) are not all
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identical, they can be divided into two separate groups with N; and N,
elements, where N, + N, = N. In other words, & (x,) is composed of an
Ny-tuple and an N,-tuple with separate elements (‘‘separate’” means
that there is no element of one group equal to an element of the other).
The continuity of & (x) implies that for sufficiently small |x — %[, & (%)
consists likewise of an Nj-tuple and an N,-tuple each of which is con-
tinuous in ». According to the induction hypothesis, these N; and N,-
tuples can be represented in a neighborhood A’ of %, by families of
continuous functions (u, (%), ..., px, (%)) and (uy,+1(%), ..., wuy(*),
respectively. These N functions taken together then represent & (x) in A’.
In other words, A’ has property (A).

Since A is open in I, it consists of at most countably many sub-
intervals I, I,, ... . Since each point of A has a neighborhood with
property (A), it follows from the remark above that each component
interval I, has property (A). We denote by u(x), n=1,..., N, the N
functions representing &(x) in I,. For x€ I', on the other hand, & (x)
consists of N identical elements u(x). We now define N functions u, (x),
n=1,...,N,onIby

uP), xcl,, p=12,...,
ux), xcl.

These N functions represent & (x) on the whole interval I. It is easy to
verify that each u,(x) is continuous on I. This completes the induction
and the theorem is proved.

(56) mm={

3. Continuity of the eigenspaces and eigenvectors

Even when T (x) is continuous in %, the eigenvectors or eigenspaces
are not necessarily continuous. We have shown above that the total
projection P (x) for the A-group is continuous, but P (x) is defined only
for small |%| for which the A-group eigenvalues are not too far from 4.

If T (x) has N distinct eigenvalues A,(x), k=1, ..., N, for all »
in a simply connected domain of the complex plane or in an interval of
the real line, we can define the associated eigenprojections P, (x) each
of which is one-dimensional. Each P, (x) is continuous since it is identical
with the total projection for the eigenvalue 4, (x). But P, (x) cannot in
general be continued beyond a value of % for which 4, (x) coincides with
some other A;(x). In this sense the eigenprojections behave more sin-
gularly than the eigenvalues. It should be recalled that even in the
analytic case P, (x) may not exist at an exceptional point where 4, (%)
is holomorphic [Example 1.12, f)]; but P, (x) has at most a pole in that
case (see § 1.8). In the general case under consideration, the situation is
much worse. That the eigenspaces can behave quite singularly even for a
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very smooth function T (x) is seen from the following example due to
RELLICH!.

Example 5.3. Let N = 2 and
2 .2
1 [cos—  sin —
®

(5.7) Te)=e * T(0) =0.

. 2 I
sin — —cos —
* *
T (%) is not only continuous but is infinitely differentiable for all »eal values of x,
and the same is true of the eigenvalues of T (x), which are 4.¢-1*" for » == 0 and
zero for » = 0. But the associated eigenprojections are given for » == 0 by

1 1 .1 | 1 .
cos? — cos — sin — sin? — — cos — sin —
(5.8) *® % % ® ®
5. )
1 .1 .. 1 1 .1 1
cos — sin — sin? — — cos — sin — cos? —
% x x *® *® *®

These matrix functions are continuous (even infinitely differentiable) in any
interval not containing » = 0, but they cannot be continued to x = 0 as continuous
functions. Furthermore, it is easily seen that there does not exist any eigenvector of
T (%) that is continuous in the neighborhood of # = 0 and that does not vanish at
x =0.

It should be remarked that (5.7) is a symmetric operator for each real » (acting
in C? considered a unitary space). In particular it is normal and, therefore, the
eigenprojections would be kolomorphic at »x = 0 if T (x) were kolomorphic (Theorem
1.10). The example is interesting since it shows that this smoothness of the eigen-
projections can be lost completely if the holomorphy of T (x) is replaced by infinite
differentiability.

4. Differentiability at a point
Let us now assume that T (x) is not only continuous but differentiable.
This does not in general imply that the eigenvalues of T (x) are dif-
ferentiable; in fact they need not be differentiable even if T (x) is holo-
morphic [Example 1.1, d)]. However, we have
Theorem 5.4. Let T (x) be differentiable at » = 0. Then the total projec-
tion P (x) for the A-group is differentiable at » = O:

(5.9) P(x) =P+ x PO + 0(x),

where? PO = —PT'(0) S — ST'(0) P and S is the reduced resolvent of T
for A (see 1-§ 5.3). If A is a semisimple esgenvalue of T, the A-group eigen-
values of T (x) are differentiable at » = 0:

(5.10) pil) =A+xuP+o(), j=1,...,m,

where the w;(x) are the repeated eigenvalues of the A-group and the )
are the repeated eigenvalues of PT'(0) P in the subspace M= PX (P is

1 See ReLLICH [1]; for convenience we modified the original example slightly.
* Here o (x) denotes an operator-valued function F (x) such that | F (x)]| = o (x)
in the ordinary sense.
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the eigenprojection of T for A). If T is diagonable, all the eigenvalues are
differentiable at » = 0.

Remark 5.5. The above theorem needs some comments. That the
eigenvalues of T (x) are differentiable means that the N-tuple &(x)
consisting of the repeated eigenvalues of T (x) is differentiable, and
similarly for the differentiability of the A-group eigenvalues. That an
(unordered) N-tuple & (x) is differentiable at » = 0 means that &(x)
can be represented in a neighborhood of x = 0 by N functions u,(x),
n=1, ..., N, which are differentiable at » = 0. The N-tuple &’ (0)
consisting of the u,, (0) is called the derivative of & (x) at x = 0. It can be
easily proved (by induction on N, say) that &’(0) is thereby defined
independently of the particular representation (u,(x)) of & (x). If & (x)
is differentiable at each » and &'(x) is continuous, &(x) is said to be
continuously differentiable.

Note that &(0) and &’ (0) together need not determine the behavior
of &(x) even in the immediate neighborhood of » = 0. For example,
&, (%) = (%, 1 —x) and S,(x) = (—x, 1 + x) have the common value
(0, 1) and the common derivative (1, —1) at % = 0.

Proof of Theorem 5.4. We first note that the resolvent R({, x) is
differentiable at x = 0, for it follows from I-(4.28) that

(5.11) [o R(E #)],_,= —RO 'O RE).

Here it should be noted that the derivative (5.11) exists uniformly for {
belonging to a compact subset of P(T), for R({, %) - R({), » — 0, holds
uniformly (see par. 1). Considering the expression (1.16) for P(x), it
follows that P (x) is differentiable at » = 0, with
1 F) 1 ,
~ 5o [ [ REH),_ 2t =5m; [ROT OREQ L
r r

=—PT'(0)S—ST'(0) P=P® [cf. (2.14)].

(5.12) P'(0)=

This proves (5.9).
As in the analytic case, if A is semisimple the A-group eigenvalues of
T (x) are of the form

(5.13) @i () = A+ % p® (%), j=1,...,m,
where the u{!(x) are the (repeated) eigenvalues of the operator

[e-nRrEMaz,

r

in the subspace M(x) = P(x) X [see (2.37)]. Since T (x) and P(x) are
differentiable at = 0 and (T — A) P = 0 if A is semisimple, T® (%) is

(5.14) TO() =o*(T () — 2) P(e) = — 2”7:
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continuous at » = 0 if we set
(5.15) T® =T P+ (T—APO)=PT'(0)P

where we have used (5.12) and (T — 1) S=1— P [see (2.11)]. Hence
the eigenvalues of T'® (x) are continuous at » = 0. In particular, the
eigenvalues u{" (x) of T® () in the invariant subspace M(x) are contin-
uous at » = 0 (see Theorem 5.1), though they need not be continuous
for % = 0. In view of (5.13), this proves (5.10).

5. Differentiability in an interval

So far we have been considering the differentiability of the eigenvalues
and eigenprojections at a single point » = 0. Let us now consider the
differentiability in a domain of %, assuming that T (x) is differentiable
in this domain. If this is a domain of the complex plane, T (x) is neces-
sarily holomorphic; since this case has been discussed in detail, we shall
henceforth assume that T (x) is defined and differentiable in an interval I
of the real linel.

According to Theorem 5.4, the N-tuple & (x) of the repeated eigen-
values of T (x) is differentiable for » € I provided that T (x) is diagonable
for » € 1. However, it is by no means obvious that there exist N functions
Un(%), n=1, ..., N, representing the repeated eigenvalues of T (x),
which are single-valued and differentiable on the whole of I Actually
this is true, as is seen from the following general theorem.

Theorem 5.6. Let & (x) be an unordered N-tuple of complex numbers
depending on a real variable » tn an interval 1, and let S (x) be differentiable
at each x€ 1 (in the sense of Remark 5.5). Then there exist N complex-
valued functions p,(x), n=1, ..., N, representing the N-tuple & (x) for
%€ 1, each of which is differentiable for x € 1.

Proof. A subinterval of I for which there exist N functions of the
kind described will be said to have property (B); it is required to prove
that I itself has property (B). It can be shown, as in the proof of Theorem
5.2, that for any overlapping? subintervals I,, I, with property (B),
their union I; U I, has also property (B). The only point to be noted is
that care must be taken in the renumbering of the u{? (x) to make sure
that the continuation (5.5) preserves the differentiability of the functions
at % = »,; this is possible owing to the assumption that & (x) is differen-
tiable at x = 5,

1 The differentiability of eigenvalues was investigated in detail in ReLLICH [8]
in the case when T (x) is symmetric for each real x». It should be noted that the
problem is far from trivial even in that special case.

2 Here ‘“‘overlapping” means that the two intervals have common interior
points.
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With this observation, the proof is carried out in the same way as
in Theorem 5.2. A slight modification is necessary at the final stage,
for the functions defined by (5.6) may have discontinuities of derivatives
at an isolated point of I'. To avoid this, we proceed as follows. An isolated
point %, of I' is either a boundary point of I or a common boundary of
an I, and an I,,. In the first case we have nothing to do. In the second
case, it is easy to “‘connect” the two families (u¥® (%)) and (ul® (x))
‘“smoothly”’ by a suitable renumbering of the latter, for these two
families of differentiable functions represent & (x) at the different sides
of » = x, and & (») is differentiable at % = x,. It follows that the interval
consisting of I, I, and #x, has property (B).

Let I be the set of isolated points of I'. 4 u I is relatively open
in I and consists of (at most) countably many subintervals I;. Each I;
consists in turn of countably many subintervals of the form I, joined
with one another at a point of I'V in the manner stated above. By repeated
applications of the connection process just described, the functions
representing & (x) in these I, can be connected to form a family of N
functions differentiable on I;. This shows that each I; has property (B).

The construction of N differentiable functions u,(x) representing
& (x) on the whole interval I can now be carried out by the method (5.6),
in which the I, and I' should be replaced by the I and I'"" respectively,
I'"” being the complement of IV in I'. The differentiability at a point », of
I of the u,(x) thus defined follows simply from the fact that the deri-
vative &' (x,) consists of N identical elements, just as does & (x,). This
completes the proof of Theorem 5.6.

Theorem 5.7. If vn Theorem 5.6 the derivative &' (x) is continuous,
the N functions u, (x) are continuously differentiable on 1.

Proof. Suppose that the real part of u, (%) is discontinuous at » = s,.
According to a well-known result in differential calculus, the values
taken by Repu, (¥) in any neighborhood of %, cover an interval of length
larger than a fixed positive number!. But this is impossible if & (x) is
continuous, for any value of u, (%) is among the N elements of &’ (x). For
the same reason Im y, (x) cannot be discontinuous at any point.

Remark 5.8. We have seen (Theorem 5.4) that the eigenvalues of T (x)
are differentiable on I if T (x) is differentiable and diagonable for » ¢ I.

1 Tet a real-valued function f(f) of a real variable ¢ be differentiable for
a<t=<b; then f’ () takes in this interval all values between o = f’(a) and 8 = {’ (b).
To prove this, we may assume o < . For any € («, B) set g(¥) =f(t) — p¢.
Then g’(a) = a — y <0, g’(b) = B — » > 0, so that the continuous function g (t)
takes a minimum at a point ¢=c€ (e, b). Hence g'(c) =0 or f'(c)=y.
If f/(¢) is discontinuous at ¢ =14, then there is &> 0 such that, in any
neighborhood of ¢, there exist ¢, ¢, with |f'(4,) — f'(f;)] > €. It follows from the
above result that f’(f) takes all values between /' (¢,) and f’(t;). Hence the values
of f/(¢) in any neighborhood of #, covers an interval of length larger than e.
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Itis quite natural, then, to conjecture that the eigenvalues are continuously
differentiable if T (x) is continuously differentiable and diagonable.
But this is not true, as is seen from the following example?.

Example 5.9. Let N = 2 and

1

w|*  |n]|* — xﬁ(2 + sin—-—)

(5.16)  T(o = Ill bet* = b [/}, x40; T@©O=0.
~ I ~ I

T (%) is continuously differentiable for all real » if « > 1 and f > 2. The two eigen-

values of T (x) are

a+B 1\.L
(5.17) uy() =+ x| 2 (2+sinm)2, x+0, uy(0)=0.

Since the u () are different from each other for % &= 0, T (x) is diagonable, and
T (0) = 0 is obviously diagonable. The u . (x) are differentiable everywhere, as the
general theory requires. But their derivatives are discontinuous at » = 0 if « +
+ B =< 4. This simple example shows again that a non-analytic perturbation can be
rather pathological in behavior.

Remark 5.10. If T (x) is continuously differentiable in a neighborhood
of x =0 and 4 is a semisimple eigenvalue of T'(0), the total projection
P (x) for the A-group is continuously differentiable and T'® (x) is contin-
uous in a neighborhood of » =0, as is seen from (5.12) and (5.14).

6. Asymptotic expansion of the eigenvalues and
eigenvectors

The differentiability of the eigenvalues considered in the preceding
paragraphs can be studied from a somewhat different point of view.
Theorem 5.4 may be regarded as giving an asymptotic expansion of the
eigenvalues u;(x) up to the first order of » when T (x) has the asymptotic
form T(x) =T 4+ xT' + o(x), where T'= T'(0). Going to the second
order, we can similarly inquire into the asymptotic behavior of the
eigenvalues when T (x) has the asymptotic form T + % T® + 2 T® +
+ 0(%?). In this direction, the extension of Theorem 5.4 is rather straight-
forward.

Theorem 5.11. Let T(x) =T + xT® +%2TP + 0(x%) for »— 0.
Let A be an eigenvalue of T with the eigenprojection P. Then the total
projection P (x) for the A-group eigenvalues of T (x) has the form

(5.18) P(x) = P+ xP® 4 52 P® 4 0 ()

where P, P® and P® are given by (2.13). If the eigenvalue A of T is
semisimple and if XV is an eigenvalue of PT® P in P X with the eigen-

1 The operator of this example is not symmetric. For symmetric operators
better behavior is expected; see Theorem 6.8.
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projection PV, then T (x) has exactly m() = dim P{") repeated eigenvalues
(the A + x AV-group) of the form A + » A + o (x). The total eigenprojec-
tion PV (x) for this group has the form

(5.19) P® (3) = PO + 5 P + 0(x) .

If, in addition, the eigenvalue l;-l) of PT® P is semisimple, then P}m
is given by (2.47) and the m{) repeated eigenvalues of the A + x XP-group
have the form

(5:20)  psn() = A+ % AP 42 @ 4 0(d), k=1, mD,

where uP, k=1, ..., m®, are the repeated eigenvalues of PO T® Pt
= POT® PO — POTOST® PO in the subspace PMX.

Proof. The possibility of the asymptotic expansion of T (x) up to the
second order implies the same for the resolvent:

(5:21) R(C, %) =R() = R(@)(T(®) — T)R() + R(¢) (T () — T) X
XR(@) (T@) —T)R(E) + -+
=R({) — % R(¢) T® R({) + »*[—R(¢) T® R(¢) +
+R(@E) TOR(E) TOR()] + 0(?)
Here o (%?) is uniform in { in each compact subset of P (7). Substitution

of (5.21) into (1.16) yields (5.18), just as in the analytic case.
It follows that if A is semisimple, the 7® (%) of (5.14) has the form

(5.22) TW@o) = PTOP + % T® 4 o(x)

where T'® is given by (2.20). The application of Theorem 5.4 to T ()
then leads to the result of the theorem. Again the calculation of the
terms up to the order »2 is the same as in the analytic case.

7. Operators depending on several parameters

So far we have been concerned with an operator T (x) depending on a
single parameter x». Let us now consider an operator T (x,, #,) depending
on two variables »x;, %, which may be complex or real.

There is nothing new in regard to the continuity of the eigenvalues.
The eigenvalues are continuous in %,, %, (in the sense explained in par. 1,2)
if T (%,, #,) is continuous. Again, the same is true for partial differen-
tiability (when the variables x,, #, are real). But something singular
appears concerning total differentiability. The total differentiability of
T (21, %5) does not necessarily imply the same for the eigenvalues even if
T (2, »,) is diagonable (cf. Theorem 5.4). : '

Example 5.12.! Let N = 2 and
(5.23) T (0, 209) = ("‘ "’) .

Ky —*

1 See REeLLICH [1].
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T (3, %5) is totally differentiable in #%,, %, and diagonable for all real values of s, ,.
But its eigenvalues

(5.29) Ay (o, 29) = + (o + #3)2
are not totally differentiable at »;, = %, = 0.

We could also consider the case in which T (x,, %,) is holomorphic in
the two variables. But the eigenvalues of T (x,, %,) might have rather
complicated singularities, as is seen from the above examplel.

Remark 5.13. (5.23) is symmetric for real x,, %, if the usual inner
product is introduced into X = C2 Thus the appearence of a singularity
of the kind (5.24) shows that the situation is different from the case of a
single variable, where the eigenvalue is holomorphic at » = 0 if T (x) is
normal for real % (see Theorem 1.10).

Similar remarks apply to the case in which there are more than two
variables2.

8. The eigenvalues as functions of the operator

In perturbation theory the introduction of the parameter x is some-
times rather artificial, although it sometimes corresponds to the real
situation. We could rather consider the change of the eigenvalues of an
operator T when T is changed by a small amount, without introducing
any parameter » or parameters »,, %,, . . . . From this broader point of
view, the eigenvalues of T should be regarded as functions of T itself.
Some care is necessary in this interpretation, however, since the eigen-
values are not fixed in number. Again it is convenient to consider the
unordered N-tuple & [T], consisting of the N repeated eigenvalues of T,
as a function of T. This is equivalent to regarding & [T] as a function
of the N2 elements of the matrix representing T with respect to a fixed
basis of X.

1 But simple eigenvalues and the associated eigenprojections are again holo-
morphic in 2,, %,; this follows from Theorem 5.16.

2 In connection with a family T (x,, »,) depending on two parameters, we can
ask when T (x,, #,) has a non-zero null space. This is a generalization of the perturba-
tion theory of eigenvalues we have considered so far, which is equivalent to the
condition that T (») — A, a special operator depending on two parameters, have a
non-zero null space. The general case T (x,, »,) gives rise to the perturbation problem
for “nonlinear” eigenvalue problems of the type noted in footnote !, p.35. We
shall not consider such a general perturbation theory. We note, however, that in
some special cases the nonlinear problem can be reduced to the ordinary problem
discussed above. Suppose we have a family of the form T (1) — x». The ordinary
theory will give the “‘eigenvalues’ x» as analytic functions of the ‘‘parameter” A.
If we find the inverse function of these analytic functions, we obtain the ‘‘nonlinear”
eigenvalues A as analytic functions of the parameter ». There are other devices for
dealing with ‘‘nonlinear’’ problems. See e. g., CLoi1zEAUX [1].
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Theorem 5.14. S [T] is a continuous function of T. By this it is meant
that, for any fixed operator T, the distance between &[T + A] and S[T]
tends to zero for | 4| — 0.

The proof of this theorem is contained in the result of par. 1,2
where the continuity of & (x) as a function of x is proved. An examination
of the arguments given there will show that the use of the parameter
is not essential.

This continuity of & [T] is naturally uniform on any bounded region
of the variable T (that is, a region in which || T| is bounded), for the
variable T is equivalent to N2 complex variables as noted above. But the
degree of continuity may be very weak at some special T (non-diagonable
T), as is seen from the fact that the Puiseux series for the eigenvalues of
T+»%T® 4 -+ can have the form A+ asx'/? 4 --- [see (1.7) and
Example 1.1, d)].

Let us now consider the differentiability of &[T]. As we have seen,
the eigenvalues are not always differentiable even in the analytic case
T (x). If T is diagonable, on the other hand, the eigenvalues of T + » T™
are differentiable at % = 0 for any T® (in the sense of par. 4), and the
diagonability of T is necessary in order that this be true for every T®.
This proves

Theorem 5.15. &[T s partially differentiable at T = T, if and
only if T, is diagonable.

Here “partially differentiable” means that S[T + »T®] is dif-
ferentiable at % = 0 for any fixed T®W, and it implies the partial
differentiability of &[T] in each of the N2 variables when it is regarded
as a function of the N2 matrix elements.

Theorem 5.15 is not true if “partially”’ is replaced by ‘“totally”.
This is seen from Example 5.12, which shows that G[T] need not be
totally differentiable even when the change of T is restricted to a two-
dimensional subspace of #(X). In general a complex-valued function
u[T] of T € A (X) is said to be totally differentiable at T' = T if there
is a function v, [A4], linear in A € #(X), such that

(5-25) || 4|7 |u[To + 4] — u[T,] — v7,[A]| >0 for [4] 0.

This definition does not depend on the particular norm used, for all
norms are equivalent. vy, [4] is the total differential of u[T] at T = T,
It is easily seen that u[T7] is totally differentiable if and only if it is
totally differentiable as a function of the N2 matrix elements of T.

In reality we are here not considering a single complex-valued
function u[T] but an unordered N-tuple &[T] as a function of T. If
& [T] were an ordered N-tuple, the above definition could be extended
immediately to &[T]. But as &[T] is unordered, this is not an easy
matter and we shall not pursue it in this much generality. We shall
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rather restrict ourselves to the case in which T, is not only diagonable but
simple (has N distinct eigenvalues). Then the same is true of 7= T+ 4
for sufficiently small |4| in virtue of the continuity of &[T], and
the eigenvalues of T can be expressed in a neighborhood of T, by N
single-valued, continuous functions 4,[7T], =1, ..., N. We shall now
prove

Theorem 5.16. The functions A, [T] are not only totally differentiable
but holomorphic in a neighborhood of T = T,

Remark 5.17. A complex-valued function u[T] of T is said to be
holomorphic at T = T, if it can be expanded into an absolutely conver-
gent power series (Taylor series) in 4 = T — T:

(5.26) w[Ty+ A]=plTe) + u® [Ty A+ p® [Ty A] + - - -
in which u® [T, A]is a form of degree » in A4, that is,
(5.27) u® [Ty, A]=u™[Ty 4, ..., A]

where u® [T,; 4,, . . ., A,] is a symmetric n-linear form? in #» operators
4,, ..., A,. As is easily seen, u[T] is holomorphic at T = T, if and
only if u [Ty + A] can be expressed as a convergent power series in the N2
matrix elements of 4. In the same way holomorphic dependence of an
operator-valued function R[T]€#(X) on T ¢ % (X) can be defined.

Proof of Theorem 5.16. First we show that the one-dimensional
eigenprojection P,[T] for the eigenvalue A,[7T] is holomorphic in T.
We have, as in (1.17),

628  PalTy+Al=— g7 [ Z RO (CARQY L,
I'a n=

where Ry({) = (T, — §)~! and I', is a small circle around 4,[T,]. The
series in the integrand of (5.28) is uniformly convergent for { € I';, for
|4] < 85, where 8, is the minimum of |Ry({)|~? for { ¢ I';. Since the
right member turns out to be a power series in 4, we see that P,[T] is
holomorphic at T = T,

Since P, [T] is one-dimensional, we have

(5.29) MTo+ A) = tr{(To + 4) Py[T, + A7}

Substitution of the power series (5.28) shows that 4,[T, + 4] is also a
power series in 4, as we wished to show.

1 A function f(4,, ..., 4,) is symmetric if its value is unchanged under any
permutation of 4,, . . ., 4,. It is n-linear if it is linear in each variable 4,.
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§ 6. Perturbation of symmetric operators

1. Analytic perturbation of symmetric operators

Many theorems of the preceding sections can be simplified or
strengthened if X is a unitary space H. For the reason stated at the
beginning of I-§ 6., we shall mainly be concerned with the perturbation
of symmetric operators.

Suppose we are given an operator T (x) of the form (1.2) in which
T, TW, T®, .. are all symmetric. Then the sum T (x) is also symmetric
for real x. Naturally it cannot be expected that T (x) be symmetric for
all % of a domain of the complex plane.

More generally, let us assume that we are given an operator-valued
function T (x) € #(H) which is holomorphic in a domain D, of the
»-plane intersecting with the real axis and which is symmetric for real »:

(6.1 T (x)* = T (x) forrealsx.

For brevity the family {T (x)} will then be said to be symmetric. Also we
shall speak of a symmetric perturbation when we consider T (x) as a
perturbed operator. T (%)* is holomorphic for % ¢ D, (the mirror image
of D, with respect to the real axis) and coincides with T (x) for real x.
Hence T (#)* = T (x) for x € Dy N D,y by the unique continuation property
of holomorphic functions. Thus

(6.2) T ()* = T (%)

as long as both » and % belong to D,. This can be used to continue T (x)
analytically to any x» for which one of » and % belongs to D, but the
other does not. Thus we may assume without loss of generality that D, is
symmetric with respect to the real axis.

Since a symmetric operator is normal, the following theorem results
directly from Theorem 1.10.

Theorem 6.1. If the holomorphic family T (x) is symmetric, the eigen-
values A, (%) and the eigenprojections P, (x) are holomorphic on the real
axis, whereas the eigennilpotents D, (x) vanish identically®.

Problem 6.2. If T(x) = T + » T® with T and TW symmetric, the smallest
eigenvalue of T (x) for real x is a piecewise holomorphic, concave function of .
[hint: Apply I-(6.79)].

Remark 6.3. Theorem 6.1 cannot be extended to the case of two or
more variables. The eigenvalues of a function T (%,, %,) holomorphic in
%,, %, and symmetric for real %,, %, need not be holomorphic for real x;, %,,
as is seen from Example 5.12.

Remark 6.4. A theorem similar to Theorem 6.1 holds if T (x) is
normal for real » or, more generally, for all » on a curve in D,. But such a

1 See Remark 1.11, however.
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theorem is of little practical use, since it is not easy to express the condi-
tion in terms of the coefficients T of (1.2).

The calculation of the perturbation series given in § 2 is also simplified
in the case of a symmetric perturbation. Since the unperturbed operator T
is symmetric, any eigenvalue 4 of T is semisimple (D = 0) and the
reduction process described in § 2.3 is effective. The operator function
T® (%) given by (2.37) is again symmetric, for P (x) is symmetric and
commutes with T (x). The reduction process preserves symmetry. Therefore,
the reduction can be continued indefinitely. The splitting of the eigen-
values must come to an end after finitely many steps, however, and the
eigenvalues and the eigenprojections are finally given explicitly by the
formulas corresponding to (2.5) and (2.3) in the final stage of the reduc-
tion process where the splitting has ceased to occur. In this way the
reduction process gives a complete vecipe for calculating explicitly the
eigenvalues and eigenprojections in the case of a symmetric perturbation.

Remark 6.5. Again there is no general criterion for deciding whether
there is no further splitting of the eigenvalue at a given stage. But the
reducibility principle given in Remark 2.4 is useful, especially for sym-
metric perturbations. Since the unperturbed eigenvalue at each stage is
automatically semisimple, there can be no further splitting if the un-
perturbed eigenprojection at that stage is irreducible with respect to a
set {4} of operators.

In applications such a set {4} is often given as a unitary group under
which T (x) is invariant. Since the eigenprojection under consideration
is an orthogonal projection, it is irreducible under {4} if and only if
there is no proper subspace of the eigenspace which is invariant under all
the unitary operators 4.

Remark 6.6. The general theory is simplified to some extent even if
only the unperturbed operator T is symmetric or even normal. For
example, all the eigenvalues 4, (x) are then continuously differentiable at
» = 0 in virtue of the diagonability of T (Theorem 2.3). The estimates
for the convergence radii and the error estimates are also simplified if the
unperturbed operator T is symmetric or normal, as has been shown in
§3.5.

Remark 6.7. The estimate (3.52) is the best possible of its kind even
in the special case of a symmetric perturbation, for Example 3.10 belongs
to this case.

2. Orthonormal families of eigenvectors

Consider a holomorphic, symmetric family T (x). For each real »x
there exists an orthonormal basis {¢, (%)} of H consisting of eigenvectors
of T (x) [see I-(6.68)]. The question arises whether these orthonormal
eigenvectors @, (x) can be chosen as holomorphic functions of »x. The answer
is yes for real x.
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Since the eigenvalues A,(x) and the eigenprojections P,(x) are
holomorphic on the real axis (Theorem 6.1), the method of § 4.5 can be
applied to construct a holomorphic transformation function U (x)
satisfying (4.30). Furthermore, U (x) is unitary for real ». To see this
we recall that U (x) was constructed as the solution of the differential
equation U’ = Q(») U with the initial condition U (0) = 1, where Q (x)
is given by (4.33). Since the P, (x) are symmetric, we have P, (%)* = P, (%)
asin (6.2) and so the same is true of P, (x). Hence Q (x) is skew-symmetric:
Q(%)* = —Q(») and U (%)* satisfies the differential equation

(6.3) L U@*=-U®@* Q) -

On the other hand, V (x) = U (x)~! satisfies the differential equation
V'=—VQ(x) with the initial condition ¥V (0) = 1. In view of the
uniqueness of the solution we must have

(6.4) UR)* = U ().

This shows that U (x) is unitary for real x.

It follows that the basis (%) = U (%) @i as given by (4.31) is
orthonormal for real x if the ¢, form an orthonormal basis (which is
possible since T is symmetric). It should be noted that the g,;(x) are
(not only generalized but proper) eigenvectors of T (x) because T (x)
is diagonable. The existence of such an orthonormal basis depending
smoothly on » is one of the most remarkable results of the analytic
perturbation theory for symmetric operators. That the analyticity is
essential here will be seen below.

3. Continuity and differentiability

Let us now consider non-analytic perturbations of operators in H.
Let T (x) € #(H) depend continuously on the parameter », which will
now be assumed to be real. The eigenvalues of T (x) then depend on #
continuously, and it is possible to construct N continuous functions
Un(%), n=1, ..., N, representing the repeated eigenvalues of T (x)
(see § 5.2). In this respect there is nothing new in the special case where
T (x) is symmetric, except that all u, () are real-valued and so a simple
numbering such as (5.4) could also be used.

A new result is obtained for the differentiability of eigenvalues.

Theorem 6.8.1 Assume that T (x) is symmetric and continuously
differentiable in an interval 1 of x. Then there exist N continuously dif-
ferentiable functions p,(x) on 1 that represent the repeated eigenvalues of
T (%).

1 This theorem is due to ReLrLicH [8]. Recall that the result of this theorem
is not necessarily true for a general (non-symmetric) perturbation (see Remark 5.8).
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Proof. The proof of this theorem is rather complicated!. Consider a
fixed value of %; we may set » = 0 without loss of generality. Let 4 be
one of the eigenvalues of T = T (0), m its multiplicity, and P the as-
sociated eigenprojection. Since A is semisimple, the derivatives at % = 0
of the repeated eigenvalues of T (x) belonging to the A-group are given by
the m repeated eigenvalues of PT'(0)P in the subspace M= PX
(Theorem 5.4). Let A5, ..., A, be the distinct eigenvalues of PT’(0) P
inMandlet P,,. . ., P,be the associated eigenprojections. The M; = P;H
are subspaces of M. It follows from the above remark that the A-group
(repeated) eigenvalues of T'(x) for small |x| <+ 0 are divided into p
subgroups, namely the 4 + » A;-groups, j = 1, . . ., . Since each of these
subgroups is separated from other eigenvalues, the total projections P; (x)
for them are defined. P;(x) is at the same time the total projection for
the Al-group of the operator '@ (x) given by (5.14). But T'® (x) is
continuous in a neighborhood of x = 0 as was shown there (the continuity
for % = 0 is obvious). Hence P;(x) is continuous in a neighborhood of
% = 0 by Theorem 5.1, and the same is true of

(6:5) T;(2) = P;(x) T" () P; ()

because T (x) = d T (x)/dx is continuous by hypothesis.

The A+ x Aj-group of T (x) consists in general of several distinct
eigenvalues, the number of which may change discontinuously with s
in any neighborhood of » = 0. Let A(x,) be one of them for » = %, + 0
and let Q(»,) be the associated eigenprojection. This A (x,) may further
split for small |% — %,| & 0, but the derivative of any of the resulting
eigenvalues must be an eigenvalue of Q (x,) T (x,) Q (%,) in the subspace
Q (%) H (again by Theorem 5.4). But we have Q (x,) H C P;(x,) H because
A(x,) belongs to the A+ xA-group, so that Q(x,) T (%) Q (%¢)
= Q (29) T;(%0) Q (%). Therefore, the derivatives under consideration are
eigenvalues of the orthogonal projection (in the sense of I-§6.10) of the
operator T;(x,) on a certain subspace of M;(x,) = P;(x,) H. Since T ()
is symmetric, it follows from Theorem 1-6.46 that these eigenvalues lie
between the largest and the smallest eigenvalues of T (x,) in the subspace
M; (x,). But as T;(x) is continuous in » as shown above, the eigenvalues
of T;(x,) in M; (»,) tend for », — 0 to the eigenvalues of P; T’ (0) P; in M;,
which are all equal to A}. It follows that the derivatives of the A + x A;-
group eigenvalues of T (x) must also tend to A; for » — 0. This proves
the required continuity of the derivatives of the eigenvalues u, (x) con-
structed by Theorem 5.6. [In the above proof, essential use has been made
of the symmetry of T (x) in the application of Theorem I-6.46. This ex-
plains why the same result does not necessarily hold in the general case].

1 The original proof due to RELLICH is even longer.
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Remark 6.9. As in the general case, the eigenprojections or eigen-
vectors have much less continuity than the eigenvalues even in the case
of a symmetric perturbation, once the assumption of analyticity is
removed. Example 5.3 is sufficient to illustrate this; here the function
T (x) is infinitely differentiable in » and symmetric (by the usual inner
product in C2), but it is impossible to find eigenvectors of T (x) that are
continuous at » = 0 and do not vanish there.

4. The eigenvalues as functions of the symmetric operator

As in § 5.8, we can regard the eigenvalues of a symmetric operator T
as functions of T itself. As before, the eigenvalues are continuous func-
tions of T in the sense explained there. The situation is however much
simpler now because we can, if we desire, regard the repeated eigenvalues
as forming an ordered N-tuple by arranging them in the ascending order

(6.6) mT] = pu[T] < -+ = py[T].

This defines N real-valued functions of T, T varying over all symmetric
operators in H. The continuity of the eigenvalues is expressed by the
continuity of these functions (T* — T implies u, [T'] - u,[T]).

The numbering (6.6) of the eigenvalues is very simple but is not
always convenient, for the u,[7] are not necessarily even partially
differentiable. This is seen, for example, by considering the u, [T + » T']
as functions of #, where T, T’ are symmetric and  is real. The eigenvalues
of T + »# T’ can be represented as holomorphic¢ functions of % (Theorem
6.1). The graphs of these functions may cross each other at some values
of » (exceptional points). If such a crossing takes place, the graph of
Un [T + % T'] jumps from one smooth curve to another, making a corner
at the crossing point. In other words, the u,[T + % T'] are continuous
but not necessarily differentiable. In any case, they are piecewise holo-
morphic, since there are only a finite number of crossing points (excep-
tional points) in any finite interval of x.

Thus it is sometimes more convenient to return to the old point of
view of regarding the repeated eigenvalues of T as elements of an un-
ordered N-tuple &[T]. Then it follows from the result of the preceding
paragraph that & [T] is partially continuously differentiable. But & [T]
is totally differentiable only at those T' with IV distinct eigenvalues
(again Example 5.12). In the neighborhood of such a T, however, the
functions (6.6) are not only differentiable but holomorphic in T.

5. Applications. A theorem of Linskn

Perturbation theory is primarily interested in small changes of the
various quantities involved. Here we shall consider some problems
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related to the change of the eigenvalues when the operator is subjected
to a finite change!. More specifically, we consider the problem of estimat-
ing the relation between the eigenvalues of two symmetric operators
A, B in terms of their difference C = B — 4.

Let us denote respectively by a,, B, Y. # =1, ..., N, the repeated
eigenvalues of 4, B, C in the ascending order as in (6.6). Let

(6.7) TH)=A4A+xC, 0=x=1,

so that T(0) =4 and T (1) = B, and denote by u,(x) the repeated
eigenvalues of T (x) in the ascending order. As shown in the preceding
paragraph, the u,(x) are continuous and piecewise holomorphic, with
Un (0) = &y, pn(1) = B,. In the interval 0 < » < 1 there are only a
finite number of exceptional points where the derivatives of the u,(x)
may be discontinuous.

According to par. 2, we can choose for each » a complete orthonormal
family {g, (»)} consisting of eigenvectors of T (x):
(6.8) (T (%) — pn (%)) @u(2e) =0, n=1,.. N,

in such a way that the ¢, (x) are piecewise holomorphic. In general they
are discontinuous at the exceptional points; this is due to the rather
unnatural numbering of the eigenvalues u, (x). If x is not an exceptional
point, differentiation of (6.8) gives

(6.9) (C — n(#)) @n () + (T () — pin (%)) () = 0.
Taking the inner product of (6.9) with ¢,(x) and making use of the
symmetry of T (x), (6.8) and the normalization ||¢, ()| = 1, we obtain

(6.10) bn (%) = (C @u() , @ ()) .
Since the u, (x) are continuous and the ¢, (x) are piecewise continuous,
integration of (6.10) yields

1
611) o=t =pia(1) — #a(0) = J (C pu(x)  pu ) e
Let {x,} be an orthonormal basis consisting of the eigenvectors of C:

(6.12) Cxp="%Yn%,, n=1..,N.
We have

(C @u(®), @u () = X (C @u (%), %;) (%5, @a(x)) = 12 Vi [(@n (), ;)|
and (6.11) becomes 7
(6.13) Brn—on=2 0nsv;,

(6.14) s = J on o), ) .

1 For a more general study on finite changes of eigenvalues and eigenvectors,
see Davirs [1].
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The orthonormality of {g, (¥)} and {x;} implies that
(615) 20’,”'=1, 20’,”'=1, 0'”,'%0.
i ”

Now it is well known in matrix theory that a square matrix (g,;)
with the properties (6.15) lies in the convex hull of the set of all permuta-
tion matrices!. Thus (6.13) leads to the following theorem due to
Lipski [1].

Theorem 6.10. Let A, B, C, a,, Bn, ¥x be as above. The N-dimensional
numerical vector (fy—ay, . . ., By —ouy) lies in the convex hull of the vectors
obtained from (y,, ..., yx) by all possible permutations of ils elements.

Another consequence of (6.13) is

Theorem 6.11. For any convex function @ (f) of a real variable &, the
following inequality holds:

(6'16) 2 ¢(ﬁn - “n) = 2 ¢(yn) .
The proof follows easily from (6.13), (6.15) and the convexity of @, for
P(fr— o) =P (; Onj )’5) = ’ZO'M D(y,) -

Example 6.12, Let @ () = [¢|# with p = 1. Then (6.16) gives?
(6-17) Z |ﬂn - anl’é 2 h’nl'» Pg 1.
n n

Chapter Three

Introduction to the theory of operators
in Banach spaces

This chapter is again preliminary; we present an outline of those parts of
operator theory in Banach spaces which are needed in the perturbation theory
developed in later chapters. The material is quite elementary, but the presentation
is fairly complete, reference being made occasionally to the first chapter, so that
this chapter can be read without previous knowledge of Banach space theory.
It is also intended to be useful as an introduction to operator theory. To keep the
chapter within reasonable length, however, some basic theorems (for example,

1 See BIRKHOFF [1]. A permutation matrix (0;;) is associated with a permuta-
tionj — 7 (7) of {1, 2, . . ., n} by the relation 0;, = 1 if 2 = z(j) and 05, = 0 other-
wise.

? It was shown by HorFrmMAN and WIELANDT [1] that (6.17) is true for p =2
in a more general case in which 4, B are only assumed to be normal, if the right
member is replaced by trC*C and if a suitable numbering of {«,} is chosen.
Note that C = B — A need not be normal for normal 4, B.
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the Baire category theorem and the Hahn-Banach extension theorem) are stated
without proofl.

Again emphasis is laid on the spectral theory of operators, where the resolvent
theory is the central subject. The results related specifically to Hilbert spaces are
not included, being reserved for Chapters V and VI for detailed treatment.

§ 1. Banach spaces

1. Normed spaces

From now on we shall be concerned mainly with an infinite-dimen-
sional vector space X. Since there does not exist a finite basis in X, it is
impossible to introduce the notion of convergence of a sequence of
vectors of X in such a simple fashion as in a finite-dimensional space.
For our purposes, it is convenient to consider a normed (vector) space
from the outset.

A normed space is a vector space X in which a function | | is defined
and satisfies the conditions of a norm I-(1.18). In X the convergence of a
sequence of vectors {u,} to a # € X can be defined by |u, — u| — 0.
It is easily seen that the limit #, whenever it exists, is uniquely deter-
mined by {u,}. As we have shown in I-§ 1.4, every finite-dimensional
vector space can be made into a normed space.

In what follows we shall consider exclusively normed spaces X.
Finite-dimensional spaces are not excluded, but we shall always assume
that dimX > 0.

Example 1.1. Let X be the set of all numerical vectors # = (£,) with a countably
infinite number of complex components &,, 2 = 1, 2, .... Xis an infinite-dimensional
vector space with the customary definition of linear operations. Let m be the subset
of X consisting of all ¥ = (&,) such that the sequence {£,} is bounded. m is a linear
manifold of X and it is itself a vector space. For each u ¢ m define its norm by

(1.1) el = lm = 4o = sup|é -

It is easy to see that this norm satisfies I-(1.18), so that m is a normed space. (1.1)
is a generalization of I-(1.15). Let I be the set of all # = (&) € X such that

(1.2) el = Nlella = uefly = Z 1€l

is finite. I is a normed space if the norm is defined by (1.2). More generally we can
define the normed space I? by introducing the norm?

1 Standard textbooks on operator theory in Banach spaces are Banach (1],
DieuponnE (1], DunrForp and ScHWARTZ (1), GOLDBERG (1), HILLE and PHILLIPS
[1), Loren [1), LyusTERNIK and SoBoLEV (1), Riesz and Sz.-NaGy 1], SoBoLEV
[1), Tayror (1], Yosipa (1], ZaaNeN [1].

2 The triangle inequality for the norm (1.3) is known as the Minkowski in-
equality. The proof, together with the proof of the Hoélder inequalities, may be
found in any textbook on real analysis; see e. g. RoYDEN 1) or HARDY, LITTLEWOOD
and Pérva [1].
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(1.3) lull = lullee = u], = (%' |§k|»)1/»,

where p is a fixed number with p = 1. m can be regarded as the limiting case of I?
for p — oo, and is also denoted by I. I? is a proper subset of I?if p < gq.

Example 1.2. The most important examples of normed spaces are function
spaces. The simplest example of a function space is the set C[a, b] of all complex-
valued, continuous functions 4 = % (#) on a finite closed interval [a, b]! of a real
variable (see Example I-1.2). C[a, b] is a normed space if the norm is defined by

(1.4 ul| = |u = |lu|, = max |u(x)|.
) ol = Il y = 14l = max. ()

More generally, the set C(E) of all continuous functions 4 = u (%) = u(%,, . . ., #,,)
defined on a compact region E in the m-dimensional space R™ (or, more generally,
on any compact topological space E) is a normed space if the norm is defined by

(1.5) el = el gy = Il oo = r;lg|u(x)| .

Example 1.3. We could introduce other norms in C[a, b], for example
1.6) el = Neellp = Nullo = (Slu@@)? dxpe, pz= 1.
This would make C[a, b] into a different normed space. Actually a wider class of
functions can be admitted when the norm (1.6) is used. We denote by L?(a, b) the
set of all complex-valued, Lebesgue-measurable functions # = % (x) on a finite or
infinite interval (a, b) for which the integral (1.6) is finite. It can be shown that
L?(a, b) is a normed space by the customary definition of linear operations and by
the norm (1.6). It should be remarked that in L?(a, b), any two functions u, v
are identified whenever they are equivalent in the sense that u(r) = v(x) almost
everywhere in (a, b); this convention makes the first condition of I-(1.18) satisfied2.

More generally, for any measurable subset E of R™ the set L? (E) of all Lebesgue-
measurable functions ¥ = u(¥) = u(#,, . . ., #,) on E such that (1.6) is finite is a
normed space if the norm is defined by (1.6). Again two equivalent functions should
be identified. In the limiting case p — oo, L? (E) becomes the space L® (E) = M(E)
consisting of all essentially bounded functions on E with the norm

(1.7) ul| = [|u = ||lu|, = ess sup|u(x)|.
I = Pl ey = 1) = 55 sup )]

In other words, [|#||o, is the smallest number M such that |u (¥)| < M almost every-
where in E.

In the same way, we can define the space L?(E, d u) over any set E on which a
measure d y is defined?®, the norm being given by (Ef |u(x)|? d ,u(x))ll’.

Example 1.4. Let C’[a, b] be the set of all continuously differentiable functions
on a finite closed interval [a, b]. C’[a, b] is a normed space if the norm is defined by

(18 lull = oo + %'l oo »
where ||u|, is given by (1.4) and «’ = du/dx.

1 We denote by [a, b] a closed interval, by (a, b) an open interval, by [a, b)
a semi-closed interval, etc.

2 In this sense L? is a set of equivalence classes of functions rather than a set
of functions. But it is customary to represent an element of L? by a function, with
the identification stated in the text.

3 When we consider function spaces like L?, we have to assume that the
reader is familiar with the basic facts on real analysis, including Lebesgue integra-
tion, for which we may refer to standard textbooks (e. g., RoyDEN (1]). In most
cases, however, it is restricted to examples, and the main text will be readable
without those prerequisites.
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Remark 1.5. The following are known as the Holder inequalitiest. If p = 1 and
g= 1arerelated by p~* + ¢~2 = 1 (p = oo or ¢ = oo is permitted), then

(1.9) l%' Ek’hl = lullololle, w= (&), v=>(),
where ||u|,, [[o], are given by (1.3), and
(1.10) |[ w(x) v(x) dx| < |Ju]l, o],

where |u||,, ||v|, are given by (1.6).
Problem 1.6. For || ||, defined by (1.6) we have
(1.11) luole= flulsllofly for s*=p=*+4q7t,
112)  uovol S [ullollel, for st =p-t 4+ gt 41,

etc., where u v = u (%) v (x), etc. Similar inequalities exist for || ||, given by (1.3).
[hint: Apply (1.10) to the function |u v|* etc.]

2. Banach spaces

In a normed space X the convergence u, — # was defined by %, — #|
— 0. As in the finite-dimensional case, this implies the Cauchy condition
|4 — %) = O [see I-(1.28)]. In the infinite-dimensional case, however,
a Cauchy sequence {u,} (a sequence that satisfies the Cauchy condition)
need not have a limit # € X. A normed space in which every Cauchy
sequence has a limit is said to be complete. A complete normed space is
called a Banach space. The notion of Banach space is very useful since,
on the one hand, the completeness is indispensable for the further
development of the theory of normed spaces and, on the other, most of
normed ‘spaces that appear in applications are complete®. Recall that a
finite-dimensional normed space is complete (I-§ 1.4).

Example 1.7. In the space C(E) of continuous functions (Example 1.2), u,, - %
means the uniform convergence of u, (x) to u(x) on E. The Cauchy condition I-(1.23)
means that |u,(¥) — %, (¥)] = 0 uniformly. It is well known?® that this implies
the uniform convergence of u,(x) to a continuons function #(x¥). Hence C(E) is
complete.

Example 1.8. The spaces I?, 1< p < oo, (Example 1.1) are complete. The
function spaces L? (E) (Example 1.3) are complete. We shall not give the proof here?.

Most of the topological notions introduced in I-§ 1.5 for a finite-
dimensional normed space can be taken over to a Banach space. Here
we shall mention only a few additions and modifications required.

1 For the proof see e. g. RoYDEN [[1], p. 97.
2 Besides, any normed space X can be completed. This means that X is identified
with a linear manifold in a complete normed space X. Furthermore, X can be so

chosen that X is dense in X. X is constructed as the set of all equivalence classes of
Cauchy sequences {u,} in X; two Cauchy sequences {«,} and {v,} are equivalent by
definition if lim (4, — v,) = 0. For details see e. g. Yosipa [1].

3 See e. g. Knopp (1], p. 71.

¢ See any textbook on real analysis, e. g. RoYDEN ([1}.
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A linear manifold M of a Banach space X need not be closed. A closed
linear manifold M of X is itself a Banach space. In this sense it is a
subspace of X. The closure of a linear manifold is a closed linear manifold.

Lemma 1.9. If M is a closed linear manifold, the linear manifold M’
spanned by M and a finite number of vectors u,, . . ., u,, is closed.

Proof. It suffices to consider the case m = 1; the general case is
obtained by successive application of this special case. If #, € M, we have
M’ =M so that M’ is closed. If #, ¢ M, we have dist(%,, M) =d >0,
because M is closed. M’ is the set of all #’ of the form #' = & u, + v,
v € M. We have

(1.13) €] = [lw')fa .
In fact, |2 % =|luy + &2v| = 4 if £+ 0 while (1.13) is trivial if

Suppose now that u, € M, 4, —~ ', n— co; we have to show that
u' € M. Let u,, = &, u, + v,, v, € M. Application of (1.13) to #’ = u,, — u,,
gives |&, — &.| < |4y — wy|/d—~ 0. Hence &, & for some &, and
Vp= Uy — &ty —~>u' — Euy. Since M is closed and v, €M, v=u' —
— & u, € M. Hence u' = & u; + v € M’ as required.

For any subset S of X, there is a swmallest closed linear manifold
containing S (that is, a closed linear manifold M such that any closed
linear manifold M’'> S contains M). It is equal to the closure of the
(linear) span of S, and is called the closed linear manifold spanned by S
or simply the closed span of S.

Example 1.10. In I? the set of all u = (&) with & = 0is a closed linear manifold.
In I the set ¢ of all # = (&) such that lim &, = & exists is a closed linear manifold.
The subset ¢, of ¢ consisting of all # such that & = 0 is a closed linear manifold of
1* and of c. In C[a, b] the set of all functions # (¥) such that #(a) = 0 is a closed
linear manifold. The same is true of the set of » such that u (@) = u (b) = 0. C[a, b]
itself may be considered a closed linear manifold of L% (a, b).

A subset S of X is (everywhere) dense if the closure S coincides with X.
In this case each u € X can be approximated by an element of S, in the
sense that for any ¢ > 0 there is a v €S such that |# — v < &. More
generally, for two subsets S,, S, of X, S, is dense with respect to S, if
§.DS, (or dense in S, if S,CS, in addition). Then each % €S, can be
approximated by an element of S,. If S, is dense with respect to S, and S,
is dense with respect to S;, then S, is dense with respect to S,.

Example 1.11. In C[a, b] (finite interval) the set of all polynomials is every-
where dense (theorem of WEIERSTRASS) L. The same is true for L? (@, b) for 1 <p <oo.

In L?(a, b) (not necessarily finite interval) the set C§° (a, b) of all infinitely differen-
tiable functions with compact support? is everywhere dense. If E is an open set of
1 See e. g. RoYDEN (1], p. 150.
2 A function has compact support if it vanishes outside a compact set. Thus
u € C3°(a, b) if all the d"uda™ exist and u(x) = 0 except fora <a’' < v < b' <b
(where a’, b’ depend on u).
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R™, the set of all infinitely differentiable functions with compact support in E is
dense in L?(E), 1 < p < ool.

Unlike a finite-dimensional normed space, an infinite-dimensional
Banach space X is not locally compact (see I-§ 1.5). Thus X contains a
bounded sequence {u,} that contains no convergent subsequence.
{u,} is such a sequence if

(1.14) l#n] =1, |thy— 4| =1 for nm.

{u,} can be constructed by induction. Suppose that #,, . . ., #, have been
constructed. Let M, be their span. Then there is a # € X such that
|#]| = 1 and dist (», M,,) = 1, as is seen from Lemma 1.12 proved below.
It suffices to set u, ., = u.

Lemma 1.12. For any closed linear manifold M = X of X and any
e >0, there is a u € X such that |u| = 1 and dist(u, M) > 1 — &. We can
even achieve dist (4, M) = 1 if dim M < co.

Proof. There is a u, € X not belonging to M, so that dist (%, M)
=d>0. Hence there is a vy€M such that |u, — v,| < df(1 — ¢).
Set u, = uy— vy, Then |u,]| < d/(1 — &) and dist(x,, M) = 32{4"141 — v

= lgﬁfn |#g — v|| = dist (g, M) = d > (1 — &) |u,l|. The required # is obtain-

ed by normalizing u, : # = u,[||4,|. If dim M < oo, let u, be as above and
let X, be the linear manifold spanned by M and u,. We can apply the
result just obtained to the subspace M of X,. Thus there exists a #, € X,
such that |u,|=1 and dist(%,, M) >1— -1 Since dimX, < oo,
X, is locally compact and there is a convergent subsequence of {u,}.
It is easy to see that its limit » satisfies || = 1 and dist(», M) = 1.

A subset S ¢ X is said to be fundamental if the closed span of S is X
(in other words, if the span of S is everywhere dense). S is separable if S
contains a countable subset which is dense in S. For the separability
of X, it is sufficient that X contain a countable subset S’ which is funda-
mental; for the set of all linear combinations of elements of S’ with
rational coefficients is a countable set dense in X. A subset of a separable
set is separable?2.

Example 1.13. C|[qa, b] is separable; this is a consequence of the theorem of
‘WEIERSTRASS, for the set of monomials «, () = #®, #» = 0, 1, . . ., is fundamental in
Cla, b] (see Example 1.11). I? is separable if 1 < p < oo. The canonical basis
consisting of #,, = (d,3), # = 1,2, . . ., is fundamental in I?. L? (a, b) is also separable
if 1< p < 0o. The set of functions %, 3 (¥), which is equal to 1 on (a’, b") and
zero otherwise, is fundamental when a’ and %’ vary over all rational numbers in
(@, b)3. Similarly L?(R™) is separable for 1 < p << oo. It then follows that L? (E) is also
separable if E is any measurable subset of R™, for L? (E) may be regarded as the
subspace of L?(R™) consisting of all functions vanishing outside E.

1 For the proof see e. g. SOBOLEV (1], p. 13.
? See DuNFORD and ScawaRrTz (1], p. 21.
3 This follows from the properties of the Lebesgue integral; see ROYDEN [1].
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An important consequence of the completeness of a Banach space
is the category theorem of BAIRE!:

Theorem 1.14. If X is the union of a countable number of closed subsets
Spm=1,2, ..., at least one of the S, contains interior points (that is,
contains a ball).

In spite of some essential differences in topological structure between
a general Banach space X and a finite-dimensional space, most of the
results regarding sequences {u,}, infinite series X %, and vector-valued
functions # () stated in I-§ 1.6—7 remain valid in X. Such results will be
used freely without comment in the sequel. It should be noted that the
completeness of X is essential here. For example, the existence of the
sum of an absolutely convergent series X' u,, depends on it, and similarly
for the existence of the integral [ «(f) ¢ of a continuous function u (¢).
Also we note that the analyticity of a vector-valued function =(f) is
defined and the results of complex function theory are applicable to
such a function (see loc. cit.). On the other hand, results of I-§ 1 based
on the explicit use of a basis are in general not valid in the general case.

3. Linear forms

A linear form f[#] on a Banach space X can be defined as in I-§ 2.1.
But we here consider also linear forms f[#] that are defined only on a
certain linear manifold D of X. Such a form f will be called a linear
form in X, and D = D (f) will be called the domain of {. f is an extension of
g (and g is a restriction of f) if D(f)> D(g) and f[u] = g[«] for u € D(g);
we write fD g or gCf.

f[u] is continuous at u = u, €D if |u, — uy| -0, u, € D, implies
fl%,] — f[%y). Since flu,] — o] = [ [#, — u,), it follows that f[u] s
continuous everywhere in D if and only if it is continuous at u = 0. Such
an f is simply said to be continuous.

In a finite-dimensional space every linear form is continuous. This
is not true in the general case, though it is not easy to give an example
of a discontinuous linear form defined everywhere on a Banach space X2.

If a linear form f is continuous, there is a 6 > 0 such that |u] <
implies |f[#]| < 1. By homogeneity, it follows that

(1.15) |f[#]| < M|u| forevery u€D(f)

where M = 1/8. A linear form f with the property (1.15) is said to be
bounded. The smallest number M with this property is called the bound
of f and is denoted by ||f|. It is easy to see that, conversely, (1.15) implies
that f is continuous. Thus a linear form is continuous if and only if it is
bounded.

1 See e. g. RoyDEN [[1], p. 121, or any textbook on functional analysis.
2 See footnote 2 of p. 133.
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Lemma 1.15. 4 bounded linear form f is determined if its values are
given in a subset D' dense in D(f).

Proof. For each # € D (f), there is a sequence u, € D’ such that %, — u.
Thus f[#] = limf[u,] by continuity.

Theorem 1.16 (Extension principle). A bounded linear form with
domain D can be extended to a bounded linear form with domain D (the
closure of D). This extension is unique and the bound is preserved in the
extension.

Proof. The uniqueness of the extension follows from Lemma 1.15.
To construct such an extension, let » € D and let u, € D be such that
4y, —u. The f[u,] form a Cauchy sequence since |[f[u,] — f[u,]|=
= |f[ttn — )| < || |9 — thm] > O, n, m —> co. Let the limit of f[u,]
be denoted by f'[#]. f'[#] is determined by # independently of the
choice of the sequence {u,}, for #, > » and v, - » imply %, — v, >0
and hence f[u,] — f[v.] = f[#, — v,] = 0. It is now easy to show that
f'[u] is a linear form with domain D. That |f| = ||f| follows from the
inequality |f'(u]| < |/] |], which is the limit of |/ [ua]| < I/] [un].

Example 1.17. In I#, 1 < p < oo, consider a linear form f given by

(1.16) flu] = %'“n & for u=(&).

If we take as D(f) the set of all # € I# such that only a finite number of the &, are
not zero, the coefficients o, are arbitrary. But such an f is in general not bounded.
f is bounded if

(1.17) M = (J |ag/9¥t < co where p~!4gl=1.

Then we have |f[#]| < M|u| by the Holder inequality (1.9). In this case we can
take D (f) = I?; then it can easily be shown that ||f| = M. It is further known that
if p < oo any bounded linear form on I? can be expressed in the form (1.16) with the
o, satisfying (1.17)1.

Example 1.18. Let X = C[aq, b]; set f[u] = u(x,) for every u € X, with a fixed
%y @< %= b [see I-(2.3)]. f is a bounded linear form with domain X. More ge-
nerally, let f(x) be a complex-valued function of bounded variation over [a, b].

Then the Stieltjes integral
b

(1.18) flu] = [u(x) df(x)

a

defines a linear form on C[a, b]. f is bounded, for |f[u]| =< M |u| where M is the
total variation of f. Hence||f|| =< M. Actually it is known that ||f| = M, and that any
bounded linear form on C[a, b] can be expressed by a function f of bounded varia-
tion in the form (1.18)2.

Example 1.19. For each u¢€ C’[a,b] (see Example 1.4) set f[u] = u’(x,).
f is a bounded linear form on C’[a, b]. f can also be regarded as a linear form in
X = C[a, b] with D(f) = C’[a, b] C X. In this interpretation f is not bounded, for
|« (%,)| may be arbitrarily large for ||u|| = max|u(¥)| = 12,

! See e. g. RoYDEN (1], p. 103, TavrLor (1], p. 193, Yosipa (1], p. 117.

? See e. g. TavLor (1], p.382.

® This f is a simple example of an unbounded linear form, but D(f) is not the
whole space X = C[a, b]. An unbounded linear form with domain X could be
obtained by extending f, but it would require the use of the axiom of choice.
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Example 1.20. For # € L?(E) and f€ L9(E), p~* + g~ =1, set
(1.19) flu] = ff(x) u(x)dx.

For a fixed f, f[#] is a bounded hnea.r form on L?(E) with [|f]| < ||f|, by (1.10).
It is known that ||f| = ||f], and that any bounded linear form on L?(E), p < oo,
can be expressed in the form (1.19) in terms of an f € L¢(E) .

4. The adjoint space

Semilinear forms and bounded semilinear forms in a Banach space X
can be defined in the same way as above (cf. I-§ 2.2). The adjoint space X*
of X is defined as the set of all bounded semilinear forms on X, and X*
is a normed vector space if the norm of f € X* is defined as the bound
I/l of f. As before we introduce the scalar product (f, #) = f[«] for every
f € X* and » € X. The generalized Schwarz inequality I-(2.25) is again a
consequence of the definition of ||f|. Other notions and obvious results of
the finite-dimensional case will be taken over without further comment.

X* is a Banach space. To prove the completeness of X*, consider a
Cauchy sequence {f,} in X*. Then

(1'20) l(fn"fm' “)l = "fn"‘fm” "“"”’Or n, m —>oo ,

for every u € X so that lim(f,, #) = f[«] exists. It is easily seen that
fu] is a semilinear form in #. On letting # — co in |(f,, #)| < ||fal| |#|
we have |f[u]| £ M|u|, where M = lim|f,| < oo since the |f,| form a
Cauchy sequence of positive numbers. Thus f is bounded with ||f| < M.
Now (1.20) shows for m — oo that |(f, — f, u)| < mli_r:loo Ifn — full %] or

lfa= 1= Yim Ifa—ful- Hence lim |fo—fI < lim_|fo—fu] =0. Thus

f» — f and X* is complete.

All these considerations would be of little use if there were no bounded
semilinear forms on X except the trivial form 0. For this reason the
Hahn-Banach theorem, which assures the existence of ‘“‘sufficiently
many’’ bounded linear (or equivalently, semilinear) forms on X, is basic
in Banach space theory. We shall state this theorem in a rather restricted
form convenient for our use.

Theorem 1.21. Any bounded linear form in a Banach space X (with
domain D C X) can be extended to a bounded linear form on the whole of X
without increasing the bound.

We do not give the proof of this theorem?, but we add the following
comments. If this theorem has been proved for real Banach spaces, the
complex case can be dealt with by using the method of I-§2.5. In the
case of a real space, the theorem admits the following geometric inter-
pretation. Let S be the open unit ball of X. The intersection S, of S

1 See e. g. RoYDEN (1], p. 103, TavLor (1], p. 382, Yosipa (1], p. 115.
2 See e. g. RoYDEN (1], p. 162, or any book on functional analysis.
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with D is the unit ball of D. If there is in D a support hyperplane M,
to S, (see I-§ 2.5), then there is in X a support hyperplane M to S contain-
ing My L.

A consequence of Theorem 1.21 is

Theorem 1.22. Let M be a closed linear manifold of X and let u, ¢ X
not belong to M. Then there is an f € X* such that (f, ug) =1, (f, u) =0
for u € M and ||f| = 1/dist (#y, M).

Proof. Let M’ be the span of M and #,. As in the proof of Lemma 1.9,
each # ¢ M’ has the form u =& u,+ v, v € M. & is determined by #,
so that we can define a function f[u#] = £ on M. } is obviously semilinear
and bounded by (1.13), with ||f| < 1/d where d = dist (#,, M). Actually we
have ||f| = 1/d, for there is a # € M’ for which || = 1 and dist (¥, M) >
> 1 — ¢ (apply Lemma 1.12 with X replaced by M’); for this # we have
1 — ¢ < dist(u, M) = dist (& uy + v, M) = |&] dist (u,, M) = |&| 4 or |f[«]|
> (1 — ¢) |»||/d. This f can now be extended to X preserving the bound.
Denoting again by f the extended form, we see easily that the assertions
of the theorem are satisfied.

Corollary 1.23. For any two vectors u < v of X, there is an [ ¢ X*
such that (f, u) + (f,v). Thus X* contains sufficiently many elements to
distinguish between elements of X.

Corollary 1.24. For any wuy € X, there is an € X* such that (f, uy)
— Jugl, 1] = 1 [see 1-(2.27)).

A consequence of Corollary 1.24 is that I-(2.26) is valid in a general
Banach space:

R
(21)  fu = sup LGBl —cup |7, u)| = sup |(f )]
0fEX* =1 =1

Example 1.25. Let u = (£&;) € P and f = (o) € W withp—t + ¢ 1=1,1Z p < o0.
For a fixed f, f[u] = X a & is a bounded semilinear form on X, and any bounded
semilinear form on X is expressed in this form by an f € I¢ (Example 1.17). For this
reason the adjoint space of I? is identified with 19, and we write (f, u) = 3 oty &x.
Similarly, the adjoint space of L?(E), 1 £ p < o0, is identified with L?(E) where
P~ + ¢~ = 1. We write
(1.22) (f. )= [f@)um dx, u€L?E), f€L(E).

E

The adjoint space of C[a, b] is the space BV [a, b] of all functions f(+) of bounded
variation properly normalized, with the norm | f| equal to the total variation of f.

The scalar product is
b

(1.23) (tw) = [u df(x), w€Cla,b], FEBV[a,b].

a
Problem 1.26. Each finite-dimensional linear manifold M of X has a com-
plementary subspace N: X = M@ N. [hint: It suffices to consider the case dimM
=1.Let03u € Mandlet f € X*, (f, u) = 1. Let N be the set of all v € X such that
(fv)=0]

! The same is true if the open unit ball is replaced by any open convex subset
of X.
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The adjoint space X** of X* is again a Banach space. As in the
finite-dimensional case, each # € X may be regarded as an element of
X** (see 1-§2.6). In this sense we may again write (u, f) = (f, ) for
u € X and f € X*. This does not imply, however, that X** can be identified
with X as in the finite-dimensional case, for there may be semilinear forms
F[f] on X* that cannot be expressed in the form (7, ») with a u € X.
If there are no such forms F, X is said to be reflexive and X is identified
with X** In general X is identified with a certain subspace of X**,

The results of I-§ 2.6 on annihilators should be modified and sup-
plemented accordingly. For any subset S of X, the annihilator Si is a
closed linear manifold of X* (since the scalar product is a continuous
function of its arguments). The annihilator S1 1 of SL is a closed linear
manifold of X** but need not be a subset of X (under the identification
stated above). In any case we have

(1.24) SLLAX=[S]

where [S] is the closed span of S. Since S+ L >S is clear, we have S+ 1>
D [S]. To prove (1.24), it is therefore sufficient to show that any » € X
not belonging to [S] does not satisfy (f, #) =0 for all f€SL = [S]L.
But this is implied by Theorem 1.21.

5. The principle of uniform boundedness

The following are among the basic theorems in Banach space theory.
In what follows X denotes a Banach space.

Theorem 1.27. Let {u,} be a sequence of vectors of X such that the
numerical sequence {(f, u,)} is bounded for each fixed f € X*. Then {u,} is
bounded: |u,| < M.

Theorem 1.28. Let {f,} be a sequence of vectors of X* such that the
numerical sequence {(f,, u)} is bounded for each fixed u € X. Then {f,} is
bounded: ||f,| < M.

These are special cases of the following theorem:.

Theorem 1.29. Let {p[u]} be a family of nonnegative continuous
functions defined for all w € X such that

(1.25) Pl +u"] = palu']+ palu’] .

If {pa[u)} is bounded for each fixed u, then it is uniformly bounded for
Il = 1.

Proof. Let S, be the set of all »€ X such that p,[#] < » and
pa[—u] < nfor all A. The S, are closed since the p; [#] are continuous in
u. The assumption implies that for each » € X there is an # such that
Pa[u] < nand p,[—u] < n for all . Hence # € S, and X is the union of
theS,, n=1,2,... . Itfollows from the category theorem (Theorem 1.14)
that at least one S, contains a ball K, say with center %, and radius 7.
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Any u € X with |4| £ 27 can be written in the form » = ' — u"
with «', »” € K; it suffices to set u' = u, + /2, u"’ = uy — u/2. Hence
balu] < palw']+ pal—u']< n+n = 2n by (1.25). Thus {pa[u]} is
uniformly bounded for |%|| < 27. If 27 = 1, this proves the assertion.
If 27 <1, let m be an integer larger than 1/27. Then || < 1 implies
|#fm| < 27 so that p,[u/m] < 2n. Repeated application of (1.25) then
gives p;[u] < 2m n for |u| < 1.

To deduce Theorem 1.28 from Theorem 1.29, it suffices to take
Pn[#] = |(fn, #)|- To deduce Theorem 1.27, we replace the X of Theorem
1.29 by X* and set p, [f] = |(f, #,)| [note (1.21)].

Problem 1.30. Let f, € X* be such that lim(f,, #) = f[%] exists for all »¢ X.

7 —~» OO

Then f€ X* and ||f]| < lim inf||f,] < oo.

6. Weak convergence

A sequence u, € X is said to converge weakly if (u,, f) converges for
every f € X*. If this limit is equal to (u, f) for some u € X for every f,
then {u,} is said to converge weakly to u or have weak limit u. We denote
this by the symbol Up—> U OF U = w-limu,. It is easily seen that a

sequence can have at most one weak limit!. To distinguish it from weak
convergence, the convergence #, > # defined earlier by |«, — #| -0
is called strong convergence. To stress strong convergence, we sometimes
write #,, - or u= s-lim#u,. But in this book convergence will mean

strong convergence unless otherwise stated.

It is obvious that strong convergence implies weak convergence.
The converse is in general not true unless X is finite-dimensional.
Furthermore, a weakly convergent sequence need not have a weak
limit. If every weakly convergent sequence has a weak limit, X is said
to be weakly complete.

A weakly convergent sequence is bounded. This is an immediate con-
sequence of Theorem 1.27. Also we note that

(1.26) |#| £ lim inf|»,| for u= w-limu, .

This follows from (u, f) = lim (u,, f) where f € X* is such that ||f| =1,
(#, f) = |4| (see Corollary 1.24).

Lemma 1.31. Let u, € X be a bounded sequence. In order that u, con-
verge weakly (to u), it suffices that (u,, f) converge (to (u, f)) for all f of a
fundamental subset S* of X*.

1 Weak convergence is related to the weak topology of X, as strong convergence
is related to the norm topology. In this book we do not need the deeper results on
weak topology; the use of the simple notion of weak convergence is sufficient for our
purposes.
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Proof. Let D* be the span of §*; D* is dense in X*. Obviously (u,, f)
converges [to (u,f)] for all f€ D*. Let g € X* and ¢ > 0. Since D* is
dense in X*, there is an f € D* such that |g — f| < e. Since (u,, f) con-
verges, there is an N such that |(, — %y, f)| < ¢ for n, m > N. Thus
I(uwg) - (um’g)l = I(un»g—f)l + I(un— um»’)l + I(um» f_g)l = (2M+ 1) €
for n, m > N, where M = sup| u,|. This shows that (u,, g) converges for
all g € X*. When (u,, f) > (, f) for f € D*, we can apply the same ar-
gument with #, — u,, replaced by u, — u to conclude that («,,g)—(%,g)
for all g € X*.

The relationship between strong and weak convergence is given by

Theorem 1.32. A sequence u, € X converges strongly if and only if
{(%,, f)} converges uniformly for |f| < 1, f € X*.

Proof. The “only if”’ part follows directly from |(#,, f) — (#m, /)| =
< |4tn — %]l 17l S ||%n — %nl|. To prove the “if”” part, suppose that (u,, f)
converges uniformly for ||f| < 1. This implies that for any ¢ >,0, there
exists an N such that |(#, — %y, )| < ¢if n, » > N and ||| < 1. Hence
%y — | = Lsup [(#, — W, )| < € for u, m > N by (1.21).

fiAl

Remark 1.33. In Theorem 1.32, it suffices to assume the uniform
convergence of (u,, f) for all f of a set dense in the unit ball of X*, for
|(#, — tm, f)| =< & for such f implies the same for all / of the unit ball.

Problem l 34. Let M be a closed linear manifold of X. Then u,, € M and u, gl
imply # € M. |_'hmt Theorem 1.22.]

Let us now consider vector-valued functions # (£) of a real or complex
variable #. We have already noticed that the notions of strong continuity,
strong differentiability, and strong analyticity of such functions, and
the integrals [ «(¢) d¢ of continuous functions % (f), can be defined as in
the finite-dimensional case (see par. 2).

u(t) is weakly continuous in ¢ if (u(f), f) is continuous for each f € X*.
Obviously strong continuity implies weak continuity. #(f) is weakly
differentiable if (u(?), f) is differentiable for each f € X*. If the derivative
of (u(#), f) has the form (v(¢), f) for each f, v(f) is the weak derivative
of u().

If u(#) is weakly continuous at ¢ = ¢,, |%(f)| is bounded near ¢ = ¢,;
this follows from Theorem 1.27. If % (¢) is weakly continuous on a compact
set of ¢, then ||u (f)| is bounded there.

Lemma 1.35. If u(f) is weakly differentiable for a <t < b with weak
derivative identically zevo, then u(t) is constant.

Proof. The assumption implies that (#(#), f) has derivative zero,
so that (u ('), f) = («(t"), f) for any ¢, #'" and f € X*. Hence (') = u (")
by Corollary 1.23.

Lemma 1.35 implies that (£) is constant if u (f) is strongly differen-
tiable with du (f)/dt = 0. It is destrable, however, to have a direct proof
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of this fact, for the proof of Lemma 1.35 is not altogether elementary
since it is based on the Hahn-Banach theorem. We shall give a direct
proof in a slightly generalized case.

Lemma 1.36. If u(t) is strongly continuous for a <t < b and has the
strong right derivative DY u(f) = 0, then u(t) is constant.

Proof. D*u(f) is defined as the strong limit of A=1[u(t + h) — u(f)]
for A \\01. We may assume without loss of generality that a = 0 and
%(0) = 0. We shall prove that |« (#)]| < ¢ for any ¢ > 0; then u(f) =
follows on letting & — 0. Suppose ¢ is given. Since D*%(0) = 0, we have
l#(#)] < et for sufficiently small ¢. Let [0, ¢) be the maximal subinterval
of [0, b) in which |« (#)| < & ¢ is true; we shall show that c = b. If ¢ < b,
we have |« (c)| £ ec by continuity. Then it follows from D*u(c) = 0
that |u(c + A)| = |u(c)| + o(h) < ec+ o(h) < e(c + k) for sufficiently
small 2 > 0. But this contradicts the definition of c.

We can also define a weakly holomorphic function «(f) of a complex
variable {. But such a function is necessarily strongly holomorphic.
Namely, we have

Theorem 1.37. Let u({) € X be defined in a domain A of the complex
plane and let (u (L), f) be holomorphic in A for each f € X*. Then u(L) is
holomorphic in the strong sense (strongly differentiable in ).

Proof. Let I be a positively-oriented circle in A. We have the Cauchy
integral formula for the holomorphic function (% ({), f):

r

=2

for ¢ inside T'. It follows that
(120) @+ ) — %), N -5 @E.

@@), ,
=50 f T—t—nc—07 %"

But #({) is bounded on I' because it is weakly continuous, so that
(), H| = M|f| for ¢’ € T'. Hence (1.27) is majorized by a number of
the form |n| M'||f] for small ||. This shows that n=X(u({ + n) — »({), /)
converges as 7 — 0 to d(#(), f)/d¢ uniformly for ||f| < 1. It follows from
Theorem 1.32 that %~ (u({ + n) — u(n)) converges strongly. This proves
that «({) is strongly differentiable and hence holomorphic.

Remark 1.38. If |«#(£)| is assumed to be locally bounded, it suffices
in Theorem 1.37 to assume that (#({), /) is holomorphic for all f of a
fundamental subset of X* (note Remark 1.33).

1 5 \(Omeans 4 > 0and h— 0.
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7. Weak* convergence

In the adjoint space X* there is another notion of convergence called
weak* convergencel. A sequence f, € X* is said to converge to f weak* if
(#, fn) > (u, f) for each u € X. Weak* convergence is weaker than weak
convergence considered in the Banach space X*, for the latter requires
the convergence of (F, f,) for all F € X**. We use the notations f, = /
or w*-limf, = f for weak* convergence.

A weak* convergent sequence is bounded. This follows immediately
from Theorem 1.28.

It should be noted that if («,f,) converges for each # ¢ X, then
w*-limf, = f € X* exists (see Problem 1.30). In this sense X* is weak*
complete.

The following results can be proved in the same way as for weak
convergence.

{f.} converges strongly if and only if {(«, f,)} converges uniformly for
Jul < 1,5 €X.

If {f,} is bounded, it suffices for the weak* convergence of {f,} that
{(u, f,)} converge for all » of a fundamental subset of X.

If (£) € X* is holomorphic in a domain A of the complex plane in
the weak* sense [that is, if (f({), #) is holomorphic in A for each « € X],
then f({) is holomorphic in the strong sense.

Problem 1.39. Let u,, u € X, f,, f € X*. Then (u,, f,) = («, f) if (i) , T and
fa —>lor(u) Un > ua.ndf,,——»f

8. The quotient space

If M is a linear manifold of a vector space X, the quotient space
X = X/M is defined as the set of all cosets & = # + M modulo M (or all
inhomogeneous linear manifolds parallel to M) with the linear operations

defined by I-(1.8). If X is a normed space and M is closed, X becomes a
normed space by the introduction of the norm
(1.28) &) = lI€l£||‘U|| 1nf ||u — 2| = dist (u, M) .
vER

It is easy to verify that (1.28) satlsﬁes the conditions I-(1.18) of a norm.
Recall that 4 = 4’ if and only if » — «' € M.

X is a Banach space if X is a Banach space. To prove this, let {i,} be
a Cauchy sequence in X. Let n(k) be an integer such that ||, — 4,
< 2% for n, m= n(k). We may further assume that #(1) < #(2) <
Set ~ - .
Vp = Uy (k+1) — u,,(k), k= 1, 2, v e
Then |§,] < 2-%, and we can choose a v, € &, for each % in such a way
that v < ||6:)] + 2% < 21-%. Set u =wu,q + 3 v; this series
- E=1

1 Again we shall not consider the deeper notion of weak* topology.
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converges absolutely and defines a vector of X since X is complete.
Denoting by wj, the partial sums of this series, we have @, = @, (z+y-
Since @, — 4| < |wy, —u| >0 as k—>oo, we have |#@,u — @]~ 0.
Choose % so large that || @, — 4| < ¢as wellas 2=* < ¢; then |4, — | =
= |y — Fny) + |Bny — 8| <2& for » = n (k). This shows that {4}
has the limit % € X and completes the proof of the completeness of X.

The codimension or deficiency of a linear manifold M of X is defined by
codimM = dim X/M as before (I-§ 1.3).

Lemma 1.40. If M is closed, then codimM=dimM<L and codimM<L
= dimM.

Proof. Suppose that codimM = m < co. Then there is a finite basis

{#},7=1, ..., m, of X=X|M. Let x; €% For any u ¢ X, i can be
expressed uniquely in the form @ = &, %, + - - + + &, £,,. Hence # admits
a unique expression
(1.29) : u=Ex+ -+ &nxn+v, vEM.
Let M; be the span of M and %, . . ., %j—q, Xj+q, - - -, - M; is closed by
Lemma 1.9, so that there exists an f; € X* such that f; é Mt and (f;, x;) =1
(Theorem 1.22). In other words f; € ML and (f;, x3) =0;. It is easily seen
that the f; are linearly independent.

Let f¢ ML and o; = (f, x;). Then f — oty fy — =+ * — &ty fm has scalar
product O with all the x;, and v € M, hence with all » € X by (1.29).
HenceitisOand f= o f; + *** + &% fm Thus ML is spanned by f,, . . .,
fm: diImMML = m

If codimM = oo, then there exists an infinite sequence M, of closed
linear manifolds such that MC M, C M, C - - -, all inclusions being proper.
Thus M+ > M- DM;- D+ - with all inclusions proper [cf. (1.24)]. Thus
dimM+ = oo.

If dimM = m < oo, let {#,, . . ., %,,} be a basis of M. As above we can
construct f; € X*, =1, ..., m, with (f;, %) = d;. Each f € X* can be

expressed in theform f = 3 (f, %) fp + f with (', x,) =0,7=1,.. ., m,

that is, f € ML. Hence fis a linear combination of the f,, where f and the
fr are elements of X*/ML. Since the f, are linearly independent, this
proves that codimML = m

If dimM = oo, there is an infinite sequence M, of finite-dimensional
linear manifolds such that M; CM, C -+ - - CM, all inclusions being proper.
Thus M- M3 > -+ - > ML with all inclusions proper. This proves that
codimML = oo.

Corollary 1.41. If M s a finite-dimensional linear manifold, then
MLl =M.

Problem 1.42. If codimM < dimN (which implies that codimM = m < o0),
then dim(M N\ N) > 0. [hint: € M is expressed by the m conditions (u, f;) = 0,
where the f; are as in the first part of the proof of Lemma 1.40.]
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§ 2. Linear operators in Banach spaces

1. Linear operators. The domain and range

-In what follows X, Y, Z, . . . will denote Banach spaces unless other-
wise stated. The definition of a linear operator (or simply an operator) is
similar to that given in the finite-dimensional case (I-§ 3.1). But there
are some generalizations of definition that we have to make for later
applications.

We find it necessary to consider operators T not necessarily defined
for all vectors of the domain space. Thus we define an operator T from X
to Y as a function which sends every vector # in a certain linear manifold
D of X to a vector v = T« € Y and which satisfies the linearity condition
1-(3.1) for all u,, u, € D. D is called the domain of definition, or simply the
domain, of T and is denoted by D(T). The range R(T) of T is defined as
the set of all vectors of the form Tu with » € D(T). X and Y are re-
spectively called the domain and range spaces. If D(T) is dense in X,
T is said to be densely defined. If D (T) = X, T is said to be defined on
X.If Y = X, we shall say that T is an operator in X. The nuil space N (T)
of T is the set of all u € D(T) such that Tu = 0.

The consideration of operators not necessarily defined on the whole
domain space leads to the notion of extension and restriction of operators,
as in the case of linear forms. If S and T are two operators from X to Y
such that D(S)cD(T) and Su = Tu for all » €D(S), T is called an
extension of S and S a restriction of T'; in symbol

(2.1) T>S, ScT.

T is called a finite extension of S and S a finite restriction of T if TD S
and [T/S] = dim D (T)/D(S) = m < co. m is the order of the extension or
restriction. If m = 1, we shall say that T is a direct extension of S and S
is a direct restriction of T.

For any subset S of the domain space X of T, we denote by TS the
tmage of SN D(T), that is, the set of all v = Tu with u €S N D(T);
TS is a subset of the range space Y. For any subset S’ of Y, the inverse
tmage T-1 S’ is the set of all u € D(T) such that Tu €5'2

1 It might appear that one need not complicate the matter by introducing
operators not defined everywhere in the domain space, for T could be regarded as an
operator on D(T) to Y or to R(T). We do not take this point of view, however,
for D(T) is in general not closed in X and hence is not a Banach space (with the
norm of X). In particular when X = Y, it is often convenient and even necessary to
regard T as an operator in X rather than as an operator between different spaces
D(T) and X. .

2 The inverse image T-1 S’ is defined even if the inverse T-! (see below) does
not exist. When T-1 exists, 7-1 $’ coincides with the image of S’ under T-1.
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The tnverse T—! of an operator T from X to Y is defined if and
only if the map T is one to one, which is the case if and only if Tu = 0
implies # = 0. T-! is by definition the operator from Y to X that sends
Tu into u. Thus

(22) D(T-)=R(T), R(T-Y)=D(T).
23) T-Y Tu)y=wu, ueD(T); T(T'v)=v, veR(T).

T is said to be snvertible if T-! exists. Any restriction of an invertible
operator is invertible.

Example 2.1. A linear form in X is an operator from X to C (the one-dimensional
space of complex numbers).

Example 2.2. When the domain and range spaces X, Y are function spaces
such as C(E), L?(E), an operator T defined by multiplication by a fixed function
is called a multiplication operator. For example, let X = L?(E), Y = L?(E) and
define T by Tu(x) = f(x) u(x), where f(») is a fixed complex-valued measurable
function defined on E. D(T) must be such that » ¢ D(T) implies f » € L¢. If D(T)
is maximal with this property [that is, D(T) consists of all 4 € L?(E) such that
fu€ Le(E)], T is called the maximal multiplication operator by f(x). T is invertible
if and only if f(+) 3= 0 almost everywhere in E. If in particular p = ¢, the maximal
multiplication operator T is defined on the whole of L?(E) if and only if f(x) is es-
sentially bounded on E.

Example 2.3. An infinite matrix (7;4); ¢ =1.,..., can be used to define an
operator T from X to Y, where X, Y may be any of the sequence spaces ¢ and I?,
1< p< oo. Formally T is given by Tu = v, where u = () and v = (n;) are
related by

(o<}
(2.4) L} =k21‘fn§n, j=12....

D(T) C X must be such that, for any » € D(T), the series (2.4) is convergent for
every j and the resulting vector v belongs to Y. T is called the maximal operator
defined by (7;;,) and X, Y if D(T) consists exactly of all such ». How large D(T)
is depends on the property of the given matrix.

Assume for instance that there are finite constants M’, M’ such that

[+ 00
25) TH=SlGlSM,i=12..7 =< M", k=12....
E=1 i=1

If we choose X =Y =1I?, 1 < p < oo, the same calculation as in I-(4.15) shows
that T« exists for any » € X and that

-1 1
(2.6) [T =|v| < M ? M”* |u| < max(M’, M”) [ju] .
Thus the maximal operator T is defined on the whole of I?. In particular this is the
case if (7;,) is a diagonal matrix with bounded diagonal elements.
Example 2.4. An operator of the form?

(2.7) T“(y)="(y)=‘{t(y,x)u(x) ax, y€F,
1 For simplicity we write Tu(y) in place of (T «) (y). There is no possibility of

confusion, for T [#(y)] does not make sense [#(y) is a complex number, T is an
operator].
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is called an integral operator with the kernel t(y, x). t(y, #) is a complex-valued
measurable function defined for #€ E, y € F (E, F being, for example, subsets of
euclidean spaces, not necessarily of the same dimension). If X and Y are function
spaces defined over E and F respectively, say X = L?(E) and Y = L¢(F), then (2.7)
defines an operator T from X to Y by an appropriate specification of D(T). D(T)
must be such that for # € D (T), the integral on the right of (2.7) exists (in a suitable
sense) for almost every y and the resulting v(y) belongs to y. If D(T) consists
exactly of all such «, T is called the maximal integral operator defined by the given
kernel and X, Y.
For example, assume that there exist finite constants M’, M’ such that

(2.8) [ty %] d»< M’, y€F; Ff [t(r, %) dy < M”, %€E.
E

If we choose X = L?(E) and Y = L?(F), the maximal operator T is defined on
the whole of X, and we have the inequality

ll_l ul
(2:9) [Tul =l = M7 2 M7 |lu] = max (M’, M”) |ju] .
This can be proved as in I-(4.15) by using the inequalities for integrals
instead of those for series. One has to invoke Fubini’s theorem!, however, to prove
rigorously the existence of the integral of (2.7) for almost all y.

If, in particular, E, F are compact regions and #(y, #) is continuous in x, ¥,
(2.8) is obviously satisfied. In this case T can also be regarded as an operator from
X = C(E) or any L?(E) to Y = C(F) defined on X, for T« (y) is continuous for all
integrable u (x).

Problem 2.5. Let [ [ |¢(y, #)|*d% dy = M? < co. Then

FE

Tu(y) =v(y) =Efl(y: %) u(x) dx

defines an operator T from X = L?(E) to Y = L?(F) with domain X, and
| Tu|| < M|u|. [hint: |v(y)[2= ||u||“‘:‘[ |t(y, #)|* dx by the Schwarz inequality.]

Example 2.6. One is led to the notion of extension and restriction for operators
in a natural way by considering differential operators. The simplest example of a
differential operator T is
du (¥,
(2.10) Tu(s) = w(x) = 24

dx

To be more precise, set X = C[a, b] for a finite interval and regard T as an operator
in X. Then D (T) must consist only of continuously differentiable functions. If D(T)
comprises all such functions, T is the maximal operator given by (2.10) in X.
D(T) is a proper subset of X = C[a, b]. Let D, be the subset of D (T) consisting of
all u € D(T) satisfying the boundary condition u(a) = 0. Then the operator T in X
defined by D (T,) = D, and T,% = «’ is a direct restriction of T. Similarly, a direct
restriction T, of T is defined by the boundary condition % (b) = 0. Another possible
boundary condition is u (b) = % u(a) with a constant %; the resulting direct re-
striction of T will be denoted by T, with domain Dy. Furthermore, the boundary
condition u(a) = u (b) = 0 gives another restriction T, (with domain D) of T of
order 2. T, is a direct restriction of each of T, T, T. All these operators are simple
examples of differential operators. The maximal differential operator T is not
invertible, for Tu = 0 if u(x) = const. T, T,, T, are invertible. D(T71) = R(T})
x
is the whole space X = C[a, b] and T1lv(x) = f v () dt for every v € X; thus T7?

a

1 See, e. g., RoYDEN [1), p. 233.
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is an integral operator with domain X. T, is invertible as a restriction of T, or T,,
but the domain of T§! is not the whole space X; it is the set of all v € X such that

b
. f v (%) dx = 0. T, is invertible if and only if # 3= 1; in this case T3! has domain X
a
and

1 % b
(2.11) Tslo(x) = ey (kaf v(f) dt -]-!'u(t) dt) .

It should be noted that T is densely defined but the T,, » = 0, 1, 2, 3, are not.

Example 2.7. The differential operator (2.10) can be considered in other function
spaces, X = L?(a, b), say. Then Tu(x) = u’(x) need not be continuous, and it is
convenient to interpret the differentiation in a slightly generalized sense: u’(x)
is supposed to exist if u(x) is absolutely continuous [that is, »(x) is an indefinite
integral of a locally Lebesgue-integrable function v (¥); then »’ = v by definition].
Thus the maximal differential operator defined from (2.10) in X = L?(a, b) has the
domain D(T) consisting of all absolutely continuous functions u(x) € L?(a, b)
such that #’ () € L?(a, b). The various boundary conditions considered in the preced-
ing example can also be introduced here, leading to the restrictions T, ..., T,
of the maximal operator T defined in a similar way. All the operators T, T, . . ., Ty
are densely defined if 1 < p < oo. As in Example 2.6, the inverses of T;, T,, T,
exist and are integral operators.

So far we have assumed that (a, b) is a finite interval. The operator (2.10)
can also be considered on the whole real line (— 00, 00) or on a semi-infinite interval
such as (0, oo), with some modifications. The maximal operator T can be defined in
exactly the same way as above. It is convenient to define also the minimal operator T
as the restriction of 7 with D (T) = C§°(a, b) C X (see Example 1.11). [T can also
be defined when (a, b) is finite.] In the case of a semi-infinite interval (0, oo), we can
again define T,C T with the boundary condition % (0) = 0.

‘When we consider boundary conditions such as #(a) = 0 for T defined in
L*(a, b), it is important to see what % (a) means. « (4) has no meaning for a general
u € L?(a, b), for equivalent functions are identified in L?(a, b) (see Example 1.3).
But % (@) can be given a meaning if % is equivalent to a continuous function, as the
value at ¥ = a of this (necessarily unique) continuous function. Actually each
u € D(T) is equivalent to a function continuous on [, b) if 4 > — o0, as is easily
seen from the condition ' € L? (a, b).

2. Continuity and boundedness

An operator T from X to Y is continuous at u = uy € D (T) if |4, — 4,
- 0, #, € D(T), implies | T#,, — Tu,| — 0. As in the case of a linear form
(§ 1.3), T is continuous everywhere in its domain if it is continuous at
u = 0. Again, T is continuous if and only if T is bounded: | Tu| < M| 4|,
u € D(T). The smallest number M with this property is called the bound
of T and is denoted by | T||. An unbounded operator is sometimes said to
have bound co. :

The extension principle proved for a linear form (Theorem 1.16) can
be taken over to a bounded operator from X to Y. The only point to be
noted in the proof is that the completeness of Y is to be used in showing
that {Tu,} has a limit v € Y if «, is a convergent sequence in X.
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Problem 2.8. An operator with a finite-dimensional domain is bounded.
Problem 2.9. Let T be bounded with R(T) dense in Y. If D’ C D(T) is dense in
D(T), TD’is dense in Y.
- Problem 2.10. T-1 exists and is bounded if and only if thereis an m > 0 such that

(2.12) | Tu| = m|u|, weD(T).

Example 2.11. The maximal multiplication operator T' of Example 2.2 for
g = p is bounded if and only if f(x) is essentially bounded on E; we have || T||
= || The operator T of Example 2.3 defined from a matrix (z;,) is bounded if
(2.5) is assumed; we have | T|| £ M’1-V# M’"V# by (2.6). The integral operator T
of Example 2.4 is bounded under the condition (2.8); we have || T|| < M"1-v» M 1ip
by (2.9). The integral operator T of Problem 2.5 is also bounded with | T|| < M.

Example 2.12. The differential operators considered in Examples 2.6 —2.7 are all
unbounded, for ||u’| can be arbitrarily large for [u| = 1; this is true whether
X = C[a, b] or L?(a,b) and whether boundary conditions are imposed or not!.
But the inverses T;*! are bounded; this follows, for example, from the preceding
example since these inverses are simple integral operators.

3. Ordinary differential operators of second order

We considered very simple differential operators in Examples 2.6 —2.7. Let us
consider here in some detail second order ordinary differential operators and their
inverses2. Let

(2.13) Lu = po(x) W’ + pr(¥) w' + pa(%) u

be a formal diffevential operator defined on a finite interval a < ¥ < b. We assume
that p,, p, and p, are real-valued, pg, p1, p; are continuous on [a, b] and p, () < 0.
From the formal operator L various operators in (or between) different function
spaces can be constructed.

First take the space X = C|[a, b]. Let D be the set of all functions » with »”
continuous on [a, b]. By
(2.14) Tu=Lu, u€D,

we define an operator T in X with D(T) = D. Restriction of the domain of T by
means of boundary conditions gives rise to different operators. We shall not consider
all possible boundary conditions but restrict ourselves to several typical ones,
namely,

(2.15) T,, D(T)=D;: u(@)=0, u(®d =0
(zero boundary conditions) .

(2.16) Ty, D(T,;) =D,: w'(a) —hyu(a) =0, u' () + hu®d =0
(elastic boundary conditions) .

(2.17) Ty, D(Tg) =Dsg: u(@ =0, u (@ =0
(zero initial conditions) .

(2.18) Ty, D(Ty)=Dy: u(a)=u'(a) =u@d) =u(d)=0.

T is the maximal operator in X constructed from the formal operator L. T, T,, T
are restrictions of T of order 2 and also extensions of T, of order 2.

1 But T = dJdx is bounded if it is regarded as an operator on C’[a, b] to
C{a, b].

2 For more details on ordinary differential operators, see CoppINGTON and
LevinsoN [[1], GoLDBERG [[1], NamMARK [1), StoNE [1].
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T is not invertible, for Tw = 0 has two linearly independent solutions u,, #,
belonging to X. The other operators T, 2 =0, 1, 2, 3, are invertible, possibly
under certain additional conditions. T3! always exists and has domain X, since
an initial-value problem is always solvable in a unique way; it is an integral
operator of the Volterra typel, given by

y
d
(2.19) T5to() = [ ) () — () )] 5 o v;(é)) Ao

where u,, #, are any two linearly independent solutions of T# = 0 and W (x) is the
Wryonskian
x
(2.20) W (%) = u, (%) ug (%) — uy (%) 4y (¥) = const. exp (— f —;;—l dx) .
0

T, is also invertible since it is a restriction of T.
Ttlis also an integral operator

b
2.21) Triv(y) = [g. ») v(») dx,
a
where g(y, »), the Green function? for the zero boundary conditions, is given by
%1 (y) %s (%) %y (y) %, (%)
2.22 ) =——e e Y ¥, =, Y= X
@2 80N =Tpmwe Y=Y T Thmwe Y=

Here u,, u, are the nontrivial solutions of L% = 0 such that %,(a) = 0, %, (b) = 0
and W is their Wronskian given by (2.20). g is well-defined if u, (b) == 0, for then
W (b) &= 0 and hence W (x) is nowhere zero. This is the case if, for example, p, > 0
on [a, b]. In fact if u, (b) = u,(a) = 0, u, (x) takes either a positive maximum or a
negative minimums3. If u, (x,) is a positive maximum, %, € (a, b) and we must have
4y (%) = 0, uy (%)) < 0, which is a contradiction since Lu, (%) = 0, po(%,) <O,
Pa(%) > 0. A negative minimum is excluded in the same way. Thus T is invertible
if p, > Oon [a, b], and Ty!is the integral operator (2.21) defined on the whole of X
[note that g(y, #) is continuous in » and y].

Similarly it can be shown that 73! exists, has domain X and is an integral
operator of the form (2.21) with an appropriate Green function g under some
additional conditions (for example p, > 0 on [a, b] and &, &, = 0).

Problem 2.13. The domain of T3! is not the whole of X; it is the set of all
v € X satisfying the conditions

b
(2.23) fr(x) u(x)v(x)dx=0, k=12,

7 (%) =___—Plo(x) exp (‘[%dx) .

Let us estimate | T7!| explicitly, assuming p, > 0. We note that g(y, ) =0 and

b
(2.24) fe.Mdx< 1, c= minp, (%) > 0.
a .

1 A kernel ¢(y, x) (or the associated integral operator) is of Volterra type if
t(y, #) = 0 identically for y < x (or for y > ).

2 See, e. 8., CopDINGTON and LEVINSON |[l]] for the Green functions and other
elementary results used below.

3 Since L has real coefficients, #, (¥) may be assumed to be real without loss of

generality.
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g = 0 can be seen from (2.22) where we may take u,, #, = 0 for the reason stated
above [or, more directly, from the fact that g(y, #) cannot have a negative minimum
in y for a fixed » since it satisfies L,g = 0 for y & » and has a characteristic sin-
gularity! at y = #]. To prove (2.24) denote by u,(y) the left member. %, (y) satisfies
the differential equation L#%, = 1 with the boundary conditions %, (a) = u,(b) = 0.
Let u,(#,) be the maximum of u, (). We have then u, (%) = 0, ug (%,) < 0 so that
Luy (%) = 1 gives py(%,) %o(%,) = 1, which implies (2.24).
Now it follows from (2.21) that for v = Ty'v,

b
]l = max|u(y)] < maxjo ()] max [ g(y, %) dx < Jof .
a

Hence
(2.25) ITeY) < .

Problem 2.14. (2.25) is true for T, replaced by T, if &,, hy = 0.

Let us now consider the differential operator L in a different Banach space.
This time we shall take X = L?(a,b), 1 < p < oo. Since C[a, b] is a subset of
L?(a, b), the operators T and T, considered above may as well be regarded as
operators in X = L?(a, b). But the above definition of D(T) is rather arbitrary
since now #’’ need not be continuous in order that L« belong to X. It is more
natural to assume only that #’ is absolutely continuous on (a, b) and #”” € X = L#2.
Let D be the set of all # with these properties and define T by T# = Lu with
D(T) = D. The restrictions T, to T3of T can be defined exactly as above by re-
stricting the domain by the boundary conditions (2.15) to (2.18). [Note that «’ is
continuous on [a, b] by »’’€ L? so that the boundary values u(a), #’(a), etc. are
well defined, cf. Example 2.7.]

The results concerning the inverses of T and T, in the space C[a, b] stated
above are now valid in the new space X = L?(a, b). It suffices to add the following
remarks. The Green functions are determined by the formal operator L without
reference to the Banach space X. That the T,! are bounded and defined on the
whole of X follows from the fact that, for example, the function (2.21) belongs to D,
if and only if v € X, which is in turn a simple consequence of the property of the
Green functions.

The estimate (2.25) for T7!is not valid, however. To obtain a similar estimate
in the present case we use the inequality

b
(2:26) [ety.mdy< o=t, ¢ =min(py — 1+ 55)
a
where we assume that ¢’ > 0. This follows from (2.24) by noting that g(y, %) is,

when the arguments #, y are exchanged, the Green function of the adjoint equation
Mv = 0 to Lu = 0, where

(2:27) My = (pov)” — (p1v)" + pav .
Thus we obtain by Example 2.11
(2.28) [ TrY < 1)er~2# 22 < min (¢, ¢’) .

Problem 2.15. The functions » u,, 2 = 1, 2, in (2.23) are solutions of the adjoint
equation Mv = 0.

1 9g(y, #)|0y is discontinuous in y at ¥y = » with a jump equal to 1/p, (#).

2 We need not even assume ' € X in order that Tu = Lu define an operator
in X; it suffices to assume only that » € X and L« € X. But this seemingly broader
definition leads to the same T as above; see Remark 2.16 below.
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Remark 2.16. We assumed above that (a, b) is a finite interval, py’, p;, p, are
continuous on the closed interval [a, b] and that p, < 0. In such a case L is said to be
regular. Let us now consider singular cases in which these conditions are not
necessarily satisfied; we assume only that pg, p; and p, are continuous in the open
interval (a, b) and p, == 0. The p, may even be complex-valued, and the interval
(@, b) may be finite or infinite.

In a singular case we cannot define all the operators T and T, given above.
But we can define at least the maximal operator T and the minimal operator 7'
in X = L?(a,b),1< p < oo. Tisdefined by Tu = Lu where D(T) is the set of all
u € X such that #(x) is continuously differentiable in (a, b), #’(¥) is absolutely
continuous in (a, b) [so that ’’ (#) is defined almost everywhere] and Lu € X. T"is the
restriction of T with D(T) = C{(a, b) (see Example 1.11). T and 7" are densely
defined.

In a singular case it is in general not easy to define restrictions of T with ‘‘good”’
boundary conditions such as the T, considered in the regular case. But T is often
a ‘““good’’ operator itself, in a sense to be explained later.

It should also be remarked that, when applied to the regular case, the maximal
operator T just defined is apparently different from the T defined earlier, for the
earlier definition requires u’’ € X whereas the new one only Lu ¢ X. Actually,
however, these two definitions are equivalent, for L« € X implies #”” € X in the
regular case. This is due to the basic property of a solution of the ordinary dif-
ferential equation Lu = f€ X, namely, that # is continuous with %’ on [a, b] in
the regular case.

§ 3. Bounded operatots

1. The space of bounded operators

We denote by # (X, Y) the set of all bounded operators on X to Y.
This corresponds to the set of all operators on X to Y, denoted by the
same symbol, in the finite-dimensional case (see I-§3.2). We write
% (X) for B (X, X).

Since every operator belonging to # (X, Y) has domain X and range
in Y, the meaning of the linear combination « S + f T of S, T € # (X, Y)
is clear (I-§3.2). The resulting operator is again linear and bounded.
Thus # (X, Y) is a normed space with the norm || 7| defined as the bound
of T (see I-§4.1). Similarly, the product TS is defined for T € #(Y, Z),
S €% (X, Y) by I-(3.15) and belongs to #(X, Z).

Example 3.1. Consider the operator T of Example 2.3 defined from a matrix.
As a maximal operator from X = I? to itself, T is defined everywhere on X and is
bounded if (2.5) is assumed (see Example 2.11). Thus T € #(X). The set of all
operators of this type is a linear manifold of #(X). If T, S are operators of this type
defined by the matrices (t;;), (052) respectively, TS € #(X) is again of the same
type and is defined by the matrix which is equal to the product of the two matrices.

Example 3.2. Consider an integral operator of the form (2.7). Regarded as a
maximal integral operator from X = L?(E) to Y = L?(F), T is defined on X and is
bounded with |T| < M’1-Y# M’’V# if the condition (2.8) is satisfied. Thus T
belongs to £ (X, Y). The set of all integral operators of this type is a linear manifold
of #(X,Y).
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Consider another integral operator S € # (Y, Z) of the same type with a kernel
s(z, y) wherey € F and 2z € G and where Z = L?(G). Then the product S T is defined
and belongs to # (X, Z). ST is an integral operator with the kernel

(3.1) 7 (2, %) =Ffs(z,y)t(y, x)dy .

This follows from the expression of (ST)u = S(Tu) by a change of order of
integration, which is justified by Fubini’s theorem since all the integrals involved are
absolutely convergent. It is easily seen that the kernel » given by (3.1) satisfies (2.8)

if both s and ¢ do.
Problem 3.3. The null space N (T) of an operator T € #(X, Y) is a closed linear

manifold of X.

Z (X, Y) is @ Banach space. To prove the completeness of #(X, Y),
let {T,} be a Cauchy sequence of elements of # (X, Y). Then {T, u} is a
Cauchy sequence in Y for each fixed #¢€X, for |T,u— T,u| <
£ | T, — T,| |#| — 0. Since Y is complete, there is a v € Y such that
T, #— v. We define an operator T by setting v = T». By an argument
similar to that used to prove the completeness of X* in § 1.4, it is seen
that T is linear and bounded so that T € # (X, Y) and that | T,, — T|| - 0.

Most of the results on #(X, Y) deduced in the finite-dimensional
case can be taken over to the present case (except those based on the
explicit use of a basis). In particular we note the expression I-(4.2) for
|T|, the inequality I-(4.6) for |TS| and various results on infinite
series and operator-valued functions given in I-§ 4.

Contrary to the finite-dimensional case, however, different kinds of
convergence can be introduced into #(X,Y). Let T, T,€Z(X,Y),
n=1,2,....The convergence of {T,} to T in the sense of | T,, — T|| > 0
[convergence in the normed space # (X, Y)] is called uniform convergence
or convergence in norm. { T} is said to converge strongly to Tif T,, u—> Tu
for each u € X. {T,,} converges in norm if and only if {T, #} converges
uniformly for |«|| < 1. {T,} is said to converge weakly if {T,, u} converges
weakly for each # € X, that is, if (T, #, g) converges for each ¢ X
and g € Y*. If {T, u} has a weak limit T« for each u € X, {T,} has the
weak limit T. (T is uniquely determined by {T,}.) {T,,} converges in norm
if and only if (T, %, g) converges uniformly for |#| < 1 and |g]| = 1
(see Theorem 1.32). A weakly convergent sequence has a weak limit if Y
is weakly complete (see § 1.6). Convergence in norm implies strong con-
vergence, and strong convergence implies weak convergence. We use
the notations T = u-lm 7T,, T, - T for convergence in norm, T

=s-limT,, T, - T for strong convergence and T'=w-lim7T,, T, — T

for weak convergence.

Problem 3.4. If {T,u} converges strongly for each « € X, then {T,} converges
strongly to some T € & (X, Y).

If {T,} is weakly convergent, it is uniformly bounded, that is,
{| T,|} is bounded. To see this we recall that {|| T, #|} is bounded for each
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u € X because {T, u} is weakly convergent (§ 1.6). The assertion then
follows by another application of the principle of uniform boundedness
(apply Theorem 1.29 with p; [#] = | T,, #|). We note also that

(8.2) I7T| £ iminf|T,| for T=w-limT,,

as is seen from (1.26).

The following lemmas will be used frequently in this treatise. Here
all operators belong to # (X, Y) unless otherwise stated.

Lemma 3.5. Let {T,} be uniformly bounded. Then {T,} conmverges
strongly (to T ) if {T,, u} converges strongly (to T u) for all u of a fundamen-
tal subset of X.

Lemma 3.6. Let {T,} be uniformly bounded. Then {T,} comverges
weakly (to T) if {(T, u, g)} converges (to (Tu, g)) for all u of a fundamental
subset of X and for all g of a fundamental subset of Y*.

The proof of these two lemmas is similar to that of Lemma 1.31
and may be omitted.

Lemma 3.7. If T, - T then T,u - Tu uwiformly for all u

of a compact subset S of X.

Proof. We may assume that T = 0; otherwise we have only to con-
sider T, — T instead of T,. As is every compact subset of a metric
space, S is totally bounded, that is, for any & > 0 there are a finite
number of elements #; €S such that each # €S lies within distance ¢
of some #,!l. Since T, u;, 0, n — oo, there are positive numbers #,
such that | T, u;| < e for n > n,. For any u €S, we have then | T, 4| <
S| Ta(w— )| + | Tote]| < (M + 1) e if #>maxn,, where u, is
such that |# — #;| < e and M is an upper bound of | T,| (M is finite by
the above remark).

Lemma 3.8. If T, =T m B(Y,Z) and S, — S m Z(XY),
then T, S, — TS n B (X, Z).

Proof. T,S,u— TSu=T,(S,—S)u+ (T,— T) Su—0 for each
u € X. Note that {T,} is uniformly bounded so that | T, (S, — S) «| =<
< M|(S, — S) u] ~ 0.

Lemma 3.9. If T, — T in #B(Y,Z) and S, ) m #(X,Y),
then T, Sy — TS n B (X, Z).

Proof. Similar to the proof of Lemma 3.8; note that |(T, (S, — S)#,8)|
< Mgl |(Sp — S) #| > 0 for each u € X and g € Z*.

Problem 3.10. If u, g and T, P T, then T, u, - Tu. If Un > u and

T,.;» T, then T, Un > Tu.

1 If this were not true for some & > 0, there would exist an infinite sequence
u, € S such that ||u, — u,| = & % == m, and {u,} would have no convergent sub-
sequence.
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For an operator-valued function ¢— T (f) €Z(X,Y) of a real or
complex variable ¢, we can introduce different kinds of continuity accord-
ing to the different kinds of convergence considered above. T (f) is
continuous in norm if |T (¢ + k) — T (f)] - 0 for — 0. T(¢) is strongly
continuous if T (8) u is strongly continuous for each » € X. T (f) is weakly
continuous if T (t) u is weakly continuous for each u € X, that is, if
(T (¢) u, g) is continuous for each » € X and g € Y*.

IT @] is continuous if T (#) is continuous in norm. | T (f)| is not
necessarily continuous if T (f) is only strongly continuous, but | T ()|
ts locally bounded and lower semicontinuous if T () is weakly continuous.
The local boundedness follows from the fact that {| T (£,)| } is bounded for
t, — ¢, and the lower semicontinuity follows from (3.2).

Similarly, different kinds of differentiability can be introduced.
T (t) is differentiable in norm if the difference coefficient A=1[T (¢ + k) —
— T(#)] has a limit in norm, which is the derivative in norm of T (f).
The strong derivative T'(f) = dT (f)/d¢ is defined by T'(f) » = lim
h=1[T (¢t + h) w — T (f) #], and similarly for the weak derivative.

Problem 3.11. If % (¢) € X and T (¢) € # (X, Y) are strongly differentiable, then
T (¢) u(¢) € Y is strongly differentiable and (d/dt) T (¢) w(¢) = T’ (¢) w(t) + T (¢) o’ (2).

We can also define different kinds of integrals [ T'(f) d¢ for an
operator-valued function T (#) of a real variable ¢. If T (#) is continuous in
norm, the integral [ T (f) d¢ can be defined as in the finite-dimensional
case (or as for numerical-valued functions). If T (#) is only strongly
continuous, we can define the integral v = [ T (f) u d¢ for each u € X.
Then |v| < [T () || dt < ||u| [ | T ()| 4¢; note that || T ()| need not be
continuous but is bounded and lower semicontinuous and hence
integrable!. Thus the mapping #— v = Su defines an operator S €
€% (X, Y) with bound < [ | T (¢)| 4¢. If we write S = [ T () dt, we have
defined a “strong” integral [ T (¢) dt for a strongly continuous function
T (¢), with the properties

(3-3) (JTW)a)u= [T uat, |JTEat| < [ITE)at,

t
(3.4) —;t— / T(s)ds= T() (strong derivative!).

Similarly, the integral of a function T ({) of a complex variable { along
a curve can be defined.

When we consider holomorphic operator-valued functions, there
is no distinction among uniform, strong and weak holomorphy, as in
vector-valued functions. More precisely, we have

Theorem 3.12. Let T ({) €% (X, Y) be defined on a domain A of the
complex plane and let (T (£) u, g) be holomorphic in { € A for each u € X

1 If a real-valued function f is lower-semicontinuous, the set of all ¢ such that
f(¢) > o is open for any «. Hence f is Lebesgue-measurable.
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and g € Y*. Then T (L) is holomorphic in A in the sense of norm (differen-
tiable in norm for L €A).

The proof is similar to that of Theorem 1.37 and may be omitted.
Again it should be remarked that if | T({)|| is assumed to be locally
bounded, it suffices to assume that (7'({) #, g) be holomorphic for all »
of a fundamental subset of X and for all g of a fundamental subset of Y*.

Problem 3.13. Let T, € #(X, Y) and let {(T, %, g)} be bounded for each u € X
and g € Y*. Then {|| T} is bounded.

2. The operator algebra #(X)

A (X) =% (X, X) is the set of all bounded operators on X to itself.
In #(X) not only the linear combination of two operators S, T but also
their product S T is defined and belongs to # (X). Thus # (X) is a complete
normed algebra (Banach algebra) (see I-§ 4.1). Again, most of the results
of the finite-dimensional case can be taken over except those which
depend on the explicit use of a basis. It should be noted that the com-
pleteness of #(X) is essential here; for example, the existence of the
sum of an absolutely convergent series of operators depends on com-
pleteness [cf. the Neumann series I-(4.22) and the exponential function
1-(4.20)].

T €% (X) is said to be nonsingular if T-1 exists and belongs to Z (X).
Actually it suffices to know that 7-1 has domain X; then it follows that
T-1is bounded by the closed graph theorem (see Problem 5.21 below).

1 — T is nonsingular if |T|| < 1; this is proved by means of the
Neumann series as in I-§ 4.4. It follows that 7-1is a continuous function
of T [on the set of all nonsingular operators, which is open in % (X)].
In the same way we see that if T'() €% (X) is holomorphic in { and
nonsingular, then T (£)-! is also holomorphic (see I-§ 4.5)1.

The spectral radius spr T = lim||T»|%" can also be defined for every

'T ¢ #(X) as in 1-§ 4.2. T is said to be quasi-nilpotent if spr T = 0.

The trace and determinant of T € #(X) are in general not defined
(these are examples of notions defined by explicit use of a basis in the
finite-dimensional case). But we shall later define the trace and deter-
minant for certain special classes of operators of % (X).

Example 3.14. The maximal integral operator T of Example 2.4 belongs to
#A(X) if F=E and Y= X = L?(E) and if (2.8) is satisfied. Similarly for the
maximal matrix operator of Example 2.3. The inverses of the differential operators
T,, Ty, T4 of Examples 2.6 — 2.7 belong to # (X), but Ty does not (it is bounded but
not defined everywhere on X). Similarly, the inverses of the differential operators
Ty, Ty, T, of §2.3 belong to #(X) (under appropriate conditions stated there) but
Tg! does not. :

! The same is true when T ({) € #(X, Y) is holomorphic in { and T ({)-*¢
€AY, X).
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Example 3.15. An integral operator of Volterra type is usually (but not always)
quasi-nilpotent. For example consider a kernel ¢(y, ) which is continuous on the
triangle a < ¥ < ¥ < b and which vanishes for a < y < # =< b. The associated
integral operator T in C[a, b] or in L?(a, b) is quasi-nilpotent. To see this, let 2, (y, %)
be the kernel of T, » = 1, 2, . ... Itis easy to see that the ¢, are also of Volterra
type (4, (¥, #) = 0 for y < #). We have for y > »

M )1 M*(b — a)*—1
35 |9l “’ 1))1 < (L_ 1))1 , o n=12...,

where M = max |t(y, x)|, as is seen by induction based on the composition formula
(3.1) corresponding to I = T*-1T. (3.5) gives |T*|< M"(b — a)*(n — 1)!
(see Example 2.11) so that spr T = 0.

Example 3.16. Let X = I, 1 < p < o0, and let T be the maximal operator in X
defined from a matrix (7;,) with all elements equal to zero except possibly 7; ;4,

=1;,j=12,....Sucha T will be called a left shift operator and {z;} the defining
sequence for T. It is easily seen that T € #(X) and
(3.6) T, =0, Trg=m1%, Ta="713%,...,

where {#;} is the canonical basis of X. Also we have
@7 17 = sup [ -

The iterates T™ of T are represented by matrices (zf7) such that =7},
= T;Tj+1 - - - Tj+m—1 all other elements being zero. Thus

(3.8) [T = suplws Ty - - - Tytm—al -
i

It follows, for example, that
(8.9) sprT =7 if |gyl—>7T, j>o00.
Similarly a yight shift operator T’ is defined by a matrix (vj;) with 754, 5= 7
and all other elements equal to 0. We have T” ¢ #(X) and
(3.10) T =71 %, T'%=13%,....

Also we have formulas similar to (3.7) to (3.9).

3. The adjoint operator

For each T €%#(X,Y), the adjoint T* is defined and belongs to

2 (Y*, X*) as in the finite-dimensional case (see I-§§ 3.6, 4.1). For each

8EY* u— (g, Tu) is a bounded semilinear form on X by virtue of

(e, T4)| < lgl 1Tl < 1T] gl «], so that it can be written (f, 4) with

an f € X*; T* is defined by T* g=. As before | T* g| = ||f| = sup |(f, #)|
=1

< |IT) gl gives |T*| = | T|. To deduce the more precise result | 7|
= || T|, we need a slight modification of the argument of I-§ 4.1 since
X = X** is no longer true in general. Applying the above result to T
replaced by T*, we have |[T**| < |T*| < | T. But T*>*>T if X is
identified with a subspace of X**, for (T** u, g) = (u, T*g) = (T* g, )
= (g, Twu) shows that the semilinear form T** u on Y* is represented by
Tu€Y and therefore T**u= Tu by identification. Since T**> T
implies | T**|| = || T, we obtain the required result | T*|| = | 7.
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Again, most of the results of the finite-dimensional case remain valid.
Among the exceptions, it should be mentioned that the second relation
of I-(3.37) is to be replaced by

(3.11) N(T) =R(THL N X.

The relations between the nullities, deficiencies and ranks of T and T*
such as I-(8.38) must be reconsidered accordingly. This problem will be
discussed in more detail in Chapter IV.

The relation between the inverses 71 and T*-! given before should
be altered in the following way. If T € # (X, Y) hasinverse T-1 ¢ Z(Y, X),
then T* has inverse T* -1 = (T -1)* € #(X*, Y*). This follows simply by
taking the adjoints of the relations T-1T = 1x, TT-' = 1y (lx is the
identity operator on X). Conversely, the existence of T*~1 € Z(X*, Y*)
implies that of T-1¢Z(Y, X); but the proof is not trivial and will be
given later in the more general case of an unbounded operator (see
Theorem 5.30).

Example 3.17. Consider the maximal integral operator T of Example 2.4 for
X = L?(E), Y = L?(F), so that T € #(X, Y) by Example 3.2. Thus T* ¢ Z(Y*, X*)
where X* = L¢(E), Y* = L¢(F), p~* +¢~' =1 (see Example 1.25; here we
assume p < 0o). Actually T* is itself an integral operator of the same type with
kernel the Hermitian conjugate to that of T:
(3.12) t*(x,y) =t(y, %) .
This follows from the identity

(T* g, u) = (g, Tu) =ngcv) dyEfuy. %) u(x) dx =Efu_(x) dfotcv. %) g(y) dy

valid for # € X and g € Y*; the change of the order of integration is justified under
the assumption (2.8) since the double integral is absolutely convergent (Fubini’s
theorem). .

Example 3.18. Let T be the maximal operator T of Example 2.3 defined from a
matrix () for X =Y =1, 1 < p < oo. We have T ¢ #(X) if (2.5) is satisfied
(Example 3.1). Thus T* ¢ % (X*) where X* = It with p~1 4 g1 = 1 (Example
1.25). T* is also defined from a matrix of the same type
(8.13) T =Tas -

The proof is similar to that in the preceding Example.

Problem 3.19. The operators T and T” in Example 3.16 are the adjoints of one
another if T, T” are defined in I?, I4, respectively, wherep~! + ¢~ = 1,1 < p < o0,
and 7; = 75.

4. Projections

An idempotent operator P € #(X) (P?= P) is called a projection.
We have the decomposition
(3.14) X=Me N
where M= PX and N = (1 — P) X, see I-§3.4. It should be added
that M, N are closed linear manifolds of X. This follows from the fact
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that M and N are exactly the null spaces of 1 — P and P, respectively
(see Problem 3.3).

Conversely, a decomposition (3.14) of a Banach space into the direct
sum of two closed linear manifolds defines a projection P (on M along N)
(see loc. cit.). It is easily seen that P is a linear operator on X to itself,
but the proof of the boundedness of P is not simple. This will be given
later as an application of the closed graph theorem (Theorem 5.20).

For a given closed linear manifold M of X, it is not always possible
to find a complementary subspace N such that (3.14) is truel. In other
words, M need not have a projection on it. On the other hand, M may
have more than one projections.

Problem 3.20. Let v € X and f€ X* be given. The operator P defined by Pu
= (u, f) v for all u € X is a projection if and only if (v, f) = 1. In this case P X is the
one-dimensional manifold [v] spanned by v, and N (P) is the closed linear manifold
of X consisting of all  with («, f{) =0 (N (P) = [f]LNX). We have | P| < |{[|v].

Problem 3.21. The results of I-§ 4.6 on pairs of projections are valid for projec-
tions P, Q in a Banach space X. In particular PX and QX are isomorphic? if

IP—of <1

Also the results of I-§ 3.4 on a family P,, ..., P, of projections in X
satisfying P; P, = §;, P; can be extended to a Banach space without
modification.

If P is a projection in X, P* is a projection in X*. Again we have
M* = P* X*=N(1 — P*)=R(1 — P)L =NL and similarly N*=
= (1 — P*) X* = ML,

Example 3.22. Let X = C[—a, a], a > 0. Let M, N be the subsets of X consist-
ing of all even and odd functions, respectively. M, N are complementary closed
linear manifolds of X. The projection P on M along N is given by

(8.15) Pu(x) = —;—(u(x) + u(—x).

It follows easily that | P| = |1 — P|| = 1. M can further be decomposed into the
direct sum of two closed linear manifolds M,, M, in such a way that, considered on
the subinterval [0, @], each u € M, is even and each » € M, is odd with respect to
the center » = a/2. N is likewise decomposed as N = N, @ N,, so that X =M, @
® M, ® N, @ N,. Each of the four projections associated with this decomposition
of X again has norm one. It is easy to see that the same results hold for X =
= L*(—a, a).
Example 3.23. Let X = C[—#, n] and

n
1
(3.16) P,,u(x):—y;— fcosnx u(¥)dx | cosnx, n=12....
— 7T
The P, are projecitons (see Problem 3.20) and satisfy P,, P, = 0, P,, With
1 4
(3.17) 1Pl < = flcosn #l Joosn 2y =~ -

! See DunForD and ScHwARTZ (1], p. 553.
2 Two Banach spaces X, Y are said to be isomorphic (or equivalent) if there is a
UcZ(X,Y) with U-1¢c Z(Y, X).
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The same is true if X = C[—x, n] is replaced by L?(— =z, n), with the exception
that the || |, and || ||, should be replaced by | [, and || ||, with p=* + g2 = 1.
In particular we have || P,|| = 1 for p = 2.

§ 4. Compact operators

1. Definition

There is a class of bounded operators, called compact (or completely
continuous) operators, which are in many respects analogous to operators
in finite-dimensional spaces. An operator T € # (X, Y) is compact if the
image {Tu,} of any bounded sequence {u,} of X contains a Cauchy
subsequence.

Example 4.1. The integral operator T of Example 2.4 is compact if E, F are
compact sets and #(y, #) is continuous in %,y and if T is regarded as an operator
from X = L(E) to Y = C(F). To see this, we note that

@1)  |Tu(y) — Tu@”)| < Ef ¢y, %) — t(y”, #)| |lu(#)| dx
= || m;xlt(y'. %) —t(y”, %)

Since ¢(y, #) is continuous, it is uniformly continuous and |Tu(y’) — Tu(y”)|>can
be made arbitrarily small by taking |y’ — »”’| small. How small |y’ — y”’| should be
depends only on ||||. In other words, the T« are equicontinuous for a bounded set of
u. Since {T u} is equibounded for a bounded set {«} for a similar reason, we conclude
from the theorem of Ascori! that {Twu,} contains a uniformly convergent sub-
sequence if {,} is bounded. Since this means that {T,} contains a Cauchy sub-
sequence in Y = C(F), T is compact.

The same is true when T is regarded as an operator from X to Y, if X is any
one of C(E) and L?(E) and Y is any one of C(F) and L¢(F), 1 < p, ¢ < oo. Thisis
due to the facts that a bounded sequence in X is a fortiori bounded in the norm
||%]l; and that a Cauchy sequence in C (F) is a fortiori a Cauchy sequence in Y2.

) Example 4.2. Let X = C’[a, ] and Y = C[a, b] with the norm defined as in
(1.8) and (1.4). Since X is a subset of Y, the operator T that sends every » € X into
the same function € Y is an operator on X to Y. T is compact. This is again a
consequence of the Ascoli theorem, for { T} is equibounded and equicontinuous if
{||u||} is bounded?®.

Problem 4.3. Every operator T € #(X, Y) is compact if at least one of Y, X
is finite-dimensional.

Problem 4.4. The identity operator 1y in a Banach space X is compact if and
only if X is finite-dimensional. This is another expression of the proposition that X
is locally compact if and only if X is finite-dimensional (see § 1.2).

Problem 4.5. A projection P € #(X) is compact if and only if the range of P is
finite-dimensional.

Problem 4.6. The inverses of the differential operators T, 2 =1, 2, 3, of
Examples 2.6 —2.7 are compact. The same is true for the second-order differential
operators considered in § 2.3.

1 See, e. g. RoYDEN (1], p. 155.
2 Many other elementary examples of compact operators are given in LYUSTER-
NIK and SoBoLEV ([1].

3 Note that |u(t) — u(s)| = ‘ f‘u’(x) ax| < [t — s| |ulx-
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2. The space of compact opetrators

We denote by %,(X, Y) the set of all compact operators of #Z (X, Y).

Theorem 4.7. #,(X, Y) is a closed linear manifold of the Banach space
B (X, Y). Thus By(X, Y) is itself a Banach space with the same norm as in
Z(X,Y).

Proof. #,(X, Y) is a linear manifold. Since it is obvious that «T is
compact with T, it suffices to show that 7’ + T is compact whenever
T', T" are. Let {u,} be a bounded sequence in X. Take a subsequence
{u,} of {u,} such that {T" u,} is a Cauchy sequence in Y, and then take a
subsequence {u,} of {u,} such that {T" u,} is Cauchy. Then {(T" +
+ T"') u,} is a Cauchy sequence. Hence T' 4+ T is compact.

To prove that %B,(X, Y) is closed, let {T;} be a sequence of compact
operators such that |T, — T|| >0, k> oo, for some T €#(X,Y); we
have to show that T is also compact. Let {«,} be a bounded sequence
in X. As above, take a subsequence {#{"} of {u,} such that {T; #{V} is
Cauchy, then a subsequence {#{®} of {#{1} such that {T, #{*} is Cauchy,
and so on. Then the diagonal sequence {#{” = v,} has the property that
{Tv,} is Cauchy. In fact, since {v,} is a subsequence of every sequence
{u{P}, each {Tj v,} is Cauchy for fixed k. For any & > 0, take a k so
large that | T, — T| < ¢ and then take N so large that | Ty v, — Tx0p+,|
< egforn >N, p > 0. Then

(42) “Tvn - Tvn+b“ = "(T - Tk) (‘Un - vn+b)" + " Tk (vn - vn+b)" =
<@EM+1)e,

where M = sup||u,| < co. Since (4.2) is true whenever #n > N, {Tv,} is
Cauchy. This proves that T is compact.

Theorem 4.8. The product of a compact operator with a bounded operator
is compact. More precisely, let T €By(X, Y) and A€ B (Y, Z), BE€B(W, X),
W, X, Y, Z being Banach spaces. Then A T€By(X, Z) and T B € B,(W, Y):

Proof. Let {#,} be a bounded sequence in X. Take a subsequence
{un} of {u,} such that {T'u,} is a Cauchy sequence in Y. Then {4 Tu,}
is a Cauchy sequence in Z; this shows that 4 T is compact. Again, let
{v,} be a bounded sequence in W. Then B, is bounded in X and therefore
contains a subsequence {Bwv,} such that {T Bv,} is Cauchy. This shows
that T B is compact.

If in particular Y = X, it follows from Theorem 4.8 that the product
(in either order) of operator of %, (X) = %,(X, X) with any operator of
% (X) is again compact. This is expressed by saying that %,(X) is a
closed two-sided ideal of the Banach algebra % (X).

Problem 4.9. If dimX = oo, every T € %,(X) is singular [T-1¢€ £ (X) is im-
possible].
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Theorem 4.10. The adjoint of a compact operator is compact, that is,
T € By (X, Y) implies T* € By (Y*, X*).

Proof. We begin by proving that the range of a compact operator T is
separable. To this end it suffices to show that the image T'S of the unit
ball S of X is separable, for R(T) is the union of TS, 2TS, 3TS, ...
each of which is similar to T'S. For any positive integer #, there are a
finite number p, of elements of T'S such that any point of T'S is within
the distance 1/# from some of these p, points. Otherwise there would
exist an infinite number of points T u,(u, €S) separated from one
another with distance larger than 1/%; these points would form a sequence
containing no Cauchy sequence, contrary to the assumption that T is
compact and S is bounded. Now the assembly of these p,, points for all
n=1,2 8,...1s countable and dense in TS, which shows that TS is
separable.

Returning to the proof of the theorem, let T €%,(X,Y). Then
T* ¢ #(Y*, X*). We have to show that, from any bounded sequence {g,}
in Y*, we can extract a subsequence {g,} such that {T*g,} is a Cauchy
sequence in X*. Let {v;} be a sequence dense in R(T) CY; the existence
of such a sequence was just proved. Since every numerical sequence
{(gn, vx)} with fixed % is bounded, the “diagonal method” can be applied
to extract a subsequence {f,} of {g,} such that {(f,, v;)} is a Cauchy
sequence for every fixed k. Since {v,} is dense.in R(T), it follows that
{(f», v)} is Cauchy for every v € R(T). (The arguments are similar to
those used in the proof of Theorem 4.7.)

Set lim (f,, v) = f[v]). f is a semilinear form on R(T) and is bounded
because {f,} is bounded. f can be extended to a bounded semilinear
form on Y (the Hahn-Banach theorem), which will again be denoted by f.
Thus we have (f,, v) - (f, v), f € Y*, for every v € R(T), that is,

(4.3) (far Tu) > (f, Tw), m—>o0, forall u€X.

We shall now show that T* f, - T* f. Since {f,} is a subsequence of

{8}, this will complete the proof. Set f, — f=h,; we have to show
that T* 4, - 0. If this were not true, there would exist a § > 0 such that

|T* h,| = 6 for an infinite number of subscripts #. We may assume
that it is true for all #, for otherwise we need only to replace {4,} by a
suitable subsequence. Since |T* h,| = sup |(T* h,, u)| for |u]|=1,
there is for each # a u, € X such that

(4.4) (b Tth)| = [(T* b, 40)| = 6/2, ] = 1.

The compactness of T implies that {Tu,} has a Cauchy subsequence.
Again replacing {T'u,} by a suitable subsequence if necessary, we may.
assume that {Tu,} is itself Cauchy. For any ¢ > 0, there is thus an N
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such that m, » > N implies | Tu, — Tu,,|| < e. Then it follows from (4.4)
that
6/2 = |(hn, Tttn)| = |(hn) Tty — Tthy)| + | (a, Tthy)|
S Me+ (b, Tuy)|, M= Sllp“h”" .

Going to the limit # — oo for a fixed m gives §/2 < M ¢, for (4.3) implies
(Bn, Tu) — 0. Bu_t since ¢ > 0 was arbitrary, this contradicts § > 0.

3. Degenerate operatots. The trace and determinant

An operator T €% (X, Y) is said to be degenerate if rank T is finite,
that is, if R(7) is finite-dimensional. This range is necessarily closed.
Since a finite-dimensional space is locally compact (I-§ 1.5), a degenerate
operator is compact. It is easy to see that the set of all degenerate operators
is a linear manifold in Z (X, Y), but it is in general not closed.

Also it is easily verified that the product of a degenerate operator T
with a bounded operator is degenerate, with its rank not exceeding
rank T (a more precise formulation should be given in a form similar to
Theorem 4.8). In particular, the set of all degenerate operators of #(X)
is a (not necessarily closed) two-sided ideal of the algebra % (X).

Problem 4.11. T € # (X, Y) is degenerate if and only if the codimension of the
null space N (T) is finite (dim X/N (T) < o0).

Problem 4.12. Let T, be degenerate and let | T,, — T|| —> 0. Then T is compact,
though not necessarily degenerate.

A degenerate operator T €% (X, Y) can be described conveniently
by making use of a basis y,, ..., ¥, of R(T), where m = rank T Since
Tu € R(T) for every u € X, we can write

m
(4.5) Tu= 21 N3 s
j=
The coefficients 7; are uniquely determined by u and are obviously
linear in #. Furthermore, these linear forms are bounded, for |y;| =
< yITu| < y|T| |#| by I-(1.21). Hence we can write 7; = (¢;, u)
= (u, ¢;) with some ¢; € X*, and (4.5) becomes

(4.6) Tu= 21 (u, &) y; -
j=

It is convenient to write, in place of (4.6),

4.7) T=2(.¢e)y;-

For any g € Y* we have
(4.8)  (T*g.u)= (8 Tu) = X (e ) (839 = (& (&35 e w).-

j i



§ 4. Compact operators 161

Since this is true for all # € X, we have

(49 Teg= Seye o T =3 ( .5)e.

This shows that R(7T*) is spanned by m vectors ¢, ..., é,. Thus T*
is also degenerate with rank 7* < rank 7. Application of this result to T
replaced by T* shows that T** is also degenerate with rank T** <
< rank T. Since, however, T may be regarded as a restriction of T**
(see §3.3), we have also rankT < rank T**. Thus we have proved

Theorem 4.13. T is degenerate if and only if T* is. If T 1s degenerate,
we have

(4.10) rank T* = rank T .
(4.10) s true for all T € B (X, Y) ¢f oo is allowed as a value of rank T.

L —
Problem 4.14. An integral operator with a kernel of the form J' f;() g;(y) is
i=1
degenerate (f; € X*, g;€Y).
Problem 4.15. In (4.9) the ¢; form a basis of R(T*), which is correlated to the
basis {y;} of R(T). If we take an arbitrary basis {¢;} of R(T*), then we have the

expressions T = X aja( , &) ya, T* = X aga( , a) &5

An important property of degenerate operators T €% (X) is that
the determinant can be defined for 1 + T and the trace can be defined
for T1. R(T) is finite-dimensional and invariant under 7. Let Ty be the
part of T in R = R(T). We define the determinant of 1 + T by

(4.11) det(1 + T) = det (1g + Ty)

where 1y is the identity operator in R. [For det(lg + T) see I-§3.1.]
Any subspace M of X containing R is likewise invariant under 7.
If M is finite-dimensional, det (1y + Ty) is defined. We have

(4.12) det (1 + Ty) = det (1 + T).

This can proved by introducing into R a basis and extending it to a
basis of M; the associated matrix for T, has the property that all rows
corresponding to the basis elements not in R contain only zero elements.
Thus the determinant of this matrix is equal to det(1g + T'), which is
equal to det (1 + 7) by definition.

If T has the form (4.7) where the y, = x; form a basis of R, the
matrix elements of Ty for this basis are given by (3, ¢;). Hence

(4.13) det(1 + T) = det(d;5 + (%5, €x)) -

1 There is a wider class of operators than that of degenerate operators for which
the trace or the determinant can be defined; see RusTton [1J, GROTHENDIECK [l]]
(for operators in Hilbert space see X-§ 1.4).
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Note that this is true even if T is defined by (4.7) with y; =x;€X
which are not necessarily linearly independent. This can be proved by an
appropriate limiting procedure.

The determinant thus defined for degenerate operators has the
property
(4.14) det((1+S) (1 + 7)) =det(1+ S)det(1+ T).

Note that (1+S)(1+ T)=1+ R where R=S+ T+ ST is de-
generate if S, T are. To prove (4.14), let M be a finite-dimensional sub-
space containing both R(S) and R(7). Then R(R) cM and det((1 + S) -
*(1+ T))=det(1+ R)=det(lpy+ Ry) =det(Iy + Sm+ Tm+ Sm Tw)
=det((Ipy+Sm) (Im + Tp)) = det (1 + Sy) det (1yy + Ty) = det (1+S) -
- det(1 + 7) by (4.12).

It follows from (4.13) that det(l + % T) is a polynomial in » with
degree not exceeding rank 7" = dimR. The coefficient of x in this poly-
nomial is by definition the #race of T. Thus we have

(4.15) trT =trTe=trTy

with the same notations as obove. If T is given by (4.7) with x = y, we
have from (4.13)

(4.16) trT = Zm,' (5, &) -

1=1
The trace has the property
(4.17) trTA=trAT

where T is a degenerate operator of % (X, Y) and 4 is any operator of
#(Y, X). Note that T4 is a degenerate operator in Y and AT is a
degenerate operator in X. To prove (4.17), let R=R(T)cCY and
S=ARcX. R and S are finite-dimensional and R(AT) = AR(T) =S
while R(T'A) CR(T) = R. Therefore, it suffices by (4.15) to show that
tr(TA)g =tr(4 T)s. But it is obvious that (4 T)s= A'T’ where T’
is the operator on S to R induced by T (that is, T'» = Tu for u €S)
and A’ is the operator on R to S induced by 4, and similarly (T 4)g
= T'A’. Thus what we have to show is reduced to trT' 4’ = tr4’'T’, a
familiar result in the finite-dimensional case (Problem I-3.8)

Problem 4.16. det(1 + T*) = det(1 + 1), &t T* =t 7.

Problem 4.17. det(1 +4 TS) = det(1 4 ST) [where one of T ¢ #(X,Y) and
S € #(Y,X) is degenerate].

Problem 4.18. Generalize 1-(3.25) and I-(5.42) to the case of a degenerate
operator.

Problem 4.19. If T € #(X) is degenerate and nilpotent, then tr T = 0, det (1 +T)

= 1.
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§ 5. Closed operators

1. Remarks on unbounded operators

We have seen in the preceding sections that most of the important
results of the operator theory developed for finite-dimensional spaces
apply without essential modification to operators of # (X, Y) [or Z(X)].
For unbounded operators with domain not identical with the whole
domain space, the situation is quite different and we encounter various
difficulties.

For such operators, the construction of linear combinations and
products stated in § 3.1 needs some modifications. The linear combina-
tion aS + BT of two operators S, T from X to Y is again defined by
1-(3.12), but the domain of this operator is by definition the intersection
of the domains of S and of T':

(5.1) D(«S + BT) = D(S) A D(T).

In fact, «Su + B Twu would be meaningless if » did not belong to this
intersection. It may happen that (5.1) consists of a single element # = 0;
in such a case aS + ST is a trivial operator whose domain consists of
0 € X alone (its range also consists of 0 ¢ Y alone).

Problem 5.1. 07 C 0,0 + T = T + 0 = T for any operator T.

Problem 5.2. For any three operators R, S, T from X to Y, wehave (R + S) 4+ T
=R + (S + T), which will be written R 4- S+ T, and also S+ T =T + S,
but we have only (S + T) — T C S (the inclusion cannot in general be replaced by

equality).

The product TS of an operator T from Y to Z and an operator S
from X to Y is again defined by I-(3.15), but the domain of T'S is by
definition the set of all # € D(S) such that S» € D(T); otherwise the
right member of this defining equation is meaningless. Thus

(5.2) D(TS)=SD(T).
Again it is possible that D (T'S) consist of the single element 0.

Problem 5.3. Let S, T be as above and let R be a third operator with range
space X. Then we have (T S) R = T (SR), which will be written TS R. Also we have
(¢T) S = T (xS) = a(TS) for a scalar & == 0, but this is not true for « = 0; it
should be replaced by (0T) S = 0(T'S) C T(0S), for the domains of (07) S and
0(TS) are the same as (5.2) while that of T (0S) is equal to D (S). Again, we have
(Ty + T) S=T,S 4+ T3S but T(S;+ S,;) DTS, + TS,;, where D cannot in
general be replaced by =. If 1x denotes the identity operator in X, we have ly T
=Tlx=T. Lompare these results with I-(3.16).

Problem 5.4. If T is an invertible operator from X to Y, then 7T-1T C 1y,
TT-!Cly.

Remark 5.5. These results show that one must be careful in the
formal manipulation of operators with restricted domains. For such
operators it is often more convenient to work with vectors rather than



with operators themselves. For example, we write T-1 (T u) = u, u €D(T),
instead of T-1T C 1x. As a rule, we shall make free use of the various
operations on operators themselves only for operators of the class Z (X, Y)

2. Closed operators

Among unbounded operators there are certain ones, called closed
operators, which admit rather detailed treatment and which are also
important for application.

Let T be an operator from X to Y. A sequence #, € D(T) will be said
to be T-convergent (to u € X) if both {u,} and {T u,} are Cauchy sequences
(and #,— u). We shall write Uy —> u to denote that {u,} is T-convergent

to u. T is said to be closed if Uy = u implies ¢ D(T) and Tu=1mTu,;

in other words if, for any sequence #, € D (T) such that »,— « and Tu,—~
— v, u belongs to D (T) and T'» = v. In appearance closedness resembles
continuity, but in reality the two notions are quite different.

The set of all closed operators from X to Y will be denoted by € (X, Y)L.
Also we write € (X, X) = € (X).

A bounded operator T is closed if and only if D(T) is closed. In fact,
#, - u with u,, € D(T) implies automatically the existence of im Tu, = v.
Therefore, the closedness of T is equivalent to the condition that %, —» «,
u, € D(T), implies u € D(T). '

In particular, every T € Z (X, Y) is closed: # (X, Y) CZ (X, Y).

Problem 5.6. T 4 A is closed if T is closed and 4 is bounded with D (4) D'D(T).

Problem 5.7. If T € € (Y, Z), S€ (X, Y)and T-1¢ #(Z, Y), then TS € (X, Z).

In dealing with closed operators, it is convenient to consider the
graph of the operator. Consider the product space X X Y consisting of all
(ordered) pairs {u, v} of elements #€X and v €Y. XX Y is a vector
space if the linear operation is defined by

(5.3)  ou{uy, vi} + aa{uy, vo} = {3 uy + ot tp, 1 V1 + %y D}
Furthermore, X X Y becomes a normed space if the norm is defined by?
(5-4) o, o} = (lal® + [0l 2Y2 -

1 In IV-§ 2 we shall introduce a metric in € (X, Y) so as to make it into a metric
space.

2 Other choices of the norm are possible; for example, |[{«, v}| = ||| + |]v]| or
max (|||, |v|]). We employ (5.4) mainly because it ensures that (X X Y)* = X* X Y*
(as Banach spaces), whereas this is not true for other norms unless dlfferent choices
are made for X XY and X* X Y*, (X X Y)* = X* X Y* means the following:
(i) each element {f, g} € X* X Y* defines an element F ¢ (X X Y)* by ({u, v}, F)
= (4, f) + (v, &) and, conversely, each F € (X X Y)* is expressed in this form by a
unique {f, g} € X*'X Y*; (ii) the norm of the above F € (X X Y)* is exactly equal to
I{t. &}l = (Ifll* + llg]®¥/2. It is easy to see that (i) is true. To prove (ii), it suffices
to note that |(u, ), {f, NI S | N| + | &) < Il IF] + ol le] < (el +
+ el (£ + ||g||’)1/’ = [{», v}|| |{#. &}|| and that, for fixed {f, g} and any & >0,
there is a {u,v} such that |Ju]| =[f], [v]| =g, ®.H= 1 — ¢ |2 ©g=
= (1 — #) ] so that |({u, v}, {f, Y| = (1 — o) (IF]* + |l?.



It is easily seen that X X Y is complete and hence is a Banach space.

The graph G(T) of an operator T from X to Y is by definition the
subset of X X Y consisting of all elements of the form {u, Tu} with
u €D(T). G(T) is a linear manifold of X X Y. Now it is clear that a
sequence {u,} of vectors of X is T-convergent if and only if {u,, Tu,}
is a Cauchy sequence in X X Y. It follows that T s closed if and only if
G(T) s a closed linear manifold of X X Y.

Problem 5.8. S C T is equivalent to G(S) C G (7).

Problem 5.9. If T € ¥ (X, Y), the null space N(T) of T is a closed linear manifold
of X.

Problem 5.10. In order that a linear manifold M of X XY be the graph of an
operator from X to Y, it is necessary and sufficient that no element of the form
{0, v} with v 5= 0 belong to M. Hence a linear submanifold of a graph is a graph.

Problem 5.11. A finite extension (see § 2.1) of a closed operator is closed. [hint:
Lemma 1.9.]

Problem 5.12. Let T € ¢ (X,Y). If u,€ D (7), > u€X and Tu, —>v¢€ Y,

then # € D(7T) and Tu = v. [hint: Apply Problem 1.34 to G(T)].

If S is an operator from Y to X, the graph G(S) is a subset of Y X X.
Sometimes it is convenient to regard it as a subset of X X Y. More
precisely, let G’(S) be the linear manifold of X X Y consisting of all
pairs of the form {Sv, v} with v € D(S). We shall call G’(S) the inverse
graph of S. As in the case of the graph, G’(S) is a closed linear manifold
if and only if S is closed.

If an operator T from X to Y is invertible, then clearly

(5.5) G(T)=G'(TY.
Thus T-1is closed if and only if T 1is.

Problem 5.13. A linear manifold M of X XY is an inverse graph if and only if
M contains no element of the form {u, 0} with » == 0.

Example 5.14. The differential operators considered in Examples 2.6 —2.7 are
all closed. In fact, T, is closed because T7!€ #(X) is closed. The same is true of T,
and T T, is closed since it is the largest common restriction of T, and T, [in other
words, G(T,) = G(T;) N\ G(T,)]. In the same way, we see that all the differential
operators of § 2.3 are closed.

Problem 5.15. T is closed if R(T) is closed and there is an m > 0 such that
| Tu|| = m|u| for all u€ D(T).

3. Closable operators

An operator T from X to Y is said to be closable if T has a closed
extension. It is equivalent to the condition that the graph G(T) is a
submanifold of a closed linear manifold which is at the same time a
graph. It follows that T is closable if and only if the closure G (7) of G(7T)
is a graph (note Problem 5.10). We are thus led to the criterion: T is
closable if and only if no element of the form {0, v}, v == 0, is the limit of
elements of the form {u, Tu}. In other words, T is closable if and only if

(5.6) u, €D(T), u,~>0 and Twu,—>v imply v=0.
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When T is closable, there is a closed operator T° with G (T') = G (7).
T is called the closure of T. It follows immediately that T is the smallest
closed extension of T, in the sense that any closed extension of T is also
an extension of T. Since u ¢ D(T) is equivalent to {u, Tu} ¢ G(T),
u € X belongs to D(T) if and only if there exists a sequence {u,} that is
T-convergent to u. In this case we have Tu = lim T,

Let T be a closed operator. For any closable operator S such that
S =T, its domain D(S) will be called a core of T. In other words, a
linear submanifold D of D(T) is a core of T if the set of elements {u, T u}
with # € D is dense in G (7). For this it is necessary (but not sufficient
in general) that D be dense in D(T).

Problem 5.16. If T is bounded and closed, any linear submanifold D of D(T)
dense in D(T) is a core of T.

Problem 5.17. Every bounded operator is closable (the extension principle, see

2.2).

y P)roblem 5.18. Every closable operator with finite rank is bounded. (Thus an
unbounded linear form is never closable.)

Problem 5.19. Let T be an operator from X to Y with T-1¢ #Z(Y, X). Then
D’C D(T) is a core of T if and only if T D’ is dense in Y.

4. The closed graph theorem

We have seen above that a bounded operator with domain X is
closed. We now prove a converse of this proposition.

Theorem 5.20. A closed operator T from X to Y with domain X is
bounded. In other words, T €€ (X, Y) and D(T) = X imply T € B (X, Y).

Proof. Let S be the inverse image under T of the unit open ball of Y
(it is not yet known whether S is open or not). Since D (T) = X, X is the
union of S, 25, 35, ... . It follows by an argument used in the proof of
Theorem 1.29 that the closure S of S contains a ball K, say with
center #, and radius 7.

Any u € X with |#| <27 can be written in the form u = ' — u"
with ', " € K (loc. cit.). Since K S, there are sequences u,, u, €S
such that u, — o', u, - u". | T (u, — u,)| < | Tuy,| + | Tu,| < 2 shows
that u, — u,, €2S. Thus u = lim (4, — u,)) €2S. It follows by homo-
geneity that for any 1> 0, the ball |u| < A7 of X is a subset of 8.

Now take an arbitrary « € X with |«| <7 and an arbitrary ¢ with
0 < £ < 1. Since « € S as remarked above, there is a #, ¢ S within distance
er of u, that is, |u —uy| <er and |Tuy < 1. Hence u —u, €&S
by the same remark and, therefore, there is a #, € ¢ S within distance &2 7
of u — uy, that is, |u — u, — u,| < €27, | Tu,| < &. Proceeding in this
way, we can construct a sequence {u,} with the properties

o — sy — oo —u,| <e&v, |Tuy|<e*t, n=12,....
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If we set w, = u; + * -+ + u,, we have |4 — w,| < e"7 > 0, # - o0, and
n+p
1Tw, — Tw,,| = 3 lI

k=n+

| Tup| < e+ ertl4 - < (1—¢)"1e"—>0.

This implies that Wy > . Since T is closed, we must have T =lim T w,.

But since |Tw,|<1+¢e+¢e+:--=(1—¢% we conclude that
|Tu| < (1 — &)~L Since this is true for every » € X with |u| <7, T is
bounded with || T|| £ (1 — &)~ 7~ Since ¢ was arbitrary, it follows that
1T < 1/r.

As an application of Theorem 5.20, we shall prove the bounded-
ness of the projection P on M along N defined by (3.14). It suffices to
show that P is closed, for P is defined everywhere on X and linear.
Let {u,} be a P-convergent sequence: #, - #, Pu, - v. Since Pu, ¢ M
and M is closed, we have v € M. Since (1 — P) u, €N and N is closed,
u — v = lim (4, — Pu,) € N. Thus Pu = v by definition and P is closed.

Problem 5.21. Let T € ¢ (X, Y) with R(T) = Y. If T is invertible, then T-1¢
€ B(Y, X).

Problem 5.22. Let T € #(X, Y) and let S be a closable operator from Y to Z
with D(S) D R(T). Then ST € #(X, Z). [hint: ST is closable with domain X,
hence closed.]

5. The adjoint operator

Consider an operator T from X to Y and an operator S from Y*
to X*. T and S are said to be adjoint to each other if

(5.7) (& Tu) = (Sg, ), #€D(T), ge€D(S).

For each operator T from X to Y, there are in general many operators
from Y* to X* that are adjoint to T. If T is densely defined, however,
there is a unique maximal operator T* adjoint to T. This means that T*
is adjoint to T while any other S adjoint to T is a restriction of T*.
T* is called the adjoint (operator) of T.

T* is constructed in the following way. D (T*) consists of all g € Y*
such that there exists an f € X* with the property

(5.8) (&, Tu) = (f,») forall wcD(T).

The f € X* is determined uniquely by g, for (f, #) = (', %) for allu € D(T)
implies f = f’ because D(T) is dense in X by assumption. Therefore, an
operator T* from Y* to X* is defined by setting T* g = f. Obviously T*
is a linear operator, and comparison of (5.7) with (5.8) shows that S ¢ T*
holds for any S adjoint to T while T* itself is adjoint to T.

The adjointness relation (5.7) admits a simple interpretation in
terms of the graphs. Consider the product Banach space X x Y introduced
in par.2. Now (5.7) can be written (—Sg, #) + (g, T#) =0, which
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implies that {u, Tu} € X x Y is annihilated by {—Sg, g} € X*x Y*
= (X X Y)*L. In other words, T and S are adjoint to each other if and
only if the graph of T and the inverse graph of — S annihilate each other :
G(T) LG (—9).

Similarly (5.8) shows that the inverse graph of — T* is the annihilator
of the graph of T:
5.9 G (—T*=G(T)L.

The assumption that T is densely defined guarantees that G(T)-L is
indeed an inverse graph. Since an annihilator is closed (see §1.4), it
follows that T* is a closed operator. Note that this is true even if T is not
closed or closable, but it may happen that T* is trivial (has domain 0).

Problem 5.23. If T ¢ #(X, Y), the above definition of T* coincides with that
of § 3.3.

Problem 5.24. If T and S are adjoint to each other and T is closable, then T
and S are also adjoint. In particular we have T* = (T)*.

Problem 5.25. TC T’ implies T* D T’* (if T is densely defined).

Problem 5.26. If T is from Y to Z, S is from X to Y and if TS is densely defined
in X, then (T'S)* D S*T*. Here D may be replaced by = if T € #(Y, Z).

Problem 5.27. For any densely defined T, we have

(5.10) N(T*) = R(T)L .

The notion of adjointness gives a very convenient criterion for
closability, namely

Theorem 5.28. Let T from X to Y and S from Y* to X* be adjoint to
each other. If one of T, S is densely defined, the other is closable.

Proof. If T is densely defined, T* exists, is closed and 7*> S. Hence
S is closable. If S is densely defined, G’(—S)+ is a graph in X** x Y**
[just as G(T)<L is an inverse graphin X* X Y* if T is densely defined].
Since G (T) annihilates G’ (—S), it is a subset of G’ (—S)L and the same
is true of its closure G(7) (regarded as a subset of X** x Y**). Hence
G(T) is a graph and T is closable.

Theorem 5.29. Let X, Y be reflexive. If an operator T from X to Y is
densely T:ieﬁned and closable, then T* is closed and densely defined and
T** =T.

Proof. Since X, Y are reflexive, we have G(T)LL1 = G(T) = G(T)
by (1.24) (we idenitfy X**, Y** with X, Y respectively). Hence G(T)
= G'(— T*)L, which implies that T* is densely defined; otherwise there
would exist a v € Y such that 0 5 v | D(T*), hence {0, v} €G'(— T*)L
= G(T), contradicting the fact that G(T) is a graph. Thus T** is defined
as an operator from X** = X to Y** =Y, and G(T**) =G’ (— T*)L
= G(T), which implies T** = T.

1 See footnote ? of p. 164.
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Theorem 5.30. Let T €€ (X, Y) be densely defined. If T-1 exists
and belongs to B (Y, X), then T*-1 exists and belongs to B (X*, Y*), with

(5.11) T*-1= (T-).

Conversely, if T*~1 exists and belongs to % (X*, Y*), then T-! exists and
belongs to B (Y, X) and (5.11) holds.

Proof. Assume T-1¢Z(Y, X). Then (T-1)* € B (X*, Y*). For each
gED(T*)cY* and v€Y, we have (T-}Y*T*g,v)= (T*g T-'v)
= (g, TT-1v) = (g, v); hence (IT-1)* T* g =g. On the other hand, for
each f€X* and u€D(T)cX we have ((T-Y)*f, Tu)= (f, T~ Tu)
= (f, u); hence (T-1)*f€D(T*) and T*(T-)* f=f by the definition
of T* given above. The two relations thus proved show that T*-1
exists and equals (T-1)*.

Conversely, assume T*-1 ¢ Z (X*, Y*). For each f € X* and » ¢ D(T)
we have (T*-1f Tu)= (T* T*-1f, u) = (f, u). For any « ¢ X, how-
ever, there exists an f€ X* such that ||f| =1 and (f, ) = || (see
Corollary 1.24). For this f we have |u| = (T*-1f, Tu) < |T*-Y| | T |-
This implies that T is invertible with | 7= < [|[T*-1|. Since T-! is thus
bounded and closed, R(T) is closed. It remains to be shown that this
range is the whole space Y. For this it suffices to show that no g + 0 of
Y* annihilates R(7). But this is obvious from (5.10) since T* g = 0
implies g = 0 by the invertibility of T*.

Example 5.31. Let us determine the adjoints of the T, T,, n =0, 1, 2, 3, of
Example 2.7 defined from the formal differential operator L = dfdxin X = L?(a, b).
We denote by S, S, the same operators defined in X* = L¢(a, d), p~1 g1 =1,

assuming 1 = p < oo. It is easily seen that T" and — S, are adjoint to each other.
We shall show that T* = — S,. To this end let g€ D(T*), f = T* g; then

b b
(5.12) Jf@ds = (f,u) = (T* g w) = (& Tw) = [g@ dx
a a
x
for every u € D(T). Set h(x) = [fdx. Then f= b’ and k(a) = 0 so that (5.12)
a
gives, after integration by parts,
b
(5.13) JEg+n@dx —nh@®)u®d) =0.
a

For any v € X, there is a # € X such that ' = v and % (b) = 0. Hence g + %€ X*
annihilates all v € X and so g 4+ » = 0. Then (5.13) gives & (b) () = 0. But since
there are « € D(T) with « (b) == 0, we have % (b) = 0. Hence g = — & is absolutely
continuous with g’ = — 4’ = —f€ X* and g(a) = g(b) = 0, so that g€ D(S,)

with T*g = f = — Syg. This proves the desired result 7* = — S, since T* D — S,
as noted above.

In the same way it can be proved that Tyd = —S, T¥ = —S,, T¥ = —5,,
T3 (k)* = — S3(1/E). Similarly, we have T* = — S in the general case where (a, b)

need not be finite (7" is the minimal operator, see Example 2.7).
Example 5.32. Consider the operators of §2.3 constructed from the formal
second-order differential operator L [(2.13)]. First we consider the general (singular)
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case (Remark 2.16) and define the maximal and minimal operators T, 7" in X
= L?(a, b), 1 £ p < oo. Similarly we define the maximal and minimal operators

S, S from the formal adjoint M to L [see (2.27)]. A basic result in this connection is
(5.14) T*=S.

The fact that 7 and S are adjoint to each other is easily seen from the Lagrange
identity

B
(5.15) [ @Lu—udv)dx = [pow’' T — u(po )’ + pyu vl

where € D(T) = C{°(a, b), v€ D(S) and u(x) = 0 outside of the finite interval
(@ B).

To prove the stronger result (5.14), we introduce an integral operator K = K,
with the kernel

(5.16) By, %) =y —#nly — 2,

where 7 (#) is an infinitely differentiable function of the real variable # such that
n(t) = 1 identically for —¢/2=< ¢< &2 and 5(f) = 0 identically for [f|= ¢,
& being a sufficiently small positive constant. %(y, #) is infinitely differentiable
except fory = v and k(y, ) =0 for |y — x| = e.

Let w(x) be an infinitely differentiable function vanishing identically outside
the interval (a + 2¢, b — 2¢) and let v = Kw. Since the kernel %(y, x) vanishes
for |y — x| = &, u(¥) vanishes outside the interval (a + & b — ¢). Since &(y, %) is
continuous at y = x, it follows that #’ = K’w where K’ is the integral operator
with the kernel %’(y, ¥) = 0 k(y, #)/0y. Since %’(y, ) has a discontinuity at y = »
with a jump of 2, the second derivative #”” cannot be obtained simply by dif-
ferentiation under the integral sign; the correct expression for #” is

(5.17) u’ =2w + K"'w

where K’ is the integral operator with the kernel %" (y, ¥) = 02k (y, x)[0y2. Note
that &’ is infinitely differentiable everywhere. Thus u is infinitely differentiable and
vanishes identically outside (@ + ¢, b — ¢€), so that » € D(7) and

(5.18) Tu=Lu=2pw+ po K'w + p, K'w + p Kw .

Now let g€ D(T*) and f = T* g. We have (g, Tu) = (f, w) for all # of the
above form, so that

(5.19) (208 + K"*pog + K'* p1g + K* 8, w) = (K* f, w) .

Note that K, K’, K” are bounded operators on X to X (since the kernels &, %’, 2"
are bounded functions; see Examples 2.4, 2.11), and their adjoints are again integral
operators with the Hermitian conjugate kernels (Example 3.17). (5.19) is true for
every infinitely differentiable function w vanishing outside (¢ + 2¢,b — 2¢).
Since such functions form a dense set in L?(a + 2¢, b — 2¢), it follows that

(5:20)  g(x) =5 (,,) [K* f(x) — K* p,g(%) — K'* pyg(¥) — K”* po g (#)]

for almost all ¥ € (a + 2¢, b — 2¢).

Since it is known that f, g€ X* = L¢, the right member of (5.20) is a
continuous function of ¥ (note that the kernels &, #’, 2’ are smooth or piecewise
smooth functions). Hence g(¥) is continuous for x € (@ + 2¢, b — 2¢). But since
& > 0 is arbitrary, g(#) is continuous on (a, b). Returning to (5.20) we then see that
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g(#) is continuously differentiable on (a2 + 2¢, b — 2¢) and hence on (a, b). This
argument can be continued to the point that g’ is absolutely continuous and g”
belongs to L¢ locally [in any proper subinterval of (a, b)], for (5.20) shows that
8" — flp, is continuous.

Once this local property of g is known, an integration by parts gives (f, u)
= (g, Tu) = (Mg, u) for every u¢ D(T) so that Mg = f€ X* = L¢(a, b). Thus
g€D(S) and Sg= Mg = f = T*g. Since SC T*, this completes the proof of
(5.14).

Let us now assume that L is regular (see Remark 2.16) and determine T* and
the T%. Since T, D T, we have T¥C T* = S. Thus the Lagrange identity gives

(5.21) (Lo & — U(Pog) + pr1U gl = (8 Tu) — (Sg u)

. = (& Tx“)—(ng,“)=0
for every u € D(T,) and g € D(T¥)C D(S). Since #’ (a) and ’ (b) can take any values
while u(a) = u(b) = 0, (5.21) implies that g(a) = g(b) = 0. Thus g satisfies the
boundary conditions for S, and hence 7§ = S,. (The S, are defined in X* from M
in the same way as the T, are defined in X from L.)

Similarly it can be shown that T* = S,, T¥ = S, (the constants k,, &, in the
boundary conditions for T, and S, should be correlated appropriately), T% = S,,
T¥ = S, (the subscript 4 refers to the case 3 with @ and b exchanged) and T§ = S.

These results show again that S (in the general case) and the S, (in the regular
case) are closed, since they are the adjoints of certain operators. Since the relation-
ship between L and M is symmetric, the T and T, are also closed (at least for
1 <p <oo)

Problem 5.33. If #’’(x) is continuous and « (r) = 0 outside a closed subinterval

[a’, b] of (a, b), then u € D(T).

6. Commutativity and decomposition

Two operators S, T € #(X) are said to commute if ST = TS, just
as in the finite-dimensional case. It is not easy to extend this definition
to unbounded operators in X because of the difficulty related to the
domains. Usually this extension is done partly, namely to the case in
which one of the operators belongs to #Z(X). An operator T in X is said
to commute with an 4¢ % (X) (or 4 commute with T) if

(5.22) ATCTA.

It means that whenever « € D(T), A« also belongs to D(T) and T Au
=ATu.

Problem 5.34. (5.22) is equivalent to the old definition A T = T 4 if T € #(X).

Problem 5.35. Every operator T in X commutes with every scalar operator
a1 (1 is the identity operator in X).

Problem 5.36. If T € € (X) commutes with 4, ¢ % (X) and if A"? A€ B(X),
then T commutes with 4. [hint: Problem 5.12.]

Problem 5.37. If an invertible operator T in X commutes with 4 € #(X),
then T-! commutes with 4.

For an operator T € #(X), the notion of a subspace M of X being
tnvariant under T can be defined as in the finite-dimensional case by the
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condition TMCM. It is difficult to extend this notion to unbounded
operators in X, for TM CM would be satisfied whenever M has only 0
in common with D (T) (see § 2.1 for the notation T M).

However, the notion of the decomposition of T by a pair M, N of
complementary subspaces [see (3.14)] can be extended. T is said to be
decomposed according to X = M@ N if

(5.23) PD(T)cD(T), TMcM, TNcN,

where P is the projection on M along N (see § 3.4). Note that the first
condition excludes the singular case mentioned above.
(5.23) is equivalent to the condition that T commutes with P:

(5.24) TP>PT.

In fact, (5.23) implies that for any u € D(T), Pu¢ D(T) and T Pu €M,
T(1—P)uéeN. Hence (1— P)TPu=0 and PT(1—P)u=0 so
that TPu= PTPu= PTu, which implies (5.24). Similarly, it is
easy to verify that (5.24) implies (5.23).

When T is decomposed as above, the parts Ty, Ty of T in M, N,
respectively, can be defined. Ty is an operator in the Banach space M
with D(Ty) =D(T) "M such that Tyu=Tu€M. Ty is defined
similarly. If T is closed, the same is true of T)y and T, for G(Ty) is the
intersection of G(T) with the closed set M X M (regarded as a subset of

X x X)
The notion of decomposition can be extended to the case in which
there are several projections P,, ..., P, satisfying P, P, = 03P,

with the associated decomposition of the space X=M;® - -® M,
where M, = P, X. T is decomposed according to this decomposition of X
if T commutes with all the P,. The part Ty, of T in M, can be defined as
above.

Problem 5.38. Let T be densely defined in X. If T is decomposed as described
above, the part TM. is densely defined in M,.

§ 6. Resolvents and spectra
1. Definitions

The eigenvalue problem considered in I-§ 5 in the finite-dimensional
case requires an essential modification when we deal with operators T
in a Banach space X*. Again, an eigenvalue of T is defined as a complex
number A such that there exists a nonzero # ¢ D(T)C X, called an
eigenvector, such that Tu = A . In other words, A is an eigenvalue if

1 Recall that we always assume dim X > 0.
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the null space N(T — 1) is not 0; this null space is the geometric eigen-
space for A and its dimension is the geometric multiplicity of the eigen-
value 4.

These definitions are often vacuous, however, since it may happen
that T has no eigenvalue at all or, even if T has, there are not “suf-
ficiently many”’ eigenvectors.

To generalize at least partly the results of the finite-dimensional
case, it is most convenient to start from the notion of the resolvent.
In what follows T is assumed to be a closed operator in X. Then the same
is true of T — { for any complex number {. If T — { is invertible with

(6.1) RO =RE T)=(T-0)1e%(X),

¢ is said to belong to the resolvent set of T. The operator-valued function
R({) thus defined on the resolvent set P(T) is called the resolvent of T.
Thus R ({) has domain X and range D (T) for any { € P(T). This definition
of the resolvent is in accordance with that given in the finite-dimensional
case (I-§ 5.2)%.

Problem 6.1. { € P(7) if and only if T — { has inverse with domain X (see

Theorem 5.20).
Problem 6.2. If { € P(T), we have

(6.2) R TCTRE) =1+CIR({E)EAX).

Thus T commutes with R ({) (see § 5.6).

Problem 6.3. If P (T) is not empty, D’C D(T) isa coreof T if and only if (T — {) D’
is dense in X for some (or all) { € P(T) (see Problem 5.19).

Problem 6.4. If 4 is a closable operator from X to Y with D(4) D D(T), then
AR, T)€ #(X,Y) for every { € P(T). [hint: Problem 5.22.]

Theorem 6.5. Assume that P (T) is not empty. In order that T commute
with A € B(X), it is necessary that

(6.3) R() A =AR()

for every £ € P(T), and it is sufficient that this hold for some { € P(T).
Proof. This follows directly from Problem 5.37. '

Problem 6.6. The R ({) for different { commute with each other.

The resolvent R(() satisfies the resolvent equation 1-(5.5) for every
1, &o € P(T). The proof is the same as before; it should only be observed
that TR () is defined everywhere on X [see (6.2)]. From this it follows
again that the Neumann series I-(5.6) for the resolvent is valid, but the
proof is not trivial. Denote for the moment by R’({) the right member

1 We have defined P (7) and Z (T) only for closed operators in X. They can be
defined for more general linear operators T in X. If T is closable, we set P(T)
= P(T), Z(T) = Z(T). If T is not closable, P (T) is empty and X (T) is the whole
plane.
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of I-(5.6), which exists for small |{ — {y|. Then we have R’ () (T — {)
=u for every 4 € D(T), since R(Cy) (T — &) u=u— (§ — o) R(y) u.
Similarly, we have formally (T — () R'({) v=v for every v € X. The
assumed closedness of T then ensures that actually R’ () v € D(7T) and
the result is correct. This shows that { € P(T) and R’ ({) = R({) for any ¢
for which the series converges. We have thus proved

Theorem 6.7. P(T) is an open set in the complex plane, and R ({) is
(piecewise) holomorphic for § € P(T). (‘“‘Plecewise”’ takes into account
that P (T) need not be connected.) Each component of P(T) is the natural
domain of R ({) (R ($) cannot be continued analytically beyond the boundary
of P(T)).

The complementary set X(7) (in the complex plane) of P(7T) is
called the spectrum of T. Thus { € Z(T) if either T — { is not invertible
or it is invertible but has range smaller than X. In the finite-dimensional
case 2 (7) consisted of a finite number of points (eigenvalues of T), but
the situation is much more complicated now. It is possible for X (7) to be
empty or to cover the whole plane. Naturally we are interested in the
moderate case nearer to the situation in the finite-dimensional case,
but it happens frequently that the spectrum is an uncountable set.

Example 6.8. Consider the differential operators T and T, of Example 2.6.
2 (T) is the whole plane. In fact, the equation (T — {)u =4’ — {u =0 has
always a nontrivial solution u(x) = ¢¢#, which belongs to X. The restriction T,

of T with the boundary condition #(a) = 0, on the other hand, has an empty
spectrum. In fact the resolvent R, () = R({, T,) exists for every { and is given by

(6.4) R,Q)v(y) =€ty fye“"v(x) ax.

Similarly X(T,) is empty. The spectrum of T consists of a countable number of
isolated points 4, (which are exactly the eigenvalues of T) given by

1
(6.5) l,,:b_—a(logk+2nni), n=0,4+1,+2,....
If { is different from any of the 4,, the resolvent R;({) = R({, T;) exists and is
given by the integral operator [cf. (2.11)]
y b
ec y
66) Ry@Q)v() =5 —a=ar |* e~try(x)dx + -t [e~lxy(x) dx|.
a ¥y
Finally, 2(T,) is again the whole plane. It is true that (T, — {)~! exists and is
bounded for every { but its domain is not the whole space X. In fact, each
v€ED((Ty — )Y = R(T, — {) has the form v = «’ — { u with u satisfying the
boundary conditions « (@) = u(b) = 0, so that v is subjected to the condition

(6.7) fbe“c" v(x)drx=0.

These results remain true when the differential operator djdx is considered in
X = L?(a, b) for a finite (a, b) (Example 2.7).

In these examples, R({, T) does not exist since the domain of T is too large
while R ({, T,) does not exist since D (T) is too small. In a certain sense T, Ty, T
are ‘‘reasonable’ operators.



Problem 6.9. Consider d/dx in X = L#(0, co) and define T and T, as in Example
2.7. Then P(T) is the right half-plane Re{ > 0 and P (T) is the left half-plane, with

REC Tv(y) = — ;oe—c("—”v(x) dx, Ret>0,
(6.8) , .
R TYv(y) = JO-Dy(x)dx, Rel < 0.
V]

Problem 6.10. Consider dfdx on (— co, o0) and construct the maximal operator T
in X = L#(— oo, 00). Then the two half-planes Re{ = 0 belong to P(T) and

o
— [etE-Ny(x)dx, Rel>0,
y

(6.9) R@Q)v() =
JetU-Dy(x)dx, Ref < 0.
—00

Example 6.11. Consider the differential operators T and T, of §2.3 in X =
= C[a, b]. P(T) is empty, for (T — {) » = 0 has always two linearly independent
solutions in X. On the other hand, X (T;) is empty since R3({) = R({, T5) exists
for every { and is an integral operator analogous to (2.19).

2 (T,) is neither empty nor the whole plane. The solution of (T; — {) v = v is
given by an integral operator of the form (2.21) with the kernel g(y, ») replaced by

T uy (¥ §) g (#; §) . —_ uy(y; §) uy(%; §)

G100 b n 0= W 'S T p@mwEn Y=
Here u,, u, are the solutions of (L — {) # = 0 for the initial conditions «, (a; {) = 0,
uy(@;8) = 1and uy(b;8) = 0, ug(b; §) = 1. W(#; ) is the Wronskian of these two
solutions and

€m W =w e |~ [Eras), woe) = —w@0).

R, () = R(, T,) exists if and only if W, ({) == 0. Since W,({) is an entire function
of {, its zeros form a countable set {4,} (the A, are eigenvalues of T). Thus X (T3)
is a countable set consisting of eigenvalues. That X (T;) is not empty can be seen,
for example, by observing that the eigenvalue problem for T; can be converted
into a selfadjoint form by a simple transformation!. This remark shows also that
the A, are all real.

Let us further recall that the Green function (2.22) exists if minp,(x) =¢ > 0

and that the estimate (2.25) holds. Applying this result to the operator L replaced _

by L — {, we see that R, () exists and

1
¢ — Rel
at least if { is real. We shall show that (6.12) is true also for complex {. If Rel < ¢,
we have |u + | < pu + ¢ for sufficiently large real u. Since this implies that
—u <c¢, R (—u) exists by what was just proved and |R,(— u)| = 1/(u + ¢).
Then it follows from I-(5.7) that R, ({) exists, and (6.12) follows from I-(5.6) (set
§o = — u) when u — oo.

Similarly X (T,) consists of a countable number of eigenvalues. The half-plane
Re{ < c again belongs to the resolvent set and the estimate (6.12) holds, provided
that h,, by = 0.

1 The dlﬂerentlal equation Lu = Au can be transformed into (p,v’)’ + qv
=Av, where v=(—pg)~V* exp [(1/2) [ ®ilpo) dx] u and g = py — (po —

— p)24p, + (Po — p1)/2. This is a selfadjoint eigenvalue problem, and there
exists a countable set {4,} of real (and only real) eigenvalues (see V-§ 3.6).

(6.12) 1RO = if Rel <c¢ = minp,(¥),
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These results are also true if we consider the operators in X = L?(a, b); the only
modification is to replace the constant ¢ by min (¢, ¢’) where ¢’ is given by min (p, — p; +
+ p7) [see (2.26)].

2. The spectra of bounded operators

Consider now an operator T € #(X). Then nesther P(T) nor T(T) s
empty. More precisely, P(T) contains the exterior of the circle

(6.19) 16 = spr T = lim [ 77" = inf |Tojtim

(which reduces to the single point { = 0 if and only if spr T = 0, that is,
T is quasi-nilpotent), whereas there is at least one point of £ (7) on this
circle!. In particular X(7) is a subset of the closed disk|{| <'|T]-
We note also that

(6.14) IERE) +1] >0, C—>oo.

These are known in the finite-dimensional case (see I-§ 5.2), and the
proof in the general case is not essentially different. We see that the
Neumann series on the right of I-(5.10) converges for { outside the circle
(6.13). That the sum of this series is equal to the resolvent R({) can be
seen as in the proof of Theorem 6.7. Since the convergence domain of
this series is |£| > spr T, it follows that there is at least one point of % (7)
on (6.13) provided that sprT > 0. If spr T = 0, { = 0 belongs to X(7)
because otherwise R ({) would be an entire function, contradicting (6.14)
and Liouville’s theorem.

Problem 6.12. Consider the shift operator T € #(X), X = I?, such that Tx, = 0,
T, = %p—y (= 2). Z(T) is the unit disk.

3. The point at infinity

The partition given above of the complex plane into the resolvent
set and the spectrum of an operator does not refer to the point at in-
finity. For some purposes it is useful to consider this point in the parti-
tion. Before doing so we prove

Theorem 6.13. Lot T ¢ % (X) and let P(T) contain the exterior of a
circle. Then we have the alternatives: .

i) T€Z(X); R ({) vs holomorphic at { = oo and R (c0) = 0.

ii) R () has an essential singularity at { = oo.

Proof. Suppose that { = oo is not an essential singularity of R({).
Since R (() is not identically zero, we have the expansion

6.15) R(Q)=C(*A+*1B+-+-, A4, B,...cBX), A+0,
for large |{|, where % is an integer. Then
(6.16) TR =14+CRQ) =1+ A+PB+---.

1 HencesprT = sup |A].
A€z (T)
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First we show that 2 < — 1. If £ = 0, we should have {-*-1 R({) - 0,
T {~*-1R({).— 4 for { - oo, which implies 4 = 0 by the closedness of T,
contradicting the assumption 4 & 0. Hence 2 < —1 and so R({) —» 0,
TR({) -1+ (lim*+1) 4 for { — oco. Again the closedness of T requires
that 1 + (lim{*+!) 4 = 0, which is possible only if 2 = —1and 4 = — 1.
Thus { R(¢) u > —u and T ¢ R(() u - B u for every u ¢ X. The closed-
ness of T again implies that » € D(T), Tu = — Bu. In other words,
T =—BcZ(X).

In view of Theorem 6.13, it is natural to include { = oo in the re-
solvent set of T if T € Z(X) and in the spectrum of T otherwise. When
it is desirable to distinguish these extended notions of the resolvent set
and the spectrum (as subsets of the extended complex plane) from the
proper ones defined before, we shall speak of the extended resolvent set

and the extended spectrum and use the notations IB(T), PN (T). Thus

=o00¢ 13(_’[') if and only if T € #(X). An unbounded operator always
has { = oo in its extended spectrum S:(T); if it is an isolated point of
)y (T), it is an essential singularity of R({).

Problem 6.14. X (7T) is never empty. (Recall that dim X > 0.)

Theorem 6.15. Let T be a closed invertible operator in X. E(T) and
s (TY) are mapped onto each other by the mapping & — =1 of the extended
complex planel.

Proof. Let 0+ (¢ P(T) so that R({) exists. Set S({) = TR()

=14+ R() €%#(X). For every u ¢ X we have S({) u = TR(C) # and
T-1SC) =R uw=2C_1S() — 1) u. Hence
(6.17) (T =) SQu=mu.
This shows that 7-1 — (-1 has range X. Moreover, this operator is
invertible, for (71— {-1) v =0 implies v =, T-'v, Tv=_v, v=0.
Thus it follows from (6.17) that (7! — {-1)-1= —{ S({) €#(X), and
(-1eP(T-Y.

If =0 belongs to P(T), T-1¢&(X) so that 0-1= oo ¢ P(T-Y)
by definition. If C oo belongs to P (1), TeRn (X) and therefore 0 = co~1 €
€ P(T-Y). Thus P(T) is mapped by { - = onto P(T-1). The same is true
for the complementary sets )y (T) and ) (T).

Problem 6.16. The spectrum of R((,) is the bounded set obtained from E(T)
by the transformation { — {’ = ({ — {,)~!, and
(6.18) R(C =Lt RE) == —8) —C—C*R() -

Furthermore, sprR ({,) = 1/dist ({,, Z(T)).

1 Theorem 6.15 is a special case of the spectral mapping theorem, which asserts

that the spectrum of a “function’ @ (T) of T is the image under ¢ of Z(T). $(T) is

defined by the Dunford-Taylor integral as in I-(5.47). We shall not consider this
theorem in the general form (see DUNFORD and SCHWARTZ ][l]).
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4. Separation of the spectrum

Sometimes it happens that the spectrum X (T) of a closed operator T
contains a bounded part X’ separated from the rest X'’ in such a way
that a rectifiable, simple closed curve I' (or, more generally, a finite
number of such curves) can be drawn so as to enclose an open set contain-
ing X' in its interior and X"’ in its exterior. (For most applications we
consider in the following, the part X’ will consist of a finite number of
points.) Under such a circumstance, we have the following decomposition
theorem.

Theorem 6.17. Let 3 (T) be separated into two parts X', X' in the way
described above. Then we have a decomposition of T according to a de-
composition X = M & M’ of the space (in the sense of §5.6) in such a
way that the spectra of the parts Ty, T cotncide with T', X' respectively

and Ty € B(M'). Thus b} (Tw) = Z' whereas N (Tm~) may contain { = co.
Proof. Set

(6.19) P= f R()dl € B(X).

27”
A calculation analogous to that used to deduce I-(5.17) shows that
P2= P, Thus P is a projection on M’ = PX along M" =.(1 — P) X.
Furthermore

(6.20) PR@)=RQ) P, LcP(D),

so that P commutes with T (Theorem 6.5), which means that T is
decomposed according to X = M’@® M" and the parts Ty, Ty~ are
defined.

It is readily seen that the parts of R({) in M’, M", which we denote
by Rm (), Rm~(£), are the inverses of Ty — £, T~ — (, respectively.
This shows that both P(Ty.) and P(Ty~) contain P(7T). Actually,
however, P (T ) also contains X"’. To see this we first note that Ry () »
=R({)u=R() Puforu ¢ M, ¢ P(T). But forany { € P(T) noton I,
we have

(621) RQ)P=—5,+ Pf RQORE) AL =~ 2—,‘,7rf RO - RE) o
by (6.19) and the resolvent equation I-(5.5). If { is outside I, this gives
(6.22) RE)P=5or Fj RE)5og

Since the right member of (6.22) is holomorphic outside T, it follows that

R (C) P, and hence Ry () also, has an analytic continuation holomorphic
outside I'. That this continuation of Ry ({) is the resolvent of T)y can be
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seen from Theorem 6.7. Thus P(Ty) contains the exterior of I" and
therefore X (Tyy) C 2.
Similarly, it follows from (6.21) that

(6.23) RO P=RQ) + o7 [ RO 725
r

if { is inside I'. This shows that R ({) (1 — P) has an analytic continuation
holomorphic inside I'. As above, this leads to the conclusion that
S(Ty)CZ".

On the other hand, a point { € X cannot belong to both P(Ty)
and P(Ty); otherwise it would belong to P(T) because Ry ({) P +
+ Ry~ (8) (1 — P) would be equal to the inverse of T — {. This shows
that we have X (Ty) =X/, Z(Ty) = X"

Finally we shall show that

(624) PTCTP=—5— [TRE)dt=—5+ [CRE) dLcBX).
r r

PT TP expresses the known fact that T commutes with P. The
second equality of (6.24) is obvious since TR() = 1 + £ R({). The first
equality is obtained by a formal multiplication of (6.19) from the left
by T. This multiplication is justified by the closedness of T [approxi-
mate (6.19) by a finite sum and use the boundedness of TR({) =1 +
+CR(0)]

(6.24) implies that Ty € Z(M’). This completes the proof.

We note the following facts proved above. R () can be written in the
form

R =R+ R"(),
R =ROP, R'Q=RC(1-P).

R’ () is holomorphic outside %’ and coincides with Ry ({) when restricted
to M’ while it vanishes on M”’; similarly R’ ({) is holomorphic outside "
and coincides with Ry~ ({) on M" while vanishing on M’.

Theorem 6.17 can easily be extended to the case in which X(T) is
separated into several parts X, ..., ¥, and X, where each X, with
1 £ 2 £ s is bounded and is enclosed in a closed curve (or a system of
closed curves) I, running in P(7) and lying outside one another,
whereas X, may be unbounded and is excluded by the I',. Then the
operators P, defined by (6.19) with I' = I', satisfy P, Pj, = 3 P,

(6.25)

h, k=1, ... s. T commutes with every P, so that T is decomposed
according to the decomposition X =M, ® & M,® My, M, = P, X,
where Py=1— P, — -+ — P, The part Ty, of T in M, has spectrum

Sy, and Ty, € B (M,) for & = 1.
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5. Isolated eigenvalues!

Suppose that the spectrum X (T) of T € € (X) has an ¢solated point A.
Obviously X (T) is divided into two separate parts X', X'’ in the sense
of the preceding paragraph, where X’ consists of the single point 1;
any closed curve enclosing 1 but no other point of  (7) may be chosen
as I'. The operator Ty described in Theorem 6.17 has spectrum consisting
of the single point 1. Therefore, Ty — 1 is quasi-nilpotent (see par. 2).
The Neumann series I-(5.10) applied to Ty — A beomes

(6.26) Rw () =— é‘o (C— )Ty — A~
and converges except for { = 1. (6.26) is equivalent to
, P ©  pr

where
(628) D=(T-NP=—5[(C-HREAEBX)
r

is likewise quasi-nilpotent and

(6.29) D=DP=PD.

On the other hand Ry~ ({) is holomorphic at { = 1 and admits the Taylor
expansion I-(5.6) with {, = A. This is equivalent to

0

(6.30) R'"¢)=R()(1-P)= %—Jo (& — A Snt
where B
(6.31) S=Ry (1) (1 - P)= cli_:)r}lR(C) (1-P).

(Note that R(A) does not exist.) R" ({) will be called the reduced resolvent
of T for the eigenvalue A.
It follows from (6.27) and (6.30) that

P b D» b
6.32) R()=— - X (C— A SnL,
632) RO=-727- 3 gogr+ 2 €A

This is the Laurent series for R({) at the isolated singularity { = A.
S has properties similar to those of the operator S, introduced
in the finite-dimensional case (I-§ 5.3), namely

(6:3) S=ga7 [ RO 27 €8(X),
r

6.34) STCTScBX), (T—A)S=1—P, SP=PS=0.

1 The expression ‘‘an isolated eigenvalue’’ is somewhat ambiguous. We mean
by it an eigenvalue which is an isolated point of the spectrum (not just an isolated
point in the set of eigenvalues).
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The Laurent expansion (6.32) is similar to I-(5.18) in the finite-
dimensional case, with the sole difference that the principal part (with
negative powers of { — 1) may be an infinite series. The principal part is
finite, however, if M’ is finite-dimensional, for Dy, = Tpy — 4 is then
nilpotent (see Problem I-5.6) and the same is true of D. In this case Ais an
etgenvalue of T. In fact, since 1 belongs to the spectrum of the finite-
dimensional operator T, it must be an eigenvalue of T) and hence of T.
In this case dimM’ is again called the (algebraic) multiplicity of the
eigenvalue A of T, and P and D are the esgenprojection and the esgen-
nilpotent associated with A. 1 may or may not be an eigenvalue of T if
dimM’ = oo,

These results can be extended to the case in which we consider several
isolated points 4,, . . ., 4, of Z(T). The remark at the end of par. 4 leads
immediately to

639 RO=- 2|2+ 5 ]+ RO

n=1

Here the P, are projections and the D, are quasi-nilpotents such that
(6.36) Py Pr=064 Py, PyDy=D,P,=D,, (T—XA)P,=D,.
R, (0) is holomorphic at £ = 4,, k=1, ..., s, and

(6.37) R,(()=R() Py, Py=1—(Py+---+Py).

Again A, is an eigenvalue of T if M, = P, X is finite-dimensional, and
P, and D, are respectively the associated eigenprojection and eigen-
nilpotent. We have further

s
(6.38) TP= 3 (MPy+D,), P=P,+--++P,.
h=1

Here we have a spectral representation of T in a restricted sense.
This is not so complete as the one in the finite-dimensional case (I-§ 5.4),
since the isolated points do not in general exhaust the spectrum X (7
and, even if this is the case, there are in general an infinite number of
points A,. Nevertheless, it gives a fairly complete description of the
operator T if one is interested only in a limited portion of the complex
plane where there are only a finite number of points of X (7) which are
eigenvalues with finite multiplicities. For brevity a finite collection
My - . ., Ag of such eigenvalues will be called a finite system of esgenvalues.
For a finite system of eigenvalues, the situation is much the same as
in the finite-dimensional case discussed in detail in I-§5. Most of the
results deduced there can now be taken over, and this will be done in the
sequel without further comment whenever there is no particular dif-
ficulty.



182 III1. Introduction to the theory of operators in Banach spaces

Problem 6.18. Suppose that dimM’ = m < oo in Theorem 6.17. Then X’
consists of a finite system of eigenvalues with the total multiplicity m.

Example 6.19. Consider the differential operator T; of Example 2.6 (or 2.7).
The spectrum of T, consists of the isolated points 4, given by (6.5). Let us find the
associated eigenprojections P,. Integrating the resolvent R,({) given by (6.6)
along a small circle around { = A, (which is a zero of £ — ¢®-®¢), we have by (6.19)

" b
1 ey
— a7 RO v01at =57 [ ehrogn s,

a

(6.39) Pnu(y) =

where a simple calculation of the residue has been made!. P, is a degenerate integral
operator of rank one with the kernel

(6.40) Pa(y, ) =

Each 4, is an isolated eigenvalue of T, with multiplicity one (simple eigenvalue),
and the associated eigennilpotent is zero.

Example 6.20. Consider the differential operator T, of §2.3. X(T)) consists of
isolated points A, which are the zeros of the entire function W, ({), see Example 6.11.
The eigenprojections P, can be calculated in the same way as above: the resolvent
R, ({) is an integral operator with the kernel g(y, #; {) given by (6.10), and P, is
obtained by (6.19) as in (6.39). Since there is a constant % such that wu, (%, 4,)
= k %, (#, A;) in virtue of the vanishing of the Wronskian at { = A,, a simple
calculation of the residue gives

1
b—a

ehn(y—2

x
i 2

b
) [ oo J P
Wol) J ol

(6.41) Pou(y) =

q’n(x) = ul(xl j'n) M

@ (%) is an eigenfunction of T, for the eigenvalue A,. P, is a degenerate integral
operator with rank one. Incidentally, we note that P2 = P, is equivalent to

x
b ﬁd

1 Pa()? § P

(6.42) - Wo(An) = bol) © dx,

which can also be verified directly from the differential equation satisfied by g, (%).
(6.42) implies that Wy (A,) == 0, for @, (#) is real because A, is real? (see Example
6.11).

1 Strictly speaking, the validity of relations such as (6.39) or (6.41) needs a
proof, for the integral in (6.19) is an integral of an operator-valued function R ({)
whereas (6.39) or (6.41) is concerned with the values of functions. For X = C[a, b]
this proof is trivial since u (y) for each fixed y is a bounded linear form in % € X.
It is not so simple for X = L? (g, b). In this case we first note, for example, that (6.19)
implies (Pv,f) = — (27 d)~ [ (R({)v,f)dl for v€ X and f€X* = L2(a,b),
p~! + ¢~ = 1. On calculating the right member and noting that f ¢ X* is arbitrary,
we see that (6.39) or (6.41) holds for almost all y.

2 W, (A,) may be zero if some of p,, p,, P, are not real or if we consider non-real
boundary conditions. If Wy (4,) = 0, P, is no longer of rank 1 and R ({) may have
a pole of order higher than 1.
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Example 6.21. As a more specific example, consider the operator
(6.43) Tu= —u"”, 0= x< m, with boundary condition
u(0) =u(m) =0.
We shall regard T as an operator in X = C[0, z] so that it is a special case of the

T, of the preceding example, with a =0, b ==z, py = —1, p, =0, p, = 0. The
eigenvalues and normalized eigenvectors are
(6.44) An=mn2, @,(¥)=sinnx, n=123,....

The resolvent R({) = R(, T) is an integral operator with the kernel equal to the
Green function of the equation #”” + { # = 0, namely
sin)/Zy sin T (m — #)
VCsinz T

and #, y exchanged for x < y. The poles of g(y, #; {) as a function of { are exactly
the eigenvalues 4, = n2.

The Laurent expansion of g(y, #; {) in powers of { — n? corresponds to (6.32).
This remark yields expressions for P and S for A = A, = #?: these are integral
operators with the kernels p and s, respectively, given by

(6.45) g % 8) = , V= #,

2
Py, #) =—sinnysinnz,
(6.46) T

2n

s(y x):z—[——y—cosny sinnx + z sinny cosnx +
! 7 2n
1
+ = ant
and with #, y exchanged for » < y. Note that D = 0.
For later reference we deduce some estimates for R (). According to Example 2.4
(final remark), | R ({)] is not larger than m;xx Jlg (3. #; )| d». Since [sinz] = cosh(Imz)

smnysmnx] y Y= %,

for any complex number 2, a simple calculation yields

inh B .
(647) [RQO|= BIC (Smas;:; —T—zinh”nﬂ)”’ » a=Rell, p=ImJ.

This further leads to the estimates

1 2
\ [« B~ Tml]’
6.48 ROI= grmm
( ) RO = |ﬂ| |C|“ = 1
B>’
4 T
IROI= [C[7 Jsinz af = |oc sinz o

The curve in the {-plane defined by Re ]/C = « == const. is a parabola

n* _ -
i where &= Re{, 7=1Im{.
It follows from (6.48) that |R({)|| = /|« sinz «| along such a parabola.

(6.49) E=o —

6. The resolvent of the adjoint
There is a simple relation between the resolvent of a closed operator T
in X and that of the adjoint T* (assuming that T is densely defined so
that T* exists). The following theorem is a direct consequence of
Theorem 5.30.
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Theorem 6.22. P (T*) and X (T*) are respectively the mirror images of
P(T) and X (T) with respect to the real axis, and

(6.50) R, T* =R T)*, LeP(T).

According to this theorem, any result on the spectrum of T has its
counterpart for T*. For example, if X (T) is separated into two parts X',
3" by a curve I as in par. 4, then X (T*) is separated by I' into two
parts &', " (I etc. being the mirror images of I' etc.). The resulting
decompositions of the spaces X = M’ @ M”, X* = M'* @ M"’* described
in Theorem 6.17 have the projection P and its adjoint P*:

(6.51) M'=PX,M’'=(1—P) X, M*=P*X* M"* = (1 — P*¥) X*.
This follows from the expressions

1
271

1
652 P——3 [RGTya, Pr——3i [RE THaC,
r T
by noting (6.50) and that the two integrals of (6.52) are taken along I'
and T in the positive direction. (6.51) implies

(6.53) dimM’ = dimM'* , dimM” = dimM"*

see (4.10) and the remark thereafter.

In particular suppose that. X(7T) contains several isolated points
Ay -+, Ag, s0 that R({) = R(¢, T) has the form (6.35). The corresponding
expression for R*({) = R({, T*) is

654)  R*() = s[P‘”‘ T ] R}

(6.54) O=-217-% ,,‘::. c— | TR

where the PjJ are projections satisfying PF Py = 6 P¥ and where
R¥() = Ry(§)* is holomorphic at { =1,, k=1, ...,s. If M, = P, X
is finite-dimensional, the same is true of M} = P§ X* and dimM}
= dimM,, and 7, is an eigenvalue of T* with (algebraic) multiplicity
equal to that of 4, for T.

Remark 6.23. An isolated eigenvalue A of T with finite multiplicity m
(such as 4, considered above) has properties quite similar to an eigen-
value of a finite-dimensional operator. For instance, not only is 1 an
eigenvalue of T* with (algebraic) multiplicity m, but the geometric
multiplicity of 1 for T* is equal to that of A for T. Again, the linear
equation (T — A) u = v is solvable if and only if v | N(T* — 1) whereas
(T* — ) g ={ is solvable if and only if f | N(T — ). These results
follow immediately if one notes that the problem is reduced to the
finite-dimensional problem for the parts Ty and Tj., each of which
may be considered the adjoint of the other.
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Remark 6.24. If dimM, = oo, it is possible that 1, is an eigenvalue
of T but 4, is not an eigenvalue of T* or vice versa.

Example 6.25. We continue to consider Example 6.20. P, as given by (6.41)
is an integral opera.tor with the kernel p,(y, ) = @n(¥) va(*¥) where g, (%)

=k @n(¥)exp ( f £ dx) / Wo(As) po(#). 1, should be a simple eigenvalue of T}

with the associated eigenprojection P}, which is an integral operator with the
kernel p¥ (¥, )= 9, (¥) @n(¥). Thus y,(») is the eigenfunction of T¥ for the eigen-
value A, (note that A,, @, v, are all real). Here we consider T, as an operator
in X = L?(a, b) rather than in C[a, b] since T, is not densely defined in the latter
case.

7. The spectra of compact operators

The spectrum of a compact operator T in X has a simple structure
analogous to that of an operator in a finite-dimensional space.

Theorem 6.26. Let T ¢ B (X) be compact. X (T) ts a countable set with
no accumulation point different from zero. Each nonzero A€ X (T) is an
eigenvalue of T with finite multiplicity, and X is an eigenvalue of T* with
the same multiplicity.

Proof. We give the proof in several steps.

I. First we prove that the etgenvalues of T do not accumulate at a point
A = 0. Otherwise there would be a sequence {4,} of distinct eigenvalues
of T with eigenvectors #, such that 0 <4 4, > A1+ 0. Let M, be the
subspace spanned by the »# vectors #,, . . ., #,. M, is invariant under T.
Since #,, #,, . . . are linearly independent, M,_, is a proper subspace of
M, and there is a v, € M, such that |v,] =1 and dist(v,, M-y =1
(see Lemma 1.12). With the sequence {v,} thus defined, we shall show
that {4;! Tv,} contains no Cauchy subsequence, contradicting the
assumption that T is compact (note that {4;!v,} is bounded). Now we
have for m < n

)';1 Tv, — 1;‘1 Tvy = v, — (l’;l Tv, — AZI(T - }m) ‘U,,)
where the second term on the right belongs to M,,_, because v,, € M,,_,,
M, _, is invariant under T and (T — A,) v, € M,_,. Since dist(v,, M,-,)
= 1, it follows that each element of the sequence {4;! T'v,} has distance
=1 from any other one, showing that no subsequence of this sequence
can be convergent.

II. Next we prove that R(T — () ¢s closed if { 4 0 and { is not an
etgenvalue of T. Suppose that (T — {) u, - v; we have to show that
v€R(T — ). If {u,} is bounded, {Tu,} contains a Cauchy sequence;
by replacing {u,} by a subsequence, we may assume that {Tu,} itself
is Cauchy. Let Twu,—»>w. Then (u,= Tu,— (T —{) 4,~>w—v.
Application of T gives { Tu,—~ T (w —v). Thus {w= Tw— Tv or
v="{_"YT —{) (w—v) €ER(T — ). It remains to show that {u,} is
bounded. Otherwise we may assume that |u,] — oo, replacing {u,}
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by a subsequence if necessary. Set #, = u,/|,]. Then {«,} is a bounded
sequence and (T — {) u, — 0. The same argument as above then leads
to the results Tu,—>w, (T - w=0 and {u,—>w. Thus |w|=
= lim||{ #,| = |{| > 0 and w must be an eigenvector of T for the eigen-
value {, contrary to the assumption.

III. For the moment a complex number { will be said to be excep-
tional if either { is an eigenvalue of T or { is an eigenvalue of T*. Since
T* is compact with T (Theorem 4.10), it follows from the result proved
above that the set of exceptional numbers is countable and has no
accumulation point different from zero. Every nonexceptional point  + 0
belongs to P (7). In fact, since we have just shown that R(T — ) is
closed, it suffices to note that R(T — )L = N(T* — {) = 0. On the other
hand, an exceptional point obviously belongs to X (7) (note Theorem
6.22). Thus 2 (7) is exactly the set of exceptional points. In view of the
results of the preceding paragraphs, the theorem will be proved if we
show that the eigenprojection P associated with each 1€ X(7T), 1 %0,
is finite-dimensional.

P is given by (6.19) where I' is a small circle around 1 excluding the
origin. R({) = R({, T) is in general not compact, but R({)+ !
= ("1 TR({) is compact with T (Theorem 4.8). Since [(-1d{=0,

r
P is equal to the integral along I' of the compact operator R ({) + {2
and is itself compact (since the integral is the limit ¢ norm of finite sums
of compact operators). In virtue of Problem 4.5, it follows that P is
finite-dimensional. .
Remark 6.27. Since every complex number A = 0 either belongs to
P(T) or is an isolated eigenvalue with finite multiplicity, Remark 6.23
applies to A. This result is known as the Riesz-Schauder theorem and
generalizes a classical result of FREDHOLM for integral equations.
Remark 6.28. Let 1,, » =1, 2, .. ., be the eigenvalues of a compact
operator T, with the associated eigenprojections P, and eigennilpotents
D,. If we set Q, = P, + - -+ + P, and Q, X = M,, {M,} is an increasing
sequence of finite-dimensional subspaces of X: M{CMyCM;... . In
each M,,, which is invariant under T, we have the spectral representation
of T in the form

(6.55) TQ, =
k

(=]
[cf. (6.38)]. This suggests the expression T = } (43 P, + D), but this
h=1
is not correct without further assumption?. In fact T may have no eigen-
1 It is an interesting but difficult problem to decide when such a spectral
decomposition is possible. For this question see DUNFORD and Scuwartz (1],
Chapter 11. It is also related to the theory of spectral operators due to DUNFORD
(see DunForD [1]).

(An P+ Dp)

lt‘ﬂ:
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values at all (for example, a quasi-nilpotent operator has no nonzero
eigenvalue and an integral operator of Volterra type is usually quasi-
nilpotent, see Example 3.15). We shall see, however, that the suggested
expansion is valid if T is a normal compact operator in a Hilbert space
(Theorem V-2.10).

8. Operators with compact resolvent

Another class of operators which have spectra analogous to the
spectra of operators in a finite-dimensional space is provided by operators
with compact resolvent. Let T be a closed operator in X such that
R() = R({, T) exists and is compact at least for some { = {,. According
to the result of the preceding paragraph, Z(R({,)) is a countable set
having no accumulation point different from zero. Since X (R ({,)) is the

image of 5 (T) under the map{— ({ — {,)~! (see Problem 6.16), it
follows that X (T') also consists of isolated points alone (with no accumula-
tion point different from oc). The eigenprojection P for each 1€ X(T)
is identical with the eigenprojection for the eigenvalue pu = (4 — {,)~! of
R (&), as is seen from (6.18) and (6.19) by transformation of the integra-
tion variable. In particular we have dim P < oo so that A is an eigenvalue
of T with finite multiplicity. Furthermore, for any { € P(T) the relation
R() = R(Co) (1 + (£ — &) R(£)) implied by the resolvent equation shows
that R () is again compact. Thus we have proved

Theorem 6.29. Let T be a closed operator tn X such that the resolvent
R () exists and is compact for some {. Then the spectrum of T comsists
entirely of isolated eigenvalues® with finite multiplicities, and R(() is
compact for every ¢ € P(T).

Such an operator T will be called an operator with compact resolvent
and a spectrum of the kind described will be said to be discrete. An
operator with compact resolvent has a discrete spectrum. Operators
with compact resolvent occur frequently in mathematical physics. It
may be said that most differential operators that appear in classical
boundary problems are of this type.

Problem 6.30. If an operator in X with compact resolvent is bounded, X must be
finite-dimensional.

Example 6.31. The differential operators of Examples 2.6-2.7 and of §2.3
for which the resolvent set is not empty are all operators with compact resolvent,
for their resolvents are integral operators with continuous kernels (Example 4.1).

This immediately leads to the result that the spectra of these operators consist of
isolated eigenvalues with finite multiplicities (cf. Examples 6.19-6.20).

In connection with operators with compact resolvent, the following
lemmas and their corollary are useful.

1 See footnote ! of p. 180.
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Lemma 6.32. Let Ty T, €Z (X, Y) have the properties: i) T, and T,
are extensions of a common operator T, the order of extension for T, being
Sfinite; ii) Tt and T3 exist and belong to B (Y, X). Then A = Ty — T3
is degenerate, and N (A) D R(T,) where codimR(Ty) < oo. The orders of
the extensions Ty and Ty of T are equal (so that T, is also a finite extension
of Ty).

Proof. Set D, = D(T3), Dy = D(T,), Dy = D(T§), Ry = R(T,). Each
v€ Ry is of the form v = Tyu = T, » so that T7'v =« and similarly
T3 v = u. Hence Av =0 and R, N(4). Since the mapping by T; as
well as by T, is one to one, we have dim (Y/R,) = dim (T, D,/T; D)
= dim(D,/Dy) and similarly dim(Y/Ry) = dim(Dy/D,). Hence dim
(YIN(4)) = dim(Y/Ry) = dim (Dy/Dg) = dim (D,/Dg) < o0 and A is de-
generate by Problem 4.11.

Lemma 6.33. Let T,, T, €€ (X, Y) have the properties: i) T, and T,
are restrictions of a common operator T, the order of restriction for T, being
Sfinite; ii) T1! and T3 exist and belong to B (Y, X). Then A = T — T3
is degenerate, and R(4A) CN(T) where dim N(T') < oo. The orders of the
restrictions Ty, T, of T are equal.

Proof. For any v €Y, TT;'v= T;Ty'v=v and similarly TT;'v
= v. Hence TAv = 0 and R(4) ¢ N(T). But since T is a finite extension
of T, and T, maps D, = D(T}) onto Y, we have dim N(T) = dim (D/D,)
where D = D (T). Similarly dim N(7T) = dim (D/D,). Hence dimR(4) =
< dim N(T) = dim (D/D,) = dim (D/D,) < oo.

Corollary 6.34. Let T,, Ty €% (X) have non-empty resolvent sets.
Let T, T, be either extensions of a common operator Ty or restrictions of a
common operator T, with the order of extension or restriction for T, being
Sfinite. Then T, has compact resolvent if and only if Ty has compact resolvent.

Example 6.35. The result of Example 6.31 that the operators considered there
have compact resolvents is not accidental. For these operators are finite extensions
of a common operator denoted by T, and, at the same time, finite restrictions of a
common operator denoted by T.

For convenience we add another lemma related to the lemmas
proved above.

Lemma 6.36. Let the assumptions of both Lemmas 6.32, 6.33 be satisfied.
Then A = Ty — T3? has the form

(6.56) A= 3 (.e)u, wEN(T), gER(Ty".

Proof. Since R(4)c N(T) by Lemma 6.33, we may write Av
= 3'g;[v] u; where the u; are linearly independent vectors of N (7). Ob-
i=1

viously the g; [v] are bounded linear forms on Y and vanish for v € R(T)
by Lemma 6.32. Hence we may write g; [v] = (v, g;) with g; €R(T)L.
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Chapter Four

Stability theorems

In this chapter we investigate the stability, under small perturbations, of
various spectral properties of linear operators acting between Banach spaces. The
basic problems to be treated are the stability or instability of the spectrum and
the perturbation of the resolvent. The results will be fundamental for the further
development of perturbation theory given in the following chapters. Other subjects
discussed include the stability of the Fredholm or semi-Fredholm property, of the
nullity, deficiency, index, etc. The endeavor is to treat these problems for unbounded
operators and for the most general perturbations.

One of the basic problems here is how to define a ‘‘small’’ perturbation for
unbounded operators. One rather general definition useful in applications is based
on the notion of a relatively bounded perturbation. But it is still too restricted in a
general theory. The most natural and general definition of smallness of a perturba-
tion is given in terms of a metric in the space € (X, Y) of all closed linear operators
from one Banach space X to another one Y. Such a metric has long been known,
but so far no systematic use of it has been made in perturbation theory. In this
chapter we base the main part of the theory on it.

Since the metric is defined in terms of the graphs of operators, which are closed
subspaces of the product space X X Y, the technique is equivalent to introducing a
metric in the set of all closed subspaces of a Banach space. For this reason, a con-
siderable part of the chapteris devoted to the theory of a metric on subspaces and to
related problems. In this way, for example, we are led to define such notions as the
Fredholm or semi-Fredholm property and the nullity, deficiency and index for a
pair of subspaces. The results obtained for them lead in a natural way to the cor-
responding results for operators.

§ 1. Stability of closedness and bounded
invertibility
1. Stability of closedness under relatively bounded
perturbation

Let T €% (X, Y), where X, Y are Banach spaces. [ (X, Y) is the set
of all closed operators from X to Y.] We have already noted (Problem
II1-5.6) that T + 4 is also closed if 4 € Z(X, Y). This expresses the
fact that closedness is stable under a bounded perturbation 4. We now
try to extend this stability theorem to a not necessarily bounded perturba-
tion.
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An immediate extension of this kind can be made to the case of a
relatively bounded perturbation. Let T and A4 be operators with the
same domain space X (but not necessarily with the same range space)
such that D(T)cD(4) and

(1.1) ldu| <alu] +6[Tu], «€D(T),

where 4, b are nonnegative constants. Then we shall say that 4 is relatively
bounded with respect to T or simply T-bounded. The greatest lower bound
b, of all possible constants & in (1.1) will be called the relative bound of A
with respect to T or simply the T-bound of A. If b is chosen very close
to by, the other constant & will in general have to be chosen very large;
thus it is in general impossible to set & = b, in (1.1).

Obviously a bounded operator 4 is T-bounded for any 7T with
D(T) cD(4), with T-bound equal to zero.

The extension of the stability theorem for closedness mentioned
above is now given by

Theorem 1.1. Let T and A be operators from X to Y, and let A be
T-bounded with T-bound smaller than 1. Then S =T + A s
closable if and only if T 1s closable; in this case the closures of T and S have
the same domain. In particular S s closed if and only if T is.

Proof. We have the inequality (1.1) in which we may assume that
b < 1. Hence

(12)  —alul+(1-0)|Tu] <|Su] <a|u|+ (1 +8)|T«], «€cD(T).

Applying the second inequality of (1.2) to # replaced by #, — u,,, we
see that a T-convergent sequence {u,} (that is, a convergent sequence
{u,} for which T u, is also convergent, see ITI-§ 5.2) is also S-convergent.
Similarly we see from the first inequality that an S-convergent sequence
{un} is T-convergent. If {u,} is S-convergent to 0, it is T-convergent to 0
so that Tu, — 0 if T is closable [see ITI-(5.6)]; then it follows from the
second inequality of (1.2) that S, — 0, which shows that S is closable.
Similarly, T is closable if S is.

Let T, S be the closures of T, S, respectively. For any u ¢ D(S),
there is a sequence {u,} S-convergent to « (see III-§ 5.3). Since this {u,}
is also T-convergent to % as remarked above, we have ¢ D(T) so that
D(S) ¢ D(T). The opposite inclusion is proved similarly.

Problem 1.2. (1.1) with b < 1 implies
(1.3) [4u]= alu] +b]Tul= (1 —b)~*(@]u] + b|Su]).

In particular 4 is S-bounded with S-bound not exceeding b (1 — b)~!. More generally,
any operator that is T-bounded with T-bound f is also S-bounded with S-bound
< B —b)t
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The assumptions of Theorem 1.1 are not symmetric with respect to T
and S, although the assertions are symmetric. In this connection, the
following symmetrized generalization of Theorem 1.1 is of some interest:

Theorem 1.3. Let T, S be operators from X to Y such that

(14)  |Su—Tu| <alu] +&'|Tu| +6”|Su|, «€D(T)=D(S),

where a, b', b"' are nonnegative constants and b’ < 1, b"" < 1. Then the
conclusions of Theorem 1.1 are true.

"Proof. Set A=S—T, T()=T+x4, 0<x<1 T(x) has
constant domain D(T), and T(0)= T, T (1) = S. Since Tu= T (x) u —
—xAu and Su=T(x)u+ (1 —x) Au, (1.4) gives |Au| <alu| +
+ (8 + b") | T () u|| + b | A u|, where b = max (b’, b"). Hence
@l + O+ 5 [ TG w])

This shows that A4 is T (x)-bounded with T (x)-bound not exceeding

f=(1—20)"1(d' 4 b"). Hence (x' — %) A is T (x)-bounded with T (x)-

bound less than 1 provided |»' — x| < 1/B, so that by Theorem 1.1,

T (x') is closable if and only if T (x) is. This observation leads immediately

to the proof of the theorem; for example, the closability of T (x) propagat-

es from % = 0 to » = 1 in a finite number of steps if T is closable.
Remark 1.4. Let T €€ (X, Y). Set

(1.6) loelll = N + | Tul , w€D(T).

It is easily seen that D(7) becomes a Banach space X if Il lll is chosen

(1.5) 4w <

as the norm; the completeness of )A( is a direct consequence of the
closedness of T. If 4 is an operator from X to Y’ with D(4)>D(7T),
the restriction of 4 to D(T) can be regarded as an operator 4 on Xto Y.
It is easily seen that 4 is T-bounded if and only if 4 is bounded.
Remark 1.5. If T is closed and 4 is closable, the inclusion D(T)

C D(4) already implies that 4 is T-bounded. To see this define X and 4
as in the preceding remark. Then 4 is closable, for an A-convergent
sequence in X is an A-convergent sequence in X. Since 4 is defined on

the whole of X, 4 is closed and therefore bounded by Theorem III-5.20.
Thus A4 is T-bounded by Remark 1.4.

2. Examples of relative boundedness

Since the notion of relative boundedness is important in perturbation theory,
let us consider several examples!.

Example 1.6. Let X = C[a, b] or X = L?(a, b) for a finite interval (a, b) and
let T and 4 be the maximal operators defined by Tu = — u’’ and Au = u’ (see

! The inequalities deduced below are special cases of the Sobolev inequalities;
see SoBOLEV (1], GOLDBERG (1].
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Examples 2.6-2.7 and § 2.3 of Chapter III). We shall show that 4 is T-bounded
with T-bound 0. To this end we use the identity

(1.7) w =Gu” + Hu
where G and H are integral operators with the kernels g(y, #) and 4 (y, #), respec-
tively, given by
(= ap _ nm+1)E—ar?
L L
(1.8) o) — — (b — )+ by, %) nn +1) (b —xn-1
A== -y "I T oo —y"

asx <y<b,

asy<x<b,

where % is any positive number. (1.7) can be verified easily by carrying out appro-
priate integrations by parts. The operators G and H are bounded, for

b b
b—a b—a
(1.9 [eo.a1ass =5,  [lo.nles 1.
a a
b b
2(n + 1) 2n(n + 1)
(1.10) f|h(y, 7)|dr< b —a flh(y, Aldy= Do —a"
a a
where we assumed »# > 1 for simplicity. It follows from III-(2.9) that
b—a 2n(n 4+ 1)
< — ==V
(l~11) "G"= n—1" "H" = n—1) (b — a) ’
Hence (1.7) gives
, b—a 2n(n + 1)
(1'12) "u "bé n—1 "u "9 + (,n — 1) (b.— a) "u"lﬂ n>1.

Since the factor of |«’’||, can be made arbitrarily small by taking » large, this gives
the desired result.

Incidentally we note that only the first inequality in each of (1.9) and (1.10) is
needed in the case of X = L® or X = C. In this case (1.12) may be replaced by

b—a 2(n 4+ 1

(1.1 e S oy 1l + ot e, 720,
Note that in (1.12) or (1.13) no boundary conditions are imposed on % (x).

Suppose now that both » and #’ belong to L?(0, o). Then (1.12) is true with
a = 0 and any b > 0, and the ||u||, and | »”’||, may be replaced by the corresponding
norms taken on the interval (0, o). Now choose #» = bJk for a fixed £ > 0 and
let b — oco. We see then that [|u’||, taken on (0, b) is bounded for b — oo so that
u’ € L#(0, oo) also, with

2
(1.14) lwlls = Ellwls + 5 lulls -

The same inequality holds for the interval (— oo, co). Since % > 0 is arbitrary,
A = d|dx is T-bounded with T-bound zero also in the case of an infinite interval.
Problem 1.7. From (1.14) deduce

(1.15) ], < 2 ]/2_(||u|| »|#”s)¥% (an infinite interval) .

Example 1.8. Let X = L?(a, b) with finite (4, b) and let Tu = o', Au = u(c),
where ¢ € [a, b]. 4 is a linear form and is unbounded if p < co. We shall show that 4
is T-bounded with T-bound O if p > 1 and with a positive T-bound if p = 1.
We start from the identity

(1.16) u(e) = (w', 8) + ( h)
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where
(x — )+t r+1)(x—ar
wm T F Ao Mg e tSE 0
) — -t (n+1)@®—2"
B =G g0 "= _—a =g ¢<*=?.

where » is any positive number. (1.16) can be verified by integration by parts.
A straightforward calculation gives the inequalities
b—a e n+1
g Jele= (W) o WMle= G g g 7 1y -
for any ¢ = 1. Hence we obtain from (1.16) and the Hoélder inequalities

119)  Ju(@) = lellellwlls + N2lelluls =

b—a P 7 41

< (Grer) W+ Gapsgg g e, £ F 00 =1
If p > 1, then ¢ < oo and the coefficients of ||u’[|, on the right of (1.19) can be made
arbitrarily small by taking # large; thus 4 is T-bounded with T-bound 0. If p = 1,
then ¢ = oo and (1.19) gives for  — 0
(1.20) @] = [«[x + [ullu/(® — a) .
This shows that 4 is T-bounded with T-bound not larger than 1. For ¢ = ¢ and
¢ =>b, the T-bound is exactly equal to 1; this follows from the existence of a
sequence {u,} such that u, (b) = 1, | 4], = 1 and [Ju,[|, = 0 for £ — co. An example
of such a sequence is given by wu,(r) = (r — a)*/(b — a)*. For a <c¢ <b, the
T-bound of 4 is equal to 1/2. In fact we have :

1 1 1 1
(1.21) 0@ S gl + 5 max (o= =) Il
this can be proved by noting that (1.16) is true also for g, 4 given by
xr—a 1
(1.22) g(x):m, h(x)zm, for a§x<c,

and similarly for ¢ < # < b, for which |g||, = 1/2 and |4, = max((c — a)-1,
(b — ¢)~1)/2. That the T-bound of 4 in this case cannot be smaller than 1/2 is seen
from the example u, () = (¥ — a)*/(c — a)*fora < * < cand = (b — 2)*/(b — c)*
for c < # < bso that u,(c) = 1, [|uy]; = 2 and [u,]j, = O for & — co.

Example 1.9. Let X = L?(a, b) for finite (a, b), let Tu = u’ (regarded as an
operator in X as above) and let A% = » be an operator from X to Y = C/[a, b].
Since every u € D (T) is a continuous function, we have D(T)C D(4). Furthermore,
since (1.19) is true for every ¢ € [a, b] while the right member of this inequality is
independent of ¢, |4 u|| = ||, satisfies the same inequality. This shows that 4 is
T-bounded, with T-bound 0 if > 1 and T-bound 1 if p = 1. Note that (1.21)
is useless here since the right member is not bounded for varying c. But this
inequality is useful if 4 is regarded as an operator from L(a, b) to Y’ = C[a’, b’]
fora < a’ < b’ < b; then (1.21) shows that the T-bound of 4 is 1/2.

Example 1.10. Consider the maximal differential operator T of III-§ 2.3 con-
structed from the formal operator (2.13). Consider another formal differential
operator obtained from (2.13) by replacing the coefficients p,(¥), P, (%), pa(x) by
other functions g, (¥), ¢;(%), ga(#), respectively, and construct the corresponding
operator S. S and T have the same domain, consisting of all # € X such that «/,
%’ € X. We shall show that S is T-bounded and estimate its T-bound. For any
u € D(T) we have

(1.23) [Su| < Nof|w”|| + Ny|w|| + Nallu|, Nj= max |gy(»)], =0,1,2.
asxsh



194 IV. Stability theorems

But we have the inequality (1.12), which may be written

(1.24) l#] < ellw”] + Cellu|
where ¢ > 0 is arbitrary if C, is chosen appropriately. Hence
(1.25) ISul < (No + & Ny [w”] + (Co Ny + Ny [u] -

On the other hand, setting m, = min |p, (+)| and M; = max|p,()|,j = 1, 2, we have
(126) [ Tul 2 mofw] — Miw] — Mylu] = (mo — & 34 ] —

— (Ce My + M) [[u] .
If ¢ is chosen so small that m, > ¢ M,, it follows that

N, + ¢ N, (Ce M, + M) (N, + € Ny)
(1.27) ||5“I|§7,,:_TWIIHTMII+[ e, CeNit Ny [u].

Letting ¢ — 0, we see that the T-bound of S is not larger than Ny/m,. It should be
noted that the coefficients of | Tu| and || in (1.27) become arbitrarily small if
N = max (N,, N;, N,) is taken sufficiently small. We note also that g,(») need not
be positive in the above arguments.

If we consider the restrictions T, T, etc. of T (see loc. cit.) and define S, S,,
etc. from S by the same boundary conditions, it follows from the above result that
S, is T,-bounded.

3. Relative compactness and a stability theorem

A notion analogous to relative boundedness is that of relative com-
pactness. Again let T and 4 be operators with the same domain space X
(but not necessarily with the same range space). Assume that D(7) C
cD(4) and, for any sequence #%, € D(T) with both {u,} and {Tu,}
bounded, {4 #,} contains a convergent subsequence. Then 4 is said to be
relatively compact with vespect to T or simply T-compact!.

If 4 is T-compact, 4 is T-bounded. For if 4 is not T-bounded, there
is a sequence #, € D(T) such that |u,| + | Tu,]| = 1 but [|4du,| = =,
n=1,2,3,....Itis obvious that {4 ,} has no convergent subsequence.

Theorem 1.11. Let T, A be operators from X to Y and let A be T-
compact®. If T s closable, S = T + A s also closable, the closures of T
and S have the same domain and A is S-compact. In particular S s closed
if T s closed?. ‘

Proof. First we prove that 4 is S-compact if T is closable. Assume
that {u,} and {Su,} are bounded sequences; we have to show that {4 u,}
contains a convergent subsequence. Since 4 is T-compact, it suffices
to show that {T u,} contains a bounded subsequence. Suppose this is not

1 For examples of relatively compact operators for ordinary differential
operators see BALSLEV [1].

2 Here we make no assumption on the ‘‘size”” of 4, in contrast to Theorem 1.1.

3 The assertions of this theorem are not symmetric in T and S (unlike Theorem
1.1). It is possible that T is not even closable while S is closed. A simple example
is given by choosing T = — 4 = f as an unbounded linear form on X, Y being the

one-dimensional space C (see footnote ? of III-p. 133). T is not closable (see Problem
II1-5.18) and 4 is T-compact, but S = 0 is closed.
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true so that | Tu,| — co. Set uy = u,/| T,||. Then u, -0, S, — 0 and
{Tu,} is bounded. Hence {4 u,} contains a convergent subsequence.
Replacing #, by a suitable subsequence, we may assume that 4 «,, — w.
Then Tu, = Su, — Au, - —w. Since u, — 0 and T is closable, we must
have w = 0. But this contradicts the fact that —w is the limit of T,
where | Tu,| = 1.

Next we prove that S is closable. Let %, — 0 and S«,, — v; we have
to show that v = 0. Since 4 is S-compact, {4 %,} contains a convergent
subsequence. Again we may assume that 4 «, - w. Then Tu, = Su, —
— Au, - v — w. Since u, - 0 and T is closable, we have Tu, > v — w
= 0. Since 4 is T-bounded, we have 4 «,, - 0. Hence v = w= 0.

Let T, S be the closures of T, S, respectively. If « € D (T), there is a
sequence {u,} which is T-convergent to #. Since S as well as 4 is T-
bounded, {%,} is also S-convergent to # so that # €& D(S). Suppose,
conversely, that % ¢ D(S). Then there is a sequence {«,} which is S-
convergent to #. Then {Tu,} is bounded; this can be proved exactly
in the same way as in the first part of this proof. Hence we may assume,
as before, that 4w, > w and Tu,= Su, — Au,—>v — w. Thus u, is
T-convergent to # and « € D(T). This proves that D (T =D (5).

Remark 1.12. Let T be closed and D (4) > D(T). Define X and 4 as in
Remark 1.4. Then 4 is T-compact if and only if 4 is compact.

Remark 1.13. We can also define relatively degenerate operators as
special cases of relatively compact operators. A is T-degenerate if A is
T-bounded and R(4) is finite-dimensional. It is easy to see that a T-
degenerate operator is T-compact.

We shall give an explicit form of a 7-degenerate operator. Let T
be from X to Y and consider the product space X x Y (see III-§5.2).
Since the T-boundedness of 4 implies that |4 «| < const. |{«, Tu}|,
4 may be regarded as a bounded operator from X x Y to Y’ (the range
space of 4), with domain G(7") (the graph of T). Since R(4) is finite-
dimensional, 4 # can be written in the form

(1.28) Adu= 2 gluly, yeY.
j=

where the g/ are linear forms defined on G (7). Since |gj [#]| < const.
- | 4w} by I-(1.21), it follows that the g/ are bounded forms in X x Y with
domain G(T). According to the Hahn-Banach theorem, the g; can be
extended to bounded forms on X x Y. Since (X x Y)* = X* x Y*, the
extended forms can be written in the form {u, v} - (%, f;) + (v, g;) with
f; € X* and g; € Y*. Restricting {u, v} to G(T), we have g [#] = (», f;) +
+ (Tu, g;). In this way we arrive at the following expression for a
T-degenerate operator from X to Y':

(1.29) A“=,Zl (o, 1)) + (Tw, g)ly; , LEX*, geY*, yeY'.
1n
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Problem 1.14. Assume that there is a densely defined operator S from Y* to X*
adjoint to T [see III-(5.7)]. Then a T-degenerate operator A has T-bound zero.
[hint: Approximate the g; of (1.29) by elements of D(S).]

Example 1.15. In Example 1.6, 4 is T-compact if (a, b) is a finite interval.
In fact if {u,} is a sequence such that Tu, = — u, is bounded, then 4 u, = u, is
equicontinuous. If in addition {,} is bounded, {«, (»)} is uniformly bounded in »
and #. Thus it follows from the Ascoli theorem that {u,} contains a uniformly
convergent subsequence, which is a Cauchy sequence in X. 4 is not T-compact for
the interval (0, 00) or (— 0o, 00), although 4 is T-bounded with T-bound zero [see
(1.14)]. In Example 1.8, 4 is not only T-compact but T-degenerate. This is obvious
since 4 is T-bounded and the range space of 4 is one-dimensional.

4. Stability of bounded invertibility

Let T €4 (X, Y). We shall now show that the property 7! € Z (Y, X)
is stable under a small perturbation.

Theorem 1.16.1 Let T and A be operators from X to Y. Let T—1 exist
and belong to B(Y, X) (so that T is closed). Let A be T-bounded, with the
constants a, b in (1.1) satisfying the inequality

(1.30) a|T-Y +b<1.

Then S = T + A 1is closed and invertible, with S—* € B(Y, X) and
Iz 172 (a | 72| + B)
1—a|T?| -5 1—a||TY—-b °
If in addition T-1 is compact, so ts S~1.
Proof. Since (1.30) implies » < 1, S is closed by Theorem 1.1. The
proof of other assertions of the theorem is not essentially different from
the finite-dimensional case (see the end of I-§4.4): first we note that

(1.32) S=T+A=(1+ATY)T, AT1¢A(Y),

for A T-'is an operator on Y to Y and is bounded by |4 T-* v| < a| T1v|
+o[o] = (@[T + ) o] Thus

(1.33) AT <a|T Y +b<1

and 1 + AT-* maps Y onto Y one to one, and the argument of I-§ 4.4
is applicable without essential change. The only change required is the
use of (1.33) instead of the simple estimate |4 T < |4] |77 used
there.

If T-1is compact, S-'= T-(1 4+ A T-)-! is compact by Theorem
I11-4.8.

Remark 1.17. If 4 is bounded in Theorem 1.16, we can take a = |4,
b= 0 and (1.31) reduces to I-(4.24). If, furthermore, 4 is assumed to
commute with T (Y = X being assumed), then we can prove the existence
of S~ under a weaker assumption, namely,

(1.31) S < |s-1 - T <

1 This theorem will be generalized in the following section (see Theorem 2.21).
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Theorem 1.18. Let T be an operator in X with T €% (X). Let
A €B(X) commute with T. If sprA < 1/sprT-2, then (T + A)~1 exists
and belongs to % (X).

Proof. The commutativity of A with T is equivalent to 471

= T-1 4 (see Problem III-5.37). Thus the proof is essentially the same
as the proof of a similar result in the finite-dimensional case (Remark
1-4.7).

§ 2. Generalized convergence of closed operators
1. The gap between subspaces

When we consider various perturbation problems related to closed
operators, it(is necessary to make precise what is meant by a ‘‘small”
perturbation. In the previous section we considered a special kind,
namely a relatively bounded perturbation. But this notion is still restrict-
ed, and we want to have a more general definition of the smallness of a
perturbation for closed operators.

This can be done in a most natural way by introducing a metric in
the set € (X, Y) of all closed operators from X to Y. If T, S €% (X, Y),
their graphs G (T), G(S) are closed linear manifolds in the product space
X x Y. Thus the “distance” between T and S can be measured by the
“aperture” or ‘“‘gap” between the closed linear manifolds G(T), G(S).
In this way we are led to consider how to measure the gap of two closed
linear manifolds of a Banach space.

In this paragraph we shall consider closed linear manifolds M, N, . . .
of a Banach space Z.

We denote by Sy the unit sphere of M (the set of all u ¢ M with
||| = 1). For any two closed linear manifolds M, N of Z, we set

(2.1) 6(M, N) = sup dist(«, N),
%€S
(2.2) S(M,N) = max[a (M, N), 6(N, M)]*.

(2.1) has no meaning if M= 0; in this case we define §(0, N) = 0 for
any N. On the other hand 6(M,0)= 1 if M % 0, as is seen from the
definition.

d(M, N) can also be characterized as the smallest number § such that
(2.3 dist(w, N) < 6 |u| forall u€M.

8(M, N) will be called the gap between M, N.
The following relations follow directly from the definition.

(2.4) 0(M,N)=0 ifandonlyif MCN.
(2.5) dM,N)=0 ifandonlyif M= N.
(2.6) d(M,N) = §(N, M) ..

(2.7) 0<6MN) <1, 0<6MN) 1.

1 See GoHBERG and KrEIN [1], T. Karo [12], CorpEs and LaBRrousse [1].
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(2.5) and (2.6) suggest that § (M, N) could be used to define a distance
between M and N. But this is not possible, since the function 8 does not
in general satisfy the triangle inequality required of a distance function®.

This incovenience may be removed by slightly modifying the defini-
tion (2.1-2.2). Set

2.8) 4(M,N) = sup dist (%, Sx) ,
UuES,
(2.9) d(M, N) = maxM[d(M, N), d(N, M)]2.

(2.8) does not make sense if either M or N is 0. In such cases we set
(2.10) d(0,N)=0 foranyN; d(M,00=2 for M=*0.

Then all the relations (2.4—2.7) are again satisfied by 4, ) replaced
by d, d, respectively if 1 is replaced by 2 in (2.7). Furthermore, ¢ and 4

satisfy the triangle inequalities:
2.11) d(L,N) <d(L,M+dMN), dLN) =dlL M) +dMN).

The second inequality of (2.11) follows from the first, which in turn
follows easily from the definition. The proof will be left to the reader.
[The case when some of L, M, N are 0 should be considered separately;
note (2.10).]

The set of all closed linear manifolds of Z becomes a metric space
if the distance between M, N is defined by d (M, N). A sequence {M,} of
closed linear manifolds converges to M if d (M,, M) — 0 for # - co. Then
we write M, - M or imM, = M.

Although the gap 8 is not a proper distance function, it is more
convenient than the proper distance function d for applications since its
definition is slightly simpler. Furthermore, when we consider the fopology
of the set of all closed linear manifolds, the two functions give the same
result. This is due to the following inequalities?:

S(M,N) <d(M,N) <26(M,N),
S(M,N) <d(M,N) <26(M,N).

The second set of inequalities follows directly from the first. Also the
first inequality of the first set is trivial. To prove the second inequality
d (M, N) < 26(M, N), it suffices to assume N == 0 and show that

(2.18) dist(u, Sny) < 2dist(«, N) forany w€Z with |u|=1.

1 § does satisfy the triangle inequality if Z is a Hilbert space. This follows
from the relation § (M, N) = | P — Q|| where P,Q are the orthogonal projections on
M, N, respectively, which follows from Theorem I-6.34. In this case § is a more
convenient metric than the d to be introduced below.

3 See GOHBERG and MARKuUS [1]. A different but equivalent metric is introduced
by NEwsurGH [2]. d is the Hausdorff distance defined on the set of all Sy (except
for M = 0); see HAUSDORFF 1), p. 145. d (M, N) is equal to 9(Spm, SN) in the notation
of HAUuSDORFF. For the discussion of various metrics see BERksON [1].

3 Cf. GouBERG and MaRrkus [1].

(2.12)
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For any &> 0, there is a v €N such that |u — v < dist (#, N) + &.
We may assume that v =0, for otherwise we can change v slightly
without affecting the inequality. Then vy = v/|v] € Sy and dist (, SN) <
<lu—v| <lu—vl+lv—vol. But [Jo—1v5]=[fo] — 1= [Jo] -
—|4|l| =|v— #|, so that dist(«, SN) < 2| — o] < 2 dist (, N) + 2e.
Since ¢ > 0 is arbitrary, this proves (2.13).

(2.12) shows that d(M,, M) >0 is equivalent to &(M,, M)— 0.
Thus the convergence M, ~ M can be defined by § (M,, M) - 0 without
reference to the d function. In what follows we shall use almost exclusively
the gap 8 rather than the distance d.

Remark 2.1. The metric space of all closed linear manifolds of Z
defined above is complete; if {M,} is a Cauchy sequence (d (M,, M,,) - 0
for m, m — oo), then there is a closed linear manifold M such that
d (M., M) = 0. Since we do not need this theorem, we shall not prove it
here.

The following lemma will be needed later.

Lemma 2.2. For any closed linear manifolds M, N of Z and any u € Z,
we have

(2.14) (14 8(M, N)) dist (», M) = dist (», N) — [Jo] (M, N) .

Proof. For any ¢ > O there is a v € M such that |# — v|| < dist (», M) +
+ ¢, and for this v there is a w € N such that |v — w|| < dist(v, N) + e.
Hence dist (%, N) < ||u — w|| < dist(#, M) + dist(v, N) + 2¢ < dist («,
M) + [lv] 6(M, N) + 2¢&. But o] < |u]|+ |u — v]| < |u] + dist (%, M) + &.
Hence dist(#, N) < (1 + 6(M, N)) dist (¢, M) + |« 6(M, N) + 2¢ +
+ & 6(M, N). On letting ¢ — 0 we obtain (2.14).

2. The gap and the dimension

The following lemma is basic in the study of the gaps between closed
linear manifolds.

Lemma 2.3.1 Let M, N be linear manifolds in a Banach space Z.
If dimM > dimN, there exists a w € M such that

(2.15) dist (u, N) = |Ju| > 0.

Remark 2.4. If the quotient space Z= Z|N is introduced (see III-
§ 1.8), (2.15) can be written

(2.16) la] = u] >0.
Note that N is closed since dimN < oo by hypothesis.

1 See KreIN, KrasNoseL’skil and MiL’mMaN [1], GoBERG and KRreIN [1],
T. Karo [12].
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Proof of Lemma 2.3. We may assume that both M and N are finite-
dimensional, for dimN < oo and we may replace M by any of its finite-
dimensional subspaces with dimension equal to dimN + 1. Hence Z
itself may also be assumed to be finite-dimensional, for it suffices to
consider the problem in the subspace M + N.

For the moment assume that Z is sérictly convex, by which we mean
that |u + v|| < |l4| + ||v] whenever %, v are linearly independent. Then
it is easily seen that each # € Z has a unique nearest point v= Au in N
and that the map # — 4 » is continuous?. The operator 4 is in general
nonlinear, but it has the property that 4 (—#) = — Au. According to a
theorem by Borsuk?, there exists a # € M such that |u]| = 1 and Au = 0.
This « satisfies the requirements of the lemma.

In the general case we regard Z as a real Banach space and choose a
basis f,, . . ., f, Of the real adjoint space of Z. Then

Jodo = {Jl 5 L, 02+ + o )

defines a new norm in Z and converts Z into a strictly convex space.
For each n=1, 2, ..., there exists a «, € M such that dist, («,, N)
= ||4,)|, = 1, where dist,, denotes the distance in the sense of the norm
| o Since |ty < ||nln= 1, the sequence {u,} contains a convergent
subsequence. The limit # of this subsequence is easily seen to satisfy the
requirements of the lemma.

Remark 2.5. The nonlinearity of the operator 4 used above gives
the lemma a non-elementary character. If Z is a unitary space, 4 is
simply the orthogonal projection on N, and the proof of the lemma is
quite elementary.

Corollary 2.6. Let M, N be closed linear manifolds. 6 (M, N) < 1 implies
dimM < dimN. §(M, N) < 1 implies dimM = dimN.

Remark 2.7. The last corollary shows that the space of closed linear
manifolds of Z is the union of disjoint open sets, each of which consists of
closed linear manifolds with a fixed dimension.

3. Duality

There is a simple relationship between the gap function in a Banach
space Z and that in the adjoint space Z*. For any closed linear manifold
Mc Z, ML denotes the annihilator of M; M1 is the closed linear manifold
of Z* consisting of all f € Z* such that f | M (see ITI-§ 1.4).

1 The existence of a nearest point v in N to u follows from the local compactness
of N. The uniqueness of v and its continuous dependence follows from the strict
convexity of Z.

2 See ALExANDROFF and HorF (1], p. 483.
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,Lemma 2.8. Let M be a closed linear manifold of Z, 0 4 M == Z. Then

(2.17) dist (f, M+) = sup I(w, Nl = Ifmll . FEZ*,
“ESM

(2.18) dist(u, M) = sup |(w,f)|, u€Z,
feSm+

where [y, is the restriction of f fo M.

Proof. Let f € Z*. By the Hahn-Banach theorem, there is a g € Z*
which is an extension of fy with ||g]| = |fm]. Then A= f — g € ML since
(u,f)= (W g) for w€M. Thus dist(f, ML) <|f— &|=|g|= [ful

= sup |(w, )l
“ESM
On the other hand, for any % € ML we have |(%, f)| = |(», f — h)] <

<|f— 4| if €Sy Hence |(#,f)| < dist(f, ML), which gives the
opposite inequality to the above and completes the proof of (2.17).
Let u € Z. For each f € Sy~ we have |(u, f)| = |(# — v, [)] < |u — |
for any v € M. Hence |(%, f)| < dist(%, M) and so sup [(n, f)] < dist («,
1€SM

M). The opposite inequality follows from the fact that there exists an
f € Sm+ such that |(«, f)| = dist (», M) (which is a direct consequence of
Theorem III-1.22).

Theorem 2.9. For closed linear manifolds M, N of Z, we have
(2.19) S(M,N) = 6(NL, ML), §(M,N)=§(ML, NL).

Proof. The second equality follows from the first, which in turn
follows from Lemma 2.8, for

(M, N) = sup dist(«, N) = sup sup |(«, g)|

UESM uESM EESN™
= sup sup |(%,g)]|= sup dist (g, ML) = §(NL, ML) .
EESN* ESM BESN*

[The above proof applies to the case where M3+=0and N+ Z. If M= 0,
then ML = Z* so that §(M,N)= 0= §(N+i, ML), If N= Z, then
NL = 0so that 6(M,N)= 0= §(NL, ML).]

4. The gap between closed operators
Let us consider the set € (X, Y) of all closed operators from X to Y.
If T, S€#(X,Y), their graphs G(T), G(S) are closed linear manifolds
of the product space X x Y. We set
(2.200  8(T,S)= 8(G(T), G(S)), &(T,S)=48(G(T),G(S)
=max[6(T, S), 6(S, T)] .
8(T, S) will be called the gap between T and S.

1 A similar notion is introduced, and some of the theorems given below are
proved, in NEwBURGH [2]. In the special case where X, Y are Hilbert spaces, most
of the following results are simplified and strengthened; see CORDEs and LABROUSSE

(11.
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Similarly we can define the distance d(T, S) between T and S as
equal to d(G(T), G(S)). Under this distance function % (X, Y) becomes
a metric space. In this space the convergence of a sequence T, € € (X, Y)
to a T€%(X,Y) is defined by d(T,, T) > 0. But since §(T,S) <
<d(T,S) <268(T,S) in virtue of (2.12), this is true if and only if
8(T,, T) - 0. In this case we shall also say that the operator T, con-
verges to T (or T,, — T) in the generalized sense.

It should be remarked that earlier we defined the convergence of
operators only for operators of the class Z (X, Y). Actually we introduced
several different notions of convergence: convergence in norm, strong
and weak convergence. We shall show in a moment that the notion of
generalized convergence introduced above for closed operators is a
generalization of convergence ¢»n norm for operators of Z (X, Y).

Remark 2.10. When T varies over % (X,Y), G(T) varies over a proper
subset of the set of all closed linear manifolds of X x Y. This subset
is not closed and, consequently, € (X, Y) is not a complete metric space
(assuming, of course, that dim X = 1, dimY = 1). It is not trivial to see
this in general, but it is easily seen if Y = X. Consider the sequence {nI}
where I is the identity operator in X. G(nI) is the subset of X x X
consisting of all elements {n=1u, u}, » € X, and it is readily seen that
limG (nI) exists and is equal to the set of all elements of the form {0, u},
u € X. But this set is not a graph. Thus {#I} is a Cauchy sequence in
% (X) = € (X, X) without a limit.

Lemma2.11. Lt TeZAXY). If S€€(XY) and 6(5,T) <
< (14 [|T|?)-VY2, then S is bounded (so that D (S) is closed).

Proof. Let ¢ be an element of the unit sphere of G(S): ¢ = {u, Su} €
€G(S), »u€D(S) and
2:21 e + ISl = gl = 1.

Let ¢’ be any number such that (S, T) < ¢’ < (1+ |T]?-¥2. Then
@ has distance smaller than ¢’ from G(T), so that there exists a
p={v, Tv} € G(T) such that |¢ — | < d":

(2-22) lu— v+ [Su - To]*= ¢ — y]* < 6.

SetA=S — T;wehave|Au|?= |Su— Tv— T(u—v)|2 < (|Su—
— To]| +|T| |u—»|)2 <821+ |T|?) by the Schwarz inequality
and (2.22). Since

I=[u]®+ | Tu+ Au]® < (1+ | T|%) [u]® + 2| T Ju] |Adu] + | 4u]?,
by (2.21), we have )
[4u]® < &2(1 + | TV [(1 + [T)%) Jul® + 2 | T) ] |4u] + [Au]?].

1 It should be recalled that we defined the norm in X X Y by ||{», v}| = (||«|* +
+ [lv]2)re.



§ 2. Generalized convergence of closed operators 203

Solving this inequality for |4 «|, we obtain
oL+ T [(1 — &2 + &) 7]
Iy e DR

o +|7)® .
1=6'Q + |T]H" e 5

(2.23) ldu] <

=

note that the denominators are p051t1ve

Since (2.23) is homogeneous in w, it is true for every « € D (S) without
any normalization. Thus 4 is bounded and sois S= T + 4.

Lemma 2.12. Let TEZ (X Y). If S€F(X,Y) and §(T,S) <
< (14 | T|?)~Y2, then S is densely defined*.

Proof. Let v be any vector of X so normalized that ¢ = {v,Tv} has
norm 1:

(2.24) lol®+ [ To]* = [9]*= 1.

Let &’ be such that 8(T, S) < ¢ < (14 |T|?)~¥2 Then there is a ¢
= {u, Su} satisfying (2.22) [but not necessarily (2.21)]. Hence |jv — #| <
< ¢’ and so dist (v, M) < ¢’ where M is the closure of D(S). But since
1 < (14 [|T)?) ||v)? by (2.24), dist (v, M) < &' (1 + | T|?)¥2||v|. The last
inequality is homogeneous in v and therefore true for every v € X
Since &’ (1 + | T)|»)¥2 < 1, it follows that M = X; otherwise there would
exist a v30 such that dist(v, M) > &'(1 + | T|?¥2|v]|, see Lemma
ITI-1.12. Thus D(S) is dense in X.

Theorem 2.13. Let T € B(X,Y). If S€€ (X, Y) is so close to T that
8, T) < (14 | T|2)~Y2, then S ¢ B(X, Y) and®

A+ [T 6(5.T)
L— (@ +[T)?"6(S, 1) ~

Proof. It follows from Lemmas 2.11 and 2.12 that S is bounded,
D(S) is closed and dense in X. Hence D(S)= X and S€#(X,Y).
Then (2.25) follows from (2.23) since ¢’ can be chosen arbitrarily close to
(S, 7).

Theorem 2.14. Let T €€ (X, Y) and let A be T-bounded with relative
bound less than 1, so that we have the inequality (1.1) with b < 1. Then
S=T+A4¢¥(XY) and

(2.25) IS-T] <

(2.26) 8(S,T) < (1 —b)-1(a®+ 212,
In particular if A € B (X, Y), then
(2.27) S(T+A4,T)<|4].

Proof. S €% (X, Y) was proved in Theorem 1.1. To prove (2.26), let
o= {u, Su} € G(S) with |@|=1, so that we have (2.21). Setting

1 Actually we have a stronger result that S¢€ #(X,Y); see Problem 5.21.
2 In (2.25) 6(S, T) may be replaced by 8(T, S); see Problem 5.21.
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p= (T} eG(T), we have [g—y|=|(S—T)u|=|du] =
< (1—08)(a|u| + b|Su]) by (1.3). It follows by the Schwarz inequa-
lity and (2.21) that | @ — 9| < (1 — b)~*(a? + b?)Y/2. Hence dist (¢, G(T))
<(1- b)—l(az2 + b%)1/2 and, since @ is an arbitrary element of the unit
sphere of G(S), 8(S, T) = 8(G(S), G(T)) < (1 — b)~*(a® + b2

6(T, S) can be estimated similarly, using (1.1) rather than (1.3);
the result is §(7, S) < (4% + b?)¥2 Thus we obtain the estimate (2.26)
for §(S, T) = max[§(S, T), 6(T, S)].

Problem 2.15. If we assume (1.4) with b = max (b, b”’) < 1, then
(2.28) 3(5, T)< (1 — b)~[a? + (b + b”)2]M2.

Remark 2.16. Theorem 2.13 shows that #(X, Y) is an open subset of
% (X, Y). (2.25) and (2.27) show that within this open subset #Z(X, Y),
the topology defined by the distance function d (or, equivalently, by the
gap function §) is identical with the norm topology.

Theorem 2.17. Let T, S €€ (X, Y) and A € B (X, Y). Then

(2.29) SS+A, T+ A) <201+ 4|58, T).

Proof. T €¢¥%(X,Y) implies that T+ 4 €€ (X, Y) with D(T + 4)
— D(T). Similarly S + 4 €€ (X, Y).

Let ¢ € G(S + A) with |¢| = 1. Then there is a % € D(S) such that
@ ={u, (S+ 4) u} and

(2.30) lol® + (S + 4) w]?= | @]*= 1.

Set |lu||?+ |Su|? =72 7>0. ~2{u, Su} is an element of the unit sphere
of G(S). For any & > §(S, T) = 8(G(S), G(T)), therefore, r2{u, Su}
has distance < ¢’ from G(T). Hence there is a v € D(T) such that |» — v|?
+ |S%u — Tv|2 <7242 Then, setting p= {v, (T + 4) v}, we have

231) |og—9yl2=llu—v2+ S+ 4)u—(T+ 4)v* <
< u—v]2+ 2|Su — To|2+ 2 4]2 |lu — v]? <
2(1+ |4]2) 262,

On the other hand 72= |u|?+ |Su|2= |u|2+ |(S+ 4) u — Au|? <
< Jul®+ 20(S + 4) u? + 2] A[* [u]® < 2+ 2 4] [u]? < 2+ 2]4]* by
(2.30). Hence ¢ — 9|? < 4(1+ [A4]?? 8% Since p € G(T + 4), this
implies that dist (¢, G(T + 4)) < 2(1 + |4||?) & and, since ¢ is an
arbitrary element of the unit sphere of G(S + A4), that 6(S+ 4, T + 4)
=0(G(S+ 4), G(T+ 4)) < 2(1+ |A|?) ¢ Since S and T may be
exchanged in the above argument and since ¢’ may be arbitrarily close
to 8(S, T), we obtain (2.29).

Theorem 2.18. Let T, S E%(X Y) be densely defined. Then (T, S)
= 8(S*, T*) and 8(T, S) = 8(T*, S*).
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Proof. §(S*, T*) = 8(G(S*), G(T*) = 6(G'(S*), G'(T*)
= 3(G(=5)%, G(=T)L) = 3(G(-T), G(~5)) = 8(G(T), G(S))
= 6(T, S), where G(T) c X x Y is the graph of T and G’ (T*) ¢ X* x Y*
is the inverse graph of T* ¢ €(Y*, X*); note that G'(T*) = G(-T)<L
by ITI-(5.9) and that 6(NL, ML) = §(M, N) by (2.19). 6(G(S*), G(T*))
= 6(G'(S*), G'(T*)) is due to the special choice of the norm in the
product space (see par. 5 below).

Problem 2.19. Let T¢ € (X,Y). T is bounded if and only if §(T,0) < I.
T¢ &(X, Y) if and only if (T, 0) < 1.

5. Further results on the stability of bounded invertibility

The graph G(R) of an R €% (Y, X) is a closed linear manifold of
Y X X, and the inverse graph G’ (R) of R is a closed linear manifold of
X X Y obtained as the image of G(R) under the map {y, x} > {x, ¥}
(see III-§5.2). Since this map preserves the norm and hence the gap
between two closed linear manifolds, §(Ry, Ry) = 6(G(R), G(R,))
= 8(G'(R,), G'(R,)) and the same is true with & replaced by §, 4 or d.
Thus in the discussion of the gap or distance between operators of
% (Y, X), we can replace their graphs by their inverse graphs.

If Te€ (X Y) is invertible, T-1 €% (Y, X) and G'(T-Y) = G(T)
[see III-(5.5)]. The following theorem is an immediate consequence of
these observations.

Theorem 2.20. If T, S ¢ € (X, Y) are invertible, then
(2.32) 6(S~L, T-Y)=46(S, 1), (S, T-Y=4(S,T).

If we denote by %,(X, Y) the subset of (X, Y) consisting of all
invertible operators, Theorem 2.20 means that T — T-! is an zsometric
mapping of €;(X, Y) onto €, (Y, X). In general the structure of €, (X, Y)
in €(X,Y) would be quite complicated. We shall show, however, that
the set of T €%,(X,Y) such that T-1 ¢ Z(Y, X) is open in € (X, Y).
This is the principle of stability of bounded invertibility in its most general
form.

Theorem 2.21. Let T €% (X,Y) be invertible with T-*¢ A (Y, X).
If S€€(X,Y) with §(S, T) < (1+ | T-Y2)~Y2, then S is invertible and
S-1eAB(Y, X).

Proof. If S is known to be invertible, then §(S-1, T-%) = §(S, T) <
< (14 |T-Y?-22 so that S~1¢Z(Y, X) by Theorem 2.13 (applied
to the pair S, T-?). Thus it suffices to show that S is invertible.

Suppose that Su = 0, |u| = 1. Then {«, 0} is on the unit sphere of
G(S), so that there is a {v, Tv} € G(T) such that |u — v|2+ | Tv|2 < 8’2,
where &' is a number such that §(S, T) < ¢’ < (1 + | T-1|?)-¥2. Then
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1= [u)® = (Ju — o] + |oI)* < (= o + | T | To])* < (1+ | T-HH) 62 <
< 1, a contradiction.

Remark 2.22. The theorems proved in this and the preceding para-
graphs are not very strong from the quantitative point of view, for many
crude estimates have been used in their proof. For example, Theorems 2.14
and 2.21 give the result that (T + A4)-'€ % (Y, X) exists if |4] <
< (1+ | T-Y»-%2 But this condition is unnecessarily strong, for we
know that it is sufficient to assume 4] <|T-|~! (a special case of
Theorem 1.16).

It is easy to improve this unsatisfactory result by an auxiliary
argument. If we apply the result just obtained to the pair « T, 4 with
o >0, we see that «(T + 4) has an inverse in Z(Y, X) if «|4| <
< (14 2| T-Y?)-V2, that is, if |A4] < (a2 + | T-2]?)-¥2 Since « can
be chosen arbitrarily small, it follows that (74 A)-'¢ Z(Y, X) if
|4 < |T-|-*. In this way we regain the specific result from general
theorems. In many cases this kind of auxiliary argument can be used to
improve the numerical results.

6. Generalized convergence

We recall that T, converges to T (T, — T) in the generalized sense
if §(T,, T)—0. The following theorem is a direct consequence of
Remark 2.16, Theorems 2.17, 2.18 and 2.20.

Theorem 2.23. Let T, T, €€ (X, Y),n=1,2,... .

a) If TeB(X,Y), T, T in the generalized sense if and only if
T,€B(X,Y) for sufficiently large n and |T,, — T|| - 0.

b) If T exists and belongs to B(Y, X), T, — T in the generalized
sense if and only if T;* exists and belongs to B (Y, X) for sufficiently large n
and |T;1 — T - 0.

c) If T, — T in the generalized sense and if A ¢ B(X, Y), then T, + 4
— T + A in the generalized sense.

d) If T,, T are densely defined, T, — T in the generalized sense if
and only if Ty — T* in the generalized sense. .

Another sufficient condition for generalized convergence is obtained
from Theorem 2.14.

Theorem 2.24. Let T €€ (X, Y). Let A,, n=1, 2, ..., be T-bounded
so that |A, u| < a,|u| + b,| Tu| for w€D(T)cD(Ay,). If a,—~0 and
b, >0, then T,= T + A, € €(X,Y) for sufficiently large n and T, ~ T
in the generalized sense.

The conditions b), ¢) of Theorem 2.23 lead to a very convenient
criterion for generalized convergence in case Y = X.

Theorem 2.25. Let T ¢ € (X) have a non-empty resolvent set P(T). In
order that a sequence T, €€ (X) converge to T in the generalized sense, it is



§ 2. Generalized convergence of closed operators 207

necessary that each { € P(T) belong to P(T,) for sufficiently large n and
(2.33) IRE T,) = R, T)| >0,

while it is sufficient that this be true for some ¢ € P(T).

This theorem is useful since most closed operators that appear
in applications have non-empty resolvent sets. It follows also from this
theorem that if (2.33) is true for some ¢ € P(T), then it is true for every
¢ € P(T). We shall come back to this question in later sections.

Theorem 2.26. Let T,, T €€ (X) and let T,— T in the generalized
sense. If all the T, have compact resolvents and if T has non-empty re-
solvent set, then T has compact resolvent.

Proof. Let { € P(T). Then we have (2.33) where R (¢, T,,) is compact.
Hence R(¢, T) is compact (see Theorem III-4.7).

Remark 2.27. The converse of Theorem 2.26 is not true: T, need not have
compact resolvent even if T has. A simple counter-example: let X = I* and let
S € #(X) be defined by a diagonal matrix with diagonal elements 1/, 2 = 1,2, . . .,
and let S, be a similar operator with diagonal elements (n + k)/nk, k=1,2,....
Let T = S-1, T,, = S;, which exist and belong to ¥ (X). It is easily verified that 0
belongs to the resolvent sets of all the T, and of T, R(0, T,) = S,, g RO, T)=S

and that T has compact resolvent (because S is compact). But the resolvent of T,
is not compact for any n = 1, 2, ... (since S, is not compact). It should be noted,
however, that the converse of Theorem 2.26 is true if T, — T is T-bounded; for a
more precise statement see Theorem 3.17. See also Theorem VI-3.6.

Problem 2.28. Let T € #(X, Y). Under what conditions does n~! T [resp.
(1 + »~1) T] converge to 0 [resp. T] in the generalized sense ?

Finally we give another sufficient condition for generalized conver-
gencel.

Theorem 2.29. Let T, T € € (X, Y). Let there be a third Banach space Z
and operators U,, U cHB(Z, X) and V,,V € B(Z,Y) such that U,, U
map Z onto D(T,), D(T), respectively, one-to-one and T,U, = V,,
TU=V. If [U,—U|—-0 and |V,—V|—->0, n—>oo, then T,— T
in the generalized sense.

Proof. The mapping z— ¢ = {Uz Vz}={Uz TUz} is a one-to-
one, bounded linear operator on Z onto G(T). Since G(T) is closed,
this operator has a bounded inverse:

(2.34) l2? = el @l* = A(|U2*+ [V 2]?) .

Let ¢ = {Uz Vz} be an arbitrary element of G(T). Then
on={Un2, V,2} € G(T},) and
(235) o= @ul* = (U = UnP + |V = Va|?) J2]* = 83] o]?
where 82 = |U — U,|? + |V — V,|2 This implies that dist (¢, G(T,)) =
< ¢ 8, and hence (T, T,) = 6(G(T), G(T,) < ¢ 6,0, n—> oo.

1 This is a discrete version of the definition, due to RELLICH [3], of the analytic
dependence of a family T (%) of operators on the parameter x.
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Similarly we have 6(T,, T) < ¢,d, where ¢, is the ¢ of (2.34) for
U, V replaced by U,, V,. But {c,} is bounded; in fact (2.35) gives
lol < loul + o = @ull = l@al + coul@l, hence |g| = (1 - cdn)~*|@al
and |z < c|¢| = ¢(1 —cd,)" @] by (2.34), which means that we
can take c¢,= c(l1 —cé,)"t. It follows that 6(7,, T) -0 and hence
8(T,, T) 0.

§ 3. Perturbation of the spectrum

1. Upper semicontinuity of the spectrum

In this section we consider the change of the spectrum X (7) and the
resolvent R({)= R({, T) of an operator T €% (X) under “small”
perturbations?.

Theorem 3.1. Let T € €(X) and let I be a compact subset of the re-
solvent set P(T). Then there is a 6 > 0 such that I' C P(S) for any S € € (X)
with §(S, T) < 8.

Proof. Let £ ¢ ' P(T). Since (T — {)~*= R({) € #(X), it follows
from the generalized stability theorem for bounded invertibility (Theorem
2.21) that (S—¢)*€B(X) or L€P(S) if 6(S—-¢T-0)<

1+ |R(©) ||2 \-1/2, According to Theorem 2.17, this is true if

(3-1) 1+ 59 8(S, T) < (1+ [R5
Since |R ()| is continuous in £, we have
(3.2) min - (1+ |97 (1 + [RQ)IH2 = 8> 0.

It follows that I'c P(S) if 8(S, T) < 6.
Remark 3.2. If S= T + A where 4 € #(X), we have the sharper
result that

(3-3) I'cP(S) if |4] <min[R@O]

in virtue of Theorem 1.16. If in addition T € & (X), I may be any closed
(not necessarily bounded) subset of P(T); then | R ({)]~* still has positive
minimum for { € I since | R ({)] - 0 for { — oo.

Remark 3.3. Theorem 3.1 and Remark 3.2 show that X (7) is an
upper semicontinuous function of T € #(X). In other words, for any
T c#(X) and >0 there exists a >0 such that? o(Z(S), Z(T)) =

1 Perturbation of the spectra of operators (and of elements of a Banach algebra)
is discussed in detail by NEwBURGH [1].

3 For g see footnote ? of p. 198. The Hausdorff distance is obtained by sym-
metrizing ¢. It is a distance between two sets of points and is different, when
applied to the spectra of operators in a finite-dimensional space, from the distance
between two N-tuples consisting of repeated eigenvalues, which was defined in
II-§ 5.2; the multiplicities of eigenvalues are not taken into account here.
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sup dist (A, Z(T))< ¢ if |S— T| < 4. This is seen by choosing the I of
A€X(S)
Theorem 3.1 as the set of points with distance not smaller than ¢ from

2(T). Even for T €% (X), Theorem 3.1 may be interpreted to imply
that X (7T) is upper semicontinuous in a slightly weaker sense.

Problem 3.4. For T, T,¢€ ¢ (X), it is possible that 3(1‘,,, T) - 0 and yet the
distance between Z (T,) and X (T) is infinite for each n. Verify this for the following
example: X = I?, T is given by a diagonal matrix with diagonal elements &,
k=12,...,and T, = (1 + ¢%-1) T. [hint: T,, — T is T-bounded.]

Remark 3.5. In Theorem 3.1 it is in general not easy to give a simple
expression for §, although it is expected that é will be large if the distance
of I from X (T) is large. Under some commutativity assumptions, this
distance alone determines the necessary size of the perturbation. We
have namely

Theorem 3.6. Let T € €(X) and let A € B(X) commute with T. Then
the distance between X(T) and X (T + A) does not exceed sprd and,
a fortiori, | A||.

Proof. R({) commutes with A (see Theorem III-6.5). Hence
(T+ A4 —-0)re#(X) if sprd < 1/sprR({), by virtue of Theorem 1.18.
Since sprR({) = 1/dist(¢, (7)) by Problem III-6.16, it follows that
CEP(T + A4) if sprA < dist(¢, Z(T)). In other words,

(3.4) dist(Z, S(T)) < sprd if C€S(T+ 4).

Since 4 commutes with 7+ 4 too, we can apply (3.4) to the pair T, 4
replaced by the pair T + 4, — 4. Then we see that dist({, Z(T + 4))
<sprA if { ¢ Z(T). This proves the theorem.

Remark 3.7. Theorem 3.6 shows that X (T') changes continuously when
T is subjected to a small change which commutes with 7.

2. Lower semi-discontinuity of the spectrum

In a finite-dimensional space, the eigenvalues of an operator T
depend on T continuously (see II-§5.8). Even in a general Banachspace X,
the spectrum X (7) changes continuously with T € #(X) if the pertur-
bation commutes with T (see Remark 3.7)!. But this is not true for more
general perturbation; only upper semicontinuity for the spectrum can
be proved in general.

Roughly speaking, the upper semicontinuity proved in the preceding
paragraph says that X (T) does not expand suddenly when T is changed
continuously. But it may well shrink suddenly, as is seen from the follow-
ing examples.

1 There are other kinds of restricted continuity of the spectrum. For example,

X (T) changes continuously with T if T varies over the set of selfadjoint operators
in a Hilbert space. For more precise formulation, see VIII-§ 1.2.
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Example 3.8. Let X = I#(— oo, 00), where each # € X is a bilateral sequence
u=(§),j=--+,—10,1,2,... with |u]| = (X|&|?)V*. Let {,} be the canonical
basis: %, = (J,;) and let T ¢ #(X) be such that Tz, =0, Tx, = x,_,, n=0.
T is a left shift operator (cf. Example III-3.16). Since III-(3.9) is true in this case
also, we have spr T = 1 so that X (T) is a subset of the closed unit disk. Actually

(=]
Z(T) coincides with this disk; in fact, for any { with || <1 the vector u = X {*=x,
- n=0
is an eigenvector of T — { with the eigenvalue { so that { € X (T).

Let A€ #(X) besuch that Axy = »—), A%, =0,n0.Let T(x) =T +xA4.
T (%) is again a left shift operator with T (x) xy = % %), T (%) %, = %y, 7 =0,
so that spr T (x) = 1 as above and X (T (%)) is a subset of the unit disk. If % == 0,
however, the interior of this disk is contained in P (T (x)). This is seen by observing
that T (x)~! exists and is a right shift operator such that T (x)~!x_, = %/,
T (%)~! #4—y = #,, # == 0; hence sprT (x¥)~! = 1 as above and the exterior of the
unit disk belongs to P (T (x)~!), which means that the interior of this disk belongs to
P (T (%)) (see Theorem III-6.15).

In this example the perturbation x4 is small not only in the sense that |x 4|
= || = 0 for » — 0 but also in the sense that A4 is a degenerate operator of rank
one. ¥4 is “‘small’”’ in any stronger topology which might reasonably be put on a
subset of #(X). Thus the lower semicontinuity of X (T) cannot be established by
strengthening the topology for the operators.

Example 3.9. In the above example X (T) shrinks from a full disk to its circum-
ference by a small perturbation. There is an example in which the shrinkage is more
drastic, being from a full disk to its centerl. Of course such a change cannot be
caused by a degenerate perturbation as in the preceding example?.

Problem 3.10. In Example 3.8 let R({, ) = R({, T + »xA4). Then

[RE A= (5] =17t for [ >1, <1,
IRC ) = [w (1 — gt for [§] <1,0<|¥|=1.

3. Continuity and analyticity of the resolvent

We shall now show that the resolvent R(, T) is not only continuous
but analytic in T in a certain sense.

Theorem 3.11. Let T, €€ (X) be fixed. Then R((, T) is piecewise
holomorphic in T € Ty + B(X) and { € P(T) jointly.

Here T+ % (X) is the set of all operators T\, + B where B varies
over # (X), in which we introduce the metric (distance function) | T — Sj.
Now Theorem 3.11 means the following. First, the set of all pairs {, T
such that { € P(T) is open in the product space C x [T, + %Z(X)] (C is
the complex plane); in other words, forany T ¢ T, + #(X) and {,€ P(7T),
¢ € P(S) is true if [ — {y| and |S — T| are sufficiently small. Second,
R(£, S) can be expressed as a convergent double power series in { — §,

1 See RICKART (1], p. 282. In this example there is a sequence T, of nilpotent
operators such that | T, — T|| — 0, where T is not quasi-nilpotent and %(7) is a
disk of positive radius with center 0.

3 A compact perturbation preserves the essential spectrum, which is the unit
circle for the T in question; see Theorem 5.35 and Example 5.36.
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and A, where 4 ¢ #(X), S= T + A. In particular for Ty= 0, R({, T)
is piecewise holomorphic in T € #(X) and { € P(T).

The proof of Theorem 3.11 is essentially the same as the proof of
Theorem II-1.5; it suffices to replace the T (x) there by S and 4 (x) by 4.

It is difficult to extend Theorem 3.11 and assert that R({, T) is
piecewise holomorphic in T ¢ #(X), for #(X) is not an algebra (not
even a linear space) like & (X). Nevertheless, we have a generalization
in a different form.

Theorem 3.12. When T varies over € (X), R(¢, T) is piecewise holo-
morphic in § and R (,, T), where §y is any fixed complex number, in the
following sense. There exists a function @ (n, B), defined in an open subset
of Cx#B(X) and taking values in B (X), with the following properties:

i) @(n, B) is piecewise holomorphic in n and B jointly (in the sense
stated after Theorem 3.11, with Ty= 0).

ii) Let T €€ (X) and o€ P(T). Then (€ P(T) of and only if
D — Lo R (G, T)) 3s deﬁned In this case we have

(3.5) RET)=P(¢ -0 R T))-
Proof. We have the ldentlty

86) R T)=—(— )™= (£ = L) 2R(C — L)% R(Co T));

this follows from III-(6.18) and is valid if {, ¢, € P(T) and ¢ =+ &,

Define @ (5, B) by

(3.7 ®(0,B)=B, d(n,B)=—nt—y2R(y L, B) if 5+0,
€ P(B).

Then (3.5) is satisfied whenever ¢, ¢, € P(T).

The domain of definition of @ (r, B) is the set of all pairs 5,B €C X Z (X)
such that either = 0 or = ¢ P(B). This domain is open in C x #(X)
by Theorem 3.1 and Remark 3.2. It is obvious from Theorem 3.11
that @ (», B) is holomorphic in 5 and B as long as 7 # 0. On the other
hand, the identity

38 P B)=-nt—-n B!
= -7+ (1-9B)'= B(l-7nB)7!

together with @ (0, B) = B shows that it is holomorphic also for % = 0.

It remains to prove that when ¢, € P(T), { ¢ P(T) if and only if
D(¢ — Lo R(Cy, T)) is defined. For { = {o this is obvious. Otherwise this
follows from the fact that (3.6) is true whenever one of the two members
exists.

Remark 3.13. Theorem 3.12 shows explicitly that if |R(,S)—
— R(¢, T)|| is small for some £, then it is small for every {. More precxsely,
for any T €% (X) and ¢, {, € P(T), there is a constant M such that

(39) IR(,S) — R(E, T)| = M|R (S, S) — R(%, T)|
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for any S € ¢ (X) for which ¢, € P(S) and |R(,, S) — R(C,, T)| is suf-
ficiently small (then ¢ € P(S) is a consequence). This is another proof of
a remark given after Theorem 2.25.

Problem 3.14. A more explicit formula than (3.9) is

=2 1r € 9 - RGo T
(8.10) R S) —R(E D= T—¢ ,
1= It = &l | =3 1R G ) = RGo DI

which is valid if |R (§,, S) — R ({,, T)] is so small that the denominator on the right

T —
=(T—L)RE T =1+ — ) RE T).

Theorem 3.15. R({, T) s continuous in § and T € € (X) jointly in the
following sense. For any T € €(X), £, € P(T) and ¢ > 0, there exists a
0> 0 such that £ € P(S) and |R(C,S) — R(C, T)| <& if [E—Col <6
and 6(S, T) < 6.

Proof. By Theorem 2.25 R({,, S) exists and [|R({y, S) — Ry, T)|
is arbitrarily small if §(S, T) is sufficiently small. Then the result follows
from Theorem 3.12 since R (£, S) is a double power series in { — {, and
R(Eo» 5) - R(Co» T)~

0

is positive. Here is a convenient expression for (T — §,) (T — {)!

4. Semicontinuity of separated parts of the spectrum

We have proved above the upper semicontinuity of X (7) in T € € (X).
We now prove a somewhat finer result that each separated part of Z (T)
s upper semicontinuous. The separation of the spectrum and the related
decomposition of the space X and of the operator T were discussed in
I1I-§ 6.4. For simplicity we state the result for the case in which the
spectrum is separated into two parts, but the generalization of the
result to the case of more than two parts is obvious.

Theorem 3.16. Let T € € (X) and let X (T) be separated into two parts
2(T), Z"(T) by a closed curve I as in 111-§ 6.4. Let X = M’ (T) @ M"' (T)
be the associated decomposition of X. Then there exists a 6 > 0, depending
on T and T, with the following properties. Any S € € (X) with §(S,T) < 6
has spectrum X (S) likewise separated by TI' into two parts X' (S), T (S)
(T dtself running in P(S)). In the associated decomposition X = M'(S) &
® M (S), M'(S) and M"'(S) are respectively isomorphic with M’ (T) and
M (T). In particular dimM’ (S) = dimM’(T), dimM”' (S) = dimM"' (T)
and both X' (S) and X' (S) are nonempty if this is true for T. The decom-
position X = M'(S) & M (S) is continuous in S in the sense that the pro-
jection P[S] of X onto M'(S) along M''(S) tends to P[T] in norm
as §(S, T) - 0.
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_ Proof. It follows from Theorem 3.1 and its proof that T'cP(S) if
oS, T)<é= rtrélrr} 27114 [C[A)2 (1 + |R(C, T)|»)~/2. Hence X (S) is sep-

arated by I' into two parts X'(S), £''(S) and we have the associated
decomposition of X as stated. The projection P[S] of X onto M'(S)
along M" (S) is given by III-(6.19):

(3.11) P[S]= -5 [ R(.S) 2.
T

Since R({, T) is continuous in { and T as shown in Theorem 3.15
and since I' is compact, |R(, S) — R(¢, T)| is small uniformly for
L el if §(S, T) is sufficiently small. Thus we see from (3.11) that, for
any £ > 0, |P[S] — P[T]| < ¢ if §(S, T) is sufficie