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Preface to the Second Edition

In view of recent development in perturbation theory, supplementary
notes and a supplementary bibliography are added at the end of the new
edition. Little change has been made in the text except that the para-
graphs V-§ 4.5, VI-§ 4.3, and VIII-§ 1.4 have been completely rewritten,
and a number of minor errors, mostly typographical, have been corrected.
The author would like to thank many readers who brought the errors to
his attention.

Due to these changes, some theorems, lemmas, and formulas of the
first edition are missing from the new edition while new ones are added.
The new ones have numbers different from those attached to the old
ones which they may have replaced.

Despite considerable expansion, the bibliography is not intended to
be complete.

Berkeley, April 1976 Tosio KATO

Preface to the First Edition
This book is intended to give a systematic presentation of perturba-

tion theory for linear operators. It is hoped that the book will be useful
to students as well as to mature scientists, both in mathematics and in
the physical sciences.

Perturbation theory for linear operators is a collection of diversified
results in the spectral theory of linear operators, unified more or less
loosely by their common concern with the behavior of spectral properties
when the operators undergo a small change. Since its creation by RAY-
LEIGH and SCHRODINGER, the theory has occupied an important place in
applied mathematics; during the last decades, it has grown into a
mathematical discipline with its own interest. The book aims at a mathe-
matical treatment of the subject, with due consideration of applications.

The mathematical foundations of the theory belong to functional
analysis. But since the book is partly intended for physical scientists,
who might lack training in functional analysis, not even the elements of
that subject are presupposed. The reader is assumed to have only a basic
knowledge of linear algebra and real and complex analysis. The necessary
tools in functional analysis, which are restricted to the most elementary
part of the subject, are developed in the text as the need for them arises
(Chapters I, III and parts of Chapters V, VI).

An introduction, containing a brief historical account of the theory,
precedes the main exposition. There are ten chapters, each prefaced by a
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summary. Chapters are divided into sections, and sections into para-
graphs. I-§ 2.3, for example, means paragraph three of section two of
chapter one; it is simply written § 2.3 when referred to within the same
chapter and par. 3 when referred to within the same section. Theorems,
Corollaries, Lemmas, Remarks, Problems, and Examples are numbered
in one list within each section: Theorem 2.1, Corollary 2.2, Lemma 2.3,
etc. Lemma 1-2.3 means Lemma 2.3 of chapter one, and it is referred
to simply as Lemma 2.3 within the same chapter. Formulas are numbered
consecutively within each section; I-(2.3) means the third formula of
section two of chapter one, and it is referred to as (2.3) within the same
chapter. Some of the problems are disguised theorems, and are quoted
in later parts of the book.

Numbers in [ ] refer to the first part of the bibliography containing
articles, and those in Q JI to the second part containing books and mono-
graphs.

There are a subject index, an author index and a notation index at the
end of the book.

The book was begun when I was at the University of Tokyo and
completed at the University of California. The preparation of the book
has been facilitated by various financial aids which enabled me to pursue
research at home and other institutions. For these aids I am grateful
to the following agencies: the Ministry of Education, Japan; Com-
missariat General du Plan, France; National Science Foundation,
Atomic Energy Commission, Army Office of Ordnance Research, Office
of Naval Research, and Air Force Office of Scientific Research, U.S.A.

I am indebted to a great many friends for their suggestions during
the long period of writing the book. In particular I express my hearty
thanks to Professors C. CLARK, K. O. FRIEDRICHS, H. FUJITA, S. GOLD-
BERG, E. HILLE, T. IKEBE, S. KAKUTANI, S. T. KURODA, G. NEUBAUER,
R. S. PHILLIPS, J. and O. TODD, F. WOLF, and K. YOSIDA. I am especially
obliged to Professor R. C. RIDDELL, who took the pains of going through
the whole manuscript and correcting innumerable errors, mathematical
as well as linguistic. I am indebted to Dr. J. HOWLAND, Dr. F. McGRATH,
Dr. A. MCINTOSH, and Mr. S.-C. LIN for helping me in proofreading
various parts of the book. I wish to thank Professor F. K. SCHMIDT who
suggested that I write the book and whose constant encouragement
brought about the completion of the book. Last but not least my
gratitudes go to my wife, MIZUE, for the tedious work of typewriting
the manuscript.

Berkeley Tosio KATO

August, 1966
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Introduction
Throughout this book, "perturbation theory" means "perturbation

theory for linear operators". There are other disciplines in mathematics
called perturbation theory, such as the ones in analytical dynamics
(celestial mechanics) and in nonlinear oscillation theory. All of them
are based on the idea of studying a system deviating slightly from a
simple ideal system for which the complete solution of the problem
under consideration is known; but the problems they treat and the tools
they use are quite different. The theory for linear operators as developed
below is essentially independent of other perturbation theories.

Perturbation theory was created by RAYLEIGH and SCHRODINGER
(cf. Sz.-NAGY [1]). RAYLEIGH gave a formula for computing the natural
frequencies and modes of a vibrating system deviating slightly from a
simpler system which admits a complete determination of the frequencies
and modes (see RAYLEIGH Q1)J, §§ 90, 91). Mathematically speaking,
the method is equivalent to an approximate solution of the eigenvalue
problem for a linear operator slightly different from a simpler operator
for which the problem is completely solved. SCHRODINGER developed a
similar method, with more generality and systematization, for the
eigenvalue problems that appear in quantum mechanics (see SCHRODIN-
GER (1), [1]).

These pioneering works were, however, quite formal and mathe-
matically incomplete. It was tacitly assumed that the eigenvalues and
eigenvectors (or eigenfunctions) admit series expansions in the small
parameter that measures the deviation of the "perturbed" operator
from the "unperturbed" one; no attempts were made to prove that the
series converge.

It was in a series of papers by RELLICH that the question of con-
vergence was finally settled (see RELLICH [1]-[5]; there were some
attempts at the convergence proof prior to RELLICH, but they were not
conclusive; see e. g. WILSON [1]): The basic results of RELLICH, which
will be described in greater detail in Chapters II and VII, may be stated
in the following way. Let T (m) be a bounded selfadjoint operator in a
Hilbert space H, depending on a real parameter x as a convergent power
series

(1) T(x)= T+xTM +x2T(2)+" .

Suppose that the unperturbed operator T = T (0) has an isolated eigen-
value A (isolated from the rest of the spectrum) with a finite multi-
plicity m. Then T (x) has exactly m eigenvalues y j (x), j = 1, ..., m
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(multiple eigenvalues counted repeatedly) in the neighborhood of 2 for
sufficiently small I44, and these eigenvalues can be expanded into con-
vergent series

(2) Fay (x) + x 1u} + x2 2) + ... = 1, ..., m .

The associated eigenvectors 4p3 (x) of T (x) can also be chosen as con-
vergent series

(3) p, (x) = 99j + x _(I) + x2 99(2) + ... j = 1, ..., m ,

satisfying the orthonormality conditions

(4) (9'1(x), 997, (x)) = be k

where the q., form an orthonormal family of eigenvectors of T for the
eigenvalue A.

These results are exactly what were anticipated by RAYLEIGH,
SCHRODINGER and other authors, but to prove them is by no means
simple. Even in the case in which H is finite-dimensional, so that the
eigenvalue problem can be dealt with algebraically, the proof is not at
all trivial. In this case it is obvious that the E.c; (x) are branches of al-
gebroidal functions of x, but the possibility that they have a branch
point at x = 0 can be eliminated only by using the selfadjointness of
T (x). In fact, the eigenvalues of a selfadjoint operator are real, but a
function which is a power series in some fractional power xl/¢ of x cannot
be real for both positive and negative values of x, unless the series reduces
to a power series in x. To prove the existence of eigenvectors satisfying
(3) and (4) is much less simple and requires a deeper analysis.

Actually RELLICH considered a more general case in which T (x) is an
unbounded operator; then the series (1) requires new interpretations,
which form a substantial part of the theory. Many other problems related
to the one above were investigated by RELLICH, such as estimates for the
convergence radii, error estimates, simultaneous consideration of all the
eigenvalues and eigenvectors and the ensuing question of uniformity, and
non-analytic perturbations.

Rellich's fundamental work stimulated further studies on similar
and related problems in the theory of linear operators. One new develop-
ment was the creation by FRIEDRICHS of the perturbation theory of
continuous spectra (see FRIEDRICHS [2]), which proved extremely
important in scattering theory and in quantum field theory. Here an
entirely new method had to be developed, for the continuous spectrum
is quite different in character from the discrete spectrum. The main
problem dealt with in Friedrichs's theory is the similarity of T (x) to T,
that is, the existence of a non-singular operator W (m) such that T (m)
= W (x) T W (x)-'.
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The original results of RELLICH on the perturbation of isolated
eigenvalues were also generalized. It was found that the analytic theory
gains in generality as well as in simplicity by allowing the parameter x
to be complex, a natural idea when analyticity is involved. However,
one must then abandon the assumption that T(m) is selfadjoint for all x,
for an operator T (m) depending on x analytically cannot in general be
selfadjoint for all x of a complex domain, though it may be selfadjoint
for all real x, say. This leads to the formulation of results for non-self-
adjoint operators and for operators in Banach spaces, in which the use of
complex function theory prevails (SZ.-NAGY [2], WOLF [1], T. KATO [6]).
It turns out that the basic results of RELLICH for selfadjoint operators
follow from the general theory in a simple way.

On the other hand, it was recognized (TITCHMARSH [1], [2], T. KATO
[1]) that there are cases in which the formal power series like (2) or (3)
diverge or even have only a finite number of significant terms, and yet
approximate the quantities ,u; (x) or 99 (x) in the sense of asymptotic
expansion. Many examples, previously intractable, were found to lie
within the sway of the resulting asymptotic theory, which is closely
related to the singular perturbation theory in differential equations.

Other non-analytic developments led to the perturbation theory of
spectra in general and to stability theorems for various spectral properties
of operators, one of the culminating results being the index theorem
(see GOHBERG and KREIN [1]).

Meanwhile, perturbation theory for one-parameter semigroups of
operators was developed by HILLE and PHILLIPS (see PHILLIPS [1],
HILLE and PHILLIPS Q11). It is a generalization of, as well as a mathe-
matical foundation for, the so-called time-dependent perturbation theory
familiar in quantum mechanics. It is also related to time-dependent
scattering theory, which is in turn closely connected with the perturba-
tion of continuous spectra. Scattering theory is one of the subjects in
perturbation theory most actively studied at present.

It is evident from this brief review that perturbation theory is not
a sharply-defined discipline. While it incorporates a good deal of the
spectral theory of operators, it is a body of knowledge unified more by
its method of approach than by any clear-cut demarcation of its province.
The underpinnings of the theory lie in linear functional analysis, and an
appreciable part of the volume is devoted to supplying them. The
subjects mentioned above, together with some others, occupy the
remainder.





Chapter One

Operator theory in finite-dimensional vector spaces
This chapter is preliminary to the following one where perturbation theory for

linear operators in a finite-dimensional space is presented. We assume that the
reader is more or less familiar with elementary notions of linear algebra. In the
beginning sections we collect fundamental results on linear algebra, mostly without
proof, for the convenience of later reference. The notions related to normed vector
spaces and analysis with vectors and operators (convergence of vectors and opera-
tors, vector-valued and operator-valued functions, etc.) are discussed in somewhat
more detail. The eigenvalue problem is dealt with more completely, since this will
be one of the main subjects in perturbation theory. The approach to the eigenvalue
problem is analytic rather than algebraic, depending on function-theoretical
treatment of the resolvents. It is believed that this is a most natural approach in view
of the intended extension of the method to the infinite-dimensional case in later
chapters.

Although the material as well as the method of this chapter is quite elementary,
there are some results which do not seem to have been formally published elsewhere
(an example is the results on pairs of projections given in §§ 4.6 and 6.8).

§ 1. Vector spaces and normed vector spaces
1. Basic notions

We collect here basic facts on finite-dimensional vector spaces,
mostly without proof'. A vector space X is an aggregate of elements,
called vectors, u, v, . . ., for which linear operations (addition u + v of
two vectors u, v and multiplication a u of a vector u by a scalar a) are
defined and obey the usual rules of such operations. Throughout the
book, the scalars are assumed to be complex numbers unless otherwise
stated (complex vector space). a u is also written as u a whenever
convenient, and a-' u is often written as u/a. The zero vector is denoted
by 0 and will not be distinguished in symbol from the scalar zero.

Vectors u1, ..., u, are said to be linearly independent if their linear
combination al u1 + - - - + cc u is equal to zero only if a1= ... = a,,= 0;
otherwise they are linearly dependent. The dimension of X, denoted by
dim X, is the largest number of linearly independent vectors that exist in
X. If there is no such finite number, we set dim X = oo. In the present
chapter, all vector spaces are assumed to be finite-dimensional (0 5
S dim X < oo) unless otherwise stated.

' See, e. g., GELFAND (11, HALMOS 12)J, HOFFMAN and KUNZE 11).
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A subset M of X is a linear manifold or a subspace if M is itself a
vector space under the same linear operations as in X. The dimension
of M does not exceed that of X. For any subset S of X, the set M of all
possible linear combinations constructed from the vectors of S is a
linear manifold; M is called the linear manifold determined or spanned
by S or simply the (linear) span of S. According to a basic theorem on
vector spaces, the span M of a set of n vectors u1...., u,, is at most
n-dimensional; it is exactly n-dimensional if and only if ul, ..., u are
linearly independent.

There is only one 0-dimensional linear manifold of X, which consists
of the vector 0 alone and which we shall denote simply by 0.

Example 1.1. The set X = CN of all ordered N-tuples u =
of complex numbers is an N-dimensional vector space (the complex euclidean
space) with the usual definition of the basic operations a u + fl v. Such a vector
u is called a numerical vector, and is written in the form of a column vector (in ver-
tical arrangement of the components $1) or a row vector (in horizontal arrangement)
according to convenience.

Example 1.2. The set of all complex-valued continuous functions u : x- u (x)
defined on an interval I of a real variable z is an infinite-dimensional vector space,
with the obvious definitions of the basic operations a u + fi v. The same is true
when, for example, the u are restricted to be functions with continuous derivatives
up to a fixed order n. Also the interval I may be replaced by a region' in the m-
dimensional real euclidean space R.

Example 1.3. The set of all solutions of a linear homogeneous differential
equation

u(n) + a, (x) ucn-n + ... + an (x) u = 0

with continuous coefficients a, (z) is an n-dimensional vector space, for any solution
of this equation is expressed as a linear combination of n fundamental solutions,
which are linearly independent.

2. Bases

Let X be an N-dimensional vector space and let x1, ..., XN be a
family2 of N linearly independent vectors. Then their span coincides
with X, and each it E X can be expanded in the form

N
(1.1) u= jxs

in a unique way. In this sense the family {x;} is called a basis8 of X,
and the scalars j are called the coefficients (or coordinates) of u with
respect to this basis. The correspondence it --+ is an isomorphism

1 By a region in R" we mean either an open set in R"" or the union of an open
set and all or a part of its boundary.

2 We use the term "family" to denote a set of elements depending on a para-
meter.

3 This is an ordered basis (cf. HoFFMAN and Kuxzx (1), p. 47).
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of X onto CN (the set of numerical vectors, see Example 1.1) in the sense
that it is one to one and preserves the linear operations, that is, u -+
and v -). (rlf) imply a u + fi v (o: j + 9 rl;)

As is well known, any family x1, ..., x, of linearly independent
vectors can be enlarged to a basis x1, ..., xy, x9t1, ..., xN by adding
suitable vectors x9+1, . . ., X.

Example 1.4. In CN the N vectors xi = (..., 0, 1, 0, ...) with 1 in the j-th
place, j = 1, ..., N, form a basis (the canonical basis). The coefficients of u = (ii)
with respect to the canonical basis are the r themselves.

Any two bases {x;} and {xi} of X are connected by a system of linear
relations
(1.2) xk= Yjkx,', k=1,...,N.

The coefficients ; and j' of one and the same vector u with respect to the
bases {x;} and {x'} respectively are then related to each other by

(1.3) fyj7, k , j = 1, ..., N.
h

The inverse transformations to (1.2) and (1.3) areat

(1.4) x1 =fYk,xk, Sk= rYki
k 9

where (y; k) is the inverse of the matrix (y; k) :

(1.5)

(1.6)

i

Y;iYikYjiYi70 bih=i
det (y; k) det (y j7,) = 1 .

J1 (j=k)
0 (j+k)

Here det (y; k) denotes the determinant of the matrix
The systems of linear equations (1.3) and (1.4) are conveniently

expressed by the matrix notation

(1.7) (u)' = (C) (u) , (u) = (C)-1(u)'

where (C) is the matrix (yfk), (C)-1 is its inverse and (u) and (u)' stand
for the column vectors with components f and ee respectively. It should
be noticed that (u) or (u)' is conceptually different from the "abstract"
vector u which it represents in a particular choice of the basis.

3. Linear manifolds
For any subset S and S' of X, the symbol S + S' is used to denote

the (linear) sum of S and S', that is, the set of all vectors of the form
u + u' with u E S and WE S'1. If S consists of a single vector u, S + S'

I S + S' should be distinguished from the union of S and S', denoted by S 11 S'.
The intersection of S and S' is denoted by S r S'.
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is simply written u + S'. If M is a linear manifold, u + M is called the
inhomogeneous linear manifold (or linear variety) through u parallel to M.
The totality of the inhomogeneous linear manifolds u + M with a
fixed M becomes a vector space under the linear operation

(1.8) a(u+M)+P(v+M)=(au+Pv)+M.
This vector space is called the quotient space of X by M and is denoted
by X/M. The elements of X/M are also called the cosets of M. The zero
vector of X/M is the set M, and we have u + M = v + M if and only if
it - v E M. The dimension of X/M is called the codimension or deficiency
of M (with respect to X) and is denoted by codim M. We have

(1.9) dim M + codimM = dim X .

If M1 and M. are linear manifolds, M1 + M2 and M1 n M2 are again
linear manifolds, and

(1.10) dim (M1 + M2) + dim (M1 n M2) = dim M1 + dim M2 .

The operation M1 + M. for linear manifolds (or for any subsets of X)
is associative in the sense that (M1 + M2) + M3 = M1 + (M2 + M3),
which is simply written M1 + M2 + M3. Similarly we can define M1 +
+ M2 + + M8 for s linear manifolds M;.

X is the direct sum of the linear manifolds M1, ..., M8 if X = M1 +
+ . + M8 and Z u; = 0 (u; E M,,) implies that all the u; = 0. Then we
write

(1.11) X=M1®...®M8.

In this case each u E X has a unique expression of the form

(1.12) uu;, u;EM;, j=1,...,s.
Also we have

(1.13) dim X = dim M, .

Problem 1.5. If X = M19 M, then dim M. = codim M1.

4. Convergence and norms

Let {x1} be a basis in a finite-dimensional vector space X. Let {un},
n = 1, 2, ..., be a sequence of vectors of X, with the coefficients s1
with respect to the basis {x1}. The sequence {un} is said to converge to 0
or have limit 0, and we write un -> 0, n -> oo, or lim un = 0, if

-P. 00

(1.14) lim n9=0, j= 1,...,N.
n-00
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If u - u --> 0 for some u, {u is said to converge to u (or have limit u),
in symbol u,, -* u or limun = u. The limit is unique when it exists.

This definition of convergence is independent of the basis {x,}
employed. In fact, the formula (1.3) for the coordinate transformation
shows that (1.14) implies limb;,,, = 0, where the ; are the coefficients
of un with respect to a new basis {x;}.

The linear operations in X are continuous with respect to this notion
of convergence, in the sense that an -> a, ton --> fi, un -> u and v,, --> v
imply anun+ Nnun -->au+ fl v.

For various purposes it is convenient to express the convergence of
vectors by means of a norm. For example, for a fixed basis {x,} of X, set

(1.15) (lull = max
i

where the f are the coefficients of u with respect to {x1}. Then (1.14)
shows that un --> u is equivalent to llun - ull - 0. hull is called the norm
of U.

(1.15) is not the only possible definition of a norm. We could as well
choose

(1.16) hull =v
or

(lull = (2r' 1$112)1'2

In each case the following conditions are satisfied:

(1.18) hull z 0; hull = 0 if and only if u = 0.

Ila ull = lal hull (homogeneity) .

1ku + vil 5 hull + jIviI (the triangle inequality)

Any function Ilull defined for all u E X and satisfying these conditions is
called a norm. Note that the last inequality of (1.18) implies

(1.19) 1 Ilull - hjvII 1 s llu - vii

as is seen by replacing u by u - v.
A vector u with llull = 1 is said to be normalized. For any u + 0,

the vector uo = llulh-1 u is normalized; uo is said to result from u by
normalization.

When a norm 11 Ii is given, the convergence un -> u can be defined in a
natural way by Ilun - ulI -> 0. This definition of convergence is actually
independent of the norm employed and, therefore, coincides with the
earlier definition. This follows from the fact that any two norms 11 11
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and II II' in the same space X are equivalent in the sense that

(1.20) a'Ilull s Ilull's P'IIull, uEX,

where a', X are positive constants independent of u.
We note incidentally that, for any norm Il

Il
and any basis {x5},

the coefficients ep of a vector u satisfy the inequalities

j=1,...,N,
(lulls y' max I&&I ,i

where y, y' are positive constants depending only on the norm IIIl and
the basis {x;}. These inequalities follow from (1.20) by identifying the
norm Il ' with the special one (1.15).

A norm 'lull is a continuous function of u. This means that un - u
implies unll -- Ilull, and follows directly from (1.19). It follows from the
same inequality that un --> u implies that {un} is a Cauchy sequence,
that is, the Cauchy condition

(1.23) llun - umll ->0, m,n -* oo,

is satisfied. Conversely, it is easy to see that the Cauchy condition is
sufficient for the existence of limun.

The introduction of a norm is not indispensable for the definition
of the notion of convergence of vectors, but it is a very convenient
means for it. For applications it is important to choose a norm most
suitable to the purpose. A vector space in which a norm is defined is
called a normed (vector) space. Any finite-dimensional vector space can
be made into a normed space. The same vector space gives rise to dif-
ferent normed spaces by different choices of the norm. In what follows
we shall often regard a given vector space as a normed space by intro-
ducing an appropriate norm. The notion of a finite-dimensional normed
space considered here is a model for (and a special case of) the notion
of a Banach space to be introduced in later chapters.

5. Topological notions in a normed space

In this paragraph a brief review will be given on the topological
notions associated with a normed space'. Since we are here concerned
primarily with a finite-dimensional space, there is no essential difference
from the case of a real euclidean space. The modification needed in the
infinite-dimensional spaces will be indicated later.

1 We shall need only elementary notions in the topology of metric spaces. As a
handy textbook, we refer e. g. to RoYDEN [1).
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A normed space X is a special case of a metric space in which the
distance between any two points is defined. In X the distance between
two points (vectors) u, v is defined by 11u - v11. An (open) ball of X is the
set of points u E X such that Ilu - uuii < r, where uo is the center and
r > 0 is the radius of the ball. The set of u with 1ju - u,11 s r is a closed
ball. We speak of the unit ball when uo = 0 and r = 1. Given a u E X,
any subset of X containing a ball with center u is called a neighborhood
of u. A subset of X is said to be bounded if it is contained in a ball. X
itself is not bounded unless dim X = 0.

For any subset S of X, u is an interior point of S if S is a neighborhood
of u. u is an exterior point of S if u is an interior point of the complement
S' of S (with respect to X). u is a boundary point of S if it is neither an
interior nor an exterior point of S. The set d S of all boundary points of S
is the boundary of S. The union S of S and its boundary is the closure
of S. S is open if it consists only of interior points. S is closed if S' is open,
or, equivalently, if S = S. The closure of any subset S is closed: _ S.
Every linear manifold of X is closed (X being finite-dimensional).

These notions can also be defined by using convergent sequences.
For example, S is the set of all u E X such that there is a sequence u,, E S
with un --> u. S is closed if and only if u,,, E S and u,. -# u imply u E S.

We denote by dist (u, S) the distance of u from a subset S :

(1.24) dist(u, S) = inf 11 u - v11
vES

If S is closed and u I S, then dist (u, S) > 0.
An important property of a finite-dimensional normed space X is

that the theorem of BOLZANO-WEIERSTRASS holds true. From each
bounded sequence {un} of vectors of X, it is possible to extract a sub-
sequence {vn} that converges to some v E X. This property is expressed by
saying that X is locally compact'. A subset S C X is compact if any sequence
of elements of S has a subsequence converging to an element of S.

6. Infinite series of vectors
The convergence of an infinite series

00

(1.25) X U.
na1

of vectors u,,E X is defined as in the case of numerical series. (1.25)
is said to converge to v (or have the sum v) if the sequence {vn} consisting

of the partial sums v _ uk converges (to v). The sum v is usually
k=1

denoted by the same expression (1.25) as the series itself.

1 The proof of (1.20) depends essentially on the local compactness of X.
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A sufficient condition for the convergence of (1.25) is

(1.26) F. Ilunll < oo .
n

If this is true for some norm, it is true for any norm in virtue of (1.20).
In this case the series (1.25) is said to converge absolutely. We have

(1.27) unll <
n n

Problem 1.6. If u and v have respectively the coefficients $nr and 77, with respect
to a basis {x1}, (1.25) converges to v if and only if E 1 = 77j, j = 1, ..., N. (1.25)

converges absolutely if and only if the N numerical series Ej = 1, ..., N,
n

converge absolutely.

In an absolutely convergent series of vectors, the order of the terms
may be changed arbitrarily without affecting the sum. This is obvious
if we consider the coefficients with respect to a basis (see Problem 1.6).
For later reference, however, we shall sketch a more direct proof without
using the coefficients. Let f u,, be a series obtained from (1.25) by
changing the order of terms. It is obvious that 2 11un11 = T' 1lunll < oo.

00

For any 8>0, there is an integer m such that Z jjunjj< e. Let p be so
n=m+1

large that ul, . . ., u,m are contained in ui, ..., up. For any n > m and
1 q n 00

q > p, we have then u; - uk < e, and going
j=1 k=1 k=m+1

9 00

to the limit n -> oo we obtain u1 s for q > p. This
j=1 k=1

proves that ' ub = f un.
This is an example showing how various results on numerical series

can be taken over to series of vectors. In a similar way it can be proved,
for example, that an absolutely convergent double series of vectors may
be summed in an arbitrary order, by rows or by columns,or by trans-
formation into a simple series.

7. Vector-valued functions
Instead of a sequence {un} of vectors, which may be regarded as a

function from the set {n} of integers into X, we may consider a function
ut = u (t) defined for a real or complex variable t and taking values in X.
The relation lim u (t) = v is defined by 11 u (t) - v 0 for t -> a (with

t-sa
the usual understanding that t + a) with the aid of any norm. u (t) is
continuous at t = a if lim u (t) = u (a), and u (t) is continuous in a region E

t-.a
of t if it is continuous at every point of E.
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The derivative of u (t) is given by

(1.28) u' (t)
a a( t)

= h o h ' (u (t + h) - u (t))

whenever this limit exists. The formulas

dt (u (t) + v (t)) = u' (t) + v' (t) ,

(1.29)

at 0 (t) u (t) _ 0 (t) u' (t) + 0' (t) u (t)

are valid exactly as for numerical functions, where 0 (t) denotes a complex-
valued function.

The integral of a vector-valued function u (t) can also be defined as
for numerical functions. For example, suppose that u (t) is a continuous

b

function of a real variable t, a c t s b. The Riemann integral f it (t) d t
a

is defined as an appropriate limit of the sums f (t; - t; _1) u (ti) con-
structed for the partitions a = to < t1 < < t,, = b of the interval
[a, b]. Similarly an integral f u(t) dt can be defined for a continuous

c
function is (t) of a complex variable t and for a rectifiable curve C. The
proof of the existence of such an integral is quite the same as for numerical
functions; in most cases it is sufficient to replace the absolute value of a
complex number by the norm of a vector. For these integrals we have
the formulas

(1.30)
f (a u (t) + jI v (t)) d t= a f u (t) d t+ j9 f v (t) d t,

IIf u(t) dtIl s f IIu(t)II Idtl .

There is no difficulty in extending these definitions to improper integrals.
We shall make free use of the formulas of differential and integral
calculus for vector-valued functions without any further comments.

Although there is no difference in the formal definition of the deriva-
tive of a vector-valued function u (t) whether the variable t is real or
complex, there is an essential difference between these two cases just as
with numerical functions. When u (t) is defined and differentiable every-
where in a domain D of the complex plane, u (t) is said to be regular
(analytic) or holomorphic in D. Most of the results of complex function
theory are applicable to such vector-valued, holomorphic functions'.

1 Throughout this book we shall make much use of complex function theory,
but it will be limited to elementary results given in standard textbooks such as
KNOPP 11, 21. Actually we shall apply these results to vector- or operator-valued
functions as well as to complex-valued functions, but such a generalization usually
offers no difficulty and we shall make it without particular comments. For the
theorems used we shall refer to Knopp whenever necessary.
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Thus we have Cauchy's integral theorem, Taylor's and Laurent's expan-
sions, Liouville's theorem, and so on. For example, if t = 0 is an isolated
singularity of a holomorphic function u (t), we have

(1.31) u(t)= t"`an, an= 2ni f t-n-1u(t)dt,
C

where C is a closed curve, say a circle, enclosing t = 0 in the positive
direction. t = 0 is a regular point (removable singularity) if a = 0 for
n < 0, a Pole of order k > 0 if a_,, + 0 whereas an = 0 for n < - k, and
an essential singularity otherwise.

Problem 1.7. If t = 0 is a pole of order k, then 11u(t)IJ = 0 (Its-k) for t-+ 0.
Problem 1.8. Let (t) be the coefficients of u (t) with respect to a basis of X.

u(t) is continuous (differentiable) if and only if all the $; (t) are continuous (dif-
ferentiable). u' (t) has the coefficientsf (t) for the same basis. Similarly, f u (t) dt
has the coefficients f $; (t) d t.

2. Linear forms and the adjoint space
1. Linear forms

Let X be a vector space. A complex-valued function / [u] defined for
u E X is called a linear form or a linear functional if

(2.1) f[au-I-#v]af[u]-h[v]
for all u, v of X and all scalars a,

Example 2.1. If X = CN (the space of N-dimensional numerical vectors),
a linear form on X can be expressed in the form

N
(2.2) l [u] = E a; ej for u =

i-r
It is usual to represent / as a row vector with the components a;, when u is represented
as a column vector with the components ;. (2.2) is the matrix product of these two
vectors.

Example 2.2. Let X be the space of continuous functions u = u (x) considered
in Example 1.2. The following are examples of linear forms on X:

(2.3) f [u] = u (xo) , x0 being fixed.
b

(2.4) f [u] f 0 (x) u (x) dx , 0 (x) being a given function.
a

Let {xf} be a basis of X (dim X = N < oo). If u = Z j x5 is the
expansion of it, we have by (2.1)

(2.5) f[u] =E a; i

where a; = f [x;]. Each linear form is therefore represented by a numerical
vector (aj) with respect to the basis and, conversely, each numerical

1 See KNOP? (1), p. 117.
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vector (a;) determines a linear form / by (2.5). (2.5) corresponds exactly
to (2.2) for a linear form on CN.

The same linear form / is represented by a different numerical
vector for a different basis {xi}. If the new basis is connected with the
old one through the transformation (1.2) or (1.4), the relation between
these representations is given by

a'=f[xi]= 'Yk31[xn]_fPhiak
A k

ak=Lr y91 a).
i

In the matrix notation, these may be written

(2.7) (f)' = (f) (C)-1, (f) = (f)' (C)

where (C) is the matrix (y; k) [see (1.7) ] and where (f) and (/)' stand for
the row vectors with components (a;) and (ay) respectively.

2. The adjoint space

A complex-valued function / [u] defined on X is called a semilinear
(or conjugate-linear or anti-linear) form if

(2.8) f[au+#v]=af[u] +9/[v],
where & denotes the complex conjugate of a. It is obvious that f [u] is a
semilinear form if and only if f [u] is a linear form. For the sake of a
certain formal convenience, we shall hereafter be concerned with semi-
linear rather than with linear forms.

Example 2.3. A semilinear form on CN is given by (2.2) with the r on the right
replaced by the Tj, where u = (a;).

Example 2.4. Let X be as in Example 2.2. The following are examples of semi-
linear forms on X:

(2.9) flu] = u (xo)
b _

(2.10) f [u] = f 0 (x) u (x) d x.
a

The linear combination a / + f3 g of two semilinear forms f, g defined
by
(2.11) (a f -I- #g) [u] = a f [u] + fl g [u]

is obviously a semilinear form. Thus the set of all semilinear forms on X
becomes a vector space, called the adjoint (or conjugate) space of X and
denoted by X*. The zero vector of X*, which is again denoted by 0,
is the zero form that sends every vector u of X into the complex number
zero.
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It is convenient to treat X* on the same level as X. To this end we
write
(2.12) [u] u)

and call (/, u) the scalar product off E X* and u E X. It follows from the
definition that (/, u) is linear in / and semilinear in u :

(af+flg,u)=a(f,u)+j3(g,u),
(2.13)

(f,au+Pv)=a(f,u)+fl(f,v).
Example 2.5. For X = CN, X* may be regarded as the set of all row vectors

f = (a;) whereas X is the set of all column vectors u = (s). Their scalar product is
given by
(2.14) (f, u) _ ar r

Remark 2.6. In the algebraic theory of vector spaces, the dual space
of a vector space X is defined to be the set of all linear forms on X.
Our definition of the adjoint space is chosen in such a way that the
adjoint space of a unitary space (see § 6) X can be identified with X
itself1.

3. The adjoint basis
Let {x;} be a basis of X. As in the case of linear forms, for each

numerical vector ((xk) there is an / E X* such that (f, xk) = al, In particu-
lar, it follows that for each j, there exists a unique e; E X* such that

(2.15) (e;, xk) = S; 7, j, k = 1, . . ., N.
It is easy to see that the e; are linearly independent. Each f E X* can be
expressed in a unique way as a linear combination of the e;, according to

(2.16) f = aj el where of = (f , xf) .

In fact, the difference of the two members of (2.16) has scalar product
zero with all the xk and therefore with all u E X ; thus it must be equal
to the zero form.

Thus the N vectors of form a basis of X*, called the basis adjoint
to the basis {xf} of X. Since the basis {ef} consists of N elements, we have

(2.17) dim X* = dim X = N.

For each u E X we have

(2.18) u =' j xf where 3 = (e;, u) .
i

! See e. g. HALMOS (2). Sometimes one defines X* as the set of all linear forms f
on X but defines a f by (a f) [u] = a f [u], so that f [u] is linear in u and semilinear
in f (see e. g. LORCH fll ). Our definition of X* is the same as in Riasz and Sz.-NAGY
III in this respect.
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It follows from (2.16) and (2.18) that

(2.19) (f, u) = f of = f (/, xj) (e;, u)

Let {x;} and {x'} be two bases of X related to each other by (1.2).
Then the corresponding adjoint bases {ef} and {ee} of X* are related
to each other by the formulas

(2.20) ej = rYjke
Furthermore we have

(2.21)

k j

Yak = (ej, xk) , Y7,1 = (ek, xj)

4. The adjoint space of a normed space
Since X* is an N-dimensional vector space with X, the notion of

convergence of a sequence of vectors of X* is defined as in § 1.4. For the
same reason a norm could be introduced into X*. Usually the norm in X*
is not defined independently but is correlated with the norm of X.

When a norm IIuII in X is given so that X is a normed space, X* is by
definition a normed space with the norm IIfII defined by'

(2.22) 11 /11 = sup
I (f' u) I = sup W, u)

O+uEX dull Jkp=1

That IIfII is finite follows from the fact that the continuous function
I(/, u) I of u attains a maximum for Iull = 1 (because X is locally compact).
It is easily verified that the norm IfII thus defined satisfies the conditions
(1.18) of a norm. There is no fear of confusion in using the same symbol
II

II for the two norms.
Example 2.7. Suppose that the norm in X is given by (1.15) for a fixed basis {x1}.

If {e!} is the adjoint basis in X+, we have I(f, u) I (E Iafl) lull by (2.19). But the
equality holds if u is such that 11I = %J = = and all of Ts are real and
nonnegative. This shows that
(2.23) IIfII = k1
Similarly it can be shown that, when the norm in X is given by (1.16), the norm in
X" is given by
(2.24) IItIl = maxla, .
Thus we may say that the norms (1.15) and (1.16) are adjoint to each other.

(2.22) shows that

(2.25) I(f.u)I SII/IIIIull, IEX*, uEX.
This is called the Schwayz inequality in the generalized sense. As we have
deduced it, it is simply the definition of II/II and has an essential meaning
only when we give IIfII some independent characterization (as, for
example, in the case of a unitary space; see § 6).

1 Here we assume dimX > 0; the case dimX = 0 is trivial.
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(2.25) implies that JJuJJ I(/, u)1/11/11. Actually the following stronger
relation is true':

(2.26) 11 uII = sup 1(f, u) I = sup IV, u)
0+/EX * Ilfll 111i1-1

This follows from the fact that, for any uo E X, there is an / E X* such that

(2.27) V'uo) = lluoll , 11/11 = 1 .

The proof of (2.27) requires a deeper knowledge of the nature of a norm
and will be given in the following paragraph.

Problem 2.8. (/, u) = 0 for all u E X implies f = 0. (f, u) = 0 for all f E X*
implies u = 0.

A simple consequence of the Schwarz inequality is the fact that the
scalar product (f, u) is a continuous function o l / and u. In fact 2,

1(f', u') - (f, u) I = I W - f, u) + (f, u' - u) + (f' - f, u' - u)
(2.28)

5 11/'- AAA 'lull + I1/I1 11u'-,U11 + 11/'- /11 11u'- u(j

In particular, u -> it implies (/, u,,) --> (/, it) for every / E X* and
fn - / implies (1,,, u) - (/, u) for every it E X. Similarly, the convergence
of a series ' u,,, = is implies the convergence ,' (/, u,,) = (f, u) for every
/ E X* (that is, term by term multiplication is permitted for the scalar
product). Conversely, (f, u,,,) (f, u) for all / E X* implies is,, - u ; this
can be seen by expanding is,, and u by a fixed basis of X.

5. The convexity of balls
Let S be an open ball of X. S is a convex set: for any two points

(vectors) is, v of S, the segment joining is and v belongs to S. In other
words,
(2.29) Au+(1-A)vES if u,vES and 0<-A<-1.
In fact, denoting by uo the center and by r the radius of S, we have
11Au+(1-A)v-u011 =(IA(u-uo)+(1-A) (v - uo)ll < Ar+(1-A)r
= r, which proves the assertion. In what follows we assume S to be the
unit ball (uo = 0, r = 1).

Since X is isomorphic with the N-dimensional complex euclidean
space CN, X is isomorphic with the 2N-dimensional real euclidean
space R2N as a real vector space (that is, when only real numbers are
regarded as scalars). Thus S may be regarded as a convex set in R2N.

It follows from a well-known theorem3 on convex sets in R"a that, for

1 Again dim X* = dim X > 0 is assumed.
2 The continuity of (f, u) follows immediately from (2.19). But the proof in

(2.28) has the advantage that it is valid in the oo-dimensional case.
3 See, e. g., EGGLESTON Ill.
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each vector ue lying on the boundary of S (that is, IIu0II = 1), there is
a support hyperplane of S through u0. This implies that there exists a
real-linear form g [u] on X such that

(2.30) g [u0] = 1 whereas g [u] < 1 for u E S.

That g is real-linear means that g [u] is real-valued and g [a u + fl v]
= a g [u] + fl g [v] for all real numbers a, fi and u, v E X.

g is neither a linear nor a semilinear form on the complex vector
space X. But there is an / E X* related to g according to'

(2.31) (f, u) = f [u] = g [u] + i g [i u] .

To see that this / is in fact a semilinear form on X, it suffices to verify
that / [(a + i fl) u] = (a - i fl) / [u] for real a, fi, for it is obvious that
f [u + v] = / [u] + f [v]. This is seen as follows:

/[(a+ifi)u]=g[au+iflu]+ig[iau- flu]
=ag[u]+ flg[iu]+iag[iu]-iflg[u]
= (a- i fl) (g [u] +ig[iu]) _ (a- i /9) / [u] .

Now this / has the following properties :

(2.32) (f, uo) = 1 , II/II = 1

To see this, set (f, u) = Re", 0 real and R z 0. It follows from what
was just proved that (f, ed a u) = e°(/, u) = R and hence that I(/, u) I
= R = Re(/, e'B u) = g [e{8 u] < 1 if Ile" ull = lull < 1. This shows that
IIfII S 1. In particular we have I(/, ua) 15 1. But since Re(/, u0) = g [uo]
= 1, we must have (f, uo) = 1. This implies also IIfII = 1.

Note that (2.32) is equivalent to (2.27) in virtue of the homogeneity
of the norm.

6. The second adjoint space
The adjoint space X** to X* is the aggregate of semilinear forms

on X*. An example of such a semilinear form F is given by F [/] = (f, u)
where u E X is fixed. With each u E X is thus associated an element F
of X**. This correspondence of X with X** is linear in the sense that
a u + /9 v corresponds to a F + /9 G when u, v correspond to F, G,
respectively. The fact that dim X** = dim X* = dim X shows that the
whole space X** is exhausted in this way; in other words, to each
F E X** corresponds a u E X. Furthermore when X and therefore X*,
X** are normed spaces, the norm in X** is identical with the norm in
X : IIFII = IIuII, as is seen from (2.26). In this way we see that X** can be
identified with X, not only as a vector space but as a normed space.

I i is the imaginary unit.
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In this sense we may write F U] ] as u U] ] = (u, f), so that

(2.33) (u, /) = (f, u) .

It should be noted that these results are essentially based on the
assumption that dim X is finite.

Problem 2.9. If {e1} is the basis of X* adjoint to the basis {xr} of X, {x5} is the
basis of X** = X adjoint to {e,}.

We write / L u or u L f when (/, u) = 0. When f L u for all u of a
subset S of X, we write f L S. Similarly we introduce the notation u L S'
for u E X and S' C X*. The set of all f E X* such that f L S is called the
annihilator of S and is denoted by SJ-. Similarly the annihilator S'J-
of a subset S' of X* is the set of all u E X such that u L S'.

For any S C X, SL is a linear manifold. The annihilator S11 of S1
is identical with the linear span M of S. In particular we have Ml 1 = M
for any linear manifold M of X.

Problem 2.10. codimM = dimMl.

§ 3. Linear operators
1. Definitions. Matrix representations

Let X, Y be two vector spaces. A function T that sends every vector
u of X into a vector v = T u of Y is called a linear transformation or a
linear operator on X to Y if T preserves linear relations, that is, if

(3.1) T (al ul + a2 u2) = al T ul + a2 T u2'

for all ul, u2 of X and all scalars al, a2. X is the domain space and Y
is the range space of T. If Y = X we say simply that T is a linear operator
in X. In this book an operator means a linear operator unless otherwise
stated.

For any subset S of X, the set of all vectors of the form T u with
u E S is called the image under T of S and is denoted by TS; it is a subset
of Y. If M is a linear manifold of X, TM is a linear manifold of Y. In
particular, the linear manifold TX of Y is called the range of T and is
denoted by R (T). The dimension of R (T) is called the rank of T ; we
denote it by rank T. The deficiency (codimension) of R (T) with respect
to Y is called the deficiency of T and is denoted by def T. Thus

(3.2) rank T + def T = dim Y .

For any subset S' of Y, the set of all vectors u E X such that T u E S'
is called the inverse image of S' and is denoted by T-1 S'. The inverse
image of 0 C Y is a linear manifold of X; it is called the kernel or null space
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of T and is denoted by N (T). The dimension of N (T) is called the
nullity of T, which we shall denote by nul T. We have

(3.3) rank T + nulT = dim X.

To see this it suffices to note that T maps the quotient space X/N (T)
(which has dimension dim X - nul T) onto R (T) in a one-to-one fashion.

If both nul T and def T are zero, then T maps X onto Y one to one.
In this case the inverse operator T-1 is defined; T-1 is the operator on Y
to X that sends Tu into u. Obviously we have (T-1)-1 = T. T is said to
be nonsingular if T-1 exists and singular otherwise. For T to be non-
singular it is necessary that dim X = dim Y. If dim X = dim Y, each of
nul T = 0 and def T = 0 implies the other and therefore the non-
singularity of T.

Let {xk} be a basis of X. Each u E X has the expansion (1.1), so that
N

(3.4) T u = f k Txk , N =dim X .

k=1

Thus an operator T on X to Y is determined by giving the values of
Txk, k = 1, ..., N. Furthermore, these values can be prescribed ar-
bitrarily in Y; then it suffices to define T by (3.4) to make T linear.

'if {y,} is a basis of Y, each Txk has the expansion
M

(3.5) Txk=' 2,7,y;, M=dimY.
i=1

Substituting (3.5) into (3.4), we see that the coefficients 77; of v = T u
with respect to the basis {y,} are given by

(3.6) 77J= j= 1,...,M.
I&

In this way an operator T on X to Y is represented by an M x N matrix
(rjk) with respect to the bases {xk}, {yj} of X, Y, respectively. Conversely,
to each M X N matrix (rj k) there is an operator T on X to Y represented
by it with respect to the given bases.

Let (rj'k) be the matrix representing the same operator T with respect
to a new pair of bases {xk}, {y, }. The relationship between the matrices
(rj'k) and (rfk) is obtained by combining (3.5) and a similar expression for
Txk in terms of {y1'} with the formulas (1.2), (1.4) of the coordinate
transformation and the corresponding formulas in Y. The result is

(3.7) iik = Yii rsk ykk
i, k

Thus the matrix (rj'k) is the product of three matrices (y;7,), (r,,%) and
(Yjk)
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If T is an operator on X to itself, it is usual to set y, = x5 and y; = x
we have then
(3.8) (40 = (Yjk) (T9k) (Yjk)

It follows by (1.6) that

(3.9) det (xk) = det (i5 k) .

Thus det (t k) is determined by the operator T itself and does not depend
on the basis employed. It is called the determinant of T and is denoted by
det T. Similarly, the trace' r of the matrix (r, ) does not depend on
the basis; it is called the trace of T and is denoted by tr T.

Problem 3.1. If {f;} is the basis of Y* adjoint to {y,}, then

(3.10) a; A = (T za, fs)

Problem 3.2. Let {xt} and {e5} be the bases of X and X*, respectively, which are
adjoint to each other. If T is an operator on X to itself, we have

(3.11) trT=_'(Tz;,e5)
j

2. Linear operations on operators
If T and S are two linear operators on X to Y, their linear combination

a S + fi T is defined by

(3.12) (aS+fT)u=a(Su)+19(Tu)
for all u E X, and is again a linear operator on X to Y. Let us denote by
R (X, Y) the set of all operators on X to Y; 2 (X, Y) is a vector space
with the linear operations defined as above. The zero vector of this
vector space is the zero operator 0 defined by 0 u = 0 for all u E X.

Problem 3.3. rank (S + T) 5 rank S + rank T.

The dimension of the vector space 2 (X, Y) is equal to N M, where
N = dim X and M = dim Y. To see this, let {xk} and {y5} be bases of X
and Y, respectively, and let Pfk be the operator on X to Y such that

(3.13) P1kxn=8kny5, k,h=1,...,N; j=1,...,M.
These M N operators P11, are linearly independent elements of . (X, Y),
and we have from (3.5)

(3.14) T=f ijkPjk
Thus {P5k} is a basis of R(X, Y), which proves the assertion. {Pfk} will
be called the basis of 9 (X, Y) associated with the bases {xk} and { y,}
of X and Y, respectively. (3.14) shows that the matrix elements rik are
the coefficients of the "vector" T with respect to the basis {PJk}, and
(3.7) or (3.8) is the formula for coordinate transformation in 69(X, Y).
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The product TS of two linear operators T, S is defined by

(3.15) (TS) u = T (S u)

for all u E X, where X is the domain space of S, provided the domain
space of T is identical with the range space Y of S. The following relations
hold for these operations on linear operators :

(TS) R = T (SR), which is denoted by T S R ,

(3.16)
((x T) S = T (a S) = a(TS), denoted by a TS ,

(T1 + T2) S = T1S + T2S,

T(S1+S2)=TS1+TS2.
Problem 3.4. rank (T S) s max (rank T, rank S).
Problem 3.5. If S, T have the matrices (a, k), (ti k) with respect to some fixed

bases, S + T and T S have the matrices (ai k) + (t1 k), (t; k) (a; k) respectively
(whenever meaningful). If T-1 exists, its matrix is the inverse matrix of (t; k).

3. The algebra of linear operators

If S and T are operators on X to itself, their product TS is defined
and is again an operator on X to itself. Thus the set . (X) = .9 (X, X)
of all linear operators in X is not only a vector space but an algebra.
9 (X) is not commutative for dim X z 2 since T S = S T is in general not
true. When T S = S T, T and S are said to commute (with each other).
We have TO = OT = 0 and TI = 1 T T for every T E RN, where 1
denotes the identity operator (defined by 1 u = u for every u E X). Thus 1
is the unit element of .4 (X) 1. The operators of the form a 1 are called
scalar operators 2 and in symbol will not be distinguished from the
scalars a. A scalar operator commutes with every operator of R(X).

We write T T = T2, T T T = T3 and so on, and set TO = 1 by
definition. We have

(3.17) TmTn=Tm+n (Tm)n=Tmn m,n=0,1,2,...
For any polynomial p (z) = ao + a1 z + + a zn in the indeterminate
z, we define the operator

(3.18) p(T)=ao+al T+...+an Tn.

The mapping p (z) -+ p (T) is a homomorphism of the algebra of poly-
nomials to 69 (X) ; this means that p (z) + q (z) = r (z) or p (z) q (z) = r (z)

1 Note that 1 + 0 if (and only if) dim X Z 1.
2 This should not be confused with the notion of scalar operators in the theory

of spectral operators due to DUNFORD (see DUNFORD [1]).
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inplies p (T) + q (T) = r (T) or p (T) q (T) = r (T) respectively. In
particular, it follows that p (T) and q (T) commute.

Problem 3.6. The operators P, k E 9 (X) given by (3.13) with Y = X, y5 = z,
satisfy the relations

(3.19) PJkPih=Sk(PJh, j,k,i,h=1,...,N.
Problem 3.7. Set R. = R(T") and N. = N (Ta), n = 0, 1, 2, ... . The sequence

{R,,} is nonincreasing and {Na} is nondecreasing. There is a nonnegative integer
ny < dim X such that R. + Ra+i for n < m and R. = Ra+i for n Z in.

If T E -4 (X) is nonsingular, the inverse T-1 exists and belongs to
9 (X) ; we have

(3.20) T-1 T= T T-1 = 1.

If T has a left inverse T' (that is, a T' E 9 (X) such that T' T = 1), T has
nullity zero, for T u = 0 implies u = T' T u = 0. If T has a right inverse
T" (that is, T T" = 1), T has deficiency zero because every u E X lies
in R (T) by u = T T" u. If dim X is finite, either of these facts implies
that T is nonsingular and that T' = T-1 or T" = T-1, respectively.

If S and T are nonsingular, so is TS and

(3.21) (TS)-1= S-1 T-1 .

For a nonsingular T, the negative powers T-n, n = 1, 2, ..., can be
defined by T-n = (T-1)". In this case (3.17) is true for any integers m, n.

The following relations on determinants and traces follow directly
from Problem 3.5:

det T S = (det T) (det S) ,

(3.22) tr (a S + f3 T) = a tr S -I- fl tr T ,

trST=tr TS.
Problem 3.8. The last formula of (3.22) is true even when S E 2 (X, Y) and

T E. (Y, X) so that S T E R (Y) and T S E R(X).

4. Projections. Nilpotents
Let M, N be two complementary linear manifolds of X; by this we

mean that
(3.23) X=M®N;
see § 1.3. Thus each u E X can be uniquely expressed in the form u
= u' + u" with u' E M and u" E N. u' is called the projection of u on M
along N. If v = v' + v" in the same sense, a u + jI v has the projection
a u' + 9 v' on M along N. If we set u' = Pu, it follows that P is a linear
operator on X to itself. P is called the projection operator (or simply the
projection) on M along N. i - P is the projection on N along M. We have
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Pu = it if and only if u E M, and Pu = 0 if and only if u E N. The range of
P is M and the null space of P is N. For convenience we often write
dim P for dim M = dim R (P). Since Pu E M for every u E X, we have
PPu = Pu, that is, P is idempotent:

(3.24) P2= P.
Conversely, any idempotent operator P is a projection. In fact, set

M = R (P) and N = R (1 - P). u' E M implies that u' = P u for some u
and therefore Pu' = P2u = Pu = u'. Similarly u" E N implies Pu" = 0.
Hence u E M n N implies that u = Pu = 0, so that M n N = 0. Each
it F X has the expression it = u' + u" with u'= Pu E M and u" _ (1- P) it
E N. This shows that P is the projection on M along N.

Problem 3.9. If P is a projection, we have

(3.25) trP = dim P .

The above results can be extended to the case in which there are

several linear manifolds M1, ..., M3 such that

(3.26)

X u E

in a unique way. The operator P; defined by P; u = u; is
the projection on Mi along N, = M1® .
Furthermore, we have

® Mf_1® Mf+1® ® M,.

(3.27) P; = 1

(3.28) Ph Pi = 65, P5 .

Conversely, let P1...., P, be operators satisfying the conditions (3.27)
and (3.28)1. If we write Mi = R (P3), it is easily seen that (3.26) is satisfied
and the Pf are the projections defined as above. In particular consider
the case s=3andsetP=P1+P2.Then P1=P1P=PP1=PP1P;
P1 is a projection commuting with P and with R (Pl) C R (P). Such a P1
will be called a subprojection of P (a proper subprojection if P1 + P in
addition), in symbol P1 S P.

A basis {x5} of X#is said to be adapted to the decomposition (3.26)
if the first several elements of {x;} belong to M1, the following several ones
belong to M2, and so on. With respect to such a basis {x3}, each Pf is
represented by a diagonal matrix with diagonal elements equal to 0
or 1, the number of l's being equal to dim Mi. Conversely, such a matrix
always represents a projection.

1 Such a family is sometimes called a .complete orthogonal family of projections.
We do not use this term to avoid a possible confusion with the notion of an ortho-
gonal projection to be introduced in a unitary or. Hilbert space.
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For each linear manifold M of X, there is a complementary manifold N
[such that (3.23) is true]. Thus every linear manifold has a projection
on it. Such a projection is not unique, however.

A linear operator T E R (X) is called a nilpotent (operator) If T"a = 0
for some positive integer n. A nilpotent is necessarily singular.

Let us consider the structure of a nilpotent T in more detail. Let n
be such that Tn = 0 but T4-I * 0 (we assume dimX = N > 0). Then
R(Tn-1) $ 0; let {xi, ..., x1i,,} be a basis of R(Tn-1). Each x; has the
form x; = Tn-1 xi for some xn E X, i = 1, ..., p1. If n > 1, set Tn-2 xn
= xi so that Tx = x,' . The vectors x; , k = 1, 2, i = 1, ..., p1, belong
to R (Tn-2) and are linearly independent ; in fact I ai xi + I fli x; = 0
implies ai xi = 0 on application of T and hence ai = 0 for all i, hence

ixi = 0 and Ni = 0 for all i. Let us enlarge the family {xi } to a basis
of R (Tn-2) by adding, if necessary, new vectors x22,+1, ..., x,, ; here we
can arrange that T xi = 0 for i > p1.

If n > 2 we can proceed in the same way. Finally we arrive at a
basis {,vi} of X with the following properties: k = 1, . . ., n, j = 1, ..., PA,
PI sp2' spn,

l = 7 = pk-1(3.29) T xk = 10,
xk

1' pk-1+ 1 5 pk,

where we set po = 0.
If we arrange the basis {xk} in the order {xi, . . ., xi, x2, ..., x2, ...},

the matrix of T with respect to this basis takes the form

0 1I0

(3.30)

0 1
(all unspecified
elements are zero)

0
------------------------------------

Problem 3.10. If T is nilpotent, then TN = 0 for N = dim X.
Problem 3.11. If T is nilpotent, then tr T = 0 and det (1 + T) = 1.

5. Invariance. Decomposition
A linear manifold M is said to be invariant under an operator T E a (X)

if T M C M. In this case T induces a linear operator TM on M to M,
defined by TM u = T u for u E M. TM is called the part of T in M.

Problem 3.12. R = R (T°), n = 0, 1, 2, ..., are invariant under T. If m is
defined as in Problem 3.7, the part of T in R. is singular if n < m and nonsingular if
n Z M.
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Problem 3.13. If M is invariant under T, M is also invariant under p (T) for
any polynomial p (z), and p (T)M = p (TM).

If there are two invariant linear manifolds M, N for T such that
X = M ® N, T is said to be decomposed (or reduced) by the pair M, N.
More generally, T is said to be decomposed by the set of linear manifolds
M1, ..., M, if (3.26) is satisfied and all the Mf are invariant under T
[or we say that T is decomposed according to the decomposition (3.26)].
In this case T is completely described by its parts TM,, j = 1, ..., s.
T is called the direct sum of the TM5. If {P,} is the set of projections
corresponding to (3.26), T commutes with each P;. In fact we have,
successively, Pi u E M;, T P; u E M;, P, T P; u = 6j, T P; u, and the
addition of the last equalities for j = 1, ..., s gives Pk T u = T Pk u or
Pk T = T Pk. Conversely, it is easy to see that T is decomposed by
M1, ..., M, if T commutes with all the Pf.

If we choose a basis {x;} adapted to the decomposition (3.26), T is
represented by a matrix which has non-zero elements only in s smaller
submatrices along the diagonal (which are the matrices of the TMJ).
Thus the matrix of T is the direct sum of the matrices of the TM..

Problem 3.14. With the above notations, we have

(3.31) det T = jj det TK, tr T = X' tr TM2 .
i i

Remark 3.15. The operator P; T = T P5 = Pi T P1 coincides with T
and also with TM, when applied to a u E M; ; it is sometimes identified
with TM, when there is no possibility of misunderstanding.

6. The adjoint operator

Let T E 2(X, Y). For each 9E Y* and u E X, the scalar product
(g, T u) is defined and is a semilinear form in u. Therefore, it can be
written as / [u] = (f, u) with an / E X*. Since / is determined by g,
a function T* on Y* to X* is defined by setting f = T* g. Thus the
defining equation of T* is

(3.32) (T * g, u) = (g, T u) , g E Y* , u E X .

T* is a linear operator on Y* to X*, that is, T* E 6W (Y*, X*). In fact,
we have (T* (a g1 + a2 g2), u) _ (al g1 + a2 g2, Tu) = al (g1, T u) +
+ a2 (g2, T u) = al (oT* gl, u) + a2 (T* 92, u) = (al T* g1 + a2 T * g2, u)
so that T* (al g1 + a2 g2) = al T* g1 + as T* g2. T* is called the adjoint
(operator) of T.

The operation * has the following properties:

(3.33) (aS+fT)*=aS*+flT*, (TS)*=S*T*.
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In the second formula it is assumed that T E -4 (Y, Z) and S E R (X, Y)
so that T S is defined and belongs to .4E1 (X, Z) ; note that S* E .4 (Y*, X*)
and T* E 9 (Z*, Y*) so that S* T* E 9 (Z*, X*). The proof of (3.33) is
simple; for example, the second formula follows from ((TS)* h, u)
_ (h, T S u) = (T* h, S u) _ (S* T* h, u) which is valid for all h E Z*
and u E X.

Problem 3.16. 0* = 0, 1 * = 1 (the 0 on the left is the zero of 9 (X, Y) while the 0
on the right is the zero of 9 (Y*, X*) ; similarly for the second equality, in which we
must set Y = X).

If T E .47(X, Y), we have T* E .1(Y*, X*) and T** E . (X**, Y**).
If we identify X** and Y** with X and Y respectively (see § 2.6), it
follows from (3.32) that

(3.34) T** = T.

If we take bases {xk} and {y;} in X and Y respectively, an operator
T E 6R (X, Y) is represented by a matrix (r; k) according to (3.5) or (3.6).
If {ek} and {f;} are the adjoint bases of X* and Y*, respectively, the
operator T* E R (Y*, X*) can similarly be represented by a matrix
These matrix elements are given by -r;, = (Txk, f;) and tk*i = (T* f;, xk)
= (f;, Txk) in virtue of (3.10) . Thus

(3.35) r* -z k= 1,...,N=dimX,
ky- 3k+ j= 1,...,M=dimY,

and T and T* are represented by mutually adjoint (Hermitian conjugate)
matrices with respect to the bases which are adjoint to each other.

Problem 3.17. If T E .4 (X), we have

(3.36) detT* = det T , trT* = tr T .

Let T E 2 (X, Y). A g E Y* belongs to the annihilator of R (T) if
and only if (g, T u) = 0 for all u E X. (3.32) shows that this is equivalent
to T* g = 0. Thus the annihilator of the range of T is identical with the
null space of T*. In view of (3.34), the same is true when T and T* are
exchanged. In symbol, we have

(3.37) N(T*) = R(T)1 , N(T) = R(T*)1 .

It follows that [see (3.2), (3.3) and (2.17)]

(3.38) nul T * = def T , nul T = def T * , rank T * = rank T .

If in particular Y = X, (3.38) shows that T* is nonsingular if and only if
T is; in this case we have
(3.39) (T*)-l = (T-1)* .

For the proof it suffices to note that T* (T-')* = (T-1 T)* = 1* = 1.
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Problem 3.18. If T E l (X), we have

(3.40) nulT*= nulT , defT* = defT.

If PE PE7(X) is a projection, the adjoint P*E -4 (X*) is likewise a
projection, for P2 = P implies P*2 = P*. The decompositions of the
spaces X and X*

(3.41) X=M®N, M= R(P), N= R(1-P),
(3.42) X*=M*e N*, M*= R(P*), N*= R(1-P*),
are related to each other through the following equalities :

(3.43) N* = Ml , M* = N' , dimM* = dimM , dimN* = dimN ,

as is seen from (3.37) and (3.40).
Similar results hold when there are several projections. If {P;} is a

set of projections in X satisfying (3.27-3.28), {P*} is a similar set of
projections in X*. The ranges M, = R (P), W- = R (P*) are related by

(3.44) dimM*=dimM,, j= 1,2,...,
(3.45) M1 = (M2 ®...)1 Mi = (M2 ®...) i , etc.

Problem 3.19. Let {xj} be a basis of X adapted to the decomposition X = M,
® ® M and let {ej} be the adjoint basis of X*. Then {e;} is adapted to the
decomposition X* = Ml ® ... ® M,*. For any u E X we have

(3.46) P1 u = £ (u, e5.) x1i ,
r=1

where {xj,, ..., xj1} is the part of {x5} belonging to M5 and m5 = dim M5.

§ 4. Analysis with operators
1. Convergence and norms for operators

Since the set R(X, Y) of all linear operators on X to Y is an MN-
dimensional vector space, where N = dim X < oo and M = dim Y < oo,
the notion of convergence of a sequence {T,n} of operators of R(X, Y) is
meaningful as in the case of a sequence of vectors of X. If we introduce
the matrix representation (r r k) of T. with respect to fixed bases {xk},
{yf} of X, Y, respectively, T,,--> T is equivalent to rJ k y rj k for each j, k,
for the rngk are the coefficients of T,,, for the basis {P;k} of R(X, Y)
(see § 3.2). But the are the coefficients of Txk with respect to the
basis {y;}; hence T. -> T is equivalent to T. xk -> Txk for all k and
therefore to T u -+ T u for all u E X. This could have been used as the
definition of T,,, -> T.

As it was convenient to express the convergence of vectors by means
of a norm, so it is with operators. But an operator-norm is usually
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introduced only in correlation with the vector-norms. More precisely,
when X and Y are normed spaces 9 (X, Y) is defined to be a normed space
with the norm given by

(4.1) 11 T11 = sup Mull = sup IITull = sup IITull , T E -4 (X, Y) .

O+uEx Ilull IIulI= 1 (lulls'

The equality of the various expressions in (4.1) is easily verified'. We
can replace "sup" by "max" in (4.1) because the set of u with 'lull = 1
or IIull s 1 is compact (see a similar remark for the norm of an /E X*
in § 2.4) ; this shows that II TII is finite. It is easy to verify that II TII defined
on P,R (X, Y) by (4.1) satisfies the conditions (1.18) of a norm. Hence it
follows that T,,, --> T is equivalent to II T,, - TII --> 0. A necessary and
sufficient condition that {Tu} converge to some T is given by the Cauchy
condition II T,,, - Tm!I 0, n, m -+ oo.

Another convenient expression for 11 T11 is2

(4.2) 11 T11

=
sup

I(TII
f)

= sup I(Tu,
o

1)I
ac

iO +tEY*

The equivalence of (4.2) with (4.1) follows from (2.26).
. If we introduce different norms in the given vector spaces X and Y,

.Q (X, Y) acquires different norms accordingly. As in the case of norms
in X, however, all these norms in 9 (X, Y) are equivalent, in the sense
that for any two norms II II and II II', there are positive constants a',
such that
(4.3) « II TII s II TII' s fl' II TII

This is a special case of (1.20) applied to 9 (X, Y) regarded as a normed
space. Similarly, the inequalities (1.21) and (1.22) give the following
inequalities :
(4.4) ltfkl < y IITII , j = 1, ..., M; k = 1, ..., N,
(4.5) IITII s y'maxlrskl

where (tf k) is the matrix of T with respect to the bases of X and Y.
The constants y and y' depend on these bases and the norm employed,
but are independent of the operator T.

As in the case of vectors, a S + 8 T is a' continuous function of the
scalars a, P and the operators S, T E 69 (X, Y), and II TII is a continuous
function of T. As a new feature of the norm of operators, we should note
the inequality

(4.6) II TSII s II TII IIuII for T E V (Y, Z) and S E RN Y) .

1 The second and third members of (4.1) do not make sense if dimX = 0;
in this case we have simply 11 1 = 0.

2 Here we assume dim X 1, dim Y Z 1.
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This follows from IITSuII < 11 T11 IISuII < IITII IISIIIIuII; note also that
(4.6) would not be valid if we chose arbitrary norms in 1(X, Y) etc.
regarded simply as vector spaces.

Problem 4 . 1 .1 1 1 1 1 = 10 E 9 (X) is the identity operator, dim X > 0). If P ERN
is a projection and P $ 0, then IITII Z I.

TS is a continuous function of S and T. In other words, Tn --> T
and Sn -+ S imply Tn Sn -+ TS. The proof is similar to (2.28) ; it suffices
to use (4.6). In the same way, it can be shown that Tu is a continuous
function of T and u. In particular un -+ u implies Tun --> T u. In this
sense a linear operator T is a continuous function. It is permitted, for
example, to operate with T term by term on a convergent series of
vectors:
(4.7) T(Zun)=ZTun.

1n 1 n

If X is a normed space, .9 (X) = -4 (X, X) is a normed algebra (or ring)
with the norm given by (4.2). In particular, (4.6) is true for T, S E . (X).

If T E 9(X, Y), then T* _ -4 (Y*, X*) and

(4.8) IIT*II=IITII

This follows from (4.2), according to which II T*II = sup I(T* f, u) I
= sup I(f, Tu) I =IITII where u E X** = X, IIu!I = 1 and / E X*, IITII = 1.

2. The norm of T"
As an example of the use of the norm and also with a view to later

applications, we consider the norm II T"11 for T E 2 (X). It follows from
(4.6) that

(4.9) 11 T-+1111 S 11 T-11 IITnII , 11 T'411 S IITII"`, m,n=0, 1,2,... .

We shall show that lim II T11II'1n exists and is equal to inf II T"`Ill/n This

limit is called the spectral radius of T and will be denoted by spr T. As is
seen later, spr T is independent of the norm employed in its definition.

Set an = log 11T''II. What is to be proved is that

(4.10) an/n -* b - inf an/n .
n = 1,2,...

The inequality. (4.9) gives
(4.11) am+n s am + an .

(Such a sequence {an} is said to be subadditive.) For a fixed positive
integer m, set n = mq + r, where q, r are nonnegative integers with
0 S r < m. Then (4.11) gives an s q am + a, and

n n an+ ar.
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If n -> oo for a fixed m, q/n -+ 1/m whereas r is restricted to one of the
numbers 0, 1, ..., m - 1. Hence lim sup an/n s am/m. Since m is arbi-

n-r 00
trary, we have lim sup an/n < b. On the other hand, we have an/n _>_ b
and so lim inf an/n z b. This proves (4.10)1.

Remark 4.2. The above result may lead one to conjecture that II T"IIII" is mono-
tone nonincreasing. This is not true, however, as is seen from the following example.
Let X = C2 with the norm given by (1.17) (X is a two-dimensional unitary space,
see § 6). Let T be given by the matrix

T=(0a2)

, a>b>0.b2 0

It is easily seen that (1 is the unit matrix)

Ten=a2nb2n1 T2"+I= a2"b2"T IIT2"II=/2n=ab

TII = a2 II Ten+llllI(2n+1) = a b (a/b)1I(2n+I) > a b .

Next let us consider II T-1I1 and deduce an inequality estimating
II T-1II in terms of II TII and det T, assuming that T is nonsingular. The
relation T u = v is expressed by the linear equations (3.6). Solving these
equations for k, we obtain a fractional expression of which the denomina-
tor is det T and the numerator is a linear combination of the qk with
coefficients that are equal to minors of the matrix (r; k). These minors are
polynomials in the -r27, of degree N - 1 where N = dim X. In virtue of
the inequalities IIuII < y' max [see (1.22)], Ir;>,I s y" 11 T11 [see

(4.4)] and ItI;I s y... IIvII [see (1.21)], it follows that there is a constant
y such that lull s y IIvII IITIIN-1/IdetTI or

(4.12) II T- 111 s y IIIdet Tl

The constant y is independent of T, depending only on the norm
employed2.

3. Examples of norms
Since the norm II TII of an operator T is determined in correlation with the norms

adopted in the domain and the range spaces X, Y, there is not so much freedom in
the choice of TII as in the choice of the norms for vectors. For the same reason
it is not always easy to compute the exact value of II TII. It is often required, how-
ever, to estimate an upper bound of II TII. We shall illustrate by examples how such an
estimate is obtained.

Most commonly used among the norms of vectors is the p-norm defined by

(4.13) IIuII = Ilulln = E I iV )1/D

with a fixed p Z 1, where the , are the coefficients of u with respect to a fixed
basis {xi} (which will be called the canonical basis). The conditions (1.18) for a

1 See P6LYA and SZEG6 (l), p. 17. Cf. also HILLE and PHILLIPS 11), pp. 124, 244.
2 We can set y = I if X is a unitary space; see T. KATO [13].
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norm are satisfied by this p-norm [the third condition of (1.18) is known as the
Minkowski inequality']. The special cases p = 1 and 2 were mentioned before;
see (1.16) and (1.17). The norm lull = given by (1.15) can be regarded as
the limiting case of (4.13) for p = oo.

Suppose now that the p-norm is given in X and Y with the same p. We shall
estimate the corresponding norm IITII of an operator T on X to Y in terms of the
matrix (r; k) of T with respect to the canonical bases of X and Y. If v = T u, the
coefficients $k and 17; of u and v, respectively, are related by the equations (3.6). Let

(4.14) T; = E IT, hl , Tk = G l ti hl '
k j

be the row sums and the column sums of the matrix (1T;7,1). (3.6) then gives

Ir/mI < IT,kI l$kl
T; k T;

Since the nonnegative numbers IT, Al/T; for k = 1, ..., N with a fixed j have the
sum 1, the right member is a weighted average of the Ie5I. Since A9 is a convex
function of A Z 0, the p-th power of the right member does not exceed the weighted
average of the with the same weights2. Thus

(lrli!) < E IT1-I

T; .) k Tf

and we have successively

I'MP E IT; "I IssIDC (maxrfD-'L ITi kl k1sV.

IIVII' Im; XT1\1D-1. Tk

1$7,lD

S (maxTT-1 (maxTk1 llullp

hence

(4.15)

This shows thate

(4.16)

II Tull = IIvII 5 (maxTJ11 n (mkaxala IIulI

11Th I S (maxTT)1-r (mhaxT'A' .

4 1If p = 1, the first factor on the right of ( .16) is equal to I and does not depend on
the Tj. On letting p -+ oo, it is seen that (4.16) is true also for p = oo ; then the
second factor on the right is 1 and does not depend on the Tg.

Problem 4.3. If (T; k) is a diagonal matrix (r; k = 0 for j + k), we have for any p

(4.17) 11 T11 S -ax IT; ;I
j

4. Infinite series of operators
The convergence of an infinite series of operators E T. can be

defined as for infinite series of vectors and need not be repeated here.
Similarly, the absolute convergence of such a series means that the series

1 The proof may be found in any textbook on real analysis. See e. g. HARDY,
LITTLEWOOD and P6LYA 11), p. 31; ROYDEN 111, p. 97.

9 For convex functions, see e. g. HARDY, LITTLEWOOD and P6LYA (1), p. 70.
8 Actually this is a simple consequence of the convexity theorem of M. RIEsz

(see HARDY, LITTLEWOOD and P6LYA (1), p. 203).
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f II TnII is convergent for some (and hence for any) norm II
II

In this
case Z Tn is convergent with IIE TnII s ' II TnII.

Owing to the possibility of multiplication of operators, there are
certain formulas for series of operators that do not exist for vectors.
For example, we have

(4.18) S(S'T.)=ZST.n, (?T.)STnS,

whenever ' Tn is convergent and the products are meaningful. This
follows from the continuity of S T as function of S and T. Two absolutely
convergent series can be multiplied term by term, that is

(4.19) (L Sm) (' Tn) = T' S. T.
if the products are meaningful. Here the order of the terms on the right
is arbitrary (or it may be regarded as a double series). The proof is not
essentially different from the case of numerical series and may be omitted.

Example 4.4 (Exponential function)

o(4.20) etT = exp(tT) = T' to Tn , T E °.,8(X) .

This series is absolutely convergent for every complex number t, for the
n-th term is majorized by Itln IITIInIn! in norm. We have

(4.21) IIetTII 5 eltl IITII

Example 4.5 (Neumann series)
00

(4.22) (1 - T)-1 = ' Tn, 11 (1 - T)-111 S (1 - 11 T11)-1, TERN.
n=0

This series is absolutely convergent for II TII < 1 in virtue of II TnII < II T II n
Denoting the sum by S, we have TS = S T = S - 1 by term by term
multiplication. Hence (1 - T) S = S(1 - T) = 1 and S = (1 - T)-1.
It follows that an operator R E R (X) is nonsingular if 111 - RII < 1.

It should be noted that whether or not II TII < 1 (or 11 1 - RII < 1)
may depend on the norm employed in X; it may well happen that
Il TII < 1 holds for some norm but not for another.

Problem 4.6. The series (4.22) is absolutely convergent if 11 Tm1I < 1 for some
positive integer m or, equivalently, if spr T < 1 (for spr T see § 4.2), and the sum is
again equal to (1 - T)-1.

In the so-called iteration method in solving the linear equation
n

(1 - T) u = v for u, the partial sums S,, = r Tk are taken as ap-
k=0

proximations for S = (1 - T)-1 and un = S. v as approximations for
the solution u = S v. The errors incurred in such approximations can be
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estimated by

(4.23) IIS - S-II =
00 00

s IlTllk = IITIIn}1

k=n+1 l - IITII
f Tk

k=n+1

For n = 0 (4.23) gives 11(1 -
T)-1 - III 5 IITII (1 - IITII)-1 With

R = 1 - T, this shows that R -+ 1 implies R-1-> 1. In other words,
R-1 is a continuous function of R at R = 1. This is a special case of the
theorem that T-1 is a continuous function o l T. More precisely, if
T E .4 (X, Y) is nonsingular, any S E -4 (X, Y) with sufficiently small
IIS - TII is also nonsingular, and IIS-1 - T-111 -> 0 for II T - SII -1 0. In
particular, the set of all nonsingular elements of -4 (X, Y) is open. [Of course
X and Y must have the same dimension if there exist nonsingular
elements of .4E1 (X, Y).]

To see this we set A = S - T and assume that IIAII < 1III T-111. Then
IIA T-1II s IIAII II T-1II < 1, and so 1 + A T-1 is a nonsingular operator of
.1 (Y) by the above result. Since S = T + A = (1 + A T-1) T, S is also
nonsingular with S-1= T-1 (1 + A T-1)-1.

Using the estimates for II (1 + A T-1)-1II and II (1 + A T-1)-1- III
given by (4.22) and (4.23), we obtain the following estimates for IIS-111
and IIS-1- T-111:

(4.24) IIS-111 s l - IIIAII IIIT-111
' IIS-1- T-1II s I IIAIIA1 II TI8111

forS=T+A, IIAII<1/IIT-111.

Remark 4.7. We assumed above that IIAII < II T-1II to show the
existence of S-1. This condition can be weakened if X = Y and TS = S T.
In this case A commutes with T and hence with T-1. Therefore

(4.25)
sprA T-1= limIi(A T--1)nII1/n = limIIA% T-nII1/n s

[limIIAnII1/n] Dim 11T-n9I1/n] _ (sprA) (sprT-1) .

It follows that S-1= T-1(1 + A T-1) -1 exists if

(4.26) sprA < (sprT-1)-1.

5. Operator-valued functions
Operator-valued functions Tt = T (t) defined for a real or complex

variable t and taking values in .1 (X, Y) can be defined and treated just
as vector-valued functions u (t) were in § 1.7. A new feature for T (t)
appears again since the products T (t) u (t) and S (t) T (t) are defined.
Thus we have, for example, the formulas

dt T (t) u (t) = T' (t) u (t) + T (t) u' (t) ,

(4.27)
at

T (t) S (t) = T' (t) S (t) + T (t) S' (t) ,
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whenever the products are meaningful and the derivatives on the right
exist. Also we have

(4.28) at T (t)-1 T (t)-1 T' (t) T(t)-1

whenever T (t)-1 and T' (t) exist. This follows from the identity

(4.29) S-1 - T-' = - S-' (S - T) T-1
and the continuity of T-1 as function of T proved in par. 4.

For the integrals of operator-valued functions, we have formulas
similar to (1.30). In addition, we have

f S u (t) d t= S f u (t) d t, f T (t) u d t= (f T (t) d t) u,
(4.30)

f S T (t) d t= S f T (t) d t, f T (t) S d t= (f T (t) d t) S.

Of particular importance again are holomorphic functions T (t) of a
complex variable t; here the same remarks apply as those given for
vector-valued functions (see § 1.7). It should be added that S (t) T (t) and
T (t) u (t) are holomorphic if all factors are holomorphic, and that T (t) -1
is holomorphic whenever T (t) is holomorphic and T (t)-1 exists [the
latter follows from (4.28)].

Example 4.8. The exponential function ell' defined by (4.20) is an
entire function of t (holomorphic in the whole complex plane), with

(4.31) dt etT = TetT = etTT.

Example 4.9. Consider the Neumann series
Co

(4.32) S(t) = (1 - tT)-1= to Tn
n=0

with a complex parameter t. By Problem 4.6 this series is absolutely
convergent for Itl < 1/sprT. Actually, the convergence radius r of (4.32)
is exactly equal to 1/spr T. Since S (t) is holomorphic for It < r, the
Cauchy inequality gives 11 T' S M,,, r'-n for all n and r' < r as in the case
of numerical power series' (Mr is independent of n). Hence spr T
= lim 11 Tn II1/n 5 Y'-' and, going to the limit r' r, we have spr T s r-1

or r 5 1/spr T. Since the opposite inequality was proved above, this
gives the proof of the required result. Incidentally, it follows that spr T
is independent of the norm used in its definition.

6. Pairs of projections
As an application of analysis with operators and also with a view to

later applications, we shall prove some theorems concerning a pair of

1 We have To = (2n i)-1 f t-"-1 S (t) dt and so 11 T"II 5 (2n)-1 f
Itl = r' Ill

II S (t) II I dtl s y' -" where M,. = max II S (t) iI < oo.
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projections (idempotents)1. As defined in § 3.4, a projection P is an
operator of .4 (X) such that P2 = P. 1 - P is a projection with P.

Let P, Q E °..d (X) be two projections. Then

(4.33) R=(P-Q)2=P+Q-PQ-QP
commutes with P and Q; this is seen by noting that PR = P - P Q P
= R P and similarly for Q. For the same reason (1 - P - Q) 2 commutes
with P and Q because 1 - P is a projection. Actually we have the
identity

(4.34) (P-Q)2+(1-P-Q)2=1
as is verified by direct computation. Another useful identity is

(4.35) (PQ - QP)2 = (P-Q)4- (P-Q)2=R2-R,

the proof of which is again straightforward and will be left to the reader.
Set

(4.36) U'=QP+(1-Q) (1-P), V'=PQ+(1-P) (1-Q).
U' maps R(P) = P X into Q X and (1 - P) X into (1 - Q) X, whereas
V' maps Q X into P X and (1 - Q) X into (1 - P) X. But these mappings
are not inverse to each other; in fact it is easily seen that

(4.37) V' U' = U' V' = 1 - R.

A pair of mutually inverse operators U, V with the mapping properties
stated above can be constructed easily, however, since R commutes
with P, Q and therefore with U', V' too. It suffices to set

U= U'(1 - R)-I/z = (1 - R)-1/2 U1,
(4.38)

V = V'(1 - R)-I/2 = (1 - R)-1/2 V' ,

provided the inverse square root (1 - R)-1/2 of 1 - R exists. A natural
definition of this operator is given by the binomial series

(4.39) (1 - R)-1/2 = 'o ( 1/2) (-R)-.

This series is absolutely convergent if I1R1I < 1 or, more generally, if

(4.40) sprR < 1 ,

1 The following results, which are taken from T. KATO [9], are true even when X
is an co-dimensional Banach space. For the special case of projections in a unitary
(Hilbert) space, see § 6.8. For related results cf. AKHIZzER and GLAZMAN (1),
SZ.-NAGY [1], [2], WOLF [1].
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and the sum T of this series satisfies the relation Ts = (1 - R)-1 just
as in the numerical binomial series. Thus'
(4.41) VU=UV=1, V=U-', U = V-1.

Since U' P = Q P = Q U' and P V' = P Q = V' Q as is seen from
(4.36), we have UP = QU and PV = VQ by the commutativity of R
with all other operators here considered. Thus we have

(4.42) Q= UPU-', P= U-1QU.
Thus P and Q are similar to each other (see § 5.7). They are isomorphic
to each other in the sense that any linear relationship such as v = Pu
goes over to v' = Qu' by the one-to-one linear mapping U : u' = Uu,
v'= Uv. In particular their ranges PX, QX are isomorphic, being
mapped onto each other by U and U-'. Thus

(4.43) dim P = dim Q , dim (1 - P) = dim (1 - Q) .

An immediate consequence of this result is
Lemma 4.10. Let P (t) be a projection depending continuously on a

parameter t varying in a (connected) region of real or complex numbers.
Then the ranges P (t) X for different t are isomorphic to one another. In
particular dim P (t) X is constant.

To see this, it suffices to note that 11 P (t') - P (t") 11 < I for suf-
ficiently small It' - t" ( so that the above result applies to the pair
P(t'), P(t").

Problem 4.11. Under the assumption (4.40), we have PQ X = P X, Q P X = Q X
[hint: PQ =.PV' = PU-'(1 - R)lia].

Problem 4.12. For any two projections P, Q, we have
(4.44) (1- P -{- QP) (1 - Q + PQ) = 1 - R [R is given by (4.33)],
(4.45) (1-P+QP)-'_(1-R)-'(l-Q-{-PQ) if sprR<1.
If spr R< 1, W= 1- P+ Q P maps P X onto Q X and W u= u for u E (1 - P) X,
while W-' maps Q X onto P X and W-' u = u for u E (1 - P) X, and we have
X=QX®(1-P)X.

Problem 4.13. For any two projections P, Q such that spr (P - Q) 2 < 1,
there is a family P (t), 0 < t S 1, of projections depending holomorphically on t
such that P(O) =P, P(l) = Q. [hint: set 2P(t) = 1 +(2P- 1 +21(Q-P%)-
- (1 - 41(1 - t) R)-11Z.]

§ 5. The eigenvalue problem
1. Definitions

In this section X denotes a given vector space with 0 < dim X
= N < oo, but we shall consider X a normed space whenever convenient
by introducing an appropriate norm.

' As is shown later (§ 6.7), U and V are unitary if X is a unitary space and P, Q
are orthogonal projections. The same U appears also in Sz.-NAGY [1] and WOLF [1]
with a different expression; its identity with the above U was shown in T. KATO [9].



§ S. The eigenvalue problem 35

Let T E R (X). A complex number A is called an eigenvalue (proper
value, characteristic value) of T if there is a non-zero vector uE X such that
(5.1) Tu=Au.
u is called an eigenvector (proper vector, characteristic vector) of T belonging
to (associated with, etc.) the eigenvalue A. The set NA of all u E X such
that T u = A u is a linear manifold of X; it is called the (geometric)
eigenspace of T for the eigenvalue A, and dim NA is called the (geometric)
multiplicity of 2. NA is defined even when A is not an eigenvalue; then we
have N2 = 0. In this case it is often convenient to say that NA is the
eigenspace for the eigenvalue 2 with multiplicity zero, though this is not
in strict accordance with the definition of an eigenvalue'.

Problem 5.1. A is an eigenvalue of T if and only if A - Z is an eigenvalue of
T - C. NA is the null space of T - A, and the geometric multiplicity of the eigen-
value A of T is the nullity of T- A. T- A is singular if and only if A is an eigenvalue of T.

It can easily be proved that eigenvectors o l T belonging to different
eigenvalues are linearly independent. It follows that there are at most N
eigenvalues of T. The set of all eigenvalues of T is called the spectrum
of T; we denote it by E (T). Thus E (T) is a finite set with not more
than N points.

The eigenvalue problem consists primarily in finding all eigenvalues
and eigenvectors (or eigenspaces) of a given operator T. A vector u + 0
is an eigenvector of T if and only if the one-dimensional linear manifold
[u] spanned by u is invariant under T (see § 3.5). Thus the eigenvalue
problem is a special case of the problem of determining all invariant
linear manifolds for T (a generalized form of the eigenvalue problem).

If M is an invariant subspace of T, the part TM of T in M is defined.
As is easily seen, any eigenvalue [eigenvector] of TM is an eigenvalue
[eigenvector] for T. For convenience an eigenvalue of TM is called an
eigenvalue o l T in M.

If there is a projection P that commutes with T, T is decomposed
according to the decomposition X = M e N, M = PX, N = (1 - P) X
(see § 3.5). To solve the eigenvalue problem for T, it is then sufficient
to consider the eigenvalue problem for the parts of T in M and in N Z.

i There are generalized eigenvalue problems (sometimes called nonlinear
eigenvalue problems) in which one seeks solutions of an equation T (A) u = 0, where
T (A) is a linear operator depending on a parameter A; for example, T (A) = To +
+ A Tl -{- + A" T. In general a solution u + 0 will exist only for some particu-
lar values of A (eigenvalues). A special problem of this kind will be considered later
(VII, § 1.3).

8 If T u = A u, then T Pu = P T u = APu so that Pu E M is, if not 0, an
eigenvector of T (and of TM) for the eigenvalue A, and similarly for (1 - P) u.
Thus any eigenvalue of T must be an eigenvalue of at least one of TM and TN,
and any eigenvector of T is the sum of eigenvectors of TM and TN for the same
eigenvalue. The eigenspace of T for A is the direct sum of the eigenspaces of TM
and TN for A.
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The part TM of T in M may be identified with the operator P T = T P
= P T P in the sense stated in Remark 3.15. It should be noticed,
however, that T P has an eigenvalue zero with the eigenspace N and
therefore with multiplicity N - m (where m = dim P X) in addition to the
eigenvalues of TM 1

Problem 5.2. No eigenvalue of T exceeds 11 T11 in absolute value, where 11
11

is the norm of .4 (X) associated with any norm of X.
Problem 5.3. If T has a diagonal matrix with respect to a basis, the eigenvalues

of T coincide with (the different ones among) all its diagonal elements.

2. The resolvent
Let T E M (X) and consider the inhomogeneous linear equation

(5.2) (T-C)it =v,
where 4 is a given complex number, v E X is given and u ( X is to be
found. In order that this equation have a solution u for every v, it is
necessary and sufficient that T - C be nonsingular, that is, 4 be different
from any eigenvalue 2,, of T. Then' the inverse (T - 4)-1 exists and the
solution u is given by

(5.3) u = (T - C)-1 v .

The operator-valued function

(5.4) R(C, T) = (T -

is called the resolvent2 of T. The complementary set of the spectrum E (T)
(that is, the set of all complex numbers different from any of the eigen-
values of T) is called the resolvent set of, T and will be denoted by P (T).
The resolvent R is thus defined for C E P (T).

Problem 5.4. R commutes with T. R (C) has exactly the eigenvalues (RA - y)'

An important property of the resolvent is that it satisfies the (first)
resolvent equation

(5.5) R (CI) - R (C2) = (Cl - U R (Cl) R (C2)

This is seen easily if one notes that the left member is equal to R
(T - 2) R (C2) - R (C,1) (T - C1) R (T2). In particular, (5.5) implies that

R (Cl) and R (C2) commute. Also we have R (Cl) = [1 - (C2 - ) R (C1)]

1 Strictly speaking, this is true only when TM has no eigenvalue 0. If TM has
the eigenvalue 0 with the eigenspace L, the eigenspace for the eigenvalue 0 of TP
is N ® L.

2 The resolvent is the operator-valued function C -+ R (c). It appears, however,
that also the value R (C) of this function at a particular t' is customarily called the
resolvent. Sometimes (C - T)-1 instead of (T - C)-1 is called the resolvent. In
this book we follow the definition of STONE M.
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R (C,2). According to the results on the Neumann series (see Example 4.5),
this leads to the expansion

(5.6) R [1 - (C - o) R -1 R (Co) = G ( - Co)n R (Co)n+1
n=0

the series being absolutely convergent at least if

(5.7) 1. - oI < IIR(Co)II-1

for some norm. We shall refer to (5.6) as the first Neumann series for the
resolvent.

(5.6) shows that R (C) is holomorphic in C with the Taylor series'
shown on the right; hence

(5.8) n = 1,2,3,... .

According to Example 4.9, the convergence radius of the series of (5.6)
is equal to 1/sprR(Co). Hence this series is convergent if and only if

(5.9) IC - Col < 1/sprR(Co) = (limIIR(Co)nII1/n)-1

For large ICI, R(C) has the expansion
M

(5.10) R(C)=-C,-'(1-C,-'T)-'=- E C-n-1 Tn,
n=o

which is convergent if and only if IC I > sprT; thus R (T) is holomorphic
at infinity.

Problem 5.5. We have
(5.11) IIR (C)II S (ICI - IITII)-1, IIR (C) + C-111;9 ICI-1(ICI - IITII)-1II TII

for ICI > II TII

The spectrum E (T) is never empty; T has at least one eigenvalue.
Otherwise R (C) would be an entire function such that R (C) -+ 0 for C -+ 00
[see (5.11) ] ; then we must have R (C) = 0 by Liouville's theorem 2. But
this gives the contradiction I = (T - R (C) = 0 8.

It is easily seen that each eigenvalue of T is a singularity4 of the
analytic function R (C). Since there is at least one singularity of R (C)
on the convergence circles ICI = spr T of (5.10), spr T coincides with the

1 This is an example of the use of function theory for operator-valued functions;
see KNOPP (1), p. 79.

8 See Kr oPP [1D, p. 113. Liouville's theorem implies that R (C) is constant;
since R (C) -+ 0 for C oo, this constant is 0.

8 Note that we assume dim X > 0.
4 Suppose A is a regular point (removable singularity) of the analytic function

R (C). Then limR (C) = R exists and so (T - A) R = lim (T - C) R (C) = 1. Thus

(T - A)-1 = R exists and A is not an eigenvalue.
5 See KNoPP 111, p. 101.
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largest (in absolute value) eigenvalue of T:

(5.12) spr T = max JRh .
h

This shows again that spr T is independent of the norm used in its
definition.

Problem 5.6. spr T = 0 if and only if T is nilpotent. [hint for "only if" part:
If spr T = 0, we have also spr TM = 0 for any part TM of T in an invariant sub-
space M, so that TM is singular. Thus the part of T in each of the invariant sub-
spaces To X (see Problem 3.12) is singular. Hence X) T X) T2 X) . with all
inclusions ) being proper until 0 is reached.]

3. Singularities of the resolvent
The singularities of R (C) are exactly the eigenvalues 2h, h = 1, ..., s,

of T. Let us consider the Laurent series' of R at C = 2h. For simplicity
we may assume for the moment that 1h = 0 and write

00

(5.13) R (g) _ E A. .

The coefficients A,,, are given by
r

(5.14) A,n. =
2 i J C-"i-1 R (C) dC ,

r
where r is a positively-oriented small circle enclosing = 0 but excluding
other eigenvalues of T. Since r may be expanded to a slightly larger
circle r' without changing (5.14), we have

AnAm- = ( 1 )8 f f C-n-1 R(C) R(g') dC dC'2ni
r, r

2rzi)ef
r, r

where the resolvent equation (5.5) has been used. The double integral
on the right may be computed in any order. Considering that r' lies
outside r, we have

27Li

r(5.15)

1 f b)-1 dC' = (1 -'7m) b-m-1

2ni

where the symbol q,,, is defined by

(5.16) T = 1 for n z 0 and ,n = 0 for n <

1 See KxoPP 111, p. 117.
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Thus
r(5.17) An A.= J C-n-m-2R(C)dC=(yln+7Jm 1)An+m+1

r
For n = m = -1 this gives A21 = -A_1. Thus -A_1 is a projection,

which we shall denote by P. For n, m < 0, (5.17) gives A22 = -A-s,
A_2 A_3 = -A_4, ... . On setting -A-2=D, we thus obtain A_h
= -Dk-1 for k z 2. Similarly we obtain An = Sn+1 for n > 0 with
S=A0.

Returning to the general case in which C = a.h is the singularity
instead of = 0, we see that the Laurent series takes the form

(5.18)
cc

R(S) _ -(y - Ah)-1 Ph -' (C - a'h)-n-sDh +
n=1

co

+ f (S - 2h)n Sh+1
n=0

Setting in (5.17) n = -1, m = - 2 and then n = -1, m = 0, we see that
(8.19) PhDh=DhPh=Dh, PhSh=ShPh=O.
Thus the two lines on the right of (5.18) represent a decomposition of the
operator R (C) according to the decomposition X = Mh ® Mh, where
Mh = PhX and M;, ; (1 - Ph) X. As the principal part of a Laurent
series at an isolated singularity, the first line of (5.18) is convergent for

- Ah + 0, so that the part of R (C) in Mh has only the one singularity
Ah, and the spectral radius of Dh must be zero. According to Problem

5.6, it follows that Dh is nilpotent and therefore (see Problem 3.10)
(5.20) Dk e = 0 , mh = dim Mh = dim Ph .
Thus the principal part in the Laurent expansion (5.18) of R (C) is finite,
l; = Ah being a pole of order not exceeding mh. Since the same is true of
all singularities 2h of R (c), R (C) is a meromoyphic functions.

The Ph for different h satisfy the following relations:
S

(5.21) PhPh=ShhPh, f Ph= 1, PhT=TPh.
h=1

The first relation can be proved in the same way as we proved Ph = Ph
above [which is a special case of (5.17))]; it suffices to notice that

(5.22) Ph = - 22nai f R(T) dC
rh

where the circles Th for different h lie outside each other. The second
equality of (5.21) is obtained by integrating R(C) along a large circle
enclosing all the eigenvalues of T and noting the expansion (5.10) of
R (C) at infinity. The commutativity of Ph with T follows immediately
from (5.22).

1 See KNoPP Q21, p. 34.
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Since R is meromorphic and regular at infinity, the decomposition
of into partial fractions' takes the form

(5.23) R (C) 2h)-1 Ph + 2h)-n -' DR]
h=1 n=1

Problem 5.7. sprR (C) = rmin I - [dist (Z , E (T))]-1.

Problem 5.8. We have [ f

(5.24) PhDh-D,,Ph=ahhDh; DhDh=O, h+k.
Problem 5.9. For any simple closed (rectifiable) curve r with positive direction

and not passing through any eigenvalue Ah, we have

(5.25) 2ni f R() _P P,,,
r

where the sum is taken for those h for which Ah is inside r.

Multiplying (5.14) by T from the left or from the right and noting
that T R R (g) T = 1-I- R (C), we obtain TA, = An T = ano + A,-,.
If the singularity is at = Ah instead of C = 0, this gives for n = 0 and
n= -1
(5.2Ei)

(T - Ah.) Sh. = S, (T - 2 ) = 1 - P,, .

Ph (T - ).h) _ (T - 2h) Ph = Dh .
For each h = 1, . . ., s, the holomorphic part in the Laurent expansion

(5.18) will be called the reduced resolvent of T with respect to the eigen-
value 2h; we denote it by Sh (c) :

00

(5.27) Sh(b) _ (S - 2h)n S-+1
n=0

It follows from (5.19) and (5.26) that

(5.28) Sh = Sh ()h) , Sh () Ph = Ph Sh () = 0
(5.29) (T-C)Sh(C)=Sh(b) (T-C)= 1-Ph.
The last equalities show that the parts of T - C and of Sh (C) in the
invariant subspace Mh = (1 - Ph) X are inverse to each other.

Problem 5.10. We have
(5.30) (T-Ah)D4=DA+i, n 1,2.....
(5.31) (T - Ah)Mh Ph = 0.

mg-i
(5.32) Sx) E [(C - Ah)-1 Ph E ( - Ah)-"-1 Dk]

h+h n=1
Problem 5.11. Each lSh(C) satisfies the resolvent equation [see (5.5)] and

(5.33) \ d /Sh(C) = n ! Shn = 1 , 2, ... .

4. The canonical form of an operator
The result of the preceding paragraph leads to the canonical form of

the operator T. Denoting as above by Mh the range of the projection

i See KNOPP 121, p. 34.
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Ph, h= 1, ..., s, we have
(5.34) M,.

Since the Ph commute with T and with one another, the Mh are invariant
subspaces for T and T is decomposed according to the decomposition
(5.34) (see § 3.5). Mh is called the algebraic eigenspace (or principal
subspace) for the eigenvalue Ah of T, and mh = dim Mh is the algebraic
multiplicity of Ah. In what follows Ph will be called the eigenprojection
and Dh the eigennilpotent for the eigenvalue Ah of T. Any vector u $ 0
of Mh is called a generalized eigenvector (or principal vector) for the eigen-
value Ah of T.

It follows from (5.26) that

(5.35) T P, = Ph T = Ph TPh = Ah Ph + Dh, h = 1, ..., S.

Thus the part TMh of T in the invariant subspace Mh is the sum of the
scalar operator Ah and a nilpotent Dh, Mh, the part of Dh in Mh. As is
easily seen, TMh has one and only one eigenvalue Ah.

Addition of the s equations (5.35) gives by (5.21)

(5.36)
where
(5.37)

T=S+D

S=G AhPh
h

(5.38) DDh.
h

An operator S of the form (5.37) where Ah + Ak for h + k and the Ph
satisfy (3.27-3.28) is said to be diagonalizable (or diagonable or semisimple).
S is the direct sum (see § 3.5) of scalar operators. D is nilpotent, for it
is the direct sum of nilpotents Dh and so Dn = D;, = 0 for n z max mh.
It follows from (5.24) that D commutes with S.

(5.36) shows that every operator T E .°d (X) can be expressed as the
sum o l a diagonable operator S and a nilpotent D that commutes with S.

The eigenvalue Ah of T will also be said to be semisimple if the associat-
ed eigennilpotent Dh is zero, and simple' if mh = 1 (note that mh = 1
implies Dh = 0). T is diagonable if and only if all its eigenvalues are
semisimple. T is said to be simple if all the eigenvalues Ah are simple;
in this case T has N eigenvalues.

(5.36) is called the spectral representation of T. The spectral representa-
tion is unique in the following sense: if T is the sum of a diagonable
operator S and a nilpotent D that commutes with S, then S and D must
be given by (5.37) and (5.38) respectively. To show this, we first note
that any operator R that commutes with a diagonable operator S of
the form (5.37) commutes with every Ph so that Mh is invariant under R.

' An eigenvalue which is not simple is said to be degenerate.
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In fact, multiplying RS = SR from the left by Ph and from the right
by Ph, we have by PhPh = ahh

AhPhRPk=AhPhRPh or PhRP,=0 for h+-k.
Addition of the results for all k + h for fixed h gives PhR (1 - Ph) = 0
or PhR = PhRPh. Similarly we obtain R Ph = PhRPh and therefore
RP, = PhR.

Suppose now that
s

T=S'+D', S'= f AhPh, D'S'=S'D',
h=1

is a second expression of T in the form (5.36). By what was just
proved, we have D' _ Z Dh with Dh = PhD' = D' Ph. Hence T -

[(Ah - ) Ph + Dh] and therefore
S' . p

(5.39) (T - Ah)-1 Ph + (b - Ah)-2 Dh +
h=1 + ... (S - All DhN-1] ,

this is easily verified by multiplying (5.39) from the left or the right by
the expression for T - C given above (note that Dhly = DIN = 0 since D'
is nilpotent). Since the decomposition of an operator-valued mero-
morphic function into the sum of partial fractions is unique (just as for
numerical functions), comparison of (5.39) with (5.23) shows that s',
Ah, Ph and Dh must coincide with s, Al, Ph and Dh respectively. This
completes the proof of the uniqueness of the spectral representation.

The spectral representation (5.36) leads to the Jordan canonical
form of T. For this it is only necessary to recall the structure of the nil-
potents Dh (see § 3.4). If we introduce a suitable basis in each Mh, the
part Dh,M1 of Dh in Mh is represented by a matrix of the form (3.30).
Thus TMh is represented by a triangular matrix (i$hk) of the form (3.30)
with all the diagonal elements replaced by Ah. If we collect all the basis
elements of M1, . . ., M, to form a basis of X, the matrix of T is the direct
sum of submatrices (r}' ). In particular, it follows that (see Problem 3.14)

S

(5.40) det (T - C) (Ah - C)mh , tr T = Z mh Ah .
h=1 h-1

It is often convenient to count each eigenvalue Ah of T repeatedly mh
times (mh is the algebraic multiplicity of Ah) and thus to denote the eigen-
values by ,u1, p2, ..., IAN (for example ,uz = = lum1

=
A1, Pm,+1

= _ Pmt+m, = A2, ...). For convenience we shall call p1, ..., ,uN the
repeated eigenvalues of T. Thus every operator TE. (X) has exactly N
repeated eigenvalues. (5.40) can be written

N N
(5.41) det(T - t;) = fl trT = Iph .

h-1 h-1



§ 5. The eigenvalue problem 43

Problem 5.12. The geometric eigenspace Nh of T for the eigenvalue A,, is a
subset of the algebraic eigenspace Mh. Nh = MI, holds if and only if Ah is semisimple.

Problem 5.13. Ah is semisimple if and only if C = A,, is a simple pole (pole of
order 1) of R(C).

Problem 5.14. If n is sufficiently large (n > m, say), rank T" is equal to N - m,
where m is the algebraic multiplicity of the eigenvalue 0 of T (it being agreed to
set m = 0 if 0 is not an eigenvalue of T, see § 1.1).

Problem 5.15. We have
(5.42) Itr TI s (rank T) II T1I s N II TII

Problem 5.16. The eigenvalues Ah of T are identical with the roots of the
algebraic equation of degree N (characterictic equation)
(5.43) det(T - C) = 0.
The multiplicity of Ah as the root of this equation is equal to the algebraic multi-
plicity of the eigenvalue Ah.

Let (r; k) be an N x N matrix. It can be regarded as the representation
of a linear operator Tin a vector space X, say the space CN of N-dimension-
al numerical vectors. This means that the matrix representing T with
respect to the canonical basis {x;} of X coincides with (rfk). Let (5.36)
be the spectral representation of T, and let {xf } be the basis of X used in
the preceding paragraph to bring the associated matrix (r; k) of T into
the canonical form.

The relationship between the bases {x;} and {xj'} is given by (1.2)
and (1.4). Since the xk are eigenvectors of T in the generalized sense,
the numerical vectors (pi k, ..., Y1vk), k = 1, ..., N, are generalized
eigenvectors of the matrix (rfk). The relationship between the matrices
(rfk) and (tj'k) is given by (3.8). Thus the transformation of (r;,) into the
simpler form (rrk) is effected by the matrix (p,,), constructed from the
generalized eigenvectors of (rjk), according to the formula (rj'k) _

_ (Pi k)-'(r3k) (Y1 P) -

If the eigenvalue Ak is semisimple, the h-th submatrix of (ilk) is a
diagonal matrix with all diagonal elements equal to Ak. If T is diagon-
able, (tj'k) is itself a diagonal matrix with the diagonal elements Al,
..., A8, where Ak is repeated mk times (that is, with the diagonal elements
,ul, ..., ,AN, where the ,uf are the repeated eigenvalues). In this case
(pi k' , pNk), k = 1, ..., N, are eigenvectors of (rfk) in the proper sense.

Problem 5.17. (yjl, ..., y1 y), j = 1, ..., N, are generalized eigenvectors of the
transposed matrix of (r5 h)

5. The adjoint problem
If T E 2 (X), then T* E 2 (X*). There is a simple relationship between

the spectral representations of the two operators T, T*. If (5.36) is the
spectral representation of T, then that of T* is given by

(5.44) T*=S*+D*= £ +Dr,),
h=1
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for the Pi*, as well as the Ph satisfy the relations (3.27-3.28) and the D,*,
are nilpotents commuting with the Ph and with one another (note the
uniqueness of the spectral representation, par. 4). In particular, it
follows that the eigenvalues of T* are the complex conjugates of the eigen-
values of T, with the same algebraic multiplicities. The corresponding
geometric multiplicities are also equal; this is a consequence of (3.40).

Problem 5.18. R* (C) = R (C, T*) = (T* - a)-1 has the following properties:
(5.45) R (C) * = R* () ,

(5.46) R* P, + D. "1 .h= n=1

6. Functions of an operator
If p is a polynomial in C, the operator p (T) is defined for any

T E -4 (X) (see § 3.3). Making use of the resolvent R (C) = (T - C)-1,
we can now define functions (T) of T for a more general class of func-
tions q (c). It should be noted that R (Co) is itself equal to 0 (T) for q

Suppose that q is holomorphic in a domain 0 of the complex plane
containing all the eigenvalues 2), of T, and let r C d be a simple closed
smooth curve with positive direction enclosing all the 2h in its interior.
Then 0(T) is defined by the Dunford-Taylor integral

(5.47) q(T) = - 2ni ,f 0(C) R(C) dC = 2n% ,f 0(C) (C - T)-1 dC.
r r

This is an analogue of the Cauchy integral formulas in function theory.
More generally, P may consist of several simple closed curves Ph with
interiors A h' such that the union of the A' contains all the eigenvalues of
T. Note that (5.47) does not depend on r as long as r satisfies these
conditions.

It is easily verified that (5.47) coincides with (3.18) when 0(c) is a
polynomial. It suffices to verify this for monomials 0 (C) = c", n = 0, 1,
2, .... The proof for the case n = 0 is contained in (5.25). For n z 1,
write bn = (C - T + T)n = (C - T)n + + Tn and substitute it into
(5.47) ; all terms except the last vanish on integration by Cauchy's
theorem, while the last term gives Tn.

Problem 5.19. If 0 (g) _' ac Co is an entire function, then 0 (T) = E ac" T°.

The correspondence 0 (c') -> 0 (T) is a homomorphism of the algebra
of holomorphic functions on 0 into the algebra i(X) :

(5.48) 0 (C) = aal 01(C) + a202(C) implies 0 (T) = al 0, (T) + a2 02(T) ,

(5.49) 0(C) = 01(C) 02(C) implies 0(T) = 0,(T) 02(T)
1 See KNOPP (1), p. 61.
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This justifies the notation q (T) for the operator defined by (5.47). The
proof of (5.48) is obvious. For (5.49), it suffices to note that the proof is
exactly the same as the proof of (5.17) for n, m < 0 (so that r/ + r/m -
- I = -1). In fact (5.17) is a special case of (5.49) for
and q2M = C-m-1.

The spectral representation of O (T) is obtained by substitution of
(5.2,3) into (5.47). If T = ' (Ah Ph + Dh) is the spectral representation
of T, the result is

(5.50) (T) _ [0 (Ah) Ph + Da]
h=1

where'

(5.51)
(mh-1)

Dh'_0'(Ah)Dh+...+ mh-(),)D,h-1

Since the Dh are nilpotents commuting with each other and with the Ph,
it follows from the uniqueness of the spectral representation that (5.50)
is the spectral representation of 0(T).

Thus O (T) has the same eigenprojections Ph as T, and the eigen-
values of 0 (T) are 0 (Ah) with multiplicities mh. Strictly speaking, these
statements are true only if the O (Ah) are different from one another.
If 0 (Al) = 0 (A2), for example, we must say that ¢ (A,) is an eigenvalue
of 0 (T) with the eigenprojection P1 + P2 and multiplicity m1 + m2.

That the 0 (Ah) are exactly the eigenvalues of 0 (T) is a special case
of the so-called spectral mapping theorem.

(5.48) and (5.49) are to be supplemented by another functional relation

(5.52) 0 M = 01(02 (0) implies 0 (T) = 01(02 (T))

Here it is assumed that 02 is holomorphic in a domain I2 of the sort
stated before, whereas 0, is holomorphic in a domain ., containing all the
eigenvalues 02 (Ah) of S = 02 (T). This ensures that 01 (S) can be con-
structed by

/'
(5.53) 0, (S) ,/= 01(z) (z - S)-1 dz

r,
where r, is a curve (or a union of curves) enclosing the eigenvalues
02 (Ah) of S. But we have

(5.54) (z - S)-1 = (z - 02(T))-1= 2aii,f (z - 02(x))-1(b - T)-1 dl;

r,
for z E r1; this follows from (5.49) and the fact that both z - 02'M and
(z - 02 (C))-1 are holomorphic in C in an appropriate subdomain of i 2

containing all the Ah (the curve r2 should be taken in such a subdomain

1 Note that (2n i)-1 f (C - '(C) dC if A is inside I'.r
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so that the image of F2 under 4 lies inside F1). Substitution of (5.54)
into (5.53) gives

(5.55) 01 (S) _(2ni)' .l
ci(z)(z-02('))-1('-T)-1dCdz

r re

2ni f 01(020)) (C - T)-1 dC _ O(T)
r,

as we wished to show.

Example 5.20. As an application of the Dunford integral, let us define the
logarithm
(5.56) S = log T

of an operator T E .°,d (X), assuming that T is nonsingular. We can take a simply
connected domain A in the complex plane containing all the eigenvalues Ak of T
but not containing 0. Let r be a simple closed curve in A enclosing all the Ak. Since
0 (C) = loge can be defined as a holomorphic function on A, the application of (5.47)
defines a function

(5.57) S = logT 2aci J logCR(C) dC.
r

Since exp (loge) = C, it follows from (5.52) that

(5.58) exp (log T) = T.

It should be noted that the choice of the domain A and the function 0 (C) =loge
is not unique. Hence there are different operators log T with the above porperties.
In particular, each of the eigenvalues of log T with one choice may differ by an
integral multiple of 2n i from those with a different choice. If ml, is the algebraic
multiplicity of Ak, it follows that

(5.59) tr (log T) = Emk log Ak + 2 n n i , n = integer,
(5.60) exp (tr (log T)) = jj AA k = det T .

7. Similarity transformations
Let U be an operator from a vector space X to another one X' such

that U-1 E .4 (X', X) exists (this implies that dim X = dim X'). For an
operator T E . (X), the operator T' E .4(X') defined by

(5.61) T'= UT U-1

is said to result from T by transformation by U. T' is said to be similar'
to T. T' has the same internal structure as T, for the one-to-one cor-
respondence u -> u' = Uu is invariant in the sense that T u -> T' u'
= U T u. If we choose bases {xf} and {xj'} of X and X', respectively, in
such a way that xj' = Ux,, then T and T' are represented by the same
matrix.

1 We have considered in § 4.6 an example of pairs of mutually similar operators.
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If
(5.62) T = ' (2h Ph + Dh)

is the spectral representation of T, then

(5.63) T' = ' (Ah Pk + Dl',) , Ph = UP4U-1 , Dh = UDhU-1 ,

is the spectral representation of T'.

§ 6. Operators in unitary spaces
1. Unitary spaces

So far we have been dealing with general operators without introduc-
ing any special assumptions. In applications, however, we are often
concerned with Hermitian or normal operators. Such notions are defined
only in a special kind of normed space H, called a unitary space, in which
is defined an inner product (u, v) for any two vectors u, v. In this section
we shall see what these notions add to our general results, especially in
eigenvalue problems. We assume that 0 < dim H < oo.

The inner product (u, v) is complex-valued, (Hermitian) symmetric:

(6.1) (u, v) = (v, u)

and sesquilineay, that is, linear in u and semilinear in v. (6.1) implies
that (u, u) is always real; it is further assumed to be positive-definite:

(6.2) (u, u) > 0 for u + 01 .

We shall see in a moment that the inner product (u, v) may be regarded
as a special case of the scalar product defined between an element of a
vector space and an element of its adjoint space. This justifies the use
of the same symbol (u, v) for the two quantities.

Since a unitary space H is a vector space, there could be defined
different norms in H. There exists, however, a distinguished norm in H
(unitary norm) defined in terms of the inner product, and it is this one
which is meant whenever we speak of the norm in a unitary space.
[Of course any other possible norms are equivalent to this particular
norm, see (1.20).] The unitary norm is given by

(6.3) lull _ (u, u)1/2 .

Obviously the first two of the conditions (1.18) for a norm are satisfied.
Before verifying the third condition (triangle inequality), we note the
Schwarz inequality
(6.4) I(u, v)I s (lull Ilvll

1 In any finite-dimensional vector space X, one can introduce a positive-definite
sesquilinear form and make X into a unitary space.



48 I. Operator theory in finite-dimensional vector spaces

where equality holds if and only if u and v are linearly dependent.
(6.4) follows, for example, from the identity

(6.5)
II Ilvjl2

u - (u, v) v112 = (IIu112 IIv112 - I(u, V) I2) IIv1I2

The triangle inequality is a consequence of (6.4) : JJU + VI12 = (u + v,
u + v) = IIul12+2 Re(u, v) + IIv112 < IIu112 + 21lulI IIvII + 110112 = (IIull + IIvlI)2.

Example 6.1. For numerical vectors u = (1, ..., N) and v = (111, ..., 17N) set
(6.6) (u,v)=_F a, l1, Ilull2=E1$,12_

With this inner product the space CN of N-dimensional numerical vectors becomes
a unitary space.

Problem 6.2. The unitary norm has the characteristic property
(6.7) llu + vll$ + Ilu -- vll$ = 2llull$ + 21lvll2 .

Problem 6.3. The inner product (u, v) can be expressed in terms of the norm by

(6.8) (u, v) __4 (Ilu+v112-Ilu-v112+=llu+ivlla-=Ilu-Zvll')

Problem 6.4. For any pair ($,), (iii) of numerical vectors, we have
1 1

IE $, ail < E iktl2)2 (E lnil2)2 ,(s.9)
1 1 1

(E l $f +'il$)2 s (E (E Imrl$)a .

2. The adjoint space
A characteristic property of a unitary space H is that the adjoint

space H* can be identified with H itself: H* = H.
For any u E H set fu [v] _ (u, v). fu is a semilinear form on H so that

fu E H*. The mapu - ff is linear, for if u = al u1 + a2 u2 then fu [v]
_ (u, v) = al (u1, v) + «2 (u2, v) = al ful [v] + «2 fu' [v] so that fu = «1 fu1 +
+ a2 fu,. Thus u- fu = Tu defines a linear operator T on H to H*.

T is isometric: I1Tull = Dull. In fact 1ITull = llfuil = supI(u,v)IIIIvll
v

_ hull by (2.22) [note the Schwarz inequality and (u, u) = hIull2]. In
particular T is one to one. Since dim H* =dim H, it follows that T
maps H onto the whole of H* isometrically. This means that every
/ E H* has the form fu with a uniquely determined u E H such that
II/I1 = hull. It is natural to identify / with this u. It is in this sense that
we identify H* with H.

Since (u, v) = / [v] = (f, v), the inner product (u, v) is seen to coincide
with the scalar product (f, v).

We can now take over various notions defined for the scalar product
to the inner product (see § 2.2). If (u, v) = 0 we write u 1 v and say
that u, v are mutually orthogonal (or perpendicular). u is orthogonal to a
subset S of H, in symbol u 1 S, if u l v for all v E S. The set of all u E H
such that u L S is the annihilator of S and is denoted by S. Two subsets
S, S' of H are orthogonal, in symbol S I S', if every u E S and every v E S'
are orthogonal.



§ 6. Operators in unitary spaces 49

Problem 6.5. (u, v) is a continuous function of u, v.
Problem 6.6. The Pythagorean theorem:

(6.10) Ilu + vpa = lk112 + 110112 if ulv .
Problem 6.7. u 1 S implies u,1 M where M is the span of S. S 1 is a linear manifold

and Sl = Ml.
Consider two unitary spaces H and H'. A complex-valued function

t [u, u'] defined for u E H and WE H' is called a sesquilinear form on
H x H' if it is linear in u and semilinear in u'. If in particular H' = H,
we speak of a sesquilinear form on H. The inner product of H is a special
case of a sesquilinear form on H. For a general sesquilinear form t [u, v]
on H, there is no relation between t [u, v] and t [v, u] so that the quadratic
form t [u] = t [u, u] need not be real-valued. In any case, however, we
have the relation (polarization Principle)

(6.11) t[u,v]= 4 (t[u+v]-t[u-v]+it[u+iv]-it[u-iv])
similar to (6.8). Thus the sesquilinear form t [u, v] is determined by the
associated quadratic form t [u]. In particular t [u, v] = 0 identically if
t [u] = 0 identically. t [u, v] is called the Polar form of t [u].

Problem 6.8. If it [u] S MI1u1I2 for all u E H, then It [u, v] 1 S 2MIlull IIvII.
Problem 6.9. If T is a linear operator on H to H', 11 T uI12 is a quadratic form on H

with the polar form (T u, T v).

Remark 6.10. The validity of (6.11) is closely related to the existence
of the scalar i. The quadratic form t [u] does not determine t[u, v] in a
real vector space.

3. Orthonormal families

A family of vectors x1, ..., X. E H is called an orthogonal family if
any two elements of this family are orthogonal. It is said to be ortho-
normal if, in addition, each vector is normalized :

(6.12) (x,,xk)=alk-
As is easily seen, the vectors of an orthonormal family are linearly
independent. An orthonormal family {x1, ..., is complete if n = N
= dim H. Thus it is a basis of H, called an orthonormal basis.

Let M be the span of an orthonormal family {x1, ..., For any
u E H, the vector

(6.13) (u, x,) x,,
i=1

has the property that u' E M, u - u' E Ml. u' is called the orthogonal
projection (or simply the projection) of u on M. The Pythagorean theorem
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(6.10) gives

(6.14) I1ull2-Ilu'll2+llu-ull2= Ly I(u,x,)I2+Ilu-u'112,
j=1

and hence
n

(6.15) f I (u, x1) 12 I1 ull2 (Bessel's inequality)
i=1

For any linearly independent vectors u1, ..., un, it is possible to
construct an orthonormal family x1, ..., xn such that for each k = 1,
..., n, the k vectors x1, ..., x71 span the same linear manifold as the k
vectors u1...., U. This is proved by induction on k. Suppose that x1,
..., x71_1 have been constructed. If Mk_, denotes the span of x1...., x71_11
then by hypothesis M71_i is identical with the span of u1, ..., u71-1
Set uk = u7, -uk where uk' is the projection of u71 on M, -1 (if k = 1 set
ui = u1). The linear independence of the of implies that uk + 0. Set
x71 = Ilu II-i uk . Then the vectors x1, ..., x, satisfy the required condi-
tions. The construction described here is called the Schmidt orthogonaliza-
tion process.

Since every linear manifold M of H has a basis {u1}, it follows that M
has an orthonormal basis {x1}. In particular there exists a complete
orthonormal family in H. An arbitrary vector x1 with Ilxlll = 1 can be the
first element of an orthonormal basis of H.

It follows also that any u E H has an orthogonal projection u' on a
given linear manifold M. u' is determined uniquely by the property that
u' E M and u" = u - U' E Ml. Thus H is the direct sum of M and M-L :

(6.16) H = Me M-L .

In this sense M-L is called the orthogonal complement of M. We have

(6.17) M1.L = M , dim M L = N - dim M .

When N ( M, Mn N 1 is also denoted by M CO N; it is the set of all u E M
such that u ..L N.

In the particular case M = H, we have M-L = 0 and so u" = 0.
Thus (6.13) gives

N
(6.18) u = ,' (u, x,) x5 .

j=1
This is the expansion of u in the orthonormal basis {x1}. Multiplication
of (6.18) from the right by v gives

(6.19) (u, v) = ' (u, x,,) (x f, v) (u, x1) (v, x1)

In particular
(6.20) I1 ull2 = E I (u, x1) I2 (Parseval's equality)

j



§ 6. Operators in unitary spaces 51

The following lemma will be required later.
Lemma 6.11. Let M, M' be two linear manifolds of H with dimensions

n, n' respectively. Then dim (M' n M-L) z n' - n.
This follows from (1.10) in view of the relations dim M' = n', dim MI

= N - n, dim (M' + M-L) s N.
Let {x1} be a (not necessarily orthonormal) basis of H. The adjoint

basis {e1} is a basis of H* = H satisfying the relations

(6.21) (e5, x,) = bjk

(see § 2.3). {x5} and {e1} are also said to form a biorthogonal family of
elements of H. The basis {x f} is self adjoint if e1 = x5, j = 1, ..., N. Thus
a basis of H is self adjoint if and only if it is orthonormal.

4. Linear operators
Consider a linear operator T on a unitary space H to another unitary

space H'. We recall that the norm of T is defined by II T11 = sup II T uII /IIuII

= sup I (T u, u') I/IIuII IIuII [see (4.1), (4.2)].
The function

(6.22) t [u, u'] = (T u, u')

is a sesquilinear form on H x H'. Conversely, an arbitrary sesquilinear
form t [u, u'] on H x H' can be expressed in this form by a suitable
choice of an operator T on H to H'. Since t [u, u'] is a semilinear form on
H' for a fixed u, there exists a unique w' E H' such that t [u, u'] = (w', u')
for all U' E H'. Since w' is determined by u, we can define a function T
by setting w' = T u. It can be easily seen that T is a linear operator
on H to H'. If in particular t is a sesquilinear form on H(H'= H), then T
is a linear operator on H to itself.

In the same way, t [u, u'] can also be expressed in the form

(6.23) t [u, u'] = (u, T* u') ,

where T* is a linear operator on H' to H, called the adjoint (operator)
of T. T* coincides with the adjoint operator defined in § 3.6 by the
identification of H*, H'* with H, H' respectively.

T*T is a linear operator on H to itself. The relation

(6.24) (u, T*Tv) = (T*Tu, v) = (Tu, Tv)

shows that T*T is the operator associated with the sesquilinear form
(T u, T v) on H. Note that the first two members of (6.24) are the inner
product in H while the last is that in H'. It follows from (6.24) and (4.2)
that 11 T* TII = sup I (Tu, Tv) I/IIuII IIuII ? supll Tuii2/IIuii2 = 11 TII2 Since,
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on the other hand, II T* T11 s II T*II II TII = II TII2, we have

(6.25) II T*TII = II TII 2

In particular, T*T = 0 implies T = 0.
Problem 6.12. N (T* T) = N (T).
Problem 6,13. We have the polarization principle for an operator T on H to H

(6.26) (T u, v) = 4 [(T (u + v), u + v) - (T (u - v), u - v) +

+i(T(u+iv),u+iv)-i(T(u-iv),u-iv)]
Problem 6.14. If T is an operator on H to itself, (Tu, u) = 0 for all u implies

T=0.
The matrix representation of an operator is related to a pair of

adjoint bases in the domain and range spaces [see (3.10)]. This suggests
that the choice of selfadjoint (orthonormal) bases is convenient for the
matrix representation of operators between unitary spaces.

Let T be an operator from a unitary space H to another one H' and
let {xk}, {X'I be orthonormal bases of H, H', respectively. The matrix
elements of T for these bases are then

(6.27) rik = (Txk, xi) = (xk T* xi)

as is seen from (3.10) by setting I j = xi . More directly, (6.27) follows from
the expansion
(6.28) T x7, = (T x7, xi) xi .

Recall that if H' = H it is the convention to take x, = xf.
Problem 6.15. If {zk} is an orthonormal basis of H and if T is an operator on H

to itself,
(6.29) trT =' (Tzk, xk) .

The matrix of T* with respect to the same pair of bases N1}1 {xk}
is given by a,*q = (T* xi, xk). Comparison with (6.27) gives

(6.30) ski-f1k
Thus the'matrices of T and T* (for the same pair of orthogonal bases)
are Hermitian conjugate to each other.

5. Symmetric forms and symmetric operators
A sesquilinear form t [u, v] on a unitary space H is said to be sym-

metric if

(6.31) t [v, u] = t [u, v] for all u, v E H .

If t [u, v] is symmetric, the associated quadratic form t [u] is real-valued.
The converse is also true, as is seen from (6.11).
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A symmetric sesquilinear form (or the associated quadratic form) t is
nonnegative (in symbol t z 0) if t [u] 0 for all u, and positive if t [u] > 0
for u $ 0. The Schwarz and triangle inequalities are true for any non-
negative form as for the inner product (which is a special positive ses-
quilinear form) :

It [u, v] 1 s t [u]1/2 t [v]1/2 < 2 (t [u] + t [v])

(6.32) t [u + v]1/2 t [u]1/2 + t [v]1/2 ,

t [u + v] 2t [u] + 2t [v]

Note that strict positivity was not used in the proof of similar inequalities
for the inner product.

The lower bound y of a symmetric form t is defined as the largest real
number such that t [u] ull2. The upper bound y' is defined similarly:
We have

(6.33) It[u,v]1 sMHHul11Iv1I, Mmax(Iyl.ly'I)

To see this, we note that the value t [u, v] under consideration may be
assumed to be real, for (6.33) is unchanged by multiplying u with a
scalar of absolute value one. Since t [u] is real-valued, we see from (6.11)
that t [u, v] = 4-1 (t [u + v] - t [u - v]). Since jt[U]I S M11u112 for all
u, it follows that It[u,v]1s4-1M(Ilu+vI12+IIu-vI12)=2-1M(IIuII2+IIv112).
Replacement of u, v respectively by a u, v/a, with a2 = lIvII/iluIl, yields
(6.33).

The operator T associated with a symmetric form t [u, v] according
to (6.22) has the property that

(6.34) T* = T

by (6.22), (6.23) and (6.31). An operator T on H to itself satisfying (6.34)
is said to be (Hermitian) symmetric or sel f adjoint. Conversely, a sym-
metric operator T determines a symmetric form t [u, v] = (T u, v) on H.
Thus (T u, u) is real for all u E H i f and only i f T is symmetric. A sym-
metric operator T is nonnegative (positive) if the associated form is
nonnegative (positive). For a nonnegative symmetric operator T we have
the following inequalities corresponding to (6.32) :

(6.35) /
I (T u, v) 1 S (T u, u)1/2 (TV, V)1/2,

(T (u + v), u + v)1/2 S (T u, u)1/2 + (T v, v)1/2 .

We write T z 0 to denote that T is nonnegative symmetric. More
generally, we write

(6.36) T z S or S< T



54 I. Operator theory in finite-dimensional vector spaces

if S, T are symmetric operators such that T - S z 0. The upper and
lower bounds of the quadratic form (Tu, u) are called the upper and
lower bounds of the symmetric operator T.

Problem 6.16. If T is symmetric, a T + P is symmetric for real at, 9. More
generally, p (T) is symmetric for any polynomial p with real coefficients.

Problem 6.17. For any linear operator Ton H to H' (H, H' being unitary spaces),
T* T and T T* are nonnegative symmetric operators in H and H', respectively.

Problem 6.18. If T is symmetric, then T2 0; T2 = 0 if and only if T=O.
If T is symmetric and T" = 0 for some positive integer n, then T = 0.

Problem 6.19. R:< S and S:!' T imply R g' T. S:< T and S Z T imply S= T.

6. Unitary, isometric and normal operators
Let H and H' be unitary spaces. An operator T on H to H' is said to be

isometric' if
(6.37) IITuII = IIull for every u E H .

This is equivalent to ((T* T - 1) u, u) = 0 and therefore (see Problem
6.14)

(6.38) T*T = 1 .
This implies that
(6.39) (T u, T v) = (u, v) for every u, v E H .

An isometric operator T is said to be unitary if the range of T is the whole
space H'. Since (6.37) implies that the mapping by T is one to one, it is
necessary for the existence of a unitary operator on H to H' that dim H'
= dim H. Conversely, if dim H' = dim H < oo any isometric operator on
H to H' is unitary. As we shall see later, this is not true for infinite-
dimensional spaces.

Problem 6.20. A T E R (H, H') is unitary if and only if T-1 E R (H', H) exists and

(6.40) T-1 = T*.

Problem 6.21. T is unitary if and only if T* is.
Problem 6.22. If T E 9 (H', H") and S E R (H, H') are isometric, TS E R (H, H")

is isometric. The same is true if "isometric" is replaced by "unitary".

Symmetric operators and unitary operators on a unitary space into
itself are special cases of normal operators. T E .(H) is said to be normal
if T and T* commute :
(6.41) T*T = T T* .

This is equivalent to (again note Problem 6.14)

(6.42) IIT*ull=IITull for all uEH.

1 Isometric operators can be defined more generally between any two normed
spaces, but we shall have no occasion to consider general isometric operators.
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An important property of a normal operator T is that

(6.43) IIT"11 =IITIIn, n= 1,2,....
This implies in particular that (spr denotes the spectral radius, see § 4.2)

(6.44) spr T = II TII

To prove (6.43), we begin with the special case in which T is sym-
metric. We have then II T2II = II TII2 by (6.25). Since T2 is symmetric,
we have similarly II T4II = II T2II2 = II TII4. Proceeding in the same way,
we see that (6.43) holds for n = 2"", m = 1, 2, ... . Suppose now that T
is normal but not necessarily symmetric. Again by (6.25) we have II T n II 2
= IITn*TnII. But since Tn*Tn = (T*T)n by (6.41) and T*T is sym-
metric, we have II T"112 = II (T*T)n9I = II T *T II n = II T II2n for n=2-.
This proves (6.43) for n = 2'n. For general n, we take an m such that
2m - n = r z 0. Since (6.43) has been proved for n replaced by n + r
= 2"", we have IITIIn+s = IITn+TII < IITnnI 11 T"11 s IIT"`II 11TH" or IITIIn s

II TnII. But since the opposite inequality is obvious, (6.43) follows.
Problem 6.23. If T is normal, p (T) is normal for any polynomial p.
Problem 6.24. T-1 is normal if T is normal and nonsingular.
Problem 6.25. If T is normal, P' = 0 for some integer n implies T = 0. In other

words, a normal operator T is nilpotent if and only if T = 0.

7. Projections
An important example of a symmetric operator is an orthogonal

projection. Consider a subspace M of H and the decomposition H = M
® Ml [see (6.16)]. The projection operator P = PM on M along Ml is
called the orthogonal projection on M. P is symmetric and nonnegative, for
(with the notation of par. 3)

(6.45) (Pu, u) = (u', u' + u") _ (u', u') z 0

in virtue of u' 1 u". Thus

(6.46) P*=P, Pz0, P2=P.
Conversely, it is easy to see that a symmetric, idempotent operator
PE °.,8(H) is an orthogonal projection on M = R(P).

Problem 6.26. 1 - P is an orthogonal projection with P. If P is an orthogonal
projection, we have
(6.47) 0S PS 11, J!PII=1 if P + 0.

Problem 6.27. 11 (1 - PM) UI! = dist (u, M) , u E H.

1 The notation 0:< P:< 1, which is used to denote the order relation defined
for symmetric operators [see (6.36)], does not conflict with the notation introduced
earlier for projections (see § 3.4).
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Problem 6.28. M I N is equivalent to PM PN = 0. The following three conditions
are equivalent: M ) N, PM Z PN, PM PN = PN.

Let P1, ..., Pn be orthogonal projections such that

(6.48)

Then their sum
P1 P, =BfkP5.

n
(6.49) P = ' P,

i=1
is also an orthogonal projection, of which the range is the direct sum of
the ranges of the P;.

Orthogonal projections are special kinds of projections. We can of
course consider more general "oblique" projections in a unitary space H.
Let H = M ® N with M, N not necessarily orthogonal, and let P be the
projection on M along N. Then P* is the projection on N-i along Ml
[see (3.43)].

Problem 6.29. IIPII > I for a projection P r 0; IIPII = I holds if and only if P
is an orthogonal projection. [hint for "only if" part: Let u E NJ-. Then u,1(1 - P) u.
Apply the Pythagorean theorem to obtain IIPUII' = II'II2 + II(1 - P) ulla. From
this and IIPII = 1 deduce N1( M. Consider P* to deduce the opposite inclusion.]

Problem 6.30. A normal projection is orthogonal.
Problem 6.31. If P is a projection in a unitary space with 0 + P + 1, then

IIPII=III - Pill.
8. Pairs of projections

Let us now consider a pair P, Q of projections in H and recall the
results of § 4.6 that R (P) and R (Q) are isomorphic if P - Q is suf-
ficiently small. A new result here is that the operator U given by (4.38)
is unitary i f P, Q are orthogonal projections. This is seen by noting that
U' * = V' and R* = R [see (4.36) and (4.33)], which imply U* = V = U-1.
Thus

Theorem 6.32. Two orthogonal projections P, Q such that 11 P- Q11 < 1
are unitarily equivalent, that is, there is a unitary operator U with the
property Q = UP U-1.

Problem 6.33. 11P - QII 5 1 for any pair P, Q of orthogonal projections [see
(4.34)].

A similar but somewhat deeper result is given by the following
theorem.

Theorem 6.34. 2 Let P, Q be two orthogonal projections with M = R (P),
N = R (Q) such that
(6.50) 11(1 - Q) P11 = 8 < 1 .

1 See T. KAxo [13].
2 See T. KATO [12], Lemma 221. This theorem is true even for dim H = oo.

A similar but slightly weaker result was given earlier by AKHIEZER and GLAZMAN
Qi), § 34.
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Then there are the following alternatives. Either
i) Q maps M onto N one to one and bicontinuously, and

(6.51) IIP'-QII=II(1-P)QII=11(1-Q)PII=6; or

ii) Q maps M onto a proper subspace No of N one to one and biconti-
nuously and, if Q0 is the orthogonal projection on No,

IIP-Q0I1=11(1-P)QoII=11(1-Qo)PII=II(i-Q)PII=a
(6.52)

IIP-QII=11(1 -P) QII=1.
Proof. For any u E M, we have 11 u - Qu11 = 11(1 - Q) Pull 5 6llu11

so that IIQuII G (1 - a) 11u11 Thus the mapping u--* Qu of M into N is
one to one and bicontinuous (continuous with its inverse mapping).
Therefore, the image QM = No of this mapping is a closed subspace of N.
Let Q0 be the orthogonal projection on No.

For any w E H, Qow is in No and hence Q0 w = Qu for some u E M.
If Qow + 0 then u + 0 and, since (1 - P) u = 0,

11(1 - P) Qow!1 = 11(1 - P) QoII = 11(1 - P) (Qu - IIQuII2IIuil-2 u)II
53)(6.

Hence
s II(Qu - IIQu11211u11-2 u)II

(6.54) 11(1 - P) Qow112 IIQuII2 - IIQuI14 IIuil-2 =

= 11Qu112 1Iu1I-2(11u112 - IIQu112) = 11u11-2 IIQow112 11(1 - Q) U112 S

11u11-2 11w11211(1 - Q) PuI12 6211w112.

This inequality is true even when Qow = 0. Hence

(6.55) 11(1-P)Q011Sa=11(1-Q)P11
For any w E H, we have now

(6.56) 11(P-Q0)w112=11(1-Q0) Pw-Q0(1-P)w112
=11(1-Q0)Pw112+11Q0(1-P)w112

since the ranges of 1 - Q0 and Q0 are orthogonal. Noting that P = P2
and 1 - P = (1 - P)2, we see from (6.56) that

(6.57) 11(P-Q0)Will 11(i-Qo)P112IIPwll2+11Q0(1-P)112II(1-P)w112.

Since Qo P = Q0Q P = Q P by the definition of Q0, we have 11(1 - Q0) P11
=11(1-Q)P11=a, and11Qo(1-P)11=11(Qo(1-P))*II=11(1-P)Q011 s
S 6 by (6.55). Hence

(6.58) I1(P-Q0)Will 5 62(11Pw112+11(1-P)w112)=6211w112.

This gives 11 P - Q011 s a. Actually we have equality here, for

(6.59) 6=11(1-Q)PI1=11(1-Qo)P11=11(P-Q0)PII s IIP-Q011S6.
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The fact that lip - QOII = a < 1 implies that P maps NO = R (Q0) onto M
one to one (see Problem 4.11). Applying the above result (6.55) to the
pair P, Q replaced by QO, P, we thus obtain II (1 - Q0) PII S II (1 - P)QO II
Comparison with (6.59) then shows that we have equality also in (6.55).

If NO = N, this completes the proof of i). If NO $ N, it remains to
prove the last equality of (6.52). Let v be an element of N not belonging
to N0. Since PNO = M as noted above, there is a v0 ENO such that
Pv0=Pv.Thus w=v-v0EN,w+0 andPw=0, sothat(P-Q)w
= -w and Q(1 - P) w = Qw = w. Thus IIP - QIIz 1 and11(1-P)QII
= II Q (1 - P) II z 1. Since we have the opposite inequalities (see Problem
6.33), this gives the desired result.

As an application of Theorem 6.34, we deduce an inequality concern-
ing pairs of oblique and orthogonal projections.

Theorem 6.35. Let P', Q' be two oblique projections in H and let M
='R(P'), N = R(Q'). Let P, Q be the orthogonal Projections on M, N
respectively. Then
(6.60) IIP - QII s IIP' - Q'II

Proof. Since IIP - QII never exceeds 1 (see Problem 6.33), it suffices
to consider the case 11 P' - Q'II = 6' < 1. For any u E H, we have (see
Problem 6.27) II (1 - Q) Pull = dist (Pu, N) S II Pu - Q' Pull = II (P' -
- Q') Pull s a'IIPuII s S'IIuII. Hence p(1- Q) PII s a' < 1. Similarly
we have 11(1 - P) Q11 S a' < 1. Thus Theorem 6.34 is applicable, where
the case ii) is excluded, so that 11P - Q11 = II (1 - P) Q II s a' = II P' - Q'11

by (6.51).

Problem 6.36. If P', Q' are oblique projections with JJP' - Q'11 < 1, then there
is a unitary operator U such that UM = N, U-1 N = M, where M = R(P'),
N = R(Q'). (This proposition can be extended directly to the infinite-dimensional
case, in which it is not trivial.)

Problem 6.37. Let P'(x) be an oblique projection depending continuously on x
for 0:< x:5, 1, and let P (x) be the orthogonal projection on M (x) = R (P' (x)). Then
P (x) is also continuous in x, and there is a family of unitary operators U (x), depend-
ing continuously on x, such that U (x) M (0) = M (x), U (x)-1 M (x) = M (0).

9. The eigenvalue problem
We now consider the eigenvalue problem for an operator in a unitary

space H. For a general operator T, there is not much simplification to be
gained by the fact that the underlying space is unitary; this is clear if
one notes that any vector space may be made into a unitary space by
introducing an inner product, whereas the eigenvalue problem can be
formulated without reference to any inner product, even to any norm.
The advantage of considering a unitary space appears when the operator
T has some special property peculiar to the context of a unitary space,
such as being symmetric, unitary or normal.



§ 6. Operators in unitary spaces 59

Theorem 6.38. A normal operator is diagonable, and its eigenprojections
are orthogonal projections.

Proof. Let T be normal. Since T and T* commute, we have

(6.61) (T - C) (T* - C') (T* - C') (T - C)

If C is not an eigenvalue of T and C' is not an eigenvalue of T*, the
inverse of (6.61) exists and we have

(6.62) R* (c') R (C) = R (C) R* (c')

where R (C) and R* (C) are the resolvents of T and T* respectively.
(6.62) shows that these resolvents commute. In view of the expression
(5.22) for the eigenprojection Ph associated with the eigenvalue 2h of T,
a double integration of (6.62) along appropriate paths in the C and
planes yields the relation

(6.63) P h * Ph = Ph P h *, h, k = 1, ..., s ;

recall that T* has the eigenvalues h and the associated eigenprojections
P,* (§ 5.5). In particular Ph and Ph commute, which means that the Ph
are normal. This implies that the Ph are orthogonal projections (see
Problem 6.30) :

1, ..., s .(6.64) P'=PA, h=
The eigennilpotents are given by Dh = (T - 2h) Ph and D` = (T* -

- Ah) Ph = (T* - Ah) Ph by (5.26). Since Ph and T commute, Ph = P:
commutes with T* and T* commutes with T, it follows that Dh commutes
with D:, that is, Dh is normal. As a normal nilpotent DA must be zero
(Problem 6.25). Thus T is diagonable.

The spectral representation of a normal operator T thus takes the
form

(6.65)

s s

T= Z,''hPh, T* f 1hPh,
h=1 h=1

P x =Ph, PhPA=64APh, £, Ph= 1.
h=1

T and T* have the same set of eigenspaces, which are at the same time
algebraic and geometric eigenspaces and which are orthogonal to one
another. It follows further from (6.65) that

(6.66) T*T=TT*= ' I2AI'Ph.
h_1

Hence
IITull2=(T*Tu,u) = f IAII2(Phu,u) s (maxIAAI2)E(Phu,u)_

A

_ (max IAAI2) 11 ul12 ,
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which shows the 11 T11 s maxlAkl. On the other hand llTull = IAkl (lull
for u E Mk = R (Ph). Thus we obtain

(6.67) II TII = mkax lAhl

for a normal operator T.
If we choose an orthonormal basis in each Mk, the elements of these

bases taken together constitute an orthonormal basis of H. In other
words, there is an orthonormal basis {(p,,} of H such that

(6.68) T99n=Yn9'n, n=1,...,N,
in which un, n = 1, ..., N, are the repeated eigenvalues of T. The matrix
of T for this basis has the elements

(6.69) Z1 k = (T (pk, 99s) _ ,uk 61h;

this is a diagonal matrix with the diagonal elements ,u1.
Problem 6.39. An operator with the spectral representation (6.65) is normal.
Problem 6.40. A symmetric operator has only real eigenvalues. A normal

operator with only real eigenvalues is symmetric.
Problem 6.41. Each eigenvalue of a unitary operator has absolute value one.

A normal operator with this property is unitary.
Problem 6.42. A symmetric operator is nonnegative (positive) if and only if its

eigenvalues are all nonnegative (positive). The upper (lower) bound of a symmetric
operator is the largest (smallest) of its eigenvalues.

Problem 6.43. If T is normal, then

(6.70) IIR(C)II = l/minIC - AkI = 1/dist(C, E(T)),
k

IISkII = 1/min IA,, - AkI
k4k

where R (C) is the resolvent of T and Sh is as in (5.18).

10. The minimax principle
Let T be a symmetric operator in H. T is diagonable and has only

real eigenvalues (Problem 6.40). Let

(6.71) Y1SF2S ...5YN
be the repeated eigenvalues of T arranged in the ascending order.
For each subspace M of H set

(6.72) ,u [M] _ ,u [T, M] = min
M

(T u, u) =o min a (Tu, u)

IIuII$
Iinll =1

The minimax (or rather maximin) principle asserts that

(6.73) ,un = max ,u [M] = max ,u [M] ,
codim M= n- 1 codim M i n -1
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where the max is to be taken over all subspaces M with the indicated
property. (6.73) is equivalent to the following two propositions:

(6.74) ,un z It [M] for any M with codimM s n - 1;
(6.75) ,un S u [Me] for some Mo with codim Mo = n - 1 .

Let us prove these separately.
Let {q,,} be an orthonormal basis with the property (6.68). Each

u E H has the expansion

(6.76) u = .I Sn (P., (u, Pn) , Il u ll 2 = 2' I sn 12 ,

in this basis. Then

(6.77) (Tu,u)=G,un ISnJ2.

Let M be any subspace with codim M s n - 1. The n-dimensional
subspace M' spanned by 4pl, ..., qqn contains a nonzero vector u in
common with M (this is a consequence of Lemma 6.11, where M is to be
replaced by M1). This u has the coefficients n+1, $n+2, ... equal to
zero, so that (T u, u) = f ,u7, 1E 7 ' 1 2 s ,un 2' I S k 12 = ,un lI ull2. This proves
(6.74).

Let Mo be the subspace consisting of all vectors orthogonal to %, ...,
g9n_ 1, so that codim Mo = n - 1. Each u E Mo has the coefficients $1, ...,
$n-1 zero. Hence (Tu, u) z ,un 2' ,un!Iull2, which implies (6.75).

The minimax principle is a convenient means for characterizing the
eigenvalues ,un without any reference to the eigenvectors. As an applica-
tion of this principle, we shall prove the monotonicity principles.

Theorem 6.44. If S, T are symmetric operators such that S 5 T,
then the eigenvalues of S are not larger than the corresponding eigenvalues
of T, that is,

(6.78) ,un [S] S pn [T] , n = 1, ..., N .

Here ,u, [T] denotes the n-th eigenvalue of T in the ascending order as in
(6.71).

The proof follows immediately from the minimax principle, for
S S T implies (Su, u) S (Tu, u) and therefore a [S, M] S ju (T, M)
for any subspace M.

Problem 6.45. For every pair of symmetric operators S, T,

(6.79) ,u1 [S] + ,u1 [T];5 ,u1 [S + T] 5 ,s1 [S] + ,um [T]

Let M be a subspace of H with the orthogonal projection P. For any
operator T in H, S = P T P is called the orthogonal projection of T on M.
M is invariant under S, so that we can speak of the eigenvalues of S in M
(that is, of the part SM of S in M). Note that SM has N - r repeated
eigenvalues, where r = codim M.
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Theorem 6.46. Let T, S, SM be as above. If T is symmetric, S and SM
are also symmetric, and

(6.80) 4n [T] < 4n [SM] S /A.+, [T] , n = 1, ..., N - Y.

Proof. The symmetry of S and of SM is obvious. ,un [SM] is equal
to max,u [SM, M'] taken over all M' C M such that the codimension of M'
relative to M is equal to n - 1 (dimM/M' = n - 1). But we have
,u [SM, M'] = ,u [S, M'] = ,u [T, M'] because (SM u, u) = (Su, u) = (Tu, u)
for any u E M, and dim M/M' = n - 1 implies codim M'= dim H/M'
= n + r - 1. Therefore,un [SM] does not exceed,un+, [T] = max,u [T, M']
taken over all M' C H with codim M' = n + r - 1. This proves the second
inequality of (6.80).

On the other hand we have ,un [T] = ,u [T, M0] where Mo is the same
as in (6.75). Hence ,un [T] S u [T, Mo n M] = ,u [SM, Mo n M]. But
Mo n M has codimension not larger than n - 1 relative to M because
codimMo = n - 1. Thus 4u [SM, Mo n M] ,un [SM] by (6.74). This
proves the first inequality of (6.80).

Chapter Two

Perturbation theory in a finite-dimensional space
In this chapter we consider perturbation theory for linear operators in a finite-

dimensional space. The main question is how the eigenvalues and eigenvectors (or
eigenprojections) change with the operator, in particular when the operator depends
on a parameter analytically. This is a special case of a more general and more
interesting problem in which the operator acts in an infinite-dimensional space.

The reason for discussing the finite-dimensional case separately is threefold.
In the first place, it is not trivial. Second, it essentially embodies certain features of
perturbation theory in the general case, especially those related to isolated eigen-
values. It is convenient to treat them in this simplified situation without being
bothered by complications arising from the infinite dimensionality of the underlying
space. The modifications required when going to the infinite-dimensional case will be
introduced as supplements in later chapters, together with those features of perturba-
tion theory which are peculiar to the infinite-dimensional case. Third, the finite-
dimensional theory has its own interest, for example, in connection with the numeri-
cal analysis of matrices. The reader interested only in finite-dimensional problems
can find what he wants in this chapter, without having to disentangle it from the
general theory.

As mentioned above, the problem is by no means trivial, and many different
methods of solving it have been introduced. The method used here is based on a
function-theoretic study of the resolvent, in particular on the expression of eigen-
projections as contour integrals of the resolvent. This is the quickest way to obtain
general results as well as to deduce various estimates on the convergence rates of the
perturbation series. In a certain sense the use of function theory for operator-
valued functions is not altogether elementary, but since students of applied mathe-
matics are as a rule well-acquainted with function theory, the author hopes that its
presence in this form will not hinder those who might use the book for applications.
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§ 1. Analytic perturbation of eigenvalues
1. The problem

We now go into one of our proper subjects, the perturbation theory
for the eigenvalue problem in a finite-dimensional vector space X1.
A typical problem of this theory is to investigate how the eigenvalues and
eigenvectors (or eigenspaces) of a linear operator T change when T is
subjected to a small perturbation. In dealing with such a problem,
it is often convenient to consider a family of operators of the form

(1.1) T (m) = T + x T'

where x is a scalar parameter supposed to be small. T (0) = T is called
the unperturbed operator and x T' the Perturbation. A question arises
whether the eigenvalues and the eigenvectors of T (m) can be expressed
as power series in x, that is, whether they are holomorphic functions of x
in the neighborhood of x = 0. If this is the case, the change of the
eigenvalues and eigenvectors will be of the same order of magnitude as
the perturbation x T' itself for small Ixl. As we shall see below, how-
ever, this is not always the case.

(1.1) can be generalized to

(1.2) T(x)=T+ cT(')+x2T(2)+...
More generally, we may suppose that an operator-valued function
T (x) is given, which is holomorphic in a given domain Do of the complex
x-plane 8.

The eigenvalues of T (x) satisfy the characteristic equation (see
Problem 1-5.16)

(1.3) det (T (x) - C) = 0.

This is an algebraic equation in C of degree N = dim X, with coefficients
which are holomorphic in x; this is seen by writing (1.3) in terms of the
matrix of T (m) with respect to a basis {x;} of X, for each element of this
matrix is a holomorphic function of x [see I-(3.10)]. It follows from a well-

1 In this section we assume that 0 < dimX = N < oo. Whenever convenient,
X will be considered a normed space with an appropriately chosen norm.

1 There are very few papers that deal specifically with perturbation theory in a
finite-dimensional space; see parts of RELLICH [1] and [8], DAvis [1], B. L. LIv§Ic
[1], VI§IK and LYUSTERNIK [1]. Reference should be made to papers dealing with
analytic perturbation theory in Banach spaces. Basic papers in this direction are:
RELLICH [1]-[5], SZ.-NAGY [1], [2], WOLF [1], T. KATO [1], [3], [6], DUNFORD-
SCHWARTZ (1), RIEsz and SZ.-NAGY (1). See also BAUMGXRTEL [1], PORAT22GHG [1], [2],
RELLICH [6], ROSENBLOOM [1], SCHXFKE [3]-[5], SCHRSDER [1]-[3], DMUL'YAN
[1].

® One can restrict x to real values, but since (1.2) given for real x can always
be extended to complex x, there is no loss of generality in considering complex x.
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known results in function theory that the roots of (1.3) are (branches of)
analytic functions of x with only algebraic singularities. More precisely,
the roots of (1.3) for xE Do constitute one or several branches of one or
several analytic functions that have only algebraic singularities in Do.

It follows immediately that the number of eigenvalues of T (m) is a
constant s independent of x, with the exception of some special values
of x. There are only a finite number of such exceptional Points x in each
compact subset of Do. This number s is equal to N if these analytic
functions (if there are more than one) are all distinct; in this case T(u)
is simple and therefore diagonable for all non-exceptional X. If, on the
other hand, there happen to be identical ones among these analytic
functions, then we have s < N; in this case T (m) is said to be per-
inanently degenerate.

Example 1.1. Here we collect the simplest examples illustrating the various
possibilities stated above. These examples are concerned with a family T (x) of the
form (1.1) in a two-dimensional space (N = 2). For simplicity we identify T (X)
with its matrix representation with respect to a basis.

a)
T (x) = (x 1)

The eigenvalues of T (x) are
(1.4) A} (x) (1 + x2)118

and are branches of one double-valued analytic function (1 + x8)118. Thus S = N = 2
and the exceptional points are x = ± i, T (± i) having only the eigenvalue 0.

b) T(x)=(x 0)' s=N=2.
The eigenvalues are ± x; these are two distinct entire functions of x (the charac-
teristic equation is Cs - xe =0 and is reducible). There is one exceptional point
x = 0, for which T (x) has only one eigenvalue 0.

c) T(x)=(0 0)' s=1.
T (m) is permanently degenerate, the only eigenvalue being 0 for all x; we have
two identical analytic functions zero. There are no exceptional points.

d)
T (m) = (x 0) ' s = 2 .

The eigenvalues are ±xiI2, constituting one double-valued function x116. There is
one exceptional point x = 0.

e) T(x)=(0 0), s=2.
The eigenvalues are 0 and 1. There are no exceptional points.

f) T(x)=(0 0)' s=2.
The eigenvalues are 0 and x, which are two distinct entire functions. There is one
exceptional point x = 0.

1 See KNOPP 121, p. 119, where algebraic functions are considered. Actually (1.3)
determines C as algebroidal (not necessarily algebraic) functions, which are, how-
ever, locally similar to algebraic functions. For detailed function-theoretic treatment
of (1.3), see BAUMGXRTEL [1].
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2. Singularities of the eigenvalues
We now consider the eigenvalues of T (m) in more detail. Since these

are in general multiple-valued analytic functions of x, some care is
needed in their notation. If x is restricted to a simply-connected' sub-
domain D of the fundamental domain Do containing no exceptional
point (for brevity such a subdomain will be called a simple subdomain),
the eigenvalues of T (m) can be written

(1.5) Al (x), A2 (x), ..., A, (x)

all s functions Ah (x), h = 1, ..., s, being holomorphic in D and Ah (x) +
+ Ah (x) for h + k.

We next consider the behavior of the eigenvalues in the neighborhood
of one of the exceptional points, which we may take as x = 0 without
loss of generality. Let D be a small disk near x = 0 but excluding x = 0.
The eigenvalues of T (x) for x E D can be expressed by s holomorphic
functions of the form (1.5). If D is moved continuously around x = 0,
these s functions can be continued analytically. When D has been
brought to its initial position after one revolution around x = 0, the s
functions (1.5) will have undergone a permutation among themselves.
These functions may therefore be grouped in the manner

(1.6) {Al (x), ..., Ap (x)}, {Ay+, (x), ..., A,+a (x)}, ... ,

in such a way that each group undergoes a cyclic permutation by a
revolution of D of the kind described. For brevity each group will be
called a cycle at the exceptional point x = 0, and the number of elements
of a cycle will be called its period.

It is obvious that the elements of a cycle of period p constitute a
branch of an analytic function (defined near x = 0) with a branch point
(if p ? 2) at x = 0, and we have Puiseux series such as 2

(1.7) Ah (x) = A + al CO" xl/Q + a2 w2 h x2/P + ..., h = 0, 1, ..., p - 1,
where co = exp (2a i/p). It should be noticed that here no negative
powers of x'1' appear, for the coefficient of the highest power CN in (1.3)
is (- 1)N so that the Ah(x) are continuous at x = 08. A = A,,(0) will be
called the center of the cycle under consideration.

(1.7) shows that I Ah (x) - A I is in general of the order jx I'/p for small
IxI for h = 1, . . ., p. If p z 2, therefore, the rate of change at an excep-
tional point of the eigenvalues of a cycle of period p is infinitely large
compared with the change of T (x) itself'.

1 See KNOPP 1l1, p. 19.
' See KNOPP (2), p. 130.
L See KNOPP (2), p. 122.
' This fact is of some importance in the numerical analysis of eigenvalues of

matrices.
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Problem 1.2. The sum of the Ah (x) belonging to a cycle is holomorphic at the
exceptional point in question.

In general there are several cycles with the same center A. All the
eigenvalues (1.7) belonging to cycles with center A are said to depart
from the unperturbed eigenvalue A by splitting at x = 0. The set of these
eigenvalues will be called the A -group, since they cluster around A for
small Iki.

Remark 1.3. An exceptional point need not be a branch point of an
analytic function representing some of the eigenvalues. In other words,
it is possible that all cycles at an exceptional point x = xo are of period 1.
In any case, however, some two different eigenvalues for x + xo must
coincide at x = xo (definition of an exceptional point). Thus there is
always splitting at (and only at) an exceptional point.

Example 1.4. Consider the examples listed in Example 1.1. We have a cycle of
period 2 at the exceptional points x = ± i in a) and also at x = 0 in d). There are
two cycles of period I at x = 0 in b) and f). There are no exceptional points in c)
and e).

3. Perturbation of the resolvent
The resolvent

(1.8) R x) _ (T

of T (x) is defined for all C not equal to any of the eigenvalues of T (x)
and is a meromorphic function of C for each fixed x E Do. Actually we have

Theorem 1.5. R (C, x) is holomorphic in the two variables C, x in each
domain in which is not equal to any of the eigenvalues of T (x).

Proof. Let C _ Co, x = xo belong to such a domain; we may assume
xo = 0 without loss of generality. Thus Co is not equal to any eigenvalue
of T (O) = T, and

(1.9) T(x)-C=T-CO-(C-Co)+A(x)
= [1 - (C-C0-A(x))R(Q] (T-C0)

00

(1.10) A(x)=T(x)-T= E x"TOl
n=1

where R R (C, 0) _ (T - and we assumed the Taylor expansion
of T (m) at x = 0 in the form (1.2). Hence

(1.11) R (C, x) = R (CO) [1 - (. - CO - A (x)) R

exists if the factor [ ]-1 can be defined by a convergent Neumann series
(see Example 1-4.5), which is the case if, for example,

00

(1.12) IC - Col + E IkIn IIT(")II < IIR(C0)II-1,
n-1
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since IC - oI + CIA (x)JJ is not greater than the left member of (1.12).
This inequality is certainly satisfied for sufficiently small IC - Q and
I4I4 and then the right member of (1.11) can be written as a double
power series in C - Co and x. This shows that R x) is holomorphic in C
and x in a neighborhood of C _ Co, x = 0.

For later use it is more convenient to write R (C, x) as a power series
in x with coefficients depending on . On setting Co = C in (1.11), we
obtain
(1.13) R (C, x) = R (C) [1 + A (x) R (C) ]-'

M 00

= R (C) E [- A (x) R (C) ]¢ = R (C) + E xn R(n) (C)
P=0 n=]

where
(1.14) R(n) (C) _ (-1)fl R (c') T(") R (C) T(V2) ... T &.') R (C)

yl+...+yy=n
vJ I

the sum being taken for all combinations of positive integers p and
vl, ..., v9 such that 1 S p S n, vl + + v, = n.

(1.13) will be called the second Neumann series for the resolvent.
It is uniformly convergent for sufficiently small x and C E P if P is a
compact subset of the resolvent set P (T) of T = T (0) ; this is seen from
(1.12) with Co = C, where 11 R (C) 11 -' has a positive minimum for C E P.

Example 1.6. The resolvent for the T (x) of Example 1.1, a) is given by

(1.15) R 1

Problem 1.7. Find the resolvents of the T (x) of b) to f) in Example 1.1.

4. Perturbation of the eigenprojections
Let A be one of the eigenvalues of T = T (0), with multiplicity' m.

Let r be a closed positively-oriented curve, say a circle, in the resolvent
set P (T) enclosing A but no other eigenvalues of T. As noted above,
the second Neumann series (1.13) is then convergent for sufficiently
small Ix I uniformly for C E P. The existence of the resolvent R (C, X)
of T (x) for C E r implies that there are no eigenvalues of T (x) on P.

The operator

(1.16) P(X)=- 2 I R (C, x) d C 2
r

is a projection and is equal to the sum of the eigenprojections for all the
eigenvalues of T (x) lying inside I' (see Problem 1-5.9). In particular

By "multiplicity" we mean the algebraic multiplicity unless otherwise stated.
This integral formula is basic throughout the present book. In perturbation

theory it was first used by Sz.-NAGY [1] and T. KATO [1], greatly simplifying the
earlier method of RZLLicx [1]-[5].
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P(0) = P coincides with the eigenprojection for the eigenvalue A of T.
Integrating (1.13) term by term, we have

(1.17)

with

(1.18)

W

P(x)=P-1- 'E X- P(-)
n=1

p(n) = - Zn a Rll (C) dC
r

The series (1.17) is convergent for small Ix so that P(m) is holomorphic
near x = 0. It follows from Lemma I-4.10 that the range M (m) of P (M)
is isomorphic with the (algebraic) eigenspace M = M (0) = PX of T for
the eigenvalue A. In particular we have

(1.19) dim P (x) = dim P = m.

Since (1.19) is true for all sufficiently small Ix I, it follows that the
eigenvalues of T (x) lying inside r form exactly the A-group. For brevity
we call P (m) the total projection, and M (m) the total eigenspace, for the
A-group.

If x = 0 is not an exceptional point, there is no splitting at x = 0
of the eigenvalue A in question. In this case there is exactly one eigen-
value A (x) of T (x) in the neighborhood of A, and P (x) is itself the eigen-
projection for this eigenvalue A(x). (1.19) shows that the multiplicity of
A (x) is equal to m. Similar results hold when x = 0 is replaced by any
other non-exceptional point x = xo.

Now consider a simple subdomain D of the x-plane and the set (1.5)
of the eigenvalues of T (x) for x E D, and let P,% (m) be the eigenprojection
for the eigenvalue A7, (m), Is = 1, . . ., s. The result just proved shows that
each Ph (x) is holomorphic in D and that each A,, (x) has constant multi-
plicity mh. Here it is essential that D is simple (contains no exceptional
point) ; in fact, P, 1(x0) is not even defined if, for example, Al (x0) = A2 (x0)
which may happen if xo is exceptional.

Let M,, (x) = P1, (x) X be the (algebraic) eigenspace of T (x) for the
eigenvalue A,(x). We have [see I-(5.34)]

(1.20)

dimMA(x)=mn, f mn=N, xED.
j-1

The eigennilpotent DA(m) for the eigenvalue A7, (m) is also holomorphic for
xED, for

(1.21) DA (x) _ (T (x) - A,r (x)) Ph (x)

by I-(5.26).
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5. Singularities of the eigenprojections
Let us now consider the behavior of the eigenprojections Ph(x)

near an exceptional point, which we may again assume to be x = 0.
As was shown above, each eigenvalue A of T splits in general into several
eigenvalues of T (m) for x + 0, but the corresponding total projection is
holomorphic at x = 0 [see (1.17)]. Take again the small disk D near
x = 0 considered in par. 2; the eigenvalues Ah(x), the eigenprojections
Ph (x) and the eigennilpotents Dh (x) are defined and holomorphic for
x E D as shown above. When D is moved around x = 0 and brought to the
initial position in the manner described in par. 2, each of the families
{Ah (x)}, {Ph (x)} and {Dh (x)} is subjected to a permutation by the analytic
continuation. This permutation must be identical for the three families,
as is seen from the following consideration.

The resolvent R (C, x) of T (x) has the partial-fraction expression

Dh (x)` h-1
J

(1.22) R' $
( Pi. (x) Dh (x) . . . +.x) (x) + (C - h (x))$ ( - Rh (x))'"hh=1

[see I-(5.23)], where is assumed to be somewhere distant from the
spectrum of T so that E P(T (x)) for all x considered. If Al (x), ..., A, (x)
constitute a cycle (see par. 2) of eigenvalues, the permutation mentioned
above takes Ah (x) into Ah+1(x) for 1 s h : p - 1 and A. (x) into Al (x).
But as R (C, x) should be unchanged by the analytic continuation under
consideration, the permutation must take Ph (x) into Ph+1(x) for
1 S h S P - 1 and P. (x) into P1 (x) 1; the possibility that Ph (x) = Ph (x)
for some h + k is excluded by the property Ph (x) Ph (x) = 84 h Ph (x).
Similar results hold for the eigennilpotents Dh(x) by (1.21), except that
some pair of the Dh (x) may coincide [in fact all Dh (x) can be zero).

We shall now show that Ph (x) and Dh (x) have at most algebraic
singularities. Since DA(m) is given by (1.21), it suffices to prove this for
Ph(x). To this end we first note that

(1.23) II Ph (x) II
(I 2

a f R(1, x) d'II s eh (x) {mah
x) IIR (C, x) II

rh (x)

where rh (x) is a circle enclosing Ah (x) but excluding all other Ah (x)
and where ph (x) denotes the radius of rh (x). On the other hand, we see
from I-(4.12) that

(1.24) IIR(C,x)II = (T (m) - C) -'II

s Y II T (x) - CIIN-1/ Idet (T (x) - ) I s

Y(IIT(x)II + IRI)N-1/17 IC- Ah(M )I""h'
h -$I

1 This is due to the uniqueness of the partial-fraction representation of R (C, x)
as a function of C. A similar argument was used in I-§ 5.4.
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where y is a constant depending only on the norm employed. Hence

(1.25) II Ph(x)II s ICI)N_' 17IC-A,(x)Im"

Suppose that x -3 0, assuming again that x = 0 is an exceptional
point. Then we have to choose the circle Ph (x) smaller for smaller Ix I
in, order to ensure that it encloses Ah (x) but no other Ah (x), for the Ah (x)
of the A-group will approach Ah (x) indefinitely. But we know that the
distances I Ah (x) - Ah (x) I between these eigenvalues tend to zero for
x --* 0 at most with some definite fractional order of Ix I because all
Ah (x) have at most algebraic singularities at x = 0 [see (1.7)]. By choosing
eh(m) = Ix I,, with an appropriate a> 0, we can therefore ensure that
17I y - 2 (x) Imk y' IxIaN for C E Ph(x) with some constant y' > 0.
Then we have
(1.26) II P,(x)II < const. IxI-(N-1)a

This shows that, when Ph (x) is represented by a Laurent series in x'1Q,
the principal part is finite.

These results may be summarized in
Theorem 1.8. The eigenvalues Ah (x), the eigenprojections Ph (x) and the

eigennilpotents Dh (x) of T (x) are (branches of) analytic functions for
x E Do with only algebraic singularities at some (but not necessarily all)
exceptional points. Ah (x) and Ph (x) have all branch points in common
(including the order of the branch points), which may or may not be branch
points for Dh (x) . I/ in particular Ah (x) is single-valued near an exceptional
point x = xo (cycle of period 1), then Ph (x) and Dh (x) are also single-
valued there.

6. Remarks and examples
Although the Ph (x) and Dh (x) have algebraic singularities as well

as the Ah (x), there are some important differences in their behavior at the
singular points. Roughly speaking, Ph (x) and DA (x) have stronger
singularities than Ah (x).

We recall that these singular points are exceptional points, though
the converse is not true. As we have already noted, the Ah (x) are conti-
nuous even at exceptional points and, therefore, have no poles. But
Ph (x) and Dh (x) are in general undefined at exceptional points. In
particular they may be single-valued and yet have a pole at an excep-
tional point (see Example 1.12 below).

Even more remarkable is the following theorem'.
Theorem 1.9. 1/ x = xo is a branch point of Ah (x) (and therefore also

of Ph (x)) of order p - 1 z 1, then Ph (x) has a pole there; that is, the

1 This theorem is due to BUTLER [1].
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Laurent expansion of Ph (x) in powers of (x - xo)1/Q necessarily contains
negative powers. In particular II Ph (x) II -> oo for x --> xo.

Proof. Suppose that this were not the case and let

Ph(n)=Ph+x1I Ps+..., h=1,...,p,

be the Laurent expansions of the Ph (x) belonging to the cycle under
consideration. Here we again assume for simplicity that xo = 0. When x
is subjected to a revolution around x = 0, Ph (x) is changed into Ph+1 (x)
for 1 S h <- p - 1 and Pfl (x) into P, (m). Hence we must have Ph+1 = Ph
for 1 h 5 p - 1. On the other hand, the relation Ph (x) Ph+l (x) = 0
for x-.0 gives Ph Ph+1 = 0, and the idempotent character of Ph(n)
gives Pk = Ph. Hence Ph = P' = Ph Ph+1 = 0. But this contradicts the
fact that dim Ph (x) X = mh > 0, which implies that II Ph (x) II z 1 (see
Problem 1-4.1).

As regards the order p - 1 of the branch point x = go for Ah (x) or,
equivalently, the period p of the cycle {2 (u), . . ., A, (x)}, we have the
following result. An eigenvalue A of T with multiplicity m does not give
rise to a branch point of order larger than m - 1. This is an obvious
consequence of the fact that such an eigenvalue can never split into
more than m eigenvalues [see (1.19)].

Theorem 1.10. Let X be a unitary space. Let xo E Do (possibly an
exceptional point) and let there exist a sequence {xa} converging to xo such
that T (x,,) is normal for n = 1, 2, ... . Then all the Ah (x) and Ph (x) are
holomorphic at x = xo, and the Dh (x) = 0 identically.

Proof. We have II Ph (xn) II = 1 since T (x,,,) is normal [see I-(6.64)].
Thus x;= xo is not a branch point for any Ah(x) by Theorem 1.9. Con-
sequently the Ah (x) are holomorphic at x = xo. Then the Ph (x) are single-
valued there and, since they cannot have a pole for the same reason as
above, they must be holomorphic. Then the Dh (x) vanish identically,
since the holomorphic functions Dh (x) = (T (x) - Ah (x)) Ph (x) vanish
at x = x,, --> xo.

Remark 1.11. In general the Ph (x) and Dh (x) are not defined at an
exceptional point xo. But they can have a removable singularity at xo
as in Theorem 1.10. In such a case Ph (xo) and Dh (xo) are well-defined,
but they need not be the eigenprojection and eigennilpotent for the
eigenvalue Ah (xo) of T (xo). If, for example, Al (xo) = A2 (xo) + Ah (xo),
k z 3, then Pl (xo) + P2 (xo) (and not P1(xo)) is the eigenprojection for
Al (xo). Again, the eigennilpotent for Ah (xo) need not vanish even if
DA(m) = 0, as is seen from Example 1.12 a), d), f) below.

Example 1.12. Consider the eigenprojections and eigennilpotents of T(x) for
the operators of Example I.I.
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a) The resolvent R (C, x) is given by (1.15), integration of which along small
circles around A± (x) gives by (1.16)

1

(1

± (1
+ x2)1 2

x /
(1.27) P± (x) = ± 2 (1 + x2)112 x - 1 ± (1 + x2)112

The reader is advised to verify the relations P± (x) 2 = P± (x) and P+ (x) P_ (x)
= P-(%) P+(x) = 0. The eigenprojections P±(%) are branches of a double-valued
algebraic function with branch points x = ± i. Since s = N = 2, T (x) is simple
and the eigennilpotents D ± (x) are zero for x 4 ± i. At the exceptional points
x = ± i, we have quite a different spectral representation of T (x) ; there is a double
eigenvalue 0, and the spectral representation of T (f i) is

(1.28) T(f i) = 0 -I- D±
that is, T (± i) is itself the eigennilpotent.

b) Integration of the resolvent as in a) leads to the eigenprojections

(1.29) P1 (x) = 2 (1 1)' P2(x) = 2 (-1 1)

for the eigenvalues Al (x) = x and A2 (x) x. Again we have D1 (x) = D2 (x) = 0
for x = 0. The exceptional point x = 0 is not a singular point for any of A,, (X),
Pr, (x) or Dh (x).

c) The eigenprojection and eigennilpotent for the unique eigenvalue A(x)) = 0
of T (x) are given by P (x) = 1, D (x) = T (x).

d) We have
1 1 x-112\

(1.30) P± (x) =
2 (+x1/s i f . D± (x) = 0, x + 0,

for A± (x) = t x112. The exceptional point x = 0 is a branch point for the eigen-
values and the eigenprojections. For x = 0, the eigenvalue is zero and the spectral
representation is T (0) = 0 + D with D = T = T (0). The operator of this example
resembles that of a), with the difference that there is only one exceptional point here.

e) We have

(1.31) P1(x) _ (0 0) ' P. (x) _ (0 1) . DH (x) = 0 .

for Al (x) = 1 and A2 (x) = 0. Everything is holomorphic for finite x since there are
no exceptional points. Note that the Ph (x) are not holomorphic at x = oo whereas
the AA (x) are. This is a situation in a sense opposite to that of the following example.

f) The eigenprojections are

(1.32) P1(x) _ (0 0-1) ' P2(') = (0
1

x + 0 .

for Al (x) = x and A2 (x) = 0. Note that the Pa, (x) have a pole at the exceptional
point x = 0 notwithstanding that the A,,(x) are holomorphic there. The situation
is reversed for x = oo. At x = 0 the spectral representation is the same as in d).

7. The case of T (x) linear in x
The foregoing general results are somewhat simplified in the case (1.1)

in which T (x) is linear in x. Then T (x) is defined in the whole complex
plane, which will be taken as the domain Do. The coefficients of the
characteristic equation (1.3) are polynomials in x of degree not exceeding
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N. Hence the eigenvalues Ah (x) are branches of algebraic functions of
x. If the algebraic equation (1.3) is irreducible, there is only one N-valued
algebraic function so that we have s = N. If (1.3) is reducible, the eigen-
values Ah (x) can be classified into several groups, each group correspond-
ing to an algebraic function. If there happen to be identical ones among
these algebraic functions, we have s < N (permanent degeneracy)'.

The algebraic functions Ah (x) have no pole at a finite value of x.
At x = co they have at most a pole of order 1; this is seen by writing
(1.1) in the form
(1.33) T (m) = m (T' + x-1 T) ,

for the eigenvalues of T' + x-1 T are continuous for x-1-+ 0. More
precisely, these eigenvalues have the expansion ,uh + Ph (x-1) 1/11 + .. .
(Puiseux series in x--1), so that the eigenvalues of T (m) have the form

(1.34)
I_ 1

Ah (x) = 1Zh x flh x 9 +... , X__>00'

Note that Ph (x) or Dh (x) may be holomorphic at x = oo even when Ah (x)
is not [see Example 1.12, f)].

8. Summary

For convenience the main results obtained in the preceding para-
graphs will be summarized here2.

Let T (x) E 9 (X) be a family holomorphic in a domain Do of the
complex x-plane. The number s of eigenvalues of T (m) is constant if x
is not one of the exceptional points, of which there are only a finite
number in each compact subset of Do. In each simple subdomain (simply
connected subdomain containing no exceptional point) D of Do, the
eigenvalues of T (m) can be expressed as s holomorphic functions Ah (x),
h = 1, ..., s, the eigenvalue Ah (x) having constant multiplicity mh.
The Ah (x) are branches of one or several analytic functions on Do, which
have only algebraic singularities and which are everywhere continuous
in Do. [For simplicity these analytic functions will also be denoted by
Ah(x).] An exceptional point xo is either a branch point of some of the
Ah (x) or a regular point for all of them ; in the latter case the values of
some of the different Ah (x) coincide at x = xo.

The eigenprojections P,, (x) and the eigennilpotents D,, (x) for the
eigenvalues Ah (x) of T (;c) are also holomorphic in each simple sub-
domain D, being branches of one or several analytic functions [again
denoted by Ph (x) and Dh (x) ] with only algebraic singularities. The
analytic functions Ph (x) and Ah (x) have common branch points of the

1 The results stated here are also true if T (x) is a polynomial in x of any degree.
2 For more detailed and precise statement see BAUMGARTEL [1].
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same order, but Ph (x) always has a pole at a branch point while Ah (x) is
continuous there. Ph (x) and Dh (x) may have poles even at an exceptional
point where Ah (x) is holomorphic.

If A, (x), ..., A, (x) are the A-group eigenvalues [the totality of the
eigenvalues of T (x) generated by splitting from a common eigenvalue A
of the unperturbed operator T = T (0), x = 0 being assumed to be an
exceptional point] and if P, (x), . . ., P, (x) are the associated eigen-
projections, the total projection P (x) = P, (x) + + P, (x) for this
A-group is holomorphic at x = 0. The total multiplicity m1 + + m,
for these eigenvalues is equal to the multiplicity m of the eigenvalue A
of T. The A-group is further divided into several cycles {A, (m), ...,
A9(x)}, {A,+1 (x), ...}, ..., {...} and correspondingly for the eigen-
projections. The elements of each cycle are permuted cyclically among
themselves after analytic continuation when x describes a small circle
around x = 0. The sum of the eigenprojections in each cycle [for example
P1 (x) + + Pt, (x) ] is single-valued at x = 0 but need not be holo-
morphic (it may have a pole).

§ 2. Perturbation series
1. The total projection for the A-group

In the preceding section we were concerned with the general proper-
ties of the functions Ah (x), Ph (x) and Dh (x) representing respectively
the eigenvalues, eigenprojections and eigennilpotents of an operator
T (x) E .4 (X) depending holomorphically on a complex parameter M.
In the present section we shall construct explicitly the Taylor series
(if they exist) for these functions at a given point x which we may assume
to be x = 0. Since the general case is too complicated to be dealt with
completely, we shall be content with carrying out this program under
certain simplifying assumptions. Furthermore, we shall give only formal
series here; the convergence radii of the series and the error estimates
will be considered in later sections'.

We start from the given power series for T (m):

(2.1) T(x)=T+xTM +x2T(2)+...
Let A be one of the eigenvalues of the unperturbed operator T = T (0)
with (algebraic) multiplicity m, and let P and D be the associated eigen-

1 The perturbation series have been studied extensively in quantum mechanics,
starting with ScxxoDINGER [1]. Any textbook on quantum mechanics has a chapter
dealing with them (see e. g. KEMBLE (1), Chapter 11 or ScxiFF (lU Chapter 7). In
most cases, however, the discussion is limited to selfadjoint (symmetric) operators
T (m) depending on a real parameter x. In this section we shall consider general
nonsymmetric operators, assuming 0 < dimX = N < oo as before.
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projection and eigennilpotent. Thus (see I-§ 5.4)

(2.2) TP=PT= PTP=AP+D, dime=m, Dm=O, PD=DP=D.
The eigenvalue A will in general split into several eigenvalues of T (M)
for small x $ 0 (the A-group), see § 1.8, The total projection P (x) for this
A-group is holomorphic at x = 0 [see (1.17) ]

(2.3) P (x) = Mn p(n) , p(O) = P ,
n=0

with P(n) given by (1.18). The subspace M (x) = P (x) X is m-dimensional
[see (1.19)] and invariant under T (x). The A-group eigenvalues of T (x)
are identical with all the eigenvalues of T (x) in M (x) [that is, of the
part of T (m) in M (m)]. In order to determine the A-group eigenvalues,
therefore, we have only to solve an eigenvalue problem in the subspace
M (x), which is in general smaller than the whole space X.

The eigenvalue problem for T (x) in M (x) is equivalent to the eigen-
value problem for the operator

(2.4) T, (x) = T (m) P (m) = P (m) T (m) = P (m) T (m) P (m) ,

see I-§ 5.1. Thus the A-group eigenvalues of T (x) are exactly those eigen-
values of T, (x) which are different from zero, provided that JAI is large
enough to ensure that these eigenvalues do not vanish for the small IxI
under consideration'. The last condition does not restrict generality,
for T could be replaced by T + a with a scalar a without changing the
nature of the problem.

In any case, it follows that

(2.5) 1 (x) = m tr(T (x) P (x)) = A + m tr((T (x) - A) P (x))

is equal to the weighted mean of the A-group eigenvalues of T (x), where
the weight is the multiplicity of each eigenvalue [see I-(5.40) and
I-(3.25)]. If there is no splitting of A so that the A-group consists of a
single eigenvalue A (x) with multiplicity m, we have

(2.6) - A (M) = A (x) ;

in particular this is always true if m = 1. In such a case the eigen-
projection associated with A (x) is exactly the total projection (2.3) and
the eigennilpotent is given by [see I-(5.26)]

(2.7) D (m) = (T (x) - A (m)) P (m) .

These series give a complete solution to the eigenvalue problem for the
A-group in the case of no splitting, A (m), P (m) and D (m) being all holo-
morphic at x = 0.

1 Note that T,(x) has the eigenvalue 0 with multiplicity N - m, with the
eigenprojection 1 - P(x). Cf. also footnote 1 on p. 36.
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Let us now consider the explicit form of the series (2.3) and (2.5) in
terms of the coefficients T(n) of (2.1). It should be remarked at this
point that we could use as well the coefficients of the series (2.4) instead
of T(n), for the eigenvalues and eigenprojections are the same for T (M)
and T, (x) so far as concerns the 2-group'.

The coefficients P(n) of (2.3) are given by (1.14) and (1.18). Thus

(2.8) P(n) = - 22 a (-1)Q, f R T (y=) R T (y=) ... TOP) R (C) dC,
VP n ry, 1

where IF is a small, positively-oriented circle around A. To evaluate the
integral (2.8), we substitute for R (C) its Laurent expansion I-(5.18)
at C = A, which we write for convenience in the form

M

(2.9) R (C) = f (C - A)" S("+1)n=-m
with

(2.10) S(°) P , S(n) = Sn , S(-n) _ -Dn

Here S = S (2) is the value at C = 2 of the reduced resolvent of T (see
loc. cit.) ; thus we have by I-(5.19) and (5.26)

(2.11) SP=PS=0, (T - A) S = S (T - A) = 1-P.
j

Substitution of (2.9) into the integrand of (2.8) gives a Laurent
series in C - A, of which only the term with the power (C - A)-' contri-
butes to the integral. The result is given by the finite sum

(2.12) P(") _ - (- 1)p ' S(k,) P14 SO') ... SOP) T(vp) SOP +1)
P-1 vi+...+vp=n

k,+...+kp+l=p
vlZ1,kj -m+1

for n z 1. For example

(2.13) P(1) S(ki) T(1) S(k.)

=_Dm-1T(1)S"i_...-DT(1)S2-PT(')S-ST(')P

-S2T(1)D-..._SmT(t)Dm-1,

P(2) _ Ski) T(2) S(k.) _ S(k1) T(') S(k$) T(1) S(k.).
k1 k, = 1 k, + k, + k. = 2

If in particular A is a semisimple eigenvalue of T (see I-§ 5.4), we
have D = 0 and only nonnegative values of kf contribute to the sum

1 This remark will be useful later when we consider eigenvalue problems, for
unbounded operators in an infinite-dimensional space; it is then possible that the
series (2.1) does not exist but (2.4) has a series expansion in x. See VII-§ 1.5.
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(2.12). Thus we have, for example,

(2.14) P('>=-PT('>S-ST(')P,
P(2)=-PT(2) S-ST(2) P+ PT('>ST('>S+ST('>PT('>S+

+ST('>ST('>P-PT('>PT('>S2-PT(')S2T('>P-S2T(')PT('>P,
PM = - P T(3) S - ST(8> P + PT(') S T(2) S + P T(2) ST(') S +

+ST('>PT(2) S+ST(2) PT('>S+ST('>ST(2) P+ST(2)ST('>P-
- PT('>PT(2) S2-PT(2) PT('>S2-PT(')S2T(2) P-PT(2)S2T('>P-
-S2T('>PT(2) P-S2T(2)PT('>P-PT(')ST(')ST('>S-
-ST('>PT('>ST('>S-ST(')ST(')PT('>S-ST(')ST(')ST(')P+
+ PT(') PT('> ST(') S2 + PT('> PT(') S2 T(') S + PT(') ST('> PT('> S2+
+PT('>S2T('>PT('>S+PT('>ST(')S2T('>P+PT('>S2T('>ST(')P+
+ ST(') PT(') S2 T(') P + S2 T(') PT(') ST(') P+ST(') PT(') PT(')S2+
+S2T('>PT('>PT('>S+ST('>S2T(')PT('>P+S2T(')ST('>PT('>P-
- PT('> PT('> PT(') Ss- PT('> PT('> S8 T(') P -
- PT(') S8 T('> PT(') P - S3 T(') PT(') P T(') P.

2. The weighted mean of eigenvalues

We next consider the series (2.4) for T,.(x) = T (m) P (x) . For com-
putation it is more convenient to consider the operator (T (x) - A) P (x)
instead of T, (x) itself. We have from (1.16)

(2.15) (T(x)-A)P(x)=-2niJ (C -A)R(C,x)dCr
since (T (x) - A) R (C, x) = 1 + (C - A) R x) and the integral of 1

along r vanishes. Noting that (T - A) P = D by (2.2), we have
Co

(2.16) (T (x) - A) P (m) = D + E x" T (n>
n=1

with
/'(2.17) T(n) =- 2nivi+

1)9J
)R(C)(C-A)dCVir

for n 1; this differs from (2.8) only by the factor C - A in the integrand.
Hence it follows that

00

(2.18) T (n) E (- 1)p Epal vl+...+vy><Is
k,+...+kp+j=p-1
vj*a:l,kZ-m+l

with the same summand as in (2.12). For example

(2.19)
-...-Sm_1T(')Dm-'.
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Again these expressions are simplified when A is a semisimple eigen-
value of T (D = 0) ; for example
(2.20) T(1) = PT(1) P ,

T(2) = PT(2)P-PT(1)PT(1)S-PT(1)ST(M)P-ST(1)PTM P,
T(3) = PT(3) P - PT(1) P T(2) S - P T(2) PT(1) S -

- PT(1) S T(2) P - P T(2) ST(1) P - ST(1) P T(2) P - S T(2) PT(1) P +
+ P TM P TM S TM S + P TM S TM P T(1) S +
+ P TM S T(1) S T(1) P+ S TM P TM P TM S+ S TM P TM S TM P +
+ S T(1) S T(1) P TM P - P TM P TM P T(1) S2 - P TM P TM S2 TM P -
- PT(1) S2 T(1) PT(1) P - S2 T(1) PT(1) PT(1) P .

The series for the weighted mean A (x) of the A-group eigenvalues is
obtained from (2.5) and (2.16) :

(2.21)

where

(2.22)

M

A (M) = A+ z xn )(n)
n=1

1(n) = m trT(n) , n 1 .

The substitution of (2.18) for T(n) will thus give the coefficients 1(n).
But there is another expression for A (x) which is more convenient for

calculation, namely

(2.23) trJ log 1 (,Z xn TO) I R(C) dC.2nim n 1r
Here the logarithmic function log (I + A) is defined by

(2.24) log (1 + A) AA
pffi1

which is valid for IjAII < 1. Note that (2.24) coincides with I-(5.57) for a
special choice of the domain i (take as A a neighborhood of C = 1
containing the eigenvalues of 1 + A).

To prove (2.23), we start from (2.5) and (2.15), obtaining

(2.25) A(x)-A=-2nimtr (.l (C- A)R(C,x)dC
r

Substitution for R(C, x) from (1.13) gives

(2.26) 1(x) - _ - 2 i m tr A) R (C) (-A (x) R (C))9 d C
r p-1

note that the term for $ = 0 in (2.26) vanishes because trD = 0 (see

Problem 1-3.11).
Now we have, in virtue of the relation dR(C)/dg = R(C)2 [see I-(5.8)],

(2.27)
dd (A (x) R (C))' = dg [A (x) R (C) ... A (x) R(C)]

= A (x) R (C) ... A (x) R (C) 2 + ... + A (x) R (b)2 ... A (x) R (C)
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Application of the identity trA B = tr B A thus gives

(2.28) tr dg (A (x) R p trR (A (x) R (g))p ,

and (2.26) becomes'

(2.29) (x) - 2 = - 2 i m :r1p1+ (-A (x) R d

2,c i m tr f z' (-A (x) R (C))A d C (integration by parts)r p=1P

which is identical with (2.23) [recall the definition (1.10) of A (x)].
If the logarithmic function in (2.23) is expanded according to (2.24)

and the result is arranged in powers of x, the coefficients in the series
for A (x) are seen to be given by

(2.30)
1(n)=

27r
1
im tr (-1)D f R(C)dC;nz 1.

vl VD
p r

This can be treated as (2.8) and (2.17) ; the result is

(2.31) 1(-) =.. (-1)n f trT(v=) SO') ... T(vo) S(kr)
M ?=1 p vl+...+vD=n

k,+...+kP=¢-1
This formula is more convenient than (2.22), for the summation involved
in (2.31) is simpler than in (2.18). For example,

(2.32) 1(') = m tr TM P ,

1(2) = m [tr T(2) P + 2 E tr T(1) S(ki) T(1) S(ke)J
k,+k,=1 f1

=

m

[tr T(2) P - tr (T(') Sm T(1) Dm-1 + ... + T(1) S T(1)P)]

where we have again used the identity trA B = tr BA 2.
These formulas are simplified when the eigenvalue 2 is semisimple.

Again making use of the identity mentioned, we thus obtain

(2.33) I(') =1 tr T(') P ,
m

A(2) = 1tr[T(2) P - T(') ST(') P]
M

A(2> =1 tr [T(3) P - TM S T(2) P - T(2) S TM P +
M

+ T(') ST(') ST(') P - T(1) S2 T(1) PT(1) P] ,
1 The trace operation and the integration commute. The proof is similar to

that of I-(4.30) and depends on the fact that tr is a linear functional on . (X).
2 For example (1/2) (tr Tu) S Tu) P + tr Tu) P T(2) S) = tr Tu) S T(l) P. Simi-

lar computations are made in the formulas (2.33).
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A14>= tr[Tl4)P-T(')STc3)P-T(2)ST(2)P-T(3)STM)P
+ TM S TM S T(2) P + TM S T(2) S TM P + T(2) S TM S TM) P-
- TM S2 TM PT(2) P - TM S2T(2) PTM1) P - T(2) S2 TM PTA) P-
- TM S T(') S TM S TM P + TM S2 TM S TM P TM P +
+ T(1) S TM S2 T(') P TM P + TM S2 TM P TM S TM P -
- TM) S3 TM PTA) PTM1) P] .

Problem 2.1. If T (x) is linear in x (T") = 0 for n 2), we have

(2.34) 2"> = Mn
tr(T(1) Pc"-')) n=1,2,3 .... .

[hint: Compare (2.8) and (2.30).]
Remark 2.2. These expressions for the AW take more familiar (though more

complicated) form if they are expressed in terms of bases chosen appropriately.
For simplicity assume that the unperturbed operator T is diagonable. Let Ah, Ph,
h = 1, 2, ..., be the eigenvalues and eigenprojections of T different from the ones A,
P under consideration. Let {x1, ..., x",} be a basis of M = R (P) and let {xh', ...,
zhh} be a basis of Mh = R(P5) for each h. The union of all these vectors z5 and zh1
forms a basis of X consisting of eigenvectors of T and adapted to the decomposition
X = M ® M, ® ... of X. The adjoint basis of X* is adapted to the corresponding
decomposition X* = M* ® M,* ® , where M* = R (P*), M; = R (Pl ), .. ,

it consists of a basis {e,...., em} of M*, {ell, ..., el,,,,} of M,*, etc. (see Problem
1-3.19).

Now we have, for any u E X,

m mh
Pu= (u,ei)xt, Phu= E (u,ehi)xh9, h = 1,2,.. ,

j=1
and for any operator A E -' (X),

m mh
trAP= E (Ax9,ej), trAPh= , (Axhj,ehi), h = 1,2.... .

j®1 j=1

The operator S is given by I-(5.32) where the subscript h should be omitted. Hence

Su=E(A,, -A)-1Phu=E
h h, j

Thus we obtain from (2.33) the following expressions for the A-):

(2.35) i(l) = m E (Tcu xi, e9) ,
i

1(2) = 1 (T() xs, e,) - m E (Ah - A)-' (T(l) x j, eha) (T(1) xhq, er)
Th

Suppose, in particular, that the eigenvalue A of T is simple: m = 1. Let 9,
be an eigenvector of T for this eigenvalue; then we can take x, = 97. Then el = y7
is an eigenvector of T* for the eigenvalue A. We shall renumber the other eigen-
vectors xhj of T in a simple sequence qi,, q7a, ..., with the corresponding eigenvalues
/tl, /t ... which are different from A but not necessarily different from one another
(repeated eigenvalues). Correspondingly, we write the eh, in a simple sequence y79
so that {gyp, tp,, y7 ...} is the basis of X* adjoint to the basis {q7, 971, 97%, ...} of X.
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Then the above formulas can be written (note that A(") = A(") since there is no
splitting)
(2.36) 2' = (Tcu q,, v')

Acs) = (T(2) 9) W) - E (u - A) -I (TO)
p 'W7)

(T(v
i

These are formulas familiar in the textbooks on quantum mechanics', except that
here neither T nor the T(") are assumed to be symmetric (Hermitian) and, there-
fore, we have a biorthogonal family of eigenvectors rather than an orthonormal
family. (In the symmetric case we have V = q), y,, = T;.)

3. The reduction process
If A is a semisimple eigenvalue of T, D = 0 and (2.16) gives

(2.37) T(l) (M) 1 (T (x) - A) P (m) = f xnT (n+1) .
n=0

Since M (x) = R (P (x)) is invariant under T (x), there is an obvious
relationship between the parts of T (x) and T(I) (x) in M (x). Thus the
solution of the eigenvalue problem for T (x) in M (x) reduces to the same
problem for T(1) (x). Now (2.37) shows that T(') (n) is holomorphic at
x = 0, so that we can apply to it what has so far been proved for T (x).
This process of reducing the problem for T (x) to the one for T(I) (x)
will be called the reduction process. The "unperturbed operator" for this
family T(1) (x) is [see (2.20)]

(2.38) TM (0) = TM = P TM P .

It follows that each eigenvalue of T(1) splits into several eigenvalues of
T(1) (x) for small Ix 1. Let the eigenvalues of T(1) in the invariant subspace
M = M (0) = R (P) be denoted by A}1), j = 1, 2, ... [the eigenvalue zero
of T(1) in the complementary subspace R(1 - P) does not interest us].
The spectral representation of T(1) in M takes the form

T(1) = PT(1) P = f (A2(1) P(1) + D(1)) ,
(2.39) PPI1), P'1)k)=B;kP'1>

Suppose for the moment that all the AM are different from zero.
By perturbation each A,(1) will split into several eigenvalues (the
group) of T (l) (x), which are power series in x1/¢i with some ji; z 1.2 The
corresponding eigenvalues of T (m) have the form

1+ 1
(2.40) A--xA}1)-I x °' a;a- , k= 1,2,... .

1 See KEMBLE 11) or SCHIFF 11), loc. cit.
2 In general there are several cycles in the AM-group, but all eigenvalues of

this group can formally be expressed as power series in c')ni for an appropriate
common integer p9.
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If some V) is zero, the associated eigenspace of TM includes the sub-
space R(1 - P). But this inconvenience may be avoided by adding to
T (x) a term of the form a x, which amounts to adding to TM (x) a term
a P (x). This has only the effect of shifting the eigenvalues of TM (x) in
M(x) [but not those in the complementary subspace R(1 - P(x))] by
the amount a, leaving the eigenprojections and eigennilpotents unchang-
ed. By choosing a appropriately the modified can be made different
from zero. Thus the assumption that A(.1) * 0 does not affect the genera-
lity, and we shall assume this in the following whenever convenient.

The eigenvalues (2.40) of T (m) for fixed A and AM will be said to
form the A + x A'1)-group. From (2.40) we see immediately that the
following theorem holds.

Theorem 2.3. If A is a semisimple eigenvalue of the unperturbed operator
T, each of the A-group eigenvalues of T (x) has the form (2.40) so that it
belongs to some A + x 2(1)-group. These eigenvalues are continuously
differentiable near x = 0 (even when x = 0 is a branch point). The total
projection Pi(t) (x) (the sum of eigenprojections) for the A + x group
and the weighted mean of this group are holomorphic at x = 0.

The last statement of the theorem follows from the fact that P(1) (x)
is the total projection for the A}1)-group of the operator 7(1) (x). The
same is true for the weighted mean (x) of this Al l>-group.

The reduction process described above can further be applied to the
eigenvalue 2}1> of TM if it is semisimple, with the result that the
group eigenvalues of TM (n) have the form A21> + X A} k) + o (m). The
corresponding eigenvalues of T (x) have the form

(2.41) A+xA(1) +x2Ak +o(x2).

These eigenvalues with fixed j, k form the A + x A,(1) + x2 2w-group of
T (x). In this way we see that the reduction process can be continued,
and the eigenvalues and eigenprojections of T (x) can be expanded into
formal power series in x, as long as the unperturbed eigenvalue is semi-
simple at each stage of the reduction process.

But it is not necessary to continue the reduction process indefinitely,
even when this is possible. Since the splitting must end after a finite
number, say n, of steps, the total projection and the weighted mean of
the eigenvalues at the n-th stage will give the full expansion of the
eigenprojection and the eigenvalue themselves, respectively.

Remark 2.4. But how can one know that there will be no splitting
after the n-th stage? This is obvious if the total projection at that stage
has dimension one. Otherwise there is no general criterion for it. In most
applications, however, this problem can be solved by the following
reducibility argument.
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Suppose there is a set {A} of operators such that A T (x) = T (x) A
for all x. Then A commutes with R (C, x) and hence with any eigen-
projection of T (x) [see I-(5.22)]. If there is any splitting of a semisixple
eigenvalue A of T, then, each P(1) (x) in Theorem 2.3 commutes with A
and so does P(1) = P1(1; (0). Since P(1) is a proper subprojection (see
I-§ 3.4) of P, we have the following result : If A is semisimple and P is
irreducible in the sense that there is no subprojection o l P which commutes
with all A, then there is no splitting of A at the first stage. If it is known
that the unperturbed eigenvalue in question is semisimple at every
stage of the reduction process, then the irreducibility of P means that
there is no splitting at all. Similarly, if the unperturbed eigenprojection
becomes irreducible at some stage, there will be no further splitting.

4. Formulas for higher approximations
The series Pi) (x) for the total projection of the A + x A')-group of

T (x) can be determined from the series (2.37) for TM (x) just as P (x)
was determined from T (m). To this end we need the reduced resolvent
for TM, which corresponds to the reduced resolvent S of T used in the
first stage. This operator will have the form

(2.42)
1

(1-P)S7)-,u
where the second term comes from the part of TM in the subspace
(1 - P) X in which T(1) is identically zero, and where

(2.43 S((1) = - r
P"' D

k+f
App

comes from the part of 7) in M = PX [see I-(5.32)]. We note that

(2.44) S$1)P = PS7) = S7) S,c1) P7) = P7) S,c1) = 0 .

Application of the results of § 1.1 now gives

(2.45) (x) = P(1) + x x2 p$12) + ..

where the coefficients are calculated by (2.12), in which the TMv) are to be
replaced by 1("+x) given by (2.18) and S(k) by (1 - for
k z 1, by - for k = 0 and by - (D7))-k fork 5 -1. If, for example,
41) is semisimple (D,(1) = 0), we have by (2.14)

(2.46) P;11) P(1) 7(2) 4i, (1 - P)) + (inv)

where (inv) means an expression obtained from the foregoing one by
inverting the order of the factors in each term. Substitution of

y
1 (2)
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from (2.20) gives

p(il) P7) T(2) S(1) - f P(1) T(i) P T(1) S + P(1) T(1) S T(1) S(1)+ (inv).

But we have P T(1) A(1) because 27) is a
semisimple eigenvalue of P TM P. Hence

(2.47) p(11) _ -P7) T(2) S(1) - P7) T(1) S + PM T(1) ST(1) S7) + (inv).

Note that the final result does not contain 27) explicitly. Similarly
can be calculated, though the expression will be rather complicated.

The weighted mean A(1) (x) for the A,(1)-group eigenvalues of TM (m) is
given by

q
(2.48) (x) = A'1) + x 112) + x2 113) + ..

where the coefficients 2(") are obtained from (2.31) by replacing m,
P, S, TO by m11) = dimP(1)X, (2.42) and T(v}1) respectively. For
example, assuming that A7) is semisimple,

(2.49) 1(12) _ y1 trT(2) P(1)

I tr [T (2) Pi(1) - TM S TM P1(1>]In, ,

( l113) _ Jl) tr I T(3) P(1) - T(2) \S}l) - u (1 - P)l
/

T(2). 1)]

_ )1) tr E TM Pi1) - TM S T(2) P7) - T(2) S TM P7) +

+ T(1) ST(') ST(1) Pj(1) - 27) T(1> S2 T(1) P7) -

- T(2) S7) T(2) P'1) + T(1) S T(1) S7) T(2)

T(2) S'1) T(?) S T(1) P(1) - T(1) S TM S7) T(1) S T(1) P'1)] .

Here we have again used the identity tr A B = tr B A and the relations
(2.44) and (2.11). The weighted mean of the A + x A'1)-group eigenvalues
of T (x) is given by

(2.50) 1s (x) = A + x /lyl) (x)

= A + x A,(1).+ x2 1(12) + x3

If there is no splitting in the A + x 27)-group (that is, if this group
consists of a single eigenvalue), (2.50) is exactly this eigenvalue. In
particular this is the case if mil) = 1.

Remark 2.5. At first sight it might appear strange that the third order coefficient
i$13) of (2.49) contains a term such as - (1/mi(l)) tr Tc2) Sf1) TX3) Ps1) which is quadratic
in T3). But this does not involve any contradiction, as may be attested by the
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following example. Let N = 2 and let

T = 0, T(l) = (0
1

Tcs) = (a
0) ,

T(' = 0 for n Z 3.

The eigenvalues of T (x) are

)
l

±X (I + a2 x2)1/2 = ± (x +
2

as xs + ...) ,

in which the coefficient of the third order term is a2/2 and is indeed quadratic in or
(that is, in T(2)).

5. A theorem of MoTZxnv-TAUSSKY
As an application of Theorem 2.3, we shall prove some theorems

due to MOTZKIN and TAUSSKY [1], [2].
Theorem 2.6. Let the operator T (x) = T + xT' be diagonable for

every complex number x. Then all eigenvalues of T (x) are linear in x
(that is, of the form Ah + x ah), and the associated eigenprojections are
entire functions of x.

Proof. The eigenvalues Ah (x) of T (x) are branches of algebraic func-
tions of x (see § 1.7). According to Theorem 2.3, on the other hand, the
Ah (x) are continuously differentiable in x at every (finite) value of M.
Furthermore, we see from (1.34) that the dAh(x)/dx are bounded at
x = no. It follows that these derivatives must be constant (this is a simple
consequence of the maximum principle for analytic functions'). This
proves that the Ah (x) are linear in x.

Since Ah (x) has the form Ah + x ah, the single eigenvalue A. (x)
constitutes the Ah + x ah-group of T (x). Thus the eigenprojection Ph (x)
associated with A,, (x) coincides with the total projection of this group
and is therefore holomorphic at x = 0 (see Theorem 2.3). The same is
true at every x since T (x) and A. (x) are linear in x. Thus Ph (x) is an
entire function.

Ph(x) may have a pole at x = no [see Example 1.12, e)]. But if T'
is also diagonable, Ph (x) must be holomorphic even at x = no because
the eigenprojections of T (x) = x (T' + x-' T) coincide with those of
T' + x-' T, to which the above results apply at x = no. Hence each
Ph (x) is holomorphic everywhere including x = oo and so must be a
constant by Liouville's theorem 2. It follows that T and T' have common
eigenprojections [namely Ph (0) = Ph (oo) ] and, since both are diagonable,
they must commute. This gives

Theorem 2.7. If T' is also diagonable in Theorem 2.6, then T and T'
commute.

1 Since ,u (x) = d A,, (x)/dx is continuous everywhere (including x = no), l, t (x) I

must take a maximum at some x = no (possibly no = oo). Hence /t (x) must be
constant by the maximum principle; see KNOPP 111, p. 84. [If no is a branch point
of order p - 1, apply the principle after the substitution (x - xo)1/P = x'; if no = no,
apply it after the substitution x-1 = x'.]

2 See KNOPP 111, p. 112.
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These theorems can be given a homogeneous form as follows.
Theorem 2.8. Let A, BE 9 (X) be such that their linear combination

aA + 9B is diagonable for all ratios a: 9 (including oo) with Possibly a
single exception. Then all the eigenvalues of aA + 9B have the form
a An + fly, with A,,, It, independent of a, P. If the said exception is
excluded, then A and B commute.

Remark 2.9. The above theorems are global in character in the sense
that the diagonability of T(x) (aA + 3B) for all finite x (all ratios
a : 9 with a single exception) is essential. The fact that T (x) is diagonable
merely for all x in some domain D of the x-plane does not even imply
that the eigenvalues of T (x) are holomorphic in D, as is seen from the
following example.

Example 2.10. Let N = 3 and
0 x 0

(2.51) T (x) = 0 0 x .

x 0 1

It is easy to see that T (x) is diagonable for all x with the exception of three values
satisfying the equation xe = - 4/271. Thus T (x) is diagonable for all x in a certain
neighborhood of x = 0. But the Puiseux series for the three eigenvalues of T (n)
for small x have the forms
(2.52) + x3/2 + .. 1 + xs + . .

two of which are not holomorphic at x = 0.
Remark 2.11. Theorem 2.6 is not true in the case of infinite-dimensional spaces

without further restrictions. Consider the differential operator
da

T (x) d 9 + x$ + 2 x z

regarded as a linear operator in the Hilbert space L2 (- oo, + oo) (such differential
operators will be dealt with in detail in later chapters). T (x) has the set of eigen-
values A. (x) and the associated eigenfunctions op. (x, x) given by

n=0,1,2,...,
op. (z, x) = exp I - 2 x2 - x x\I H. (x + x) ,

where the H. (x) are Hermite `polynomials. The eigenfunctions gl form a complete
set in the sense that every function of L$ can be approximated with arbitrary
precision by a linear combination of the 97.. This is seen, for example, by noting that
the set of functions of the form exp(- (x + Re x)1/2) x (polynomial in x) is
complete and that multiplication of a function by exp (- i x Imx) is a unitary
operator. Therefore, T'(x) may be regarded as diagonable for every finite x. Never-
theless, the A. (x) are not linear in x.

6. The ranks of the coefficients of the perturbation series
The coefficients PO'") and T(n) of the series (2.3) and (2.16) have

characteristic properties with respect to their ranks. Namely

1 The characteristic equation for T (x) is I'e - I'$ - ms = 0. This cubic equation
has 3 distinct roots so that T (x) is diagonable, except when x = 0 or 0 ° 4/27.
But T (0) is obviously diagonable (it has already a diagonal matrix).
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(2.53) rank P(n> S (n + 1) m, rank T (n) S (n + 1) m ,

n = 1,2, .. .

This follows directly from the following lemma.
Lemma 2.12. Let P (x) E R (X) and A (x) E 9 (X) depend on x holo-

morphically near x = 0 and let P (x) be a projection for all x. Let A (x) P (x)
have the expansion

(2.54) A (x) P (x) = L' Mn B,n .

n=0
Then we have

(2.55) rankBn S (n + 1) m, n = 0, 1, 2, ....
where m = dim P (0). Similar results hold when the left member of (2.54)
is replaced by P (x) A (x).

Proof. Let

(2.56) P (x) _ I Mn Pn .00

=0

The coefficients Pn satisfy recurrence formulas of the form

(2.57) Pn=POPn-I-QniPoPn-1-I-...-I-QnnPo, n=0,1,2,...,
where Qnk is a certain polynomial in PO, Pi, ..., P,. (2.57) is proved by
induction. The identity P (x) 2 = P (x) implies that

(2.58) Pn=POPn+P1Pn-1+...+PnPO,

which proves (2.57) for n = 1. If (2.57) is assumed to hold with n replaced
by 1, 2, . . ., n - 1, we have from (2.58)

Pn=POPn+Pi(POPn-1+Qn-1,1POPn-2+...+Qn-1,n-1P0)+
+P2(P0Pn-2+Qn-2,1POPn-s+...+Qn-2,n-2P0)+...+Pn PO

= PoPn+ P1 PoPn-1+ (P1Qn-1,1+ P2) PoPn-2+...+

+ (PI Q--I,--l + P2 Qn-2,n-2 + ... + Pn) PO,
which is of the form (2.57). This completes the induction.

Now if A (x) .,f xn An is the expansion of A (x), we have from (2.54),
(2.56) and (2.57)

(2.59) Bn=AOPn+A,Pn-1+...+AnPo
=AO POPn+ (AOQni+A,) POPn-1+ (AOQn2+A,Qn-1,1+

+ A2) POPn-2+'''+ (AoQnn+A1Qn-1,n-1+"'+ An) Po.
Thus Bn is the sum of n + 1 terms, each of which contains the factor P.
and therefore has rank not exceeding rank PO (see Problem 1-3.4). This
proves the required inequality (2.55). It is obvious how the above
argument should be modified to prove the same results for P (x) A (x)
instead of A (x) P (x).
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§ 3. Convergence radii and error estimates
1. Simple estimates'

In the preceding sections we considered various power series in x
without giving explicit conditions for their convergence. In the present
section we shall discuss such conditions.

We start from the expression of R (C, x) given by (1.13). This series is
convergent for

(3.1) 11A (x) R (I) 11 =
n=1

<1,

which is satisfied if
00

(3.2) '
n=1

Let r (C) be the value of Ix I such that the left member of (3.2) is equal to 1.
Then (3.2) is satisfied for I m I < r (C).

Let the curve P be as in § 1.4. It is easily seen that (1.13) is uniformly
convergent for C E P if

(3.3) IHI < ro = mr

so that the series (1.17) or (2.3) for the total projection P (x) is convergent
under the same condition (3.3). Thus ro is a lower bound for the con-
vergence radius of the series for P (x). Obviously ro is also a lower bound
for the convergence radii of the series (2.21) for A(x) and (2.37) for
T11) (x). P may be any simple, closed, rectifiable curve enclosing C = A
but excluding other eigenvalues of T, but we shall now assume that I',
is convex. It is convenient to choose r in such a way that ro turns out as
large as possible.

To estimate the coefficients J (n) of (2.21), we use the fact that the
A-group eigenvalues of T (x), and therefore also their weighted mean
A (m), he inside r as long as (3.3) is satisfied 2. On setting

(3.4) marxIC - A

we see that the function A (x) - A is holomorphic and bounded by e for
(3.3). It follows from Cauchy's inequality3 for the Taylor coefficients that

I1(n) I < err , n = 1, 2, ... .

1 The following method, based on elementary results on function theory, is
used by Sz.-NAGY [1], [2], T. KATO [1], [3], [6], SCHXFKE [3], [4], [5].

9 The convexity of r is used here.
8 See KNOPP (l), p. 77.
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Such estimates are useful in estimating the error incurred when the
power series (2.21) is stopped after finitely many terms. Namely

(3.6) (x) - ' - xp A p)
P=1

yI IxI' 11(p) I s
p=n+I ° (

I° I"
I'xl)

Example 3.1. Assume that
(3.7) II V011 < a c' 1, n = 1, 2, ... .

for some nonnegative constants a, c. Such constants always exist since (1.2) is
assumed convergent. Now (3.2) is satisfied if a IxI (1 - c IxI)-hII R (C)II < 1, that is,

if IxI < c)-1. Thus we have the following lower bound for the con-
vergence radius
(3.8) r° = min(aIIR(C)II + c)-i.

CE r

2. The method of majorizing series
Another method for estimating the coefficients and the convergence

radii makes systematic use of majorizing series'. We introduce a majoriz-
ing function (series) ch (C - A, x) for the function A (x) R (C) that appears
in (1.13) and (2.29) :

(3.9) A (x) R u xn T (n) R (C) 0 ( - A, x)
n=1

o0

f I Ckn(b "- A)kn
k=-ao n=1

By this we mean that each coefficient ckn on the right is not smaller
than the norm of the corresponding coefficient in the expansion of the
left member in the double series in C - A and x. Since R (C) has the
Laurent expansion I-(5.18) with Ak, Pk, Dh replaced by A, P, D, re-
spectively, this means that

(3.10)
II T(n) Dk!I < C-k-I,n , IIT(n) PII s c-I, n ,

II DO S9II S ck -l, n , k > 0 .

We assume that ckn = 0 for k < - m so that 0 (z, x) has only a pole at
z = 0; this is allowed since Dm = 0.

In particular (3.9) implies
00

(3.11) 11 Z xn T(n) R(I)II < O(IC, - Al, IxI)
n=1

Thus the series in (1.13) is convergent if 0 (It - A I, Ix I) < 1. If we choose
as r the circle IC Al = e, it follows that a lower bound r for the con-

1 The use of majorizing series was begun by RELLICH [4], and was further
developed by SCHR6DER [1] - [3]. Their methods are based on recurrence equations
for the coefficients of the series, and differ from the function-theoretic approach
used below.
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vergence radius of the series for P (x) as well as for ). (x) is given by the
smallest positive root of the equation

(3.12) O (Q, r) = 1.

It is convenient to choose a so as to make this root r as large as possible.
Also 0 can be used to construct a majorizing series for R (x) - A.

Such a series is given by

(3.13) P (x) = 21 log(1 - 0 (g - A, x)) dC .

IC-Al = e

To see this we first note that, when the integrand in (2.29) is expanded
into a power-Laurent series in x and C - A using (2.9), only those terms
which contain at least one factor P or D contribute to the integral.
Such terms are necessarily of rank S m and, therefore, their traces do
not exceed m times their norms [see I-(5.42)]. Thus a majorizing series
for ) (x) - A is obtained if we drop the factor l1 m and the trace sign on the
right of (2.29) and replace the coefficients of the expansion of the inte-
grand by their norms. Since this majorizing function is in turn majorized
by (3.13), the latter is seen to majorize ) (x) - A.

As is well known in function theory, (3.13) is equal to the sum of the
zeros minus the sum of the poles of the function 1 - 0 (z, x) contained
in the interior of the circle Iz I = e I. But the only pole of this function is
z = 0 and does not contribute to the sum mentioned. In this way we
have obtained

Theorem 3.2. A majorizing series for A (x) - A is given by (the Taylor
series representing) the sum of the zeros of the function 1 - 0 (z, x) (as a
function of z) in the neighborhood of z = 0 when x -- 0, multiple zeros being
counted repeatedly. This majorizing series, and a fortiori the series for
P (x) and A (x), converge for Ix I < r, where r is the smallest positive root of
(3.12); here 0 is arbitrary as long as the circle I - Al = P encloses no
eigenvalues of T other than A.

Example 3.3. Consider the special case in which T"> = 0 for n Z 2 and A is a
semisimple eigenvalue of T (D = 0). From (3.10) we see that we may take c-1,1
= II T(" PIi, ckl Z II TI) Sk}1II, k Z 0, all other ck being zero. For the choice of
ck1, we note that Sk+l = S(S - a P)k for any a because SP = PS = 0. Thus
we can take ck1 = II T(" SII II S - a PII k and obtain

(3.14) (P +
1 4 s x )

as a majorizing series, where

(3.15) p=IIT'1'PII, 4=IIT1'Sp, s=IIS - aPII for any a.

1 See KNoPP (1), p. 134; note that f log/ (z) dz f f'(z),f(z)-1 zdz by
integration by parts.
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For small lxl there is a unique zero z ='P(x) of 1 -' (z, x) in the neighborhood of
z = 0. This 1P (x) is a majorizing series for A(x) - A by Theorem 3.2. A simple
calculation gives

(3.16)
1

'I'(x) = p x + 2s [1 - (P s + q) x - D(x)]

=px+2pgx2[l - (ps+q)x+Q(x)]-l

=px+pgx2 -f- 2pq(Ps +q)x1 +2p2g2sx`
1 - (ps +q)x-2pgsx2+Q(x) '

where
(3.17) S2(x) _ {[1 - (p s + q) x]2 - 4p q s x2}1'2 .

Each coefficient of the power series of PP (x) gives an upper bound for the cor-
responding coefficient of the series for A (x) - A. Hence the remainder of this series
after the n-th order term majorizes the corresponding remainder of i(n). In this
way we obtain from the second and third expressions of (3.16)

(3.18) lA (x) - A - x Au)l 5 2p q IxI2/[1 - (1's + q) Ixi + D (l xl )]

193 2 2(2) S 2p q Ix12 (P s + q + p qs 1-1)AMAA( . ) - x- x(x) -1 1 - (p s + q) I xl - 2pq s 1x12 + .(lxl)
Substitution of (3.14) into (3.12) gives a lower bound r for the convergence

radii for the series of P (x) and Ar (x). The choice of

(3.20)
gives the best value'

(3.21)

e = pl/2 s-112 [(p S)112 + ql/2]-1

r = [(p s)'12 + g112]-2

Note that the choice of (3.20) is permitted because o;5 s-' = 11 S - a Pll -' < d,
where d is the isolation distance of the eigenvalue A of T (the distance of A from other
eigenvalues Ak of T). In fact, I-(5.32) implies (S - aP) u = - (A - Ak)-' u if
u = Pk u (note that PIP5 , = 0, j + k, PPk = 0). Hence JIS - aP11 Z lA - Akl-1

for all k.
Problem 3.4. In Example 3.3 we have

(3.22) 11a/l S p l;l,c2el S p g i' >l S p q (p s + q) .... .

Remark 3.5. The series for P (x) can also be estimated by using the
majorizing function 0. In virtue of (1.16), (1.13) and (3.9), we have

-C
I

(3.23) P (x) 2a i f 01(C - A) (1 - O (C - A, x))-1 dC
IC-11=e

where fil (C - A) is a maj orizing series for R (c). The right member can be
calculated by the method of residues if 0 and 01 are given explicitly as
in Example 3.3.

3. Estimates on eigenvectors
It is often required to calculate eigenvectors rather than eigen-

projections. Since the eigenvectors are not uniquely determined, how-
ever, there are no definite formulas for the eigenvectors of T (m) as

1 This is seen also from (3.16), which has an expansion convergent for ixl < r
with r given by (3.21).
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functions of x. If we assume for simplicity that m = 1 (so that D = 0),
a convenient form of the eigenvector (p (x) of T (x) corresponding to the
eigenvalue A (x) is given by

(3.24) 99 (x) = (P (x) 99, vi)-1 P (x) 99

where 9, is an unperturbed eigenvector of T for the eigenvalue A and ,

is an eigenvector of T* for the eigenvalue A normalized by (99, y,) = 1.
Thus
(3.25) P9,=99, P*V =y,, (9,,P)=1.
That (3.24) is an eigenvector of T (x) is obvious since P (x) X is one-
dimensional. The choice of the factor in (3.24) is equivalent to each of
the following normalization conditions:

(3.26) (w (x), V) =1, (99 (x) - 99, ip) = 0 , P(99 (x) - 99) = 0 .

The relation (T (x) - A (x)) 99 (x) = 0 can be written

(3.27) (T - A) (99 (x) - 99) + (A (x) - A (x) + A) 99 (x) = 0

where A (x) = T (x) - T [note that (T - A) 99 = 0]. Multiplying (3.27)
from the left by S and using S (T - A) = 1 - P and (3.26), we have

(3.28) 99 (x) - 99 + S [A (x) - A (x) + A] 99 (x) = 0 .

Noting further that S 99 = 0, we obtain [write 9' (x) = q (x) - 9' + 99
in the last term of (3.28)]

(3.29) 97 (x) - 97 (1 + S [A (x) - A (x) + A])-1 S A (x) 92

S [ 1 + A (x) S - (A (x) - A) S]-1 A (x) 92

if x is sufficiently small, where Sa = S - a P and a is arbitrary. This is
a convenient formula for calculating an eigenvector.

In particular (3.29) gives the following majorizing series for 92 (x) - ip:

(3.30) 9' (x) - 99 _< IISII (1 - '2(x) - IIS«p fi(x))-1 03(x) 1

where 02 (x) and 03 (x) are majorizing series for A (x) S and A (x) 97 1
respectively [note that Y¶(x) is a majorizing series for A(x) - A]. The
eigenvector 99(m) is useful if In I is so small that the right member of
(3.30) is smaller than 119911, for then 97 (x) is certainly not zero.

Multiplication of (3.29) from the left by T - A gives

(3.31) (T - A) p (x) (1 - P) [1 + A (x) S - (A (x) -A) Sa]-1 A (x) 97

and hence
(3.32) (T - A) 99(x) _c (1 - 02(x) - JISa11 fi(x))-1 (3(x)

1 A majorizing series (function) for a vector-valued function can be defined in
the same way as for an operator-valued function.
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Example 3.6. If T") = 0 for n Z 2, we have A (x) = x T1) so that we may take

(3.33) 02(x) = x II T(1) S = x q , 0, (x) = x II 711) cII

Thus (3.30) and (3.32), after substitution of (3.16), give (so = IISII)

0 11 T11) 9,11
(3.34) (x) -

2 x s
1- (p s+q)x+{(1-(ps+q)x)a-4pgsxiff_

(3.35) (T - A) 4' (x) -c [the right member of (3.34) with the factor so omitted] .

Problem 3.7. Under the assumptions of Example 3.6, we have for
[r is given by (3.21)]

IxI <r

(3.36) (p(x)=q'-xST1)9'+%IS(T(1)-Aa))ST)9,-...
(3.37) 9,(x) - op .C sox(1 + (p s + q) x + ...) II T1) q,H ,

3 38 s 112 112 2 T1( . ) ,+ g )IIm(x) - c'II 9'IIIIIxI
(pgs)112

((p s)

3 39 a

so
hIz 2 112ST1) S 1"2( . ) + g ) ),(p s + q + (p 9 s)II9'(x) - +x us ((p s)9'II Ixl

(p q s)
(3.40) II (T - A) (q) (x) - p) II S so 1 [right member of (3.38)],

(3.41) II(T - A) (qq(x) - c + x ST1) q')II S so-' [right member of (3.39)].

[hint for (3.38) and (3.39) : Set x = r after taking out the factor IxI and Ixla, re-
spectively, from the majorizing series.]

4. Further error estimates
In view of the practical importance of the estimates for the remainder

when the series of A (m) is stopped after finitely many terms, we shall
give other estimates of the coefficients I(n) than those given by (3.5)
or by the majorizing series (3.13).

We write the integral expression (2.30) of I('") in the following form:

(3.42) 1(n)= 2nim f (-
1)D

f tr[T(y')R(C)...T(ID)R(C)-
y1+...+yD=n p r

- T(") S(g) ... PIP) S(C)] dC

Here S (C) is the reduced resolvent of T with respect to the eigenvalue A
(see I-§ 5.3), that is,

(3.43) R(C) = Ro (C) + S (C) , R0() = PR (C) = R (C) P ,

is the decomposition of R (C) into the principal part and the holomorphic
part at the pole C = A. Note that the second term in the [ ] of (3.42) is
holomorphic and does not contribute to the integral. Now this expression
in [ ] is equal to

(3.44)
T(14 Ro (C) T (I-) R (C)... T(11)R(C) + T (y1) S (C) T (y') Ro (r) ... T (vP) R M+

+ ... + T(v,) S(g) ... T(yr-1) S(C) T(&P) Ro(C) ,

each term of which contains one factor Ro (C) = PR (c). Since this factor
has ranks m, the same is true of each term of (3.44) and, consequently,
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the rank of (3.44) does not exceed min (p m, N), where N = dim X.
Thus the trace in (3.42) is majorized in absolute value by min (p m, N)
times the norm of this expression [see I-(5.42)]. This leads to the estimate

(3.45) IA(n) 15 2 Vj --
4' min 1,

p
m) f h D "O R (C) ... T(la) R

r
- T("") S(C) ... T(""P) S(C)II IdCI

A somewhat different estimate can be obtained in the special case
in which T(n) = 0 for n __> 2. In this case we have (2.34), where P(n-1)
has rank S min (n m, N) by (2.53). Hence we have, again estimating
the trace by min (n m, N) times the norm,

(3.46) I1(0I S min \1, nm) I I T(1) P(n-1)II , n = 1, 2, ... .

On the other hand (2.8) gives

(3.47) II T(1) P(--1)11 < f 11 (T(1) R IdCI S 2ac f II T(1)R IdCj
r r

S2 IIT(1)IInf IIR(C)IIlIdCI
r

Substitution of (3.47) into (3.46) gives an estimate of Il(n).
Remark 3.8. Under the last assumptions, the T(1) in (3.46-47) for

n 2 may be replaced by T(1) - a for any scalar a. This follows from
the fact that the replacement of TM by TM - a changes T (x) only by the
additive term - a x and does not affect AN for n z 2. In particular,
the II T(1)II in the last member of (3.47) may be replaced by

(3.48) ao = min II T(1) - aII
a

5. The special case of a normal unperturbed operator
The foregoing results on the convergence radii and error estimates

are much simplified in the special case in which X is a unitary space
and T is normal. Then we have by I-(6.70)

(3.49) 11R II = 1/dist(C, E (T))

for every C E P (T).
If we further assume that the T(n) satisfy the inequalities (3.7),

then (3.8) gives

(3.50) ro = mr (diet(g,
a
E (z))

+
c

1

as a lower bound for the convergence radii for P (x) and A (m). If we choose
as r the circle IC - AI = d/2 where d is the isolation distance of the
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eigenvalue A of T (see par. 2), we obtain

(3.51) ro = (da -I- c)-1.

In the remainder of this paragraph we shall assume that T (n) = 0
for n z 2. Then we can take c = 0 and a = II T MII , and (3.51) becomes

(3.52) ro = d/2a = d/2 II T(1)II

In other words, we have
Theorem 3.9.1 Let X be a unitary space, let T (x) = T + x Tel) and

let T be normal. Then the power series for P (x) and A (x) are convergent if
the "magnitude of the perturbation" 11m T(l)II is smaller than half the isolation
distance of the eigenvalue A of T.

Here the factor 1/2 is the best possible, as is seen from

Example 3.10. Consider Example 1.1, a) and introduce in X the unitary norm
I-(6.6) with respect to the canonical basis for which T (x) has the matrix a). It is
then easy to verify that T is normal (even symmetric), 11 VD11 = I and d = 2 for
each of the two eigenvalues ± 1 of T. But the convergence radii of the series (1.4)
are exactly equal to ro = 1 given by (3.52).

Remark 3.11. a = II T (')II in (3.52) can be replaced by ao given by
(3.48) for the same reason as in Remark 3.8.

For the coefficients )fin), the formula (3.5) gives

2 n-1
(3.53) I,AJAM I S a, 110) I S

a0

(d , n z 2,

for we have p = d/2 for the P under consideration (see Remark 3.11).
The formulas (3.46-47) lead to the same results (3.53) if the same P
is used.

But (3.46) is able to give sharper estimates than (3.53) in some special
cases. This happens, for example, when T is symmetric so that the eigen-
values of T are real. In this case, considering the eigenvalue A of T,
we can take as r the pair rl, r2 of straight lines perpendicular to the
real axis passing through (A + Al)/2 and (A + A2)/2, where Al and A2
denote respectively the largest eigenvalue of T below A and the smallest
one above. On setting

(3.54) d1=A-Al, d2=A2-A,
we have

(3.55) IIR(C)II=(4 -t-rl2)-1hI2, CEI',s, j=1,2, rl=ImC.

1 See T. KATO [1], SCHAFKE [4].



96 II. Perturbation theory in a finite-dimensional space

Hence (3.46-47) with Remark 3.8 give for n Z 2

(3.56)

2

_ n _ n
(' /'(< --!-min (1, m)ao J 41 ad's+ f(4 +n2) add]

=min (1' m) 'r(n2'n) ae 2 {(di)n-1+ (da)n-1]Y r(2)
in which I' denotes the gamma function. It should be noted that if A
is the smallest or the largest eigenvalue of T, we can set d1 = oo or
d2 = oo, respectively, thereby improving the result.

It is interesting to observe that (3.56) is "the best possible", as is
seen from the following example.

Example 3.12. Again take Example 3.10. We have N = 2, A = 1, m = 1,
dl = 2, d2 = oo and ao = 11 VD11 = 1 and (3.56) gives

r(n-1)
(3.57) IAcn>I = Acn <

2

yn nr(2)
The correct eigenvalue A (x) is

(3.58) A(x) _ (1 + x2)1/2 = Z (1/2) n2n
p=0 P

The coefficient A(n) of xn in this series is (1n/2) for even n and is exactly equal to the

right member of (3.57).

The factor an = T (n
2

) I T (2) in (3.56) has the following
values for smaller n :

to an

2 1 = 1.0000
3 2/n = 0.6366
4 1/2 = 0.5000
5 4/3n = 0.4244
6 3/8 = 0.3750

an has the asymptotic value n-1/2 for n -+ col. Thus (3.56) shows that A(n)
is at most of the order

2 n-1
(3.59) const d n-3/2, d = min (d1, d2) .

But n-3/2 must be replaced by n-1/2 if N = oo, and this should be done
for practical purposes even for finite N if it is large.

1 The r-function has the asymptotic formula r (x + 1)= (2n)1/2 xx } 1/2 e-(1 +
+ 0 (z-1)).
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Problem 3.13. (3.56) is sharper than (3.53).
Problem 3.14. Why do the equalities in (3.57) hold for even n in Example 3.10 ?
Let us now compare these results with the estimates given by the method of

majorizing series. We first note that

(3.60) D = 0, IIpII=1, IISII=l/d,
since T is assumed to be normal. If we replace (3.15) byp = II T'>II = a, q = II T11II II SII
= ald and s = 11 S11 = 1/d, (3.21) gives r = d/4a as a lower bound for the con-
vergence radii, a value just one-half of the value (3.52). On the other hand, the
majorizing series (3.16) for A(x) - A becomes after these substitions

(3.6,1) Vf(x) =ax+ d .
2a2 x2

tax+4a \2I2
d

1/2 dxax-1

xn._ (- 1)1-1 ( n ) 22x-1n=1
The estimates for i(l) obtained from this majorizing series are

(3.62) 1;1n>1 < a , 12(2>I S ag/d , IAcs>I S 2ag/d2 , IAc4>I S 5a$ /d3, .. .
(replacement of a by ao is justified by Remark 3.8). (3.62) is sharper than (3.53)
for n G 5 but not for n Z 6. It is also sharper than (3.56) (with d, and d2 replaced
by d) for n:< 3 but not for n > 4. In any case the majorizing series gives rather
sharp estimates for the first several coefficients but not for later ones. In the same
way the majorizing series (3.34) for the eigenfunction becomes (in the case m = 1)

(3.63) (x) - 9' -C
2x 11 211> y,II/d

1 - six +
\1

- 4x`12

v

/II

n-1

d

n / 1 22n+1 xn
d

1)n (n + 11

For the first several coefficients of the expansion 97 (x) - q' = E xx 971n>, this
gives (replacing a by ao as above)

(3.64) I197u>II S 11711) 97II/d , 1197(2)11 S 211 T'> 9,11 colds

119,(111115 511 Tu> 9,11 ao/ds , 119,(1111 S 1411 Ta> 9>II ao/d4, ... .

Here 11TH) 9711 may also be replaced by min11(T(') - a) 9711 for the same reason as

above'.

6. The enumerative method
An estimate of J(n) can also be obtained by computing directly the

number of terms in the explicit formula (2.31) 2. To illustrate the method,
we assume for simplicity that X is a unitary space, TM = 0 for n z 2
and that T is normal. Recalling that S() = Sk, S(°) P and S(-k)
= Dk = 0, k > 0, and noting (3.60), we obtain

(3.65) I1(n) 15 1 ! Itr T(I) SO-) ... TM S00I .
nm kid ... kn.n-I

1 For related results see RELLICH [4] and SCHRODER [1]- [3].
2 Cf. BLOCH [1].
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Now the expression after the tr sign in (3.65) contains at least one
factor S(°) = - P, so that this expression is of rank f,- in. Hence this
trace can be majorized by m times the norm of this operator as we have
done before, giving

(2n - 2)! a" 2 -1
(3.66) 11(")1 s n!(n-1)! \a/ , n2.
Here we have replaced 11 T(1)IJ by a° for the same reason as above. The
numerical factor 2' ' n fi" _ (2n - 2) !/((n - 1) 1)2 is the number of
solutions of k1 + + k, = n - 1. For smaller values of n we have

n
fl.

2 1 = 1.0000
3 1/2 = 0.5000
4 5/8 = 0.6250
5 7/8 = 0.8750
6 21/16 = 1.3125

This shows that the estimate (3.66) is sharper than the simple estimate
(3.53) only for n < 5. In fact j" has the asymptotic value -1/2 n-3/2 2"-1

for n -* oo, which is very large compared with unity.
Actually (3.66) is only a special case of the result obtained by the

majorizing series: (3.66) is exactly the n-th coefficient of (3.61) for n z 2
(again with a replaced by a°).

Thus the enumerative method does not give any new result. Further-
more, it is more limited in scope than the method of majorizing series,
for it is not easy to estimate effectively by enumeration the coefficients
IN in more general cases.

Summing up, it may be concluded that the method of majorizing
series gives in general rather sharp estimates in a closed form, especially
for the first several terms of the series. In this method, however, it is
difficult to take into account special properties (such as normality) of the
operator. In such a special case the simpler method of contour integrals
appears to be more effective. The estimates (3.50), (3.51) and (3.52)
have so far been deduced only by this method.

§ 4. Similarity transformations of the eigenspaces
and eigenvectors

1. Eigenvectors
In the preceding sections on the perturbation theory of eigenvalue

problems, we have considered eigenprojections rather than eigenvectors
(except in § 3.3) because the latter are not uniquely determined. In some
cases, however, it is required to have an expression for eigenvectors
q,, (x) of the perturbed operator T (m) for the eigenvalue Ah (x). We shall
deduce such formulas in the present section, but for simplicity we shall be
content with considering the generalized eigenvectors; by this we mean
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any non-zero vector belonging to the algebraic eigenspace Mh (x) = Ph(x)X
for the eigenvalue 1h (x) (see I-§ 5.4). Of course a generalized eigenvector
is an eigenvector in the proper sense if Ah (x) is semisimple.

These eigenvectors can be obtained simply by setting
(4.1) 99h h (x) = Ph (x) 99h ,

where the 99k are fixed, linearly independent vectors of X. For each h
and k, 99h, (x) is an analytic function of x representing a generalized
eigenvector of T (x) as long as it does not vanish. This way of constructing
generalized eigenvectors, however, has the following inconveniences,
apart from the fact that it is rather artificial. First, gghh(x) may become
zero for some x which is not a singular point of 2h (x) or of Ph (x). Second,
the 99hh(x) for different k need not be linearly independent; in fact there
do not exist more than mf linearly independent eigenvectors for a 2h (x)
with multiplicity mf.

These inconveniences may be avoided to some extent by taking the
vectors o, from the subspace Mh (xo) where xo is a fixed, non-exceptional
point. Thus we can take exactly mf linearly independent vectors 99h E
E Mh(xo), and the resulting m; vectors (4.1) for fixed h are linearly
independent for sufficiently small Ix - xoI since Ph(x) is holomorphic at
x = xo. Since dim Mh (x) = mh, the mh vectors 9,h h (x) form a basis of
Mh (x). In this way we have obtained a basis of Mh (x) depending holo-
morphically on x.

But this is still not satisfactory, for the 47hh(x) may not be linearly
independent (and some of them may vanish) for some x which is not
exceptional. In the following paragraphs we shall present a different
procedure which is free from such inconveniences.

2. Transformation functions'
Our problem can be set in the following general form. Suppose that a

projection P (x) in X is given, which is holomorphic in x in a domain D
of the x-plane. Then dim P (x) X = m is constant by Lemma I-4.10.
It is required to find m vectors 997, (x), k = 1, ..., m, which are holo-
morphic in x and which form a basis of M (x) = P (x) X for all x E D.

We may assume without loss of generality that x = 0 belongs to D.
Our problem will be solved if we construct an operator-valued function
U (x) [hereafter called a transformation function for P (x) ] with the
following properties :

(1) The inverse U(m)-1 exists and both U(x) and U(m)-1 are holo-
morphic for x E D ;

(2) U (x) P (0) U (x)-1 = P (x).

1 The results of this and the following paragraphs were given by T. KATO [2]
in connection with the adiabatic theorem in quantum mechanics.
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The second property implies that U (x) maps M (0) onto M (x) one
to one (see I-§ 5.7). If {q, }, k = 1, ..., m, is a basis of M (0), it follows
that the vectors
(4.2) 991,(x) = U (m) 991, , k = 1, ..., m ,

form a basis of M(x), which solves our problem.
We shall now construct a U (m) with the above properties under the

assumption that D is simply connected. We have

(4.3) P (x)' = P (x)
and by differentiation
(4.4) P (x) P' (x) + P' (x) P (x) = P' (x)

where we use ' to denote the differentiation d/dx. Multiplying (4.4)
by P (x) from the left and from the right and noting (4.3), we obtain
[we write P in place of P(x), etc., for simplicity]

(4.5) PPP = 0.
We now introduce the commutator Q of P and P:

(4.6) Q (x) _ [P'`(x), P (x) ] = P' (x) P (x) - P (x) P' (x) .

Obviously P and Q are holomorphic for x E D. It follows from (4.3),
(4.5) and (4.6) that
(4.7) PQ=-PP', QP=P'P.
Hence (4.4) gives
(4.8) P' = [Q, P] .

Let us now consider the differential equation

(4.9) X' = Q (X) X

for the unknown X = X (x). Since this is a linear differential equation,
it has a unique solution holomorphic for x E D when the initial value
X (O) is specified. This can be proved, for example, by the method of
successive approximation in the same way as for a linear system of ordinary
differential equations'.

' In fact (4.9) is equivalent to a system of ordinary differential equations in a
matrix representation. But it is more convenient to treat (4.9) as an operator
differential equation without introducing matrices, in particular when dimX = 00
(note that all the results of this paragraph apply to the infinite-dimensional case
without modification). The standard successive approximation, starting from the
zeroth approximation X. (x) = X (0), say, and proceeding by X (x) = X (0) +

X

+ f Q(x) dx, gives a sequence of holomorphic operator-valued
0

functions; it is essential here that D is simply-connected. It is easy to show that
X. (x) converges to an X (x) uniformly in each compact subset of D and that X (x)
is the unique holomorphic solution of (4.9) with the given initial value X (0). Here
it is essential that the operation X -+ Q (x) X is a linear operator acting in R (X).
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Let X (x) = U (x) be the solution of (4.9) for the initial condition
X (O) = 1. The general solution of (4.9) can then be written in the form

(4.10) X (M) = UM X (O) .
In fact (4.10) satisfies (4.9) and the initial condition ; in view of the
uniqueness of the solution it must be the required solution.

In quite the same way, the differential equation

(4.11) Y' = - YQ (x)

has a unique solution for a given initial value Y (0). Let Y = V (x) be the
solution for Y (0) = 1. We shall show that U (x) and V (x) are inverse
to each other. The differential equations satisfied by these functions
give (V U)' = V' U + V U' = -VQU +VQU = 0. Hence VU is a
constant and
(4.12) V (x) U (x) = V (0) U (0) = 1 .

This proves that V = U-1 and, therefore, we have also

(4.13) U (M) V (X) = 1 .

We shall give an independent proof of (4.13), for later reference,
for (4.13) is not implied by (4.12) if the underlying space is of infinite
dimension. We have as above

(4.14) (UV)' = QUV - UVQ = [Q, UV].

This time it is not obvious that the right member of (4.14) is zero.
But (4.14) is also a linear differential equation for Z = U V, and the
uniqueness of its solution can be proved in the same way as for (4.9)
and (4.11). Since Z (x) = 1 satisfies (4.14) as well as the initial condition
Z (0) = 1 = U (0) V (0), U V must coincide with Z. This proves (4.13) 1.

We now show that U(x) satisfies the conditions (1), (2) required
above. (1) follows from U(x)-1= V (x) implied by (4.12) and (4.13).
To prove (2), we consider the function P (x) U (x). We have

(4.15) (PU)'=P'U+PU'=(P'+PQ)U=QPU
by (4.9) and (4.8). Thus X = P U is a solution of (4.9) with the initial
value X (0) = P (0) and must coincide with U (x) X (0) = U (x) P (0) by
(4.10). This is equivalent to (2).

Remark 4.1. In virtue of (4.7), the Q in the last member of (4.15)
can be replaced by P'. Thus the function W (x) = U (x) P (0) = P (x) U (x)
satisfies the differential equation

(4.16) W' = P' (x) W,

1 (4.13) can also be deduced from (4.12) by a more general argument based on
the stability of the index; cf. X-§ 5.5.
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which is somewhat simpler than (4.9). Similarly, it is seen that Z(x)
= P (O) U (x)-' satisfies

(4.17) Z' = Z P, (x)

Remark 4.2. U (x) and U (x)-1 can be continued analytically as long
as this is possible for P (x). But it may happen that they are not single-
valued even when P (x) is, if the domain of x is not simply connected.

Remark 4.3. The construction of U (x) can be carried out even if x
is a real variable. In this case P (m) need not be holomorphic ; it suffices
that P (x) exists and is continuous (or piecewise continuous). Then U(x)
has a continuous (piecewise continuous) derivative and satisfies (1), (2)
except that it is not necessarily holomorphic in x.

Remark 4.4. The transformation function U (x) is not unique for a
given P (x). Another U (x) can be obtained from the result of I-§ 4.6, at
least for sufficiently small Ix I. Substituting P (O), P (m) for the P, Q of
I-§ 4.6, we see from I-(4.38) that'
(4.18)

U (x) = [1 - (P (x) - P (0))21-1/2 [P (x) P (0) + (1 - P (x)) (1 - P (0))]

is a transformation function if Ix I is so small that 11 P (x) - P (0) 11 < 1.
(4.18) is simpler than the U (x) constructed above in that it is an algebraic
expression in P (x) and P (0) while the other one was defined as the
solution of a differential equation. But (4.18) has the inconvenience that
it may not be defined for all x E D.

3. Solution of the differential equation
Since we are primarily interested in the mapping of M (0) onto M (x)

by the transformation function U (x), it suffices to consider W (x)
= U (x) P (0) instead of U (x). To determine W it suffices to solve the
differential equation (4.16) for the initial condition W (0) = P (0).

Let us solve this equation in the case where P (x) is the total projec-
tion for the A-group eigenvalues of T (x). P (x) has the form (2.3), so that

00

(4.19) P' (x) = E (n + 1) Mn p(n+1)
n=0

Since W (0) = P (0) = P, we can write

(4.20)
00

W (x) = P + _Y Mn W (n) .

n.1

Substitution of (4.19) and (4.20) into (4.16) gives the following recur-
rence formulas for W(n):

(4.21) nW(n) = nP(n) P + (n - 1) P(n-1) W(') ..}.... + P(1) W(n-1) ,

n = 1, 2, .. .

1 (4.18) was given by Sz.-NAGY [1] in an apparently different form.
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The W(n) can be determined successively from (4.21) by making use
of the expressions (2.12) for P(n). In this way we obtain

(4.22) WMl> = PM P,

W(2) = P(2) P + [P(i)]2 P

WM3> = P3> P + 3 P(2) P(1) P + P(i) (2) P + 6 [P(1)]3P.

If the eigenvalue 2 of T is semisimple, we have by (2.14)

(4.23) W(i) = - S T (l> P ,

W(2) =-ST(2) P+STMI>STMI>P-S2TM1>PTMI>P-

- PTMI> S2 TM P .

In case the 2-group consists of a single eigenvalue (no splitting),
M (m) = P (m) X is itself the algebraic eigenspace of T (m) for this eigen-
value, and we have a set of generalized eigenvectors

(4.24) k (x) = W (x) k , k = 1, ..., m ,

where {q9k}, k = 1, . . ., m, is a basis of M (0). According to the properties
of W (x), the m vectors (4.24) form a basis of M (x).

The function Z (x) = P (0) U (x)-1 can be determined in the same way.
Actually we need not solve the differential equation (4.17) independently.
(4.17) differs from (4.16) only in the order of the multiplication of the
unknown and the coefficient P(x). Thus the series E Mn Z(') for Z (x) is
obtained from that of W (x) by inverting the order of the factors in each
term. This is true not only for the expression of Z(n) in terms of the p(n)
but also in terms of P, S, TM, T(2), . . . as in (4.23). This is due to the
fact that the expressions (2.12) for the POn> are invariant under the
inversion of the type described. This remark gives, under the same
assumption that 2 is semisimple,

(4.25) Z(l> = - P TM S ,

Z(2) = -P T(2) S + PTMI> STMl> S - PTM1> PTMI> S2

- 2 PTMI>S2TM1>P.

Remark 4.5. The other transformation function U (x) given by (4.18)
can also be written as a power series in x under the same assumptions.
As is easily seen, the expansion of U (m) P coincides with that of W (M)
deduced above up to the order x2 inclusive.
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4. The transformation function and the reduction process
The transformation function U (m) for the total projection P(M) for

the A-group constructed above can be applied to the reduction process
described in § 2.3. Since the A-group eigenvalues are the eigenvalues of
T (x) in the invariant subspace M (x) = R (P (x)) and since U (x) has the
property P (m) = U (n) P U (x)-1, the eigenvalue problem for T (m) in
M (m) is equivalent to the eigenvalue problem for the operator

(4.26) U()-' T (m) U (m)

considered in the subspace M = M (0) = R (P) (which is invariant under
this operator). In fact, (4.26) has the same set of eigenvalues as T(M),
whereas the associated eigenprojections and eigennilpotents of (4.26)
are related to those of T (x) by the similarity transformation with U (x)-1.
Since we are interested in the A-group only, it suffices to consider the
operator
(4.27) P U (x)-1 T (m) U (m) P= Z (x) T (m) W (m)

with the Z and W introduced in the preceding paragraphs.
(4.27) is holomorphic in x and in this sense is of the same form as the

given operator T (x). Thus the problem for the A-group has been reduced
to a problem within a fixed subspace M of X. This reduction of the original
problem to a problem in a smaller subspace M has the advantage that M
is independent of x, whereas in the reduction process considered in § 2.3
the subspace M (x) depends on x. For this reason the reduction to (4.27)
is more complete at least theoretically, though it has the practical
inconvenience that the construction of U (m) is not simple.

In particular it follows that the weighted mean A (x) of the A-group
eigenvalues is equal to m-1 times the trace of (4.27) :

(4.28) 1 (x) = m-1 trZ (x) T (x) W (x)
= A + m-1 trZ(x) (T (x) - A) W (m) .

Substitution of (4.23) and (4.25) for the coefficients of W (M) and Z (x)
leads to the same results as in (2.33).

Problem 4.6. Verify the last statement.

5. Simultaneous transformation for several projections
The U (x) considered in par. 2 serves only for a single projection P (n).

We shall now consider several projections Ph (u), h = 1, . . ., s, satisfying
the conditions
(4.29) Ph (x) Ph (x) = 6hh Ph (x)

and construct a transformation function U (x) such that

(4.30) UM PAM UN' = Ph (x) , h = 1 , ..., s .
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As a consequence, we can find a basis {phi (x), ..., Ph.m (x)} of each
subspace Mh (x) = R (Ph (x)) by setting

(4.31) Thf(x) = U(x) Thl,

where {Th1, ..., Th.,} is a basis of Mh = Mh (0).
As before we assume that the Ph (x) are either holomorphic in a

simply-connected domain D of the complex plane or continuously
differentiable in an interval of the real line. We may assume that the
set {Ph(x)} is complete in the sense that

(4.32) Ph (x) = 1 .
h=1

s

Otherwise we can introduce the projection Po (x) = 1 - Ph (x) ;
h=1

the new set {Ph (x)}, h = 0, 1, ..., s, will satisfy (4.29) as well as the
completeness condition, and U (x) satisfies (4.30) for the old set if and
only if it does the same for the new set.

The construction of U (x) is similar to that for a single P (x). We
define U (x) as the solution of the differential equation (4.9) for the
initial value X (0) = 1, in which Q (x) is to be given now by

(4.33) Q (x) = 2 Z,' [P1" (x), Ph (x)] _ ' PA' (x) Ph (x)
h h=1

Ph (x) Pk (x) .
h=1

The equality of the three members of (4.33) follows from (4.32), which
implies that E Pk Ph + E Ph Pk = E'(Ph)' = E' Pk = 0. Note also that
this Q (x) coincides with (4.6) in the case of a single P (m); the apparent
difference due to the presence in (4.33) of the factor 1/2 arises from the
fact that in (4.33) we have enlarged the single P (x) to the pair {P (x),
1 - P(x)} so as to satisfy the completeness condition (4.32).

The argument of par. 2 [in particular (4.15)] shows that (4.30) is
proved if we can show that

(4.34) Pk(x) = [Q(x), Ph(x)] , h = 1, ..., S .

To prove this we differentiate (4.29), obtaining

(4.35) Pk Ph + Ph Pk = 670, Pk .

Multiplication from the left by Ph gives Ph Pk Ph + Ph Pk = bhh Ph Ph'

= Ph Ph Pk, which may be written

(4.36) - [Ph Pk, Ph] = Ph PA'.

Summation over h = 1, ..., s gives (4.34) in virtue of (4.33).



106 H. Perturbation theory in a finite-dimensional space

Obviously a simultaneous transformation function U (x) can be
constructed in this way for the set of all eigenprojections Ph (x) of T (M)
in any simply connected domain D of the x-plane in which the Ph (x)
are holomorphic1.

6. Diagonalization of a holomorphic matrix function
Let (t;h(x)) be an N X N matrix whose elements are holomorphic

functions of a complex variable x. Under certain conditions such a
matrix function can be diagonalized, that is, there is a matrix (y;h (x))
with elements holomorphic in x such that

(4.37) (4h(x)) = (Yjh(x))-I(tjh(x)) (Yjh(x))
is a diagonal matrix for every x considered.

This problem can be reduced to the one considered in this section.
It suffices to regard the given matrix as an operator T (m) acting in the
space X = CN of numerical vectors and apply the foregoing results.
If the value of x is restricted to a simply-connected domain D containing
no exceptional points, we can construct the U(x) and therefore a basis
(4.31) consisting of vector functions holomorphic for x E D and adapted
to the set {Ph (x)} of eigenproj ections of T (x). With respect to such a basis,
the matrix representation of T (x) takes the simple form described in
I-§ 5.4. In particular it is a diagonal matrix with diagonal elements
Ah (x) if the Dh (x) are all identically zero [which happens, for example, if
all mh = 1 or T (x) is normal for real x, say]. As is seen from I-§ 5.4,
this is equivalent to the existence of a matrix function (y; h (x)) with the
required property (4.37). Note that the column vectors (y,h (x), ...,
YNI(s)) are eigenvectors of the given matrix (a;h(n)).

S 5. Non-analytic perturbations
1. Continuity of the eigenvalues and the total projection

In the preceding sections we considered the eigenvalue problem for
an operator T (x) E . (X) holomorphic in x and showed that its eigen-
values and eigenprojections are analytic functions of x. We now ask
what conclusions can be drawn if we consider a more general type of
dependence of T (m) on n 2.

First we consider the case in which T (x) is only assumed to be
continuous in x. x may vary in a domain Do of the complex plane or in

1 The transformation function U (x) has important applications in the adiabatic
theorem in quantum mechanics, for which we refer to T. KATO [2], GARRIDO [1],
GARRIDO and SANCHO [1].

9 This question was discussed by RELLICH [1], [2], [8] (in greater detail in [8])
for symmetric operators.
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an interval I of the real line. Even under this general assumption, some
of the results of the foregoing sections remain essentially unchanged.

The resolvent R (C, x) = (T (x) - is now continuous in C and x
jointly in each domain for which C is different from any eigenvalue of
T (x). This is easily seen by modifying slightly the argument given in
§ 1.3; we need only to note that the A (x) = T (x) - T in (1.11) is no
longer holomorphic but tends to zero for x --k 0 (T = T (0)).

It follows that R (C, x) exists when C is in the resolvent set P (T) of T
provided that Ix I is small enough to ensure that

(5.1) IIT(x) - TII < IIR(C)II-1 R(C, 0));

see (1.12). Furthermore, R x) -+ R for x -* 0 uniformly for belong-
ing to a compact subset of P(T).

Let A be one of the eigenvalues of T, say with (algebraic) multiplicity
m. Let r be a closed curve enclosing A but no other eigenvalues of T.
II R II -1 has a positive minimum 6 for C E P, and R x) exists for all
C E P if II T (x) - TII < 6. Consequently the operator P (x) is again
defined by (1.16) and is continuous in x near x = 0. As in the analytic
case, P(x) is the total projection for the eigenvalues of T (M) lying
inside P. The continuity of P (x) again implies that

(5.2) dim M (x) = dim M = m , M(x)=P(x)X, M = M (0) = PX ,

where P = P (0) is the eigenprojection of T for the eigenvalue A. (5.2)
implies that the sum of the multiplicities of the eigenvalues of T (x)
lying inside r is equal to m. These eigenvalues are again said to form the
A-group.

The same results are true for each eigenvalue Ah of T. In any neigh-
borhood of Ah, there are eigenvalues of T (m) with total multiplicity
equal to the multiplicity mh of Ah provided that Ix I is sufficiently small.
Since the sum of the mh is N, there are no other eigenvalues of T (x).
This proves (and gives a precise meaning to) the proposition that the
eigenvalues of T (x) are continuous in x.

We assumed above that T (x) is continuous in a domain of x. But
the same argument shows that the eigenvalues of T (x) and the total
projection P (x) are continuous at x = 0 if T (x) is continuous at x = 0.
To see this it suffices to notice that R x) --- R (4), x -> 0, uniformly for
C E P. We may even replace T (x) by a sequence such that T ->. T,
n --> oo. Then it follows that the eigenvalues as well as the total projec-
tions of T tend to the corresponding ones of T for n -- oo.

Summing up, we have
Theorem 5.1. Let T (x) be continuous at x = 0. Then the eigenvalues of

T (x) are continuous at x = 0. 11 A is an eigenvalue of T = T (0), the
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2-group is well-defined for sufficiently small Ix and the total projection
P (x) for the 2-group is continuous at x = 0. If T (x) is continuous in a
domain of the x plane or in an interval of the real line, the resolvent
R x) is continuous in C and x jointly in the sense stated above.

2. The numbering of the eigenvalues
The fact proved above that the eigenvalues of T (x) change contin-

uously with x when T (x) is continuous in x is not altogether simple
since the number of eigenvalues of T (x) is not necessarily constant.
It is true that the same circumstance exists even in the analytic case,
but there the number s of (different) eigenvalues is constant for non-
exceptional x. In the general case now under consideration, this number
may change with x quite irregularly; the splitting and coalescence of
eigenvalues may take place in a very complicated manner.

To avoid this inconvenience, it is usual to count the eigenvalues
repeatedly according to their (algebraic) multiplicities as described in
I-§ 5.4 (repeated eigenvalues). The repeated eigenvalues of an operator
form an unordered N-tuple of complex numbers. Two such N-tuples
6 = (,ul, ..., ,uN) and 6' = (/4, ..., ,u') may be considered close to each
other if, for suitable numbering of their elements, the are small
for all n = 1, ..., N. We can even define the distance between such two
N-tuples by

(5.3) dist (6, 6') = min max ,u;,I

where the min is taken over all possible renumberings of the elements of
one of the N-tuples. For example, the distance between the triples
(0, 0, 1) and (0, 1, 1) is equal to 1, though the set {O, 1} of their elements
is the same for the two triples. It is easy to verify that the distance thus
defined satisfies the axioms of a distance function.

The continuity of the eigenvalues of T (x) given by Theorem 5.1
can now be expressed by saying that the N-tuple a (x) consisting of the
repeated eigenvalues of T (x) changes with x continuously. This means that
the distance of 6 (x) from 6 (,D) tends to zero for x -> xo for each fixed xo.

The continuity thus formulated is the continuity of the repeated
eigenvalues as a whole. It is a different question whether it is possible to
define N single-valued, continuous functions ,un (x), n = 1, ..., N, which
for each x represent the repeated eigenvalues of T (u). Such a para-
metrization is in general impossible. This will be seen from Example
1.1, d), in which the two eigenvalues are ±x1/2; here it is impossible to
define two single-valued 'continuous functions representing the two
eigenvalues in a domain of the complex plane containing the branch
point x=0.
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A parametrization is possible if either i) the parameter x changes
over an interval of the real line or ii) the eigenvalues are always real.
In case ii) it suffices to number the eigenvalues ,u,, (x) in ascending (or
descending) order :

(5.4) Y1 (9) S J Z2 (x) S ... < JZN (x)

It should be noted, however, that this way of numbering is not always
convenient, for it can destroy the differentiability of the functions which
may exist in a different arrangement.

The possibility of a parametrization in case i) is not altogether
obvious. This is contained in the following theorem.

Theorem 5.2. Let 6 (x) be an unordered N-tuple of complex numbers,
depending continuously on a real variable x in a (closed or open) interval I.
Then there exist N single-valued, continuous functions ,u,, (x), n = 1, ..., N,
the values of which constitute the N-tuple 6 (x) for each x E I. [(4u,, (x))

is called a representation of 6(x).]
Proof. For convenience we shall say that a subinterval Io of I has

property (A) if there exist N functions defined on Io with the properties
stated in the theorem. What is required is to prove that I itself has
property (A). We first show that, whenever two subintervals It, I2 with
property (A) have a common point, then their union Io = I1 v I2 also
has the same property. Let (M11) (x)) and (u ) (x)) be representations of
6 (x) in It and 12, respectively, by continuous functions. We may assume
that neither I1 nor I2 contains the other (otherwise the proof is trivial) and
that It lies to the left of 12. For a fixed xo lying in the intersection of It and
I2, we have ,u(t) (x°) = ,u;,2) (x°), n = 1, ..., N, after a suitable renumbering
of (,u;,2)), for both (,u;,tl (x°)) and (,u;,2> (x°)) represent the same 6 (xo). Then
the functions u;°> (x) defined on Io by

(5.5) (x)

,unl (x) , x 5 xo

Y. (M) x z x°n l

are continuous and represent e (x) on I°.
It follows that, whenever a subinterval I' has the property that each

point of I' has a neighborhood with property (A), then I' itself has
property (A).

With these preliminaries, we now prove Theorem 5.2 by induction.
The theorem is obviously true for N = 1. Suppose that it has been
proved for N replaced by smaller numbers and for any interval I. Let r
be the set of all x E I for which the N elements of 6 (x) are identical,
and let i be the complement of r in I. P is closed and A is open relative
to I. Let us now show that each point of i has a neighborhood having
property (A). Let x° E A. Since the N elements of 6 (x°) are not all
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identical, they can be divided into two separate groups with Nl and N2
elements, where Nl + N2 = N. In other words, 6 (xa) is composed of an
N1-tuple and an N2-tuple with separate elements ("separate" means
that there is no element of one group equal to an element of the other).
The continuity of 0 (x) implies that for sufficiently small Ix - x,1, 0 (x)
consists likewise of an N1-tuple and an N2 tuple each of which is con-
tinuous in x. According to the induction hypothesis, these Nl and NZ
tuples can be represented in a neighborhood A' of xo by families of
continuous functions (p., (m), ..., JUN, (x)) and (µN,+1(x), ..., ,uN (x)),
respectively. These N functions taken together then represent 0 (x) in A'.
In other words, A' has property (A).

Since A is open in I, it consists of at most countably many sub-
intervals I, I2, ... . Since each point of A has a neighborhood with
property (A), it follows from the remark above that each component
interval I., has property (A). We denote by p(P) (x), n = 1, ..., N, the N
functions representing e (x) in Ii,. For x E F, on the other hand, 0 (x)
consists of N identical elements ,u (x). We now define N functions ,u,, (x),
n= 1, . . ., N, on I by

(5.6) Jun (x) _
A.") (x) , x E Ifl , p = 1, 2, ... ,
,u(x), xEP.

These N functions represent e (x) on the whole interval I. It is easy to
verify that each ,u (x) is continuous on I. This completes the induction
and the theorem is proved.

3. Continuity of the eigenspaces and eigenvectors
Even when T (x) is continuous in x, the eigenvectors or eigenspaces

are not necessarily continuous. We have shown above that the total
projection P (m) for the A-group is continuous, but P (m) is defined only
for small IkI for which the A-group eigenvalues are not too far from A.

If T (x) has N distinct eigenvalues Ah (x), h = 1, ..., N, for all x
in a simply connected domain of the complex plane or in an interval of
the real line, we can define the associated eigenprojections P,(x) each
of which is one-dimensional. Each Ph (x) is continuous since it is identical
with the total projection for the eigenvalue Ah (x). But Ph (x) cannot in
general be continued beyond a value of x for which Ah (x) coincides with
some other A, (m). In this sense the eigenprojections behave more sin-
gularly than the eigenvalues. It should be recalled that even in the
analytic case Ph (x) may not exist at an exceptional point where Ah (x)
is holomorphic [Example 1.12, f) ] ; but Ph (x) has at most a pole in that
case (see § 1.8). In the general case under consideration, the situation is
much worse. That the eigenspaces can behave quite singularly even for a
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very smooth function T (x) is seen from the following example due to
RELLICH'.

Example 5.3. Let N = 2 and
2 2cos - sin -

(5.7) T (x) = e
xj

x x

2 2sin - - cos -
x x

T (O) = 0.

T (m) is not only continuous but is infinitely differentiable for all real values of x,
and the same is true of the eigenvalues of T (x), which are ±,e-11s' for x = 0 and
zero for x = 0. But the associated eigenprojections are given for x + 0 by

1 1 1 1 1 1
cosy 1 cos -sin - sin2 1 -cos -sin -

x x x x x x

cos x sin x sing x - cos x sin % cost % I
These matrix functions are continuous (even infinitely differentiable) in any
interval not containing x = 0, but they cannot be continued to x = 0 as continuous
functions. Furthermore, it is easily seen that there does not exist any eigenvector of
T (x) that is continuous in the neighborhood of x = 0 and that does not vanish at
x=0.

It should be remarked that (5.7) is a symmetric operator for each real x (acting
in C2 considered a unitary space). In particular it is normal and, therefore, the
eigenprojections would be holomorphic at x = 0 if T (x) were holomorphic (Theorem
1.10). The example is interesting since it shows that this smoothness of the eigen-
projections can be lost completely if the holomorphy of T (x) is replaced by infinite
differentiability.

4. Differentiability at a point
Let us now assume that T (x) is not only continuous but differentiable.

This does not in general imply that the eigenvalues of T (x) are dif-
ferentiable; in fact they need not be differentiable even if T (x) is holo-
morphic [Example 1.1, d)]. However, we have

Theorem 5.4. Let T (x) be differentiable at x = 0. Then the total projec-
tion P (x) for the A-group is differentiable at x = 0:

(5.9) P (x) = P -I- M PM -I- o (x) ,

where2 P(1) P T'(0) S - S T' (0) P and S is the reduced resolvent o l T
for A (see I-§ 5.3). If d is a semisimple eigenvalue of T, the A -group eigen-
values of T (x) are differentiable at x = 0:

(5.10) ,ue (x) = d -I- x u1(il -I- o (x) , j = 1, ..., m ,
where the µf (x) are the repeated eigenvalues of the A-group and the ,u(l)
are the repeated eigenvalues of PT'(0) P in the subspace M = PX (P is

1 See RELLICH [1]; for convenience we modified the original example slightly.
2 Here o(x) denotes an operator-valued function F(x) such that 11F(xA = 0W

in the ordinary sense.
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the eigenprojection of T for A). If T is diagonable, all the eigenvalues are
differentiable at x = 0.

Remark 5.5. The above theorem needs some comments. That the
eigenvalues of T (x) are differentiable means that the N-tuple 0 (x)
consisting of the repeated eigenvalues of T (m) is differentiable, and
similarly for the differentiability of the A-group eigenvalues. That an
(unordered) N-tuple 6 (x) is differentiable at x = 0 means that 6 (x)
can be represented in a neighborhood of x = 0 by N functions ,u (u),
n = 1, ..., N, which are differentiable at x = 0. The N-tuple 0'(0)
consisting of the ,u;, (0) is called the derivative of .S (x) at x = 0. It can be
easily proved (by induction on N, say) that e' (0) is thereby defined
independently of the particular representation (,q,, (x)) of e (m). If e (m)
is differentiable at each x and Cam' (x) is continuous, 0 (x) is said to be
continuously differentiable.

Note that .S (0) and V(0) together need not determine the behavior
of e (x) even in the immediate neighborhood of x = 0. For example,
e1(x) = (x, 1 - x) and e2 (x) = (- x, 1 + x) have the common value
(0, 1) and the common derivative (1, - 1) at x = 0.

Proof of Theorem 5.4. We first note that the resolvent R x) is
differentiable at x = 0, for it follows from I-(4.28) that

(5.11) [ax R(C, x)]xo= -R (g) T'(0) R(C)

Here it should be noted that the derivative (5.11) exists uniformly for C
belonging to a compact subset of P (T), for R (C, x) -> R (C), x -+ 0, holds
uniformly (see par. 1). Considering the expression (1.16) for P (M), it
follows that P (x) is differentiable at x = 0, with

(5.12) P'(0) 21 J [ax R(C,x)]x=odC= 2s f R(C) T'(0)R(C)dCr r
= - P T' (0) S - S T' (0) P = P(1) [cf. (2.14) ] .

This proves (5.9).
As in the analytic case, if A is semisimple the A-group eigenvalues of

T (n) are of the form

(5.13) 14100 = A + x 41) (x) , j = 1, ..., m ,

where the pi(l) (x) are the (repeated) eigenvalues of the operator

(5.14) 1 > (x) = x-1(T (x) - A) P (x) _ - 2n i J (C- A) R (C, x) d
r

in the subspace M (x) = P (x) X [see (2.37) ]. Since T (x) and P (x) are
differentiable at x = 0 and (T - A) P = 0 if A is semisimple, TM (x) is
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continuous at x = 0 if we set

(5.15) To) (0) = T'(0) P + (T - 2) P'(0) = P T'(0) P

where we have used (5.12) and (T - A) S = 1 - P [see (2.11)]. Hence
the eigenvalues of TM (x) are continuous at x = 0. In particular, the
eigenvalues ,u,(') (x) of TM (x) in the invariant subspace M (x) are contin-
uous at x = 0 (see Theorem 5.1), though they need not be continuous
for x + 0. In view of (5.13), this proves (5.10).

5. Differentiability in an interval
So far we have been considering the differentiability of the eigenvalues

and eigenprojections at a single point x = 0. Let us now consider the
differentiability in a domain of x, assuming that T (m) is differentiable
in this domain. If this is a domain of the complex plane, T (x) is neces-
sarily holomorphic; since this case has been discussed in detail, we shall
henceforth assume that T (m) is defined and differentiable in an interval I
of the real line'.

According to Theorem 5.4, the N-tuple 9 (x) of the repeated eigen-
values of T (x) is differentiable for x E I provided that T (x) is diagonable
for x E I. However, it is by no means obvious that there exist N functions
,u (x), n = 1, . . ., N, representing the repeated eigenvalues of T (x),
which are single-valued and differentiable on the whole of I Actually
this is true, as is seen from the following general theorem.

Theorem 5.6. Let a (x) be an unordered N-tuple of complex numbers
depending on a real variable x in an interval I, and let 6 (x) be differentiable
at each HE I (in the sense of Remark 5.5). Then there exist N complex-
valued functions 1u,, (x), n = 1, . . ., N, representing the N-tuple a (x) for
x E I, each of which is differentiable /or x E I.

Proof. A subinterval of I for which there exist N functions of the
kind described will be said to have property (B) ; it is required to prove
that I itself has property (B). It can be shown, as in the proof of Theorem
5.2, that for any overlapping2 subintervals Il, I2 with property (B),
their union Il U I2 has also property (B). The only point to be noted is
that care must be taken in the renumbering of the u(2) (x) to make sure
that the continuation (5.5) preserves the differentiability of the functions
at x = xo; this is possible owing to the assumption that 6 (x) is differen-
tiable at x = xo.

1 The differentiability of eigenvalues was investigated in detail in RELLICH [8]
in the case when T (x) is symmetric for each real x. It should be noted that the
problem is far from trivial even in that special case.

8 Here "overlapping" means that the two intervals have common interior
points.
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With this observation, the proof is carried out in the same way as
in Theorem 5.2. A slight modification is necessary at the final stage,
for the functions defined by (5.6) may have discontinuities of derivatives
at an isolated point of P. To avoid this, we proceed as follows. An isolated
point no of r is either a boundary point of I or a common boundary of
an I,, and an I. In the first case we have nothing to do. In the second
case, it is easy to "connect" the two families (x)) and (P(q) (x))
"smoothly" by a suitable renumbering of the latter, for these two
families of differentiable functions represent e (x) at the different sides
of x = no and 6 (x) is differentiable at x = xo. It follows that the interval
consisting of Ip, IQ and xa has property (B).

Let r' be the set of isolated points of P. d u r, is relatively open
in I and consists of (at most) countably many subintervals I. Each Ik
consists in turn of countably many subintervals of the form 1p joined
with one another at a point of r, in the manner stated above. By repeated
applications of the connection process just described, the functions
representing 6 (x) in these I,, can be connected to form a family of N
functions differentiable on I. This shows that each Ik has property (B).

The construction of N differentiable functions ,u (x) representing
6 (x) on the whole interval I can now be carried out by the method (5.6),
in which the I p and r should be replaced by the Ik and r,' respectively,
r' being the complement of r, in P. The differentiability at a point no of
r,, of the Fin (x) thus defined follows simply from the fact that the deri-
vative 6' (xo) consists of N identical elements, just as does 6 (no). This
completes the proof of Theorem 5.6.

Theorem 5.7. I l in Theorem 5.6 the derivative Cam' (x) is continuous,
the N functions ,u (x) are continuously differentiable on I.

Proof. Suppose that the real part of ,u;, (x) is discontinuous at x = xo.
According to a well-known result in differential calculus, the values
taken by Re,u;, (x) in any neighborhood of xo cover an interval of length
larger than a fixed positive number'. But this is impossible if Cam' (x) is
continuous, for any value of ,un (x) is among the N elements of S' (x) . For
the same reason Im u (u) cannot be discontinuous at any point.

Remark 5.8. We have seen (Theorem 5.4) that the eigenvalues of T (x)
are differentiable on I if T (x) is differentiable and diagonable for x E I.

' Let a real-valued function f (t) of a real variable t be differentiable for
a S 1S b ; then f' (t) takes in this interval all values between a = f' (a) and P = f' (b) .
To prove this, we may assume or < P. For any y E (a, P) set g (t) = f (t) - y t.
Then g' (a) = a - y < 0, g' (b) = # - y > 0, so that the continuous function g (t)
takes a minimum at a point t = c E (a, b). Hence g' (c) = 0 or f' (c) = y.
If /'(1) is discontinuous at t = to, then there is e > 0 such that, in any
neighborhood of to, there exist t,, t$ with 11'%) - f' (t2) > e. It follows from the
above result that /' (t) takes all values between )' (t,) and /' (t2). Hence the values
of /'(1) in any neighborhood of to covers an interval of length larger than e.
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It is quite natural, then, to conjecture that the eigenvalues are continuously
differentiable if T (x) is continuously differentiable and diagonable.
But this is not true, as is seen from the following example'.

Example 5.9. Let N = 2 and

xla Ixla - kIP 2 + sin
(5.16) T (X) _ TxT x 40 ; T (O) = 0 .

- Ixla .Ixla

T (x) is continuously differentiable for all real x if a > 1 and fi > 2. The two eigen-
values of T(m) are

«+R t

(5.17) fif (x) = f x -12P (2 + sin
1

ICI f I-, x + 0, Fit (0) = 0 .

Since the ,ut (x) are different from each other for x + 0, T (x) is diagonable, and
T (0) = 0 is obviously diagonable. The ,u± (x) are differentiable everywhere, as the
general theory requires. But their derivatives are discontinuous at x = 0 if a +
+ #S 4. This simple example shows again that a non-analytic perturbation can be
rather pathological in behavior.

Remark 5.10. If T (x) is continuously differentiable in a neighborhood
of x = 0 and 2 is a semisimple eigenvalue of T (O), the total projection
P (x) for the 2-group is continuously differentiable and Ta) (x) is contin-
uous in a neighborhood of x = 0, as is seen from (5.12) and (5.14).

6. Asymptotic expansion of the eigenvalues and
eigenvectors

The differentiability of the eigenvalues considered in the preceding
paragraphs can be studied from a somewhat different point of view.
Theorem 5.4 may be regarded as giving an asymptotic expansion of the
eigenvalues u5 (x) up to the first order of x when T (x) has the asymptotic
form T (x) = T + x T' + o (m), where T' = T'(0). Going to the second
order, we can similarly inquire into the asymptotic behavior of the
eigenvalues when T (x) has the asymptotic form T + x T(')+ xs T (2) +
+ o (xa). In this direction, the extension of Theorem 5.4 is rather straight-
forward.

Theorem 5.11. Let T(x) = T + x T (') + x2 T (2) + 0 (x2) for x --)- 0.
Let A be an eigenvalue of T with the eigenprojection P. Then the total
projection P (x) for the 2-group eigenvalues of T (x) has the form

(5.18) P (x) = P + x P(') + x2 P(2) + o (x$)

where P, P(1) and P(2) are given by (2.13). If the eigenvalue d of T is
semisimple and if A(') is an eigenvalue of P TO) P in P X with the eigen-

' The operator of this example is not symmetric. For symmetric operators
better behavior is expected; see Theorem 6.8.
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projection P(i), then T (x) has exactly m(,') = dim P}) repeated eigenvalues
(the A + x A,I' group) of the form A + x A,(I) + o (x). The total eigenprojec-
tion P(i) (x) for this group has the form

(5.19) Pit) (x) = pill) + x Pill) + o (x)

If, in addition, the eigenvalue A(') of P TM P is semisimple, then P(li)
is given by (2.47) and the m,(2) repeated eigenvalues of the A + x 2')-group
have the form
(5.20) /j,,k (x) = A + x 2' + x2 IU(2 + 0 (x2) , k

where ,u} k, k = 1, ..., mil>, are the repeated eigenvalues of P(I) TM P,1
= Phi) T(2) Pj(') - p) T (') S TM P}) in the subspace PEI) X.

Proof. The possibility of the asymptotic expansion of T (x) up to the
second order implies the same for the resolvent :

(5.21) R (g, x) = R (C) - R (C) (T (x) - T) R (g) + R (C) (T (x) - T) x
x R(C)(T(x)-T)R(g)+...+

= R x R (C) TM R x2 [- R (C) T(2) R (C) +

+ R (C) T(1) R (C) TM R (4) j + o (x2) .

Here o (x2) is uniform in C in each compact subset of P (T). Substitution
of (5.21) into (1.16) yields (5.18), just as in the analytic case.

It follows that if A is semisimple, the T(l) (x) of (5.14) has the form

(5.22) TM (x) = P TM P + x T(2) + o (x)

where T(2) is given by (2.20). The application of Theorem 5.4 to TAI) (x)
then leads to the result of the theorem. Again the calculation of the
terms up to the order x2 is the same as in the analytic case.

7. Operators depending on several parameters
So far we have been concerned with an operator T (x) depending on a

single parameter x. Let us now consider an operator T (xl, x2) depending
on two variables x2, x2 which may be complex or real.

There is nothing new in regard to the continuity of the eigenvalues.
The eigenvalues are continuous in xl, x2 (in the sense explained in par. 1,2)
if T (xl, x2) is continuous. Again, the same is true for partial differen-
tiability (when the variables xl, x2 are real). But something singular
appears concerning total differentiability. The total differentiability of
T (xl, x2) does not necessarily imply the same for the eigenvalues even if
T (xl, x2) is diagonable (cf. Theorem 5.4).

Example 5.12.1 Let N = 2 and

(5.23) T (x1, x2) = (MI x)
1 See RELLIcn [1].
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T (xl, x2) is totally differentiable in xl, x2 and diagonable for all real values of xl, xQ:
But its eigenvalues

(5.24) R f (MI, xa) (xi + x22)1/2

are not totally differentiable at xl = xQ = 0.

We could also consider the case in which T (xl, x2) is holomorphic in
the two variables. But the eigenvalues of T (x1, x2) might have rather
complicated singularities, as is seen from the above example'.

Remark 5.13. (5.23) is symmetric for real xl, x2 if the usual inner
product is introduced into X = C2. Thus the appearence of a singularity
of the kind (5.24) shows that the situation is different from the case of a
single variable, where the eigenvalue is holomorphic at x = 0 if T (x) is
normal for real x (see Theorem 1.10).

Similar remarks apply to the case in which there are more than two
variables 2.

8. The eigenvalues as functions of the operator

In perturbation theory the introduction of the parameter x is some-
times rather artificial, although it sometimes corresponds to the real
situation. We could rather consider the change of the eigenvalues of an
operator T when T is changed by a small amount, without introducing
any parameter x or parameters xl, x2, ... . From this broader point of
view, the eigenvalues of T should be regarded as functions of T itself.
Some care is necessary in this interpretation, however, since the eigen-
values are not fixed in number. Again it is convenient to consider the
unordered N-tuple a [T], consisting of the N repeated eigenvalues of T,
as a function of T. This is equivalent to regarding 6 [T] as a function
of the N2 elements of the matrix representing T with respect to a fixed
basis of X.

1 But simple eigenvalues and the associated eigenprojections are again holo-
morphic in xl, xa; this follows from Theorem 5.16.

9 In connection with a family T (xl, x2) depending on two parameters, we can
ask when T (xl, x9) has a non-zero null space. This is a generalization of the perturba-
tion theory of eigenvalues we have considered so far, which is equivalent to the
condition that T (m) - R, a special operator depending on two parameters, have a
non-zero null space. The general case T (%I, x9) gives rise to the perturbation problem
for "nonlinear" eigenvalue problems of the type noted in footnote 1, p. 35. We
shall not consider such a general perturbation theory. We note, however, that in
some special cases the nonlinear problem can be reduced to the ordinary problem
discussed above. Suppose we have a family of the form T (A) - x., The ordinary
theory will give the "eigenvalues" x as analytic functions of the "parameter" A.
If we find the inverse function of these analytic functions, we obtain the "nonlinear"
eigenvalues A as analytic functions of the parameter x. There are other devices for
dealing with "nonlinear" problems. See e. g., CLOIZEAUX [1].
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Theorem 5.14. 6 [T] is a continuous function of T. By this it is meant
that, for any fixed operator T, the distance between 6 [T + A] and 6 [T]
tends to zero for 11 All -+ 0.

The proof of this theorem is contained in the result of par. 1,2
where the continuity of 6 (x) as a function of x is proved. An examination
of the arguments given there will show that the use of the parameter x
is not essential.

This continuity of e [T] is naturally uniform on any bounded region
of the variable T (that is, a region in which 11 T11 is bounded), for the
variable T is equivalent to N2 complex variables as noted above. But the
degree of continuity may be very weak at some special T (non-diagonable
T), as is seen from the fact that the Puiseux series for the eigenvalues of
T + x TM + can have the form 2 + a xl/Q + [see (1.7) and
Example 1.1, d) ].

Let us now consider the differentiability of e [T]. As we have seen,
the eigenvalues are not always differentiable even in the analytic case
T (x). If T is diagonable, on the other hand, the eigenvalues of T + x TM
are differentiable at x = 0 for any T(') (in the sense of par. 4), and the
diagonability of T is necessary in order that this be true for every TM.
This proves

Theorem 5.15. e [T] is partially differentiable at T = To if and
only if To is diagonable.

Here "partially differentiable" means that 6 [T + x TM] is dif-
ferentiable at x = 0 for any fixed TM, and it implies the partial
differentiability of 6 [T] in each of the N2 variables when it is regarded
as a function of the N2 matrix elements.

Theorem 5.15 is not true if "partially" is replaced by "totally".
This is seen from Example 5.12, which shows that 6 [T] need not be
totally differentiable even when the change of T is restricted to a two-
dimensional subspace of gi(X). In general a complex-valued function
,u [T] of T E 9 (X) is said to be totally differentiable at T = To if there
is a function vTa [A], linear in A E 9 (X), such that

(5.25) IIAII-1Iu[To+A]-p[To]-VT,[A]I-+0 for IIAil--0.
This definition does not depend on the particular norm used, for all
norms are equivalent. vTa [A] is the total differential of ,u [T] at T = To.
It is easily seen that y [T] is totally differentiable if and only if it is
totally differentiable as a function of the N2 matrix elements of T.

In reality we are here not considering a single complex-valued
function u [T] but an unordered N-tuple e [T] as a function of T. If
6 [T] were an ordered N-tuple, the above definition could be extended
immediately to 6 [T]. But as 6 [T] is unordered, this is not an easy
matter and we shall not pursue it in this much generality. We shall
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rather restrict ourselves to the case in which T. is not only diagonable but
simple (has N distinct eigenvalues). Then the same is true of T = To+ A
for sufficiently small IIAII in virtue of the continuity of e [T], and
the eigenvalues of, T can be expressed in a neighborhood of T. by N
single-valued, continuous functions Ah [T], h = 1, ..., N. We shall now
prove

Theorem 5.16. The functions Ah [T] are not only totally differentiable
but holomorphic in a neighborhood of T = To.

Remark 5.17. A complex-valued function ,u [T] of T is said to be
holomorphic at T = To if it can be expanded into an absolutely conver-
gent power series (Taylor series) in A = T - To:

(5.26) µ[T0+A]=µ[To]+µ(')[To,A]+µ(2)[To,A]+...

in which p(n) [To, A] is a form of degree n in A, that is,

(5.27) p0"l [TO, A] = µ("l [TO; A, ..., A]

where ,u(') [To; A,, ..., An] is a symmetric n-linear form' in n operators
A,, ..., An. As is easily seen, ,u [T] is holomorphic at T = To if and
only if ,u [To + A] can be expressed as a convergent power series in the N2
matrix elements of A. In the same way holomorphic dependence of an
operator-valued function R [T] E M (X) on TERN can be defined.

Proof of Theorem 5.16. First we show that the one-dimensional
eigenprojection Ph [T] for the eigenvalue Ah [T] is holomorphic in T.
We have, as in (1.17),

(5.28) Ph[To+A] f £Ro(C) (-ARo(C))ndC,
I,h n=0

where R0(C) = (To - C)-' and Ph is a small circle around Ah [To]. The
series in the integrand of (5.28) is uniformly convergent for C E Ph for
II A ( I < 6h, where Sh is the minimum of I I Ro (C) I I -1 for C E Ph. Since the
right member turns out to be a power series in A, we see that Ph [T] is
holomorphic at T = To.

Since Ph [T] is one-dimensional, we have

(5.29) A,[To+A]=tr{(To+A) Ph[To+A]}.

Substitution of the power series (5.28) shows that Ah [To + A] is also a
power series in A, as we wished to show.

1 A function I (A, ..., is symmetric if its value is unchanged under any
permutation of A1, ..., A. It is n-linear if it is linear in each variable Ax.
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§ 6. Perturbation of symmetric operators
1. Analytic perturbation of symmetric operators

Many theorems of the preceding sections can be simplified or
strengthened if X is a unitary space H. For the reason stated at the
beginning of I-§ 6., we shall mainly be concerned with the perturbation
of symmetric operators.

Suppose we are given an operator T (m) of the form (1.2) in which
T, TO'), T(2), ... are all symmetric. Then the sum T (m) is also symmetric
for real x. Naturally it cannot be expected that T (m) be symmetric for
all x of a domain of the complex plane.

More generally, let us assume that we are given an operator-valued
function T (x) E . (H) which is holomorphic in a domain Do of the
x-plane intersecting with the real axis and which is symmetric for real x:

(6.1) T (x)* = T (m) for real x .

For brevity the family {T (x)} will then be said to be symmetric. Also we
shall speak of a symmetric perturbation when we consider T (m) as a
perturbed operator. T (x)* is holomorphic for x E Do (the mirror image
of Do with respect to the real axis) and coincides with T (m) for real x.
Hence T (r.) * = T (x) for x E Do n Do by the unique continuation property
of holomorphic functions. Thus

(6.2) T()* = T (R)

as long as both x and x belong to Do. This can be used to continue T (x)
analytically to any x for which one of x and x belongs to Do but the
other does not. Thus we may assume without loss of generality that Do is
symmetric with respect to the real axis.

Since a symmetric operator is normal, the following theorem results
directly from Theorem 1.10.

Theorem 6.1. I l the holomorphic family T (x) is symmetric, the eigen-
values Ah (x) and the eigenprojections Ph (x) are holomorphic on the real
axis, whereas the eigennilpotents Dh (x) vanish identically'.

Problem 6.2. If T (m) = T + x Tx'> with T and Ti1> symmetric, the smallest
eigenvalue of T (m) for real x is a piecewise holomorphic, concave function of X.
[hint: Apply I-(6.79)].

Remark 6.3. Theorem 6.1 cannot be extended to the case of two or
more variables. The eigenvalues of a function T (xl, x2) holomorphic in
xl, x2 and symmetric for real xl, xa need not be holomorphic for real x,, x2,
as is seen from Example 5.12.

Remark 6.4. A theorem similar to Theorem 6.1 holds if T (m) is
normal for real x or, more generally, for all x on a curve in Do. But such a

1 See Remark 1.11, however.
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theorem is of little practical use, since it is not easy to express the condi-
tion in terms of the coefficients T(') of (1.2).

The calculation of the perturbation series given in § 2 is also simplified
in the case of a symmetric perturbation. Since the unperturbed operator T
is symmetric, any eigenvalue . of T is semisimple (D = 0) and the
reduction process described in § 2.3 is effective. The operator function
TM (u) given by (2.37) is again symmetric, for P (x) is symmetric and
commutes with T (x). The reduction process preserves symmetry. Therefore,
the reduction can be continued indefinitely. The splitting of the eigen-
values must come to an end after finitely many steps, however, and the
eigenvalues and the eigenprojections are finally given explicitly by the
formulas corresponding to (2.5) and (2.3) in the final stage of the reduc-
tion process where the splitting has ceased to occur. In this way the
reduction process gives a complete recipe for calculating explicitly the
eigenvalues and eigenprojections in the case of a symmetric perturbation.

Remark 6.5. Again there is no general criterion for deciding whether
there is no further splitting of the eigenvalue at a given stage. But the
reducibility principle given in Remark 2.4 is useful, especially for sym-
metric perturbations. Since the unperturbed eigenvalue at each stage is
automatically semisimple, there can be no further splitting if the un-
perturbed eigenprojection at that stage is irreducible with respect to a
set {A} of operators.

In applications such a set {A} is often given as a unitary group under
which T (x) is invariant. Since the eigenprojection under consideration
is an orthogonal projection, it is irreducible under {A} if and only if
there is no proper subspace of the eigenspace which is invariant under all
the unitary operators A.

Remark 6.6. The general theory is simplified to some extent even if
only the unperturbed operator T is symmetric or even normal. For
example, all the eigenvalues 2h (x) are then continuously differentiable at
x = 0 in virtue of the diagonability of T (Theorem 2.3). The estimates
for the convergence radii and the error estimates are also simplified if the
unperturbed operator T is symmetric or normal, as has been shown in
§ 3.5.

Remark 6.7. The estimate (3.52) is the best possible of its kind even
in the special case of a symmetric perturbation, for Example 3.10 belongs
to this case.

2. Orthonormal families of eigenvectors
Consider a holomorphic, symmetric family T (x). For each real x

there exists an orthonormal basis {97.(u)} of H consisting of eigenvectors
of T (m) [see I-(6.68)]. The question arises whether these orthonormal
eigenvectors cvri (x) can be chosen as holomorphic functions o l x. The answer
is yes for real x.
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Since the eigenvalues ;Lh (x) and the eigenprojections Ph (x) are
holomorphic on the real axis (Theorem 6.1), the method of § 4.5 can be
applied to construct a holomorphic transformation function U (M)
satisfying (4.30). Furthermore, U (x) is unitary for real x. To see this
we recall that U (x) was constructed as the solution of the differential
equation U' = Q (x) U with the initial condition U (0) = 1, where Q (x)
is given by (4.33). Since the Ph (x) are symmetric, we have Ph (x) * = Ph (x)
as in (6.2) and so the same is true of P n (x) . Hence Q (x) is skew-symmetric :
Q (x) * _ - Q (x) and U (x) * satisfies the differential equation

(6.3) ax UN)* U(9)* QM

On the other hand, V(x) = U(m)-1 satisfies the differential equation
V' = - V Q (x) with the initial condition V (0) = 1. In view of the
uniqueness of the solution we must have

(6.4) U (x) * = U (M)_1 .

This shows that U (x) is unitary for real x.
It follows that the basis qh h (x) = U (M) Th h as given by (4.31) is

orthonormal for real x if the 9hh form an orthonormal basis (which is
possible since T is symmetric). It should be noted that the g7hk(x) are
(not only generalized but proper) eigenvectors of T (m) because T (m)
is diagonable. The existence of such an orthonormal basis depending
smoothly on x is one of the most remarkable results of the analytic
perturbation theory for symmetric operators. That the analyticity is
essential here will be seen below.

3. Continuity and differentiability
Let us now consider non-analytic perturbations of operators in H.

Let T (x) E .4 (H) depend continuously on the parameter x, which will
now be assumed to be real. The eigenvalues of T (n) then depend on x
continuously, and it is possible to construct N continuous functions
yn (x), n = 1, ..., N, representing the repeated eigenvalues of T (x)
(see § 5.2). In this respect there is nothing new in the special case where
T (x) is symmetric, except that all Iu (x) are real-valued and so a simple
numbering such as (5.4) could also be used.

A new result is obtained for the differentiability of eigenvalues.
Theorem 6.8.1 Assume that T (m) is symmetric and continuously

differentiable in an interval I of x. Then there exist N continuously dif-
ferentiable functions 4u,,(x) on I that represent the repeated eigenvalues of
T (x).

1 This theorem is due to RELUcx [8]. Recall that the result of this theorem
is not necessarily true for a general (non-symmetric) perturbation (see Remark 5.8).
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Proof. The proof of this theorem is rather complicated'. Consider a
fixed value of x; we may set x = 0 without loss of generality. Let A be
one of the eigenvalues of T = T (O), m its multiplicity, and P the as-
sociated eigenprojection. Since A is semisimple, the derivatives at x = 0
of the repeated eigenvalues of T (x) belonging to the A-group are given by
the m repeated eigenvalues of P T' (0) P in the subspace M = P X
(Theorem 5.4). Let A,, ..., Ap be the distinct eigenvalues of PT'(0) P
in M and let Pl, ..., P, be the associated eigenprojections. The M; = Pf H
are subspaces of M. It follows from the above remark that the A-group
(repeated) eigenvalues of T (x) for small Ix I + 0 are divided into p
subgroups, namely the A + x A;-groups, j = 1, ..., p. Since each of these
subgroups is separated from other eigenvalues, the total projections P, (x)
for them are defined. Pi (x) is at the same time the total projection for
the A;-group of the operator TM (x) given by (5.14). But TV') (x) is
continuous in a neighborhood of x = 0 as was shown there (the continuity
for x + 0 is obvious). Hence P, (x) is continuous in a neighborhood of
x = 0 by Theorem 5.1, and the same is true of

(6.5) T; (x) = P; (x) T' (x) P; (x)

because T' (x) = d T (x)/dx is continuous by hypothesis.
The A + x A;-group of T (x) consists in general of several distinct

eigenvalues, the number of which may change 'discontinuously with x
in any neighborhood of x = 0. Let A (xo) be one of them for x = xo + 0
and let Q (xo) be the associated eigenprojection. This A (xo) may further
split for small Ix - xoI + 0, but the derivative of any of the resulting
eigenvalues must be an eigenvalue of Q (xo) T' (xo) Q (xo) in the subspace
Q (xo) H (again by Theorem 5.4). But we have Q (xo) H c P; (xo) H because
A (xo) belongs to the A + x A;-group, so that Q (xo) T' (xo) Q (xo)
= Q (xo) Tf (xo) Q (xo). Therefore, the derivatives under consideration are
eigenvalues of the orthogonal projection (in the sense of I-§6.10) of the
operator T; (xo) on a certain subspace of M5 (xo) = PS (xo) H. Since T5 (xo)
is symmetric, it follows from Theorem 1-6.46 that these eigenvalues lie
between the largest and the smallest eigenvalues of T5 (xo) in the subspace
M5 (xo). But as T; (x) is continuous in x as shown above, the eigenvalues
of T; (xo) in M5 (xo) tend for xo --> 0 to the eigenvalues of PS T' (0) P; in M5,
which are all equal to A;. It follows that the derivatives of the A + X A;-
group eigenvalues of T (x) must also tend to A; for x --> 0. This proves
the required continuity of the derivatives of the eigenvalues ,U,, (x) con-
structed by Theorem 5.6. [In the above proof, essential use has been made
of the symmetry of T (x) in the application of Theorem 1-6.46. This ex-
plains why the same result does not necessarily hold in the general case].

1 The original proof due to RELLICH is even longer.
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Remark 6.9. As in the general case, the eigenprojections or eigen-
vectors have much less continuity than the eigenvalues even in the case
of a symmetric perturbation, once the assumption of analyticity is
removed. Example 5.3 is sufficient to illustrate this; here the function
T (x) is infinitely differentiable in x and symmetric (by the usual inner
product in C2), but it is impossible to find eigenvectors of T (M) that are
continuous at x = 0 and do not vanish there.

4. The eigenvalues as functions of the symmetric operator
As in § 5.8, we can regard the eigenvalues of a symmetric operator T

as functions of T itself. As before, the eigenvalues are continuous func-
tions of T in the sense explained there. The situation is however much
simpler now because we can, if we desire, regard the repeated eigenvalues
as forming an ordered N-tuple by arranging them in the ascending order

(6.6) lq [T] < u2 [T] < ... < fcN [ T]

This defines N real-valued functions of T, T varying over all symmetric
operators in H. The continuity of the eigenvalues is expressed by the
continuity of these functions (T' - T implies u [T'] --- 4u,, [T]).

The numbering (6.6) of the eigenvalues is very simple but is not
always convenient, for the ,u [T] are not necessarily even partially
differentiable. This is seen, for example, by considering the u [T + x T']
as functions of x, where T, T' are symmetric and n is real. The eigenvalues
of T + x T' can be represented as holomorphik functions of x (Theorem
6.1). The graphs of these functions may cross each other at some values
of x (exceptional points). If such a crossing takes place, the graph of
,u,, [T + x T'] jumps from one smooth curve to another, making a corner
at the crossing point. In other words, the ,u,, [T + x T'] are continuous
but not necessarily differentiable. In any case, they are piecewise holo-
morphic, since there are only a finite number of crossing points (excep-
tional points) in any finite interval of x.

Thus it is sometimes more convenient to return to the old point of
view of regarding the repeated eigenvalues of T as elements of an un-
ordered N-tuple 6 [T]. Then it follows from the result of the preceding
paragraph that 6 [T] is partially continuously differentiable. But 6 [T]
is totally differentiable only at those T with N distinct eigenvalues
(again Example 5.12). In the neighborhood of such a T, however, the
functions (6.6) are not only differentiable but holomorphic in T.

5. Applications. A theorem of LmsKn
Perturbation theory is primarily interested in small changes of the

various quantities involved. Here we shall consider some problems
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related to the change of the eigenvalues when the operator is subjected
to a finite change'. More specifically, we consider the problem of estimat-
ing the relation between the eigenvalues of two symmetric operators
A, B in terms of their difference C = B - A.

Let us denote respectively by an, fl, yn, n = 1, ..., N, the repeated
eigenvalues of A, B, C in the ascending order as in (6.6). Let

(6.7) T(x)=A+xC, 0<x< 1,
so that T (0) =A and T (1) = B, and denote by 1u,a(x) the repeated
eigenvalues of T (m) in the ascending order. As shown in the preceding
paragraph, the µn (x) are continuous and piecewise holomorphic, with
µ5(0) = an, µn(1) = Nn. In the interval 0 < x <_ 1 there are only a
finite number of exceptional points where the derivatives of the µn (x)
may be discontinuous.

According to par. 2, we can choose for each x a complete orthonormal
family {qqn (x)} consisting of eigenvectors of T (x) :

(6.8) (T (x) - ,un (x)) 99n (x) = 0 , n = 1, ..., N,
in such a way that the 99n (x) are piecewise holomorphic. In general they
are discontinuous at the exceptional points; this is due to the rather
unnatural numbering of the eigenvalues µ,, (x). If x is not an exceptional
point, differentiation of (6.8) gives

(6.9) (C - Jun (x)) wn (x) + (T (x) - µn (x)) 92n (x) = 0 .

Taking the inner product of (6.9) with qn (x) and making use of the
symmetry of T(x), (6.8) and the normalization (x) = 1, we obtain

(6.10) run (x) = (C 9qn (x) , 92n (x))

Since the µn (x) are continuous and the 99n (x) are piecewise continuous,
integration of (6.10) yields

Q i

(6.11) Nn - an = lun(1) - gun(0) = f (C Tn(x) , 9gn(x)) dx .
0

Let {x5} be an orthonormal basis consisting of the eigenvectors of C :

(6.12) Cxn=ynxn, n= 1,...,N.
We have

(C 99n (x), 9?n (x)) _ (C Tn (x), x1) (x1, 99n (x)) _ Ys 1(99n (x), xs) I'
i i

and (6.11) becomes
(6.13) fin - an= r a'nJYJ,

1

(6.14) 1=f I(9pn(x),x1)1adx
0

1 For a more general study on finite changes of eigenvalues and eigenvectors,
see DAvis [1].



126 III. Introduction to the theory of operators in Banach spaces

The orthonormality of {'p (u)} and {xj} implies that

(6.15) anj=1, L.'anj=1, anjz0.
j n

Now it is well known in matrix theory that a square matrix (anj)
with the properties (6.15) lies in the convex hull of the set of all permuta-
tion matrices'. Thus (6.13) leads to the following theorem due to
LIDSKII [1].

Theorem 6.10. Let A, B, C, an, fl, yn be as above. The N-dimensional
numerical vector (f31-al, ..., NN-aN) lies in the convex hull of the vectors
obtained from (y,,, ..., yN) by all possible permutations of its elements.

Another consequence of (6.13) is
Theorem 6.11. For any convex function 0(t) of a real variable t, the

following inequality holds :

(6.16) E 0 (QQtin. - an) S (Yn)
n

The proof follows easily from (6.13), (6.15) and the convexity of 0, for

an)anjYjf S I anj0 (y1)
Example 6.12. Let 0 (t) = ItIo with p Z 1. Then (6.16) gives2

(6.17) I7n19. pz i.
n

Chapter Three

Introduction to the theory of operators
in Banach spaces

This chapter is again preliminary; we present an outline of those parts of
operator theory in Banach spaces which are needed in the perturbation theory
developed in later chapters. The material is quite elementary, but the presentation
is fairly complete, reference being made occasionally to the first chapter, so that
this chapter can be read without previous knowledge of Banach space theory.
It is also intended to be useful as an introduction to operator theory. To keep the
chapter within reasonable length, however, some basic theorems (for example,

1 See BIRKHOFF [1]. A permutation matrix (ajI,) is associated with a permuta-
tion j .- n (j) of {1, 2, ..., n} by the relation aj n = 1 if k = n (j) and aj R = 0 other-
wise.

2 It was shown by HOFFMAN and WIELANDT [1] that (6.17) is true for p = 2
in a more general case in which A, B are only assumed to be normal, if the right
member is replaced by trC* C and if a suitable numbering of is chosen.
Note that C = B - A need not be normal for normal A, B.
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the Baire category theorem and the Hahn-Banach extension theorem) are stated
without proof I.

Again emphasis is laid on the spectral theory of operators, where the resolvent
theory is the central subject. The results related specifically to Hilbert spaces are
not included, being reserved for Chapters V and VI for detailed treatment.

§ 1. Banach spaces
1. Normed spaces

From now on we shall be concerned mainly with an infinite-dimen-
sional vector space X. Since there does not exist a finite basis in X, it is
impossible to introduce the notion of convergence of a sequence of
vectors of X in such a simple fashion as in a finite-dimensional space.
For our purposes, it is convenient to consider a normed (vector) space
from the outset.

A normed space is a vector space X in which a function is defined
and satisfies the conditions of a norm I-(1.18). In X the convergence of a
sequence of vectors {un} to a u E X can be defined by Iiu,, - ull -* 0.
It is easily seen that the limit u, whenever it exists, is uniquely deter-
mined by {u,,}. As we have shown in I-§ 1.4, every finite-dimensional
vector space can be made into a normed space.

In what follows we shall consider exclusively normed spaces X.
Finite-dimensional spaces are not excluded, but we shall always assume
that dim X > 0.

Example 1.1. Let X be the set of all numerical vectors u = (gk) with a countably
infinite number of complex components gk, k = 1, 2, .... X is an infinite-dimensional
vector space with the customary definition of linear operations. Let m be the subset
of X consisting of all u = such that the sequence {ik} is bounded. m is a linear
manifold of X and it is itself a vector space. For each u E m define its norm by

(1.1) IIuII = 11'11M = IIHIIoo = sup Ikl
k

It is easy to see that this norm satisfies I-(1.18), so that m is a normed space. (1.1)
is a generalization of I-(1.15). Let l be the set of all u = (6') E X such that

(1.2) IIuDI = IIUIII = IIuII1 = L+ IN
k

is finite. I is a normed space if the norm is defined, by (1.2). More generally we can
define the normed space P by introducing the norm2

1 Standard textbooks on operator theory in Banach spaces are BANACH Qlf,
DIEUDONNE Q11, DUNFORD and SCHWARTZ Q11, GOLDBERG 111, HILLE and PHILLIPS
(1), LORCH (1), LYUSTERNIK and SOBOLEV 111, RIESZ and Sz.-NAGY 111, SOBOLEV
(1), TAYLOR (11, YOSIDA 111, ZAANEN (1).

2 The triangle inequality for the norm (1.3) is known as the Minkowski in-
equality. The proof, together with the proof of the HSlder inequalities, may be
found in any textbook on real analysis; see e. g. RoYDEN Ql) or HARDY, LITTLEWOOD
and PGLYA 11).
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(1.3) IIuII = Ilullzp =IIuII, = ILr 1U11 \1"D

where p is a fixed number with p > 1. m can b` a regarded as the limiting case of lD
for p -+ oo, and is also denoted by 1°O. P is a proper subset of IQ if p < q.

Example 1.2. The most important examples of normed spaces are function
spaces. The simplest example of a function space is the set C [a, b] of all complex-
valued, continuous functions u = u (x) on a finite closed interval [a, b]1 of a real
variable (see Example 1-1.2). C [a, b] is a normed space if the norm is defined by
(1.4) IIuII = IIuIIC[a,b] = IIuII =as x lu(x)I

More generally, the set C (E) of all continuous functions u = u (x) = u (x1, ..., xm)
defined on a compact region E in the m-dimensional space R"' (or, more generally,
on any compact topological space E) is a normed space if the norm is defined by
(1.5) (lull = IIuIIc(E) = IIuII = m E Iu(x)I

Example 1.3. We could introduce other norms in C [a, b], for example
(1.6) (lull =IIUIIt,=IIuII,=(flu(x)lldx)1I1 pz 1.
This would make C [a, b] into a different normed space. Actually a wider class of
functions can be admitted when the norm (1.6) is used. We denote by LP (a, b) the
set of all complex-valued, Lebesgue-measurable functions u = u (x) on a finite or
infinite interval (a, b) for which the integral (1.6) is finite. It can be shown that
L1 (a, b) is a normed space by the customary definition of linear operations and by
the norm (1.6). It should be remarked that in L1 (a, b), any two functions u, v
are identified whenever they are equivalent in the sense that u (x) = v (x) almost
everywhere in (a, b) ; this convention makes the first condition of I-(1.18) satisfied 2.

More generally, for any measurable subset E of R" the set L9 (E) of all Lebesgue-
measurable functions u = u (x) = u (x1, ..., xm) on E such that (1.6) is finite is a
normed space if the norm is defined by (1.6). Again two equivalent functions should
be identified. In the limiting case p --> oo, L1 (E) becomes the space L°O (E) = M (E)
consisting of all essentially bounded functions on E with the norm
(1.7) Ilull = IIuJIM(E) = IIulh = ess s plu(x)I

zEE
In other words, IIuII. is the smallest number M such that lu(x)I S M almost every-
where in E.

In the same way, we can define the space L9 (E, d µ) over any set E on which a
(x)1111.measure d y is defined $, the norm being given by (flu (x) 11 d y

E I
Example 1.4. Let C' [a, b] be the set of all continuously differentiable functions

on a finite closed interval [a, b]. C' [a, b] is a normed space if the norm is defined by
(1.8) hull = (lull. + Ilu'll.
where llull°° is given by (1.4) and u' = du/dx.

1 We denote by [a, b] a closed interval, by (a, b) an open interval, by [a, b)
a semi-closed interval, etc.

9 In this sense L1 is a set of equivalence classes of functions rather than a set
of functions. But it is customary to represent an element of L1 by a function, with
the identification stated in the text.

8 When we consider function spaces like L1, we have to assume that the
reader is familiar with the basic facts on real analysis, including Lebesgue integra-
tion, for which we may refer to standard textbooks (e. g., ROYDEN (11). In most
cases, however, it is restricted to examples, and the main text will be readable
without those prerequisites.
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Remark 1.5. The following are known as the Holder inequalities 1. If p > 1 and
q Z 1 are related by p-1 + q-1 = 1 (p = no or q = no is permitted), then

(1.9) IL k nkl S Hull Hulls , u = ( k) , v = (17k)

where llulln+ llvll5 are given by (1.3), and

(1.10) I f u (x) v (x) dxl 5 Ilully Ilv1IQ

where Only, Ilvl15 are given by (1.6).
Problem 1.6. For 11 Ilp defined by (1.6) we have

(1.11) Ilu vll. S (lull., llvllc for s-1 = p-1 + q-1,

(1.12) Il u v -11. :&- llulln IlvllQ llwll, for s-1 = p-1 + q-1 + -I,
etc., where u v = u (x) v (x), etc. Similar inequalities exist for Il IID given by (1.3).
[hint: Apply (1.10) to the function lu vl' etc.]

2. Banach spaces
In a normed space X the convergence u,, -+ u was defined by lIu - ull

- 0. As in the finite-dimensional case, this implies the Cauchy condition
l1u,, - u,nll -;,. 0 [see I-(1.23)]. In the infinite-dimensional case, however,
a Cauchy sequence {u,,} (a sequence that satisfies the Cauchy condition)
need not have a limit u E X. A normed space in which every Cauchy
sequence has a limit is said to be complete. A complete normed space is
called a Banach space. The notion of Banach space is very useful since,
on the one hand, the completeness is indispensable for the further
development of the theory of normed spaces and, on the other, most of
normed spaces that appear in applications are complete2. Recall that a
finite-dimensional normed space is complete (I-§ 1.4).

Example 1.7. In the space C (E) of continuous functions (Example 1.2), u -+ u
means the uniform convergence of u. (%) to u (x) on E. The Cauchy condition I-(1.23)
means that 1u. (x) - u, (x) I -a 0 uniformly. It is well known3 that this implies
the uniform convergence of u (x) to a continuous function u(%). Hence C (E) is
complete.

Example 1.8. The spaces l9, 1S PS no, (Example 1.1) are complete. The
function spaces L9 (E) (Example 1.3) are complete. We shall not give the proof here4.

Most of the topological notions introduced in I-§ 1.5 for a finite-
dimensional normed space can be taken over to a Banach space. Here
we shall mention only a few additions and modifications required.

1 For the proof see e. g. ROYDEN Q11, p. 97.
8 Besides, any normed space X can be completed. This means that X is identified

with a linear manifold in a complete normed space X. Furthermore, X can be so
chosen that X is dense in X. X is constructed as the set of all equivalence classes of
Cauchy sequences in X; two Cauchy sequences and are equivalent by
definition if lim (u - 0. For details see e. g. YOSIDA 11).

8 See e. g. KxoPp (1), p. 71.
See any textbook on real analysis, e. g. RoYDEN (1).
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A linear manifold M of a Banach space X need not be closed. A closed
linear manifold M of X is itself a Banach space. In this sense it is a
subspace of X. The closure of a linear manifold is a closed linear manifold.

Lemma 1.9. 1/ M is a closed linear manifold, the linear manifold M'
spanned by M and a finite number of vectors ul, ..., u," is closed.

Proof. It suffices to consider the case m = 1; the general case is
obtained by successive application of this special case. If ul E M, we have
M' = M so that M' is closed. If ul I M, we have dist (ul, M) = d > 0,
because M is closed. M' is the set of all u' of the form u' _ ul + v,
v E M. We have
(1.13) IEI s Il u'IVd .

In fact, u'll = 1lul + -1 v d if r 0 while (1.13) is trivial if
E=0.

Suppose now that u;, E M', u;, -+ u', n - oo; we have to show that
u' E M'. Let u,, _ " u1 + vn, v a E M. Application of (1.13) to u' = u, - u;,,
gives 11 u;, - u' 11 Id -+ 0. Hence for some E, and
v = u;, - ul - u' - ul. Since M is closed and v,, E M, v = u' -
- ul E M. Hence u' _ ul + v E M' as required.

For any subset S of X, there is a smallest closed linear manifold
containing S (that is, a closed linear manifold M such that any closed
linear manifold M'D S contains M). It is equal to the closure of the
(linear) span of S, and is called the closed linear manifold spanned by S
or simply the closed span of S.

Example 1.10. In E9 the set of all u = (fix) with sl = 0 is a closed linear manifold.
In 100 the set c of all u = ($x) such that lim $,, _ $ exists is a closed linear manifold.
The subset co of c consisting of all u such that $ = 0 is a closed linear manifold of
100 and of c. In C [a, b] the set of all functions u (x) such that u (a) = 0 is a closed
linear manifold. The same is true of the set of u such that u (a) = u (b) = 0. C [a, b]
itself may be considered a closed linear manifold of L00 (a, b).

A subset S of X is (everywhere) dense if the closure S coincides with X.
In this case each u E X can be approximated by an element of S, in the
sense that for any e > 0 there is a v E S such that 1ju - vjj < e. More
generally, for two subsets S1, Sa of X, S1 is dense with respect to S2 if
g1) S2 (or dense in S2 if S1 C S2 in addition). Then each u E S2 can be
approximated by an element of S1. If S1 is dense with respect to S2 and S2
is dense with respect to S3, then S1 is dense with respect to S3.

Example 1.11. In C [a, b] (finite interval) the set of all polynomials is every-
where dense (theorem of WEIERSTRASS)1. The same is true for L9 (a, b) for 1 <p <oo.
In L9 (a, b) (not necessarily finite interval) the set Co (a, b) of all infinitely differen-
tiable functions with compact supports is everywhere dense. If E is an open set of

1 See e. g. RoYDEN (1), p. 150.
2 A function has compact support if it vanishes outside a compact set. Thus

u E Co (a, b) if all the d"u/d x" exist and u (x) = 0 except for a < a' S z < b' < b
(where a', b' depend on u).
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R'", the set of all infinitely differentiable functions with compact support in E is
dense in LP (E), 1 s p < ool.

Unlike a finite-dimensional normed space, an infinite-dimensional
Banach space X is not locally compact (see I-§ 1.5). Thus X contains a
bounded sequence {un} that contains no convergent subsequence.
{un} is such a sequence if

(1.14) llunll=l, llun - umll z1 for n$m.
{un} can be constructed by induction. Suppose that u1, . . ., un have been
constructed. Let Mn be their span. Then there is a u E X such that
1lull = 1 and dist(u, Mn) = 1, as is seen from Lemma 1.12 proved below.
It suffices to set un+1 = u.

Lemma 1.12. For any closed linear manifold M + X o l X and any
e > 0, there is a u E X such that 1lull = 1 and dist (u, M) > 1 - s. We can
even achieve dist (u, M) = 1 if dim M < oo.

Proof. There is a uo E X not belonging to M, so that dist (uo, M)
= d > 0. Hence there is a vo E M such that 11uo - vo11 < d/(1 - --)-
Set u1= uo - vo. Then 11u111 < d/(1 - c) and dist (u1, M) = rinf lu1 - vll

= mM 11 uo - vll = dist (uo, M) = d > (1 - c) 11 u111. The required u is obtain-

ed by normalizing ul : u = u1/11u111. If dim M < oo, let uo be as above and
let X. be the linear manifold spanned by M and uo. We can apply the
result, just obtained to the subspace M of X0. Thus there exists a un E Xo
such that 11 unll = 1 and dist (un, M) > 1 - n-1. Since dim Xo < oo,
X0 is locally compact and there is a convergent subsequence of {un}.
It is easy to see that its limit u satisfies 1lu11 = 1 and dist (u, M) = 1.

A subset S C X is said to be fundamental if the closed span of S is X
(in other words, if the span of S is everywhere dense). S is separable if S
contains a countable subset which is dense in S. For the separability
of X, it is sufficient that X contain a countable subset S' which is funda-
mental; for the set of all linear combinations of elements of S' with
rational coefficients is a countable set dense in X. A subset of a separable
set is separable z.

Example 1.13. C [a, b] is separable; this is a consequence of the theorem of
WEIERSTRASS, for the set of monomials u" (x) = x°, n = 0, 1, ..., is fundamental in
C [a, b] (see Example 1.11). i9 is separable if 1 S p < no. The canonical basis
consisting of u = (S" x), n = 1, 2, ..., is fundamental in P. L9 (a, b) is also separable
if 1 S p < oo. The set of functions u(,. (z), which is equal to 1 on (a', b') and
zero otherwise, is fundamental when a' and b' vary over all rational numbers in
(a, b) 8. Similarly L9 (Rm) is separable for 1:5, p < oo. It then follows that L9 (E) is also
separable if E is any measurable subset of Rm, for L'(E) may be regarded as the
subspace of L9 (Rm) consisting of all functions vanishing outside E.

1 For the proof see e. g. SOBOLEV (1), p. 13.
8 See DUNFORD and SCHWARTZ (1), p. 21.
3 This follows from the properties of the Lebesgue integral; see ROYDEN M.
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An important consequence of the completeness of a Banach space
is the category theorem of BAIRE':

Theorem 1.14. I l X is the union o l a countable number o l closed subsets
S,,, n = 1, 2, . . ., at least one of the S contains interior points (that is,
contains a ball).

In spite of some essential differences in topological structure between
a general Banach space X and a finite-dimensional space, most of the
results regarding sequences infinite series E u and vector-valued
functions u (t) stated in I-§ 1.6-7 remain valid in X. Such results will be
used freely without comment in the sequel. It should be noted that the
completeness of X is essential here. For example, the existence of the
sum of an absolutely convergent series E u depends on it, and similarly
for the existence of the integral f u (t) dt of a continuous function u (t).
Also we note that the analyticity of a vector-valued function u (t) is
defined and the results of complex function theory are applicable to
such a function (see loc. cit.). On the other hand, results of I-§ 1 based
on the explicit use of a basis are in general not valid in the general case.

3. Linear forms
A linear form f [u] on a Banach space X can be defined as in I-§ 2.1.

But we here consider also linear forms f [u] that are defined only on a
certain linear manifold D of X. Such a form f will be called a linear
form in X, and D = D (f) will be called the domain of f. f is an extension of
g (and g is a restriction of f) if D (f) ) D (g) and f [u] = g [u] for u E D (g) ;

we write f)gorg(f.
f [u] is continuous at u = uo E D if II u - uolJ - . 0, u E D, implies

f f [uo]. Since / [u - u0], it follows that f [u] is
continuous everywhere in D if and only if it is continuous at u = 0. Such
an f is simply said to be continuous.

In a finite-dimensional space every linear form is continuous. This
is not true in the general case, though it is not easy to give an example
of a discontinuous linear form defined everywhere on a Banach space X.

If a linear form f is continuous, there is a S > 0 such that hull < 6
implies If [u] I S 1. By homogeneity, it follows that

(1.15) If[u]I S MIIuII for every u E D(f)

where M = 1/6. A linear form / with the property (1.15) is said to be
bounded. The smallest number M with this property is called the bound
off and is denoted by 11 /11. It is easy to see that, conversely, (1.15) implies
that f is continuous. Thus a linear form is continuous if and only if it is
bounded.

1 See e. g. RoYDEN (1), p. 121, or any textbook on functional analysis.
2 See footnote 3 of p. 133.
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Lemma 1.15. A bounded linear form / is determined if its values are
given in a subset D' dense in D (f ).

Proof. For each u E D (f ), there is a sequence un E D' such that un - u.
Thus / [u] = lim f [un] by continuity.

Theorem 1.16 (Extension principle). A bounded linear form with
domain D can be extended to a bounded linear form with domain D (the
closure of D). This extension is unique and the bound is preserved in the
extension.

Proof. The uniqueness of the extension follows from Lemma 1.15.
To construct such an extension, let u ED and let un E D be such that
u,, - u. The f [un] form a Cauchy sequence since I/ [u,,] - / [um] I =
= I1 [un - um] 11/11 11 un - umll - 0, n, m -+ oo. Let the limit of f [un]
be denoted by /'[u]. f' [u] is determined by u independently of the
choice of the sequence {un}, for un u and vn -+ u imply un - vn -+ 0
and hence f [u.] - f [v.] = f [u, - vn] -+ 0. It is now easy to show that
f'[u] is a linear form with domain 6. That IIfII = II/II follows from the
inequality 1/'[u] I s II/II IIull, which is the limit of 1/[u,,] I < II/II IIunjI.

Example 1.17. In 1P, I S p S oo, consider a linear form f given by
(1.16) f [u] = E ak k for u = (k)

k

If we take as D (/) the set of all u E l such that only a finite number of the Sk are
not zero, the coefficients ak are arbitrary. But such an f is in general not bounded.
f is bounded if
(1.17) M = (Z' Iakla)11c < oo where p-1 + q-1 = 1 .

Then we have if [u]1;5 MIIuJI by the Holder inequality (1.9). In this case we can
take D (f) = 1'; then it can easily be shown that 11 /11 = M. It is further known that
if p < oo any bounded linear form on t9 can be expressed in the form (1.16) with the
ak satisfying (1.17)1.

Example 1.18. Let X = C [a, b] ; set / [u] = u (xo) for every u E X, with a fixed
xo, a S x0 S b [see I-(2.3)]. / is a bounded linear form with domain X. More ge-
nerally, let I (x) be a complex-valued function of bounded variation over [a, b].
Then the Stieltjes integral

b

(1.18) f [u] = f u (x) d f (x)
a

defines a linear form on C [a, b]. / is bounded, for I / [u]I: M IIull where M is the
total variation off. Hence IIfII S M. Actually it is known that II f II = M, and that any
bounded linear form on C [a, b] can be expressed by a function / of bounded varia-
tion in the form (1.18) $.

Example 1.19. For each u E C' [a, b] (see Example 1.4) set f [u] = u' (xo).
f is a bounded linear form on C' [a, b]. f can also be regarded as a linear form in
X = C [a, b] with D (f) = C' [a, b] C X. In this interpretation f is not bounded, for
I u' (xo) I may be arbitrarily large for II ull = max Iu (x) I = 1-.

1 See e. g. ROYDEN 111, p. 103, TAYLOR (1), p. 193, YOSIDA 11), p. 117.
2 See e. g. TAYLOR (1), p.382.
® This f is a simple example of an unbounded linear form, but D(f) is not the

whole space X = C [a, b]. An unbounded linear form with domain X could be
obtained by extending f, but it would require the use of the axiom of choice.
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Example 1.20. For u E L9 (E) and f E Lc (E), P-1 + q-1 = 1, set

(1.19) f [u] = f f (x) u (x) d x.
E

For a fixed f, t [u] is a bounded linear form on L9(E) with IIfII S IIfIIc by (1.10).
It is known that IIfII = IIfIIc and that any bounded linear form on L9(E), p < oo,
can be expressed in the form (1.19) in terms of an f E Lc (E) 1.

4. The adjoint space
Semilinear forms and bounded semilinear forms in a Banach space X

can be defined in the same way as above (cf. I-§ 2.2). The adjoint space X*
of X is defined as the set of all bounded semilinear forms on X, and X*
is a normed vector space if the norm of f E X* is defined as the bound
11111 of f. As before we introduce the scalar product (f, u) = / [u] for every
/ E X* and u E X. The generalized Schwarz inequality I-(2.25) is again a
consequence of the definition of 11/11. Other notions and obvious results of
the finite-dimensional case will be taken over without further comment.

X* is a Banach space. To prove the completeness of X*, consider a
Cauchy sequence {fn} in X*. Then

(1.20) I(1n-fm,u)1 < Ilfn-1mlJ (lull -0, n,m -* oo,
for every u E X so that lim(fn, u) = / [u] exists. It is easily seen that
f [u] is a semilinear form in u. On letting n -* oo in I (1n, u) 1 S 11&1111 ull

we have I/ [u] 1 < M ll ull, where M = lim 111,2 II < oo since the 111,211 form a
Cauchy sequence of positive numbers. Thus / is bounded with 11111 < M.
Now (1.20) shows for m-. no that l(fn - f, u) 1 s lim 111,2 - fmhI hull or

m-r oo

I11n -1II S lim Il/n -lmll . Hence lim 111,, - fII lim 1I 1n - fmll = 0. Thus
m-+oo n--roo n,m-+oo

fn --> / and X* is complete.
All these considerations would be of little use if there were no bounded

semilinear forms on X except the trivial form 0. For this reason the
Hahn-Banach theorem, which assures the existence of "sufficiently
many" bounded linear (or equivalently, semilinear) forms on X, is basic
in Banach space theory. We shall state this theorem in a rather restricted
form convenient for our use.

Theorem 1.21. Any bounded linear form in a Banach space X (with
domain D C X) can be extended to a bounded linear form on the whole of X
without increasing the bound.

We do not give the proof of this theorems, but we add the following
comments. If this theorem has been proved for real Banach spaces, the
complex case can be dealt with by using the method of I-§ 2.5. In the
case of a real space, the theorem admits the following geometric inter-
pretation. Let S be the open unit ball of X. The intersection So of S

1 See e. g. ROYDEN (1), p. 103, TAYLOR Q11, p. 382, YOSIDA (11, p. 115.
ss See e. g. ROYDEN Q11, p. 162, or any book on functional analysis.



§ 1. Banach spaces 135

with D is the unit ball of D. If there is in D a support hyperplane Mo
to So (see I-§ 2.5), then there is in X a support hyperplane M to S contain-
ing Mo 1.

A consequence of Theorem 1.21 is
Theorem 1.22. Let M be a closed linear manifold of X and let u0 E X

not belong to M. Then there is an f E X* such that (/, u0) = 1, (f, u) = 0
for u E M and II/II = 1/dist (uo, M).

Proof. Let M' be the span of M and u0. As in the proof of Lemma 1.9,
each u E M' has the form u = uo + v, v E M. E is determined by u,
so that we can define a function f [u] = on M'. f is obviously semilinear
and bounded by (1.13), with IIfII 1/d where d = dist (u0, M). Actually we
have IIfII = 1/d, for there is a u E M' for which IIull = 1 and dist (u, M) >
> I - e (apply Lemma 1.12 with X replaced by M') ; for this u we have
1 - s < dist (u, M) = dist ( uo + v, M) = 1 I dist (uo, M) = I I d or If [u] I
> (1 - e) IIuII/d. This / can now be extended to X preserving the bound.
Denoting again by / the extended form, we see easily that the assertions
of the theorem are satisfied.

Corollary 1.23. For any two vectors u v of X, there is an f E X*
such that (f, u) + (f, v). Thus X* contains sufficiently many elements to
distinguish between elements of X.

Corollary 1.24. For any uo E X, there is an f E X* such that (/, u0)
= Iluoll, IIfII =1 [see I-(2.27)].

A consequence of Corollary 1.24 is that I-(2.26) is valid in a general
Banach space:

(1.21) (lull = sup I (t, u) I = sup V, u) I = sup IV, u) I
O+/EX* Iltll 1 fl/l=I

Example 1.25. Let u = (k) E P and f = (aA) E It with p-1 + q-1 = 1, 1 < p < oo.
For a fixed f, f [u] = £ ak , is a bounded semilinear form on X, and any bounded
semilinear form on X is expressed in this form by an f E 1Q (Example 1.17). For this
reason the adjoint space of P is identified with If, and we write (f, u) = E ak Th.
Similarly, the adjoint space of L' (E), 1:!9 p < oo, is identified with LQ (E) where
p-1 + q-1 = 1. We write
(1.22) (/,u) = f t (x) T dx , u E L' (E) , t E LQ (E) .

E

The adjoint space of C [a, b] is the space BV [a, b] of all functions / (x) of bounded
variation properly normalized, with the norm IIfII equal to the total variation of f.
The scalar product is

b

(1.23) (1,u)= fi(x)df(x), uEC[a,b], fEBV[a,b].
a

Problem 1.26. Each finite-dimensional linear manifold M of X has a com-
plementary subspace N : X = M $ N. [hint : It suffices to consider the case dim M
= 1. Let 0 4 u E M and let f E X*, (f, u) = 1. Let N be the set of all v E X such that
(f, v) = 0.]

1 The same is true if the open unit ball is replaced by any open convex subset
of X.
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The adjoint space X** of X* is again a Banach space. As in the
finite-dimensional case, each u E X may be regarded as an element of
X** (see I-§ 2.6). In this sense we may again write (u, f) = (f, u for
u E X and / E X*. This does not imply, however, that X** can be identified
with X as in the finite-dimensional case, for there may be semilinear forms
F [f] on X* that cannot be expressed in the form (f, u) with a u E X.
If there are no such forms F, X is said to be reflexive and X is identified
with X**. In general X is identified with a certain subspace of X**.

The results of I-§ 2.6 on annihilators should be modified and sup-
plemented accordingly. For any subset S of X, the annihilator Sl is a
closed linear manifold of X* (since the scalar product is a continuous
function of its arguments). The annihilator S 11 of S 1 is a closed linear
manifold of X** but need not be a subset of X (under the identification
stated above). In any case we have

(1.24) S1I n X = [S]
where [S] is the closed span of S. Since S1 1-) S is clear, we have S1 I)

[S]. To prove (1.24), it is therefore sufficient to show that any u E X
not belonging to [S] does not satisfy (f, u) = 0 for all / E S-L = [S]l.
But this is implied by Theorem 1.21.

5. The principle of uniform boundedness
The following are among the basic theorems in Banach space theory.

In what follows X denotes a Banach space.
Theorem 1.27. Let {u} be a sequence of vectors of X such that the

numerical sequence {(f, is bounded for each fixed f E X*. Then {u} is
bounded: IIunII S M.

Theorem 1.28. Let be a sequence of vectors of X* such that the
numerical sequence {(f,,, u)} is bounded for each fixed u E X. Then is
bounded: IIfnII S M.

These are special cases of the following theorem.
Theorem 1.29. Let {fix [u]} be a family of nonnegative continuous

functions defined for all u E X such that

(1.25) px [u' + u"] S px [u'] + px [u"]

I/ {px [u]} is bounded for each fixed u, then it is uniformly bounded for
IIul! 1.

Proof. Let S. be the set of all u E X such that px [u] S n and
px [-u] S n for all A. The S. are closed since the Px [u] are continuous in
u. The assumption implies that for each u E X there is an n such that
PA [u] S n and PA [-u] ;S n for all A. Hence u E S, and X is the union of
the S,,, n = 1, 2, .... It follows from the category theorem (Theorem 1.14)
that at least one S contains a ball K, say with center uo and radius r.
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Any u E X with IIuII s 2r can be written in the form u = u' - u"
with u', u" E K; it suffices to set u' = uo + u/2, u" = ua - u/2. Hence
PA [u] s PA [u'] + px[-u"] s n -{- n = 2n by (1.25). Thus {P;L [u]} is
uniformly bounded for IIull < 2r. If 2r Z 1, this proves the assertion.
If 2r < 1, let m be an integer larger than 1/2r. Then lull < 1 implies
llu/mll S 2r so that px [u/m] 5 2n. Repeated application of (1.25) then
gives px [u] < 2m n for lull < 1.

To deduce Theorem 1.28 from Theorem 1.29, it suffices to take
P. [u] = I(/., u) I. To deduce Theorem 1.27, we replace the X of Theorem
1.29 by X* and set pn [l] = I(/, un) I [note (1.21)].

Problem 1.30. Let f E X* be such that lim (f,,, u) = / [u] exists for all u E X.

Then f E X* and 11f 11 < lim infllt,ll < oo.

6. Weak convergence
A sequence un E X is said to converge weakly if (un, f) converges for

every / E X*. If this limit is equal to (u, f) for some u E X for every f,
then {un} is said to converge weakly to u or have weak limit u. We denote
this by the symbol un W u or u = w-limun. It is easily seen that a
sequence can have at most one weak limit'. To distinguish it from weak
convergence, the convergence un u defined earlier by llun - ull -+ 0
is called strong convergence. To stress strong convergence, we sometimes
write un u or u = s-limun. But in this book convergence will mean
strong convergence unless otherwise stated.

It is obvious that strong convergence implies weak convergence.
The converse is in general not true unless X is finite-dimensional.
Furthermore, a weakly convergent sequence need not have a weak
limit. If every weakly convergent sequence has a weak limit, X is said
to be weakly complete.

A weakly convergent sequence is bounded. This is an immediate con-
sequence of Theorem 1.27. Also we note that

(1.26) lull s lim infllunll for u = w-limun .

This follows from (u, f) = limun, /) where / E X* is such that ll/II = 1,
(u, f) = (lull (see Corollary 1.24).

Lemma 1.31. Let un E X be a bounded sequence. In order that un con-
verge weakly (to u), it suffices that (un, f) converge (to (u, f)) for all / of a
fundamental subset S* of X*.

1 Weak convergence is related to the weak topology of X, as strong convergence
is related to the norm topology. In this book we do not need the deeper results on
weak topology; the use of the simple notion of weak convergence is sufficient for our
purposes.
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Proof. Let D* be the span of S*; D* is dense in X*. Obviously (un, f )
converges [to (u, f)] for all / E D*. Let g E X* and s > 0. Since D* is
dense in X*, there is an / E D* such that IIg - /11 < e. Since (un, /) con-
verges, there is an N such that I (un - un, /) I < e for n, m > N. Thus
I (un, g) - (um, g) I s I (un, g - l) I + I (un - um., l) I + I (um, l- g) 1;5 (2M+ 1) s
for n, m > N, where M = sup II unli This shows that (un, g) converges for
all g E X*. When (un, /) - (u, /) for / E D*, we can apply the same ar-
gument with un - um replaced by un - u to conclude that (un, g) - (u, g)
for all g E X*.

The relationship between strong and weak convergence is given by
Theorem 1.32. A sequence un E X converges strongly it and only if

{(un, f)} converges uniformly for II/II s 1, / E X*.
Proof. The "only if" part follows directly from I (un, f) - (um, f) I s

< II un - umll II/II < 11u,, - umll To prove the "if" part, suppose that (un, f)
converges uniformly for II/II < 1. This implies that for any e >,0, there
exists an N such that I (un - um, f) I <--_ a if n, m > N and 11 /11 S 1. Hence

Ilun - umll = supl(un-um,/)I S eforn,m>Nby(1.21).
11t;I S 1

Remark 1.33. In Theorem 1.32, it suffices to assume the uniform
convergence of (u,,, f) for all / of a set dense in the unit ball of X*, for
(un - u,n, f) I < e for such / implies the same for all / of the unit ball.

Problem 1.34. Let M be a closed linear manifold of X. Then u E M and u --+ u
w

imply is E M. [hint: Theorem 1.22.] '

Let us now consider vector-valued functions u (t) of a real or complex
variable t. We have already noticed that the notions of strong continuity,
strong differentiability, and strong analyticity of such functions, and
the integrals f u (t) dt of continuous functions u (t), can be defined as in
the finite-dimensional case (see par. 2).

u (t) is weakly continuous in t if (u (t), f) is continuous for each / E X*.
Obviously strong continuity implies weak continuity. u (t) is weakly
differentiable if (u (t), f) is differentiable for each / E X*. If the derivative
of (u (t), f) has the form (v (t), /) for each /, v (t) is the weak derivative
of u(t).

If u (t) is weakly continuous at t = to, II u (t) II is bounded near t = to;
this follows from Theorem 1.27. If u (t) is weakly continuous on a compact
set of t, then II u (t) II is bounded there.

Lemma 1.35. If u (t) is weakly differentiable for a < t < b with weak
derivative identically zero, then u (t) is constant.

Proof. The assumption implies that (u (t), f) has derivative zero,
so that (u (t'), f) = (u (t"), /) for any t', t" and f E X*. Hence u (t') = u (t")
by Corollary 1.23.

Lemma 1.35 implies that u (t) is constant if u (t) is strongly differen-
tiable with du (t)/dt = 0. It is desirable, however, to have a direct proof
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of this fact, for the proof of Lemma 1.35 is not altogether elementary
since it is based on the Hahn-Banach theorem. We shall give a direct
proof in a slightly generalized case.

Lemma 1.36. It u (t) is strongly continuous for a s t < b and has the
strong right derivative D+u (t) = 0, then u (t) is constant.

Proof. D+u (t) is defined as the strong limit of h-1 [u (t + h) - u (t) ]
for h \ 01. We may assume without loss of generality that a = 0 and
u (0) = 0. We shall prove that II u (t) II s c t for any e > 0; then u (t) = 0
follows on letting c -+ 0. Suppose c is given. Since D+u (0) = 0, we have
11u (t) II < e t for sufficiently small t. Let [0, c) be the maximal subinterval
of [0, b) in which II u (t) II < e t is true ; we shall show that c = b. If c < b,

we have II u (c) II s e c by continuity. Then it follows from D+u (c) = 0
that II u (c + h) II = II u (c) II + o (h) < s c + o (h) < c (c + h) for sufficiently
small h > 0. But this contradicts the definition of c.

We can also define a weakly holomorphic function u (t) of a complex
variable t. But such a function is necessarily strongly holomorphic:
Namely, we have

Theorem 1.37. Let u (C) E X be defined in a domain A o l the complex
plane and let (u (C), f) be holomorphic in A for each f E X*. Then u (C) is
holomorphic in the strong sense (strongly differentiable in C).

Proof. Let P be a positively-oriented circle in A. We have the Cauchy
integral formula for the holomorphic function (u (C), f) :

(u (C) f) = 1
f (u dC'

2ni C
r

for C inside P. It follows that

(1.27) (u (c -I- rl) - UM' fl - (u (c), fl

11 f (u (0 ,

r
But u (C) is bounded on r because it is weakly continuous, so that
I(u(C'), f I s MIIfII for C' E P. Hence (1.27) is majorized by a number of
the form I I M'11111 for small I, I. This shows that 27-1(u (C + rl) - u (C), f)
converges as 71 -+ 0 to d(u (C), f)/dC uniformly for IIfII S I. It follows from
Theorem 1.32 that r7-1(u (C + rl) - u (rl)) converges strongly. This proves
that u (C) is strongly differentiable and hence holomorphic.

Remark 1.38. If II u (C) II is assumed to be locally bounded, it suffices
in Theorem 1.37 to assume that (u (C), f) is holomorphic for all f of a
fundamental subset of X* (note Remark 1.33).

1 h \Omeans h>0and hi0.
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7. Weak* convergence
In the adjoint space X* there is another notion of convergence called

weak* convergence'. A sequence fn E X* is said to converge to / weak* if
(u, fn) - (u, /) for each u E X. Weak* convergence is weaker than weak
convergence considered in the Banach space X*, for the latter requires
the convergence of (F, fn) for all F E X**. We use the notations /, : /
or w*-lim fn = / for weak* convergence.

w

A weak* convergent sequence is bounded. This follows immediately
from Theorem 1.28.

It should be noted that if (u, fn) converges for each u E X, then
w*-lim fn = / E X* exists (see Problem 1.30). In this sense X* is weak*
complete.

The following results can be proved in the same way as for weak
convergence.

{fn} converges strongly if and only if {(u, fn)} converges uniformly for
lull s 1, u E X.

If {fn} is bounded, it suffices for the weak* convergence of {fn} that
{(u, fn)} converge for all u of a fundamental subset of X.

If I M E X* is holomorphic in a domain A of the complex plane in
the weak* sense [that is, if (f (a), u) is holomorphic in A for each u E X),
then I (C) is holomorphic in the strong sense.

Problem 1.39. Let u, u E X, fR, f E X*. Then (un, (u, f) if (i) u -+ u and
f ---' f or (ii) u - u and fn --> f.

W* w

8. The quotient space
If M is a linear manifold of a vector space X, the quotient space

X = X/M is defined as the set of all cosets u" = u + M modulo M (or all
inhomogeneous linear manifolds parallel to M) with the linear operations
defined by I-(1.8). If X is a normed space and M is closed, X becomes a
normed space by the introduction of the norm
(1.28) (lull = inullvll = EMllu - zil = dist(u, M) .

E

It is easy to verify that (1.28) satisfies the conditions I-(1.18) of a norm.
Recall that u" = u"' if and only if u - u' E M.

X is a Banach space if X is a Banach space. To prove this, let (ii.) be
a Cauchy sequence in X. Let n (k) be an integer such that 11u"n - umlI
S 2-k for n, m Z n (k). We may further assume that n (1) < n (2) S
Set vk = un(k+1) - un(k), k = 1, 2. ... .

Then Jjt Jj 5 2-k, and we can choose a vk E vk for each k in such a way
0

that Ilvkll 5 lkvklI + 2-k s 2'-k. Set u = u,,(1) + X v.; this series
h-1

1 Again we shall not consider the deeper notion of weak* topology.



§ 1. Banach spaces 141

converges absolutely and defines a vector of X since X is complete.
Denoting by wk the partial sums of this series, we have iv-1, = un(k+il
Since Ilivk - uII s Ilwk - uII - 0 as k -+ oo, we have II Un(k) - all -* 0.
Choose k so large that Ilun(k) - u"11 < e as well as 2-7, < e; then Ilun - uII <
< Thin - un (k) 11 + Il un (k) - uII < 2 e for n >- n (k). This shows that {u}
has the limit u E X and completes the proof of the completeness of X.

The codimension or deficiency of a linear manifold M of X is defined by
codimM = dimX/M as before (I-§ 1.3).

Lemma 1.40. If M is closed, then codim M = dim Ml and codimMl
= dim M.

Proof. Suppose that codimM = m < oo. Then there is a finite basis
{z;}, j = 1, ..., m, of X = X/M. Let x; E z;. For any u E X, iZ can be
expressed uniquely in the form iZ = 1 zl + + m zm. Hence u admits
a unique expression
(1.29) vEM.
Let M; be the span of M and xl, ..., x;_1, x;+1, ..., xm. M1 is closed by
Lemma 1.9, so that there exists an f; E X* such that f; E Mj and (f;, x;) =1
(Theorem 1.22). In other words f; E M1 and (f;, xk) = S;k. It is easily seen
that the f; are linearly independent.

Let f E M1 and a; = (f, x;). Then f - a, fl - - am fm has scalar
product 0 with all the xk and v E M, hence with all u E X by (1.29).
Hence it is 0 and f = al f1 + + am fm. Thus M1 is spanned by f1, ...,
fm: dim M1 = m.

If codim M = oo, then there exists an infinite sequence Mn of closed
linear manifolds such that M C M, C M, C , all inclusions being proper.
Thus MJ- D M1 D M2 D with all inclusions proper [cf. (1.24)]. Thus
dimM1 = 00.

If dimM = m < oo, let {x1, ..., xm} be a basis of M. As above we can
construct f; E X*, j = 1, ..., m, with (f;, xk) = 8;k. Each / E X* can be

m

expressed in the form / = I (f, xk) fk + /'with (f, x;) = 0, j = 1, . . ., m,
k=1

that is, /'E M1. Hence I is a linear combination of the 1h, where I and the
!k are elements of X*/M1. Since the !k are linearly independent, this
proves that codimMl = m.

If dim M = oo, there is an infinite sequence Mn of finite-dimensional
linear manifolds such that M, C M, C C M, all inclusions being proper.
Thus M1 ) M21) M1 with all inclusions proper. This proves that
codimMl = oo.

Corollary 1.41. 1/ M is a finite-dimensional linear manifold, then
M-L1=M.

Problem 1.42. If codim M < dim N (which implies that codim M = m < oo),
then dim (M r N) > 0. [hint: u E M is expressed by the m conditions (u, f;) = 0,
where the f; are as in the first part of the proof of Lemma 1.40.1
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§ 2. Linear operators in Banach spaces
1. Linear operators. The domain and range

-In what follows X, Y, Z, ... will denote Banach spaces unless other-
wise stated. The definition of a linear operator (or simply an operator) is
similar to that given in the finite-dimensional case (I-§ 3.1). But there
are some generalizations of definition that we have to make for later
applications.

We find it necessary to consider operators T not necessarily defined
for all vectors of the domain space. Thus we define an operator T from X
to Y as a function which sends every vector u in a certain linear manifold
D of X to a vector v = T u E Y and which satisfies the linearity condition
I-(3.1) for all u1, u, E D. D is called the domain of definition, or simply the
domain, of T and is denoted by D (T). The range R (T) of T is defined as
the set of all vectors of the form T u with u E D (T). X and Y are re-
spectively called the domain and range spaces'. If D (T) is dense in X,
T is said to be densely defined. If D (T) = X, T is said to be defined on
X. If Y = X, we shall say that T is an operator in X. The null space N (T)
of T is the set of all u E D (T) such that Tu = 0.

The consideration of operators not necessarily defined on the whole
domain space leads to the notion of extension and restriction of operators,
as in the case of linear forms. If S and T are two operators from X to Y
such that D(S) C D (T) and Su = T u for all u E D (S), T is called an
extension of S and S a restriction of T; in symbol

(2.1) T ) S, S c T .

T is called a finite extension of S and S a finite restriction of T if T D S
and [T/S] = dim D (T)/D (S) = m < oo. m is the order of the extension or
restriction. If m = 1, we shall say that T is a direct extension of S and S
is a direct restriction of T.

For any subset S of the domain space X of T, we denote by TS the
image of S n D (T), that is, the set of all v = T u with is E S n D (T) ;
TS is a subset of the range space Y. For any subset S' of Y, the inverse
image T-1 S' is the set of all u E D (T) such that T u E S12.

1 It might appear that one need not complicate the matter by introducing
operators not defined everywhere in the domain space, for T could be regarded as an
operator on D (T) to Y or to R (T). We do not take this point of view, however,
for D (T) is in general not closed in X and hence is not a Banach space (with the
norm of X). In particular when X = Y, it is often convenient and even necessary to
regard T as an operator in X rather than as an operator between different spaces
D(T) and X.

8 The inverse image T-1 S' is defined even if the inverse T-1 (see below) does
not exist. When T-1 exists, T-1 S' coincides with the image of S' under T-1.
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The inverse T-1 of an operator T from X to Y is defined if and
only if the map T is one to one, which is the case if and only if T u = 0
implies u = 0. T-1 is by definition the operator from Y to X that sends
T u into u. Thus

(2.2) D(T-1) = R(T) , R(T-1) = D(T) .

(2.3) T-1(Tu)=u, uED(T); T(T-ly)=v, vER(T).
T is said to be invertible if T-1 exists. Any restriction of an invertible
operator is invertible.

Example 2.1. A linear form in X is an operator from X to C (the one-dimensional
space of complex numbers).

Example 2.2. When the domain and range spaces X, Y are function spaces
such as C (E), L9 (E), an operator T defined by multiplication by a fixed function
is called a multiplication operator. For example, let X = LP (E), Y = La (E) and
define T by T u (x) = f (x) u (x), where f (x) is a fixed complex-valued measurable
function defined on E. D (T) must be such that u E D (T) implies f u E Lt. If D (T)
is maximal with this property [that is, D (T) consists of all u E L9 (E) such that
fu E LQ (E)], T is called the maximal multiplication operator by f (x). T is invertible
if and only if / (x) $ 0 almost everywhere in E. If in particular p = q, the maximal
multiplication operator T is defined on the whole of L9 (E) if and only if f (x) is es-
sentially bounded on E.

Example 2.3. An infinite matrix (itk)f,k =1.2..... can be used to define an
operator T from X to Y, where X, Y may be any of the sequence spaces c and l9,
15 p S oo. Formally T is given by Tu = v, where u = and v = (77j) are
related by

(2.4)

00

m=Etek j=1,2,....
k=1

D (T) ( X must be such that, for any u E D (T), the series (2.4) is convergent for
every j and the resulting vector v belongs to Y. T is called the maximal operator
defined by (sfk) and X, Y if D (T) consists exactly of all such u. How large D (T)
is depends on the property of the given matrix.

Assume for instance that there are finite constants M', M" such that

(2.5) t;=EItrkISM',j=1,2.. :ix=Ikttkl:!c_: M", k = 1,2,....
k=1 j=1

If we choose X = Y = l9, 1 S p:9 oo, the same calculation as in I-(4.15) shows
that T u exists for any u E X and that

(2.6) 1ITUII = IlvlV s M') '-P Hull s max(M', M") Ilull

Thus the maximal operator T is defined on the whole of P. In particular this is the
case if (r, k) is a diagonal matrix with bounded diagonal elements.

Example 2.4. An operator of the form'

(2.7) Tu(y)=v(y)= ft(y,x)u(x)dx, yEF,
E

' For simplicity we write T u (y) in place of (T u) (y). There is no possibility of
confusion, for T[u(y)] does not make sense [u(y) is a complex number, T is an
operator].
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is called an integral operator with the kernel t (y, x). t (y, x) is a complex-valued
measurable function defined for x E E, Y E F (E, F being, for example, subsets of
euclidean spaces, not necessarily of the same dimension). If X and Y are function
spaces defined over E and F respectively, say X = If (E) and Y = LQ (F), then (2.7)
defines an operator T from X to Y by an appropriate specification of D (T). D (T)
must be such that for u E D (T), the integral on the right of (2.7) exists (in a suitable
sense) for almost every y and the resulting v (y) belongs to y. If D (T) consists
exactly of all such u, T is called the maximal integral operator defined by the given
kernel and X, Y.

For example, assume that there exist finite constants M', M" such that

(2.8) f It(y,x)Idx<M',YEF; f It(y,x)IdysM", xEE.
E F

If we choose X = If (E) and Y = LP (F), the maximal operator T is defined on
the whole of X, and we have the inequality

(2.9) II Tu1I = IIvII s M'1-, M"; (lulls max (M', M") (lull
This can be proved as in I-(4.15) by using the inequalities for integrals
instead of those for series. One has to invoke Fubini's theorems, however, to prove
rigorously the existence of the integral of (2.7) for almost all y.

If, in particular, E, F are compact regions and t(y, x) is continuous in x, y,
(2.8) is obviously satisfied. In this case T can also be regarded as an operator from
X = C (E) or any Ln (E) to Y = C (F) defined on X, for T u (y) is continuous for all
integrable u (x).

Problem 2.5. Let f f It (yo x)12 dx dy = M2 < oo. Then
F E

Tu(y)=v(y)= rt(y,x)u(x)dx

defines an operator T from X = L2 (E) to Y = L2 (F) with domain X, and
IITull S MllulJ. [hint: Iv(y)12 s IIuJI21 It(y, x)12 dx by the Schwarz inequality.]

Example 2.6. One is led to the notion of extension and restriction for operators
in a natural way by considering differential operators. The simplest example of a
differential operator T is

(2.10) T u (x) = u' (x) =
du(x)

d z

To be more precise, set X = C [a, b] for a finite interval and regard T as an operator
in X. Then D (T) must consist only of continuously differentiable functions. If D (T)
comprises all such functions, T is the maximal operator given by (2.10) in X.
D (T) is a proper subset of X = C [a, b]. Let Ds be the subset of D (T) consisting of
all u E D (T) satisfying the boundary condition u (a) = 0. Then the operator Ts in X
defined by D (Ti) = Ds and Tsu = u' is a direct restriction of T. Similarly, a direct
restriction T2 of T is defined by the boundary condition u (b) = 0. Another possible
boundary condition is u (b) = k u (a) with a constant k; the resulting direct re-
striction of T will be denoted by T8, with domain D3. Furthermore, the boundary
condition u (a) = u (b) = 0 gives another restriction To (with domain D0) of T of
order 2. To is a direct restriction of each of Ts, T8, Ts. All these operators are simple
examples of differential operators. The maximal differential operator T is not
invertible, for T u = 0 if u (x) = const. Ts, T2, T. are invertible. D (Ti 1) = R (T")

x
is the whole space X = C [a, b] and Tr' v (z) = f v (t) d t for every v E X ; thus Ti -1

a
1 See, e. g., ROYDEN (1), p. 233.
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is an integral operator with domain X. To is invertible as a restriction of T, or T3,
but the domain of To-1 is not the whole space X; it is the set of all v E X such that

b

f v (x) dx = 0. T. is invertible if and only if k + 1; in this case Ti 1 has domain X
a
and

(2.11) TSlv(x) =
k

1 1 ( k f v(t) dt + f v(t) dt) .

It should be noted that T is densely defined but the T,,, n = 0, 1, 2, 3, are not.
Example 2.7. The differential operator (2.10) can be considered in other function

spaces, X = L9 (a, b), say. Then T u (x) = u' (x) need not be continuous, and it is
convenient to interpret the differentiation in a slightly generalized sense: u' (x)
is supposed to exist if u (x) is absolutely continuous [that is, u (X) is an indefinite
integral of a locally Lebesgue-integrable function v (x) ; then u' = v by definition].
Thus the maximal differential operator defined from (2.10) in X = LP (a, b) has the
domain D (T) consisting of all absolutely continuous functions u (x) E If (a, b)
such that u' (x) E If (a, b). The various boundary conditions considered in the preced-
ing example can also be introduced here, leading to the restrictions To, ..., Te
of the maximal operator T defined in a similar way. All the operators T, To, ..., T,
are densely defined if I 5 p < oo. As in Example 2.6, the inverses of T,, T8, T,
exist and are integral operators.

So far we have assumed that (a, b) is a finite interval. The operator (2.10)
can also be considered on the whole real line (- no, oo) or on a semi-infinite interval
such as (0, oo), with some modifications. The maximal operator T can be defined in
exactly the same way as above. It is convenient to define also the minimal operator t
as the restriction of T with D (D) = Co (a, b) C X (see Example 1.11). [fi can also
be defined when (a, b) is finite.] In the case of a semi-infinite interval (0, oo), we can
again define Tiff T with the boundary condition u(0) = 0.

When we consider boundary conditions such as u (a) = 0 for T defined in
L9 (a, b), it is important to see what u (a) means. u (a) has no meaning for a general
u E If (a, b), for equivalent functions are identified in If (a, b) (see Example 1.3).
But u (a) can be given a meaning if u is equivalent to a continuous function, as the
value at x = a of this (necessarily unique) continuous function. Actually each
u E D (T) is equivalent to a function continuous on [a, b) if a > - no, as is easily
seen from the condition u' E If (a, b).

2. Continuity and boundedness

An operator T from X to Y is continuous at it = uo E D (T) if IIu,, - uoll
0, u E D (T), implies II T u,, - T uoll -* 0. As in the case of a linear form

(§ 1.3), T is continuous everywhere in its domain if it is continuous at
u = 0. Again, T is continuous if and only if T is bounded : II T ull S M II ull ,
it E D (T). The smallest number M with this property is called the bound
of T and is denoted by II T11. An unbounded operator is sometimes said to
have bound no.

The extension principle proved for a linear form (Theorem 1.16) can
be taken over to a bounded operator from X to Y. The only point to be
noted in the proof is that the completeness of Y is to be used in showing
that {T has a limit v E Y if it,, is a convergent sequence in X.
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Problem 2.8. An operator with a finite-dimensional domain is bounded.
Problem 2.9. Let T be bounded with R (T) dense in Y. If D' ( D (T) is dense in

D (T), T D' is dense in Y.
Problem 2.10. T-1 exists and is bounded if and only if there is an m > 0 such that

(2.12) IlTullZmllull, -ED(T).
Example 2.11. The maximal multiplication operator T of Example 2.2 for

q = p is bounded if and only if f (x) is essentially bounded on E; we have Il Tll
= it f Il , The operator T of Example 2.3 defined from a matrix (af k) is bounded if
(2.5) is assumed; we have Il Til < M"-1/9 M"'1" by (2.6). The integral operator T
of Example 2.4 is bounded under the condition (2.8) ; we have 11 Til 5 M"-'/o M"1
by (2.9). The integral operator T of Problem 2.5 is also bounded with 11 Tl) 5 M.

Example 2.12. The differential operators considered in Examples 2.6-2.7 are all
unbounded, for llu'll can be arbitrarily large for Mull = 1; this is true whether
X = C [a, b] or LP (a, b) and whether boundary conditions are imposed or not'.
But the inverses TR' are bounded; this follows, for example, from the preceding
example since these inverses are simple integral operators.

3. Ordinary differential operators of second order
We considered very simple differential operators in Examples 2.6-2.7. Let us

consider here in some detail second order ordinary differential operators and their
inverses2. Let

(2.13) L u = p0 (x) u" + p, (x) u' + p2 (x) u

be a formal differential operator defined on a finite interval a < x < b. We assume
that p0, pl and P. are real-valued, po , Al p2 are continuous on [a, b] and P. (x) < 0.
From the formal operator L various operators in (or between) different function
spaces can be constructed.

First take the space X = C [a, b]. Let D be the set of all functions u with u"
continuous on [a, b]. By
(2.14) Tu=Lu, uED,
we define an operator T in X with D (T) = D. Restriction of the domain of T by
means of boundary conditions gives rise to different operators. We shall not consider
all possible boundary conditions but restrict ourselves to several typical ones,
namely,
(2.15) TI, D (TI) = Dl : u (a) = 0, u (b) = 0

(zero boundary conditions) .
(2.16) T9 , D (T$) = D9 : u' (a) - h, u (a) = 0 , u' (b) + hb u (b) = 0

(elastic boundary conditions) .
(2.17) Ts , D (T$) = D3 : u (a) = 0 , u' (a) = 0

(zero initial conditions) .
(2.18) To, D (Tb) = Db : u (a) = u' (a) = u (b) = u' (b) = 0 .

T is the maximal operator in X constructed from the formal operator L. T,, T2, T3
are restrictions of T of order 2 and also extensions of T. of order 2.

' But T = d 1d x is bounded if it is regarded as an operator on C' [a, b] to
C [a, b].

9 For more details on ordinary differential operators, see CODDINGTON and
LavINsoN (1), GOLDBERG 111, NAIMARK (1), STONE 11).
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T is not invertible, for Tu = 0 has two linearly independent solutions u1, us
belonging to X. The other operators T5, k = 0, 1, 2, 3, are invertible, possibly
under certain additional conditions. T$' always exists and has domain X, since
an initial-value problem is always solvable in a unique way; it is an integral
operator of the Volterra type', given by

Y

(2.19) Ts'y(Y) = f [u,(Y) U2 (-v) - us(Y) ui(x)] _W(x)
dx

() po (x)
a

where u,, us are any two linearly independent solutions of Tu = 0 and W (x) is the
Wronshian

(2.20) W (x) = u, (z) ua (x) - us (x) ui (x) = const. exp \-f
pu

d z) .

To is also invertible since it is a restriction of Ts.
Tl' is also an integral operator

b

(2.21) Ti'v(y) = f g(y, x) v(x) dx,
a

where g (y, x), the Green functions for the zero boundary conditions, is given by

(2.22) g (Y x)
(Y) us (x) z ; = us (Y) ui (x)

Y
> X.

po (x) W (x)
yS

- po (x) W (x)

Here ul, us are the nontrivial solutions of L u = 0 such that ul (a) = 0, us (b) = 0
and W is their Wronskian given by (2.20). g is well-defined if u, (b) + 0, for then
W (b) + 0 and hence W (x) is nowhere zero. This is the case if, for example, ps > 0
on [a, b]. In fact if ul (b) = ul (a) = 0, ul (x) takes either a positive maximum or a
negative minimums. If ul (xe) is a positive maximum, xo E (a, b) and we must have
ui (x0) = 0, ui (x0) S 0, which is a contradiction since L u, (xe) = 0, po (x0) < 0,
p, (xa) > 0. A negative minimum is excluded in the same way. Thus T, is invertible
if ps > 0 on [a, b], and Tl' is the integral operator (2.21) defined on the whole of X
[note that g (y, x) is continuous in x and y].

Similarly it can be shown that Ti' exists, has domain X and is an integral
operator of the form (2.21) with an appropriate Green function g under some
additional conditions (for example P. > 0 on [a, b] and ha, hb 0).

Problem 2.13. The domain of To' is not the whole of X; it is the set of all
v E X satisfying the conditions

b

(2.23) f r(z)ub(z)v(z)dx=0, k= 1, 2,
a

pi= 1 (fdx).r (x)
- po (x)

exp

Let us estimate 11 Ti-111 explicitly, assuming p2 > 0. We note that g (y, x) Z 0 and
b

(2.24) f g (y, x) d x S c_' , c = minps (z) > 0 .
a x

' A kernel t (y, x) (or the associated integral operator) is of Volterra type if
t (y, x) = 0 identically for y < x (or for y > x).

e See, e. g., CODDINGTON and LEVINSON (lA for the Green functions and other
elementary results used below.

s Since L has real coefficients, ul (x) may be assumed to be real without loss of
generality.
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g Z 0 can be seen from (2.22) where we may take u1, u2 Z 0 for the reason stated
above [or, more directly, from the fact that g (y, x) cannot have a negative minimum
in y for a fixed x since it satisfies L,,g = 0 for y + x and has a characteristic sin-
gularity' at y = x]. To prove (2.24) denote by uo (y) the left member. ua (y) satisfies
the differential equation L uo = 1 with the boundary conditions ub (a) = ua (b) = 0.
Let uo (xo) be the maximum of ua (x). We have then uo (xo) = 0, u' (x0) S 0 so that
L ua (xo) = 1 gives p2 (x0) uo (x0) S 1, which implies (2.24).

Now it follows from (2.21) that for u = TI -1 v,
b

11ull=myxlu(y)IS mxaxlv(x)lmyx f g(y,x)dx< 1lv11c-1.

Hence
(2.25) 11 Ti 111 c-1

Problem 2.14. (2.25) is true for T, replaced by T2 if h0, hb Z 0.
Let us now consider the differential operator L in a different Banach space.

This time we shall take X = LP (a, b), I S P< oo. Since C [a, b] is a subset of
L9 (a, b), the operators T and T. considered above may as well be regarded as
operators in X = LP (a, b). But the above definition of D (T) is rather arbitrary
since now u" need not be continuous in order that L u belong to X. It is more
natural to assume only that u' is absolutely continuous on (a, b) and u" E X = LPs.
Let D be the set of all u with these properties and define T by T u = L u with
D (T) = D. The restrictions To to T. of T can be defined exactly as above by re-
stricting the domain by the boundary conditions (2.15) to (2.18). [Note that u' is
continuous on [a, b] by u" E L9 so that the boundary values u (a), u' (a), etc. are
well defined, cf. Example 2.7.]

The results concerning the inverses of T and T. in the space C [a, b] stated
above are now valid in the new space X = L9 (a, b). It suffices to add the following
remarks. The Green functions are determined by the formal operator L without
reference to the Banach space X. That the T;1 are bounded and defined on the
whole of X follows from the fact that, for example, the function (2.21) belongs to D,
if and only if v E X, which is in turn a simple consequence of the property of the
Green functions.

The estimate (2.25) for Ti.' is not valid, however. To obtain a similar estimate
in the present case we use the inequality

b

(2.26) f g (y, x) d y S c'-1 , c' = min (ps - p', + po )
a

where we assume that c' > 0. This follows from (2.24) by noting that g (y, x) is,
when the arguments x, y are exchanged, the Green function of the adjoint equation
Mv = 0 to Lu = 0, where
(2.27) My = ('0 vY" - (plv)' + pav
Thus we obtain by Example 2.11

(2.28) 11 Ti 111 S 1/cl-lir cntn < 1/min (c, c') .

Problem 2.15. The functions r u2, k = 1, 2, in (2.23) are solutions of the adjoint
equation My = 0.

1 2g(y, x)/2y is discontinuous in y at y = x with a jump equal to 1/po(x).
8 We need not even assume u" E X in order that Tu = Lu define an operator

in X; it suffices to assume only that u E X and Lu E X. But this seemingly broader
definition leads to the same T as above; see Remark 2.16 below.
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Remark 2.16. We assumed above that (a, b) is a finite interval, po , pi, p2 are
continuous on the closed interval [a, b] and that po < 0. In such a case L is said to be
regular. Let us now consider singular cases in which these conditions are not
necessarily satisfied; we assume only that po, pi and p2 are continuous in the open
interval (a, b) and po + 0. The pk may even be complex-valued, and the interval
(a, b) may be finite or infinite.

In a singular case we cannot define all the operators T and Tk given above.
But we can define at least the maximal operator T and the minimal operator T
in X = L9 (a, b), 1 < p < oo. T is defined by T u = L u where D (T) is the set of all
u E X such that u (x) is continuously differentiable in (a, b), u' (x) is absolutely
continuous in (a, b) [so that u" (x) is defined almost everywhere] and L u E X. T is the
restriction of T with D(T) = Co (a, b) (see Example 1.11). T and T are densely
defined.

In a singular case it is in general not easy to define restrictions of T with "good"
boundary conditions such as the Tk considered in the regular case. But T is often
a "good" operator itself, in a sense to be explained later.

It should also be remarked that, when applied to the regular case, the maximal
operator T just defined is apparently different from the T defined earlier, for the
earlier definition requires u" E X whereas the new one only L u E X. Actually,
however, these two definitions are equivalent, for L u E X implies u" E X in the
regular case. This is due to the basic property of a solution of the ordinary dif-
ferential equation L u = f E X, namely, that u is continuous with u' on [a, b] in
the regular case.

§ 3. Bounded operators

1. The space of bounded operators
We denote by .4 (X, Y) the set of all bounded operators on X to Y.

This corresponds to the set of all operators on X to Y, denoted by the
same symbol, in the finite-dimensional case (see I-§ 3.2). We write
.4 (X) for 2 (X, X).

Since every operator belonging to .4 (X, Y) has domain X and range
in Y, the meaning of the linear combination a S + 9 T of S, T E.4(X, Y)
is clear (I-§ 3.2). The resulting operator is again linear and bounded.
Thus .°4 (X, Y) is a normed space with the norm 11 TI! defined as the bound
of T (see I-§ 4.1). Similarly, the product TS is defined for T E. (Y, Z),
S E -4 (X, Y) by I-(3.15) and belongs to -4 (X, Z).

Example 3.1. Consider the operator T of Example 2.3 defined from a matrix.
As a maximal operator from X = P to itself, T is defined everywhere on X and is
bounded if (2.5) is assumed (see Example 2.11). Thus T E a (X). The set of all
operators of this type is a linear manifold of a (X). If T, S are operators of this type
defined by the matrices (rs k), (at k) respectively, T S E 9 (X) is again of the same
type and is defined by the matrix which is equal to the product of the two matrices.

Example 3.2. Consider an integral operator of the form (2.7). Regarded as a
maximal integral operator from X = L9 (E) to Y = L9 (F), T is defined on X and is
bounded with 11 TICS M'1-111 M"1/s if the condition (2.8) is satisfied. Thus T
belongs to .4 (X, Y). The set of all integral operators of this type is a linear manifold
of .' (X, Y).
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Consider another integral operator S E R (Y, Z) of the same type with a kernel
s (z, y) where y E F and z E G and where Z = LP (G). Then the product S T is defined
and belongs to 9 (X, Z). S T is an integral operator with the kernel

(3.1) r(z,x)= fs(z,y)t(y,x)dy.
F

This follows from the expression of (S T) u = S (T u) by a change of order of
integration, which is justified by Fubini's theorem since all the integrals involved are
absolutely convergent. It is easily seen that the kernel r given by (3.1) satisfies (2.8)
if both s and t do.

Problem 3.3. The null space N (T) of an operator T E -4 (X, Y) is a closed linear
manifold of X.

R (X, Y) is a Banach space. To prove the completeness of R (X, Y),
let {T,,} be a Cauchy sequence of elements of .6 (X, Y). Then {T u} is a
Cauchy sequence in Y for each fixed u E X, for II T,, u - T,,n '4ll s
s II T. - T mlI II ull - . 0. Since Y is complete, there is a v E Y such that
T. u -+ v. We define an operator T by setting v = T u. By an argument
similar to that used to prove the completeness of X* in § 1.4, it is seen
that T is linear and bounded so that T E 9 (X, Y) and that II T. - TII - 0.

Most of the results on R (X, Y) deduced in the finite-dimensional
case can be taken over to the present case (except those based on the
explicit use of a basis). In particular we note the expression I-(4.2) for
II T (I , the inequality I-(4.6) for II T SII and various results on infinite
series and operator-valued functions given in I-§ 4.

Contrary to the finite-dimensional case, however, different kinds of
convergence can be introduced into .4 (X, Y). Let T, T E.4 (X, Y),
n = 1, 2, .... The convergence of to Tin the sense of II T - TII --* 0
[convergence in the normed space -4 (X, Y) ] is called uniform convergence
or convergence in norm. is said to converge strongly to T if T u -* T u
for each u E X. converges in norm if and only if {T u} converges
uniformly for lull 5 1. is said to converge weakly if {T u} converges
weakly for each u E X, that is, if (T u, g) converges for each u E X
and g E Y*. If {T u} has a weak limit T u for each u E X, has the
weak limit T. (T is uniquely determined by converges in norm
if and only if (T u; g) converges uniformly for IIull s 1 and IIgll S 1
(see Theorem 1.32). A weakly convergent sequence has a weak limit if Y
is weakly complete (see § 1.6). Convergence in norm implies strong con-
vergence, and strong convergence implies weak convergence. We use
the notations T = u - lim T., T - T for convergence in norm, T

u
= s - lim T, T. -. T for strong convergence and T = w - lim T,,, T -, T

W

for weak convergence.
Problem 3.4. If converges strongly for each u E X, then converges

strongly to some T E 2 (X, Y).

If is weakly convergent, it is uniformly bounded, that is,
{II Tnll} is bounded. To see this we recall that {II T ull} is bounded for each
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u E X because IT,, u} is weakly convergent (§ 1.6). The assertion then
follows by another application of the principle of uniform boundedness
(apply Theorem 1.29 with px [u] = II T,, ujj ). We note also that

(3.2) II TII s lim inf II T,II for T = w-lim T ,

as is seen from (1.26).
The following lemmas will be used frequently in this treatise. Here

all operators belong to . (X, Y) unless otherwise stated.
Lemma 3.5. Let {TJ be uniformly bounded. Then converges

strongly (to T) if { T,, u} converges strongly (to T u) for all u of a fundamen-
tal subset of X.

Lemma 3.6. Let {TJ be uniformly bounded. Then {T,,} converges
weakly (to T) if {(T,, u, g)} converges (to (T u, g)) for all u of a fundamental
subset of X and for all g of a fundamental subset of Y*.

The proof of these two lemmas is similar to that of Lemma 1.31
and may be omitted.

Lemma 3.7. If T,, - T then T,, u -+ T u uniformly for all u
s

S

of a compact subset S of X.
Proof. We may assume that T = 0; otherwise we have only to con-

sider T,, - T instead of T.. As is every compact subset of a metric
space, S is totally bounded, that is, for any e > 0 there are a finite
number of elements uk E S such that each u E S lies within distance e
of some ukl. Since T. uk -* 0, n -* oo, there are positive numbers nk
such that II T,, ukll < e for n > nk. For any u E S, we have then II T,, ull 5
s II T. (u - uk) II + II T ukll 5 (M + 1) a if n > max nk, where uk is
such that Ilu - ukll < e and M is an upper bound of 11 T.11 (M is finite by
the above remark).

Lemma 3.8. If T,, T in .4 (Y, Z) and S,, -S . S in .4 (X, Y),
then T,, S T S in .4 (X, Z).

Proof. T,, S u - T S u = T,, (S - S) u + (T,, - T) S u -> 0 for each
u E X. Note that is uniformly bounded so that II T,, (S,, - S) ull S

MII (Sri - S) uII - 0.
Lemma 3.9. If T. T in .4 (Y, Z) and S g S in .1 (X, Y),

then T. S -, TS in B(X, Z).
W

Proof. Similar to the proof of Lemma 3.8; note that S)u,g)I
MIIgII II(S.-S)ujj-*0foreach uEXand9EZ*.
Problem 3.10. If u -- u and T. --+ T, then T. is,, --> T u. If is,, - u and

S s s s

T. ---p T, then T. u - Tu.
W W

1 If this were not true for some e > 0, there would exist an infinite sequence
u E S such that 11u - u.11 Z e, n + m, and would have no convergent sub-
sequence.
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For an operator-valued function t -+ T (t) E 2 (X, Y) of a real or
complex variable t, we can introduce different kinds of continuity accord-
ing to the different kinds of convergence considered above. T (t) is
continuous in norm if II T (t + h) - T (t) 11 -+ 0 for h -+ 0. T (t) is strongly
continuous if T (t) u is strongly continuous for each u E X. T (t) is weakly
continuous if T (t) u is weakly continuous for each u E X, that is, if
(T (t) u, g) is continuous for each u E X and g E Y*.

II T (t) II is continuous if T (t) is continuous in norm. II T (t) II is not
necessarily continuous if T (t) is only strongly continuous, but II T (t) II
is locally bounded and lower semicontinuous if T (t) is weakly continuous.
The local boundedness follows from the fact that {II T (tl.)II } is bounded for
t -+ t, and the lower semicontinuity follows from (3.2).

Similarly, different kinds of differentiability can be introduced.
T (t) is differentiable in norm if the difference coefficient h-1 [T (t + h) -
- T (t)] has a limit in norm, which is the derivative in norm of T (t).
The strong derivative T' (t) = d T (t)/dt is defined by T' (t) u = lim
h-1 [T (t + h) u - T (t) u], and similarly for the weak derivative.

Problem 3.11. If u (t) E X and T (t) E -4 (X, Y) are strongly differentiable, then
T (t) u (t) E Y is strongly differentiable and (did t) T (t) u (t) = T' (t) u (t) + T (t) u' (t).

We can also define different kinds of integrals f T (t) dt for an
operator-valued function T (t) of a real variable t. If T (t) is continuous in
norm, the integral f T (t) dt can be defined as in the finite-dimensional
case (or as for numerical-valued functions). If T (t) is only strongly
continuous, we can define the integral v = f T (t) u dt for each u E X.
ThenIIvII s f IIT(t) uli dt s hull f IIT(t)II dt;note that IIT(t)II need not be
continuous but is bounded and lower semicontinuous and hence
integrable1. Thus the mapping u -; v = S u defines an operator S E
E R (X, Y) with bound 5 f II T (t) II d t. If we write S = f T (t) d t, we have
defined a "strong" integral f T (t) dt for a strongly continuous function
T (t), with the properties

(3.3) (f T(t)dt)u= f T(t)udt, 11f T(t)dill < f IIT(t)Ildt,
t

(3.4) dt
f T (s) d s = T (t) (strong derivative!) .

Similarly, the integral of a function T (C) of a complex variable along
a curve can be defined.

When we consider holomorphic operator-valued functions, there
is no distinction among uniform, strong and weak holomorphy, as in
vector-valued functions. More precisely, we have

Theorem 3.12. Let T M E -4 (X, Y) be defined on a domain A of the
complex plane and let (T (C) u, g) be holomorphic in 4 E A for each u E X

1 If a real-valued function f is lower-semicontinuous, the set of all t such that
f (t) > at is open for any a. Hence / is Lebesgue-measurable.
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and g E Y*. Then T (l;) is holomorphic in A in the sense of norm (differen-
tiable in norm /or C E A) .

The proof is similar to that of Theorem 1.37 and may be omitted.
Again it should be remarked that if II T (C) II is assumed to be locally
bounded, it suffices to assume that (T (C) u, g) be holomorphic for all u
of a fundamental subset of X and for all g of a fundamental subset of Y*.

Problem 3.13. Let T. E -4 (X, Y) and let {(T u, g)} be bounded for each u E X
and g E Y*. Then {1I T.11) is bounded.

2. The operator algebra V (X)
9 (X) = .4 (X, X) is the set of all bounded operators on X to itself.

In -4 (X) not only the linear combination of two operators S, T but also
their product S T is defined and belongs to. (X). Thus 9(X) is a complete
nonmed algebra (Banach algebra) (see I-§ 4.1). Again, most of the results
of the finite-dimensional case can be taken over except those which
depend on the explicit use of a basis. It should be noted that the com-
pleteness of .(X) is essential here; for example, the existence of the
sum of an absolutely convergent series of operators depends on com-
pleteness [cf. the Neumann series I-(4.22) and the exponential function
I-(4.20)].

T E.°47(X) is said to be nonsingular if T-1 exists and belongs to -4 (X).
Actually it suffices to know that T-1 has domain X; then it follows that
T-1 is bounded by the closed graph theorem (see Problem 5.21 below).

1 - T is nonsingular if II TII < 1; this is proved by means of the
Neumann series as in I-§ 4.4. It follows that T-1 is a continuous function
of T [on the set of all nonsingular operators, which is open in .4 (X)].
In the same way we see that if T (C) E Q (X) is holomorphic in C and
nonsingular, then T (C)-1 is also holomorphic (see I-§ 4.5)1.

The spectral radius spr T = lim II T nlll/n can also be defined for every
T E .4 (X) as in I-§ 4.2. T is said to be quasi-nilpotent if spr T = 0.

The trace and determinant of T E.V(X) are in genera] not defined
(these are examples of notions defined by explicit use of a basis in the
finite-dimensional case). But we shall later define the trace and deter-
minant for certain special classes of operators of P.11 (X).

Example 3.14. The maximal integral operator T of Example 2.4 belongs to
a (X) if F = E and Y = X = L' (E) and if (2.8) is satisfied. Similarly for the
maximal matrix operator of Example 2.3. The inverses of the differential operators
T1, T9, T. of Examples 2.6-2.7 belong to . (X), but Ti- 1 does not (it is bounded but
not defined everywhere on X). Similarly, the inverses of the differential operators
T1, T8, T. of § 2.3 belong to 9 (X) (under appropriate conditions stated there) but
Ti 1 does not.

1 The same is true when T (C) E a (X, Y) is holomorphic in C and T (0-1 E
E 9i (Y, X).
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Example 3.15. An integral operator of Volterra type is usually (but not always)
quasi-nilpotent. For example consider a kernel t (y, x) which is continuous on the
triangle a< x S y< b and which vanishes for a 5 y < x 5 b. The associated
integral operator Tin C [a, b] or in L° (a, b) is quasi-nilpotent. To see this, let t (y, x)
be the kernel of T", n = 1, 2. .... It is easy to see that the t are also of Volterra
type (t. (y, x) = 0 for y < x). We have for y > x

)n-1 n )n-1Mn _
M(3.5) It.(y,x)Is (ny- 1)! S (n_ 1)! , n

where M = max It (y, x) I, as is seen by induction based on the composition formula
(3.1) corresponding to TO = T"-1 T. (3.5) gives 11 P111 S M° (b - a)"I(n - 1)!
(see Example 2.11) so that spr T = 0.

Example 3.16. Let X = P, 1 < PS oo, and let T be the maximal operator in X
defined from a matrix (rr k) with all elements equal to zero except possibly r3 i+1
= ri, j = 1, 2. .... Such a T will be called a left shift operator and {rr} the defining
sequence for T. It is easily seen that T E -4 (X) and

(3.6) Tx1=0, Txs=rlxl, Txs=r$xs,...
where {xj} is the canonical basis of X. Also we have

(3.7) II TII = sup IrrI
i

The iterates Tm of T are represented by matrices (i R)) such that
= rt rj+1 rj+m-1, all other elements being zero. Thus

(3.8) II Tmli = sup Ir, r1+1 ... ri+m-1I
i

TAm)
l.9tm

It follows, for example, that
(3.9) spr T = r if Ii4i --- r , j --- oo .

Similarly a right shift operator T' is defined by a matrix (r! k) with rj+ 1, 9 =
t!and all other elements equal to 0. We have PE 9 (X) and

(3.10) T'x1=r1xs, T'xs=rax3,... .
Also we have formulas similar to (3.7) to (3.9).

3. The adjoint operator
For each T E-4 (X, Y), the adjoint T* is defined and belongs to

.4 (Y*, X*) as in the finite-dimensional case (see I-§§ 3.6, 4.1). For each
g E Y*, u -*. (g, T u) is a bounded semilinear form on X by virtue of
I(g, Tu)I <- IIgII IITuII s 11 T11 IIgII IIull, so that it can be written (f, u) with
an f E X*; T* is defined by T* g= f. As before II T* gli = 11 /11 = sup I(/, u) I

Ilulsl
II TII IIgVI gives II T *II 5 II T11. To deduce the more precise result II T *II

= II TII, we need a slight modification of the argument of I-§ 4.1 since
X = X** is no longer true in general. Applying the above result to T
replaced by T*, we have II T**II s II T*II S II TII. But T**:) T if X is
identified with a subspace of X**, for (T** u, g) = (u, T* g) _g, u
= (g, T 7u shows that the semilinear form T** u on Y* is represented by
Tu E Y and therefore T** u = Tu by identification. Since T**:) T
implies 11 T**II ? 11 TII, we obtain the required result 11 T*II =T h .11

I
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Again, most of the results of the finite-dimensional case remain valid.
Among the exceptions, it should be mentioned that the second relation
of I-(3.37) is to be replaced by

(3.11) N (T) = R (T*)1 n X.

The relations between the nullities, deficiencies and ranks of T and T*
such as I-(3.38) must be reconsidered accordingly. This problem will be
discussed in more detail in Chapter IV.

The relation between the inverses T-1 and T* -1 given before should
be altered in the following way. If T E 9 (X, Y) has inverse T-1 ER (Y, X),
then T* has inverse T*-1= (T-1)* E.9 (X*, Y*). This follows simply by
taking the adjoints of the relations T-1T = lx, TT-1 = ly (lX is the
identity operator on X). Conversely, the existence of T* -1 E -4 (X*, Y*)
implies that of T-1 E.9 (Y, X); but the proof is not trivial and will be
given later in the more general case of an unbounded operator (see
Theorem 5.30).

Example 3.17. Consider the maximal integral operator T of Example 2.4 for
X = L9 (E), Y = L9 (F), so that T E R (X, Y) by Example 3.2. Thus T* E .1 (Y*, X*)
where X* = LQ(E), Y* = LQ(F), p-1 + q-1 = 1 (see Example 1.25; here we
assume p < oo). Actually T* is itself an integral operator of the same type with
kernel the Hermitian conjugate to that of T:
(3.12) t* (x, y) = t (y, x) .
This follows from the identity

(T*g,u)=(g,Tu) f g (y) dy ft(y,x)u(x)dx= fu(z)dx ft (y, x) g (y) dy
F E E F

valid for u E X and g E Y*; the change of the order of integration is justified under
the assumption (2.8) since the double integral is absolutely convergent (Fubini's
theorem).

Example 3.18. Let T be the maximal operator T of Example 2.3 defined from a
n}atrix (TI m) for X = Y = 1P, 1 S p < oo. We have T E .9 (X) if (2.5) is satisfied
(Example 3.1). Thus T* E 9(X*) where X* = is with p-1 + q-1 = 1 (Example
1.25). T* is also defined from a matrix of the same type

(3.13) fIm=fki.
The proof is similar to that in the preceding Example.

Problem 3.19. The operators T and T' in Example 3.16 are the adjoints of one
another if T, T' are defined in 19, l*, respectively, where p-1 + q-1 = 1, 1 < p < oo,
andfi=ai.

4. Projections
An idempotent operator P E 9 (X) (P2 = P) is called a projection.

We have the decomposition
(3.14) X= Me N

where M = PX and N = (1 - P) X, see I-§ 3.4. It should be added
that M, N are closed linear manifolds of X. This follows from the fact
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that M and- N are exactly the null spaces of 1 - P and P, respectively
(see Problem 3.3).

Conversely, a decomposition (3.14) of a Banach space into the direct
sum of two closed linear manifolds defines a projection P (on M along N)
(see loc. cit.). It is easily seen that P is a linear operator on X to itself,
but the proof of the boundedness of P is not simple. This will be given
later as an application of the closed graph theorem (Theorem 5.20).

For a given closed linear manifold M of X, it is not always possible
to find a complementary subspace N such that (3.14) is true'. In other
words, M need not have a projection on it. On the other hand, M may
have more than one projections.

Problem 3.20. Let v E X and / E X* be given. The operator P defined by Pu
_ (u, f) v for all u E X is a projection if and only if (v, f) = 1. In this case P X is the
one-dimensional manifold [v] spanned by v, and N (P) is the closed linear manifold
of X consisting of all u with (u, f) =0(N(P) _ [f]1r\X). We have 11 P11 S II/IIIIvII.

Problem 3.21. The results of I-§ 4.6 on pairs of projections are valid for projec-
tions P, Q in a Banach space X. In particular P X and Q X are isomorphic 2 if
III'-QII<1.

Also the results of I-§ 3.4 on a family P1, ..., P8 of projections in X
satisfying Pf P, = b;7, P; can be extended to a Banach space without
modification.

If P is a projection in X, P* is a projection in X*. Again we have
M* = P* X* = N (I - P*) = R (1 - P)1 = NJ- and similarly N*=
_ (1 - P*) X* = M1.

Example 3.22. Let X = C [- a, a], a > 0. Let M, N be the subsets of X consist-
ing of all even and odd functions, respectively. M, N are complementary closed
linear manifolds of X. The projection P on M along N is given by

(3.15) Pu(x) =
2

(U (X) + u(-x))

It follows easily that II PII = III - PII = 1. M can further be decomposed into the
direct sum of two closed linear manifolds M0, M1 in such a way that, considered on
the subinterval [0, a], each u E Mo is even and each u E M1 is odd with respect to
the center x = a/2. N is likewise decomposed as N = No ® N1, so that X = Mo
® M1 ® No ® N1. Each of the four projections associated with this decomposition
of X again has norm one. It is easy to see that the same results hold for X =
= L'(-a, a).

Example 3.23. Let X = C [- n, n] and
I n

(3.16) P, u (x) = n ( J cos n x u (x) dx) cos n X, n = 1, 2, ... .

_ n

The P. are projecitons (see Problem 3.20) and satisfy P.P. P,,, with

(3.17) IIPnll S Ilcosn xlli Ilcosn xII. =

1 See DUNFORD and SCHWARTZ Q1), p. 553.
s Two Banach spaces X, Y are said to be isomorphic (or equivalents if there is a

U E. (X, Y) with U-1 E a (Y, X).
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The same is true if X = C [- ar, n] is replaced by L9 (- n, n), with the exception
that the 11 11. and 11 11. should be replaced by II IIQ and II III with p-1 + q-1= 1.
In particular we have II P*II = 1 for p = 2.

§ 4. Compact operators
1. Definition

There is a class of bounded operators, called compact (or completely
continuous) operators, which are in many respects analogous to operators
in finite-dimensional spaces. An operator T E. (X, Y) is compact if the
image {T u,,} of any bounded sequence {u,,} of X contains a Cauchy
subsequence.

Example 4.1. The integral operator T of Example 2.4 is compact if E, F are
compact sets and t (y, x) is continuous in x, y and if T is regarded as an operator
from X = L' (E) to Y = C (F). To see this, we note that

(4.1) ITu(y') - Tu(y")l S f It(y, x) - t(y", x)I Iu(x)I dx
E

s (lull max I t (y', x) - t (y", x)I
x

Since t(y, x) is continuous, it is uniformly continuous and ITu(y') - Tu(y")I"can
be made arbitrarily small by taking ly' - y"I small. How small l y' - y"I should be
depends only on (lull. In other words, the Tu are equicontinuous for a bounded set of
u. Since {Tu} is equibounded for a bounded set {u} for a similar reason, we conclude
from the theorem of AscoLI1 that contains a uniformly convergent sub-
sequence if is bounded. Since this means that contains a Cauchy sub-
sequence in Y = C (F), T is compact.

The same is true when T is regarded as an operator from X to Y, if X is any
one of C (E) and LP (E) and Y is any one of C (F) and Le (F), 1 S p, q;5 oo. This is
due to the facts that a bounded sequence in X is a fortiori bounded in the norm
(lull, and that a Cauchy sequence in C (F) is a fortiori a Cauchy sequence in Y8.

1 Example 4.2. Let X = C' [a, b] and Y = C [a, b] with the norm defined as in
(1.8) and (1.4). Since X is a subset of Y, the operator T that sends every u E X into
the same function u E Y is an operator on X to Y. T is compact. This is again a
consequence of the Ascoli theorem, for {Tu} is equibounded and equicontinuous if
Jllull} is boundeds.

Problem 4.3. Every operator T E .4 (X, Y) is compact if at least one of Y, X
is finite-dimensional.

Problem 4.4. The identity operator IX in a Banach space X is compact if and
only if X is finite-dimensional. This is another expression of the proposition that X
is locally compact if and only if X is finite-dimensional (see § 1.2).

Problem 4.5. A projection P E .9 (X) is compact if and only if the range of P is
finite-dimensional.

Problem 4.6. The inverses of the differential operators Ty,, k = 1, 2, 3, of
Examples 2.6-2.7 are compact. The same is true for the second-order differential
operators considered in § 2.3.

1 See, e. g. RoYDEN [I), p. 155.
S Many other elementary examples of compact operators are given in LYUSTER-

NIE and SOBOLEV W.
e

3 Note that lu(t) - u(s)I = sf u'(x) dxl 5 It - sI llullx.
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2. The space of compact operators

We denote by -40 (X, Y) the set of all compact operators of R (X, Y).
Theorem 4.7. -4o (X, Y) is a closed linear manifold of the Banach space

9 (X, Y). Thus .40 (X, Y) is itself a Banach space with the same norm as in
-4 (X, Y).

Proof. 69o (X, Y) is a linear manifold. Since it is obvious that a T is
compact with T, it suffices to show that T' + T" is compact whenever
T', T" are. Let {un} be a bounded sequence in X. Take a subsequence
{u;,} of {un,} such that {T' is a Cauchy sequence in Y, and then take a
subsequence of {u,'} such that {T" u } is Cauchy. Then {(T' +
+ T") un } is a Cauchy sequence. Hence T' + T" is compact.

To prove that °9o (X, Y) is closed, let {Tk} be a sequence of compact
operators such that II T h - TII 0, k - oo, for some T E -4 (X, Y) ; we
have to show that T is also compact. Let {un} be a bounded sequence
in X. As above, take a subsequence {u;; )} of {u,,} such that {T1 u(')} is
Cauchy, then a subsequence {un2)} of {u;,"} such that {T2 un2)} is Cauchy,
and so on. Then the diagonal sequence {u(n) = vn} has the property that
{Tvn} is Cauchy. In fact, since {vn} is a subsequence of every sequence
{unk)}, each {Tk vn} is Cauchy for fixed k. For any s > 0, take a k so
large that II Tk - TII < e and then take N so large that II Tk vn - Tkvn+,Il
<eforn>N,p>0.Then
(4.2) IITvn - Tvn+,II < 11(T - Tk) (vn - vn+,)II + IITk(vn - vn+,)II <

<(2M+1)e,
where M = supllunll < oo. Since (4.2) is true whenever n > N, {Tvn} is
Cauchy. This proves that T is compact.

Theorem 4.8. The product of a compact operator with a bounded operator
is compact. More precisely, let T Ego (X, Y) and A E.4 (Y, Z), B E °..8 (W, X),
W, X, Y, Z being Banach spaces. Then A TEgo (X, Z) and T B E go (W, Y):

Proof. Let {un} be a bounded sequence in X. Take a subsequence
{u;,} of {un} such that {T is a Cauchy sequence in Y. Then {A T u,,'}
is a Cauchy sequence in Z; this shows that A T is compact. Again, let
{vn} be a bounded sequence in W. Then B vn is bounded in X and therefore
contains a subsequence {Bv;,} such that {T Bv;,} is Cauchy. This shows
that TB is compact.

If in particular Y = X, it follows from Theorem 4.8 that the product
(in either order) of operator of °Ro (X) = °Qo (X, X) with any operator of
R(X) is again compact. This is expressed by saying that go (X) is a
closed two-sided ideal of the Banach algebra .4 (X).

Problem 4.9. If dim X = oo, every T E . (X) is singular [T-1 E 2 (X) is im-
possible].
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Theorem 4.10. The adjoint of a compact operator is compact, that is,
T E9o(X, Y) implies T* E-'o(Y*, X*).

Proof. We begin by proving that the range of a compact operator T is
separable. To this end it suffices to show that the image TS of the unit
ball S of X is separable, for R (T) is the union of T S, 2 T S, 3 T S, .. .
each of which is similar to TS. For any positive integer n, there are a
finite number p,, of elements of T S such that any point of T S is within
the distance 1/n from some of these p,, points. Otherwise there would
exist an infinite number of points Tun (u,,E S) separated from one
another with distance larger than 1/n; these points would form a sequence
containing no Cauchy sequence, contrary to the assumption that T is
compact and S is bounded. Now the assembly of these pn points for all
n = 1, 2, 3, ... is countable and dense in T S, which shows that T S is
separable.

Returning to the proof of the theorem, let T E -4o (X, Y). Then
T* E.6(Y*, X*). We have to show that, from any bounded sequence {gn}
in Y*, we can extract a subsequence such that {T* is a Cauchy
sequence in X*. Let {vk} be a sequence dense in R (T) C Y; the existence
of such a sequence was just proved. Since every numerical sequence
{(g, vk)} with fixed k is bounded, the "diagonal method" can be applied
to extract a subsequence of {g,,} such that {(fn, vk)} is a Cauchy
sequence for every fixed k. Since {vk} is dense.in R (T), it follows that
{(f,,, v)} is Cauchy for every v E R(T). (The arguments are similar to
those used in the proof of Theorem 4.7.)

Set lim (f,,, v) = / [v]. f is a semilinear form on_ R (T) and is bounded
because {fn} is bounded. f can be extended to a bounded semilinear
form on Y (the Hahn-Banach theorem), which will again be denoted by f .

Thus we have (f,,, v) - (f, v), f E Y*, for every v E R(T), that is,

(4.3) (f n, T u) - (/, T u) , n -s oo , for all u E X X.

We shall now show that T* fn -- T* /. Since {fn} is a subsequence of
S

{gn}, this will complete the proof. Set fn - f = h,,; we have to show
that T* h - 0. If this were not true, there would exist a S > 0 such that

II T* hnIJ z S for an infinite number of subscripts n. We may assume
that it is true for all n, for otherwise we need only to replace {hn} by a
suitable subsequence. Since 11 T* hnIl = sup I(T* h,,, u) I for 11u = 1,
there is for each n a u,, E X such that

(4.4) (he, Tun) (T* he, un) I 6/2, II unll = 1

The compactness of T implies that {Tun} has a Cauchy subsequence.
Again replacing {Tun} by a suitable subsequence if necessary, we may,
assume that {Tun} is itself Cauchy. For any e > 0, there is thus an N
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such that m, n > N implies 11 T u,, - T u< e. Then it follows from (4.4)
that

6/2 < I (hn, Tun) 1 c I (hn, Tun - T um) I + I (hn, T um) i

<- M e + i (hn, T um) i , M = sup ii hhI i .

Going to the limit n - no for a fixed m gives 6/2 S M e, for (4.3) implies
(hn, T u) 0. But since e > 0 was arbitrary, this contradicts S > 0.

3. Degenerate operators. The trace and determinant

An operator T E .4 (X, Y) is said to be degenerate if rank T is finite,
that is, if R (T) is finite-dimensional. This range is necessarily closed.
Since a finite-dimensional space is locally compact (I-§ 1.5), a degenerate
operator is compact. It is easy to see that the set of all degenerate operators
is a linear manifold in -4 (X, Y), but it is in general not closed.

Also it is easily verified that the product of a degenerate operator T
with a bounded operator is degenerate, with its rank not exceeding
rank T (a more precise formulation should be given in a form similar to
Theorem 4.8). In particular, the set of all degenerate operators of .9 (X)
is a (not necessarily closed) two-sided ideal of the algebra -4 (X).

Problem 4.11. T E a (X, Y) is degenerate if and only if the codimension of the
null space N (T) is finite (dim X/N (T) < oo).

Problem 4.12. Let T. be degenerate and let 11 T. - T11 --> 0. Then T is compact,
though not necessarily degenerate.

A degenerate operator T E 9 (X, Y) can he described conveniently
by making use of a basis y1, ..., ym of R (T), where m = rank T. Since
T u E R (T) for every u E X, we can write

m

(4.5) T u = E 17jy5 .
i=1

The coefficients i?f are uniquely determined by u and are obviously
linear in u. Furthermore, these linear forms are bounded, for 11?mi S

S y11 Tu11 5 y11 T11 Hull by I-(1.21). Hence we can write ?7m = (e;, u)
_ (u, ef) with some e; E X*, and (4.5) becomes

m

(4.6) T u = E (u, ef) y, .
f=1

It is convenient to write, in place of (4.6),

(4.7) T =' ( , ej) y5

For any g E Y* we have

(4.8) (T*g, u) = (g, T u) _ ' (e1, u) (g, y5) _ (g, y5) e;, u) .
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Since this is true for all u E X, we have

(4.9) T* g (g, yj) e1 or T* _ ( , yj) ej
i=I

This shows that R (T*) is spanned by m vectors el, ..., em. Thus T*
is also degenerate with rank T* S rank T. Application of this result to T
replaced by T* shows that T** is also degenerate with rank T** S
<_ rank T. Since, however, T may be regarded as a restriction of T**
(see § 3.3), we have also rank T 5 rank T**. Thus we have proved

Theorem 4.13. T is degenerate i f and only i f T* is. I l T is degenerate,
we have

(4.10) rank T* = rank T .

(4.10) is true for all T E.9 (X, Y) if oo is allowed as a value of rank T.
m

Problem 4.14. An integral operator with a kernel of the form E fJ (x) gj (y) is
i=I

degenerate (jj E X*, gj E Y).
Problem 4.15. In (4.9) the ej form a basis of R (T*), which is correlated to the

basis {yj} of R (T). If we take an arbitrary basis {ej} of R (T*), then we have the
expressions T = E aj 1, ( , ej) yl,, T* = E o x ( , yk) ej

An important property of degenerate operators T Ed (X) is that
the dete4minant can be defined for 1 + T and the trace can be defined
for T'. R (T) is finite-dimensional and invariant under T. Let TR be the
part of Tin R = R (T). We define the determinant of 1 + T by

(4.11) det(1 + T) = det(1R+ TO

where 1R is the identity operator in R. [For det (1R + TO see I-§ 3.1.]
Any subspace M of X containing R is likewise invariant under T.

If M is finite-dimensional, det (1M + TM) is defined. We have

(4.12) det (1M + TM) = det (1 + T) .

This can proved by introducing into R a basis and extending it to a
basis of M; the associated matrix for TM has the property that all rows
corresponding to the basis elements not in R contain only zero elements.
Thus the determinant of this matrix is equal to det (1R + TR), which is
equal to det (1 + T) by definition.

If T has the form (4.7) where the yj = xj form a basis of R, the
matrix elements of TR for this basis are given by (x,, ej). Hence

(4.13) det(1 + T) = det(Sjk + (xi, ek)) .

1 There is a wider class of operators than that of degenerate operators for which
the trace or the determinant can be defined; see RUSTON (1), GROTHENDIECK Ell
(for operators in Hilbert space see X-§ 1.4).
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Note that this is true even if T is defined by (4.7) with y1= xf E X
which are not necessarily linearly independent. This can be proved by an
appropriate limiting procedure.

The determinant thus defined for degenerate operators has the
property

(4.14) det((1 + S) (1 + T)) = det(1 + S) det(1 + T) .

Note that (1 + S) (1 + T) = 1 + R where R = S + T + ST is de-
generate if S, T are. To prove (4.14), let M be a finite-dimensional sub-
space containing both R (S) and R (T). Then R (R) C M and det ((1 + S)
(1+T))=det(1+R)=det(1M+RM)=det(1M+SM+TM+SMTM)

= det ((1 M + SM) (1M + TM)) = det (1 M + SM) det (1M + TM) = det (1 + S) .
det (1 + T) by (4.12).

It follows from (4.13) that det (1 + x T) is a polynomial in x with
degree not exceeding rank T = dim R. The coefficient of x in this poly-
nomial is by definition the trace of T. Thus we have

(4.15) tr T = tr TR = tr TM

with the same notations as obove. If T is given by (4.7) with x = y, we
have from (4.13)

(4.16) tr T = (xf, e,) .
j=1

The trace has the property

(4.17) trTA = trAT

where T is a degenerate operator of .i (X, Y) and A is any operatrr of
R (Y, X). Note that TA is a degenerate operator in Y and A T is a
degenerate operator in X. To prove (4.17), let R = R (T) C Y and
S = A R C X. R and S are finite-dimensional and R (A T) = A R (T) = S
while R (T A) C R (T) = R. Therefore, it suffices by (4.15) to show that
tr(TA)R = tr(A T) S. But it is obvious that (A T) S = A' T' where T'
is the operator on S to R induced by T (that is, T' u = T u for u E S)
and A' is the operator on R to S induced by A, and similarly (TA)R
= T' A'. Thus what we have to show is reduced to tr T' A' = tr A' T', a
familiar result in the finite-dimensional case (Problem 1-3.8)

Problem 4.16. det (1 + T*) = det(l + T), tr T' = tr T.
Problem 4.17. det(1 + TS) = det(1 + ST) [where one of T E .4(X,Y) and

S E a (Y, X) is degenerate].
Problem 4.18. Generalize I-(3.25) and I-(5.42) to the case of a degenerate

operator.
Problem 4.19. If T E . (X) is degenerate and nilpotent, then tr T = 0, det (1 + T)

= 1.
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§ 5. Closed operators
1. Remarks on unbounded operators

We have seen in the preceding sections that most of the important
results of the operator theory developed for finite-dimensional spaces
apply without essential modification to operators of 9(X, Y) [or -4 (X)].
For unbounded operators with domain not identical with the whole
domain space, the situation is quite different and we encounter various
difficulties.

For such operators, the construction of linear combinations and
products stated in § 3.1 needs some modifications. The linear combina-
tion aS + PT of two operators S, T from X to Y is again defined by
I-(3.12), but the domain of this operator is by definition the intersection
of the domains of S and of T:

(5.1) D (aS + #T) = D (S) n D (T) .

In fact, aS u + fi T u would be meaningless if u did not belong to this
intersection. It may happen that (5.1) consists of a single element u = 0;
in such a case aS + fiT is a trivial operator whose domain consists of
0 E X alone (its range also consists of 0 E Y alone).

Problem 5.1. 0 T C 0, 0 + T = T + 0 = T for any operator T.
Problem 5.2. For any three operators R, S, T from X to Y, we have (R + S) + T

= R + (S + T), which will be written R + S + T, and also S + T = T + S,
but we have only (S + T) - T C S (the inclusion cannot in general be replaced by
equality).

The product TS of an operator T from Y to Z and an operator S
from X to Y is again defined by I-(3.15), but the domain of TS is by
definition the set of all u E D (S) such that S u E D (T) ; otherwise the
right member of this defining equation is meaningless. Thus

(5.2) D(TS) = S-1 D(T) .

Again it, is possible that D (TS) consist of the single element 0.

Problem 5.3. Let S, T be as above and let R be a third operator with range
space X. Then we have (T S) R = T (SR), which will be written T SR. Also we have
(a T) S = T (a S) = a (T S) for a scalar a + 0, but this is not true for a = 0; it
should be replaced by (0 T) S = 0 (T S) C T (0 S), for the domains of (0 T) S and
0 (TS) are the same as (5.2) while that of T (0 S) is equal to D (S). Again, we have
(TL + T$) S = TLS + T2S but T (SL + S,) ) TSL + TS2, where ) cannot in
general be replaced by =. If IX denotes the identity operator in X, we have ly T
= T IX = T. Compare these results with I- (3.16).

Problem 5.4. If T is an invertible operator from X to Y, then T-1T C 1X,
TT-1 C 1y.

Remark 5.5. These results show that one must be careful in the
formal manipulation of operators with restricted domains. For such
operators it is often more convenient to work with vectors rather than



with operators themselves. For example, we write T-1(T u) = u, u ED(T),
instead of T-1 T C 1X. As a rule, we shall make free use of the various
operations on operators themselves only for operators of the class °.,A (X, Y)

2. Closed operators
Among unbounded operators there are certain ones, called closed

operators, which admit rather detailed treatment and which are also
important for application.

Let T be an operator from X to Y. A sequence u E D (T) will be said
to be T-convergent (to u E X) if both {un} and {Tun} are Cauchy sequences
(and u,, - u). We shall write un T u to denote that {un} is T-convergent

to u. T is said to be closed if un T u implies u E D (T) and T u = lim Tun;

in other words if, for any sequence un E D (T) such that un- u and T un-*
-* v, u belongs to D (T) and T u = v. In appearance closedness resembles
continuity, but in reality the two notions are quite different.

The set of all closed operators from X to Y will be denoted by ' (X, Y)1.
Also we write le (X, X) = W (X).

A bounded operator T is closed i f and only i f D (T) is closed. In fact,
un -+ u with un E D (T) implies automatically the existence of lim Tun = v.
Therefore, the closedness of T is equivalent to the condition that un u,
un E D (T), implies u E D (T).

In particular, every T E 9 (X, Y) is closed : -4 (X, Y) c ' (X, Y).
Problem 5.6. T + A is closed if T is closed and A is bounded with D (A) D 'D (T).
Problem 5.7. If T E 'B (Y, Z), S E T (X, Y) and T-1 E .4 (Z, Y), then TS E %(X, Z).

In dealing with closed operators, it is convenient to consider the
graph of the operator. Consider the product space X X Y consisting of all
(ordered) pairs {u, v} of elements u E X and v E Y. X X Y is a vector
space if the linear operation is defined by
(5.3) oc1{u1, v1} + a2{u2, v2} = {a1 u1 + a2 u2, % v1 + a2 v2}

Furthermore, X X Y becomes a normed space if the norm is defined by 2

(5.4) Hu, v}li = (IJuH2 + iIvii2)1t2.

1 In IV-§ 2 we shall introduce a metric in %(X, Y) so as to make it into a metric
space.

2 Other choices of the norm are possible; for example, II{u, v}11 = 1111 + iivii or
max(Iiuii, 11vii) We employ (5.4) mainly because it ensures that (X X Y)* = X* X Y*
(as Banach spaces), whereas this is not true for other norms unless different choices
are made for X X Y and X* X Y*. (X x Y)* = X* X Y* means the following:
(i) each element { f, g} E X* X Y* defines an element F E (X X Y)* by ({u, v}, F)
= (u, t) + (v, g) and, conversely, each F E (X X Y) * is expressed in this form by a
unique {f, g} E X*'X Y*; (ii) the norm of the above F E (X X Y)* is exactly equal to
ii{f, g}II = (11/112 + 11g112)1". It is easy to see that (i) is true. To prove (ii), it suffices
to note that I ({u, v}, {/, g})i s i(u, /)I + I(v, g)1;5 11ull 1if11 + 11vi11IgII s (I1ui1' +
+ IIvii°)1'°(11tii2 + Iighi2)1/2 = II{u, v}1111{t, g}11 and that, for fixed {/, g} and any e > 0,
there is a {u, v} such that 1111=11/11, 11vii =11g11, (u, l) ? (1- 8)11 f 11 (v, g)Z
? (1 - e)11g1I' so that 1({u, v}, {t, g})1 z (1 - e) (11/11' + 11x11').



It is easily seen that X x Y is complete and hence is a Banach space.
The graph G (T) of an operator T from X to Y is by definition the

subset of X x Y consisting of all elements of the form {u, T u} with
u E D (T). G (T) is a linear manifold of X x Y. Now it is clear that a
sequence of vectors of X is T-convergent if and only if {u, T u,,}
is a Cauchy sequence in X x Y. It follows that T is closed i f and only i f
G (T) is a closed linear manifold o l X x Y.

Problem 5.8. S C T is equivalent to G (S) C G (T).
Problem 5.9. If T E W (X, Y), the null space N (T) of T is a closed linear manifold

of X.
Problem 5.10. In order that a linear manifold M of X X Y be the graph of an

operator from X to Y, it is necessary and sufficient that no element of the form
{0, v} with v = 0 belong to M. Hence a linear submanifold of a graph is a graph.

Problem 5.11. A finite extension (see § 2.1) of a closed operator is closed. [hint:
Lemma 1.9.]

Problem 5.12. Let T E' (X, Y).. If u E D (T), u, --. u E X and T u - v E Y,
w w

then u E D (T) and Tu = v. [hint: Apply Problem 1.34 to G (T)].

If S is an operator from Y to X, the graph G (S) is a subset of Y X X.
Sometimes it is convenient to regard it as a subset of X x Y. More
precisely, let G' (S) be the linear manifold of X x Y consisting of all
pairs of the form IS v, v} with v E D (S). We shall call G' (S) the inverse
graph of S. As in the case of the graph, G' (S) is a closed linear manifold
if and only if S is closed.

If an operator T from X to Y is invertible, then clearly

(5.5) G (T) = G' (T-1) .

Thus T-1 is closed i f and only i f T is.

Problem 5.13. A linear manifold M of X X Y is an inverse graph if and only if
M contains no element of the form {u, 0} with u + 0.

Example 5.14. The differential operators considered in Examples 2.6-2.7 are
all closed. In fact, Tl is closed because Tl 1 E 9 (X) is closed. The same is true of Ts
and T8. To is closed since it is the largest common restriction of Tl and Ts [in other
words, G (To) = G (T1) (' G (T2)]. In the same way, we see that all the differential
operators of § 2.3 are closed.

Problem 5.15. T is closed if R (T) is closed and there is an m > 0 such that
11 Tull z m1lu11 for all u E D (T).

3. Closable operators
An operator T from X to Y is said to be closable if T has a closed

extension. It is equivalent to the condition that the graph G (T) is a
submanifold of a closed linear manifold which is at the same time a
graph. It follows that T is closable i f and only if the closure G (T) of G (T)
is a graph (note Problem 5.10). We are thus led to the criterion: T is
closable if and only if no element of the form {0, v}, v + 0, is the limit of
elements of the form {u, T u}. In other words, T is closable i f and only i f

(5.6) u, E D (T), u - 0 and T u,, -+ v imply v = 0 .
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When T is closable, there is a closed operator T with G (T) = G (T).
T is called the closure of T. It follows immediately that T is the smallest
closed extension of T, in the sense that any closed extension of T is also
an extension of T. Since u E D (T) is equivalent to {u, T u} E v,
u E X belongs to D (T) i f and only if there exists a sequence that is
T-convergent to u. In this case we have T u = lim T u,

Let T be a closed operator. For any closable operator S such that
3 = T, its domain D (S) will be called a core of T. In other words, a
linear submanifold D of D (T) is a core of T if the set of elements {u, T u}
with u E D is dense in G (T). For this it is necessary (but not sufficient
in general), that D be dense in D (T).

Problem 5.16. If T is bounded and closed, any linear submanifold D of D (T)
dense in D (T) is a core of T.

Problem 5.17. Every bounded operator is closable (the extension principle, see
§ 2.2).

Problem 5.18. Every closable operator with finite rank is bounded. (Thus an
unbounded linear form is never closable.)

Problem 5.19. Let T be an operator from X to Y' with T-1 E el (Y, X). Then
D'C D (T) is a core of T if and only if T D' is dense in Y.

4. The closed graph theorem

We have seen above that a bounded operator with domain X is
closed. We now prove a converse of this proposition.

Theorem 5.20. A closed operator T from X to Y with domain X is
bounded. In other words, T E ' (X, Y) and D (T) = X imply T E -4 (X, Y).

Proof. Let S be the inverse image under T of the unit open ball of Y
(it is not yet known whether S is open or not). Since D (T) = X, X is the
union of S, 2 S, 3 S, .... It follows by an argument used in the proof of
Theorem 1.29 that the closure S of S contains a ball K, say with
center uo and radius r.

Any u E X with IIuII < 2r can be written in the form u = u' - u"
with u', u" E K (loc. cit.). Since K C 5, there are sequences u,,, u E S
such that u; -+ u', u ' -+ u". II T (u,, - un) II S II T u,',11 + II T un II < 2 shows
that u - u E 2 S. Thus u = lim (u;, - E S. It follows by homo-
geneity that for any d > 0, the ball lull < d r of X is a subset of TS.

Now take an arbitrary u E X with IIuII < r and an arbitrary a with
0 < e < 1. Since u E S as remarked above, there is a u1 E S within distance
e r of u, that is, II u - ujil < E r and II T ulll < 1. Hence u - ul E _e S
by the same remark and, therefore, there is a u2 E e S within distance e2 r
of u - u1, that is, 11U - u1 - u211 < E2 r, II Tu2II < e. Proceeding in this
way, we can construct a sequence {un} with the properties

Ilu-ul-...-u,ll <Enr, IlTunll <En-1, n= 1,2,... .
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If we set wn = u1 + + u, we have Ilu - wnll < En r - 0, n -+ oo, and
n+'p

IITwn-Twn+DII r IlTukll<En+En+1+...S 0.
k=n+I

This implies that wnz u. Since T is closed, we must have T u = lim Twn.

But since II TwnII < 1 + E + Es + _ (1 - E)-1, we conclude that
II T ull s (1 - E)-1. Since this is true for every u E X with (lull < r, T is
bounded with II TII s (1 - E)-1 Y-1. Since E was arbitrary, it follows that
11TIISIfy.

As an application of Theorem 5.20, we shall prove the bounded-
ness of the projection P on M along N defined by (3.14). It suffices to
show that P is closed, for P is defined everywhere on X and linear.
Let {un} be a P-convergent sequence: u, -+ u, Pun -+ v. Since Pun E M
and M is closed, we have v E M. Since (1 - P) u,, E N and N is closed,
u - v = lim(un - Pu,,) E N. Thus Pu = v by definition and P is closed.

Problem 5.21. Let T E cf (X, Y) with R (T) = Y. If T is invertible, then T-1 E
E R (Y, X).

Problem 5.22. Let T E .4 (X, Y) and let S be a closable operator from Y to Z
with D (S) ) R (T). Then S T E .4 (X, Z). [hint : S T is closable with domain X,
hence closed.]

5. The adjoint operator

Consider an operator T from X to Y and an operator S from Y*
to X*. T and S are said to be adjoint to each other if

(5.7) (g, T u) = (Sg, u), u E D (T), g E D (S) .

For each operator T from X to Y, there are in general many operators
from Y* to X* that are adjoint to T. If T is densely defined, however,
there is a unique maximal operator T* adjoint to T. This means that T*
is adjoint to T while any other S adjoint to T is a restriction of T*.
T* is called the adjoint (operator) of T.

T* is constructed in the following way. D (T*) consists of all g E Y*
such that there exists an f E X* with the property

(5.8) (g, Tu) = (/, u) for all u E D(T) .

The f E X* is determined uniquely by g, for (/, u) = (/', u) for all u E D (T)
implies f = /' because D (T) is dense in X by assumption. Therefore, an
operator T* from Y* to X* is defined by setting T* g = f. Obviously T*
is a linear operator, and comparison of (5.7) with (5.8) shows that S C T*
holds for any S adjoint to T while T* itself is adjoint to T.

The adjointness relation (5.7) admits a simple interpretation in
terms of the graphs. Consider the product Banach space X X Y introduced
in par. 2. Now (5.7) can be written (-Sg, u) + (g, T u) = 0, which
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implies that {u, T u} E X X Y is annihilated by {- Sg, g} E X* X Y*
= (X x Y)*1. In other words, T and S are adjoint to each other if and
only if the graph of T and the inverse graph of - S annihilate each other :
G(T)1G'(-S).

Similarly (5.8) shows that the inverse graph of - T* is the annihilator
of the graph of T:

(5.9) G'(- T*) =G(T)J- .

The assumption that T is densely defined guarantees that G (T) L is
indeed an inverse graph. Since an annihilator is closed (see § 1.4), it
follows that T* is a closed operator. Note that this is true even if T is not
closed or closable, but it may happen that T* is trivial (has domain 0).

Problem 5.23. If T E 9(X, Y), the above definition of T* coincides with that
of § 3.3.

Problem 5.24. If T and S are adjoint to each other and T is closable, then T
and S are also adjoint. In particular we have T* = (T)*.

Problem 5.25. TC T' implies T* )T'* (if T is densely defined).
Problem 5.26. If T is from Y to Z, S is from X to Y and if TS is densely defined

in X, then (TS)* D S* T*. Here ) may be replaced by = if T E .4 (Y, Z).
Problem 5.27. For any densely defined T, we have

(5.10) N(T*) = R(T)1 .

The notion of adjointness gives a very convenient criterion for
closability, namely

Theorem 5.28. Let T from X to Y and S from Y* to X* be adjoint to
each other. If one of T, S is densely defined, the other is closable.

Proof. If T is densely defined, T* exists, is closed and T* ) S. Hence
S is closable. If S is densely defined, G'(-S)-'- is a graph in X** X Y**
[just as G (T)1 is an inverse graph in X* x Y* if T is densely defined].
Since G (T) annihilates G' (- S), it is a subset of G' (- S)1 and the same
is true of its closure G (T) (regarded as a subset of X** x Y**). Hence
G-(7T is a graph and T is closable.

Theorem 5.29. Let X, Y be reflexive. If an operator T from X to Y is
densely defined and closable, then T* is closed and densely defined and
T**=T.

Proof. Since X, Y are reflexive, we have G (T) L L = G (T) = G (T)
by (1.24) (we idenitfy X**, Y** with X, Y respectively). Hence G (T)
= G' (- T*)- L, which implies that T* is densely defined; otherwise there
would exist a v E Y such that 0* v 1 D (T*), hence {0, v} E G'(- T*) -L
= G (T), contradicting the fact that G (T) is a graph. Thus T** is defined
as an operator from X** = X to Y** = Y, and G (T**) = G'(- T*)1
= G (T), which implies T** = T.

1 See footnote 2 of p. 164.
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Theorem 5.30. Let T C e (X, Y) be densely defined. I/ T-1 exists
and belongs to -4 (Y, X), then T* -1 exists and belongs to -4 (X*, Y*), with

(5;11) T*-1= (T-1)*
Conversely, if T* -1 exists and belongs to R (X*, Y*), then T-1 exists and
belongs to 9(Y, X) and (5.11) holds.

Proof. Assume T-1 E -4 (Y, X). Then (T-1) * E -4 (X*, Y*). For each
g E D (T*) C Y* and v E Y, we have ((T-1)* T* g, v) _ (T* g, T-1 v)
= (g, T T-1 v) = (g, v) ; hence (T-1)* T* g = g. On the other hand, for
each / E X* and u E D (T) C X we have ((T-1)* f, T u) = (f, T-1 T u)
= (/, u) ; hence (T-1)* / E D (T*) and T* (T-1) * / = f by the definition
of T* given above. The two relations thus proved show that T*-'
exists and equals (T-1)*.

Conversely, assume T*-1 E-4(X*, Y*). For each f E X* and u E D(T)
we have (T* -1 f, Tu) _ (T* T* -1 /, u) = (/, u). For any u E X, how-
ever, there exists an f E X* such that II/I1 = 1 and (f, u) = lull (see
Corollary 1.24). For this / we have Dull = (T*-1 f, Tu) S IIT*-hll IITull
This implies that T is invertible with II T-1II < II T* -111. Since T-1 is thus
bounded and closed, R (T) is closed. It remains to be shown that this
range is the whole space Y. For this it suffices to show that no g + 0 of
Y* annihilates R (T). But this is obvious from (5.10) since T* g = 0
implies g = 0 by the invertibility of T*.

Example 5.31. Let us determine the adjoints of the T, T,,, n = 0, 1, 2, 3, of
Example 2.7 defined from the formal differential operator L = d)d x in X = LP (a, b).
We denote by S, S. the same operators defined in X* = Ls(a, b), p-1 + g-1 = 1,
assuming 1 S p < oo. It is easily seen that T and - So are adjoint to each other.
We shall show that TO _ - So. To this end let g E D (T*), f = T* g; then

b b

(5.12) f fudx=(f,u)=(T*g,u)=(9,Tu)= fgu'dx
a a

x
for every u E D (T). Set h (x) = f f dx. Then f = h' and h (a) = 0 so that (5.12)

a
gives, after integration by parts,

b

(5.13) f (g + h) u' d x - h (b) W (F) = 0 .
a

For any v E X, there is a u E X such that u' = v and u (b) = 0. Hence g + h E X*
annihilates all v E X and so g + h = 0. Then (5.13) gives h (b) u (b) = 0. But since
there are u E D (T) with u (b) + 0, we have h (b) = 0. Hence g = - h is absolutely
continuous with g' = - h' _ - f E X* and g (a) = g (b) = 0, so that g E D (So)
with T*g = f = - Sog. This proves the desired result T* _ - So, since T* ) - So
as noted above.

In the same way it can be proved that To = - S, Tl = - Ss, TT -Si,
Ts (k) * = - S8 (IjN). Similarly, we have t* = - S in the general case where (a, b)
need not be finite (T is the minimal operator, see Example 2.7).

Example 5.32. Consider the operators of § 2.3 constructed from the formal
second-order differential operator L [(2.13)]. First we consider the general (singular)
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case (Remark 2.16) and define the maximal and minimal operators T, T in X
= L9 (a, b), 1 < p < oo. Similarly we define the maximal and minimal operators
S, S from the formal adjoint M to L [see (2.27)]. A basic result in this connection is

(5.14) T*=S.
The fact that t and S are adjoint to each other is easily seen from the Lagrange

identity

(5.15) f (Lu-uMv)dx= [pou'v-u(p(, v)'+Piuv]a

where u E D (T) = Co (a, b), v E D (S) and u (x) = 0 outside of the finite interval
(a, P)

To prove the stronger result (5.14), we introduce an integral operator K = K8
with the kernel

(5.16) k(y,x)=ly-x1 rl(y-x),
where , (t) is an infinitely differentiable function of the real variable i such that
i (t) = 1 identically for - e/2 G t S e/2 and i (t) = 0 identically for Itl > e,
e being a sufficiently small positive constant. h (y, x) is infinitely differentiable
except for y = x and k (y, x) = 0 for ly - xJ Z e.

Let w (x) be an infinitely differentiable function vanishing identically outside
the interval (a + 2 e, b - 2 e) and let u = Kw. Since the kernel k (y, x) vanishes
for I y - xl > e, u (x) vanishes outside the interval (a + e, b - e). Since k (y, x) is
continuous at y = x, it follows that u' = K'w where K' is the integral operator
with the kernel k' (y, x) = a k (y, x)/ay. Since k' (y, x) has a discontinuity at y = x
with a jump of 2, the second derivative u" cannot be obtained simply by dif-
ferentiation under the integral sign; the correct expression for u" is

(5.17) u" = 2w + K"w

where K" is the integral operator with the kernel k" (y, x) = aek(y, x)/aye. Note
that k" is infinitely differentiable everywhere. Thus u is infinitely differentiable and
vanishes identically outside (a + e, b - e), so that u E D (1`') and

(5.18) Tu=Lu=2pow+p0K"w+p1K'w+p.Kw.
Now let g E D (T*) and / = T* g. We have (g, t u) = (f, u) for all u of the

above form, so that

(5.19) (2po g + K"* po g + K'* pig + K* peg, w) = (K* f, w)

Note that K, K', K" are bounded operators on X to X (since the kernels k, k', k"
are bounded functions; see Examples 2.4, 2.11), and their adjoints are again integral
operators with the Hermitian conjugate kernels (Example 3.17). (5.19) is true for
every infinitely differentiable function w vanishing outside (a + 2 e, b - 2 e).
Since such functions form a dense set in L9 (a + 2e, b - 2e), it follows that

(5.20) g (x) = 72-P
o (x)

[K* / (x) - K* ps g (x) - K' * pi g (x) - K" * po g (x) ]

for almost all x E (a + 2e, b - 2e).
Since it is known that /, g E X* = L*, the right member of (5.20) is a

continuous function of x (note that the kernels h, k', k" are smooth or piecewise
smooth functions). Hence g (x) is continuous for x E (a + 2e, b - 2e). But since
e > 0 is arbitrary, g (x) is continuous on (a, b). Returning to (5.20) we then see that
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g(x) is continuously differentiable on (a + 2e, b - 2s) and hence on (a, b). This
argument can be continued to the point that g' is absolutely continuous and g"
belongs to LQ locally [in any proper subinterval of (a, b)], for (5.20) shows that
g" - f1p0 is continuous.

Once this local property of g is known, an integration by parts gives (/, u)
_ (g, Tu) = (Mg, u) for every u E D(T) so that Mg = f E X* = LQ(a, b). Thus
gE D(S) and Sg = Mg = f = T*g. Since SC T*, this completes the proof of
(5.14).

Let us now assume that L is regular (see Remark 2.16) and determine T* and
the T. Since Ti) t, we have Ti C T* = S. Thus the Lagrange identity gives

(5.21) [po u' g - u (po g)' -I- p1 u g]6. = (g, T u) - (Sg, u)
=(g,T1u)-(Tig,u)=0

for every u E D (T1) and g E D (Ti) ( D (S). Since u' (a) and u' (b) can take any values
while u (a) = u (b) = 0, (5.21) implies that g (a) = g (b) = 0. Thus g satisfies the
boundary conditions for S1 and hence T1 = S1. (The S. are defined in X* from M
in the same way as the T. are defined in X from L.)

Similarly it can be shown that T* = So, Ta = S2 (the constants hQ, kb in the
boundary conditions for T2 and S2 should be correlated appropriately), T9 = S41
T4 = Ss (the subscript 4 refers to the case 3 with a and b exchanged) and To = S.

These results show again that S (in the general case) and the S. (in the regular
case) are closed, since they are the adjoints of certain operators. Since the relation-
ship between L and M is symmetric, the T and T. are also closed (at least for
1 <P < oo).

Problem 5.33. If u" (x) is continuous and u (x) = 0 outside a closed-subinterval

[a', b'] of (a, b), then u E D (T).

6. Commutativity and decomposition
Two operators S, T E.4 (X) are said to commute if S T = T S, just

as in the finite-dimensional case. It is not easy to extend this definition
to unbounded operators in X because of the difficulty related to the
domains. Usually this extension is done partly, namely to the case in
which one of the operators belongs to .4 (X). An operator T in X is said
to commute with an A E .4 (X) (or A commute with T) if

(5.22) A T c_ TA.

It means that whenever u E D (T), A u also belongs to D (T) and TA u
=ATu.

Problem 5.34. (5.22) is equivalent to the old definition A T = TA if T E 9N.
Problem 5.35. Every operator T in X commutes with every scalar operator

at 1 (1 is the identity operator in X).
Problem 5.36. If T E W (X) commutes with A. E . (X) and if A. w A E 6W (X),

then T commutes with A. [hint: Problem 5.12.]
Problem 5.37. If an invertible operator T in X commutes with A E 6W (X),

then T-1 commutes with A.

For an operator T E .4 (X), the notion of a subspace M of X being
invariant under T can be defined as in the finite-dimensional case by the
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condition TM C M. It is difficult to extend this notion to unbounded
operators in X, for T M C M would be satisfied whenever M has only 0
in common with D (T) (see § 2.1 for the notation TM).

However, the notion of the decomposition of T by a pair M, N of
complementary subspaces [see (3.14)] can be extended. T is said to be
decomposed according to X = M ® N if

(5.23) PD(T)CD(T), TMCM, TNCN,
where P is the projection on M along N (see § 3.4). Note that the first
condition excludes the singular case mentioned above.

(5.23) is equivalent to the condition that T commutes with P:

(5.24) TP) PT .
In fact, (5.23) implies that for any u E D (T), Pu E D (T) and T Pu E M,
T(1-P)uEN. Hence (1-P) TPu=O and PT(1-P)u=O so
that T P u = P T P u = P T u, which implies (5.24). Similarly, it is
easy to verify that (5.24) implies (5.23).

When T is decomposed as above, the parts TM, TN of T in M, N,
respectively, can be defined. TM is an operator in the Banach space M
with D (TM) = D (T) n M such that TM u = T u E M. TN is defined
similarly. If T is closed, the same is true of TM and TN, for G (TM) is the
intersection of G (T) with the closed set M x M (regarded as a subset of
XX X)

The notion of decomposition can be extended to the case in which
there are several projections P1, . . ., P. satisfying P,Pk = BhkPk,
with the associated decomposition of the space X = M1® ... ® M8
where Mk = Ph X. T is decomposed according to this decomposition of X
if T commutes with all the Ph. The part TMh of Tin Mk can be defined as
above.

Problem 5.38. Let T be densely defined in X. If T is decomposed as described
above, the part TMh is densely defined in Mh.

§ 6. Resolvents and spectra
1. Definitions

The eigenvalue problem considered in I-§ 5 in the finite-dimensional
case requires an essential modification when we deal with operators T
in a Banach space X1. Again, an eigenvalue of T is defined as a complex
number A such that there exists a nonzero u E D (T) C X, called an
eigenvector, such that T a = d u. In other words, A is an eigenvalue if

1 Recall that we always assume dim X > 0.
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the null space N (T - A) is not 0; this null space is the geometric eigen-
space for A and its dimension is the geometric multiplicity of the eigen-
value A.

These definitions are often vacuous, however, since it may happen
that T has no eigenvalue at all or, even if T has, there are not "suf-
ficiently many" eigenvectors.

To generalize at least partly the results of the finite-dimensional
case, it is most convenient to start from the notion of the resolvent.
In what follows T is assumed to be a closed operator in X. Then the same
is true of T - C for any complex number C. If T - C is invertible with

(6.1) R (C) = R (C, T) = (T - 0-1 E °. (X)

C is said to belong to the resolvent set of T. The operator-valued function
R (C) thus defined on the resolvent set P (T) is called the resolvent of T.
Thus R (C) has domain X and range D (T) for any C E P (T). This definition
of the resolvent is in accordance with that given in the finite-dimensional
case (I-§ 5.2)'.

Problem 6.1. C E P (T) if and only if T - t has inverse with domain X (see
Theorem 5.20).

Problem 6.2. If E P (T), we have

(6.2) R (C) T C T R (C) = 1+ C R (C) E-1 (X)

Thus T commutes with R (C) (see § 5.6).
Problem 6.3. If P (T) is not empty, D'C D (T) is a core of T if and only if (T- C) D'

is dense in X for some (or all) C E P (T) (see Problem 5.19).
Problem 6.4. If A is a closable operator from X to Y with D (A) ) D (T), then

A R (C, T) E -1 (X, Y) for every C E P (T). [hint: Problem 5.22.]

Theorem 6.5. Assume that P (T) is not empty. In order that T commute
with A E -4 (X), it is necessary that

(6.3) R (g) A = AR(C)

for every C E P (T), and it is sufficient that this hold /or some C E P (T).
Proof. This follows directly from Problem 5.37.
Problem 6.6. The R (C) for different C commute with each other.

The resolvent R (C) satisfies the resolvent equation I-(5.5) for every
C1, Ca E P (1). The proof is the same as before; it should only be observed
that TR (C) is defined everywhere on X [see (6.2) ]. From this it follows
again that the Neumann series I-(5.6) for the resolvent is valid, but the
proof is not, trivial. Denote for the moment by R' (C) the right member

1 We have defined P (T) and E (T) only for closed operators in X. They can be
defined for more general linear operators T in X. If T is closable, we set P (T)
= P (T), E (T) = E (T). If T is not closable, P (T) is empty and E (T) is the whole
plane.
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of I-(5.6), which exists for small IC - Col. Then we have R' (4) (T - C) u
= u for every u E D (T), since R (Co) (T - C) u = u - (C - Co) R (CO) u.
Similarly, we have formally (T - C) R' (C) v = v for every v E X. The
assumed closedness of T then ensures that actually R' (C) v E D (T) and
the result is correct. This shows that C E P (T) and R' (C) = R (C) for any C
for which the series converges. We have thus proved

Theorem 6.7. P (T) is an open set in the complex plane, and R (C) is
(piecewise) holomorphic for C E P (T). ("Piecewise" takes into account
that P (T) need not be connected.) Each component of P (T) is the natural
domain of R (4) (R (C) cannot be continued analytically beyond the boundary
of P(T)).

The complementary set E (T) (in the complex plane) of P (T) is
called the spectrum of T. Thus C E E (T) if either T - C is not invertible
or it is invertible but has range smaller than X. In the finite-dimensional
case E (T) consisted of a finite number of points (eigenvalues of T), but
the situation is much more complicated now. It is possible for E (T) to be
empty or to cover the whole plane. Naturally we are interested in the
moderate case nearer to the situation in the finite-dimensional case,
but it happens frequently that the spectrum is an uncountable set.

Example 6.8. Consider the differential operators T and T. of Example 2.6.
E (T) is the whole plane. In fact, the equation (T - t u =

u (x) = eCx, which belongs to X. The restriction T1
of T with the boundary condition u (a) = 0, on the other hand, has an empty
spectrum. In fact the resolvent R1 (C) = R (C, T1) exists for every C and is given by

v
(6.4) Rj(C)v(y)=eCY fe-Cxv(x)dx.

a
Similarly E (T2) is empty. The spectrum of Ts consists of a countable number of
isolated points A. (which are exactly the eigenvalues of T3) given by

(6.5) An= b
1

a (logk+2nni), n= 0,±1,±2,...
If C is different from any of the A,,, the resolvent R. R (C, T3) exists and is
given by the integral operator [cf. (2.11)]

Y b

(6.6) R3(C) v(1') = k -eeb -a)C [kfe_xv(x) dx +ecb -a)Cfe-Cxv(x) dx I.
a r J

Finally, E(TO) is again the whole plane. It is true that (To - c)-1 exists and is
bounded for every C but its domain is not the whole space X. In fact, each
v E D ((To - c)-1) = R (To - C) has the form v = u' - C u with u satisfying the
boundary conditions u (a) = u (b) = 0, so that v is subjected to the condition

b

(6.7) f e-Cx v (x) dx = 0.
a

These results remain true when the differential operator d/dx is considered in
X = LP (a, b) for a finite (a, b) (Example 2.7).

In these examples, R (C, T) does not exist since the domain of T is too large
while R (C, To) does not exist since D (To) is too small. In a certain sense T1, Te, TS
are "reasonable" operators.



Problem 6.9. Consider dldx in X = L9 (0, oo) and define T and T, as in Example
2.7. Then P (T) is the right half-plane ReC > 0 and P (T,) is the left half-plane, with

R(C, T) v(y) = - f e-C(x-Y v(x) dx, ReC> 0,
Y

Y

R(C, T1) v(y) = f eC(Y-x)v(x) dx, ReC < 0.
0

Problem 6.10. Consider dldx on (- oo, oo) and construct the maximal operator T
in X = L9(- oo, oo). Then the two half-planes ReC C 0 belong to P(T) and

- f e-C(x-y) v (x) dx, ReC > 0,
(6.9) R (C) v (y) = 7Y

f eC(Y-x) v (x) dx, ReC<0.co
-00

Example 6.11. Consider the differential operators T and T. of § 2.3 in X =
= C [a, b]. P (T) is empty, for (T - C) u = 0 has always two linearly independent
solutions in X. On the other hand, E (T$) is empty since R 3 (C) = R (g, T3) exists
for every C and is an integral operator analogous to (2.19).

E (T,) is neither empty nor the whole plane. The solution of (T, - C) u = v is
given by an integral operator of the form (2.21) with the kernel g(y, x) replaced by

(6.10) g (Y, X; C) =
ui (y; C) us (x; C)

y
< x . = ua (y; C) ul (x; C)

y > x .
-po(x) W (x; C) -po(x) W (x; C)

Here u1, ue are the solutions of (L - C) u = 0 for the initial conditions u, (a; C) = 0,
u'1 (a; C) = 1 and u2 (b; C) = 0, u'5 (b; C) = 1. W (x; C) is the Wronskian of these two
solutions and

(6,11) W (x; C) = Wo (C) exp (_fiP_tl
d x) ,

WO (C) _ - uQ (a; C)
a

R, (g) = R (C, T,) exists if and only if Wo (C) + 0. Since Wo (C) is an entire function
of C, its zeros form a countable set (the A. are eigenvalues of T,). Thus E (Ti)
is a countable set consisting of eigenvalues. That E (T,) is not empty can be seen,
for example, by observing that the eigenvalue problem for T, can be converted
into a selfadjoint form by a simple transformation'. This remark shows also that
the A. are all real.

Let us further recall that the Green function (2.22) ex sts if minpe (x) = c > 0
and that the estimate (2.25) holds. Applying this result to the operator L replaced
by L - C, we see that R, (C) exists and

(6.12) IIR,(C)11 < c - ReC if ReC < c = minp2(x) ,
X

at least if C is real. We shall show that (6.12) is true also for complex C. If ReC < c,
we have l,u + Cl < y + c for sufficiently large real ,u. Since this implies that
-,u < c, R,(-,u) exists by what was just proved and 11 R,(-,u)p 5 11(,u + c).
Then it follows from I-(5.7) that Rl (C) exists, and (6.12) follows from I-(5.6) (set
Co = -,u) when u -+ co.

Similarly E (T2) consists of a countable number of eigenvalues. The half-plane
ReC < c again belongs to the resolvent set and the estimate (6.12) holds, provided
that h hb Z 0.

' The differential equation L u = A u can be transformed into (po v')' + q v
z

= A v, where v = (- po)-'IS exp [ (112) f (pljpo) dx u and q = pa - (po -
- pi)$14po + (po - p')/2. This is a selfadjoint eigenvalue problem, and there
exists a countable set {Aa} of real (and only real) eigenvalues (see V-§ 3.6).
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These results are also true if we consider the operators in X = L9 (a, b) ; the only
modification is to replace the constant c by min (c, c') where c' is given by min (p1- pi +
+ po) [see (2.26)]-

2. The spectra of bounded operators
Consider now an operator T E 9 (X). Then neither P (T) nor E (T) is

empty. More precisely, P (T) contains the exterior of the circle

(6.13) ICI =sprT= li IITnI111"=nniIIT"II1,n

(which reduces to the single point C = 0 if and only if spr T = 0, that is,
T is quasi-nilpotent), whereas there is at least one point of E (T) on this
circle'. In particular E (T) is a subset of the closed disk ICI ;5'11 T11.
We note also that
(6.14) IICR(C)+1II->0, 4-* oo.

These are known in the finite-dimensional case (see I-§ 5.2), and the
proof in the general case is not essentially different. We see that the
Neumann series on the right of I-(5.10) converges for C outside the circle
(6.13). That the sum of this series is equal to the resolvent R (T) can be
seen as in the proof of Theorem 6.7. Since the convergence domain of
this series is ICI > spr T, it follows that there is at least one point of E (T)
on (6.13) provided that spr T > 0. If spr T = 0, C = 0 belongs to E (T)
because otherwise R (C) would be an entire function, contradicting (6.14)
and Liouville's theorem.

Problem 6.12. Consider the shift operator T E 9 (X), X = lp, such that Tx1= 0,
Tx = (n Z 2). E(T) is the unit disk.

3. The point at infinity
The partition given above of the complex plane into the resolvent

set and the spectrum of an operator does not refer to the point at in-
finity. For some purposes it is useful to consider this point in the parti-
tion. Before doing so we prove

Theorem 6.13. Let T E ' (X) and let P (T) contain the exterior of a
circle. Then we have the alternatives :

i) T E -4 (X) ; R (C) is holomorphic at = oo and R (oo) = 0.
ii) R (C) has an essential singularity at = oo.
Proof. Suppose that C = oo is not an essential singularity of R (c).

Since R (C) is not identically zero, we have the expansion

(6.15) R(g)=CkA+Ck-'B+... A,B,...E.1(X), A+O,
for large ICI, where k is an integer. Then

(6.16) TR(C) = 1+1;R(C)= 1+C11+1A+]kB+..
1 Hence spr T = sup I Rl

.EE(T)
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First we show that k S -1. If k ? 0, we should have C-k -1 R 0,
T C-k-1 R (C).-> A for 4 oo, which implies A= 0 by the closedness of T,
contradicting the assumption A + 0. Hence k 5 -1 and so R (C) -> 0,
T R (C) -> 1 + (lim Ck +1) A for C -> oo. Again the closedness of T requires
that 1 + (limCk+1) A = 0, which is possible only if k = -1 and A = -1.
Thus C R (C) u -> - u and T C R (C) u B u for every u E X. The closed-
ness of T again implies that u E D (T), Tit = - B u. In other words,
T=-BEPb`(X).

In view of Theorem 6.13, it is natural to include 4 = oo in the re-
solvent set of T if T E 9 (X) and in the spectrum of T otherwise. When
it is desirable to distinguish these extended notions of the resolvent set
and the spectrum (as subsets of the extended complex plane) from the
proper ones defined before, we shall speak of the extended resolvent set
and the extended spectrum and use the notations P (T), >3 (T). Thus
C = oo E P(T) if and only if T E. (X). An unbounded operator always
has C = oo in its extended spectrum E (7); if it is an isolated point of
E (T), it is an essential singularity of R (c).

Problem 6.14.E (T) is never empty. (Recall that dim X > 0.)

Theorem 6.15. Let T be a closed invertible operator in X. E (T) and
E (T-1) are mapped onto each other by the mapping C -> C-1 o l the extended
complex plane'.

Proof. Let 0 + C E P (T) so that R (C) exists. Set S (C) = TR (C)
= 1 + C R (C) E R(X). For every U E X we have S(C)u= T R (C) u and
T-1 S (C) = R (C) u = C-1(S (C) - 1) u. Hence

(6.17) -(T-' - c-1) S() u = u.
This shows that T-1 - C-1 has range X. Moreover, this operator is
invertible, for (T-1- C-1) v = 0 implies v = C T-1 v, Tv = Cv, v = 0.
Thus it follows from (6.17) that (T-1 - C-1)-1 = - C SM E. (X), and
C-1 E P (T-1).

If C = 0 belongs to P (T), T-1 E P4 (X) so that 0-1= oo E P (T-1)
by definition. If 4 = oo belongs to P (T), T E -4 (X) and therefore 0 = o0-1 E
E P (T-1). Thus P (T) is mapped by C C-1 onto f (T-1). The same is true
for the complementary sets E (T) and E (T-1).

Problem 6.16. The spectrum of R (CO) is the bounded set obtained from E (T)
by the transformation C - C' = (C - Co)-', and
(6.18) R ((C - Co)-', R (Co)) = - (C - Co) - (C - Co)a R (C)
Furthermore, sprR (Co) = l/dist(CO, E (T)).

1 Theorem 6.15 is a special case of the spectral mapping theorem, which asserts
that the spectrum of a "function" 0 (T) of T is the image under 0 of E (T). 0 (T) is
defined by the Dunford-Taylor integral as in I-(5.47). We shall not consider this
theorem in the general form (see DUNFORD and SCHWARTZ Q4).
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4. Separation of the spectrum

Sometimes it happens that the spectrum E (T) of a closed operator T
contains a bounded part E' separated from the rest E" in such a way
that a rectifiable, simple closed curve r (or, more generally, a finite
number of such curves) can be drawn so as to enclose an open set contain-
ing E' in its interior and E" in its exterior. (For most applications we
consider in the following, the part E' will consist of a finite number of
points.) Under such a circumstance, we have the following decomposition
theorem.

Theorem 6.17. Let E (T) be separated into two parts E', E" in the way
described above. Then we have a decomposition o l T according to a de-
composition X = M' (D M" of the space (in the sense of § 5.6) in such a
way that the spectra of the parts TM" coincide with E', E" respectively

and TM E -4 (M'). Thus (TM.) = E' whereas E may contain 4 = oo.
Proof. Set

(6.19) P=-2nif R(C)dCE°.,8(X).

r
A calculation analogous to that used to deduce I-(5.17) shows that
Pa = P. Thus P is a projection on M' = PX along M" _ (1 - P) X.
Furthermore

(6.20) PR (C) = R (C) P , CEP (T) ,

so that P commutes with T (Theorem 6.5), which means that T is
decomposed according to X = We M" and the parts TM,, are
defined.

It is readily seen that the parts of R (C) in M', M", which we denote
by RM (C), RM" (c), are the inverses of TM - C, TM,, - C, respectively.
This shows that both P and P contain P (T). Actually,
however, P (TM') also contains E". To see this we first note that RM. (C) u
= R() u = R() Pu for u EM', E P(T). But for any E P(T) not on
we have

(6.21) R(C)P=- 2ni l 2nzr r
by (6.19) and the resolvent equation I-(5.5).-If C is outside IF, this gives

(6.22) R(C) P = 2ni ,f R(c')
.d

r
Since the right member of (6.22) is holomorphic outside r, it follows that
R (C) P, and hence RM. (C) also, has an analytic continuation holomorphic
outside P. That this continuation of RM. (C) is the resolvent of TM. can be
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seen from Theorem 6.7. Thus P (TM.) contains the exterior of P and
therefore E (TM.) C E'.

Similarly, it follows from (6.21) that

(6.23) R (C) P = R (C) + 2 n i ,f R (C')
d

C.

r
if C is inside P. This shows that R (C) (1 - P) has an analytic continuation
holomorphic inside P. As above, this leads to the conclusion that
E (TM") ( E

On the other hand, a point 4 E E cannot belong to both P (TM.)
and P (TM..) ; otherwise it would belong to P (T) because RM. (C) P +
+ RM" (C) (1 - P) would be equal to the inverse of T - C. This shows
that we have E (TM.) = E', E (TM") = E

Finally we shall show that

(6.24) PTCTP=-2I TR(C)dC=-2I CR(C)dCE-V(X).
r r

P T C T P expresses the known fact that T commutes with P. The
second equality of (6.24) is obvious since TR (C) = 1 + C R (c). The first
equality is obtained by a formal multiplication of (6.19) from the left
by T. This multiplication is justified by the closedness of T [approxi-
mate (6.19) by a finite sum and use the boundedness of TR (C) = 1 +
+ C R (C)].

(6.24) implies that TM. E 9 (M'). This completes the proof.
We note the following facts proved above. R (C) can be written in the

form

(6.25)
R (C) = R' (C) + R" (C)

R'(C) = R(C)P, R"(C) = R(C) (1 - P) .

R' (C) is holomorphic outside E' and coincides with RM (C) when restricted
to M' while it vanishes on M"; similarly R" (C) is holomorphic outside E"
and coincides with RM.. (C) on M" while vanishing on M'.

Theorem 6.17 can easily be extended to the case in which E (T) is
separated into several parts El, ..., E, and Eo, where each E,, with
1 5 h S s is bounded and is enclosed in a closed curve (or a system of
closed curves) P,, running in P (T) and lying outside one another,
whereas E may be unbounded and is excluded by the P,,. Then the
operators P,, defined by (6.19) with P = P,, satisfy P,, Pk = 6, 1, P,,,
h, k = 1, ..., s. T commutes with every P,, so that T is decomposed
according to the decomposition X = M, ® ® M, ® M0, M,, = P,, X,
where P0 = 1 - P, - - P,. The part TMe of T in M,, has spectrum
E,,, and TMh E .4 (M,,) for h 1.
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5. Isolated eigenvalues 1
Suppose that the spectrum E (T) of T E '(X) has an isolated point A.

Obviously E (T) is divided into two separate parts E', E" in the sense
of the preceding paragraph, where E' consists of the single point A;
any closed curve enclosing A but no other point of E (T) may be chosen
as 1'. The operator TM, described in Theorem 6.17 has spectrum consisting
of the single point A. Therefore, TM. - A is quasi-nilpotent (see par. 2).
The Neumann series I-(5.10) applied to TM. - A beomes

00

(6.26) RM, (C) (C - A)---1(TM, - A)-

and converges except for C = A. (6.26) is equivalent to

I D-
(6.27) R' (t) = R (C) P = - _

_
A - z ( . )n+1n-1

where

(6.28) 27zf (4-A)R(C)dCEP'8(X)
r

is likewise quasi-nilpotent and

(6.29) D=DP=PD.
On the other hand RM" (C) is holomorphic at C = A and admits the Taylor
expansion I-(5.6) with Co = A. This is equivalent to

(6.30) R" (C) = R (C) (1 - P) = , ' (C, - A)?' S" +1
n=0

where
(6.31) S = RM. (A) (1 - P) = ;limR (C) (1 - P).

(Note that R (A) does not exist.) R" (C) will be called the reduced resolvent
of T for the eigenvalue A.

It follows from (6.27) and (6.30) that

00 "
(6.32) R (C) = -

P
A -

f1 ( DA)^+ f (C - A)n Sn+1
n=0

This is the Laurent series for R (C) at the isolated singularity C = A.
S has properties similar to those of the operator S, introduced

in the finite-dimensional case (I-§ 5.3), namely

(6.33)
S=

2nz ,f R(C) EQ(X),
r

(6.34) STCTSEP(X), (T-A)S=1-P, SP=PS=O.
1 The expression "an isolated eigenvalue" is somewhat ambiguous. We mean

by it an eigenvalue which is an isolated point of the spectrum (not just an isolated
point in the set of eigenvalues).
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The Laurent expansion (6.32) is similar to I-(5.18) in the finite-
dimensional case, with the sole difference that the principal part (with
negative powers of 4 - A) may be an infinite series. The principal part is
finite, however, if M' is finite-dimensional, for DM. = TM. - A is then
nilpotent (see Problem 1-5.6) and the same is true of D. In this case A is an
eigenvalue of T. In fact, since A belongs to the spectrum of the finite-
dimensional operator TM., it must be an eigenvalue of TM, and hence of T.
In this case dim M' is again called the (algebraic) multiplicity of the
eigenvalue A of T, and P and D are the eigenprojection and the eigen-
nilpotent associated with A. A may or may not be an eigenvalue of T if
dim M' = oo.

These results can be extended to the case in which we consider several
isolated points Al, . . ., A. of E (T). The remark at the end of par. 4 leads
immediately to

(6.35) R (C)
h8 [

Ph'
+ 1 (1 - Ah)"+i, + R. (C)

Here the Ph are projections and the D. are quasi-nilpotents such that

(6.36) Ph Ph = bhh Ph Ph Dh = Dh Ph = Dh , (T - Ah) Ph = Dh .

Ro (C) is holomorphic at = A,,, h = 1, . . ., s, and

(6.37) Ro (C) = R (C) Po , PO = 1 - (P1 + ... + Ps)

Again Ah is an eigenvalue of T if M,, = Ph X is finite-dimensional, and
Ph and D,, are respectively the associated eigenprojection and eigen-
nilpotent. We have further

5

(6.38) T P = Z; (Ah P, + D,,) , P = Pl + ... + P8 .

h=1

Here we have a spectral representation of T in a restricted sense.
This is not so complete as the one in the finite-dimensional case (I-§ 5.4),
since the isolated points do not in general exhaust the spectrum E (T)
and, even if this is the case, there are in general an infinite number of
points Ah. Nevertheless, it gives a fairly complete description of the
operator T if one is interested only in a limited portion of the complex
plane where there are only a finite number of points of E (T) which are
eigenvalues with finite multiplicities. For brevity a finite collection
Al, . . ., A. of such eigenvalues will be called a finite system o l eigenvalues.
For a finite system of eigenvalues, the situation is much the same as
in the finite-dimensional case discussed in detail in 1-§5. Most of the
results deduced there can now be taken over, and this will be done in the
sequel without further comment whenever there is no particular dif-
ficulty.
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Problem 6.18. Suppose that dim M' = m < oo in Theorem 6.17. Then E'
consists of a finite system of eigenvalues with the total multiplicity in.

Example 6.19. Consider the differential operator T. of Example 2.6 (or 2.7).
The spectrum of Ts consists of the isolated points A. given by (6.5). Let us find the
associated eigenprojections P,,. Integrating the resolvent R, (C) given by (6.6)
along a small circle around C = A. (which is a zero of k - 0 -')C), we have by (6.19)

b

1 eon y
(6.39) P. v (Y)

2 n ti Rs v (Y) d= b- a f e-2n x v (x) d x,

a

where a simple calculation of the residue has been made'. P. is a degenerate integral
operator of rank one with the kernel

(6.40) P. (Y' x) = 1
b a e4(v-x).-

Each A. is an isolated eigenvalue of T. with multiplicity one (simple eigenvalue),
and the associated eigennilpotent is zero.

Example 6.20. Consider the differential operator T, of § 2.3. E (T,) consists of
isolated points A. which are the zeros of the entire function W. (j), see Example 6.11.
The eigenprojections P. can be calculated in the same way as above: the resolvent
R, (C) is an integral operator with the kernel g (y, x; C) given by (6.10), and P. is
obtained by (6.19) as in (6.39). Since there is a constant k such that us (x,

k ul (x, An) in virtue of the vanishing of the Wronskian at = An, a simple
calculation of the residue gives

a

b

f
01 dx

(6.41) Pn v (Y) =
k gin (Y) gin (x) v (x) ea pa dx
Wo (An) f po (x)

a

(x) = ul (x, An)

q' (x) is an eigenfunction of T1 for the eigenvalue A,,. P is a degenerate integral
operator with rank one. Incidentally, we note that Pp = P is equivalent to

(6.42)

a
rb

( 2

/'Po

T W. (An) _
,/ ;, () ea dx

a

which can also be verified directly from the differential equation satisfied by q,,(x).
(6.42) implies that Wo (An) + 0, for 9ia (x) is real because A. is real s (see Example
6.11).

1 Strictly speaking, the validity of relations such as (6.39) or (6.41) needs a
proof, for the integral in (6.19) is an integral of an operator-valued function R (C)
whereas (6.39) or (6.41) is concerned with the values of functions. For X = C [a, b]
this proof is trivial since u (y) for each fixed y is a bounded linear form in u E X.
It is not so simple for X = LP (a, b). In this case we first note, for example, that (6.19)
implies (Pv, f) = - (2n i)-1 f (R (C) v, f) dC for v E X and f E X* = La (a, b),
p-' + q-' = 1. On calculating the right member and noting that f E X* is arbitrary,
we see that (6.39) or (6.41) holds for almost all y.

2 W"o may be zero if some of P0, p1, P2 are not real or if we consider non-real
boundary conditions. If W, (An) = 0, P. is no longer of rank 1 and R (C) may have
a pole of order higher than 1.
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Example 6.21. As a more specific example, consider the operator

(6.43) T u u", 0:-< x S 7r, with boundary condition
U (O) = U (n) = 0 .

We shall regard T as an operator in X = C [0, n] so that it is a special case of the
Tl of the preceding example, with a = 0, b = n, po = -1, Pi = 0, pe = 0. The
eigenvalues and normalized eigenvectors are

(6.44) n" n=1,2,3,... .
The resolvent R R (C, T) is an integral operator with the kernel equal to the
Green function of the equation u" + c u = 0, namely

sinVy sin I/--C (n - x)
(6.45) g(Y,x;0= y sinny , YS x,

and x, y exchanged for x:< y. The poles of g (y, x; C) as a function of C are exactly
the eigenvalues A. =.n2.

The Laurent expansion of g(y, x; C) in powers of C - n2 corresponds to (6.32).
This remark yields expressions for P and S for A = A. = n2: these are integral
operators with the kernels p and s, respectively, given by

2p(y, x) = -sinny sinnx,
(6.46)

n

s(y,x) = n I- 2n cosny sinnx + n2n sinnycosnx +
LLL

+ One sinnysinnx] , y5 x,
and with x, y exchanged for x S y. Note that D = 0.

For later reference we deduce some estimates for R (c). According to Example 2.4
(final remark), 11R (C) 11 is not larger than max f lg(y,x; C) I dx. Since jsinzl S cosh(Imz)

for any complex number z, a simple calculation yields

(6.47) IIR (C) 11 S ire
esinhn s

a ile at = Re y . $ = Im yt
P ICI (sin n a + sinh n fl)

This further leads to the estimates
1 2

1

A IImCI(6.48) IjR(C)jI S 1 ire S Ia
ICI ICI

I$Ie
n

IIR ( I ' 1C1h12sinn al Ia sinnal
The curve in the c-plane defined by Re 1/t7= at = const. is a parabola

(6.49) = ae - 4ne where = Re C , fj = Im C .

It follows from (6.48) that IIR (C)II S n1la sinn al along such a parabola.

6. The resolvent of the adjoint
There is a simple relation between the resolvent of a closed operator T

in X and that of the adjoint T* (assuming that T is densely defined so
that T* exists). The following theorem is a direct consequence of
Theorem 5.30.
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Theorem 6.22. P (T*) and E(T*) are respectively the mirror images of
P (T) and E (T) with respect to the real axis, and

(6.50) R (C, T*) = R T)* , C E P (T) .

According to this theorem, any result on the spectrum of T has its
counterpart for T*. For example, if E (T) is separated into two parts E',
E" by a curve r as in par. 4, then E (T*) is separated by I' into two
parts M', S" (IT etc. being the mirror images of r etc.). The resulting
decompositions of the spaces X = WED M", X* = M'* ® M"* described
in Theorem 6.17 have the projection P and its adjoint P*:

(6.51) M'=PX,M"=(1-P)X,M'*P*X*,M"*=(1-P*)X*.
This follows from the expressions

(6.52) P = - /'
-- R(C,T)dC, P*2nifR(C,T*)dC,2ni

r
by noting (6.50) and that the two integrals of (6.52) are taken along r
and I' in the positive direction. (6.51) implies

(6.53) dim M' = dim M' * , dim M" = dim M" * ,

see (4.10) and the remark thereafter.
In particular suppose that, E (T) contains several isolated points

Al, ..., A., so that R (C) = R (C, T) has the form (6.35). The corresponding
expression for R* (C) = R (C, T*) is

+ Ro*(6.54) R* (C) hI [
P

,r + DAh) 0+11

where the Ph are projections satisfying Ph Ph = Shh Ph and where
Ro (C) = R0(C)* is holomorphic at C = /lh, h = 1, ..., s. If Mh = Ph X
is finite-dimensional, the same is true of Ph X* and dimMh
= dim Mh, and 2h is an eigenvalue of T* with (algebraic) multiplicity
equal to that of Ah for T.

Remark 6.23. An isolated eigenvalue A of T with finite multiplicity m
(such as Ah considered above) has properties quite similar to an eigen-
value of a finite-dimensional operator. For instance, not only is A an
eigenvalue of T* with (algebraic) multiplicity m, but the geometric
multiplicity of A for T* is equal to that of A for T. Again, the linear
equation (T - A) u = v is solvable if and only if v L N (T* - .I) whereas
(T* - 1) g = / is solvable if and only if / 1 N (T - A). These results
follow immediately if one notes that the problem is reduced to the
finite-dimensional problem for the parts TM, and TM.., each of which
may be considered the adjoint of the other.



§ 6. Resolvents and spectra 185

Remark 6.24. If dim Mh = oo, it is possible that 2, is an eigenvalue
of T but 1h is not an eigenvalue of T* or vice versa.

Example 6.25. We continue to consider Example 6.20. P. as given by (6.41)
is an integral operator with the kernel P. (y, x) = q, (y) V,, (x) where V. (x)

= k q,, (x) exp
\

f o dxl/Wo(A.) P0 (x). should be a simple eigenvalue of Tl
a

with the associated eigenprojection P*, which is an integral operator with the
kernel p* (y, x) = V. (y) q' (x). Thus yi (x) is the eigenfunction of Tl for the eigen-
value A. (note that An, q,,,, V. are all real). Here we consider T1 as an operator
in X = L9 (a, b) rather than in C [a, b] since T1 is not densely defined in the latter
case.

7. The spectra of compact operators
The spectrum of a compact operator T in X has a simple structure

analogous to that of an operator in a finite-dimensional space.
Theorem 6.26. Let T E -4 (X) be compact. E (T) is a countable set with

no accumulation point di9erent from zero. Each nonzeyo A E E (T) is an
eigenvalue of T with finite multiplicity, and A is an eigenvalue of T* with
the same multiplicity.

Proof. We give the proof in several steps.
I. First we prove that the eigenvalues of T do not accumulate at a point

A + 0. Otherwise there would be a sequence {An} of distinct eigenvalues
of T with eigenvectors un such that 0 + An -> A + 0. Let M,, be the
subspace spanned by the n vectors u1, ..., u,,. Mn is invariant under T.
Since u1, u2, ... are linearly independent,
M is a vn E Mn such that 1lv, D = 1 and dist(vn, 1

(see Lemma 1.12). With the sequence {vn} thus defined, we shall show
that {A,-, 1 T vn} contains no Cauchy subsequence, contradicting the
assumption that T is compact (note that {An 1 vn} is bounded). Now we
have for m < n

where the second term on the right belongs to Mn_1 because V. E Mn_1,
Mn_1 is invariant under T and (T - An) v, E Mn_1. Since dist(vn, Mn-1)
= 1, it follows that each element of the sequence T vn} has distance
z 1 from any other one, showing that no subsequence of this sequence
can be convergent.

II. Next we prove that R (T - C) is closed if C = 0 and C is not an
eigenvalue of T. Suppose that (T - un -* v; we have to show that
v E R (T - C). If {un} is bounded, {Tun} contains a Cauchy sequence ;
by replacing {un} by a subsequence, we may assume that {Tun} itself
is Cauchy. Let Tun w. Then C un = Tun - (T - C) un -* w - v.
Application of T gives C T un T (w - v). Thus C w = T w - T v or
v = C-1(T - l;) (w - v) E R (T - ). It remains to show that {un} is
bounded. Otherwise we may assume that 11 unil oo, replacing {un}
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by a subsequence if necessary. Set u,, = unll. Then is a bounded
sequence and (T - T) u ->. 0. The same argument as above then leads
to the results T u,, -- w, (T - C) w = 0 and C u ->. w. Thus II wil =
= limlIC unll = ICI > 0 and w must be an eigenvector of T for the eigen-
value C, contrary to the assumption.

III. For the moment a complex number C will be said to be excep-
tional if either C is an eigenvalue of T or is an eigenvalue of T*. Since
T* is compact with T (Theorem 4.10), it follows from the result proved
above that the set of exceptional numbers is countable and has no
accumulation point different from zero. Every nonexceptional point C + 0
belongs to P (T). In fact, since we have just shown that R (T - C) is
closed, it suffices to note that R (T - c) 1 = N (T* - ) = 0. On the other
hand, an exceptional point obviously belongs to E (T) (note Theorem
6.22). Thus E (T) is exactly the set of exceptional points. In view of the
results of the preceding paragraphs, the theorem will be proved if we
show that the eigenprojection P associated with each A E E (T), A + 0,
is finite-dimensional.

P is given by (6.19) where P is a small circle around A excluding the
origin. R (T) = R (C, T) is in general not compact, but R (4)'+ C-1
_ C-1 TR(C) is compact with T (Theorem 4.8). Since f C-1 dt = 0,

r
P is equal to the integral along r of the compact operator R (C) + C-1
and is itself compact (since the integral is the limit in norm of finite sums
of compact operators). In virtue of Problem 4.5, it follows that P, is
finite-dimensional.

Remark 6.27. Since every complex number A + 0 either belongs to
P (T) or -is an isolated eigenvalue with finite multiplicity, Remark 6.23
applies to A. This result is known as the Riesz-Schauder theorem and
generalizes a classical result of FREDHOLM for integral equations.

Remark 6.28. Let A,,, n = 1, 2, . . ., be the eigenvalues of a compact
operator T, with the associated eigenprojections P and eigennilpotents

and Q. X = M, {M} is an increasing
sequence of finite-dimensional subspaces of X : Ml C M2 C M3 ... . In
each M, which is invariant under T, we have the spectral representation
of T in the form

(6.55) TQn = £ (Ah Ph + Dh)
h=1

[cf. (6.38)]. This suggests the expression T = I (Ah Ph + DJ, but this
h - I

is not correct without further assumption'. In fact T may have no eigen-
1 It is an interesting but difficult problem to decide when such a spectral

decomposition is possible. For this question see DUNFORD and SCHWARTZ (1),
Chapter 11. It is also related to the theory of spectral operators due to DUNFORD
(see DuNFORD [1]).



§ 6. Resolvents and spectra 187

values at all (for example, a quasi-nilpotent operator has no nonzero
eigenvalue and an integral operator of Volterra type is usually quasi-
nilpotent, see Example 3.15). We shall see, however, that the suggested
expansion is valid if T is a normal compact operator in a Hilbert space
(Theorem V-2. 10).

8. Operators with compact resolvent
Another class of operators which have spectra analogous to the

spectra of operators in a finite-dimensional space is provided by operators
with compact resolvent. Let T be a closed operator in X such that
R (C) = R (C, T) exists and is compact at least for some C = Co. According
to the result of the preceding paragraph, E (R (To)) is a countable set
having no accumulation point different from zero. Since E (R (Co)) is the
image of E (T) under the map 4 -* (C - So)-1 (see Problem 6.16), it
follows that E (T) also consists of isolated points alone (with no accumula-
tion point different from oo). The eigenprojection P for each A E E (T)
is identical with the eigenprojection for the eigenvalue 4u = (A - C0)-1 of
R (Q, as is seen from (6.18) and (6.19) by transformation of the integra-
tion variable. In particular we have dim P < oo so that A is an eigenvalue
of T with finite multiplicity. Furthermore, for any 4 E P (T) the relation
R (C) = R (C.) (1 + (C - Co) R (c)) implied by the resolvent equation shows
that R (C) is again compact. Thus we have proved

Theorem 6.29. Let T be a closed operator in X such that the resolvent
R exists and is compact for some C. Then the spectrum o l T consists
entirely o l isolated eigenvalues' with finite multiplicities, and R (C) is
compact for every C E P (T).

Such an operator T will be called an operator with compact resolvent
and a spectrum of the kind described will be said to be discrete. An
operator with compact resolvent has a discrete spectrum. Operators
with compact resolvent occur frequently in mathematical physics. It
may be said that most differential operators that appear in classical
boundary problems are of this type.

Problem 6.30. If an operator in X with compact resolvent is bounded, X must be
finite-dimensional.

Example 6.31. The differential operators of Examples 2.6-2.7 and of § 2.3
for which the resolvent set is not empty are all operators with compact resolvent,
for their resolvents are integral operators with continuous kernels (Example 4.1).
This immediately leads to the result that the spectra of these operators consist of
isolated eigenvalues with finite multiplicities (cf. Examples 6.19-6.20).

In connection with operators with compact resolvent, the following
lemmas and their corollary are useful.

1 See footnote 1 of p. 180.



188 III. Introduction to the theory of operators in Banach spaces

Lemma 6.32. Let T1 T2 E'f(X, Y) have the properties: i) T1 and T2
are extensions of a common operator To, the order of extension for T1 being
finite; ii) T1 1 and Ti 1 exist and belong to . (Y, X). Then A = Ti -1 - T2 1
is degenerate, and N (A) ) R (To) where codim R (To) < oo. The orders of
the extensions T1 and T2 of T. are equal (so that T2 is also a finite extension
of To)

Proof. Set D1= D (T1), D2 = D (TO), Do = D (TO), Ro = R (To). Each
v E Ro is of the form v = To u = T1 u so that Ti 1 v = u and similarly
TZ 1 v = u. Hence A v = 0 and RocC N (A). Since the mapping by T1 as
well as by T2 is one to one, we have dim (Y/Ro) =dim (T1 Dl/ T1 Do)
= dim (D1/Do) and similarly dim (Y/Ro) = dim (D2/Do). Hence dim
(Y/ N (A)) S dim (Y/ R.) = dim (D2/ Do) = dim (D1/ Do) < oo and A is de-
generate by Problem 4.11.

Lemma 6.33. Let T1, T2 E 'f(X, Y) have the properties: i) T1 and T2
are restrictions of a common operator T, the order of restriction for T1 being
finite; ii) T11 and Ti 1 exist and belong to-4 (Y, X). Then A = T11 - Tat
is degenerate, and R (A) C N (T) where dim N (T) < oo. The orders of the
restrictions T1, T2 of T are equal.

Proof. For any v E Y, T Ti v= Ti T1 1 v = v and similarly T TS 1 v
= v. Hence T A v = 0 and R (A) c N (T). But since T is a finite extension
of T1 and T1 maps D1 = D (T1) onto Y, we have dim N (T) = dim (D/ D1)
where D = D (T). Similarly dim N (T) = dim (D/ D2). Hence dim R (A)
s dim N (T) = dim (D/D2) = dim (D/D1) < oo.

Corollary 6.34. Let T1, T2 E T (X) have non-empty resolvent sets.
Let T1, T2 be either extensions of a common operator T. or restrictions of a
common operator T, with the order of extension or restriction for T1 being
finite. Then T1 has compact resolvent if and only if T2 has compact resolvent.

Example 6.35. The result of Example 6.31 that the operators considered there
have compact resolvents is not accidental. For these operators are finite extensions
of a common operator denoted by To and, at the same time, finite restrictions of a
common operator denoted by T.

For convenience we add another lemma related to the lemmas
proved above.

Lemma 6.36. Let the assumptions of both Lemmas 6.32, 6.33 be satisfied.
Then A = T11 - Ta 1 has the form

m

(6.56) A X (.g,) u,, u3EN(T), g1ER(To)l.
f=1

Proof. Since R (A) c N (T) by Lemma 6.33, we may write A v
m

I gi [v] u5 where the uj are linearly independent vectors of N (T). Ob-
i-1

viously the g1 [v] are bounded linear forms on Y and vanish for v E R (To)
by Lemma 6.32. Hence we may write g1 [v] = (v, g5) with g5 E R (To)t .
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Chapter Four

Stability theorems

In this chapter we investigate the stability, under small perturbations, of
various spectral properties of linear operators acting between Banach spaces. The
basic problems to be treated are the stability or instability of the spectrum and
the perturbation of the resolvent. The results will be fundamental for the further
development of perturbation theory given in the following chapters. Other subjects
discussed include the stability of the Fredholm or semi-Fredholm property, of the
nullity, deficiency, index, etc. The endeavor is to treat these problems for unbounded
operators and for the most general perturbations.

One of the basic problems here is how to define a "small" perturbation for
unbounded operators. One rather general definition useful in applications is based
on the notion of a relatively bounded perturbation. But it is still too restricted in a
general theory. The most natural and general definition of smallness of a perturba-
tion is given in terms of a metric in the space %(X, Y) of all closed linear operators
from one Banach space X to another one Y. Such a metric has long been known,
but so far no systematic use of it has been made in perturbation theory. In this
chapter we base the main part of the theory on it.

Since the metric is defined in terms of the graphs of operators, which are closed
subspaces of the product space X x Y, the technique is equivalent to introducing a
metric in the set of all closed subspaces of a Banach space. For this reason, a con-
siderable part of the chapter is devoted to the theory of a metric on subspaces and to
related problems. In this way, for example, we are led to define such notions as the
Fredholm or semi-Fredholm property and the nullity, deficiency and index for a
pair of subspaces. The results obtained for them lead in a natural way to the cor-
responding results for operators.

§ 1. Stability of closedness and bounded
invertibility

1. Stability of closedness under relatively bounded
perturbation

Let T E WK Y), where X, Y are Banach spaces. ['f(X, Y) is the set
of all closed operators from X to Y.] We have already noted (Problem
111-5.6) that T + A is also closed if A E .4 (X, Y). This expresses the
fact that closedness is stable under a bounded perturbation A. We now
try to extend this stability theorem to a not necessarily bounded perturba-
tion.
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An immediate extension of this kind can be made to the case of a
relatively bounded perturbation. Let T and A be operators with the
same domain space X (but not necessarily with the same range space)
such that D (T) C D (A) and

(1.1) IIAujl sahIuhI +b1ITull , uED(T)

where a, b are nonnegative constants. Then we shall say that A is relatively
bounded with respect to T or simply T-bounded. The greatest lower bound
bo of all possible constants b in (1.1) will be called the relative bound of A
with respect to T or simply the T-bound of A. If b is chosen very close
to b0, the other constant a will in general have to be chosen very large;
thus it is in general impossible to set b = bo in (1.1).

Obviously a bounded operator A is T-bounded for any T with
D (T) C D (A), with T-bound equal to zero.

The extension of the stability theorem for closedness mentioned
above is now given by

Theorem 1.1. Let T and A be operators from X to Y, and let A be
T-bounded with T-bound smaller than 1. Then S = T + A is
closable if and only if T is closable ; in this case the closures o l T and S have
the same domain. In particular S is closed if and only if T is.

Proof. We have the inequality (1.1) in which we may assume that
b < 1. Hence

(1.2) -aIIuII+(1-b)IITull sjhSuII salluli+(1 +b)IITull, uED(T).

Applying the second inequality of (1.2) to u replaced by un - um, we
see that a T-convergent sequence {un} (that is, a convergent sequence
{un} for which Tun is also convergent, see III-§ 5.2) is also S-convergent.
Similarly we see from the first inequality that an S-convergent sequence
{un} is T-convergent. If {un} is S-convergent to 0, it is T-convergent to 0
so that Tun -+ 0 if T is closable [see III-(5.6) ] ; then it follows from the
second inequality of (1.2) that Sun --> 0, which shows that S is closable.
Similarly, T is closable if S is.

Let T, 9 be the closures of T, S, respectively. For any u E D (.S),
there is a sequence {un} S-convergent to u (see III-§ 5.3). Since this {un}
is also T-convergent to u as remarked above, we have u E D (T) so that
D (.) C D (T). The opposite inclusion is proved similarly.

Problem 1.2. (1.1) with b < 1 implies

(1.3) IIA ull s a (lull + b II TuII s (1 - b)-1(a lull + b IlSull)

In particular A is S-bounded with S-bound not exceeding b (1 - b)-1. More generally,
any operator that is T-bounded with T-bound fi is also S-bounded with S-bound
S # (1 - b)-1.
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The assumptions of Theorem 1.1 are not symmetric with respect to T
and S, although the assertions are symmetric. In this connection, the
following symmetrized generalization of Theorem 1.1 is of some interest:

Theorem 1.3. Let T, S be operators from X to Y such that

(1.4) IlSu - Tull 5 a IIuII + b'IITull + b"IISuII , u E D(T) = D(S) .

where a, b', b" are nonnegative constants and b' < 1, b" < 1. Then the
conclusions of Theorem 1.1 are true.

Proof. Set A=S- T, T(x) = T + xA, 0 S x ;51. T(n) has
constant domain D (T), and T (0) = T, T (1) = S. Since T u = T (x) u -
-xAu and Su= T(x)u+ (1 -x)Au, (1.4) gives IIA uII SaIlull +
+ (b' + b") II T (x) u11 + b 11A uII , where b = max (b', b"). Hence

(1.5) IIAuji s T' b (aIIull+(b'+b")IIT(x) uII).
This shows that A is T (n)-bounded with T (x)-bound not exceeding
#= (1 - b)-1(b' + b"). Hence (x' - x) A is T (x)-bounded with T (x)-
bound less than 1 provided Ix' - ml < 1/#, so that by Theorem 1.1,
T (x') is closable if and only if T (x) is. This observation leads immediately
to the proof of the theorem; for example, the closability of T (x) propagat-
es from x = 0 to x = 1 in a finite number of steps if T is closable.

Remark 1.4. Let T E '(X, Y). Set

(1.6) IIIuIII=IIuII+IITull, uED(T).
It is easily seen that D (T) becomes a Banach space X if

III III is chosen
A

as the norm ; the completeness of X is a direct consequence of the
closedness of T. If A is an operator from X to Y' with D (A) ) D (T),
the restriction of A to D (T) can be regarded as an operator A on X to Y'.
It is easily seen that A is T-bounded if and only if A is bounded.

Remark 1.5. If T is closed and A is closable, the inclusion D (T) C
C D (A) already implies that A is T-bounded. To see this define X and .A
as in the preceding remark. Then A is closable, for an A-convergent
sequence in X is an A-convergent sequence in X. Since A is defined on
the whole of X, A is closed and therefore bounded by Theorem 111-5.20.
Thus A is T-bounded by Remark 1.4.

2. Examples of relative boundedness
Since the notion of relative boundedness is important in perturbation theory,

let us consider several examples'.
Example 1.6. Let X = C [a, bJ or X = LP (a, b) for a finite interval (a, b) and

let T and A be the maximal operators defined by T u = - u" and A u = u' (see

' The inequalities deduced below are special cases of the Sobolev inequalities;
see SOBOLEV (1), GOLDBERG (1).
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Examples 2.6-2.7 and § 2.3 of Chapter III). We shall show that A is T-bounded
with T-bound 0. To this end we use the identity

(1.7) u'=Gu"+Hu
where G and H are integral operators with the kernels g (y, x) and h (y, x), respec-
tively, given by

*+1 _ " 1

6'(Y.x)=
(b xa)(Y-a)"' h(y'x) (b-a)(Y-a)" aSx<ySb,

(1.8) - (b - x)"+1 n (n + 1) (b
g(Y.x)= (b - a) (b-y)"' h(Y' - (b - a) (b-y)" a5Y<xSb,

where n is any positive number. (1.7) can be verified easily by carrying out appro-
priate integrations by parts. The operators G and H are bounded, for

b b-a
(1.9) f n+2

(1.10)

a
b

f Ih(y.x)I dxS 2(n + 1)b - a '
a

b

f I g (Y, x) I dY S n- 1
a

b

f Ih(y x) I dyS 2n (n + l)
(n-1)(b-a)

a

where we assumed n > 1 for simplicity. It follows from III-(2.9) that

(1.11)

Hence (1.7) gives

b-a 2n(n+1)
IIGIi n-1' IIHIIS (n-1)(b-a)

(1.12) Ilu'Il n -
1

IIu..IIP + (n - 1) (1)
a) Ilulln. n > 1

Since the factor of llu"IIy can be made arbitrarily small by taking n large, this gives
the desired result.

Incidentally we note that only the first inequality in each of (1.9) and (1.10) is
needed in the case of X = LO0 or X = C. In this case (1.12) may be replaced by

(1.13) Ilu'll s n
b

+ 2
2bn ±a1)

Iluli n z 0 .

Note that in (1.12) or (1.13) no boundary conditions are imposed on u(x).
Suppose now that both u and u" belong to LP (0, oo). Then (1.12) is true with

a = 0 and any b > 0, and the IIull, and IIu"IIb may be replaced by the corresponding
norms taken on the interval (0, oo). Now choose n = bah for a fixed k > 0 and
let b -* no. We see then that Ilu'IIs taken on (0, b) is bounded for b -- no so that
u' E L9 (0, oo) also, with

(1.14) 11U,11- :5 hllu"Iln + k IIuII"

The same inequality holds for the interval (- oo, oo). Since h > 0 is arbitrary,
A = dldx is T-bounded with T-bound zero also in the case of an infinite interval.

Problem 1.7. From (1.14) deduce

(1.15) IIu'IIs S 2 y2(IIuIIn Ilu"IIy)"a (an infinite interval) .

Example 1.8. Let X = LP (a, b) with finite (a, b) and let T u = u', A u = u (c),
where c E [a, b]. A is a linear form and is unbounded if p < on. We shall show that A
is T-bounded with T-bound 0 if p > 1 and with a positive T-bound if p = 1.
We start from the identity

(1.16) u (c) = (u', g) + (u, h)
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where
(x - a)n+i h (n + 1) (x -

a)n
S Sg(x) =

(b - a) (c - a)n
(x) =

(b - a) (c - a)n '

a x c ,

(1.17)
- (b -

x)n+1 (n + 1) (b - x)"
h S bg (x) _ (b-a)(b-c)' (x) (b-a)(b-c)" c < x ,

where n is any positive number. (1.16) can be verified by integration by parts.
A straightforward calculation gives the inequalities

b - a 'It n+1
(1.18) IIgIl nq + q + 1 P11.5- (b - a)'-"a (nq + 1)'19

for any q Z 1. Hence we obtain from (1.16) and the Holder inequalities
(1.19) Iu(c)I 5 IIglIaII''II,, + IIh1I1IIuII,S

b-a lea n..{_1S(nq-f-q+I) IIu'II0+ (b-a)i"P(nq+1)" llulln,P' q'=1.
If p > 1, then q < co and the coefficients of IIu'II9 on the right of (1.19) can be made
arbitrarily small by taking n large; thus A is T-bounded with T-bound 0. If p = 1,
then q = co and (1.19) gives for n --* 0
(1.20) Iu(c)I s Iiu'll, + IIulI,/(b - a)
This shows that A is T-bounded with T-bound not larger than 1. For c = a and
c = b, the T-bound is exactly equal to 1; this follows from the existence of a
sequence {u,} such that u,%(b) = 1, IIuaII1 = 1 and IIuklIi -* 0 for k -* oo. An example
of such a sequence is given by uk(x) = (x - a)a/(b - a)k. For a < c < b, the
T-bound of A is equal to 1/2. In fact we have

(1.21) Iu(c)I S Z IIu1Ii+ 2 max(c 1 a, b 1 C)IIuIIi
this can be proved by noting that (1.16) is true also for g, h given by

(1.22) g (x) = 2(c -a) ,
h (x) = 2 (c a) , for a S x < c ,

and similarly for c < x S b, for which IIgLIoo = 1/2 and IIhiI = max((c - a)-1,
(b - c)-1)/2. That the T-bound of A in this case cannot be smaller than 1/2 is seen
from the example u1(x) = (x - a)71/(c - a)" for a:5-. x S c and = (b - x)1/(b - c)°
for c S x S b so that u,(c) = 1, IIuxtlj = 2 and IIuRII, -* 0 for k - on.

Example 1.9. Let X = LP (a, b) for finite (a, b), let T u = u' (regarded as an
operator in X as above) and let A u = u be an operator from X to Y = C [a, b].
Since every u E D (T) is a continuous function, we have D (T) ( D (A). Furthermore,
since (1.19) is true for every c E [a, b] while the right member of this inequality is
independent of c, 11A ull = IIuDIoo satisfies the same inequality. This shows that A is
T-bounded, with T-bound 0 if p > 1 and T-bound 1 if p = 1. Note that (1.21)
is useless here since the right member is not bounded for varying c. But this
inequality is useful if A is regarded as an operator from Ll (a, b) to Y' = C [a', b']
for a < a' < b' < b; then (1.21) shows that the T-bound of A is 1/2.

Example 1.10. Consider the maximal differential operator T of III-§ 2.3 con-
structed from the formal operator (2.13). Consider another formal differential
operator obtained from (2.13) by replacing the coefficients po(x), p,(x), p,(x) by
other functions qo (x), q, (x), q2 (x), respectively, and construct the corresponding
operator S. S and T have the same domain, consisting of all u E X such that u',
u" E X. We shall show that S is T-bounded and estimate its T-bound. For any
u E D (T) we have
(1.23) IISuII 5 NoIIu II + NjIIu'II + NoIIulI , N, = max Ige(x)I , j = 0, 1, 2.

a: z: b
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But we have the inequality (1.12), which may be written

(1.24) llu'll 5 8 Ilu1l + Cellull
where e > 0 is arbitrary if C. is chosen appropriately. Hence

(1.25) IISull s (No + e N1) (C8 N. + N2) Ilull

On the other hand, setting mo = min Ipo (x) I and M, = max I p, (x) l , j = 1, 2, wehave

(1.26) IITull z mollu"ll - Millu'll - MSIIuJI (mo - 6 MI)
-(C8M1+M$)Ilull

If a is chosen so small that mo > e M1, it follows that

(1.27) IISuIIs No
-+- eN, llTull+r(CeM1+M2)(No+eNI)

mo - em, mo - eMl
Letting 8 we see that the T-bound of S is not larger than Nolmo. It should be
noted that the coefficients of 11 T-11 and (lull in (1.27) become arbitrarily small if
N = max (No, N1, N2) is taken sufficiently small. We note also that q0 (x) need not
be positive in the above arguments.

If we consider the restrictions T1, T2, etc. of T (see loc. cit.) and define S,, S,
etc. from S by the same boundary conditions, it follows from the above result that
S. is T,; bounded.

3. Relative compactness and a stability theorem
A notion analogous to relative boundedness is that of relative com-

pactness. Again let T and A be operators with the same domain space X
(but not necessarily with the same range space). Assume that D (T) C
C D (A) and, for any sequence u ED (T) with both {un} and {Tun}
bounded, {Aun} contains a convergent subsequence. Then A is said to be
relatively compact with respect to T or simply T-compact'.

If A is T-compact, A is T-bounded. For if A is not T-bounded, there
is a sequence u E D (T) such that II T unll = 1 but 11A unIl z n,
n = 1, 2,3 ..... It is obvious that {Aun} has no convergent subsequence.

Theorem 1.11. Let T, A be operators from X to Y and let A be T-
compact 2. 1/ T is closable, S = T + A is also closable, the closures of T
and S have the same domain and A is S-compact. In particular S is closed
if T is closeds.

Proof. First we prove that A is S-compact if T is closable. Assume
that {un} and {Sun} are bounded sequences; we have to show that {Aun}
contains a convergent subsequence. Since A is T-compact, it suffices
to show that {Tun} contains a bounded subsequence. Suppose this is not

1 For examples of relatively compact operators for ordinary differential
operators see BALSLEV [1].

2 Here we make no assumption on the "size" of A, in contrast to Theorem 1.1.
S The assertions of this theorem are not symmetric in T and S (unlike Theorem

1.1). It is possible that T is not even closable while S is closed. A simple example
is given by choosing T = - A = / as an unbounded linear form on X, Y being the
one-dimensional space C (see footnote 3 of III-p. 133). T is not closable (see Problem
111-5.18) and A is T-compact, but S = 0 is closed.
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true so that 11 T unll - oo. Set u' = u./II T unll . Then u -> 0, S u,' 0 and
{T is bounded. Hence {A contains a convergent subsequence.
Replacing un by a suitable subsequence, we may assume that A U'. -->. w.

Then T U.' = S u,, - A u,, -+ - w. Since u -> 0 and T is closable, we must
have w = 0. But this contradicts the fact that - w is the limit of T u.'
where 11 Tu,,11 = 1.

Next we prove that S is closable. Let un -> 0 and S un v ; we have
to show that v = 0. Since A is S-compact, {A un} contains a convergent
subsequence. Again we may assume that A un -> w. Then Tun = Sun -
- A un v - w. Since un 0 and T is closable, we have Tun -> v - w
= 0. Since A is T-bounded, we have A u,, 0. Hence v = w = 0.

Let T, 9 be the closures of T, S, respectively. If u E D (T), there is a
sequence {un} which is T-convergent to u. Since S as well as A is T-
bounded, {un} is also S-convergent to u so that u E D (9). Suppose,
conversely, that u E D (9). Then there is a sequence {un} which is S-
convergent to u. Then {Tun} is bounded; this can be proved exactly
in the same way as in the first part of this proof. Hence we may assume,
as before, that A un w and Tun = Sun - A un -> v - w. Thus un is
T-convergent to u and u E D (T). This proves that D (T) = D (. ).

Remark 1.12. Let T be closed and D (A) ) D (T). Define X and A as in
Remark 1.4. Then A is T-compact if and only if A is compact.

Remark 1.13. We can also define relatively degenerate operators as
special cases of relatively compact operators. A is T-degenerate if A is
T-bounded and R (A) is finite-dimensional. It is easy to see that a T-
degenerate operator is T-compact.

We shall give an explicit form of a T-degenerate operator. Let T
be from X to Y and consider the product space X x Y (see III-§ 5.2).
Since the T-boundedness of A implies that 11 A ull S const. 11 {u, T u} 11,

A may be regarded as a bounded operator from X x Y to Y' (the range
space of A), with domain G (T) (the graph of T). Since R (A) is finite-
dimensional, A u can be written in the form

(1.28) Augi[u]yi, yiEY'.

f=1
where the gj, are linear forms defined on G (T). Since Ig; [u] 1 5 const.
IIA ull by I-(1.21), it follows that the gi are bounded forms in X x Y with

domain G (T). According to the Hahn-Banach theorem, the gi can be
extended to bounded forms on X x Y. Since (X x Y)* = X* x Y*, the
extended forms can be written in the form {u, v} -> (u, f,) + (v, g,) with
fj E X* and gi E Y*. Restricting {u, v} to G (T), we have gj [u] = (u, ff) +
+ (Tu, g,). In this way we arrive at the following expression for a
T-degenerate operator from X to Y':

m

(1.29) Au= E [(u,f/)+ (Tu,ge)]yi , f,EX*, g1EY*, yi EY'.
f-1
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Problem 1.14. Assume that there is a densely defined operator S from Y* to X*
adjoint to T [see III-(5.7)]. Then a T-degenerate operator A has T-bound zero.
[hint: Approximate the gi of (1.29) by elements of D (S).]

Example 1.15. In Example 1.6, A is T-compact if (a, b) is a finite interval.
In fact if is a sequence such that T u u;; is bounded, then A u = u is
equicontinuous. If in addition is bounded, {u;, (x)} is uniformly bounded in x
and n. Thus it follows from the Ascoli theorem that {u;,} contains a uniformly
convergent subsequence, which is a Cauchy sequence in X. A is not T-compact for
the interval (0, oo) or (- oo, oo), although A is T-bounded with T-bound zero [see
(1.14)]. In Example 1.8, A is not only T-compact but T-degenerate. This is obvious
since A is T-bounded and the range space of A is one-dimensional.

4. Stability of bounded invertibility
Let T E ' (X, Y). We shall now show that the property T-1 E 9 (Y, X)

is stable under a small perturbation.
Theorem 1.16.1 Let T and A be operators from X to Y. Let T-1 exist

and belong to M(Y, X) (so that T is closed). Let A be T-bounded, with the
constants a, b in (1.1) satisfying the inequality

(1.30) aJIT-1II +b<1.
Then S = T + A is closed and inveytible, with S-1 E .1 (Y, X) and

(1.31) IIS-111;5 1 - 11
TT 1 H - b , IIS-1- T-1II s it 1-111(aIilT

1111

±b)

If in addition T-1 is compact, so is S-1.
Proof. Since (1.30) implies b < 1, S is closed by Theorem 1.1. The

proof of other assertions of the theorem is not essentially different from
the finite-dimensional case (see the end of I-§ 4.4) : first we note that

(1.32) S = T + A = (1+AT-1) T, AT-1EM(Y),

for A T-1 is an operator on Y to Y and is bounded by 11A T-1 v II 5 all T-1 v II

+bIIvII 5 (aJIT-III+b)IIvIl.Thus

(1.33) 11AT-111 saIIT-1II+b<1

and 1 + A T-1 maps Y onto Y one to one, and the argument of I-§ 4.4
is applicable without essential change. The only change required is the
use of (1.33) instead of the simple estimate IIA T-1II 5 IIAII IIT-111 used
there.

If T-1 is compact, S-1= T-1 (1 + A T-1)-1 is compact by Theorem
III-4.8.

Remark 1.17. If A is bounded in Theorem 1.16, we can take a = IIAII
b = 0 and (1.31) reduces to I-(4.24). If, furthermore, A is assumed to
commute with T (Y = X being assumed), then we can prove the existence
of S-1 under a weaker assumption, namely,

1 This theorem will be generalized in the following section (see Theorem 2.21).
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Theorem 1.18. Let T be an operator in X with T-1 E 9 (X). Let
A E .' (X) commute with T. If sprA < 1/spr T-I, then (T + A)-I exists
and belongs to 9(X).

Proof. The commutativity of A with T is equivalent to A T-I
= T-I A (see Problem 111-5.37). Thus the proof is essentially the same
as the proof of a similar result in the finite-dimensional case (Remark
1-4.7).

§ 2. Generalized convergence of closed operators
1. The gap between subspaces

When we consider various perturbation problems related to closed
operators, it,,is necessary to make precise what is meant by a "small"
perturbation. In the previous section we considered a special kind,
namely a relatively bounded perturbation. But this notion is still restrict-
ed, and we want to have a more general definition of the smallness of a
perturbation for closed operators.

This can be done in a most natural way by introducing a metric in
the set W (X, Y) of all closed operators from X to Y. If T, S E ' (X, Y),
their graphs G (T), G (S) are closed linear manifolds in the product space
X x Y. Thus the "distance" between T and S can be measured by the
"aperture" or "gap" between the closed linear manifolds. G (T), G (S).
In this way we are led to consider how to measure the gap of two closed
linear manifolds of a Banach space.

In this paragraph we shall consider closed linear manifolds M, N, .. .
of a Banach space Z.

We denote by SM the unit sphere of M (the set of all u E M with
lull = 1). For any two closed linear manifolds M, N of Z, we set

(2.1) 6 (M, N) = sup dist (u, N) ,
g UESM

(2.2) 6(M, N) = max[8(M, N), 6(N, M)]'.
(2.1) has no meaning if M = 0; in this case we define 8 (0, N) = 0 for
any N. On the other hand 6 (M, 0) = 1 if M + 0, as is seen from the
definition.

6 (M, N) can also be characterized as the smallest number 6 such that

(2.3) dist (u, N) 5 6 j ull for all u E M .

8(M, N) will be called the gap between M, N.
The following relations follow directly from the definition.

(2.4) 6 (M, N) = 0 if and only if M c N .
(2.5) 8(M, N) = 0 if and only if M=N.
(2.6) b (M, N) = b (N, M) .

(2.7) 056(M,N) 51, 0S8(M,N) 51.
1 See GOHBERG and KREIN [1], T. KATO [12], CORDES and LABROUSSE [1].
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(2.5) and (2.6) suggest that 8 (M, N) could be used to define a distance
between M and N. But this is not possible, since the function 3 does not
in general satisfy the triangle inequality required of a distance function'.

This incovenience may be removed by slightly modifying the defini-
tion (2.1-2.2). Set
(2.8) d (M, N) = sup dist (u, SN) ,

CESM

(2.9) d (M, N) = max [d (M, N), d (N, M) ] 2.

(2.8) does not make sense if either M or N is 0. In such cases we set
(2.10) d (O, N) = 0 for any N ; d (M, 0) = 2 for M +-0.
Then all the relations (2.4-2.7) are again satisfied by 6, 8 replaced
by d, d, respectively if I is replaced by 2 in (2.7). Furthermore, d and d
satisfy the triangle inequalities :
(2.11) d(L,N) sd (L, M) + d (M, N) , d(L,N) (L, M) +d(M,N).

The second inequality of (2.11) follows from the first, which in turn
follows easily from the definition. The proof will be left to the reader.
[The case when some of L, M, N are 0 should be considered separately;
note (2.10).]

The set of all closed linear manifolds of Z becomes a metric space
if the distance between M, N is defined by J (M, N). A sequence of
closed linear manifolds converges to M if J (M, M) -+ 0 for n -> oo. Then
we write M,, -> M or lim M,, = M.

Although the gap 8 is not a proper distance function, it is more
convenient than the proper distance function d for applications since its
definition is slightly simpler. Furthermore, when we consider the topology
of the set of all closed linear manifolds, the two functions give the same
result. This is due to the following inequalitiess:

6 (M, N) S d (M, N) s 2 6 (M, N) ,
(2.12)

8(M,N) scl(M,N) s28(M,N).
The second set of inequalities follows directly from the first. Also the

first inequality of the first set is trivial. To prove the second inequality
d (M, N) S 2 6 (M, N), it suffices to assume N + 0 and show that

(2.13) dist (u, SN) S 2 dist (u, N) for any u E Z with 1juDD = 1 .

1 4 does satisfy the triangle inequality if Z is a Hilbert space. This follows
from the relation 3 (M, N) =11 P - QII, where P, Q are the orthogonal projections on
M, N, respectively, which follows from Theorem 1-6.34. In this case 6 is a more
convenient metric than the d to be introduced below.

2 See GOHBERG and MARKUS [1]. A different but equivalent metric is introduced
by NEWBURGH [2]. d is the Hausdorff distance defined on the set of all SM (except
for M = 0) ; see HAUSDORFF (1), p. 145. d (M, N) is equal to Q (SM, SN) in the notation
of HAUSDORFF. For the discussion of various metrics see BERKSON [1].

8 Cf. GOHBERG and MARKUS [1].
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For any e > 0, there is a v E N such that 11u - v11 < dist (u, N) + e.
We may assume that v + 0, for otherwise we can change v slightly
without affecting the inequality. Then vo = v111 I E SN and dist (u, SN) 5
Sllu - volt Sllu - vII+IIv - volt. But IIv-v.11=IIIvil-11=111vIl-
- (lull! 5 IIv - ull, so that dist(u, SN) 5 211u - vii < 2 dist(u, N) + 2s.
Since e > 0 is arbitrary, this proves (2.13).

(2.12) shows that c$(M,,, M) 0 is equivalent to 8(M,,, M) 0.
Thus the convergence M,, M can be defined by 8 (M,,, M) 0 without
reference to the d function. In what follows we shall use almost exclusively
the gap 3 rather than the distance J.

Remark 2.1. The metric space of all closed linear manifolds of Z
defined above is complete; if is a Cauchy sequence (c$(Ma, M.) + 0
for n, m oo), then there is a closed linear manifold M such that
c$(M,,, M) 0. Since we do not need this theorem, we shall not prove it
here.

The following lemma will be needed later.
Lemma 2.2. For any closed linear manifolds M, N of Z and any u E Z,

we have

(2.14) (1 + 6 (M, N)) dist (u, M) z dist (u, N) - (lu116 (M, N) .

Proof. For any e > 0 there is a v E M such that 11u - v11 < dist (u, M) +
+ e, and for this v there is a w E N such that 11v - wil < dist(v, N) + e.
Hence dist (u, N) 5 11u - wll 5 dist (u, M) + dist (v, N) + 2e 5 dist (u,
M) + llvll 8(M, N) + 2e. But lvIl <_ hull + llu - vii 5 (lull + dist(u, M) + S.
Hence dist(u, N) _< (1 + 6(M, N)) dist(u, M) + lull b (M, N) + 2e +
+ e 6 (M, N). On letting a -+ 0 we obtain (2.14).

2. The gap and the dimension
The following lemma is basic in the study of the gaps between closed

linear manifolds.
Lemma 2.3.1 Let M, N be linear manifolds in a Banach space Z.

I/ dim M> dim N, there exists a u E M such that

(2.15) dist(u, N) = 11ull > 0 .

Remark 2.4. If the quotient space Z = Z/N is introduced (see III-
§ 1.8), (2.15) can be written

(2.16) 1I411=1lull > 0 .

Note that N is closed since dim N < co by hypothesis.

1 See KREIN, KRASNOSEL'sxII and MIL'MAN [1], GOHBERG and KREIN [1],
T. KATO [12].
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Proof of Lemma 2.3. We may assume that both M and N are finite-
dimensional, for dim N < oo and we may replace M by any of its finite-
dimensional subspaces with dimension equal to dim N + 1. Hence Z
itself may also be assumed to be finite-dimensional, for it suffices to
consider the problem in the subspace M + N.

For the moment assume that Z is strictly convex, by which we mean
that Ilu + vJJ < llull + Ilvil whenever u, v are linearly independent. Then
it is easily seen that each u E Z has a unique nearest point v = A u in N
and that the map u -->. A u is continuous 1. The operator A is in general
nonlinear, but it has the property that A (- u) = - A u. According to a
theorem by Borsuk2, there exists a u E M such that lull = 1 and Au = 0.
This u satisfies the requirements of the lemma.

In the general case we regard Z as a real Banach space and choose a
basis fl, ..., fm of the real adjoint space of Z. Then

Ilulln = {11u112+ n [(u, f1)2 + ... + (u,
fm)2]}1/2

defines a new norm in Z and converts Z into a strictly convex space.
For each n = 1, 2, . . ., there exists a u,, E M such that dist,, (u,,, N)

= 1, where dist,, denotes the distance in the sense of the norm
Since 11u.11 5 1, the sequence {u,,,} contains a convergent

subsequence. The limit u of this subsequence is easily seen to satisfy the
requirements of the lemma.

Remark 2.5. The nonlinearity of the operator A used above gives
the lemma a non-elementary character. If Z is a unitary space, A is
simply the orthogonal projection on N, and the proof of the lemma is
quite elementary.

Corollary 2.6. Let M, N be closed linear manifolds. S (M, N) < i implies
dim M s dim N. S (M, N) < 1 implies dim M = dim N.

Remark 2.7. The last corollary shows that the space of closed linear
manifolds of Z is the union of disjoint open sets, each of which consists of
closed linear manifolds with a fixed dimension.

3. Duality
There is a simple relationship between the gap function in a Banach

space Z and that in the adjoint space Z*. For any closed linear manifold
M Z, Ml denotes the annihilator of M; M1 is the closed linear manifold
of Z* consisting of all / E Z* such that / 1 M (see III-§ 1.4).

1 The existence of a nearest point v in N to u follows from the local compactness
of N. The uniqueness of v and its continuous dependence follows from the strict
convexity of Z.

2 See ALEXANDROFF and HOPF [11, p. 483.
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Lemma 2.8. Let M be a closed linear manifold o l Z, 0 + M + Z. Then

(2.17) dist (f, M1) = sup I(u, /)I = II/MII /E Z*
uESM

(2.18) dist(u, M) = sup I (u, f) I , u E Z ,
1 E SM

where fM is the restriction o l / to M.
Proof. Let / E Z*. By the Hahn-Banach theorem, there is a g E Z*

which is an extension of /M with IIgII = 11/mil. Then h = / - g E M1 since
(u, f) = (uc g) for u E M. Thus dist (f, M1) s II/ - hII = IIgII = II/MII
= sup I (u. /) I

uESM
On the other hand, for any h E M J- we have I (u, f) I = I (u, f - h) I S
lit - hII if u E SM. Hence I (u, f) I < dist (t, M J- ), which gives the

opposite inequality to the above and completes the proof of (2.17).
Let u E Z. For each / E SM- we have I (u, f) I = l (u - v.1)! s II u - v II

for any v E M. Hence I (u, f) 15 dist (u, M) and so sup I (u, f) I < dist (u,
IESM-

M). The opposite inequality follows from the fact that there exists an
/ E SM- such that I (u, /)I = dist (u, M) (which is a direct consequence of
Theorem 111-1.22).

Theorem 2.9. For closed linear manifolds M, N of Z, we have

(2.19) 8(M,N)=S(N1,M!), S(M,N)=8(M-L,N-i).
Proof. The second equality follows from the first, which in turn

follows from Lemma 2.8, for

b (M, N) = sup dist (u, N) = sup sup I (u, g) I
UESM uESM gESN'

= sup sup I (u, g) I = sup dist (g, M 1) = S (N 1, M J-) .

gESN- uESM gESN'

[The above proof applies to the case where M + 0 and N + Z. If M = 0,
then M-L = Z* so that 8(M, N) = 0 = S(NJ-, MJ-). If N = Z, then
N1=0sothat O(M,N)=0= S(Ni-,MJ-).]

4. The gap between closed operators
Let us consider the set '(X, Y) of all closed operators from X to Y.

If T, S E T (X, Y), their graphs .G (T), G (S) are closed linear manifolds
of the product space X x Y. We set
(2.20) S (T, S) = 6(G (T), G (S)) , 8 (T, S) = 8(G (T), G (S))

= max [S (T, S), 8 (S, T) ] .

(T, S) will be called the gap between T and S
1 A similar notion is introduced, and some of the theorems given below are

proved, in NEWBURGH [2]. In the special case where X, Y are Hilbert spaces, most
of the following results are simplified and strengthened; see CORDES and LABROUSSE
[1].
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Similarly we can define the distance J (T, S) between T and S as
equal to d(G (T), G (S)). Under this distance function '(X, Y) becomes
a metric space. In this space the convergence of a sequence T E W (X, Y)
to a T E e (X, Y) is defined by d (T,,, T) 0. But since S (T, S) S
5 d (T, S) s 28 (T, S) in virtue of (2.12), this is true if and only if
8 (T., T) --> 0. In this case we shall also say that the operator T con-
verges to T (or T T) in the generalized sense.

It should be remarked that earlier we defined the convergence of
operators only for operators of the class 9 (X, Y). Actually we introduced
several different notions of convergence: convergence in norm, strong
and weak convergence. We shall show in a moment that the notion of
generalized convergence introduced above for closed operators is a
generalization of convergence in norm for operators of 9(X, Y).

Remark 2.10. When T varies over f (X,Y), G (T) varies over a proper
subset of the set of all closed linear manifolds of X x Y. This subset
is not closed and, consequently, ' (X, Y) is not a complete metric space
(assuming, of course, that dimX 1, dimY ? 1). It is not trivial to see
this in general, but it is easily seen if Y = X. Consider the sequence {nI}
where I is the identity operator in X. G(nI) is the subset of X x X
consisting of all elements {n-1 u, u}, u E X, and it is readily seen that
limG (nI) exists and is equal to the set of all elements of the form {0, u},
u E X. But this set is not a graph. -Thus {nI) is a Cauchy sequence in
T (X) = ' (X, X) without a limit.

Lemma 2.11. Let T E.4 (X, Y). If S E8(X, Y) and S(S, T) <
< (1 + II T11 2) - 1/1, then S is bounded (so that D (S) is closed).

Proof. Let 92 be an element of the unit sphere of G (S) : 99 = {u, Su} E
E G (S), u E D (S) and
(2.21) IIuII2 + IISull2 = II9wI12 = 11

Let 6' be any number such that S (S, T) < 6' < (1 + II T11 2) -1/2 . Then
99 has distance smaller than S' from G (T), so that there exists a
p = {v, T v} E G (T) such that 11 99 - 1VII < X:

(2.22) I1 u-v1I2+IISu- Tv112= Ilm- VII2<6'2

Set A = S - T; we have llAull2= IlSu- Tv - T(u-v)II2 <(IISu -
- T vll + II T11 Ilu - vjj)2 s 612 (1 + II T112) by the Schwarz inequality
and (2.22). Since

I = IIuII2+ IITu+ Au112 s (1 + IITII2) IIuII2+ 211TII (lull IIAuII + 11A U112,

by (2.21), we have

IIAuII2 6'2(1 + JITII2) [(1 + IITI12) IIuII2 + 2 IITII (lull IIAuII + IIAuII2]

It should be recalled that we defined the norm in X x Y by lI{u, v}11 = Olull, +
+ I!vjI2)h12.
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Solving this inequality for IIA ujI, we obtain

(2.23) IlAull
E'(1

4
11 T112) [(9 - 612)1/2+ 6'11 T111

(lull s1-s (1+IITII
8)

6'(1 + IITII1)
Ilull1-a(1+IITII)1.2

note that the denominators are positive.
Since (2.23) is homogeneous in u, it is true for every u E D (S) without

any normalization. Thus A is bounded and so is S = T + A.
Lemma 2.12. Let T E .. (X, Y). If S E ' (X, Y) and 6(T, S) <

< (1 + 11 TI1 2)-1/2, then S is densely defined'.
Proof. Let v be any vector of X so normalized that _ {v, Tv} has

norm 1:
(2.24) Ilvli2+ IITvjj2= II,I12= 1 .

Let 6' be such that S (T, S) < 6' < (1 + it TII2)-1/2. Then there is a 99
_ {u, Su} satisfying (2.22) [but not necessarily (2.21)]. Hence Ilv - uli <
< 6' and so dist (v, M) < 6' where M is the closure of D (S). But since
1 S (1 + II TI12) IIvjl2 by (2.24), dist (v, M) < 6' (1 + II TI12)1/2 IIvII. The last
inequality is homogeneous in v and therefore true for every v E X.
Since 6'(1 + II TI12)1/2 < 1, it follows that M = X; otherwise there would
exist a v + 0 such that dist (v, M) > 6' (l + II TII2)1/2 Ilvii, see Lemma
III-1.12. Thus D (S) is dense in X.

Theorem 2.13. Let T E.4 (X, Y). It S E ' (X, Y) is so close to T that
8 (S, T) < (1 +IITII 2) -1/2 then S E P4 (X, Y) and 2

(2.25) it S - Tli s
(1 + II TII2) 6 (S, T)

1 - (1 + II T112)1,2 6 (S. T)

Proof. It follows from Lemmas 2.11 and 2.12 that S is bounded,
D(S) is closed and dense in X. Hence D(S) = X and S E °..d+ (X, Y).
Then (2.25) follows from (2.23) since 6' can be chosen arbitrarily close to
6 (S, T).

Theorem 2.14. Let T E ' (X, Y) and let A be T-bounded with relative
bound less than 1, so that we have the inequality (1.1) with b < 1. Then
S= T+ A E W (X, Y) and

(2.26) 8 (S, T) S (1 - b)-' (a2 + b2)1/2.

In Particular if A E9 (X, Y), then

(2.27) 3(T+A,T) SIIAII.
Proof. S E T (X, Y) was proved in Theorem 1.1. To prove (2.26), let

4P = {u, Su} E G (S) with 11 9911 = 1, so that we have (2.21). Setting

1 Actually we have a stronger result that S E 9 (X, Y) ; see Problem 5.21.
2 In (2.25) 6 (S, T) may be replaced by 6 (T, S) ; see Problem 5.21.
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y' _ {u, T u} E G (T), we have 11 9? - 'VII = II (S - T) ull = IIA ull 5
5 (1 - b)-1(a IIull + b IISuhi) by (1.3). It follows by the Schwarz inequa-
lity and (2.21) that II T - y'II 5 (1 - b)-1(a2 + b2)1/2. Hence dist (T, G (T))

S (1 - b)-1(a2 + b2)1/2 and, since 9' is an arbitrary element of the unit
sphere of G (S), 6 (S, T) = S(G (S), G (T)) S (1 - b)-1(a2 + b2)1/2.

6 (T, S) can be estimated similarly, using (1.1) rather than (1.3) ;
the result is 6 (T, S) S (a2 + b2)1/2. Thus we obtain the estimate (2.26)
for 6 (S, T) = max [S (S, T), 6 (T, S) ].

Problem 2.15. If we assume (1.4) with b = max (b', b") < 1, then

(2.28) S (S, T):5 (1 - b)-' [a2 + (b' + b")2]1/2

Remark 2.16. Theorem 2.13 shows that 9 (X, Y) is an open subset of
' (X, Y). (2.25) and (2.27) show that within this open subset 9 (X, Y),

the topology defined by the distance function d (or, equivalently, by the
gap function S) is identical with the norm topology.

Theorem 2.17. Let T, S E ' (X, Y) and A E R (X, Y). Then

(2.29) S (S + A, T + A) 5 2 (1 + 11A II2) S (S, T) .

Proof. T E ' (X, Y) implies that T + A C e (X, Y) with D (T + A)
= D (T). Similarly S + A E '(X, Y).

Let 92 E G (S + A) with II 9?II = 1. Then there is a u E D (S) such that
99={u,(S+A)u}and
(2.30) IIuII2+ II (S+ A) uII2 = 1199112 = 1.

Set JIu1I2+ IISuII2 = y2, y> 0. r-1{u, Su) is an element of the unit sphere
of G (S). For any 6' > S (S, T) = S (G (S), G (T)), therefore, r-1 {u, S u}
has distance < S' from G (T). Hence there is a v E D (T) such that 11u - V11 2
+ IISu - TvII2 < r2 6". Then, setting , _ {v, (T + A) v}, we have

(2.31) IIA-'WII2= IIu-uII2+II(S+A)u-(T+A)v1I2
s IIu - uII2 + 2IISu - TvII2 + 2IIAII2

11U - uII2 s

s2(1+IIAII2)r28'2.

On the other hand r2 = IIuII2 + IISuII2 = IIuII2 +11(S+ A) u - Au1I2 s
5 IIuII2 + 211(S + A) U112 + 211A 112 IIuII2 s 2 + 211A 112 IIuII2 s 2 + 211A 11 2by
(2.30). Hence 1192 - y1II2 S 4 (1 + IIAII2)2 612. Since V E G (T + A), this
implies that dist(T, G (T + A)) S 2(1 + IIAII2) 6' and, since 99 is an
arbitrary element of the unit sphere of G (S + A), that S (S + A, T + A)
= S(G (S + A), G (T + A)) 5 2 (1 + IIAII2) 6'. Since S and T may be
exchanged in the above argument and since 6' may be arbitrarily close
to S (S, T), we obtain (2.29).

Theorem 2.18. Let T, S E ' (X, Y) be densely defined. Then 6 (T, S)
= 6 (S*, T*) and 3 (T, S) = 6 (T*, S*).
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Proof. b(S*, T*) = b(G (S*), G (T*)) = E(G' (S*), G' (T*))
= 6 (G(-S)1, G(-T)1) = E(G(-T), G(-S)) = 6(G(T), G(S))
= S (T, S), where G (T) X x Y is the graph of T and G' (T*) C X* x Y*
is the inverse graph of T* E ' (Y*, X*) ; note that G' (T*) = G (- T)1
by III-(5.9) and that 6 (N1, M') = 5 (M, N) by (2.19). E(G (S*), G (T*))
= E(G' (S*), G' (T*)) is due to the special choice of the norm in the
product space (see par. 5 below).

Problem 2.19. Let T E'(X, Y). T is bounded if and only if 6(T, 0) < 1.
T E a (X, Y) if and only if a (T, 0) < 1.

5. Further results on the stability of bounded invertibility
The graph G (R) of an R E ' (Y, X) is a closed linear manifold of

Y x X, and the inverse graph G' (R) of R is a closed linear manifold of
X x Y obtained as the image of G (R) under the map {y, x} -> {x, y}
(see III-§ 5.2). Since this map preserves the norm and hence the gap
between two closed linear manifolds, S (R1, R2) = S(G (R1), G (R2))
= S(G' (R1), G' (R2)) and the same is true with S replaced by E, d or J.
Thus in the discussion of the gap or distance between operators of
'(Y, X), we can replace their graphs by their inverse graphs.

If T E '(X, Y) is invertible, T-1 E '(Y, X) and G'(T-1) = G (T)
[see III-(5.5)]. The following theorem is an immediate consequence of
these observations.

Theorem 2.20. I l T, S E T (X, Y) are invertible, then

(2.32) S (S-1, T-1) = S (S, T) , S (S-1, T-1) = S (S, T) .

If we denote by ,(X, Y) the subset of '(X, Y) consisting of all
invertible operators, Theorem 2.20 means that T -- T-1 is an isometric
mapping of c' (X, Y) onto T; (Y, X). In general the structure of Tt (X, Y)
in IF (X, Y) would be quite complicated. We shall show, however, that
the set of T E W{ (X, Y) such that T-1 E.4 (Y, X) is open in T (X, Y).
This is the principle o l stability o l bounded invertibility in its most general
form.

Theorem 2.21. Let T E'f (X, Y) be invertible with T-1 E -V(Y, X).
11 S E ' (X, Y) with 8 (S, T) < (1 + 11 T-1112)-1/2, then S is invertible and

S-1 E R (Y, X).

Proof. If S is known to be invertible, then S (S-1, T-1) = S (S, T) <
<(1 + II T-1112)-1/2 so that S-1 E R(Y, X) by Theorem 2.13 (applied
to the pair S-1, T-1). Thus it suffices to show that S is invertible.

Suppose that Su = 0, Hull = 1. Then {u, 0} is on the unit sphere of
G (S), so that there is a {v, Tv} E G (T) such that IIu - v112 + 11 Tv112 < 612,
where 6' is a number such that 8 (S, T) < S' < (i + 11 T-1112)-1/2. Then
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1= Ilull2 s (Ilu - vll + llvll)2 s (Ilu - vll + II T-111
II Tvll)2 s (1+ II T-1II2) a'2 <

< 1, a contradiction.
Remark 2.22. The theorems proved in this and the preceding para-

graphs are not very strong from the quantitative point of view, for many
crude estimates have been used in their proof. For example, Theorems 2.14
and 2.21 give the result that (T + A)-1 E 9 (Y, X) exists if 11 All <

< (1 + II T-1112)-1/2. But this condition is unnecessarily strong, for we
know that it is sufficient to assume (IAII < II T-111-1 (a special case of
Theorem 1.16).

It is easy to improve this unsatisfactory result by an auxiliary
argument. If we apply the result just obtained to the pair cc T, aA with
a > 0, we see that a(T + A) has an inverse in °.,fl (Y, X) if a11A11 <

< (1 + a-2 11 T-1112)-1/2 that is, if IIAII < (a2 + 11 T-1112)-1/2. Since a can
be chosen arbitrarily small, it follows that (T + A)-' E . (Y, X) if
IIAII < II T-111-1. In this way we regain the specific result from general
theorems. In many cases this kind of auxiliary argument can be used to
improve the numerical results.

6. Generalized convergence
We recall that Tn converges to T (Tn T) in the generalized sense

if 3 (Tn, T) -> 0. The following theorem is a direct consequence of
Remark 2.16, Theorems 2.17, 2.18 and 2.20.

Theorem 2.23. Let T, Tn E '(X, Y), n = 1, 2, ... .

a) I/ T E -4 (X, Y), Tn -> T in the generalized sense i f and only i f
Tn E 2 (X , Y) for sufficiently large n and II Tn - T11 - 0.

b) I l T-1 exists and belongs to J (Y, X), Tn - T in the generalized
sense i f and only i f Tn-1 exists and belongs to 2 (Y, X) for sufficiently large n
and 11 Tn 1- T-1110.

c) I/ Tn -+ T in the generalized sense and i f A E . J (X, Y), then Tn + A
T + A in the generalized sense.
d) I l Tn, T are densely defined, Tn -> T in the generalized sense it

and only i f Tn* T* in the generalized sense. .

Another sufficient condition for generalized convergence is obtained
from Theorem 2.14.

Theorem 2.24. Let T E '(X, Y). Let An, n = 1, 2, ..., be T-bounded
so that IlAnull sanllull+bnl1Tull for uED(T)CD(An). If an-0 and
bn -> 0, then Tn = T + An E ' (X, Y) for sufficiently large n and Tn -+ T
in the generalized sense.

The conditions b), c) of Theorem 2.23 lead to a very convenient
criterion for generalized convergence in case Y = X.

Theorem 2.25. Let T E '(X) have a non-empty resolvent set P(T). In
order that a sequence Tn E'(X) converge to T in the generalized sense, it is
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necessary that each 4 E P (T) belong to P for sufficiently large n and

(2.33) R (C, R (4, T) II -' 0 ,

while it is sufficient that this be true for some 4 E P (T).
This theorem is useful since most closed operators that appear

in applications have non-empty resolvent sets. It follows also from this
theorem that if (2.33) is true for some C E P (T), then it is true for every
4 E P (T). We shall come back to this question in later sections.

Theorem 2.26. Let T, T E T (X) and let T T in the generalized
sense. If all the T have compact resolvents and if T has non-empty re-
solvent set, then T has compact resolvent.

Proof. Let C E P (T). Then we have (2.33) where R (C, T,,,) is compact.
Hence R(C, T) is compact (see Theorem 111-4.7).

Remark 2.27. The converse of Theorem 2.26 is not true: T. need not have
compact resolvent even if T has. A simple counter-example: let X = In and let
S E . (X) be defined by a diagonal matrix with diagonal elements Ilk, k = 1, 2, ...,
and let S. be a similar operator with diagonal elements (n + k)ln k, k = 1, 2, ... .
Let T = S-1, T. = which exist and belong to %(X). It is easily verified that 0
belongs to the resolvent sets of all the T. and of T, R (0, S. -- R (0, T) = S

u
and that T has compact resolvent (because S is compact). But the resolvent of T.
is not compact for any n = 1, 2.... (since S. is not compact). It should be noted,
however, that the converse of Theorem 2.26 is true if T. - T is T-bounded; for a
more precise statement see Theorem 3.17. See also Theorem VI-3.6.

Problem 2.28. Let T E ' (X, Y). Under what conditions does n-1 T [resp.
(1 + n-1) T] converge to 0 [resp. T] in the generalized sense?

Finally we give another sufficient condition for generalized conver-
gence'.

Theorem 2.29. Let T,,, T E V (X, Y). Let there be a third Banach space Z
and operators U,,, U E .4 (Z, X) and V,,, V E 2 (Z, Y) such that U,,, U
map Z onto D (T ), D (T), respectively, one-to-one and T U = V,,,
T U = V. 1/ II U,, - UII -+ 0 and 11 V - V11 .- 0, n .- oo, then T -+ T
in the generalized sense.

Proof. The mapping z 99 = {Uz, Vz} _ {Uz, T Uz} is a one-to-
one, bounded linear operator on Z onto G (T). Since G (T) is closed,
this operator has a bounded inverse :

(2.34) 11x111 s ca119911 1 = c2(II UzIia + II Vzi11)

Let 99 = {Uz, Vz} be an arbitrary element of G (T). Then
99n = E G and

(2.35) 1199 - 99.111 s (II U - Unit $ + II V - VVII2) Ilzila s c 6,1,11 li$

where Sn = 11 U - U.112 + 11 V - Vn1I2. This implies that dist (99, G (T )) s
5 c6,1i9911 and hence S(T, S(G(T), S n-* oo.

1 This is a discrete version of the definition, due to RELricx [3], of the analytic
dependence of a family T (x) of operators on the parameter x.
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Similarly we have 6 (Tn, T) S c,,6,, where cn is the c of (2.34) for
U, V replaced by U,,, V. But {c} is bounded; in fact (2.35) gives
IImII < I199nll + IIq - Tnli s 1199.11 + c&&II99j1, hence 119,11 < (1 - cbn)-1IIT.11
and j zjj S c119911 5 c (I - c bn)-11199n.I1 by (2.34), which means that we
can take cn = c (1 - can)-1. It follows that 6 (Tn, T) -+ 0 and hence
S(Tn, T)--0.

§ 3. Perturbation of the spectrum
1. Upper semicontinuity of the spectrum

In this section we consider the change of the spectrum E (T) and the
resolvent R (4) = R (C, T) of an operator T E ' (X) under "small"
perturbations'.

Theorem 3.1. Let T E le (X) and let r be a compact subset of the re-
solvent set P (T). Then there is a b > 0 such that PCP (S) for a n y S E ' (X)
with E (S, T) < b.

Proof. Let C E P c P (T). Since (T - C)-1= R M E .°.l! (X), it follows
from the generalized stability theorem for bounded invertibility (Theorem
2.21) that (S-0-' E(X) or CEP(S) if 5(S - 4, T - 4) <
< (1 + 11R(C)1I2)-1/2. According to Theorem 2.17, this is true if

(3.1) 2(1 + ICI2) b(S, T) < (1 + IIR(C)II2)-1/2

Since 11 R (C) 11 is continuous in g, we have

(3.2) Ti 2 (1 + IC12)-1 (1 + JJR(C)II2)-1/2= > 0.

It follows that r C P (S) if S (S, T) < 6.
Remark 3.2. If S = T + A where A E °& (X), we have the sharper

result that

(3.3) PCP(S) if IIAII <mr IJR(C)II-1

in virtue of Theorem 1.16. If in addition T E -4 (X), P may be any closed
(not necessarily bounded) subset of P (T) ; then 11 R still has positive
minimum for C E P since 11 R (C)11-+ 0 for -+ oo.

Remark 3.3. Theorem 3.1 and Remark 3.2 show that E (T) is an
upper semicontinuous function of T E .4 (X). In other words, for any
T E 2 (X) and s > 0 there exists a 6 > 0 such that2 e (I (S), E (T)) =

1 Perturbation of the spectra of operators (and of elements of a Banach algebra)
is discussed in detail by NEwBURGH [1].

2 For p see footnote' of p. 198. The Hausdorff distance is obtained by sym-
metrizing p. It is a distance between two sets of points and is different, when
applied to the spectra of operators in a finite-dimensional space, from the distance
between two N-tuples consisting of repeated eigenvalues, which was defined in
II-§ 5.2; the multiplicities of eigenvalues are not taken into account here.
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sup dist (A, E (T)) < s if 11S - T11 < S. This is seen by choosing the r of
2 E E(S)

Theorem 3.1 as the set of points with distance not smaller than s from
E (T). Even for T E ' (X), Theorem 3.1 may be interpreted to imply
that E (T) is upper semicontinuous in a slightly weaker sense.

Problem 3.4. For T, T. E T (X), it is possible that 3 (T,,, T) 0 and yet the
distance between E and E (T) is infinite for each n. Verify this for the following
example: X = I P, T is given by a diagonal matrix with diagonal elements k,
k = 1, 2, ..., and T. = (1 + i n-1) T. [hint: T. - T is T-bounded.]

Remark 3.5. In Theorem 3.1 it is in general not easy to give a simple
expression for S, although it is expected that S will be large if the distance
of r from E (T) is large. Under some commutativity assumptions, this
distance alone determines the necessary size of the perturbation. We
have namely

Theorem 3.6. Let T E le (X) and let A E P2 (X) commute with T. Then
the distance between E (T) and .E (T + A) does not exceed sprA and,
a /ortiori, 11 All.

Proof. R (C) commutes with A (see Theorem 111-6.5). Hence
(T + A - 0)-1 E .4 (X) if sprA < 1/sprR (C), by virtue of Theorem 1.18.
Since sprR (4) = 1/dist(C, E (T)) by Problem 111-6.16, it follows that
C E P(T + A) if sprA < dist(C, E (T)). In other words,

(3.4) dist(C, E (T)) 5 sprA if C E E (T + A) .

Since A commutes with T + A too, we can apply (3.4) to the pair T, A
replaced by the pair T + A, - A. Then we see that dist (C, E (T + A))
SsprA if C E E (T). This proves the theorem.

Remark 3.7. Theorem 3.6 shows that E (T) changes continuously when
T is subjected to a small change which commutes with T.

2. Lower semi-discontinuity of the spectrum
In a finite-dimensional space, the eigenvalues of an operator T

depend on T continuously (see II-§ 5.8). Even in a general Banach space X,
the spectrum E (T) changes continuously with T E 2 (X) if the pertur-
bation commutes with T (see Remark 3.7)1. But this is not true for more
general perturbation ; only upper semicontinuity for the spectrum can
be proved in general.

Roughly speaking, the upper semicontinuity proved in the preceding
paragraph says that E (T) does not expand suddenly when T is changed
continuously. But it may well shrink suddenly, as is seen from the follow-
ing examples.

1 There are other kinds of restricted continuity of the spectrum. For example,
E (T) changes continuously with T if T varies over the set of selfadjoint operators
in a Hilbert space. For more precise formulation, see VIII-§ 1.2.
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Example 3.8. Let X = l9 (- co, co), where each u E X is a bilateral sequence
u = (g,), j = , -1, 0, 1, 2,..., with (lull = Let be the canonical
basis: x = (4,) and let T E 9(X) be such that Tx0 = 0, Tx = x,,_1, n + 0.
T is a left shift operator (cf. Example 111-3.16). Since III-(3.9) is true in this case
also, we have spr T = 1 so that E (T) is a subset of the closed unit disk. Actually

ao

E (T) coincides with this disk; in fact, for any C with ICI < 1 the vector u = _P C° X.
n=0

is an eigenvector of T - C with the eigenvalue C so that C E E (T).
Let A E Q (X) be such that A xo = x_1, A x = 0, n + 0. Let T (m) = T + x A.

T (x) is again a left shift operator with T (x) xo = x x_1, T (x) x = n + 0,
so that spr T (x) = 1 as above and E (T (x)) is a subset of the unit disk. If x + 0,
however, the interior of this disk is contained in P (T (x)). This is seen by observing
that T (x)-1 exists and is a right shift operator such that T (x)-1 x_1 = xoJx,
T (x)-1 x,,, n = 0; hence spr T (x)-1 = 1 as above and the exterior of the
unit disk belongs to P (T (x)-1), which means that the interior of this disk belongs to
P (T (x)) (see Theorem III-6.15).

In this example the perturbation xA is small not only in the sense that 11-All
lxl -+ 0 for x -+ 0 but also in the sense that A is a degenerate operator of rank

one. xA is "small" in any stronger topology which might reasonably be put on a
subset of ..(X). Thus the lower semicontinuity of E (T) cannot be established by
strengthening the topology for the operators.

Example 3.9. In the above example E (T) shrinks from a full disk to its circum-
ference by a small perturbation. There is an example in which the shrinkage is more
drastic, being from a full disk to its center'. Of course such a change cannot be
caused by a degenerate perturbation as in the preceding example z.

Problem 3.10. In Example 3.8 let R (C, x) = R (C, T + xA). Then

OR (C, x)ll s (ICI -1)-' for ICI > 1, Ixl s 1,

IIR(C, x) II s 1-1-1(1 - ICI)-1 for ICJ < 1, 0 < Ixl s 1.

3. Continuity and analyticity of the resolvent
We shall now show that the resolvent R (C, T) is not only continuous

but analytic in T in a certain sense.
Theorem 3.11. Let To E T (X) be fixed. Then R T) is piecewise

holomorphic in T E To + .4 (X) and C E P (T) jointly.
Here To + .4 (X) is the set of all operators To + B where B varies

over 9 (X), in which we introduce the metric (distance function) 11 T - S11.
Now Theorem 3.11 means the following. First, the set of all pairs C, T
such that I E P (T) is open in the product space C x [To + .4 (X)] (C is
the complex plane) ; in other words, for any T E To + . (X) and Co E P (T),
C E P(S) is true if IC - and HIS - TII are sufficiently small. Second,
R (C, S) can be expressed as a convergent double power series in C - Cu

1 See RICKART [1D, p. 282. In this example there is a sequence T. of nilpotent
operators such that 11 T. - T11 -+ 0, where T is not quasi-nilpotent and E (T) is a
disk of positive radius with center 0.

8 A compact perturbation preserves the essential spectrum, which is the unit
circle for the T in question; see Theorem 5.35 and Example 5.36.
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and A, where A E -4 (X), S = T + A. In particular for To = 0, R (C, T)
is piecewise holomorphic in T E .4 (X) and C E P (T).

The proof of Theorem 3.11 is essentially the same as the proof of
Theorem 11-1.5; it suffices to replace the T (m) there by S and A (x) by A.

It is difficult to extend Theorem 3.11 and assert that R (C, T) is
piecewise holomorphic in T Es' (X), for '(X) is not an algebra (not
even a linear space) like -1 (X). Nevertheless, we have a generalization
in a different form.

Theorem 3.12. When T varies over 'f(X), R(C, T) is piecewise holo-
morphic in C and R (Co, T), whereto is any fixed complex number, in the
following sense. There exists a function 0 (9J, B), defined in an open subset
of C x. (X) and taking values in 2(X), with the following properties:

i) 0 (97, B) is piecewise holomorphic in 77 and B jointly (in the sense
stated after Theorem 3.11, with To = 0).

ii) Let T E' (X) and Co E P (T). Then 4 E P (T) if and only if
0(C - Co, R(Co, T)) is defined. In this case we have

(3.5) R (4, T) = 0(C - C R (Co, T))
Proof. We have the identity

(3.6) R(C, T) = - (C - C0)-1 - (4 - Co)-2R((C - Co)-', R(CO, T));

this follows from III-(6.18) and is valid if C, Co E P (T) and C $ Co.
Define 0 (97, B) by

(3.7) 0 (0, B) = B, 0 (97, B) 77-1 - 77-2 R (97-1, B) if 17 4 0 ,
9l-1EP(B).

Then (3.5) is satisfied whenever C, C, E P (T).
The domain of definition of 0 (97, B) is the set of all pairs 97,B E C x 9 (X)

such that either 97 = 0 or 97-1 E P (B). This domain is open in C x.46' (X)
by Theorem 3.1 and Remark 3.2. It is obvious from Theorem 3.11
that 0 (97, B) is holomorphic in 77 and B as long as 77 + 0. On the other
hand, the identity

(3.8) 0(n, B) _ - rl-1 - 71-'(B - 97-1)-1
197-1(1 - 97B)-1= B(1 - 97B)-1

together with 0 (0, B) = B shows that it is holomorphic also for 97 = 0.
It remains to prove that when go E P (T), C E P (T) if and only if

(l; - Co, R (Co, T)) is defined. For C = Co this is obvious. Otherwise this
follows from the fact that (3.6) is true whenever one of the two members
exists.

Remark 3.13. Theorem 3.12 shows explicitly that if 11R (C, S) -
- R (l;, T) 11 is small for some l;, then it is small for every C. More precisely,
for any T E ' (X) and C, Co E P (T), there is a constant M such that
(3.9) IIR(C, S) - R(C, T)II S MIIR(Co, S) - R(Co, T)II
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for any S E W (X) for which Cu E P (S) and 11 R (Co, S) - R (Co, T) 11 is suf-
ficiently small (then 4 E P (S) is a consequence). This is another proof of
a remark given after Theorem 2.25.

Problem 3.14. A more explicit formula than (3.9) is

T - .'o
II R (Co, S) - R (Co, T) lI

(3.10) II R (C, S) - R (C, T) 11 S
CO

1 - 1C - Col
O

11R (Co, S) - R (CO, T)
11

T 1

which is valid if JJR (CO, S) - R (CO, T) 11 is so small that the denominator on the right

is positive. Here TT -. is a convenient expression for (T - Co) (T - C)-1

_ (T - Co) R(C, T) = 1 -I- (C - Co) R(C, T)

Theorem 3.15. R(4, T) is continuous in C and T E '(X) jointly in the
following sense. For any T E `' (X), Co E P (T) and e > 0, there exists a
6>0 such that CEP (S) and IJR (C, S) - R (Co, T) 11 <8 if IC-CJ <6
and S (S, T) < 6.

Proof. By Theorem 2.25 R (CO, S) exists and 11 R (Co, S) - R (Co, T) 11
is arbitrarily small if 8 (S, T) is sufficiently small. Then the result follows
from Theorem 3.12 since R (4, S) is a double power series in C - Co and
R (Co, S) - R (Co, T).

4. Semicontinuity of separated parts of the spectrum
We have proved above the upper semicontinuity of E (T) in T E ' (X).

We now prove a somewhat finer result that each separated part of E (T)
is upper semicontinuous. The separation of the spectrum and the related
decomposition of the space X and of the operator T were discussed in
III-§ 6.4. For simplicity we state the result for the case in which the
spectrum is separated into two parts, but the generalization of the
result to the case of more than two parts is obvious.

Theorem 3.16. Let T E W (X) and let E (T) be separated into two parts
E' (T), E" (T) by a closed curve r as in III-§ 6.4. Let X = M' (T) ® M" (T)
be the associated decomposition of X. Then there exists a 6 > 0, depending
on T and r, with the following properties. Any S E ' (X) with 8 (S, T) < 6
has spectrum E (S) likewise separated by r into two parts E' (S), E" (S)
(r itself running in P (S)). In the associated decomposition X = M' (S) ®
® M" (S), M' (S) and M" (S) are respectively isomorphic with M' (T) and
M" (T). In particular dim M' (S) = dim M' (T), dim M" (S) = dim M" (T)
and both E' (S) and E" (S) are nonempty i f this is true for T. The decom-
position X = M' (S) ® M" (S) is continuous in S in the sense that the pro-
jection P [S] o l X onto M' (S) along M" (S) tends to P [T] in norm
as 3 (S, T) -> 0.

T - C
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Proof. It follows from Theorem 3.1 and its proof that P C P (S) if
S (S, T) < 6= min 2-1(1+ IC12)-1 (1 + JJR (C, T) 112)-1/2. Hence E (S) is sep-

arated by r into two parts E' (S), E" (S) and we have the associated
decomposition of X as stated. The projection P [S] of X onto M' (S)
along M" (S) is given by III-(6.19) :

(3.11) P[S] _ - .12ni R(C' S) dC
r

Since R (C, T) is continuous in C and T as shown in Theorem 3.15
and since r is compact, 11R (C, S) - R (C, T) 11 is small uniformly for
C E P if S(S, T) is sufficiently small. Thus we see from (3.11) that, for
any s > 0, II P [S] - P [T] 11 < e if S (S, T) is sufficiently small. The iso-
morphism of M' (S) with M' (T) etc. then follows from a result of I-§ 4.6
(which is valid in a Banach space too).

5. Continuity of a finite system of eigenvalues

We have seen above that the spectrum E (T) of a T E le (X) does
not in general depend on T continuously, even when T is restricted to
operators of 9(X). This is a remarkable contrast to the situation in
finite-dimensional spaces. We shall show, however, that a part of E (T)
consisting of a finite system of eigenvalues (see III-§ 6.5) changes with T
continuously, just as in the finite-dimensional case.

Let E' (T) be such a finite system of eigenvalues. E' (T) is separated
from the rest E" (T) of E (T) by a closed curve r in the manner described
in III-§ 6.4. The corresponding decomposition X = M' (T) ® M" (T) of
the space X has the property that dim M' (T) = m < oo, m being the
total multiplicity of the system of eigenvalues under consideration
(see loc. cit).

Suppose now that {T} converges to T in the generalized sense.
Then E is likewise separated into two parts E' (T ), E" with
the corresponding decomposition X = M' M" (Ta) in such a way
that M' (T,,), M" are respectively isomorphic with M' (T), M" (T),
provided n is sufficiently large (Theorem 3.16). In particular
dim M' m so that the part of E (Ta) inside r consists of a finite
system of eigenvalues with total multiplicity m.

The same result holds when E' (T) is replaced by any one of the eigen-
values in E' (T). Thus we conclude that the change of a finite system
E' (T) of eigenvalues of a closed operator T is small (in the sense of
II-§ 5.1) when T is subjected to a small perturbation in the sense of gener-
alized convergence.
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Not only is the system E' (T) continuous in T in this sense, but the
total projection P [T] of X on M' (T) along M" (T) changes with T contin-
uously, as is seen easily from Theorem 3.16.

Summing up, the behavior of a finite system of eigenvalues of a
closed operator under a small perturbation is much the same as in the
finite-dimensional case. We may pursue this analogy further by intro-
ducing the unordered m-tuple 6'(T) of repeated eigenvalues to represent
the finite system E' (T), as described in II- §5.2. Then the distance between
(5'(T,,) and Cam' (T) converges to zero if T,, converges to T in the gener-
alized sense.

6. Change of the spectrum under relatively bounded
perturbation

The results on the upper semicontinuity of the spectrum E (T)
and analyticity of the resolvent R (C, T) as functions of C and R (Co, T)
given in par. 3 are rather general but not very convenient for application.
Here we shall give a theorem which is less general but more directly useful.

Theorem 3.17. Let T be a closed operator in X and let A be an operator
in X which is T-bounded, so that D (A) D D (T) and the inequality (1.1)
holds. If there is a point C o l P (T) such that

(3.12) ajIR(C, T)II + bjlTR(C, T)II < 1

then S = T + A is closed and C E P (S), with

(3.13) IIR(C, S)II 5 IIR(C, T)II (1- aIIR(C, T)II - bIITR(C, T)11)-1

I/ in particular T has compact resolvent, S has compact resolvent.
This theorem follows easily from Theorem 1.16. It is convenient

since (3.12) gives an explicit condition for C to belong to P (S). For example,
it can be used to deduce

Theorem 3.18. Let T, S and A be as in the preceding theorem. Let
E (T) be separated into two parts by a closed curve r as in Theorem 3.16.
if .
(3.14) sup (aIIR(C, T) 11 + bIITR(C, T)II) < 1

CEP -

then E (S) is likewise separated by r and the results of Theorem 3.16 hold.
Proof. The proof is similar to that of Theorem 3.16; only the follow-

ing points should be noted. We see from (3.11) and II-(1.11) that
II P [S] - P[T]II is arbitrarily small if II A R (C, T)11 is sufficiently small
for all C E P, which is the case if a, b are sufficiently small. In this case
the results follow as in the proof of Theorem 3.16. Actually a, b need
not be too small but the condition (3.14) suffices. To see this, it is con-
venient to introduce a parameter x and set T (x) = T + xA, 0 5 x 5 1.
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Then it follows from II-(1.11) that R(C, T + xA) is a continuous (even
holomorphic) function of C and x for C E P and 0 S x S 1, so that
P(x) (2ni)-1 f R (T, T + xA) dC is continuous for 0:5 x 5 1.

r
Example 3.19. Let T, S be respectively the T1, S1 of Example 1.10. A = S - T

satisfies (3.14) if the differences q, (x) - P, (x), i = 0, 1, 2, are sufficiently small.

7. Simultaneous consideration of an infinite number
of eigenvalues

If an infinite number of eigenvalues of T are considered simulta-
neously, their change need not be uniformly small under small change of T.
For instance let T have a discrete spectrum consisting of an unbounded
set of eigenvalues, and let T (x) = T + x T. The perturbation x T
is T-bounded, but the eigenvalues of T (x) are (1 + x) A and the change
xA may be arbitrarily large for large n, no matter how small 1xI is.

There are, however, some cases in which the change of the spectrum
is uniform. Instead of dealing with such a case in general, we shall
content ourselves by considering an example.

Example 3.20. Consider the ordinary differential operator T of Example
111-6.21 [T u = - u" with boundary condition u (0) = u (n) = 0]. The eigenvalues
of T are A. = n2, n = 1, 2, 3, ..., and we have the estimates III-(6.47-6.48) for
the resolvent R (a). For any given 6 > 0, consider the equation

(3.15) la sine «l - 8

If N is a positive integer such that N > n16, there are sequences {a;,}, {ax} consisting
of roots of (3.15) such that

(3.16) N<a4<N-{ 2 n-2 <a;,<n<a;;<n+2 n>N,
(3.17) an=n-n + n6 +o(- ) n_*m.
According to the remark at the end of Example 111-6.21, we have

(3.18) 11R(C)II5 a
a

along each of the parabolas = a8 - 4
a8

with a = a;, and or in the c-plane.
Also we see from III-(6.48) that (3.18) holds along the horizontal lines 216.
Let us denote by ra, n > N, the curvilinear rectangle consisting of the two of the
above parabolas corresponding to at = a;; and the straight lines rl = ± 216.
Then each r, encloses exactly one eigenvalue A = n2 and (3.18) holds for C E r,,.
The remaining eigenvalues n2 for n < N can be enclosed in the curve ro consisting
of the above parabola for a = cc , the two horizontal lines mentioned above and a
vertical line sufficiently far to the left of the imaginary axis; we have again (3.18)
for C E ro. Let us denote by r the aggregate of the r, n > N, and ro. Note that for
large n, r is approximately a square with center n2 and side length 416.

Consider now a perturbed operator S = T + A where A E .1 (X). Choose a a
such that h All = a < 116. Then (3.14) is satisfied in virtue of (3.18), which is true for
C E r (set b = 0). Thus Theorem 3.18 shows that each r,,, n > N, encloses exactly
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one eigenvalue of S and ro encloses exactly N (repeated) eigenvalues of S. These
eigenvalues exhaust E (S), since it is easily seen that any complex number lying
outside all the r and ro satisfies (3.18) and hence belongs to P (S). Since the size
of r is bounded for n on as noted above, we see that the change of the eigen-
values of T by any bounded perturbation A is uniform: each eigenvalue 2 for
large n stays within the approximate square of side length 411 All with center at the
unperturbed eigenvalue.

If we denote by P. [T] and P. [S], n > N, the eigenprojections for the eigen-
value of T and S inside r,,, P. [S] - P [T] is also uniformly bounded for all n.
In fact,

P. [S] - P.[T] = - 2ni f [R (C, S) - R(C, T)] dC

=
1

2 n i
f R S) A R T) d

and

(
11 P. [S] -

jrn1
8

Il- `4IIlAll)

C2n 6(
where the length of is bounded in n.

Remark 3.21. As we shall see later, we have a better estimate than III-(6.47)
if we consider the same operator T in X = L$ (0, n) and, consequently, an apparently
sharper result will be obtained for the perturbation of eigenvalues of T. But it
should be remarked that there are operators A which are bounded when considered
in C [0, n] but not in L2. Thus the result of the above example retains its own
interest.

8. An application to Banach algebras. Wiener's theorem

The notions of spectrum and resolvent can be defined not only for
linear operators but, in a more abstract way, for elements of a Banach
algebra. We have mentioned earlier that 9 (X) is a special case of Banach
algebra (I-§ 4.1 and III-§ 3.2). Here we shall give a brief account of
Banach algebras and show that many of the results obtained above
remain true in this more general setting'.

A Banach algebra .4 is by definition a Banach space in which the
product TS of any two elements T, S is defined and belongs to M,
with 11 T S11 S 11 T11 JIS11. A unit (element) 1 of .4 is an element such that
1 T = Ti = T for all T E M..4 need not have a unit, but a unit is
unique if it exists. We shall consider only Banach algebras with a unit.
For any scalar a, a 1 will be denoted simply by a.

T E -4 is invertible if there is an S E 9 such that TS = S T = 1;
S is uniquely determined by T and is denoted by T-' (the inverse of T).

The resolvent set P (T) of T E.9' is the set of all scalars C such that
T - C is invertible. The function R (C) = (T - C,)-' defined for C E P (T)

1 For more details on Banach algebras see e. g. HILLS and PHILLIPS Q1D,
RICKART Q1).
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is the resolvent of T. The complementary set E (T) ,(in the complex plane)
of P (T) is the spectrum of T.

Many other notions introduced for 9 (X) can be taken over without
change to the case of an abstract Banach algebra 9 and many theorems
for 9 (X) remain true for -4. As a rule, this is the case if such notions or
theorems can be defined or proved without explicit reference to the
underlying space X. For example: the spectral radius spr T can be defined
for T E .°.l! exactly as in I-§ 4.2. The Neumann series I-(4.22) is valid for
T E 9 and 1 - T is invertible if spr T < 1. In particular we have the
first Neumann series I-(5.6) for the resolvent, from which it follows that
P (T) is open and E (T) is closed, etc.

Most of the results on the perturbation of spectra are again valid
in -4, but we have to restrict ourselves to those results which are related
to operators belonging to .°.l! (X), for an unbounded operator has no
analogue in -4. For example, E (T) is an upper semicontinuous function
of T E-4, but it is in general not lower semicontinuous. It is continuous,
however, for a restricted change of T in a sense similar to Remark 3.7.

Here we have something new and interesting which did not exist
in 9 (X). It is possible that a Banach algebra 6` is commutative, which
means that all elements of -4 commute with one another, whereas this
is not true for -V(X) if dim X >- 2. If A is commutative, Theorem 3.6
and Remark 3.7 are valid without any restriction. Thus E (T) is continuous
in T E . it .4 is commutative.

Example 3.22. A typical example of a Banach algebra is the Banach space l
(the set of all sequences T = (ax) with 11 T11 = E lv I < oo, see Example III-1.1)

k
in which the product TS of two elements T= (th), S= (o,,) is defined by con-
volution:

(3.19) TS=(Ps), Qk=EzjaA_j.
i

It is easy to verify that 11 TS11S 11 T11 JIS11. Also it is easily seen that l is commutative.
In the definition of 1 given in Example III-1.1 the index h runs from 1 to 00; in
this case I has no unit element. If we modify this slightly and assume that h runs
either from 0 to oo or from - oo to co, then I has the unit I = (S 0). In what
follows we take the latter case and set 69 = 1.

With each T E 9 we can associate a complex-valued function
00

(3.20) T(ete) _ r5eike

defined on the unit circle (for real 0) ; note that the Fourier series on the right of
(3.20) is absolutely convergent. It follows directly from (3.19) that

(3.21) TS(ere) = T(ere) S(e{B).
We shall now show that

(3.22) Z (T) is exactly the range of T (ete) .

This implies, in particular, that T is invertible if T (e'8) + 0. If we set S = T-1,
then S(e'0) = 1/T(et0). But S(e'8) has an absolutely convergent Fourier series by
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definition. Hence the stated result implies the following theorem by Wiener: If a
complex-valued function T (e'0) with an absolutely convergent Fourier series does not
vanish anywhere, 11T (et e) has also an absolutely convergent Fourier series'.

To prove the proposition (3.22), we first note that it is true if T (e{B) has an
analytic continuation T (z) in a neighborhood of the unit circle K. In fact, let C
be a complex number not in the range of T(00). Then$ (T - C) (z) = T (z) -
does not vanish anywhere in some neighborhood of K, so that R (z) = (T (z) -
is again analytic in a neighborhood of K. It follows from the Cauchy inequalities
for the Laurent coefficients that R (et e) has an absolutely convergent Fourier series.
If the sequence of the Fourier coefficients of R (e'0) is denoted by R, we have R E -4
and R (T - C) = (T - C) R = 1, so that T - C is invertible. On the other hand,
it is easily seen from (3.21) that T - C is not invertible if C lies in the range of T (e'°).

Now (3.22) is a simple consequence of the theorem stated above that E(T)
is continuous in T (note that -4 is commutative). It suffices to note that for any
T = (ak) E A there is a sequence such that 11 T,, - T11 -a 0 and each T. (00)
has an analytic continuation in a neighborhood of K. Such a sequence is given, for

n
example, by setting T.(et0) _ ak e{ k0. Since E is the range of T.(et0),

k=-n
E (T) = lim E must be the range of T (ete) = lim T. (ete).

§ 4. Pairs of closed linear manifolds,
1. Definitions

This section is intended to be preliminary to the following one, where
perturbation theory for the nullity, deficiency and index of an operator
is developed. But the subject will probably have its own interest.

The problems to be considered are related to pairs M, N of closed
linear manifolds in a Banach space Z. The results obtained will be applied
in the following section to operators of the class '9 (X, Y), with Z = X x Y
the product space of X, Y. Some of the basic results in this direction have
been obtained in § 2, but we need more results for later applications.

Let Z be a Banach space and let M, N be closed linear manifolds
of Z. Then M n N is also a closed linear manifold. We shall define the
nullity of the pair M, N, in symbol nul (M, N), by

(4.1) nul (M, N) = dim (M n N) .

M + N is a linear manifold (not necessarily closed) ; we define the
deficiency of the pair M, N, in symbol def (M, N), by

(4.2) def (M, N) = codim (M + N) = dim Z/(M + N) 8 .

1 Cf. RiESZ and Sz.-NAGY 11)1, p. 434.

2 Note that 1(ete) = 1 for the unit element 1.
8 A different definition of def (M, N) is to use the closure of M + N instead of

M + N in (4.2). But the two definitions coincide for semi-Fredholm pairs.
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The index of the pair M, N, in symbol ind (M, N), is defined by

(4.3) ind (M, N) = nul (M, N) - def (M, N)

if at least one of nul (M, N) and def (M, N) is finite.
The pair M, N will be said to be Fredholm [semi-Fredholm] if M + N

is a closed linear manifold and both of [at least one of] nul (M, N) and
def (M, N) are [is] finite.

Finally we define the quantity

(4.4) (M, N) = inf dist(u, N) (< 1)
uEM,u4N dist(u, Mn N)

By this formula y (M, N) is defined only when M Q N. If M C N we set
y (M, N) = 1. Obviously y (M, N) = 1 if M ) N. y (M, N) is not symmetric
with respect to M, N. We set

(4.5) y (M, N) = min [y (M, N), y (N, M)]

and call it the minimum gap between M and N.
Problem 4.1. y (M, N) < 6 (M, N) except for M C N. [hint: dist (u - z, N)

= dist(u, N) for u E M, z E Mn N].

Although y (M, N) and y (N, M) are not in general equal, they are not
completely independent. We have namely

(4.6) y (N, M) 1 +(MM )N)

The proof of (4.6) will be given in a moment.
Theorem 4.2. In order that M + N be closed, it is necessary and su f -

ficient that y (M, N) > 0.
Proof. First consider the special case M n N = 0. If M + N = Zo

is closed, Zo is a Banach space and each u E Zo has a unique expression
u = v + w, v E M, W EN. Thus Pu = v defines the projection P of Zo
onto M along N. P is bounded by a remark after Theorem 111-5.20. But
11P11 = sup IIPuII/IIuII = sup IIvII/IIv + wII = sup IvII/dist (v, N)

uEZo vEM, WEN vEM

= 1/y(M, N) since dist(v, M n N) = IIvII by M n N = 0. Thus

(4.7) y(M, N) = 1/IIPII > 0.

The above argument is not correct if M = 0. In this case y (M, N) = 1 > 0
by definition, but it is not equal to IIPII-1= oo.

Suppose, conversely, that y (M, N) > 0; we shall show that M + N
is closed. We may assume that M + 0. Let vn + w -+ u, vn E M, w E N.
Then Iv - vmll S dist(v,, - vm, N)/Y(M, N) S iv,, - vm + w - wmll/
/y (M, N)- 0. Hence lim v,, = v exists and w _ (v,, + v,, -+ u - v.
Since M, N are closed, v E M, u -v E N and hence u E M + N.
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In this case (4.6) follows from (4.7) and the corresponding formula
y (N, M) = 1/11 1 - PII, noting that 11 1 - PII 5 1 + II P11. The proof is not
valid in the exceptional case M = 0 or N = 0, but it is clear that (4.6)
is true in these cases too.

In the general case M n N + 0 set L = M n N and introduce the
quotient space Z = Z/L. Since L is closed, Z is a Banach space (see
III-§ 1.8). Let M be the set of all u E Z such that u c: M; note that the
whole coset ii is contained in M if there is one element u of u contained
in M. Similarly we define N. It is easily seen that M, N are closed linear
manifolds of Z with M n N = 0. Furthermore, M + N is closed in Z
if and only if M + N is closed in Z.

Thus the proof of the theorem in the general case is reduced to the
special case considered above if we show that

(4.8) y (M, N) = y (M, N) .

But this follows from the identity

(4.9) dist (u, M) = dist (u, M)

and similar identities with M replaced by N and L. To show (4.9) it
suffices to note that dist (u, M) = inf IIu - vII = inf inf II u - v - z1I

;E FA vEM aEL

= EM 11u - v11 = dist(u, M). Again the exceptional case MC N in (4.8)

should be treated independently, but the proof is trivial.
Remark 4.3. In view of (4.8), (4.7) is true even in the general case if

M + 0 and P is the projection of M + N onto M along N. Also we note
that (4.6) is true in the general case if M + N is closed. It is true even
when M + N is not closed, for then we have y (M, N) = y (N, M) = 0
by Theorem 4.2.

Lemma 4.4. Let M + N be closed. Then we have for any u E Z

(4.10) dist (u, M) + dist (u, N) z 2 y (M, N) dist (u, M n N) .

Proof. In view of (4.8) and (4.9), it suffices to prove (4.10) in which
u, M, N are replaced by u, M, N, respectively. Changing the notation,
we may thus prove (4.10) assuming that M n N = 0 (so that dist (u, M n N)

= IIuII)
For any s > 0, there exists a v E M and w E N such that dist (u, M) >

>IIu - vII - e, dist(u,N)>Ilu-w1l - s.
If IIvII S IuII/2, we have dist(u, M) > IIuII -IvII - e Z IuII/2 - e.

If IIvII z IIuII/2, then dist(u, M) + dist(u, N) z IIu - vII + IIu - wII - 2ez
.Ilv-wII-2e z dist(v,N)-2ez IIvlly(M,N)-2e? a IIuIIy(M,N)-2e.



§ 4. Pairs of closed linear manifolds 221

In either case the left member of (4.10) is not smaller than
2 jjujj y(M, N) - 2s. Since 6>0 is arbitrary, this proves (4.10).

Problem 4.5. ind (M, 0) = - codim M, ind (M, Z) = dim M.
Problem 4.6. Let M' ) M with dim M'/M = m < oo. Then ind (M', N)

= ind (M, N) + m.
Problem 4.7. If def (M, N) < oo, then M + N is closed. [hint: There is an M'such

that M') M, M' n N = M n N, M' + N = Z, dim M'/M < oo. Then 0 < y (M', N)
S y(M,

2. Duality
For any subset S of Z, the annihilator S1 is a closed linear manifold

of Z* consisting of all / E Z* such that f .1 S. For any closed linear mani-
folds M, N of Z, it is easily seen that

(4.11) (M+ N)1 = MJ- n N1 .

The dual relation MJ- + N 1 = (M n N) J- is not always true, for the
simple reason that (M n N)1 is always closed but MJ- + NJ- need not
be closed. We shall show, however, that it is true if and only if M + N
is closed.

Theorem 4.8. Let M, N be closed linear manifolds of Z. Then M + N
is closed in Z if and only if MJ- + N1 is closed in Z*. In this case we have,
in addition to (4.11),

(4.12) M1+N1= (MnN)1,
(4.13) nul(M1, N1) = def(M, N), def(M1, N1) = nul(M, N) ,

(4.14) (M 1, N1) = y(N M), (M1 N1) = (M, N)

[(4.14) is true even if M + N is not closed.]
The proof of this theorem will be given in several steps.
Lemma 4.9. If M + N is closed, then (4.12) is true. In Particular

M1 + N1 is closed.
Proof. It is easily seen that M1 + N1 C (M n N) 1. Thus it suf-

fices to prove the opposite inclusion.
Let / E (M n N)1 and consider (f, u) for u E M + N. u has a form

u = v + w, v E M, w E N, but such an expression may not be unique.
If u = v' + w' is another expression of this kind, we have v - v' = w' -
-wEMnN so that (f,v-v')= (1,w-w')=0. Thus (f, v)= (f, v')
and (f, v) is determined uniquely by u. The functional g [u] _ (f, v)
thus defined for u E M + N is obviously semilinear. Similarly we define
h [u] = (f, w). We note that

(4.15) g [u] = 0 for U E N and h [u] = 0 for , u E M.

g and h are bounded. In fact we have Ig [u] =I(/, v)1:5 11/11 jjvjj, where v
may be replaced by v - z for any z E L = M n N. Hence Ig [u] S
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II/II dist (v, L). Since lull = IIv + wII _>_ dist (v, N) y (M, N) dist (v, L), it
follows that Ig[u]I S II/II IIuII/y (M, N). In other words, g is bounded with

(4.16) IIuII 5 11/11/y (M, N) .

g can be extended to a bounded semilinear form on Z by the Hahn-
Banach theorem, preserving the bound (4.16) ; we shall denote this
extension by the same symbol g. Similarly h can be extended to an
element of Z*, denoted again by h. Then (4.15) shows that

(4.17) g E NJ-, h E M1 .

Since (f, u) v) + (f, w) = g [u] + h [u] = (g, u) + (h, u) for
u E M + N, the forms / and g + h coincide on M+ N. Thus f - g - h
= k E (M+ N)1 CM1. Hence h+k E M1 and /=g+(h+k) E M1 + N1.
This proves the lemma.

Lemma 4.10. If M + N is closed, then y (M, N) S y (N1, M1).
Proof. For any go E N1 and hoEM1 set f =go+ho. Then /EM1 +N1

_ (M n N)1 by Lemma 4.9. According to the proof of Lemma 4.9, /
can be written as f = g + h, g E N1, h E M1, in such a way that (4.16) is
true. But since g-go=ho-h E M1nN1, we have IIglj=Ilgo+g-golf
>- dist (go, M1 n Nl). Thus (4.16) implies dist (go, M1 n N1)
s Ilgo + hoill y (M, N). Since this is true for any ho E M1, we have
dist(go, M1 n Ni) S dist (go, Ml)/y(M, N). Since this is true for any
go E N1, we obtain the desired result. (Again the exceptional case
M C N needs separate discussion but it is trivial.)

Lemma 4.11. If M + N is closed, then y (N1, M1) s y (M, N).
Proof. Again the exceptional case is trivial and we assume that

M C N. For simplicity we write y (M, N) = y and M n N = L.
By definition, for any e > 0 there exists a v E M such that

(4.18) 0 < dist (v, N) < (y + e) dist (v, L) .

For this v, there exists a f E Z* such that f E L 1 and 0 < (f, v) =IIfII dist (v, L)
(see Theorem 111-1.22). Since L1 = M1 + N1 by Lemma 4.9, f can be
written as f = g + h with g E N1, h E M1. Thus II/II dist (v, L) = (f, v)
=(g+h,v)_ (g,v)= (g,v-w)= (g-k, v-w) IIg - kilIIv - wII,
where w E N and k E M1 n N1 are arbitrary. Hence 0 < II/II dist (v, L) S
s dist (g, M1 n NJ-) dist (v, N). But since dist (g, M1) s IIg+hII = II/II,
we obtain
(4.19) dist(g, M1) dist(v, L) s dist(v, N) dist(g, M1 n N1) .

It follows from (4.18) and (4.19) that dist (g, M1) S (y + s)
dist(g, M1 n N1). Since g E N1, this shows that y (N1, M1) s y + e.

Since e > 0 is arbitrary, this proves the Lemma.
Lemma 4.12. If M 1+ Ni is closed, then M + N is closed.
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Proof. Let Zo be the closure of M + N. Let BM, BN be the unit balls
of M, N, respectively. We shall first show that the closure S of the set
S = BM + BN contains a ball of Zo.

Let uo E Zo be outside S. Since S is a closed convex set, there exists a
closed hyperplane of Zo separating uo from S. In other words, there
exists an to E Zo such that'

(4.20) Re (f o, v + w) < Re (f o, uo) for all v E BM, w E BN .

to can be extended to an element of Z*, denoted again by to, preserving
the bound.

Since in (4.20) v and w may be multiplied by arbitrary phase factors
(complex numbers with absolute value one), the left member can be
replaced by 1 (/o, v) + 1 (/ o, w) . But sup I (to, v) = dist (to, M 1) by (2.17)

aE BM

and similarly for I (f o, w) 1. Hence

(4.21) dist(/o, M1) + dist(/o, N1) 5 Re(/o, uo) S 11uoll 11/oil

But the left member of (4.21) is not smaller than y' dist(/o, M1 n NJ-)
by Lemma 4.4, where y' = y (M1, N1)/2 > 0. Furthermore, we have

J-) = (bound ofdist (f o, M1 n N 1) = dist (/o, (M + N) 1) = dist (f o, Z0
f o restricted to Zo) _ 11/o 11 by the definition of f o. Hence we obtain Iluoll

This means that any u E Zo with llul < y' belongs to S. In other words,
contains the ball of Zo with center 0 and radius y'. Then an argument

similar to the one used in the proof of the closed graph theorem (Theorem
111-5.20) can be applied to show that S itself contains a ball of Zo.
Since M + N is a linear set containing S, it must be identical with Zo
and therefore closed.

Lemmas 4.9 to 4.12 put together prove Theorem 4.8. Note that
(4.13) follows immediately from (4.11) and (4.12) (see Lemma III-1.40).

Corollary 4.13. A pair M, N of closed linear manifolds is Fredholm
[semi-Fredholm] it and only if the pair M1, N1 is Fredholm[semi-Fred-
holm]. In this case we have

(4.22) ind(M, N) _ -ind(M1, N1) .

3. Regular pairs of closed linear manifolds

We have remarked above that in general y (M, N) + y (N, M),
although these two quantities are both zero or both non-zero (see (4.6)).
If y (M, N) = y (N, M), we shall say that the pair M, N is regular.

1 Let d = dist (uo, S) > 0 and let S' be the set of all u E Zo such that dist (u, S) <
< d/2. S' is an open convex set not containing uo. Thus the existence of to follows
from the Hahn-Banach theorem (see footnote 1 of p. 135).
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It is known that any pair M, N is regular if Z is a Hilbert space'.
Another example of a regular pair is given by the pair X, Y in the prod-
uct space Z = X x Y. Here X is identified with the closed linear mani-
fold of Z consisting of all elements of the form {u, 0} with u varying
over X, and similarly for Y. It is easy to see that y (X, Y) = y (Y, X) = 1.

It is interesting, however, to notice that there are other nontrivial
regular pairs in the product space Z = X x Y. In fact, there are closed
linear manifolds N of Z such that M, N is a regular pair for any M C Z.
Such an N will be called a distinguished closed linear manifold.

Theorem 4.14. In Z = X x Y, X is a distinguished closed linear
manifold. Similarly for Y.

Proof. According to our definition, the norm in Z is given by

(4.23) II{x, y}112 = Ilxll2 + llyll2, x E X, y E Y .

Let M be a closed linear manifold of Z. We have to show that
y (M, X) = y (X, M). We set L = M n X.

First let us compute y (M, X). Let u = {x, y} E M. Then dist (u, X)2
= inf (llx - x'll2 + lyll2) = Ilyll2, and dist(u, L)2 =xi f (IIx - x1ll2+ Ilyll2)

= Ilxll2 + Ilyll2 where x E X = X/L. Hence

(4.24) y (M, X) =
{x,YnEM

II YII Y

(IIxII2 +
IIY112)l1s = (1 + y2)1"2

where
(4.25) y = {xynf 11Y11/11911

inf (Il

y(X, M) =inf dist(x, M) = inf {x',
}EMx - x'll' + IIY'll')1"

xEX dist(x, L) xEX 11911

= (IIz11II2 + IIy'II2)"2 (Iiz"It2 + lly'IIe)112
{xy'}EM IIx' + x"II Y') EM Ilx' + x"lIx"EXx'EJC

For a given {x', y'} E M, there is an x" E X with 119'+ x"ll = Il x' II + 11 x"" ll
and with an arbitrary IIx" II . Hence

(4.26) y (X, M) yinf
'} M

(II'I' I'lI + IIt. "III)l,s

;"ER

inf f 1 + Y2 2 e 1-1/2 = Y/(1 + V2)1/2 ,{x',Y'}EM IIY'II'

where the Schwarz inequality was used. (4.24) and (4.26) show that
y (M, X) = y (X, M). [The above computations do not make sense if
M C X or X C M. But in these exceptional cases y (M, X) = y (X, M) = 1.]

1 This is due to the identity III - PII = IIPII which is valid for any (oblique)
projection P, 0 + P + 1, in a Hilbert space; see Problem 1-6.31.
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4. The approximate nullity and deficiency
Let M, N be closed linear manifolds of a Banach space Z. We define

the approximate nullity of the pair M, N, in symbol nul' (M, N), as the
least upper bound (actually the greatest number, as will be shown
below) of the set of integers m (m = no being permitted) with the property
that, for any e > 0, there is an m-dimensional closed linear manifold
M,(Mwith 6(ML1 N) <e.

Problem 4.15. nul'(M, N) > nul (M, N).

We define the approximate deficiency of the pair M, N, denoted by
def'(M, N), by
(4.27) def'(M, N) = nul'(M1, N1) .

It should be remarked that nul (M, N) and def (M, N) have been
defined in a purely algebraic fashion, without referring to any topology.
The definition of nul' (M, N) and def' (M, N), on the other hand, depends
essentially on the topology of the underlying space.

As mentioned above, nul' (M, N) is not only the least upper bound
but the greatest number m with the properties stated above. This is
obvious if nul'(M, N) is finite. When nul'(M, N) = no, this remark is
equivalent to the following lemma.

Lemma 4.16. Suppose that for any e > 0 and any finite in, there exists
an m-dimensional M, M with 6 (M,, N) < E. Then for any e > 0 there
exists an oo-dimensional M, C M with 6 (Me, N) < E.

Proof. For any closed linear manifold M' c M with dim M/M' < no,
there is an M, r_ M with dim M, > dim M/M' and 6 (M,, N) < E. Then
dim (M' n Me) > 0 (see Problem 111-1.42), so that there is a u = 0 in M'
such that dist (u, N) < e 11 u 1I . Thus Lemma 4.16 is a consequence of the
following lemma.

Lemma 4.17. Assume that for any e > 0 and any closed linear manifold
M' C M with dim M/M' < no, there exists a u + 0 in M' such that dist (u, N) <
< e II u II . Then there is, for any e > 0, an oo-dimensional M, r_ M such that
6 (Me, N) < e. In particular nul' (M, N) = no.

Proof. We construct two sequences u, , fn with the following prop-
erties.

u.EM, f,EZ*, IIunII=1, IIffII=1,
(4.28) (u,,, fn) = 1 , (un, fk) = 0 for k < n ,

dist (u,,, N) 5 3-n e .

Supposing that u, fk have been constructed for k = 1, 2, ..., n - 1,
u,, and fn can be found in the following way. Let M' be the set of all
u E M such that (u, fk) = 0 for k = 1, ..., n - i. Since M' is a closed
linear manifold with dim M/M' S n - 1, there is a un E M' such that
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11unll = i and dist (u,,, N) S 3-n e. For this u there is an / E Z* such
that 11/nll = i and (u,,, 1 (see Corollary 111-1.24).

It follows from (4.28) that the u are linearly independent, so that
their span M' is infinite-dimensional. Each u E M,' has the form

(4.29)

with some integer n. We shall show that the coefficients k satisfy the
inequalities
(4.30) S 21-1 (lull , k = 1, 2, ..., n.

To prove this we note that by (4.29) and (4.28)

(4.31) (u, /,) = $1(ul, /,) + ... + $J-1(u, -1, /,) + $j

If we assume that (4.30) has been proved for k < j, (4.31) gives

1 11 I(ul, MI + ... + ICJ-11 I(ui-v /,)1

< 1jull+Ilull+...+2'-211ull=2'-' hull,

completing the proof of (4.30) by induction.
From (4.28-4.30) we obtain

dist (u, N) < 1$11 dist (ul, N) + + l$,l dist (u,,, N) s

s (3-1+2.3-2+...+2n-i'3J'')e1lull s ellull

The same inequality is true for all u in the closure M. (M of M. Hence
(M,, N) < e.

Theorem 4.18. I/ M + N is closed, then

(4.32) nul' (M, N) = nul (M, N) , def' (M, N) = def (M, N) .

Proof. Ml + Nl is closed if and only if M + N is closed, by Theorem
4.8. In view of (4.13) and (4.27), therefore, it suffices to prove the first
equality of (4.32).

Suppose that there is an M, M such that dim M. > nul (M, N)
= dim (M n N) and S (M,, N) < e. Then there is a u E M, such that
dist (u, M n N) = hull = i (see Lemma 2.3). Then dist (u, N) Z y dist (u,
M n N) = y, where y = y (M, N) > 0 by Theorem 4.2. On the other
hand, dist (u, N) 5 hull 6 (M,, N) < e. Hence a cannot be smaller than Y.
This shows that nul' (M, N) S nul (M, N). Since the opposite inequality
is also true (Problem 4.15), we have the required equality.

Theorem 4.19. 1/ M + N is not closed, then

(4.33) nul' (M, N) = def' (M, N) = oo.

Proof. Again it suffices to prove nul' (M, N) = oo. For any M' M
with dim M/M' < oo, M' + N is not closed (otherwise M + N would be
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closed by Lemma 111-1.9). Thus y (M', N) = 0 by Theorem 4.2. Hence for
any e > 0, there is a nonzero u E M' with dist (u, N) < e dist (u, M' n N)
5 e 1lull. Thus the assumptions of Lemma 4.17 are satisfied.

Problem 4.20. nul'(M, N), def'(M, N) are symmetric in M, N.
Problem 4.21. def'(M, N) def (M, N).
Problem 4.22. nul'(M, N) = def'(Ml, NI-).

Finally we add a simple criterion for nul' (M, N) = oo.
Theorem 4.23. We have nul' (M, N) = oo if and only i f there is a

sequence u E M with Ilunli = 1 and dist (u,,, N) -+ 0 which contains no
convergent subsequence.

Proof. Suppose that nul' (M, N) = oo. We shall construct a sequence
u E M such that 11 1, dist (u,,, N) s 1/n and 11u - u,,J Z 1 for
n + in. Assume that u1...., u have already been constructed, and let
M. be their span. Since nul' (M, N) = oo, there is an (n + 1)-dimensional
linear manifold M' c: M such that S (M', N) S 1/(n + 1). Since dim M'>
> dim M, there is a u E M' such that dist (u, M) = 11ull = 1 (Lemma 2.3).
u = satisfies all the requirements for

Suppose, conversely, that nul' (M, N) < oo and u E M is a sequence
with 11 1 and dist (u,,, N) -+ 0. We shall show that contains a
convergent subsequence. Since M + N is closed by Theorem 4.19,
y (M, N) = y > 0 by Theorem 4.2 and nul (M, N) < oo by Theorem 4.18.
Thus dist (u,,, M n N) S y-1 dist (u,,, N) --> 0. This means that there is a
sequence z E M n N such that u - z -+ 0. Since is thus bounded
and dim (M n N) = nul (M, N) < oo, contains a convergent sub-
sequence. The same is true of by u - z -+ 0.

5. Stability theorems

Let us now show that nul (M, N), def (M, N), ind (M, N) and the
closedness of M + N have a certain stability when M is subjected to a
small perturbation.

Theorem 4.24. Let M, N, M' be closed linear manifolds o l Z and let
M + N be closed. Then 8 (M', M) < y (N, M) implies nul'(M', N) s
5 nul (M, N), and 6 (M, M') < y (M, N) implies def'(M', N) 5 def (M, N).
[Note that 6 (M, N) and y (M, N) are in general not symmetric in M, N.]

Proof. Assume that 6 (M', M) < y (N, M). Suppose that there is a
closed linear manifold N, C N such that dim N. > nul (M, N) = dim (M n
n N) ; we shall show that 6 (N,, M') cannot be too small. Then we shall
have nul' (M', N) = nul' (N, M') 5 nul(M, N) (see Problem 4.20).

dim N, > dim (M n N) implies that there exists a u E N, C N such
that dist (u, M n N) = 11 ull = 1 (Lemma 2.3). Hence dist (u, M) ? y (N, M)
by (4.4). If we make the substitutions N -+ M, M -* M' in (2.14), we
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thus obtain dist (u, M') > [1 + 6 (M', M)]-1 [y (N, M) - 6 (M', M)]. This
shows that dist (u, M') and, a fortiori, 6 (NE, M') cannot be arbitrarily
small.

The second assertion of the theorem follows from the first by con-
sidering Ml, N', M'-L; note (2.19), (4.13), (4.14) and (4.27).

Corollary 4.25. Let M, N be a Fredholm [semi-Fredholm] pair. Then
the same is true of the pair M', N it S (M', M) < y (M, N), and we have
nul (M', N) < nul (M, N), def (M', N) s def (M, N).

Proof. The assumption implies that both of the two conditions of
Theorem 4.24 are satisfied. Hence both of the two conclusions are true.
If M, N is a semi-Fredholm pair, at least one of nul (M, N) and def (M, N)
is finite. Hence at least one of nul' (M', N) and def' (M', N) is finite.
Then M' + N is closed by Theorem 4.19, and at least one of nul (M', N)
= nul' (M', N) and def (M', N) = def' (M', N) is finite (see Theorem 4.18).
Thus M', N is a semi-Fredholm pair. If M, N is a Fredholm pair, both
nul (M, N) and def (M, N) are finite and hence both nul (M', N) and
def (M', N) are finite.

Remark 4.26. In Theorem 4.24, M' + N need not be closed if nul (M, N)
= def (M, N) = oo. There is an example of a pair M, N for which there is
an M' with arbitrarily small 3 (M', M) such that M' + N is not closed.

Remark 4.27. In Corollary 4.25, y (M', N) > 0 since M', N is a semi-
Fredholm pair. But it is in general difficult to estimate y (M', N) from
below in terms of y (M, N) and b (M', M). In other words, y (M, N) can
change discontinuously when M is changed slightly. This discontinuity is
due to the discontinuity of M n N that appears in the definition of
y (M, N) [see (4.4) ]. But there is lower semicontinuity of y (M, N) if
M n N = 0 or M + N = Z. In such a case we have more detailed results
given by the following lemmas.

Lemma 4.28. Let M + N be closed with nul (M, N) = 0. It 6 (M', M) <
< y (N, M)/ [2 + y (N, M) ] , then M' + N is closed, nul (M', N) = 0 and
def (M', N) = def (M, N).

Proof. In view of (4.6), we have 3 (M', M) < min [y (M, N), y (N, M)]
= y (M, N). Hence M' + N is closed and nul (M', N) = 0, def (M', N) 5
def (M, N) by Corollary 4.25. It remains to be shown that def (M, N) 5
S def (M', N).

To this end it suffices to show that 6 (M', M) < y (M', N), for then we
can apply the second part of Theorem 4.24 with M and M' exchanged.

Let u E N. Then dist (u, M) ->_ y (N, M) dist (u, M n N) = y (N, M) lull
since M n N = 0. It follows from (2.14) (with the substitution N -+ M,
M -+ M') that dist (u, M') [1 + 6 (M', M)]-1 [y (N, M) - 6 (M', M)] hull.
Since this is true for any u E N, we have

(4.34) y (N, M') z y (N 4-M

) &(W
6

(M,
M)
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Application of the inequality (4.6) then gives the desired inequality:

(4.35) y (M'. N) z y (N,
M') __ y (N. M) - S (M', M)

> 6 (M', M)1+y(N,M') 1+y(N,M)
since 6 (M', M) < y (N, M)/ [2 + y (N, M)] by hypothesis.

Lemma 4.29. Let M + N = Z (so that def (M, N) = 0). I/ S (M', M) <
< y (M, N)/ [2 + y (M, N) ], then M' + N = Z (so that def (M', N) = 0)
and nul(M', N) = nul(M, N).

Proof. It suffices to apply Lemma 4.28 to M, N, M' replaced by their
annihilators. Note Theorems 4.8 and 2.9.

Theorem 4.30. Let M, N be a Fredholm [semi-Fredholm] pair. Then
there is a 6 > 0 such that S (M', M) < 6 implies that M', N is a Fredholm
[semi-Fredholm] pair and ind (M', N) = ind (M, N).

Proof. It suffices to consider the semi-Fredholm case, for then
ind(M', N) = ind(M, N) implies that the pair M', N is Fredholm if and
only if the pair M, N is. Furthermore, we may assume that def (M, N) < oo ;
the case nul (M, N) < oo can be reduced to this case by considering the
annihilators.

If def (M, N) = m < oo, we can find an No ) N such that dim No/N
= m, No n M = N n M and M + No = Z. According to Lemma 4.29,
there is a 6 > 0 such that S (M', M) < 6 implies that def (M', No) = 0 and
nul (M', No) = nul (M, No) = nul (M, N). Hence ind (M', No) = nul (M, N),
and it follows from Problem 4.6 that ind(M', N) = ind(M', No) - m
= nul (M, N) - def (M, N) = ind (M, N).

Remark 4.31. Theorem 4.30 shows that the index of a semi-Fredholm
pair M, N is stable under a small perturbation of M. It could be shown
that the same is true for simultaneous perturbation of M and N, but the
proof would be more complicated. Also it is not easy to give a simple
estimate of 6 in Theorem 4.30. In particular, it is in general not known'
whether ind(M', N) is constant for all M' considered in Corollary 4.25,
except that this is true if Z is a Hilbert space2.

5. Stability theorems for semi-Fredholm operators
1. The nullity, deficiency and index of an operator

In this section we define the nullity, deficiency, index, etc. of a
linear operator T E `' (X, Y) and establish several stability theorems for
these quantities3. The general results follow from the corresponding

1 Cf. NEUBAUER [1].
2 Cf. T. KATO [9].
8 General references for this section are ATKINSON [1], [2], BROWDER (1],

[2], [3], CORDES and LABROUSSE [1], DTEUDONNA [1], GOHBERG and KREIN [1],
KAASHOEK [1], KANIEL and SCHECHTER [1], T. KATO [12], KREIN and KRASNO-
SEL'SKII [1], SZ.-NAGY [3], NEUBAUER [1], [2], YOOD [1].
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results for pairs of closed linear manifolds studied in the preceding
section'. But these will be supplemented by more specific results pertain-
ing to, operators.

As in the finite-dimensional case (I-§ 3.1), the nullity, nut T, of an
operator T from X to Y is defined as the dimension of N (T). Since N (T)
is the geometric eigenspace of T for the eigenvalue zero, nul T is the
geometric multiplicity of this eigenvalue. The deficiency, def T, of T is
the codimension in Y of R (T) : def T = dim Y/ R (T) 2. Each of nul T
and def T takes values 0, 1, 2, . or oo. The index of T is defined by3

(5.1) ind T = nut T - def T

if at least one of nul T and def T is finite. -

The notions of nullity and deficiency involve certain arbitrariness.
An operator T from X to Y could as well be regarded as an operator
from X to a space Y' containing Y as a subspace; then def T would be
increased by dim Y'/Y. Again, T could be regarded as an operator from a
space X' to Y, where X' is the direct sum X ® Xo of X and another
space X0, with the stipulation that T u = 0 for u E X0; then nul T would
be increased by dim X0. Once the domain and range spaces have been
fixed, however, nul T and def T are well-defined quantities with important
properties to be discussed below.

In what follows we assume that X, Y are two fixed Banach spaces.
The stability of bounded invertibility (Theorem 2.21) is the stability
of the property of T E ' (X, Y) that nul T = def T = 0. We are now
going to generalize this stability theorem to other values of def T and
nul T under some additional conditions.

One of these additional conditions will be that R (T) be closed.
This condition is automatically satisfied if def T < oo, but, should be
assumed independently in the general case. An operator T E `' (X, Y)
is said to be Fredholm 4 if R (T) is closed and both nul T and def T are
finite. T is said to be semi-Fredholm if R (T) is closed and at least one of
nul T and def T is finite. The index (5.1) is well-defined for a semi-
Fredholm operator T. The main result to be proved in this section
is that the property of being Fredholm [semi-Fredholm] is stable
under small perturbations.

1 This method of deducing the results for operators from those for pairs of
subspaces seems to be new. It has the advantage of being able to make full use of
duality theorems for subspaces. The corresponding theorems for operators are
restricted to densely defined operators for which the adjoints are defined.

8 Sometimes def T is defined as equal to dim Y/l-(T, when R M is the closure
of R (T). The two definitions coincide for semi-Fredholm operators.

8 Some authors choose the opposite sign for the index.
' It should be noted that there is quite a different use of the term "Fredholm";

see e. g. GROTHENDIECK M.
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To this end it is necessary to study the properties of closed operators
with closed range.

For any T E `' (X, Y), the null space N = N (T) is a closed linear
manifold of X. Therefore, the quotient space X = X/N is a Banach space
with the norm defined by (see III-§1.8)

(5.2) lllill = inf Mull = inf Ihu - zll = dist (u, N) , u E a

If u E D (T), all u' E u" belong to D (T) by u' - u E N C D (T). Moreover,
we have T u = T u' since N is the null space of T. Thus we can define
an operator T from X to Y by
(5.3) Tu=Tu.
The domain D(T) of T is the set of all d E X such that every u E u"
belongs to D (T).

It is obvious that T is linear. Furthermore T is closed. To see this
let iZ, be a T-convergent sequence in X: u" E D (T), u,, , iZ E X, T4" - -
- v E Y. Let u,, E u,,, u E u. u" ->. u implies that dist (u - u, N) -+ 0.
Hence there are z E N such that u - u - z -> 0. Since T (u -

T u,, = T a,, ->. v, the u - z form a sequence , T-convergent to u.
It follows from the closedness of T that u E D (T) and T u = v. Hence
u E D (T) and T u = T u = v. This proves that T is closed.

T is invertible. In fact T u= 0 implies T u= 0, hence u E N and
u" = N ; but N is the zero element of X.

We now define a number y (T) by V (T) = 1/11 T-lll ; it is to be under-
stood that y (T) = 0 if T-1 is unbounded and y (T) = oo if T-1= 0.
It follows from (5.3) that y (T) is the greatest number y such that

(5.4) 11 Tull z yllull = y dist (u, N) for all u E D (T) .

It should be noted that y(T) = oo occurs if and only if T is a trivial
operator with both D(T) and R(T) 0-dimensional, and this is the case
if and only if T C 0 [T u = 0 for all u E D (T) ]. To make the statement
(5.4) correct even for this case, one should stipulate that oo x 0 = 0.

We shall call y(T) the reduced minimum modulus of T. If N (T) = 0,
y (T) is equal to the minimum modulus' of T, which is defined' as inf 11 T ull /
hullfor 0+uED(T).

Problem 5.1. y (T) = y (T).

Theorem 5.2. T E `' (X, Y) has closed range it and only it y (T) > 0.
Proof. By definition y (T) > 0 if and only if T-1 is bounded, and

this is true if and only if D (T-1) = R (T) = R (T) is closed (see III-§ 5.4).
Example 5.3.2 Let X = lQ and let {xT} be the canonical basis of X. Let T E . (X)

be such that Tx1 = 0, Tx2 = x1, Tx3 = xe, .... T is a shift operator (see Example
1 See GINDLER and TAYLOR [1].
2 y (T) for differential operators T is discussed in detail in GOLDBERG QlD.
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111-3.16). As is easily verified, N (T) is the one-dimensional subspace spanned by x1,
and R (T) = X. Thus nul T = 1, def T = 0, ind T = 1. For any u we have

IIuII=dist(u, N(T)) =
i 2

IITull. Hence IITuII/IIuiI = 1 for every uEX
=

so that y(T) = 1. T is a Fredholm operator.
Example 5.4. Let X and x, be as above and let T E .4 (X) be such that Tx1 = x2,

Tx2 = x3, .... This T is the adjoint of the T of Example 5.3 for an appropriate p.
It is easily verified that N (T) = 0, and that R (T) is the subspace spanned by
x2, x2, .. Hence nul T = 0, def T = 1, ind T = - 1. In this case X = X, T = T,
II TuII = IIuII so that y (T) = 1. T is Fredholm.

Example 5.5. Let X be as above but write each u E X in the form of a bilateral
sequence u = (.... _ 1, $(,, $1....). Let {xi} be the canonical basis of X and let T E 9 (X)
be such that Tx0 = 0, T x1 = x, _1 (j = ± 1, ± 2, ...). N (T) is the one-dimensional
subspace spanned by x0 and R (T) is the subspace spanned by all the x1 except
x_1. Hence nul T = 1, def T = 1, ind T = 0. A consideration similar to that in
Example 5.3 shows that y (T) = 1. T is Fredholm (cf. Example 3.8).

Problem 5.6. Let T E (e (X, Y). Then C E P (T) if and only if nul (T -
=def(T-C)=0.

2. The general stability theorem
The nullity, deficiency and the closed range property can be expressed

conveniently in terms of the graph of the operator. Such expressions
will be important in perturbation theory since a "small" change of a
closed operator is expressed by means of its graph.

Consider the product space Z = X x Y. For convenience we shall
identify each u E X with {u, 0} E Z and each v E Y with {0, v} E Z. Then X
is identified with the subspace X x 0 of Z and similarly for Y. Z is identical
with the direct sum X ® Y. Similarly, any subset of X or of Y is identified
with a subset of Z.

Let T E `' (X, Y). The graph G (T) of T is the closed linear manifold
of Z consisting of all elements {u, T u} where u E D (T). u E X belongs
to N (T) if and only if {u, 0} E G (T). According to the identification just
introduced, this means that

(5.5) N(T)=G(T)nX.
Also we have

(5.6) R(T)+X=G(T)+X.
In fact R (T) + X is the set of all {v, T u} where u E D (T) and v E X,
while G (T) + X is the set of all {u + v, T u} where u E D (T) and v E X.
Obviously these two sets are identical.

It follows from (5.5) and (5.6) that [see (4.1) and (4.2)]

(5.7)
nut T = dim (G (T) n X) = nul (G (T), X) ,

def T = codim (G (T) + X) = def (G (T), X) .
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Thus the nullity and deficiency of T are exactly equal to the correspond-
ing quantities for the pair G (T), X of closed linear manifolds of Z.

Furthermore, it is easily seen that R (T) is closed in Y if and only if
X + R (T) is closed in Z. According to (5.6), therefore, R (T) is closed if
and only if G (T) + X is closed.

Even the reduced minimum modulus y (T) of T is related in a simple
way to the minimum gap y (G (T), X) of the pair G (T), X. By (5.4),
y(T) is equal tou in T)jjTulj/jlijl ={u,vml llvil/llull where u E X = X/N (T).

In view of (5.5), this is exactly equal to they of (4.25) for M = G (T).
Hence, by (4.24) and (4.26), we have

(5.8) y(G (T), X) = y(X, G (T)) = y(T) 2[1 +y(T)]ire

In this way we see that all the important quantities introduced for T
can be expressed in terms of the pair G (T), X of closed linear manifolds
of Z.

To complete this correspondence, we shall define the approximate
nullity and approximate deficiency of T by

(5.9) nul' T = nul' (G (T), X) , def' T = def' (G (T), X) .

The following results are direct consequences of the corresponding
ones for pairs of closed linear manifolds proved in the preceding para-
graph.

Problem 5.7. Let T E V (X, Y). Then def T < oo implies y (T) > 0 (see Problem
4.7).

Problem 5.8. If T1 is an extension of T of order m < oo, ind T1 = ind T + m
(see Problem 4.6).

Theorem 5.9. nul' T is the greatest number m S oo with the following
property : for any e > 0 there exists an m-dimensional closed linear manifold
N, C D (T) such that 11 Tull S e 11 ull for every u E N, (see the definition in
§ 4.4).

Theorem 5.10. nul'T >_ nul T, def'T > def T for any T E `I (X, Y).
The equalities hold if R (T) is closed. If R (T) is not closed, then nul' T
= def' T = oo (see Problem 4.15, Theorems 4.18 and 4.19).

Theorem 5.11.1 nul' T = oo if and only if there is a sequence u,,, E D (T)
with Ilu,,Il = 1 and Tu 0 which contains no convergent subsequence
(see Theorem 4.23).

Problem 5.12. nul' (a T) = nul' T, def' (a T) = def' T for at + 0. [hint: Theorem
5.10].

Let us now assume that T is densely defined so that the adjoint
operator T* exists and belongs to '(Y*, X*). For convenience we

1 This theorem is due to WOLF [4].
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consider the inverse graph G' (T*) of T* rather than the graph G (T*) ;
G' (T*) is the closed linear manifold of X* x Y* = Z* consisting of all
elements {T* g, g} where g varies over D (T*) c Y*. As was shown in
III-§ 5.5, we have the basic relation

(5.10) G'(- T*) = G (T) 1 .

Since G' (T*) is simply the image of G (T*) under the map {g, f} -+
{f, g} of Y* x X* onto X* X Y*, the properties of G (T*) correspond

to those of G' (T*) in an obvious manner. Thus we have, corresponding to
(5.7) to (5.9),

(5.11) N (T*) = N (- T*) = G'(- T*) n Y* = G (T)1 n X1 ,
(5.12) R(T*)+Y*= R(-T*)+Y*= G'(-T*)+Y*= G(T)1+X1,

(nulT* = dim(G(T)1 n X1) = nul(G(T)1, X1) ,
(5.13)

defT* = codim(G(T)1 + X1) = def (G(T)1, X1) ,

(5.14) Y(G (T)1, X1) = y(X1, G (T) 1) = [1 +yy(T))a]11a

(5.15) nul' T* = nul'(G (T)1, X1) , def' T* = def'(G (T)1, X1) .

Here G (T)1 and X1 = Y* are considered as linear manifolds of Z*
= X* x Y* [for (5.15) note Problem 5.12].

Thus Theorem 4.8 gives
Theorem 5.13.1 Assume that T* exists. R (T) is closed if and only it

R (T*) is closed. In this case we have 2

(5.16) R(T)1 = N(T*) , N(T)1 = R(T*) ,

(5.17) nul T * = def T , def T * = nul T ,

(5.18) Y(T*) = y(T)

(5.18) is true even when R (T) is not closed.
Corollary 5.14. Assume that T* exists. T is Fredholm [semi-Fredholm]

if and only if T* is. In this case we have

(5.19) ind T* _ - ind T.
Problem 5.15. null T* = def' T, def' T* = nul' T.

1 This theorem is given in Banach (1) for bounded T. For unbounded T it is
proved by several authors; see BROWDER [1], [3], JoicHi [1], T. KATO [12], ROTA
[1]. In view of (5.16), a densely defined T E' (X, Y) with closed range is also said
to be normally solvable.

R Here N (T), R (T), N (T*), R (T*) are- regarded as subsets of X, Y, Y*, X*,
respectively. To prove (5.16), for example, we note that (R (T) + X) 1 = (G (T) +
+ X)1 = G (T) 1 n X1 = G (- T*) nY* = N (T*) by (4.11), where all members
are regarded as subsets of Z* = X* x Y*. It follows that R(T)1 = N(T*) where
both members are regarded as subsets of Y*. Similarly, the second relation of (5.16)
follows from (4.12) applied to the pair G (T), X.
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Finally, the stability theorems for closed linear manifolds proved
in par. 4 immediately give stability theorems for operators (see Theorems
4.24, 4.30 and Corollary 4.25).

Theorem 5.16. Let T, S E `' (X, Y) and let R (T) be closed (so that
y (T) = y > 0). Then 6 (S, T) < y (1 + y2) -1/2 implies nul'S s nut T,
and 6 (T, S) < y (1 + y2) -1/2 implies def'S < def T.

Theorem 5.17.1 Let T, S ET (X, Y) and let T be Fyedholm [semi-
Fyedholm]. If S (S, T) < y (1 + y2)-1/2 where y = y (T), then S is Fredholm
[semi-Fredholm] and nul S S nul T, def S 5 def T. Furthermore, there
is a & > 02 such that E (S, T) < 6 implies ind S = ind T 3.

The above results have been deduced by considering the pair of
subspaces G.(T) and X of the product space X x Y and the pair of their
annihilators. It is interesting to see what is obtained by considering the
pair G (T) and Y. It turns out that the results are related to bounded
operators rather than to Fredholm operators. We shall state some of the
results in the form of problems, with hints for the proofs.

Problem 5.18. Let T E W (X, Y). Then y (G (T), Y) > 0 [y (Y, G (T)) > 0] if
and only if T is bounded. If T E 9 (X, Y), then y (G (T), Y) = y,(Y, G (T))

(1 + 11 T112)-1"2 (cf. Theorem 4.14).

Problem 5.19. Let T E T (X, Y). Then nul (G (T), Y) = 0. T is bounded if and only
if G (T) + Y is closed. T E 2 (X, Y) if and only if def (G (T), Y) = 0. [hint :
G(T)+Y=D(T)+Y.]

Problem 5.20. Let T E' (X, Y) be densely defined. Then T E a (X, Y) if and
only if T* is bounded4. [hint: Apply the preceding problem to T*.]

1 It appears that this stability theorem for nul T, def T and ind T is new in the
general form given here. For T, S E 69 (X, Y) and small 11S - TIC, this theorem has
long been known (ATKINSON [1], DIEUDONNL [1], KREIN and KRASNOSEL'SKII [l]).
Sz.-NAGY [3] extended the results to unbounded T and relatively bounded pertur-
bations S - T. GOHBERG and KREIN [1] and T. KATO [12] have similar results,
with quantitative refinements. CORDES and LABROUSSE [1] consider a more
general kind of perturbation like the one in Theorem 5.17 but assume X = Y to be a
Hilbert space. Recently, NEUBAUER [1] proved a theorem similar to Theorem
5.17.

2 We can choose S = y (1 + y2)-1"2 if X, 'Y are Hilbert spaces. In general it is
difficult to give a simple estimate for 6 (but see NEUBAUER [1]).

2 This stability theorem for the index is important in many respects. In particular
it is one of the most powerful methods for proving the existence of solutions of
functional equations. As an example we refer to the proof of Lemma X-5.14. Here
we have two families of operators W (x), Z (x) E .4 (X), depending on a parameter x
holomorphically, such that Z (x) W (x) = 1 and W (0) = Z (0) = 1. Application of
the stability theorem shows that W (x) maps X onto X [i. e., W (x) u = v has a
solution u for any v E X].

4 This is a nontrivial result and aroused some interest recently; see BROWN [1],
NEUBAUER [1 ], GOLDBERG Q1D. There is a close relationship between this proposition,
the closed range theorem (Theorem 5.13) and Theorem 4.8. We have deduced the first
two from the last. BROWN [1] deduces the second from the first. BROWDER gave a
deduction of the last from the second (oral communication).
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Problem 5.21. Let T E .l (X, Y). If SE '(X, Y) and a(T, S)< (1 +ll Tll2)-1j2

then S E R (X, Y) and (2.25) holds with S (S, T) replaced by S (T, S) 1. [hint: See
Theorem 4.24 and Problem 5.19.]

3. Other stability theorems
Theorem 5.17 may be called the general stability theorem since the

only assumption involved is that 3 (S, T) be small; there is no assumption
on the relationship between the domains of S and T. If we add such an
assumption, however, we can deduce a somewhat stronger result.

Theorem 5.22. Let T E ' (X, Y) be semi-Fredholm (so that y = y (T) >
> 0). Let A be a T-bounded operator from X to Y so that we have the inequali-
ty (1.1), where

(5.20) a<(1-b)y.
Then S = T + A belongs to ' (X, Y), S is semi-Fredholm and

(5.21) nu1S s nul T , def S s def T , indS = ind T .

Proof. (5.20) implies b < 1, so that S E '(X, Y) by Theorem 1.1.
First we shall show that the problem can be reduced to the case in which
T and A are bounded.

Let us introduce a new norm in D (T) by

(5.22) IlluIll = (a + e) (lull + (b + e) 11Tull llull

where e > 0 is fixed. Under this norm D (T) becomes a Banach space,
which we shall denote by X (see Remark 1.4), and we can regard T and A
[or rather the restriction of A to D (7)] as operators from X to Y ; in this
sense they will be denoted by T and .A respectively (Remark 1.5). These
belong to .4 (X, Y) and

(5.23) . II TII s (b + e)-1, IIA II s 1

in virtue of (1.1) and (5.22).
Since R(T) = R(T), T has closed range. Furthermore, we have the

obvious relations
A A A

(5.24) nul T = nul T, def T = def T, nul S = nul S ,

def S = def S , R (S) = R (S) where S = T + A.
1 This partly strengthens Theorem 2.13. To prove that (2.25) is true with

S (S, T) replaced by S (T, S), we note that for any v E X there is a u E X satisfying
(2.22), where S' is any number such that a (T, S) < S' < (1 + lI T11 2)-1/2 (see the
proof of Lemma 2.12). Then we have IIA ull < a' (1 + it T11 2)1/2 as in the proof of
Lemma 2.11. Hence llA vll s IlA ull + IIAII llu - oil < 6'(1 + II TIl2)"2 + IIAII 6',
since llu - vIl < 6' by (2.22). Since I1v1I2(1 + llTll2) Z 1 by (2.24), it follows that
IIAII s 6'(1 + IITII2) + IIAII a'(1 + IITII2)112 or IIAII s a'(1 + IITII2) [l - a'(1 +
+ 11 TII2)112]-1 which gives the required result when 6' -> 6 (T, S).
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Hence T is semi-Fredholm, and it suffices to show that S is semi-Fred-
A

holm and (5.21) holds with S, T replaced by S, T.
A

Let us express y (T) in terms of y = y (T). By definition y (T)
A A

= inf11 Tull/IIIuIIl = inf 11Tull/IIIuIII where u E X/N, N = N (T) = N (T) (N is
A

closed both in X and in X). But

(5.25) IIIuIII = l IIIu - zIII = N [(a + E) 11u - zHI + (b + E) II T(u-z)II ]

= (a+E) IIuII+ (b+e) IITuII
by Tz = 0. Hence

(5.26) y (T) °uED(T) II TuII
(a + e) IIuII + (b + e) II Tull (a + E) + (b + e) v

by the definition y = inf II T uII/IIuII .

It follows from (5.20) and (5.26) that we can make y (T) > 1 by
choosing e sufficiently small. Since IIAII < 1 by (5.23), we have IIAII <
< y (T). Rewriting T, A, S as T, A, S, respectively, we see that it
suffices to prove the theorem in the special case in which all T, A, S
belong to a (X, Y) and II A II < y (T) = y.

In this special case, however, the theorem follows immediately from
the general stability Theorem 5.17. In fact let a > 0 be chosen suf-
ficiently small so that IIAII < y/ (1 + a2 y2)1/2. Then II a A II = a II A II <
< y(aT)/(1 + y(ctT)2)1/2 since a y(T) = y(aT). Since, on the other
hand, O(aS, 0T) < IIaAII by (2.27), we see that the assumptions of
Theorem 5.17 are satisfied for the pair S, T replaced by 0S, ocT. It
follows that aS, and hence S, is semi-Fredholm and nu1S = nulaS 5
<_ nul a T = nul T and similarly for def S.

It remains to show that indS = ind T. It follows from Theorem 5.17
that this is true at least if 11 All is sufficiently small. Now we can connect S
and T by a continuous path; it suffices to consider the family T (M)
= T + xA, 0 s x S 1. Since IIaAII s IIAII < y, T (x) is semi-Fredholm
for each x. It follows from Theorem 5.17 that ind T (x) is continuous in M.
Since it is an integer (including ± oo), it must be constant for 0 S x 1,

showing that ind S = ind T.
Remark 5.23. Let T and A be operators in a finite-dimensional

space X to itself. Then ind (T + A) is always zero so that the third
formula of (5.21) is true without restriction [see I-(3.2), (3.3)]. Suppose
that nul T = def T > 0 and that A = - C. Then nul (T - C) = def (T - C)
= 0 for sufficiently small ICI + 0, for the eigenvalues of T are isolated. This
shows that in the first two inequalities of (5.21), the equalities cannot be
expected in general.

Example 5.24. Consider the T of Example 5.3 and set A Let us compute
nul (T + A) = nul (T - C). Let u = (k) E N (T - ). Then $1, +1 = pp so that
Sk = k-1 y1, If ICI < 1, this determines u for any 1. If ICI > 1, we have to set
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, = 0 in order that u E X (we assume 1 < p < oo for simplicity). Thus
nul(T - C) = 1 for ICI< l and nul(T - C) = 0 for ICIs 1.

A similar consideration applied to T* (which is the T of Example 5.4) shows
that nul (T* - C) = 0 for any C. On the other hand T - C has closed range for
ICI + I; this follows from the general result of Theorem 5.22 since y (T) = y (1) = 1.
Thus T - C is Fredholm for ICI + 1 and nul(T - C) = 1, def(T - C) = 0,
ind (T - C) =1 for ICI < 1 while nul (T - C) = def (T - C) = ind (T - C) = 0
for ICI > 1.

It should be noted that T - C is semi-Fredholm for no C with ICI = 1. In fact,
if T - Co were semi-Fredholm for some Co with ICoI = 1, ind (T - C) would have to be
constant in some neighborhood of Co, contrary to the above result. This shows that
the assumption (5.20) of Theorem 5.22 cannot in general be replaced by a weaker one.

Problem 5.25. Let T be as in Example 5.5. If ICI < 1, T - is Fredholm with
nul (T - C) = def (T - C) = 1, ind (T - C) = 0. If ICI > 1, T - C is Fredholm
with nul (T - C) = def (T - C) = ind (T - C) = 0. (Check these results directly
whenever possible.) T - C is not semi-Fredholm if IcI = I.

Theorem 5.22 (or the more general Theorem 5.17) is sometimes
called the first stability theorem. The second stability theorem is concerned
with a perturbation which need not be restricted in "size" [as in (5.20)]
but which is assumed to be relatively compact'.

Theorem 5.26. Let T E W (X, Y) be semi-Fredholm. I l A is a T-compact
operator from X to Y, then S = T + A E 'e (X, Y) is also semi-Fredholm
with ind S = ind T.

Proof. S E ' (X, Y) by Theorem 1.11. Again the theorem can be
reduced to the special case where T, A E .l (X, Y) and A is compact. To
this end it suffices to introduce the space X and the operators T, A, S
as in the proof of Theorem 5.22 [here we have nothing to do with the con-
stants a, b, so we set a = b = 1 and e = 0 in (5.22)]. Then the T-com-
pactness of A implies that A is compact (see Remark 1.12).

Assume, therefore, that T, A E 9 (X, Y) and A is compact.
First we assume that nul T < oo and prove that nul' S < oo ; then it,

follows from Theorem 5.10 that S is semi-Fredholm. To this end it is
convenient to apply the result of Theorem 5.11. Suppose that there is a
sequence u E X such that 11 uj = 1 and S u -) 0', we have to show that

has a convergent subsequence. Since A is compact, there is a sub-
sequence of such that A v - w E Y. Then T v,, = (S - A) v
-+ - w. Since R (T) is closed, - w E R (T). Thus there is a u E X such
that - w = T u. Then T (v,, - u) -; 0. Since nul' T < m, Theorem 5.11
shows that {v - u} contains a convergent subsequence. Hence the same
is true of as required.

1 For the second stability theorem, see ATKINSON [1], FRIEDMAN [1], GOHBERG
and KREIN [1], Sz.-NAGY [3], YooD [1]. This theorem has also been generalized to
perturbations by not necessarily relatively compact but "strictly singular" opera-
tors; see T. KATO [12], GOHBERG, MARKUS and FEL'DMAN [1], GOLDBERG (1), and
other papers cited by GOLDBERG.
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Next suppose that def T < oo. Then nul T* < oo. Since T* is semi-
Fredhoim and A* is compact, it follows from what was just proved that
S* = T* + A*, and therefore S too, is semi-Fredholm.

Once it is known that S is semi-Fredholm, it is easy to prove that
indS = ind T. Again introduce the family T (x) = T + xA, 0 x 5 1.
Since xA is compact with A, T (x) is semi-Fredholm for every x. Hence
ind T (x), being continuous by the first stability theorem, must be
constant.

Example 5.27. Let T be as in Example 5.5, namely Tx0 = 0, Txf = xi_l,
j = ± 1, ± 2, .... We have seen (Problem 5.25) that T - C is Fredholm for 41
and

(527)
nul (T - C) = def (T - C) = 1, JCI< 1,
nul(T - C) = def(T-C) =0, JCS >1.

Let A E 9 (X) be such that A x0 = x1, A x, = 0, j + 0. A is compact; it is even
degenerate with rank one. Thus it follows from Theorem 5.26 that T (x) - C is
Fredholm for every complex x and J41 + 1, where T (m) = T + xA. But we know
that E (T (x)) is the unit circle I4I = 1 for x + 0 (see Example 3.8). Hence

(5.28) nul (T (x) - 4) = def (T (x) - 4) = 0, J41 + 1, x + 0 .

4. Isolated eigenvalues
Let T E '(X) and let A be an isolated point of the spectrum E (T).

Let P be the projection associated with A (see III-§ 6.5).
Theorem 5.28. Let T, A, P be as above. If dim P < oo, T - A is Fred-

holm and we have nul'(T - A) = nul (T - A) S dim P, def'(T - A)
= def (T - A) 5 dim P. I l dim P = oo, we have nul' (T - A) = def' (T - A)

00.

Proof. T is decomposed according to the decomposition X = M' ® M",
M' = P X, M" = (1 - P) X (see III-§ 6.4-6.5), and A E P so that
nul' (TM.. - A) = def' (TM.. - A) = 0. On the other hand, TM - A is
bounded and quasi-nilpotent. If dim P < oo, M' is finite-dimensional and
the approximate nullity and deficiency of TM. - A cannot exceed dim P.
If dimP = oo, we have nul' (TM. - A) = def' (TM. - A) = oo by Theorem
5.30 to be proved below. Theorem 5.28 follows easily from these properties
of the parts TM, and

T E 'e (X, Y) have closed range with nul T < oo.
Then TM is closed for any closed linear manifold M of X.

Proof. Define X_= X/N, N = N (T), and T as before (par. 1). Then
TM = TM, where M is the set of all u E X such that the coset u contains
at least one element of M. Since T has bounded inverse (Theorem 5.2),
it suffices to show that M is closed in X.

Suppose that u a E M, u - u E X. This implies that dist (un - u, N) -* 0,
and there are zn E N with un - u - z -'. 0. Since we may assume that
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un E M and M + N is closed by dimN < oo (Lemma 111-1.9), it follows
that u E M + N or u E M. This proves that M is closed.

Theorem 5.30. Let T E 9 (X) be quasi-nilpotent. If dim X = oo, then
nul' T = def' T = oo.

Proof. In view of Theorem 5.10, it suffices to show that we have
necessarily dim X < oo if R (T) is closed and nul T < oo or if R (T) is
closed and def T < oo. Since the latter case can be reduced to the former
by considering T* instead of T (T* is quasi-nilpotent with T), it suf-
fices to prove that dim X < oo if R (T) is closed and nul T < oo.

Since R = R (T) = T X is closed, it follows from Lemma 5.29 suc-
cessively that all Tn X are closed, n = 1, 2, ... .

Since X ) T X ) T2 X ) , the intersections of the Tn X with N = N (T)
also form a descending sequence. Since the latter are subspaces of the
finite-dimensional space N, No = N n Tn X must be independent of n
for sufficiently large n, say for n > m. Set Xo = TmX. Since Xo is a
closed linear manifold of X and T Xo C Xo, the part To of T in Xo is
defined. We have N (To) = N n Xo = No. Furthermore, No C T- +n X
= Tn Xo = To Xo for all it = 1, 2, .... Thus N (To) is contained in all
R (To).

This in turn implies that N (To) R (To)1 for all n. Let us prove this
by induction. Since this is known for n = 1, assume that it has been
proved for n and let To }1 u = 0; we have to show that u E R (To).
To +1 u = 0 implies To u E No C R (7"0 "+') or To u = To }1 v for some
v E X0. Then u - To V E N (To) C R (To), which implies u E R (To).

Since dim No < oo, there is a complementary subspace Mo of No in
Xo : X0 = No ® Mo. To maps Mo onto R (To) = Ro one to one. Let So
be the inverse map of Ro onto Mo; So is bounded by Problem 111-5.21.
(Note that Ro = To Xo = T Xo = T- +1 X is closed.)

Let uo E No. Since No C R0, u1= So uo is defined. Since To u1 = To uo
= 0, u1 E N (To) C Ro. Hence u2 = So u1 is defined. Since To u2 = To u1= 0,
u2 E N (To) C Ro and u$ = So u2 is defined. In this way we see that there
is a sequence un E Ro such that u,, = So u, _1, n = 1, 2, .... Thus un = So uo

and Ilunll < IISoiln Iluoll. On the other hand, we have uo = To un = Tn u,,
and so Iluoll S II TnII IISolln Iluoll. But as limll TnIl1/n = 0 by hypothesis,
we have II Tnll II SoIIn < 1 for sufficiently large n. This gives that uo = 0.
Since uo E No was arbitrary, we conclude that No = 0, Mo = Xo.

This implies that T5-1 exists and is equal to So. Hence (lulls IISolI II Toull
for any u E X0 and so llull IISohIn II To ull. Since II To ull s 11 1"'11 (lull as
above, the same argument as above leads to the result that u = 0,
Xo = 0, that is, TmX = 0.

1 The sequences of subspaces N(T") and R(T") have been studied in various
problems. See DUNFORD and SCHWARTZ 111, p. 556, HUKUHARA [1], KANIEL and
SCHECHTER [I].
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Then X C N (Tm) and X must be finite-dimensional, for it is easily
seen that dim N (Tm) S m dim N. This completes the proof of Theorem
5.30.

5. Another form of the stability theorem
According to Theorem 5.17, the nullity and deficiency of a semi-

Fredholm operator do not increase under a small perturbation. It is in
general not easy to see when these quantities are conserved. But a sharper
result is obtained if the perturbation is restricted to have the form MA
with a fixed A.

Theorem 5.31. Let T C e (X, Y) be semi-Fredholm and let A be a
T-bounded operator from X to Y. Then T + xA is semi-Fredholm and
nul(T+xA), def(T+xA) are constant for sufficiently small IxI > 0.

Proof. It suffices to consider the case in which both T and A belong
to R (X, Y) ; the general case can be reduced to this as in the proof of
Theorem 5.22.

I. First we assume nul T < oo. We define sequences Mn C X and
Rn C Y successively by'

;(5.29) Mo = X, Ro = Y, M,, = A-1 Rn, R,i+1= T Mn, n = 0, 1, 2....

here A-1 R denotes the inverse image under A of R C Y. We have

(5.30) Mo)M1)M2)..., Ro)R1)R2)...
as is easily seen by induction. All the Mn and Rn are closed linear manifolds.
This can also be proved by induction; if Rn is closed, Mn is closed as the
inverse image under a continuous map A of a closed set R, and then
Rn+1= T Mn is closed by Lemma 5.29.

Let X' = n Mn and Y' = nn Rn; X' and Y' are closed. Let T' be the
restriction of T with domain K. If u' E X', then u' E Mn and T' u'
= T u' E T Mn = Rn+1 for all n so that R (T') C Y'. We shall show that
R (T') = Y'.

Let v' E Y'. Since v' E Rn+1 = T M,, for each n, the inverse image
T-1{v'} has a common element with Mn. But T-1{v'} is an inhomo-
geneous linear manifold of the form u + N (T). Since dim N (T) = nul T <
< oo, the T-1{v'} n M,, form a descending sequence of finite-dimensional
inhomogeneous linear manifolds which are not empty. Hence T-1 {v'} n Mn
does not depend on n for sufficiently large n and, therefore, must coincide
with T-1 {v'} n X', which is thus not empty. Let u' be one of its elements.
Then u' E X' and T' u' = T u' = v'. This shows that R (T') = Y'.

T' may be regarded as an operator on X' to Y': T' E 69 (X', Y').
Let A' be the restriction of A with domain K. Since u' E X' implies
u' E M,, = A-1 R. for all n, A u' E Rn and hence A U' E Y'. Thus A' too

1 When Y = X and A = 1. M. = R. is equal to R (TT).
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can be regarded as an operator on X' to Y': A' E 9 (X', Y') 1. We can now
apply Theorem 5.17 to the pair T', xA'. It follows that def (T' + MA')
= def T' = 0, nul (T' + xA') = ind (T' + x A') = ind T' = nul T' for
sufficiently small Ix4, for def T' = 0. Thus both nul(T' + xA') and
def (T' + xA') are constant for small jxj.

On the other hand, we have

(5.31) N(T+xA)=N(T'-1,-HA') for x+0.
In fact, let u E N (T + xA). Then Tu = -x Au, and it follows by
induction that u E M for all n and so u E X'.

(5.31) implies that nul(T -f- xA) = nul(T' + xA') is constant for
small jxj > 0. Since ind (T + xA) is constant, it follows that def (T + xA)
is also constant.

II. The case def T < no can be reduced to the case I by considering
the adjoints T*, A*; see Theorem 5.13.

Problem 5.32. Let nul T < no. In order that in Theorem 5.31 nul (T + xA)
and def (T + xA) be constant including x = 0, it is necessary and sufficient that
N(T)(M.foralln.2

6. Structure of the spectrum of a closed operator
Let T E ' (X). A complex number belongs to the resolvent set

P (T) of T if and only if nul (T - ) = def (T - ) = 0. This suggests
introducing the functions

v (C) = nul (T - C) , u (C) = def (T - C) ,
(5.32)

v' (C) = nul' (T - C) , /z' (C) = def' (T - C) ,

and classifying the complex numbers C according to the values of these
functions 8.

Let A be the set of all complex numbers C such that T - C is semi-
Fredholm 4. Let r be the complementary set of A. It follows from Theorem
5.17 that A is open and r is closed. Theorem 5.10 shows that

(5.33) v'() = ,u' (C) = oo if and only if C E P .

1 This means that X', Y' constitute an "invariant pair" of subspaces for both T
and A. If in particular Y = X and A = 1, we have Y' = X' because M. = R for
all n, and X' is invariant under T. A similar but more detailed decomposition of
X, Y is considered in T. KATO [12] and GAMEI,IN [1].

8 When this condition is not satisfied, there is a decomposition of the spaces
X, Y into "invariant pairs" of subspaces; see the preceding footnote.

8 The results of this section have many applications in spectral theory. An
application to the theory of integral equations of Wiener-Hopf type is given in
GOHBERG and KREIN [1].

6 A is called the semi-Fredholm domain for T. We can define in the same way
the Fredholm domain ,p as the subset of A consisting of all C such that v(C) < oo
and ,u (C) < oo.
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In general A is the union of a countable number of components
(connected open sets) A,,. By Theorem 5.17, ind (T - C) = v (C) - u (C)
is constant in each A. According to Theorem 5.31 (applied with A = 1,
T -+ T - CO, x = Co - C), both v (C) and ,u (() are constant in each A.
except for an isolated set of values of C. Denoting by v, /z,, these constant
values and by A,,s these exceptional points in A,,, we have

(5.34) v (C,) = vn, /u (C) = /un, C E An, C + An 1 ,

v(2n1)=v+Yrj, I'(An1)=tun+'Yn1, O<Yn2<0o.

If vn = a,, = 0, A,, is a subset of P (T) except for the A. , which are
isolated points of E (T) ; the An; are isolated eigenvalues of T with finite
(algebraic) multiplicities, as is seen from Theorem 5.28, and the Y,,j are
their geometric multiplicities. In the general case (in which one or both
of vn, y,, are positive), the A, ,j are also eigenvalues of T and behave like
"isolated eigenvalues" (although they are in reality not isolated eigen-
values if v > 0), in the sense that their geometric multiplicities are
larger by Y,nj than other eigenvalues in their immediate neighborhood.

We shall call r the essential spectrum of T and denote it by Ee (T) 1.
It is a subset of E (T) and consists of all C such that either R (T - C) is
not closed or R (T - ) is closed but v (C) = ,u (C) = c. A simple charac-
terization of 1,(T) is given by (5.33).

The boundary of A and the boundaries of the An are subsets of Ee (T).
If the number of the components A,, of A is larger than one (that is,
if A is not connected), then 1,(T) necessarily contains an uncountable
number of points. In other words, A consists of a single component and
hence v (C), ,u (C) are constant except for an isolated set of points C = Aj,
provided that Z,(7) is at most countable. Both of these constant values
must be zero if T E -4 (X), for P (T) is then not empty and hence must
coincide with A. Thus we have

Theorem 5.33. An operator T E -4 (X) with at most countable essential
spectrum Z. (T) has at most countable spectrum E (T), and any point of
E(T) not belonging to Z.(T) is an isolated eigenvalue with finite (algebraic)
multiplicity 2.

Remark 5.34. A compact operator is a special case of an operator of
Theorem 5.33, with at most one point 0 in Ee(T).

1 There is considerable divergence in the literature concerning the definition of
Ee(T). Ee(T) by our definition is fairly small. Another definition (see WOLF [3])
of Ee(T) is "the complementary set of the Fredholm domain AF (see preceding
footnote)"; it is larger than our E. (T) by those components A. of A for which one
of v and u is infinite. One could add to it all other components of A except the
components of the resolvent set, obtaining another possible definition of Z. (T) (see
BROWDER [2]). See also SCHECHTER [1].

2 It follows that Ee (T) is not empty if T E .4 (X) and dim X = oo.
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Theorem 5.35. The essential spectrum is conserved under a relatively
compact perturbation. More precisely, let T E ' (X) and let A be T-compact.
Then T and T + A have the same essential spectrum I.

Proof. It suffices to note that S = T + A E W (X) and A is S-compact
by Theorem 1.11. By virtue of Theorem 5.26, then, T - C is semi-
Fredholm if and only if S - C is.

Example 5.36.2. In Example 5.24, we have v 1, y 0 for ICJ < I and
v (C) = µ 0 for ICI > 1, R (T) being closed for ICI * 1. Hence there are exactly
two components of A: the interior and the exterior of the unit circle, and the unit
circle ICI = 1 is exactly the essential spectrum. A similar result holds for Example
5.25.

Problem 5.37. Any boundary point of P (T) belongs to Z. (T) unless it is an iso-
lated point of E (T).

Problem 5.38. Two operators T, S E ' (X) have the same essential spectrum if
there is a t E P (T) r1 P (S) such that (S - C)-1 - (T - C)-1 is compacts.

§ 6. Degenerate perturbations
1. The Weinstein-Aronszajn determinants

In the case of degenerate (or, more generally, relatively degenerate)
perturbations, there are certain explicit formulas, deduced by WEINSTEIN
and ARONSZAJN4, by which the change of the eigenvalues is related to the
zeros and poles of a certain meromorphic function in the form of a
determinant. This is a quantitative refinement of some of the results of
the stability theorems. We now turn to the derivation of these formulas.

Here we have usually two types of problems. One is concerned with
an operator of the form T + A in which T is the unperturbed operator
and A is the perturbation assumed to be relatively degenerate with respect
to T. The other is concerned with an operator of the form P T P, where T
is the unperturbed operator and P is a projection with a finite deficiency
(or, equivalently, with a finite nullity). But the second problem can be
reduced to the first, as we shall show below.

1 This theorem remains valid if we adopt the second definition of Ee(T) (as the
complementary set of the Fredholm domain AF), for T - t' is Fredholm if and only
if S - C is Fredholm. The theorem was proved by WEYL [1] for selfadjoint opera-
tors; see also HARTMAN [1].

2 For the determination of the essential spectra of differential operators, see
BALSLEV and GAMELIN [1], KREITH and WOLF [1], ROTA [1], WOLF [3], [4].

8 Then (T - C)-1 and (S - C)-1 have the same essential spectrum by Theorem
5.35. But Ee((T - C)-1) is obtained from Ee(T) by the transformation A -+ (A - )-1
(just as for the spectrum). For the application of Problem 5.38 to differential
operators, see BIRMAN [5].

4 See WEINSTEIN [1], [2], [3], ARONSZAJN [1], [2], ARONSZAJN and WEINSTEIN
[1], [2]. For degenerate perturbations see also FOGUEL [2], KLEINECKE [1], [2],
I. M. LIFAIC [1], [2], [3], WOLF [2].
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Let T E ' (X), where X is a Banach space, and let A be an operator
in X relatively degenerate with respect to T (Remark 1.13). This means
that A is T-bounded and R (A) is finite-dimensional. For any C E P (T),
A (T - is then a degenerate operator belonging to 9 (X) and

(6.1) w co (C; T, A) = det (1 + A (T - )-1)

=det[(T+A-C) (T -C)-1]
is defined (see III-§ 4.3). o.) (C; T, A) is called the W-A determinant
(of the first kind) associated with T and A.

If A is not only relatively but absolutely degenerate, A u can be
expressed in the form

m

(6.2) Au= (u,ef)x;, x;EX, e;EX*
=1

[see III-(4.6)]. Then (R(C) _ (T - C)-1)

(6.3) A (T - u = E (R u, e,) x; = £ (u, R e;) xj

and [see III-(4.13)]

(6.4) co (C; T, A) = det(S; k + (x1, R (C) * ek))

= det (6j k + (R (C) x ek))

If A is only relatively degenerate, (6.2) has to be replaced by a
modified expression of the form

(6.5) Au= E((T -CO)u,ff)xf, uED(T), f1EX*,
1=1

where Co E P (T) is fixed. (6.5) is obtained by applying (6.2) to A replaced
by the degenerate operator A (T - Co)-'. As above, this leads to the
expression

(6.6) w (C; T, A) = det(S1k + ((T - CO) (T - C)-1 x5, fk))
= det(85k + (xi, fk) + (pS

- CO) ((T - C)-1 X1, fk))

Thus co (C; T, A) is a meromorphic function of C in any domain of the
complex plane consisting of points of P (T) and of isolated eigenvalues
of T with finite (algebraic) multiplicities.

The W- A determinant o t the second kind, on the other hand, is
associated with a T E ' (X) and a projection P in X such that N = N (P)
= (1 - P) X is finite-dimensional and contained in D (T). Let {x1, . . ., x,,,}

be a basis of N and let e1, . . ., em E N* _ (1 - P*) X* form a biorthogonal
set with {x5} :

(6.7) (x1, ek) = 89k k = 1, . . ., m .

The W-A determinant associated with T and P is now defined by
(6.8) w (C) = wp (C; T) = det ((T - (,)-1 x5, ek) .
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wp (C; T) is thus defined in terms of a basis of N, but it is independent
of the choice of the basis. We shall prove this by showing that it is,
apart from a scalar factor, a special case of the W-A determinant of
the first kind associated with T and A, where A is given by

(6.9) A=PTP-T=-PT(1-P)-(1-P)T.
A is relatively degenerate with respect to T, for (1 - P) T is T-bounded,
P T (1 - P) E .4 (X) (see Problem 111-5.22) and these operators have
finite rank.

The relation to be proved is

(6.10) (-S)mwp(C; T) = a) (C; T, A)

To prove this, we start from the identity

(6.11) PTP-C=(1+C-1PT(1
Since T + A = PTP, we see from (6.1) and (6.11) that

w(4; T, A) = det((PTP - (T - C) -1)

(6.12) = det((1 + s-1PT(1 - P)) (PT - (T - C)-1)

= det(1+C-1PT(1 - P)) det ((P T - C) (T - C) -1)

[note III-(4.14) and (6.13) below]. Here the first determinant on the right
is equal to one, for P T (1 - P) is nilpotent (its square is zero) (see problem
111-4.19). To calculate the second determinant, we note that

(6.13) (PT-a) (T-1,)-1= 1-(1-P) T(T-C)-1
where the second term on the right is degenerate and (1- P) T (T -t,)-1 u
= E (T (T - C)-'u, e,)x,. Hence the determinant of (6.13) is equal to
[note the biorthogonality (6.7) and that 1- P = E ( , e5) x5]

det(S;k - (T (T - C)-1x5, ek)) = det(-C((T - C)-1x5, ek))
_ (-C)m det(((T - C)-1x e7,)) _ (-C)m wP(pS; T)

This proves (6.10).
We have assumed above that C + 0. But since both w (C; T, A)

and cop (C; T) are meromorphic, (6.10) is true even for C = 0 if they are
defined there.

2. The W-A formulas
To state the W-A formulas we have to introduce certain functions.

Let O (C) be a numerical meromorphic function defined in a domain A
of the complex plane. We define the multiplicity function v(C; 0) of 0 by

k, if C is a zero of 0 of order k,
(6.14) v(; 0) = -k, if C is a pole of 0 of order k,

0 for other CEi .
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Thus v(C; 0) takes the values 0, ± 1 , ±2, ... or + oo, but we have the
alternatives : either v (C; 0) is finite for all E A or v (C; + co iden-
tically. (The latter case occurs if and only if - 0).

Also we define the multiplicity function T) for a T E'(X) by

0 if C E P (T) ,

(6.15) v T) = dim P if C is an isolated point of E (T)
+ co in all other cases,

where P is the projection associated with the isolated point of
E (T) (see III-§ 6.5). Thus f (C; T) is defined for all complex numbers C
and takes on the values 0, 1, 2.... or +oo.

Problem 6.1. 9 T) Z nul (T - ).

We now state the main theorems of this section, the proof of which
will be given in par. 3.

Theorem 6.2. Let T E '' (X), let A be a T-degenerate operator' in X and
let co (C) = co (C; T, A) be the associated W- A determinant of the first
kind. If A is a domain of the complex plane consisting of points of P (T)
and of isolated eigenvalues of T with finite multiplicities, co (4) is meromorphic
in Aand we have forS= T+A

(6.16) i(C;S)=v"(C;T)+v(C;co), CEA.

(6.16) will be called the first W-A formula. Several remarks are
in order concerning this formula. In the first place, v" (C; T) is finite for
all C E A by hypothesis. Since v (C; co) is either finite for all C E A or iden-
tically equal to +oo, we have the alternatives: either f(C; S) is finite
for all C E A or v" (C; S) = +oo identically. In the first case A is contained
in P (S) with the exception of at most countably many eigenvalues with
finite multiplicities, whereas in the second case A is wholly contained
in E (S). That the second alternative cannot in general be excluded
will be shown below by an example. We shall also give some criteria
for the absence of such a singular case.

Suppose now that the first alternative occurs. (6.16) implies that
each zero A of co of order k is an eigenvalue of S with multiplicity exceed-
ing by k the multiplicity of A as an eigenvalue of T (if A is not an eigen-
value of T it is considered an eigenvalue of multiplicity zero). Similarly,
each pole A of co of order k reduces by k the multiplicity of A as an eigen-
value. Such a pole cannot occur unless A is an eigenvalue of T with

1 For a generalization of this theorem to a not necessarily T-degenerate operator
A (but in a Hilbert space), see KURODA [5].
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multiplicity z k. In this way the change of isolated eigenvalues of T
by the addition of A is completely determined by the W-A deter-
minant co (4).

Theorem 6.3. Let T E '(X) and let P be a projection in X such that
(1 - P) X is finite-dimensional. If (o (C) = (op (C; T) is the associated
W- A determinant of the second kind, the relation (6.16) holds for S = P T P
with the exception of C = 0.

In this case (6.16) will be called the second W-A formula. Since we
know that (op (C; T) is a special case of w T, A), where S = T + A,
except for a scalar factor [see (6.10)], Theorem 6.3 is a direct
consequence of Theorem 6.2.

3. Proof of the W-A formulas

Since Theorem 6.3 is a consequence of Theorem 6.2 as remarked above,
it suffices to prove the latter.' There are two cases to be considered
separately.

Suppose first that w (C) = 0 identically. By (6.1) this implies that the
operator (T + A - C) (T - a)-' has an eigenvalue zero for all C E A.
Hence l ; is an eigenvalue of S = T + A for all C E A n P (T). By defini-
tion this implies that v" (C; S) _ +oo identically. Since (0) = +oo
identically in this case, (6.16) is true.

We next consider the case where co (C) is not identically zero. We shall
show that A belongs to P (S) except for countably many points and that
the following identity holds : 2

(6.17)
w (C) , co (C) = tr((T - C)-' - (S - C)-')

The required result (6.16) is obtained by integrating (6.17) along a
small circle r enclosing a given point A of i ; recall that

(2rci)-1 f co'(C) co(C)-' dC=v(A; co),a
r

that
(6.18) - 2I if (T -C)-1dC=P

r
is the eigenprojection for the eigenvalue A of T, and that v" (C; T)
= dim P = trP. Note further that (T - c)-' - (S - a)-' = (S - C)-lx
x A (T - C) -1 is degenerate.

1 The proof given here is due to KURODA [5]. For other proofs see ARONSZAJN [1],
GOULD 111.

2 This identity was proved by KREIN [6] and KURODA [5].
3 See KNOPP (1), p. 131.
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To prove (6.17) we consider a C E P (T) such that co (4) + 0. We have
[see I-(5.60)1]

(6.19) w (C) = det (1 + B (4)) = exp(tr log(1 + B (C))), B (C) = A (T - C)-1.

That co (C) + 0 implies that B (4) has no eigenvalue - 1, and the logarith-
mic function in (6.19) is defined by

(6.20) log (I + B (C)) = 2 i f log (1 + z) (z - B (C))-1 d z ,

c

where C is a closed curve enclosing all the eigenvalues of the degenerate
operator B (C) but excluding the point -1 [see I-(5.57)].

It follows from (6.19) and (6.20) that (' = d/dC)

(6.21)
d

w W tr log(1 + B (C))

2 1 i f tr [log (1 + z) (z - B (C))-1 B' (C) (z - B (C))-1] dz

c [see I-(4.28)]

2i f tr[log(l+z)(z-B(C))-zB'(C)]dz= '
c

2 1 ii
tr f (1 + z)-1 (z - B (C))-1 B' P dz

c
= tr [(1 + B (C))-1 B'(0 ] [see I-(5.53)]

Here we have used the formula tr A B = tr B A, done an integration by
parts, and changed the order of the integral and trace signs when
possible. Substituting B (C) = A (T - C)-1 and B' (C) = A (T - C)-E,
the last member of (6.21) becomes

tr [(T - a)-1(1 + B (C))-'A (T- c)-1] = tr [(T + A - C)-' A (T - a)-1]
= tr [(T - C)-1 - (S - a)-1] .

This completes the proof of (6.17). Note that (S - C)-1 = (T - c)-1 x
x (1 + B(0)-1 E . (X) so that CE P(S).

4. Conditions excluding the singular case
As mentioned before, the possibility is in general not excluded

that co (C) = 0 identically in (6.16) so that i (C; S) = + oo identically
[this is equivalent to A E E (S)].

1' The results of Chapter I can be applied tow (C) since A (T - C)-1 is degenerate;
see III-§ 4.3.
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Example 6.4. Consider the operators discussed in Example 3.8. If we change the
notation by T -* S, A - A, T + A S - A = T, the open unit disk A belongs
to P (T) so that v" (C; T) - 0 in A. But since A E E (S), we have v (t'; S) - oo in A.
In view of (6.16) this implies v w) - co, hence w (C) - 0. This can also be verified
directly as follows. A is of rank one (m = 1) and the x1, e1 of (6.2) should be replaced
by - x_1, eo, respectively (e0 is the vector xo regarded as an element of X*). Hence
w w T, A) = 1 - ((T - 0)-1x_1, e0). But since it is easily verified that

(T - 1x_1 = E Ix5 for C E A, we have indeed w(C) = 0 identically in A.
i=o

Theorem 6.5. In order that the w of Theorem 6.2 not be identically
zero for C E A, it is necessary and sufficient that at least one C of i belong
to P (S).

This is obvious from Theorem 6.2 and the remarks thereafter.
We shall now give several sufficient conditions for co (C) not to be

identically zero.
a) co (C) * 0 if 11A (T - C)-'II < I for some C E A. For then we have

E P (S) because (S - a)-1 can be constructed by the Neumann series
as in II-(1.13).

b) w (C) E# 0 if T* exists and is densely defined in X* and if there
exists a sequence C,, E A such that IC.I - and {ICnI II (T - Cn.)-1II}
is bounded. To see this it suffices by a) to show that IIA (T - C,,)-1II 0.
But we have by (6.5)

A (T - C.)-lu =,f ((T - Co) (T - gym.)-1u, f,)xj =
= ' (u, (T* - o) (T* - C.)-lf,) x,

so that

(6.22) IIA (T - C)-'Ih s E II (T'" - o) (T* - fin)-1f,Il IIxjhI

Now the sequence of operators Bn* = (T* - Co) (T* -acting in
X* is uniformly bounded since the B71= I + (C,, - Co) (T - C,,)-1 are
uniformly bounded by hypothesis. Furthermore, f = (T* - n)-1 X
X (T*-fo)f, 0 if f ED(T*) since II(T*-C)-III=II(T-Cn)-III-+0.
It follows (see Lemma 111-3.5) that converges strongly to zero, and
the right member of (6.22) tends to zero for n -+ oo, as we wished to show.

c) co (C) * 0 if T E .4 (X) and there is a E A such that ICJ Z II TII.
In this case A can be extended so as to include the whole exterior of the
circle ICI = II TII. Then it is easy to see that b) is satisfied in the extended
domain A'. Hence co (C) * 0 in A' and, a fortiori, in A.

Remark 6.6. The condition b) is satisfied if X is a Hilbert space and
T is selfadjoint (see Chapter V).
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Chapter Five

Operators in Hilbert spaces
Hilbert space is a special case of Banach space, but it deserves separate con-

sideration because of its importance in applications. In Hilbert spaces the general
results deduced in previous chapters are strengthened and, at the same time, new
problems arise.

The salient feature of Hilbert space is the existence of an inner product and the
ensuing notion of orthogonality. For linear operators this leads to the notions of
symmetric, selfadjoint and normal operators. Also there is a more general class of
accretive (or dissipative) operators, the importance of which has been recognized
in application to differential operators. In perturbation theory, these new notions
give rise to such problems as perturbation of orthonormal families, perturbation
of selfadjoint operators (with applications to the Schrodinger and Dirac operators),
etc., which will be discussed in this chapter.

This chapter is again partly preliminary, beginning with an elementary exposition
of the specific results in the operator theory of Hilbert spaces which are not covered
in the general theory of Banach spaces. Accretive and sectorial operators are given
special attention in view of later applications to analytic and asymptotic perturbation
theory.

§ 1. Hilbert space
1. Basic notions

Hilbert space is a generalization of the unitary space considered
in I-§ 6 to the infinite-dimensional case'.

A Hilbert space H is a Banach space in which the norm is defined
in terms of an inner product (u, v) defined for all pairs u, v of vectors
and satisfying the conditions stated in I-§ 6.1. The norm lull is defined
by I-(6.3). H is assumed to be complete with respect to this norms.

Most of the results of I-§ 6 can be taken over to the Hilbert space H,
and we shall do this freely without comment whenever it is obvious.
But there are also results that need modification or at least some com-
ments. These will be given in this and the following paragraphs. It should
be remarked at this point that the Schwarz inequality I-(6.4) is valid
and that (u, v) is continuous in u and v jointly, exactly as before.

1 General references to Hilbert space theory are AKHIEZER and GLAZMAN QlD,
DUNFORD and SCHWARTZ (1), {2D, HALMOS (11, SZ.-NAGY 111, RIEsz and SZ.-NAGY
(1), STONE 111, YOSIDA Q1D, ZAANEN (1).

I A vector space H with an inner product, which is not necessarily complete,
is called a pre-Hilbert space. Such a space can be completed to a Hilbert space H.
Again H can be defined as the set of equivalence classes of Cauchy sequences {un}
in H (see footnote2 of p. 129). The inner product of two elements of H represented by
the Cauchy sequences {un}, {vn} is then defined by lim (uv, vn).
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Example 1.1. la is a Hilbert space (see Example III-1.1) if the inner product is
defined by
(1.1) (u, v) _ ' k Y7k for u = (R) and v = (ilk)

k

L$ (E) is a Hilbert space (see Example 111-1.3) if the inner product is defined by

(1.2) (u, v) = f u (x) R(7) d x .
E

If H is a Hilbert space, the adjoint space H* can be identified with H.
In particular H** = H* = H and H is reflexive. The proof of this fact
given in I-§ 6.2, depending essentially on the finite dimensionality,
cannot be applied to the general case.

For the proof we start with the projection theorem: every subspace
(closed linear manifold) M of H has an orthogonal (perpendicular) projec-
tion. In other words, we have the decomposition of H

(1.3) H=M®MI ,
where Ml is the orthogonal complement of M (the set of all u E H
such that (u, v) = 0 for all v E M). Note that Ml is also a closed sub-
space of H ; this is a direct consequence of the continuity of the inner
product.

For any u E H, set d = dist (u, M) and take a sequence un E M such
that llu,, - ujl -+ d. We have

(1.4)
I I 2

(un+ um) - u l z + (un - um)I 2 Ilun - uII2+ Ilum - ull2

by I-(6.7). For n, m -+ no the right member tends to d2, whereas the first
term on the left is not smaller than d2 because (un + um)/2 E M. Thus
II un - umll --* 0 and there exists a u' E H such that u,, -+ u'(completeness
of H). The closedness of M then implies that u' E M. Moreover, we have
Ilu-u'll=limllu-unll=d.

We shall now show that u" = u - u' E M. For this it suffices to
show that (u", x) = 0 for any x E M with IIxii = 1. But this follows from

d2 = Ilu - (u x) x112+ I(u x)I2 z d2 + I(u11' X)12

[set u u", v = x in I-(6.5)].
The possibility of the decomposition u = u' + u" proves (1.3),

for the uniqueness of this decomposition can easily be proved.
(1.3) implies that

(1.5) Ml.i = M
as in the finite-dimensional case. Also (1.3) defines the orthogonal pro-
jection P = PM on M by Pu = u' as before.

Now the possibility of the identification of H* with H can be proved.
Let / E H*; / is a bounded semilinear form on H. Let N = N (/), the null
space of /. N is a closed linear manifold of H. If / + 0, N + H so that
NJ- + 0. Let v E N J-, v + 0. We may assume / [v] = 1. For any w E H,
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w'= w - f [ w ] v E N since f [w'] = 0. Hence 0= (v, w') _ (v, w) -
- 1[w] IIvjI2 or 1[w] = (u, w) with u = v/IIvII2. Thus any / E H* can be
identified with a u E H (Theorem of RIESZ). Other arguments necessary
to complete the proof are quite the same as in I-§ 6.2.

As in general Banach spaces, we can define in H the notion of weak
convergence (see III-§ 1.6) besides the ordinary (strong) convergence.
In virtue of the identification H* = H, un u is equivalent to (un, v) -+

W

(u, v) for every v E H.
Lemma 1.2. If un w u and lim supllunll S Hull, then u,, g U.

Proof. IIu, - uII2 = IIuuII2 - 2Re (us, u) + Ilull2. But (u,, u) -+ (u, u)
= IIu1I2 and`lim supItu,'II2 - IIull2. Hence limllun - ull = 0.

Lemma 1.3. H is weakly complete : i f {u,,} is weakly convergent, then
u,, , u for some u E H.

W

Proof. Since {u,,} is bounded (see III-§ 1.6), lim (un, v) = f [v] defines a
bounded semilinear form /. Hence / [v] = (u, v) for some u E H and
u --.u.

W

Lemma 1.4. H is sequentially weakly compact. In other words: if
un E H is a bounded sequence, then there is a subsequence {vn} o l {un} such
that vn v for some v E H.

Proof. Since I(un,ul)I 5 IIunll IIuiII is bounded in n, there is a sub-
sequence of {un} such that u1) is convergent. Since u2) is
similarly bounded in n, there is a subsequence of {ul,} such that

u2) is convergent. Proceeding in the same way, we can construct a
sequence of subsequences {u'} of {un} such that {u +1}n

= 1, 2, ... is a
subsequence of {u }n = 1, 2,... and lim (u,,, um) exists. Then the diagonal

sequence {vn}, vn = unn, has the property that lim (vn, u,n) exists for all m.

Since IIvnII is bounded in n, it follows (cf. Lemma 111-1.31) that lim (vn, u)
exists for any u in the closed span M of the set {un}.

On the other hand lim (vn, u) exists for any u E Ml since (vn, u) = 0.
Thus {vn} is weakly convergent, hence vn -, v for some v (Lemma 1.3).

W

A sesquilinear form t [u, u'] on H x H', where H and H' are Hilbert
spaces, can be defined as in I-§ 6.2, and we have again the formula
I-(6.11). t is said to be bounded if there is a constant M such that

.(1.6) It [u, u']I 5 MIIuII lull

We denote by IItII the smallest M with this property. A bounded ses-
quilinear form t [u, u'] is continuous in u and u' jointly; the proof is the
same as that of the continuity of the inner product. The converse is also
true. A sesquilinear form t [u, u'] is bounded i f it is continuous in u for each
fixed u' and also in u' for each fixed u. This is a consequence of the prin-
ciple of uniform boundedness (III-§ 1.5).
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Problem 1.5. Prove the last statement.
Problem 1.6. Let be a sequence of bounded sesquilinear forms on H X H'

and let {t [u, u']} be bounded for n = 1, 2, ... for each fixed u E H, WE H'. Then the
sequence {I1tn1I} is bounded. [hint: Another application of the principle of uniform
boundedness.]

2. Complete orthonormal families
We did not define the notion of a basis in a general Banach space.

In a Hilbert space, however, a complete orthonormal family plays the
role of a basis.

A family {xx} of vectors of H, with the index y running over a certain
set, is orthonormal if

(1.7) (x x ) = =N, y y
0 rlt v

For any u E H, the scalars(1.8)N = (u, xN)

are the coefficients of u with respect to {xN}. Since any finite subfamily
{xNl, ..., x,,} of {xN} is also orthonormal, it follows from I-(6.15) that

X l Nkl2 < llull2. Since this is true for any choice of It,, ..., µn, we have
k=I
the Bessel inequality ((1.9) Lr I NIy = (u, XN)I2 IIulI2

N

This implies, in particular, that.for each u, only a countable number of
the coefficients µ are different from zero.

(1.9) implies also that
f(1.10) U, _ SN xN - Lr (u, xN) xN

N N

exists. In fact, the right member of (1.10) contains only a countable
number of non-vanishing coefficients. Let these be denoted by Nk,

k = 1, 2, ..., in an arbitrary order. Then the u;, _Nk xNk form a
k=1

Cauchy sequence because

ll un - umll2 - E lµkl2 -> 0, m, n -> oo ,
k=m+1

in virtue of (1.9). It is easy to see that the limit u' of the sequence
does not depend on the way in which the sequence {,u,} is numbered.

u' is equal to the orthogonal projection Pu of u on the closed span M
of {xN}. For it is obvious that u' E M, whereas u" = u - u' E Ml because
(u", xN) = (u - u', xN) _ N - (Z x, xN) = 0 for every Fc. In particular
we have

(1.11) ilu1ll2 = E IENl2 = E I(u, xN) 12 , llu"H2 = 0ull2 - llu'll2 .
N N
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The orthonormal family {x,,} is said to be complete if M = H. A
necessary and sufficient condition for completeness is that u" = 0 for
all u E H, and this is equivalent to the Parseval equality

(1.12) 7 Ru, x,4)12 = 1Jul12
K K

for every u E H. In this case we have also

(1.13) u = Z ,, x,, _ Z (u, x,,) x,,
A is

which is the expansion of u in terms of the complete orthonormal family
{x,,}.

If H is separable (see III-§ 1.2), any orthonormal family of H
consists of at most a countable number of elements. To see this, let
be a countable subset of H which is dense in H. For each ,u there is a u
such that jjx,, - u,,11 < 1/2. Since jjxµ - x,11 = V2 for ,u + v, the index n is
different for different u. Thus {x,,} can be put in correspondence with a
subset of the set of positive numbers {n}.

Conversely, H is separable if there is a complete orthonormal family
consisting of a countable number of elements. For the set of all

(finite) linear combinations of the x with rational coefficients is countable
and dense in H.

If H is separable, a complete orthonormal family can be constructed
by the Schmidt orthogonalization procedure (see I-§ 6.3) applied to any
sequence which is dense in H. A similar construction could be used even
in a non-separable space by using the axiom of choice, but we shall not
go into details since we are mostly concerned with separable spaces.

Problem 1.7. An orthonormal family {x,} is complete if and only if there is
no nonzero vector orthogonal to all x,,.

Example 1.8. A complete orthonormal family of 12 is given by the canonical
basis consisting of x =

Example 1.9. The set of trigonometric functions (2n)-112 ei"Z, n = 0, ± 1, ± 2, ... ,
forms a complete orthonormal family in L2 (a, a + 2;r), where a is any real number".

Example 1.10. Let 4pk (x), apr (y) be two sequences of functions on E and F,
constituting complete orthonormal families in L2 (E) and L2 (F), respectively. Then
the functions xkr (x, y) _ 4px (x) zpf (y) form a complete orthonormal family in
L2 (E x F), the space of all measurable functions w (x, y) defined for x E E, Y E F

Esuch that 11w112 = f Fw(x, y) 12 dx dy is finite. The orthonormality of xkr is obvious

from (xkr. xn{) = (42k, TI) (pr, zpi) =SkiBrr. To prove the completeness, it suffices to
show that (w, xkr) = 0 for all k, j implies w = 0 (Problem 1.7). Set

(1.14) wk(y) = f w(x, y) q, (x) dx;
E

then we have wk E L2 (F) since Jwk (y) 12 S j 1w (x, y) 12 d x by the Schwarz inequality

and f Iwk(y)12 dy s f Jw(x, y) 12 dx dy = 11 w11 s. This enables one to write (w, xkr)
F ExF
1 See any textbook on Fourier series, or on Hilbert space, e. g. STONE Qli.
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_ (w, tpkyri) _ (wk, W,). Thus (w, X1, j) = 0 for all k, j implies that (wk, ap) = 0 and
hence wk = 0 by the completeness of {apf}. On the other hand, wk (y) is defined for
almost every y E F and this value must be zero for every k and almost every y. In
virtue of the completeness of qqk, (1.14) shows that w (x, y) = 0 for almost every x
for almost every y. Thus w = 0 as an element of L2 (E x F).

§ 2. Bounded operators in Hilbert spaces
1. Bounded operators and their adjoints

A (linear) operator T from a Hilbert space H to another one H' is
defined as in general Banach spaces. There are, however, some properties
peculiar to operators in (or between) Hilbert spaces. We begin with
bounded operators T E -4 (H, H').

First we note that

(2.1) T** = T ;

this is true since H is reflexive (see III-§ 3.3).
An operator T E -4 (H, H') is closely related to a bounded sesquilinear

form t on H x H' by

(2.2) t [u, u'] _ (Tu, u') = (u, T* u')

note that T* E 9 (H', H) because H* = H, H'* = H'. The relationship (2.2)
gives a one-to-one correspondence between the set of all bounded sesqui-
linear forms t on H x H', the set of all T E °.,8 (H, H') and the set of all
T* E 9 (H', H). This can be proved in the same way as in the finite-
dimensional case (I-§ 6.4). That (Tu, u') is a bounded form is obvious by
I(Tu, u') I s IITuII Ilu'll s IITII IIuII IIuII. Conversely, a bounded sesqui-
linear form t [u, u'] can be written in the form (v', u'), v' E H', since it is a
bounded semilinear form in u' for fixed u. Setting v' = T u defines a
linear operator T on H to H', and the boundedness of T follows from
IITII = supI(Tu, u')IIIIuhi Ilu'll = suplt[u, u']I/IIuhi IIuII = IItDI.

Problem 2.1. Let T. E R (H, H') be such that (T u, u') is bounded for each
fixed pair u E H, u' E H'. Then is uniformly bounded (that is, {11 T,11} is bounded).
[hint: The principle of uniform boundedness.]

For an operator T E . (H, H'), a matrix representation is possible
in the same fashion as in the finite-dimensional case (I-§ 6.4). For
simplicity assume that H and H' are separable and let {xk}, {xj'} be
complete orthonormal families in H, H', respectively. The matrix of T is
then defined exactly by I-(6.27) and the expansion I-(6.28) holds true
(where we have in general an infinite series on the right).

Remark 2.2. For an unbounded operator T from H to H', (Tu, u') is
also a sesquilinear form, which is, however, not necessarily defined for
all u E H. The relationship between an operator and a sesquilinear form
in this general case is rather complicated. Later we shall consider it in
detail in the special case of a so-called sectorial operator.
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A symmetric sesquilinear form t [u, v] in a Hilbert space H is defined
by t [v, u] = t [u, v] as in I-§ 6.5. If in addition t is assumed to be bounded,
all the results stated there are valid. The operator T E .4 (H) associated by
(2.2) with a bounded symmetric sesquilinear form t has the property that

(2.3) T*= T;
T is said to be symmetric. The notion of a positive (or non-negative)
symmetric operator or form and the order relation S < T for symmetric
S, T E . (H) are defined as before (see loc. cit.).

The results of I-§ 6.7 on projections are also valid without modifica-
tion; here we are concerned with a P E 9 (H) such that P2 = P. Compare
also the results of III-§ 3.4 on projections in Banach spaces. We add the
following lemma.

Lemma 2.3. Let {Pn} be a sequence of orthogonal Projections in H
00

such that P. P. = Smn P. Then Pn = P exists in the strong sense and
n=1

P is an orthogonal Projection. The range of P is the closed span of the union
of the ranges of all the P.

n n
Proof. For any u E H we have £ II Pk uII2 = II Pk uII2 IIull2

A-1 k=1
n Co

since Z Pk is an orthogonal projection [see I-(6.49)]. Hence Z IIPk uII2
k=1 k=1

n+Q +p 00

is convergent and II' Pk u1I2 = E 11P1, uII2 ; 0, n -+ co. Thus Pn= P
k=n k=n n=1

is strongly convergent. It is easy to see that the P thus defined has the
properties stated.

We shall say that the {Pn} of Lemma 2.3 is complete if E Pn = 1.
A normal operator T E 9(H) is defined by the property T* T = T T*,

and the results of I-§ 6.6 remain valid. For example

(2.4) spr T = II TII if T is normal.
Problem 2.4. A quasi-nilpotent normal operator is zero.
Example 2.5. Consider the integral operator T of Example 111-2.4, with the

kernel t (x, y). If E = F and i (x, y) = t (y x) (Hermitian symmetric kernel), T is a
symmetric operator in H = L2 (E) (see Example 111-3.17). The same is true of the
operator T of Example 111-2.3, defined from a given matrix (ti k), if considered
in H = 12 and if (tfk) is Hermitian symmetric (tkf = zek), see Example
111-3.18.

Unbounded symmetric and normal operators will be dealt with in
detail in later sections.

2. Unitary and isometric operators
An operator T E. (H, H') is said to be isometric if it preserves the norm :

(2.5) II T u ll = lull for every u E H .
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As in the finite-dimensional case (I-§ 6.6), this implies that T* T = 1H
(the identity operator in H) and (Tu, Tv) = (u, v) for all u, v E H.

An isometric operator T is invertible, for T u = 0 implies u = 0.
But T-1 need not belong to °.,11(H', H) since its domain may not be the
whole space H'. Note that this may happen even when H' = H, in contra-
distinction to the finite-dimensional case.

An isometric operator T is said to be unitary if T-1 has domain H',
that is, if T has range H'. Then T-1 belongs to R(H', H) and is itself
unitary. Thus a T E -4 (H, H') is unitary if and only if

(2.6) T* T = 1H and T T* = 1H' ,
which is in turn equivalent to

(2.7) T-1= T* .

The existence of a unitary operator T on H to H' implies that H
and H' have identical structure as Hilbert spaces, for T preserves the
linear relations and inner products. An operator A' in H' is said to be
unitarily equivalent to an operator A in H if there is a unitary operator T
from H to H' such that

(2.8) A'T= TA or A'= TAT-1= TA T*.
This means that D (A') is exactly the image of D (A) under the unitary
map T and A' T u = TA u holds for every u E D (A). A' and A have the
same internal structure, for the correspondence u H u' = T u is unchanged
under the operators A and A' in virtue of the relation A u E-+ TA u
=A'Tu=A'u'.

Let T E 9(H, H') be an isometric operator and let M' = R(T). The
isometry implies that M' is a closed linear manifold of H'. The operator
T* E -4 (H', H) is an extension of T-1 as is readily seen from T* T = 1H,
whereas T*u' = 0 if and only if u' E M'J- [see III-(5.10)]. Thus T* is not
isometric unless T is unitary; it is partially isometric.

An operator W E 2(H, H') is Partially isometric if there is a closed
linear manifold M of H such that II W uII = lull for u E M while W u = 0
for u E M. M is called the initial set and M'= W M the final set of W ;
M' is a closed linear manifold. An equivalent definition is

(2.9) II Wull = IIPull for every uEH,

where P is the orthogonal projection of H on M. (2.9) is in turn equivalent
to

(2.10) W*W = P.

For any uEH we have W(1 - P) u = 0 since (1 - P) u E Ml. Hence

(2.11) W= WP.
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We have W*u' = 0 for u' E M'1, as in the case of an isometric operator.
Furthermore, IIW*WuII = 11 Pull = IIWuII shows that IIW*u'II = IIu'II for
u' E M'. Hence W* is likewise partially isometric with the initial set M'.
Application of this result to W replaced by W* shows that the final set
of W* is identical with the initial set M of W** = W. Thus there is
complete symmetry between W and W*. The following relations are
direct consequences of these considerations (P' is the orthogonal pro-
jection of H' on M').

W*W= P, WP= P'W= W, WW*W_ W,
(2.12) WW*= P', W*P'= PW*= W*, W*WW*= W*.

Problem 2.6. W E . (H, H') is partially isometric if and only if W = W W* W.
[hint: W = WW*W implies W*W = W*WW*W. Thus P = W*W is an ortho-
gonal projection of H on some subspace M.]

Example 2.7. Let H = L2 (E) and H = L2 (E'), where both E and E' are the
real n-dimensional euclidean space (so that they may be identified), the points of
which will be denoted respectively by x = (x1, ..., x") and k = (k1, ..., k"). The
Fourier transformation 12 = Tu given by

(2.13) d(k) = (2 n)-n/2 f e- ik.x u (x) dx
E

k.x=k1x1+... +k"x".

defines a unitary operator T on H to'H. The inverse operator T-1 it = u is given by

(2.14) u(x) = (2a)-12 t' eik.' d(k) dk
E'

These results are known as the Fourier-Plancherel theorem. Actually, these integrals
should be taken in the sense of limit in mean: the integral (2.13) is first to be taken
over a bounded subset K of E, the resulting function converging in the norm II

II

of H to the required transform d when K expands to the whole space El. Thus T
or T-1 is not an integral operator in the sense of Example 111-2.4.

Example 2.8. Let H = L2 (- n, n). For any u E H the Fourier coefficients

(2.15) (2n)-112 fu(z)e-i"Idx, n=0,±1,±2,...,
,i

are defined. The operator T that sends u into the vector v = (i") is a unitary
operator on H to H' = 12. The inverse T-1 assigns to each v = (") E H' the function
u (x) defined by the Fourier series

(2.16) u (x) = (2a)-112 -' et":

which is convergent in norm II
II

These results are another expression of the com-
pleteness of the family of trigonometric functions ei"x. Similar results hold when
it is replaced by any complete orthonormal family of H = L2 (- n, n) or of any
abstract Hilbert space.

Example 2.9. An example of an isometric operator that is not unitary is given
by a shift operator (cf. Example 111-3.16). Let {x"}"a1.2.... be a complete ortho-
normal family in a Hilbert space H and let T E .4 (H) be such that T x, = x"+ 1. T is
isometric and T* is partially isometric, with T* x"+1 = x" and T* x1 = 0. The
initial set of T is H and the final set is the subspace of H spanned by x2, x2, ... .

1 For details see e. g. STONE [1)1.
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3. Compact operators
Let T E I (H) be a compact operator. We know that the spectrum

E (T) consists of at most a countable number of eigenvalues with finite
multiplicities, possibly excepting zero (Theorem 111-6.26). Let Al, A, .. .
be these nonzero eigenvalues arranged, say, in decreasing order of
magnitude, and let P1, P2, ... be the associated eigenprojections. We
note that IAJ J is equal to the spectral radius of T:

(2.17) IAII = spr T = lim 11 T' '/n
n->oo

(see III-§ 6.2; read 0 for 1AII if there is no nonzero eigenvalue).
Suppose, in addition, that T is normal. Then the Ph are orthogonal

projections as in the finite-dimensional case (see I-§ 6.9), and the as-
sociated eigennilpotents are zero. On setting Qn = Pl + P2 + + Pn,
we see from 111-(6.55) that T Qn = A, Pi + + An Pw Since Q,, com-
mutes with T, T (l - Q,) is normal and has the eigenvalues An+i,
An+2, and possibly 0. For a normal operator, however, the spectral
radius coincides with the norm [see (2.4)]. In view of (2.17), we have
therefore JIT (1 - Qn) JI = spr T (1 - Q,) = I An+, I -+ 0, n -> oo. This gives'

(2.18) IIT-(AlPl+A2P2+...+AnPn)11-+0, n oo.

We have thus proved the spectral theorem, analogous to the one obtained
in the finite-dimensional case [I-(6.65)].

Theorem 2.10. If T E 9 (H) is normal and compact, we have the spectral
representation
(2.19) T= Ah Ph, Ph = Ph, dim Ph < o0,

h

in the sense of convergence in norm. The projections Ph form a complete
orthogonal family together with the orthogonal projection Po on the null space
N (T).

Proof. Only the last statement remains to be proved. Let Q be the
orthogonal projection on the subspace of H spanned by all the Ph H ;
we have Q = s-limQn (see Lemma 2.3). Q commutes with T since all
the Qn do. Thus Q H and (1 - Q) H are invariant under T. But the part Ta
of T in (1 - Q) H has no nonzero eigenvalue, for Tou = Au with
u E (1 - Q) H, A + 0, would imply T u = A u, hence A = Ah for some h
and u E PhH, so that u = Ph u = PhQu = 0 by Ph = PhQ and Qu = 0.
Since To is normal too, it follows from (2.19) applied to To that To = 0.
This means that (1 - Q) H C N (T). Since, on the other hand, T has, no
zeros in QH, we obtain (1 - Q) H = N (T).

It is possible that T has only a finite number n of eigenvalues; then (2.18)

should be interpreted to mean T = E A,, Pk. Similar modification will be needed in
h=1

some of the following formulas.
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Sometimes it is convenient to consider the eigenvectors of T rather
than the eigenprojections. From each subspace PhH choose an arbitrary
orthonormal basis consisting of mh = dim Ph vectors. These vectors
together form an orthonormal basis {(ph} of the subspace QH, and (2.19)
may be written

m

(2.20) T = ,uk (, 99k) 99k
k=1

where the It, are the repeated eigenvalues of T with the eigenvectors 99k
(eigenvalues 2; each counted repeatedly according to its multiplicity).
[For the notation (2.20) cf. III-(4.7).]

Let us now consider an arbitrary compact operator T E . 0 (H, H')
where H' is another Hilbert space. Since T* T is a nonnegative sym-
metric, compact operator in H, we have the spectral expression (note
that the eigenvalues of T* T are nonnegative)

(2.21)
00

T* T = f, ak ( , 9'k) 9q1, , (T;,
k=1

where T*T99k=ahTk,k= 1,2,...and al> a2 > 0. Set

(2.22) 99k= ak 1 T 9 9 , k= 1,2,... .

The 99k form an orthonormal family in H', for (Ti', 99k) = (a; ah)-1(T 99j,
T Tk) = (aj ak)-1 (T* T 99;, 9'1,) = a; ak 1(9,j, 99k) = s;,% We now assert
that

w
(2.23) T

k=1

Since {qqk}, {99k} are orthonormal and ak -+ 0, the series on the right
of (2.23) converges in norm. In fact,

n(+ p

OCR (u, 9911) 9911k=n

2 n+p n+p

= G ak I (u, 9qk) I2 S an 1(u, 9gk)'I2 a Hull 2
k=» k=n

n+p
so that ' ak (, 99k) 9911 S an -+ 0 for n -+ oo. Therefore, it suffices to

k=n
show that (2.23) is true when applied to vectors u of a dense subset of H.
For this it suffices, in turn, to consider u = 99n and u = yin,, where {yin}
is an orthonormal basis of N (T) = N (T* T) (eigenvectors of T* T for the
eigenvalue zero). But this is obvious by (2.22) and 99n 1'V,

(2.23) is called the canonical expansion of T. Strictly speaking, it is
not unique since the choice of {qqk} is not unique when there are degenerate
eigenvalues a2 of T* T. al, a2, ... are called the (repeated) nonzero
singular values' of T.

1 In an obvious way we can define the set of non-repeated singular values of T
and their multiplicities. 0 should be included in this set if T* T has the eigenvalue 0.
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It follows from (2.23) that

(2.24)
00

T* = xk( , -ph) 99k
k=1

is the canonical expansion of T*. Also we have

(2.25) T T* = E.ah ( , 99k) 99k

Hence the repeated nonzero eigenvalues of T T* are exactly the
In other words, T and T* have the same nonzero singular values.

Also we define

ak.

(2.26) 1 T I = v ak ( , 99k) 99k , I T* I = X ak (, 99k) qk

Note that I TI is determined by T, independently of the particular choice
of the qk.

Problem 2.11. Any compact operator of -4 (H, H') is the limit in norm of a sequence
of degenerate operators.

Problem 2.12. If T is compact and symmetric, the singular values of T are the
absolute values of the eigenvalues of T.

Problem 2.13. For any unitary operators U, V, the two operators T and U T V
have the same singular values.

4. The Schmidt class
One of the most important classes of compact operators of R(H, H')

is the Schmidt class. In this paragraph we assume for simplicity that
both H and H' are separable, though the results are valid in the general
case.

Let T E 9 (H, H') and define

(2.27)
1,2

II T 112 = it T 99kIl2
k=1

where {qqk} is a complete orthonormal family in H. If the series on the
right of (2.27) does not converge, we set II T11 2 = co. 11 Tit 2 is called the
Schmidt norm of T.

The Schmidt norm is independent of the choice of the family {997j
employed in the definition. To see this we note that

(2.28) EIITwkll2=E I (T 99A, 99,1)12 T* 99j') I'
k k j j k

where {99j'} is a complete orthonormal family in H'; the change of order
of summation in (2.28) is permitted because all terms involved are non-
negative. The left member of (2.28) is independent of the particular
family {99j'}, while the right member is independent of the particular
family {,pk}. Hence both members are independent of the choice of
{qqk} or {T1}.
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Incidentally, we have proved that

(2.29) IITI1 2= IIT*112

The subset of M (H, H') consisting of all T with II TII2 < co is called
the Schmidt class; it will be denoted by 92(H, H').

We have the inequalities

(2.30) IIS TII2 IISII IITII2 IITS112 s IITII21ISII

These should be read in the following sense: if T E A (H, H') and
S E . (H', H"), then S T E M2 (H, H") and the first inequality holds;
and similarly for the second.

Problem 2.14.'42 (H, H') is a vector space, that is, a T + fiS belongs to 92 (H, H')
whenever S, T do.

Problem 2.15. II T11 < II T112-

We can introduce an inner product (S, T) for S, T E R2(H, H')
so that -42 (H, H') becomes a Hilbert space with the Schmidt norm as its
norm. We set

(2.31) (S, T) (S (pk, T 99k)

The series converges absolutely since 2 I (S 9'7, T 99,)l < 11 S 99kII2 + II T99,112

and IISII2, II T112 are finite. In virtue of the polarization principle I-(6.8),
we have

(2.32) (S, T) = 4 (IIS + TII2 -IIS - Tl122 + ills + I T112 - iIIS - i T112)2 2

which shows that (S, T) is independent of the choice of {q9k} used in the
definition (2.31). It is easy to see that (S, T) satisfies all the requirements
of an inner product and that

(2.33) II Tl122 = (T, T) .

This in turn shows that II 112 has indeed the properties of a norm.
To see that -12(H, H') is a complete space, let {T,,} be a Cauchy

sequence in -42 (H, H') : II T. - T,,1I2 ->'0, m, n, --> oo. Then 11 T. - Tnil 0
by Problem 2.15, so that there is a T E 9 (H, H') such that II T,, - TII -' 0.
Since

II (T. - Tm) s II T. - Tm112 < e22
k=1

for sufficiently large m, n, and any s, we have for m --> oo
s

f 11(T.-T)99kII25e2
k=1

for sufficiently large n and any s. Hence II T,,- T II2 S e for sufficiently
large n. This implies that T,, - T E 12 (H, H'), hence T E 22 (H, H'),
and II T,,- TII2-0.
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We note that °R2 (H, H') C ,Vo (H, H') : each operator of 92 (H, H') is
00

compact. To see this let n be so large that ' II T 991,11 I< s'. Set
k=n+1

T q97, = T 99k forks n and Tn qqk = 0 for k > n. Clearly T can be
extended to a degenerate linear operator, and II T. - T11 < II Tn - T112 < e.
Hence T, as the limit in norm of {Tn}, is compact (see Theorem III-4.7).

Problem 2.16. If ak are the repeated singular values of T,

(2.34) II TI12 =
(E ak )112

Problem 2.17. If T E '42 (H, H'), the canonical expansion (2.23) of T converges
in the norm 11112-

Problem 2.18. T E .A2 (H, H') if and only if T* E . 2 (H', H) and

(2.35) (S, T) = (T*, S*) .

Example 2.19. Integral operators of Schmidt type. Let t (y, x) be a kernel defined
for x E E, Y E F, where E, F are measurable sets in euclidean spaces, and let

(2.36) 111112= f f I1(y,x)I2dxdy<oo.
ExF

Then the integral operator with kernel t (y, x) defines an operator T E °..A2 (H, H')
where H = L2(E) and H' = L2(F).

To see this we first note that the formal expression III-(2.7) for Tu defines an
operator T E °..A (H, H') (see Problem 111-2.5). To show that T E .°42 (H, H'), let
{ggk(x)} and be complete orthonormal families in H and H', respectively.
We have by (2.27) and (2.28)

(2.37) 11TI122 = E I(Ttpk,,;)I2 = E ff t(y.x) qk(x) j(y) dxdyl2
j,k j,k ExF

=Ef f It(y,x)12dxdy=11t112,

where we have used the fact that the functions 4pk (x) 9'(y) forma complete ortho-
normal family in the Hilbert space L2 (E x F) (see Example 1.10).

Let s (y, x), t (y, x) E L2 (E x F) and define the associated integral operators
S, T E .42 (H, H') as above. Then

(2.38) (S, T) = f f s (y, x) t (y, x) dx dy ;
ExF

this follows from (2.37) by polarization. (2.38) shows that t --> T is an isometric
transformation from L2 (E x F) to 22 (H, H'). Actually this transformation is
unitary: every T E 812 (H, H') is obtained in this way from a kernel t E L2 (E x F).
To see this it suffices to recall the canonical expansion (2.23) of T, which converges
in the norm 11 112 (Problem 2.17). Since the partial sum of this expansion is an integral
operator with the kernel

n n
(2.39) to (y, x) = E ak q, (.y) (x) with 11tn112 = E as,

k=1 k=1
it follows that T is the integral operator with the kernel t (y, x) which is the limit
in L2 (E x F) of t. (y, x).

5. Perturbation of orthonormal families
As an application of the theory of the Schmidt class, let us consider

perturbation of complete orthonormal families in a separable Hilbert
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space H. Let {qq,}, j = 1, 2, ..., be a complete orthonormal family in H.
Let {Vf} be a sequence of vectors of H, not necessarily orthonormal, such
that the differences ipj - qqj are small in some sense or other. The question
is under what conditions {Vj} is fundamental (complete) or is a basis of H.
We recall that {o} is fundamental if the set of all linear combinations
of the ip3 is dense in H. {ip;} is called a basis of H if every vector u of H
can be expressed in the form

M n
(2.40) u = E rl; Vj = s-lim m'J1=1

by means of a unique sequence {j;} of complex numbers. For a sequence
{o}, being a basis is a stronger property than being fundamental.

A convenient measure of the smallness of the zp - qqj is given by
00

(2.41) r2 = E 11 Vs - 99ill, .
j=1

Theorem 2.20.1 Let {qq;} be a complete orthonormal family in H and let
{V,} be a sequence such that r2 < oo. Then {yo;} is a basis of H if (2.40)
with u = 0 implies that all rj; = 02.

Proof. We define a linear operator T in H by
00 00

(2.42) T u = E j Vj for u= l: f qq; .
i=1 i=1

To see that this definition is possible, it suffices to note that any u E H
has a unique series expansion as in (2.42) with E 1,12 = JJu112 and that
the series T u - u = E 1('Ws - qq5) converges absolutely by the Schwarz
inequality:
(2.43) IITu - u1I2 (Ell jws - mjll2) = r211u112.

On setting 1:1= aek in (2.42), we see that Tqk = yak, k = 1, 2, ... .
Hence
(2.44) ii'T- 1112=Ell(T-1) 99j112=EIIw1- 99,112=r2<oo

so that A = T - 1 E -12 (H) with II A II 2 5 r. In particular A is compact
and so T = 1 + A has an inverse T-' E a (H), for 0 is not an eigenvalue
of T (see Theorem 111-6.26). In fact T u = 0 implies E l j ipe = 0, and
hence all j = 0 by hypothesis, so that u = 0.

Thus the range of T is the whole space H, and (2.42) shows that any
element v = T u of H has an expansion E 1 ip;. The uniqueness of this
expansion follows from the last assumption of the theorem.

It is easily seen that this assumption is satisfied if r is sufficiently
small; for example, r < 1 is sufficient, as is seen from the above proof by
noting that T = 1 + A has a bounded inverse because 11A11 5 11A112 5

1 See BARY [1], KREIN [4].
2 The last condition is expressed by saying that the y/4 are w-linearly independent.
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< r < 1 (Neumann series for T-1). A somewhat weaker condition is
given by

Theorem 2.21. Let {T1} be a complete orthonormal family in H. Then
a sequence { V1} of nonzero vectors of H is a basis if

(2.45) (11 w1- Till2 -
I(W1

III II

Vi)IE)
< 1 .

E

Proof. As is readily seen from the definition, {V1} is a basis if and
only if {,o, ip1} is a basis, where the O, are any nonzero complex numbers.
Therefore, {tp1} is a basis if we can choose the P1 in such a way that
f 1l e1 V1 - T1112 < 1 (see the above remark). Naturally the best choice
of the o1 is obtained by minimizing each IIPj'V, - Till. If P; is the orthog-
onal projection on the one-dimensional subspace spanned by zV1, this
minimum rr is given by ri 2 = 11(1 - P1) X1112 = 11(1 - P1) (9'1 - VJ)112

= 119'1 - w1II2 - 11 P1(9'1 - V1) 112 = II 9'1 - w1112 - I (9'1 - y'1, w1)12/II w1112.
(2.45) is exactly the condition that ' rI 2 < 1. Note that, under (2.45),
the minimizing P1 are not zero because rj' < 1.

Corollary 2.22.1 Each of the following conditions is sufficient for { p,}
to be a basis, where we write 11 ''V; - 9';11 = r1

r4<1.
ii) 11 u'; 11= 1 for all j and Z rr (i - rz) < 1 .

iii) (y11, q,1) = 1 for all j and ! rj / (1 + r;:) < 1.

Proof. It is trivial that i) implies (2.45). To deal with the cases ii)
and iii), we set x1= y'1 - q,; then, if 11Vill = 1, 1 = 119'1112 = II ?w1 - x,1l2
= 1 - 2 Re(xii V1) + Ilxlll2, hence I(x1' V1)I z Re(x1' y'1) = IIx1Il212
= r?/2 and ii) implies (2.45). If (y11, q91) = 1, then (x1, q91) = 0 so that
(y'1 - 991' V1) = (x1' 9'1 + x1) = 1 1 x1112 = y z and 11 Vill2 = 119'1 + x1112 = 1 +
+ 11 x1112 = 1 + r2. Thus iii) implies (2.45).

Corollary 2.23.2 Let {q,} be a complete orthonormal family and let {y11}

be an orthonormal family. Then { tp1} is complete if E j2 (1 - 4 r, ) < oo,

where r1= II '1 - Till.
Proof. As in the proof of Corollary 2.22, the assumption implies that
11 e1 V1- 9'1112 converges for a suitable sequence N1 of complex numbers.

It may happen that some of the P1 are zero, but there are only a finite
number of such P1 since II 9'111 = 1. Hence we can replace these vanishing
n1 by O1= 1, say, with the series £ 11 e1 'W1 - 9'ill2 still converging with all
e1 + 0. Furthermore, £ i71 L1 y'1 = 0 implies qj = 0 since the y11 are
orthogonal and nonvanishing. Hence the P1 v'1 form a basis of H by
Theorem 2.20 and the same is true of the ip1.

1 See HILDING [1].
2 See ISEKI [1], BIRKHOFF and ROTA [1].
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§ 3. Unbounded operators in Hilbert spaces
1. General remarks

Let H, H' be Hilbert spaces and let T be an operator from H to H'.
If T is densely defined, the adjoint T* is defined and is an operator
from H' = H'* to H = H*. According to III-(5.9), the inverse graph
G' (- T*) of - T* is the annihilator of the graph G (T) of T. But now the
product space H x H' in which G (T) and G (- T*) lie is a Hilbert space,
the inner product of two elements {u, u'} and {v, v'} being defined as
equal to (u, v) + (u', v') [which is compatible with our definition III-
(5.4) of the norm in H x H']. If T is closed, G (T) and G' (- T*) are thus
orthogonal complements to each other in H x H'.

In particular we have Theorem 111-5.29: if T is closable, then T* is
closed, densely defined and T** = T (the closure of T). If in particular
T E '(H, H'), then T** = T. Conversely T is closable if T* is densely
defined, for T** D T.

Let T E ' (H, H') be densely defined. Since the relationship between T
and T* is symmetric, we have (see Problem 111-5.27)

(3.1) N(T*)= R(T)1, N(T)= R(T*)1.
We note further that R (T*) is closed if and only if R (T) is (Theorem
IV-5.13) ; in this case we have

(3.2) H = N (T) ® R (T*) , H' = N (T*) ® R (T) .

2. The numerical range
For operators in a Hilbert space H, the notion of numerical range

(or field o l values) is important in various applications.
Let T be an operator in H. The numerical range 0 (T) of T is the

set of all complex numbers (T u, u) where u changes over all u E D (T)
with lull = 1. (We assume dimH > 0).

In general 0 (T) is neither open nor closed, even when T is a closed
operator. The following theorem of HAUSDORFF is important, but we
omit the proof 1.

Theorem 3.1. 0 (T) is a convex set.
Let us denote by r the closure of 0 (T) ; r is a closed convex set.

Let 0 be the complement of r in the complex plane. In view of the
convexity of r, a little geometric consideration leads to the following
result : 0 is a connected open set except in the special case in which r is a
strip bounded by two parallel straight lines (the limiting case is included
in which the two lines coincide). In this exceptional case, 0 consists of
two components A, 02 which are half-planes.

1 For the proof see STONE Q1], p. 131.
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Theorem 3.2. Let T E W(H), and let P, A, All A2 be as above. For any
C E A, T - C has closed range, nul (T - C) = 0, and def (T - C) is constant
for C E A, except in the special case mentioned above, in which def (T - C)
is constant in each of A and A2. [This constant value (or pair of values) is
called the deficiency index of T.] I/ def (T - C) = 0 toy C E A (C E A or
C E A2) then A(A or A2) is a subset of P(T) and T) 11 S 1/dist(C, P).

Proof. This theorem is a consequence of the first stability theorem for
nullity and deficiency (see Theorem IV-5.17). First we note that I (T u, u) -
- Cl= I((T-C)u,u)I SII(T - C)ull for any u E D(T) with (lull= 1
and any complex number C. If Z' E A so that dist r) = 6 > 0, it follows
thatII(T - C)ull z (5 for lull for
(3.3) 11 (T - C) u11 z bllull for every u E D(T) .

This implies that nul (T - C) = 0 and y (T - C) > S (see IV-§ 5.1 for
the definition of y), and hence that R (T - r;) is closed (Theorem IV-5.2).
Now it follows from Theorem IV-5.17 that def (T - C) = - ind (T - C)
is constant in A if A is connected and in each Ak otherwise.

Corollary 3.3. If T E 9 (H), then E (T) is a subset of the closure of 0 (T).
Proof. 0 (T) and its closure r are bounded since I (T u, u) I s 11 T11

for (lull = 1. Hence A is a connected open set containing the exterior of
the circle ICI = II T11. But this exterior belongs to P (T) so that def (T - I')
= 0 there. Hence the same must be true for all r; E A by Theorem 3.2.
Since we have also nul (T - l;) = 0 for C E A, it follows that A C P (T),
which is equivalent to r D E (T).

Theorem 3.4. If T is densely defined and 0 (T) is not the whole complex
plane, then T is closable (hence T* is also densely defined).

Proof. Since 0 (T) is a convex set not identical with the whole plane,
0 (T) is contained in a half-plane. Replacing T by a T + P with some
complex numbers a, 9, we may thus assume that 0 (T) is contained in the
right half-plane. This implies that

(3.4) Re (T u, u) z 0 for u E 0 (T) .

Suppose now that we have a sequence u E D (T) such that u 0,
T u,, --> v ; it suffices to show that v = 0.

For any w E D (T), we have

0 s
Re w) + (Tw, (T w, w)] .

This gives for n --> oo

0 S Re (v, w) + Re (T w, w) .

If we replace w by a w, a > 0, divide the resulting inequality by at and
let a -* 0, we obtain 0 5 Re (v, w). Since w E D (T) is arbitrary and D (T)
is dense in H. v must be zero.
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Problem 3.5. What is the numerical range of the operator T defined by the

matrix I o I in C2 (two dimensional unitary space) ?
Y 11

Problem 3.6. If T E ' (H), the essential spectrum of T (see IV-§ 5.6) is a subset
of the closure of O (T).

Problem 3.7. If T is closable, then O (T) is dense in e (T), and E) (T) and O (T)
have the same closure.

3. Symmetric operators
An operator T in a Hilbert space H is said to be symmetric if T is

densely defined and

(3.5) T* D T.

T is said to be selfadjoint if in addition

(3.6) T* = T.
If D (T) = H, (3.5) implies T* = T. Thus the definition of a symmetric
operator given here is in accordance with that given in § 2.1 for bounded
operators.

Problem 3.8. T is symmetric if and only if it is densely defined and

(3.7) (Tu, v) = (u, Tv) for every u, v E D(T) .

Problem 3.9. A densely defined operator T is symmetric if and only if the
numerical range 0 (T) is a subset of the real line.

(3.7) shows that (Tu, u) is real. If (Tu, u) 0, the symmetric
operator T is said to be nonnegative (in symbol T 0). (3.5) shows that
a symmetric operator is closable, for T* is closed. Since (3.5) implies
T*** ) T** and since T** is the closure of T, it follows that the closure
o l a symmetric operator is symmetric. A symmetric operator T is said
to be essentially selfadjoint if its closure T** is selfadjoint.

Problem 3.10. If T is symmetric, the following propositions are equivalent:
a) T is essentially selfadjoint.
b) T* is symmetric.
c) T* is selfadjoint.
d) T** is selfadjoint.
Problem 3.11. If T is symmetric and invertible with dense range, then T-1 is

symmetric.
Problem 3.12. A closed symmetric operator is bounded if and only if it has

domain H. [hint: The closed graph theorem.]
Example 3.13. Let (r!k) be a (Hermitian) symmetric matrix:

(3.8) zik=ska, j,h=1,2,3,...,
and assume that

(3.9) .L' IZlkl2 < oo for each j.
k

We shall show that we can associate with (rf k) a symmetric operator To in H = Is.
Let D be the linear manifold of H spanned by the canonical basis x = (3m,,). D is a
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subset of the domain of the maximal operator T defined as in Example 111-2.3,
for T x, = (v ,,) belongs to H by (3.8) and (3.9). We define To as the restriction of T
with domain D. T. is symmetric since D is dense in H and (3.7) is satisfied for T
replaced by To in virtue of (3.8).

In general To is neither closed nor essentially selfadjoint, but it can be shown'
that To = T. Thus T is symmetric only if T. is essentially selfadjoint, in which
case T is even selfadjoint (see Problem 3.10). It is in general a rather complicated
task to decide whether or not this is true for a given matrix (r5 ). A very special
case in which this is true is that of a diagonal matrix : tf u = A, 611, with real diagonal
elements A,. The proof will be given later, but a direct proof is also simple.

Example 3.14. Let H = L2 (a, b) for a finite or infinite interval (a, b), and consider
the differential operator d/dx. Let T and t be the associated maximal and minimal
operators in H (see Example 111-2.7). It follows from Example 111-5.31 that - T*
= T ) T, which implies that i t is symmetric. Similarly, it can be shown that i To
in the same example is symmetric [for finite (a, b)].

i T is not symmetric for a finite interval (a, b), for - T* = T. is a proper
restriction of T. If (a, b) = (- oo, + oo), on the other hand, i T = (i t)* is not
only symmetric but selfadjoint. To see this it suffices to show that i T is symmetric
(Problem 3.10). Let u, v E D (T). Since T u = u' we have (T u) v + u 27-v = (u v)' and

b'
(3.10) lim u (b') v (b') = u (0) v (0) + lim f ((T u) v + u T v) d x

b'-aoo b'-*m 0

exists; note that u, v, T u, T v all belong to H = L2. The limit (3.10) must be zero,
for otherwise u v would not be integrable in spite of the fact that u, v E L2. Similarly
u (x) v (x) -. 0 for x -. - no, so that

(3.11) (T u, v) + (u, T v) = lim u (b') v (b') - lim a (a') v (a') = 0 .
b'-a oo a'--,.- co

This shows that i T is symmetric.
For a finite (a, b), we have defined the operators T1, Ts, Ts which are restrictions

of T and extensions of T. (see Example 111-2.7). Neither of i T1 and i T. is symme-
tric, as is easily verified. i T. is symmetric if and only if the constant h that appears
in the boundary condition u (b) = k u (a) is of absolute value one (k = e4 8 with
real 0).

4. The spectra of symmetric operators
Let T be a closed symmetric operator in H ; since every symmetric

operator is closable, there is no essential restriction in assuming T to be
closed. An important property of T is the equality

(3.12) II (T -C) u1I2 = II (T - Ret) ull2 + (ImC)2IIulj2 , u E D (T)

This is easily verified by noting that T - ReC is symmetric as well as T.
(3.12) gives the inequality

(3.13) II (T - C) ull > IImCI'lull , u E D (T)

This implies that T - C has a bounded inverse with bound not exceeding
IImCI-1. Hence R(T - C) is closed for nonreal . It follows from the

first stability theorem of nullity and deficiency (Theorem IV-5.17) that
def (T - C) is constant in each of the half-planes ImC 0. This is also a

1 See STONE 111, p. 90.
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direct consequence of Theorem 3.2; note that the numerical range 0 (T)
of T is a subset of the real axis and therefore A of Theorem 3.2 either is a
connected set or consists of the two half-planes mentioned. The pair
(m', m") of the constant values of def (T - C) for Imp < 0 is called the
deficiency index of the symmetric operator T. If T is not closed, the
deficiency index of T is defined as equal to that of T, the closure of T.

According to (3.1) (applied to T - C), T* - C = (T - )* has range H
and nullity m" or m' according as ImC c 0.

If m'= 0, R (T - C) for ImC > 0 is H and R (C, T) = (T - 0-1 ER(H)
exists. In other words, the upper half-plane belongs to the resolvent set
P(T). If m' > 0, no C in the upper half-plane belongs to P(T). Similar
results hold for m" and C with ImC < 0. Thus there are the following
alternatives :

i) m' = m" = 0. All nonreal numbers belong to P (T) ; the spectrum
E (T) is a subset of the real axis.

ii') m' = 0, m" > 0. P (T) is the open upper half-plane ImC > 0 and
E (T) is the closed lower half-plane Im C S 0.

ii") m' > 0, m" = 0. "upper" and "lower" exchanged in ii').
iii) m' > 0, m" > 0. P (T) is empty and E (T) is the whole plane.
Problem 3.15. The case i) occurs whenever P (T) contains at least one real

number.

A closed symmetric operator is said to be maximal if at least one of m',
m" is zero [the case i), ii') or ii")]. A maximal symmetric operator has no
proper symmetric extension. To show this, we may assume that m' = 0.
Let Tl be a symmetric extension of T; T1 may be assumed to be closed
(otherwise take the closure). For any u E D (Ti), there is a v E D (T) such
that (T - i) v = (Tl - i) u because R (T - i) = H. Since T Tl, we may
write (T1 - i) (u - v) = 0. Since Tl is symmetric, this gives u - v = 0.
This implies that D (Ti) C D (T) and hence T1= T.

If both m' and m" are zero [case i)], T is selfadjoint. We have namely
Theorem 3.16. A closed symmetric operator T has deficiency index (0, 0)

if and only it T is self adjoint. In this case the resolvent R (C, T) = (T - ts)-1
exists for Im C + 0 and

(3.14) JJR(C, T) 11 5 1 ImCI-1 , 11(T - Re C) R(C, T) 11 s 1 .

Proof. Assume that T has deficiency index (0, 0). Then both T ± i
have range H, so that for each u E D (T*) there is a v E D (T) such that
(T - i) v = (T* - i) u. Since T ( T*, this may be written (T* - i)
(u - v) = 0. But T* - i has nullity zero by m" = 0, so that u - v = 0.

This shows that D (T*) ( D (T) and hence T* = T.
Conversely assume that T* = T. Then T* is also symmetric and the

nullities of T* ± i must be zero. Since these nullities are the deficiencies
of T i, the deficiency index of T is (0, 0).



272 V. Operators in Hilbert spaces

(3.14) follows directly from (3.12).
Problem 3.17. In order that a symmetric operator T be essentially selfadjoint,

each of the following conditions is necessary and sufficient (cf. also Problem 3.10) :
a) T* has no nonreal eigenvalue.
b) R (T - C) is dense in H for every nonreal C.
c) R (T - 4) is dense in H for some C with ImC' > 0 and also for some

=C"with ImC"<0.
Problem 3.18. If T is selfadjoint and invertible, T-1 is also selfadjoint. [hint:

Use, for example, Problem 3.11 and Theorem 111-6.15. Note that T-1 is densely
defined since u E R (T) J- implies that T u = T* u = 0, u = 0. ]

Problem 3.19. If T is a closed symmetric operator with finite deficiency index,
then T* is a finite extension of T (see III-§ 2.1).

Problem 3.20. Let T, S be closed symmetric operators and let S be a finite
extension of T of order r. If T has deficiency index (m', m"), then S has deficiency
index (m' - r, m" - r).

Example 3.21. Let us determine the deficiency index of the closed symmetric
operator i T. of Example 3.14. Since (i TO)* = i T, it suffices to solve the equations
i T u = ± i u, that is, u' = ± u. The solutions of these differential equations are
u (x) = c e± x (c is a constant). If (a, b) is finite, these solutions belong to D (T) for
any c and satisfy i T u = f i u. Thus both i T i have nullity one; the deficiency
index of i To is (1, 1).

If (a, b) = (- oo, + oo), the above solutions do not belong to H unless c = 0.
Thus the nullity of i T + i is zero and the deficiency index of i t is (0, 0)1. This is in
conformity with the result stated in Example 3.14 that i T = (i t) * is in this case
selfadjoint.

Next consider the case of a semi-infinite interval (a, b), say a = 0, b = oo.
Then the function e-x belongs to D (T) but ex does not. Thus the nullity of i T - i
is zero whereas that of i T + i is one, and the deficiency index of i t is (1, 0). The
closure of i t is maximal symmetric but not selfadjoint and has no selfadjoint
extension. (Actually T = T1.)

Finally consider the symmetric operator i T8 (i T for a finite (a, b), with the
boundary condition u (b) = e4 e u (a). Since i T8 is symmetric and a direct extension
of i T. and since i T. has deficiency index (1, 1), i T. has deficiency index (0, 0)
and is therefore selfadjoint.

Problem 3.22. Let H = L2 (E) and let T be the maximal multiplication operator
by a real-valued measurable function j(x) (see Example 111-2.2). T is selfadjoint.

5. The resolvents and spectra of selfadjoint operators
Let T be a selfadjoint operator in H. Its spectrum E (T) is a subset

of the real axis, and the resolvent R (C) = R (C, T) _ (T - c)-1 is defined
at least for all nonreal We have from III-(6.50)

(3.15) R (C) * = R

It follows that R (C) is normal, for the R (C) for different C commute with
each other.

In particular, we have IIR (C) II = sprR (C) by (2.4) and hence by
Problem 111-6.16

(3.16) IIR(C)II = 1/dist(C, Y-(T)) S IImCI-1.

1 Note that i I' is not closed.
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In the same way we have

(3.17) II TR (C)II = sup JAI IA - CI-1
AEE(T)

for T R (4) = 1+ C R (C) so that II T R (;) II = spr(l + CR(C)) = sup I 1 +
+ C(A - sup IA(A - 1

the of 1 + C (A - C)-1.]
If a real number a belongs to the resolvent set P (T), P (T) contains

a neighborhood of a; we say then that E (T) has a gap at a. Note that
P (T) is a connected set if E(T) has at least one gap.

Suppose that E (T) has gaps at a and 9, a < P. Let r be a closed
curve passing through a, 9 and enclosing the part of E (T) between a
and P. Further we assume that r is symmetric with respect to the real
axis [for example we may take as r a circle with the segment (a, 9)
as a diameter]. Then E (T) is separated by r into two parts, one
being in the interval (a, 9) and the other E" outside this interval. Let
(3.18) H=M'®M"
be the associated decomposition of H (see III-§ 6.4). Here M', M" are
orthogonal complements to each other, for the projection P on M' along
M" is orthogonal:
(3.19) P*= P,
as is seen from the expressions for P and P* given by III-(6.52), which
coincide in virtue of T* = T and the symmetry of r with respect to the
real axis.

If (T) has an isolated point A (which is necessarily real), we have
the Laurent expansion III-(6.32) for R (l;) = R (l;, T). Here not only P
but D and S are also symmetric (and bounded). D* = D follows from
III-(6.28) and S* = S from III-(6.31). But D as a symmetric quasi-
nilpotent operator must be zero (see Problem 2.4). Hence (T - A) P = 0
and A is an eigenvalue of T with the associated eigenspace M' = PH.
Note that, in this case, M' is the geometric as well as the algebraic
eigenspace. We have further

(3.20) IISII = 1/d with d = dist (A, E")

where E" is the spectrum of T with the single point A excluded. We shall
call d the isolation distance of the eigenvalue A. (3.20) can be proved as in
(3.16), noting that S may be regarded as the value at A of the resolvent
of the part TM" of T, of which the spectrum is exactly E" [see III-(6.31)]
and that M' 1 M".

Similar results hold when there are several isolated points Al, ..., A,
of E (T). We have [see III-(6.35)]

PA
(3.21) R (C) = - Z,' + Ro (C),
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where the Ph have the properties
(3.22) Ph = Ph , Ph Pk = ah k Ph
and where Ro (C) is holomorphic at C _ Ah, h = 1, ..., s. Again the .h are
eigenvalues of T with the associated eigenspaces Mh = Ph H, which are
orthogonal to one another.

6. Second-order ordinary differential operators
Consider the formal differential operator

d du
(3.23) Lu=-dxp(x) dx +q(x)u, a<x<b,
where p (x) is positive and continuously differentiable and q (x) is real and contin-
uous, both in the open interval (a, b). L is formally selfadjoint: M = L where M
is the formal adjoint to L defined by III-(2.27). Thus we have

b

(3.24) f ((Lu)v-uLv)dx=[puv'-pu'v]o;, a<a'<b'<b.
a'

Let us consider the linear operators T, t, etc. constructed from L in III-§ 2.3,
choosing now X = H = La (a, b) (see also Example 111-5.32). We have t* = T ) T'
by III-(5.14), so that the minimal operator t is symmetric. T is essentially sell-
adjoint it and only if the maximal operator T is symmetric (see Problem 3.10).
Whether or not this is true depends on the properties of the coefficients p (x), q (x).

It is certainly not true if (a, b) is finite and p (x), q (x) are continuous on the
closed interval [a, b] with p > 0 (the regular case). In this case T is not symmetric;
the closure of t is exactly the operator To with the boundary condition u (a)
= u' (a) = u (b) = u' (b) = 0 and To has deficiency index (2, 2). This is obvious since
To* = T and the equation (T ± i) u = 0 has two linearly independent solutions
(belonging to H). There are infinitely many selfadjoint operators H such that
To (H C T. Without trying to determine all such H', we note only that the T3,
T2 and Ts of III-§ 2.3 are examples of H; this follows immediately from the last
results of Example 111-5.32 in view of S = T.

As a typical case of a singular differential operator, let us now consider the case
with (a, b) = (- oo, + oo). We shall show that t is essentially selfadjoint (and T is
selfadjoint if p (x) > 0 is bounded and q (x) is bounded from below on (-oo, +oo).
To this end we may assume without loss of generality that q (x) Z 1, for the addition
of a real scalar to T does not affect its selfadjointness. Then

co(3.25) (Tu, u) = f (p Ju'12 + qjuj2) dx> 11u112 , u E D(T),
_,o

so that the numerical range 0 (T) of T lies to the right of C = 1, and the same is
true of O (T') (see Problem 3.7). It follows that the exterior of O (T) is a connected
open set containing the origin. To show that t is selfadjoint, it is therefore sufficient
to show that R (T) has deficiency 0 or, equivalently, that T = T'* has nullity zero
(see par. 3 and 4).

Suppose now that T u = 0. Take any smooth real-valued function w (x) that
vanishes outside of a finite interval. Then v = w u belongs to D (T) (see Problem
111-5.33), and a direct calculation gives

11
Tv=Lv=wLu - (p w')'u - 2pw'u'.

1 For a complete determination of the H see STONE (1}.
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Since L u = T u = 0, it follows that

"r 00

(3.26) (Tv,v)=- f (pw')'wlul%dx-2 f pw'wu'u,dx
M 00 _
f pw'%IuI%dx+ f pw'w(uu'-u'u)dx

00 M

(integration by parts). Since (Tv, v) is real while the first term on the right of (3.26)

is real and the second pure imaginary, this last term must vanish. Since (T v, v)
IIvII%, we thus obtain

(3.27) f w%IuI%dx = IIvII% s f p w'%Iu!%dx S c f w'%Iuj%dx

where p (x) S c by assumption.
It is easy to deduce from (3.27) that u = 0. To this end let w (x) be equal to one

for Ixj 5 r with Iw'I S s everywhere. Then (3.27) gives
r 00 00

(3.28) f IuI%dxS f w%IuI%dxSc f w12 Iu12dx<cs2 f Iztl%dx.-r -00 -00
It is possible to choose r as large as we please while s is fixed. On letting r ---> 00 for

m
a fixed s, we obtain f Iu12 dx = 0 since it is known that u E L2. This gives the

-00
desired result u = 0.

Problem 3.23. The assumption made above that p (x) is bounded can be replaced
by the weaker one that the integrals of p (x)-112 on the intervals (- oo, 0) and
(0, oo) both diverge.

Finally let us consider the case (a, b) = (0, oo) and assume that p (x) is positive
and bounded and q (x) is bounded from below on [0, 00)'. An argument similar
to that given above shows that T has deficiency index (1, 1). A typical selfadjoint
extension T, of T is obtained by restricting T with the boundary condition u (0) = 0.

00

Again the assumption that p (x) be bounded may be weakened to f p (x)-1/% dx = no.
0

Details may be left to the reader.

7. The operators T* T
The following theorem due to VON NEUMANN is of fundamental

importance.
Theorem 3.24. Let H, H' be Hilbert spaces. Let T E W (H, H') be densely

defined. Then T* T is a selfadjoint operator in H, and D (T* T) is a core of T.
Proof. As noted in par. 1, the graphs G (T) and G' (- T*) are com-

plementary subspaces of the Hilbert space H x H'. This implies that any
vector {u, u'} of H x H' can be expressed in the form {v, Tv} + {- T* v', v'}
with some v E D (T) and V' E D (T*). If in particular u' = 0, we have
u=v-T*v' and 0= Tv+v'. Hence Tv=-v'ED(T*) and
u = (1 + T* T) v. Since u E H was arbitrary, it follows that S = 1 + T* T
has range H. But it is easily seen that S-1 is symmetric and JIS-11I -, 1.

1 p (x) may tend to 0 and q (x) may go to + oo for x oo.
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Thus S-1 is symmetric and belongs to .(H) so that it is selfadjoint.
Hence S and T* T are also selfadjoint (see Problem 3.18). Note that this
implies that T* T is densely defined, which is by no means obvious.

To prove that D = D (T* T) is a core of T, it suffices to show that
the set of all elements {v, Tv} with v E D is dense in G (T) (see III-§ 5.3).
Thus we need only to show that an element {u, T u} with u E D (T)
orthogonal to all {v, Tv) with v E D must be zero. But this orthogonality
implies that 0 = (u, v) + (Tu, Tv) = (u, (1 + T* T) v) = (u, Sv). Since
S v fills the whole space H when v varies over D, this gives u = 0 as
required.

Example 3.25. Consider the operators T, To, etc. of Example 3.14 for a finite
interval (a, b). We know that Tp* T, Tl = - T2, T2* = - T1, T* To
(see also Example 111-5.31). Thus we have T* T = - To T; it is the differential
operator - d2/d x2 with the boundary condition T u E D (T(,), that is, u' (a) = u' (b)
= 0. (This is identical with the T2 of III-§ 2.3 in the special case po = - 1, p, = p$
= 0, ho = hb = 0.) Next we have To To = - T To; this is the same differential
operator - d2/dx2 with the boundary condition u (a) = u (b) = 0 (and coincides
with the Tl of the same example). Again, Ti Tl = - T2 Tl is the same differential
operator with the boundary condition u (a) = u' (b) = 0, and Ta T2 =- Tl T2
is obtained from it by exchanging a and b. That these differential operators are all
selfadjoint is a direct consequence of Theorem 3.24.

Example 3.26. A construction similar to the above one applied to the second-
order differential operators of III-§ 2.3 for X = H = L2 will give rise to various
differential operators of fourth order which are selfadjoint.

8. Normal operators
Selfadjoint operators are special cases of normal operators. The

definition of a not necessarily bounded normal operator T in a Hilbert
space H is formally the same as that of a normal operator of -V(H) :
T is normal if T is closed, densely defined and

(3.29) T*T= TT*;
note that both T* T and T T* are selfadjoint (preceding paragraph).
The implication of (3.29) is rather complicated, however, on account of
the domain relations involved.

(3.29) implies that II Tu1I = 11 T* u11 for u E D - D (T* T) = D (T T*).
Since D is a core for both T and T*, it follows that D (T) = D (T*)

Dl(:) D) and 11 TuII =IIT*ull for any u E D1.
For any complex numbers C', we have then D [(T* - C') (T -c)]

= D. In fact, u E D [(T* - C") (T - C)] implies u E D1 and Tu - 1 u E D1,
hence T u E D1, hence u E D. The opposite implication is obvious. Since
D [(T - l;) (T* - c')] = D similarly, we see from (3.29) that (T* -
- C') (T - C) = (T - C) (T* - a'). If in particular C E P(T) and V E
E P (T*), it follows that [we write R (C) = R (ts, T), R* R (C, T*)]

(3.30) R* (C') R (C) = R (C) R* (C') .
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(3.30) means simply that the resolvents R (C) and R* (c') commute.
Since R* (a') = R (y') * by III-(6.50), it follows that R (C) is also normal.
As in (3.16) and (3.17), we have

IJR(C, T)II = 1/dist(C, E(T)) = sup IC - AI-1
(3.31) AEE(T)

IITR(C, T)II = sup IA(C - A)-'I .
2EE(T)

Suppose now that the spectrum Z (T) of a normal operator T is
separated into two parts E', E". The projection P associated with this
decomposition and its adjoint P* are again given by III-(6.52). It
follows from (3.30) that P and P* commute so that P is normal. As in
the finite-dimensional case, this implies that P is an orthogonal projection
[see Problem 1-6.30]. If E' consists of a single point, the associated
quasi-nilpotent operator D is similarly seen to be normal, which implies
that D = 0 (see Problem 2.4). Thus we are led to the same expression
(3.21) for R(C) as for a selfadjoint operator T whenever E(T) contains
isolated eigenvalues Al, ..., A3, with the only difference that the eigen-
values Ah need not be real.

Problem 3.27. If T is normal, T and T* have the same null space.

Let T be a normal operator with compact resolvent (see III-§ 6.8).
Application of (2.19) to the resolvent R (C) = R (C, T) leads to the formula

00

R (C) _ Ph Ph, where the Huh are the eigenvalues of R (C) and Ph -> 0,
h=1

h oo, and where the Ph are the associated eigenprojections. The
orthogonal family {Ph} is complete since R (C) has the null space 0 (see
Theorem 2.10). But R (C) and T have the same set of eigenprojections,
and the eigenvalues Ah of T are related to the Ph by Ph = (Ah
Thus we have

(3.32) R (C) = h2 h 1 'h , Ah °O , h -->. oo

00

(3.33) , Ph = 1 (strong convergence) .
h=1

Example 3.28. (3.32) is true for all selfadjoint restrictions of the i T of Example
3.21. The same is true of all selfadjoint restrictions of the T of par. 6 in the regular
case (see Example 111-6.31). All these operators have discrete spectra consisting of
real eigenvalues with finite multiplicities (which do not exceed the order m of the
differential operator in question, since a differential equation of order m has at
most m linearly independent solutions).

9. Reduction of symmetric operators
Suppose that a symmetric operator T is decomposed according to the

decomposition H = M ® M1 of H into the direct sum of mutually orthog-
onal subspaces M and M1. According to III-(5.24), this is the case
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if and only if T commutes with the orthogonal projection P on M:

(3.34) PTCTP.
In this case we say simply that T is reduced by M. Since 1 - P is the
projection on Ml, T is reduced by M if and only if it is reduced by M-L.

A symmetric operator T is reduced by M if and only if u E D (T) implies
Pu E D (T) and TPu E M. The "only if" part of this theorem is obvious
from (3.34), so it suffices to prove the "if" part. The assumption implies
that TPu= PTPu foreveryu E D(T). Hence(u, PTPv) = (PTPu,v)
= (TPu, v) _ (u, PTv) for all u, v E D(T), which gives PTPv = PTv.
Thus TPu = PTPu = P T u for u E D (T), which is equivalent to (3.34).

Problem 3.29. Let H = Ml ® M2 ® .. ® M, be a decomposition of H into
the direct sum of mutually orthogonal subspaces. If a symmetric operator T is
reduced by each M1, then T is decomposed according to the above decomposition of
H in the sense of III-§ 5.6.

10. Semibounded and accretive operators
A symmetric operator T is said to be bounded from below if its

numerical range (which is a subset of the real axis) is bounded from
below, that is, if

(3.35) (T u, u) z y (u, u) , u E D (T) .

In this case we simply write T > y. The largest number y with this
property is the lower bound of T. Similarly one defines the notions of
boundedness from above and the upper bound. A symmetric operator
bounded either from below or from above is said to be semibounded.

If T is bounded both from below and from above, then T is bounded,
with the bound equal to the larger one of the absolute values of the
lower and upper bounds. The proof is the same as in the finite-dimensional
case [I-(6.33)]. In this case T E9 (H) if T is closed.

If T is selfadjoint, T is bounded from below (with lower bound VT)
if and only if E(T) is bounded from below (with lower bound yE).
In fact, suppose that T is bounded from below. Then the open set A
complementary to the closure of 0 (T) is connected, including real
numbers C such that C < YT, and is contained in the resolvent set P (T)
(see Theorem 3.2). Thus E(T) is bounded below with lower bound
yE z VT Conversely suppose that E (T) is bounded below with lower
bound yE. Set T' = T - yE. T' has its spectrum on the nonnegative
real axis, and for any a > 0 we have II(T' + a) -111 = o e-1 by (3.16).
For any u E D (T), we have therefore Hull S a-1 11 (T' + a) ull and so

(3.36) 11ull2 a-111 T'uhI2+ 2a-1(T'u u) + 1lull2

or 0 5 a-' 11 T' u I12 + 2 (T' u, u). On letting a -> oo we have (T' u, u) Z 0,
that is, T' z 0, T z yE. Thus T is bounded from below with YT z yE.
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An operator T in H is said to be accyetive) if the numerical range
0 (T) is a subset of the right half-plane, that is, if
(3.37) Re (T u, u) z 0 for all u E D (T) .
If T is closed, it follows from par. 2 that def (T - C) = ,u = constant for
ReC < 0. If /u = 0, the left open half-plane is contained in the resolvent set
P(T)with (T+A)-'E2(H), l
(3.38) II (T + A)-III < (ReA)_1

for ReA > 0.

An operator T satisfying (3.38) will be said to be m-accretive2.

An m-accretive operator T is maximal accretive, in the sense that T
is accretive and has no proper accretive extension. In fact, the argument
used above gives (3.36) with T' replaced by T and (T' u, u) by Re (T u, u)
and leads to the result Re (T u, u) >- 0. Thus T is accretive. Suppose
that T, is an accretive extension of T. Then (T, + A)-' exists and is an
extension of (T + A)-' for ReA > 0. But since the latter has domain H,
the two must coincide and so T, = T.

An m-accretive operator T is necessarily densely defined. Since D (T)
is the range of (T + A)-', ReA > 0, it suffices to show that ((T+A)-' u, v)
= 0 for all u E H implies v = 0. On setting u = v and (T + A)-' v = w,
we have 0,= Re((T+ A)-1 v, v) = Re(w, (T + A) w) > ReAIIwIIz and
hence w = 0, v = 0.

We shall say that T is quasi-accyetive if T + a is accretive for some
scalar a. This is equivalent to the condition that 0 (T) is contained in a
half-plane of the form ReC > const. In the same way we say that T is
quasi-m-accretive if T + a is m-accretive for some a.

Like an m-accretive operator, a quasi-m-accretive operator is maximal
quasi-accretive and densely defined.

Problem 3.30. If T is accretive and invertible, T-' is accretive.
Problem 3.31. If T is m-accretive, then T* and (T + A)-' are also m-accretive

for ReA > 0; T (T + A)-' is m-accretive for A > 0, with II T (T + A)-'II S 1. If T is
m-accretive and invertible, then T-' is m-accretive.

Problem 3.32 If T is symmetric, T is m-accretive if and only if T is selfadjoint
and nonnegative. If T is selfadjoint and nonnegative, then the same is true of
(T + A)-' and T (T + A)-' for A > 0. Furthermore, we have
(3.39) 0S(T(1+aT)-'u,u)S(Tu,u), uED(T), a>0.

Problem 3.33. If T is m-accretive, then (1 + n-' T)-' 1 strongly. [hint:
II (1 + n-' T)-1II 5 1 and 11(1 + n-' T)-1 u - uII = n-1II (1 + n-1 T)-' TuII
S n-1 11 TuII 0 if u E D (T).]

' In this case - T is said to be dissipative. Dissipative operators have been
studied by FRIEDRICHS [6] (where the term "accretive" appears), PHILLIPS [2],
[3], [4]. See also DOLPH [1], [2], DOLPH and PENZLIN [1], M. S. LIvsic [1], BRODSKII
and LIv§Ic [1]. Some authors define a dissipative operator T by Im(Tu, u) > 0.
LUMER and PHILLIPS [1] defines dissipative operators in Banach spaces.

2 An m-accretive operator is equivalent to a closed, maximal accretive operator,
though we do not prove this equivalence completely; see PHILLIPS [3].
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For some quasi-accretive operators T, the numerical range 0 (T) is
not only a subset of the half-plane ReC const. but a subset of a sector
I arg (C - y) 15 0 < 7r/2. In such a case T is said to be sectorially-valued
or simply sectorial; y and 0 will be called a vertex and a semi-angle of the
sectorial operator T (these are not uniquely determined). T is said to be
m-sectorial if it is sectorial and quasi-m-accretive.

If T is m-sectorial with a vertex y and a semi-angle 0, E (T) is a
subset of the sector I arg (C - y) I < 0; in other words P (T) covers the
exterior of this sector. This is clear from Theorem 3.2 since the exterior A
of 0 (T) is a connected set.

Example 3.34. Consider the formal regular differential operator L u = p0 (x) u"+
+ p1(x) u' + p2 (x) u on a finite interval [a, b] (see III-§ 2.3), where the pk (x) are
real and p0 (x) < 0. Let Tl be the operator defined from L in the Hilbert space
H = L2 (a, b) by the boundary condition u (a) = u (b) = 0 (see loc. cit.). We shall
show that T1 is m-sectorial.

For u E D (T1) we have

(T1u,u)= f (pou"+P1u'+P2u)udx
b b

f P. JUT dx + f [(p1 - po) u' + p2 u] u dx .
a a

Since - pu (x) > mo > 0, IN (x) - po (x) I S M1, I p2 (x) 15 M2 for some positive
constants mo, Ml, M2, we have

Re(T1u,u)Z No f Iu1I2dx-M1 f Iu'i Jul dx - M2 f Iu12dx,

IIm(Ti u, u)I = IIm f (P1 - po) u' u dxl s M1 f lu'I Jul dx .

Hence, for any given k > 0,

Re(T1 u, u) - kIIm(Tj u, u)I

MO f lu'12 dx - (1 + k) M1 Jul l ul dx - M2 f lu12 dx >

[m0 - e(1 + k) Ml] f Iu1I2 dx - ((1
±1)M1

+ M2) f Iuls dx,

where e > 0 is arbitrary. If a is chosen in such a way that mo - e (1 + k) M1 Z 0,
we have Re (T1 u, u) - k I Im (Tl u, u) I Z y (u, u) for some negative number y.
In other words

IIm(T1u,u)IS T Re ((T, - V) u, u)

This means that 0 (T1) is contained in a sector with vertex y and semi-angle
0 = arctan(l/k). Thus T1 is sectorial with an arbitrarily small semi-angle.

To show that T1 is quasi-m-accretive, it suffices to note that (T1 + A) * = S1 + A,
where A is real and S1 is an operator in H defined from the formal adjoint M to L
(see Example 111-5.32). S1 is sectorial as well as T1, and S1 + A has nullity 0 if
A is sufficiently large. Thus T1 + A has deficiency zero, showing that T1 is quasi-
m-accretive.

It is not difficult to prove that a similar result holds for second-order partial
differential operators of elliptic type.
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11. The square root of an m-accretive operator
The purpose of this paragraph is to prove the following theorem'.
Theorem 3.35. Let T be m-accretive. Then there is a unique m-accretive

square soot T'l2 o f T such that (T'/2)2 = T. T'/2 has the following additional
properties.

i) T'/2 is m-sectorial with the numerical range contained in the sector
IargCI S ;r/4.

ii) D (T) is a core of T'/2.

iii) T'12 commutes with any B E -4 (H) that commutes with T.
iv) If T is selfadjoint and nonnegative, T'/2 has the same properties.
For the proof we start with the special case in which T is strictly

accretive, that is, Re(Tu, u) > 6IIuII2, u E D(T), with a constant 6 > 0.
This implies that T - 6 is m-accretive, so that

(3.40) II(T+ C)-111 s (Re '+ 6)-' , ReC z 0 .

We now define an operator A b(y' the Dunford-Taylor integral

(3.41) A = 2' - C-1/2(T-a)-'dC;
r

here the integration path r runs from -oo to -oo in the resolvent set
of T, making a turn around the origin in the positive direction [this is
possible since P(T) contains the half-plane ReC < 6]. The values of
C-1/2 should be chosen in such a way that C-1/2 > 0 at the point where r
meets the positive real axis. The integral of (3.41) is absolutely convergent
in virtue of (3.40). Thus A is well defined and belongs to . (H).

Lemma 3.36. A 2 = T.

Proof. We take another expression for A in which the - integration
path r is replaced by a slightly shifted one r' not intersecting r, and
multiply out the two expressions. Since the two integrals are absolutely
convergent, the order of the integrals is irrelevant. Making use' of the
resolvent equation for (T - C)-' (T - we arrive at the result

(3.42) A2 = 2 i
f C-1(T - C)-1 dC = T-1

rr

This procedure is exactly the same as the proof of I-(5.17).
A2 = T-' implies that A is invertible, for Au = 0 implies T-' u

= A2u = 0, u = 0. We now define T'/2 as equal to A-', so that T-'/2
(P/2) -I = A. We note that T-'12, and so T'/2 too, commutes with the

resolvent (T - C)-', as is obvious from (3.41).
A more convenient expression for T-'12 is obtained by reducing the

path r to the union of the upper and lower edges of the negative real

1 Cf. LANGER [1].



282 V. Operators in Hilbert spaces

axis. Writing C = - A and noting that C-1/2 = T- i A-1/2we obtain
M

(3.43) T-1/2 =

a

f A-1/2 (T + A)-1 d A.
0

This shows, in particular, that T-1/2 is nonnegative selfadjoint if T is
selfadjoint, for (T + A)-1 has the same properties. In the general case
T-1/2 is accretive since (T + A)-1 is accretive, and this implies that T1/2
is m-accretive (see Problem 3.31). Furthermore, we have

00 00

(3.44) I! T-1/211 S
J A-1/211

(T+ A)-111 d A f A-1/2 (A+ 6)-1 d A= 6-1/2.
0 0

Lemma 3.37. (Tl/2)2 = T.
Proof. Let it E D (T). Since A2 T u = u, u E R (A) = D (T1/2) and

T1/2 u = A-1 u = A Tit. Hence T1/2 u E D (TI/2) and T1/2 (TI/2 U) = A-1 .
A Tit = Tit. Conversely, let u E D((T1/2)2) and set v = (T1/2)2 u. Then

T-1 v = A2 (T1/2)2 u = A (T1/2 u) = u, so that u E D (T) and Tu = v
_ (T'/2)2 u. This proves the lemma.

Lemma 3.38. D(T) is a core of T1/2.

Proof. Let u E D (T1/2) ; we have to show that there is a sequence
u E D (T) such that u -> u and T1/2 (un - u) - 0. Such a sequence is
given, for example, by u,, _ (1 + n-1 T) -1 u = n (T + n) -1 u. In fact,
it is obvious that un E D (T). Set v = T1/2 u; then u = Av and u _
= n(T + n)-1 Av = nA (T + n)-1 v (see the remark above) and so
P/2 u a = n (T + n) -1 v -*- v = T1/2 u (see Problem 3.33).

Incidentally, we note the formula
00

(3.45) T1/2 a= f A-1/2 (T + A)-1 Tit d A, u E D (T) ,
0

which is obtained by applying (3.43) to u replaced by Tit and noting
that T-1/2 Tit = T1/2 u by Lemma 3.37.

Problem 3.39. Re (7'1/2 u, u) Z 61/21ju112, u E D (T1/2). [hint: Re((T + A)-1 Tu, u)
6(6 + A)-111u112.1

Lemma 3.40. Proposition i) o l Theorem 3.35 holds when T is strictly
accretive.

Proof. We deduce from (3.41) another expression for A by reducing r
to the union of the upper and lower edges of the ray C = -A ete, 0 <
< A < oo, where 0 is a fixed angle with 101 < n/2. A calculation similar
to that used in deducing (3.43) gives

00

(3.46) T-1/2 = ete/2 f A-1/2(T+ A e{6)-1 dA;

0

note that the integral is absolutely convergent since 11 (T + A el0)-1II

S (8 + A cos0)-1 by (3.40). Now T + A et0 is accretive with T because
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ReA eie= A cosO > 0, so that (T+ Aei°)-1 is also accretive. Hence
e-i0/2(T-1/2 u, u) has nonnegative real part by (3.46). Since this is true
for 101 < n/2, it follows that (T-1/2,U, u) lies in the sector IargCI n/4.
This result can be written
(3.47) I Im (T1/2 u, u) ( S Re (Tl/2 u, u) , u E D (TI/2)

Proposition iii) follows from (3.41), which shows that A = T-1/2
commutes with B. Summing up the results obtained so far, we have
proved the theorem in the special case of a strictly accretive T except
for the uniqueness of T1/2. We now prove this uniqueness under some
restrictions.

Lemma 3.41. Assuming that T is strictly accretive, suppose there is an
m-accretive operator S such that S-1= B E -4 (H) and S2 = T. Then
S = Tl/2.

Proof. B = S-1 commutes with B2 = T-1, hence with T and also
with the resolvent (T - a)-1 (see Theorem 111-6.5). It follows from (3.41)
that BA = A B. Since A2 = T-1= B2, we have (A + B) (A - B)
= A2 - B2 = 0. For any u E H, we have therefore (A + B) v = 0 for
v= (A - B) u. Then Re (A v, v) + Re (B v, v) = Re ((A + B) v, v) = 0.
But both (A v, v) and (Bv, v) have nonnegative real parts since A, B are
accretive. Thus Re (A v, v) = 0 or Re (w, T'/2 w) = 0 for w = A v. Since
Re (w, T1/2 w) > 61/2 11 wII 2 by Problem 3.39, we conclude that w = 0,
(A - B) u = v = T112 w = 0. Since u was arbitrary, this proves B = Al
and hence S = T112.

We shall now remove the assumption made above that T is strictly
accretive. Let T be m-accretive. For any e > 0, T, = T + e is strictly
accretive, so that Tell= Se can be constructed as above. We shall show
that lim Se = S exists in a certain sense.

e-s0

For any u E D(Ti) = D (T), we have the expression (3.45) for Se u
where T is to be replaced by T. Since (Te + A)-1 Te u = u - A(T, + A)-'u

= u - A(T + e + A)-lu, we have e (Te + A)-' Te u = A(T + e + A)-2u

= A(Te + A)-2 u = - A d A (Te + A)-1 u. Hence
00

(3.48) de Se u = i f A1/2 T1 (TB + A)-1 u dA
0

00

,/ A-1/2 (Te + 2)-' u d2 = 2 T.-1/2U,
0

where we made an integration by parts and used (3.43) for TB 112. Integrat-
ing (3.48) between 97 and e, where 0 < 27 < e, we obtain S, u - S,, U

1 The argument used here is a generalization of that of RIEsz and Sz.-NAGY 111)1,
p. 264, where symmetric operators T > 0 are considered.
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= 1 f Te 112 u d e. Making use of the estimate 11 TQ 112 S e-1/2, whichz
follows from (3.44), we have then

e e

(3.49) S. u - Sn u S
2

f 1jTe 112 ull de s f e-1/2 Ilull de
n n

_ (el/2 - 171/2) IIuII

This shows that lim S. it = S' u exists for it E D (T) and that
6- 0

(3.50) IISeu - S'ull el/211ull, uED(T).
Thus the operator S' - S. [with domain D(T)] is bounded with bound
<e1/2. Since D (T) = D (T.) is a core of S, (see Lemma 3.38), it follows
from the stability theorem of closedness (Theorem IV-1.1) that S' is
closable and the closure S = 9' has the same domain as S. [which implies,
in turn, that D (Se) is independent of e]. At the same time (3.50) is
extended to all u E D (S) with the S' on the left replaced by S. Thus we
may write
(3.51) S, = S + Be , Be E 4(H) , 11Be11 5 e1/2 .

Since (Se u, u) - (S u, u), e -> 0, u E D (S) = D (Se), S is sectorial
with 0 (S) contained in the sector largCl 5 r/4, for this is true for Se.
Furthermore, any C outside of this sector belongs to the resolvent set of S,
as is seen by constructing R (C, S) by the Neumann series from S = S, -
- Be, in which a is chosen so small that e1/2 is smaller than the distance
of C from that sector. This shows that S is m-accretive.

Lemma 3.42. S2 = T.
Proof. Let u E D (T) and set v, = S, u. We have v, - Su, e > 0.

Since we know that S2 = Te, v6 E D (Se) = D (S) and S, v, = T, u. Hence
S v, = (Se - Be) ve = Te u - Be ve T u, e -+ 0. It follows from the
closedness of S that S u E D (S) and S S u = T u. Thus we have proved
that T C S2 This implies that T + 1S2+1= (S + i) (S - i) and so
(T + 1) -1 c (S - i)-1 (S + i) -1. But (T + 1) -1 and (S +i)-1 belong to
R(H). Hence we must have equality instead of the last inclusion, and
this in turn implies that T = S2.

On writing S = T1/2, we have thus proved that i), ii) of Theorem 3.35
are satisfied [ ii) is implied by S = 3']. iv) is also clear, for Se and S are
symmetric and hence selfadjoint if T is selfadjoint.

Lemma 3.43. (3.45) is true in the general case.
Proof. The integral in (3.45) is absolutely convergent, for IIA-1/2.

(T+ A)-III S A-3/2 for A-+oo and IIA-112(T+ A)-1 Tull S 2 A-1/2j ul
for A -+ 0. The corresponding integral expression for Te12 u has the same
properties, the estimate being independent of e. Since (T, + A)-1 Te it -
- (T+A)-1Tu= -A[(T,+A)-1u- (T+A)-1u]-+0 for a-.0 for
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each A > 0, it follows by the principle of dominated convergence that
T812 u converges to the right member of (3.45). Since Te"2 u T112 U,

T1/2 u must be equal to the right member of (3.45).
Lemma 3.44. iii) of Theorem 3.35 is satisfied.
Proof. B commutes with Te = T + e, hence with S. = Ts12 by what

was already proved. Since it is easily seen that (Se + 1)-1 -. (S + 1)-1,
S

e 0, B commutes with (S + 1)-1, hence with S = T1/2 (see Theorem
111-6.5).

Lemma 3.45. Let R be any m-accretive square root of T : R2 = T.
Then R commutes with the resolvent of T and D (T) is a core of R.

Proof. Let A + 0 be real. Then (R - i A) (R + i A) = R2 + A2 = T + A2
has range H and so does R - i A. On the other hand R - i A has nullity
zero, for R u= i A u implies T u= R2 u= i A R u=- A2 u, (T + A2) u
= 0, u= 0. Thus f i A E P (R) and (T + A2)-1= (R - i A)-' (R + i A) -1.
Hence R commutes with (T'+ A2)-1. It follows also that D (R) D D (T) and
(R - i A) D (T) = R [(R - i A) (T + A2)-1] = R [(R + i A)-'] = D (R) is
dense in H, so that D (T) is a core of R.

Lemma 3.46. An m-accretive square root of T is unique'
Proof. Let R be any m-accretive square root of T. Then R + e is

strictly m-accretive for any s > 0, and (R + 8)2 = R2 + 2 s R + e2
= T + 2e R + e2 = Qe is also strictly accretive. In fact it is also m-
accretive; to see this it suffices to note that R is relatively bounded with
respect to T because D (R) D D (T) (see Remark IV-1.5), so that (Qe +
+ 1)-1 E.V(H) for sufficiently small e (see Theorem IV-1.16). According
to Lemma 3.41, R + e must be identical with the unique square root
Qe112

Let u E D (T). Then it E D (R) and (R + e) u -+ Ru, s -+ 0. On the
other hand, we have Q'12 U T1/2 u as we shall prove in a moment.
Thus we obtain Ru = T1/2 u for it E D (T). Since D (T) is a core for both R
and T1/2 (see Lemma 3.45), it follows that R = T1/2, as we wished to show.

To prove that Q812 it -+ T1/2 u, e -+ 0, for u E D (T), we make use of
(3.45) and a similar expression for Qe12 u (see Lemma 3.43). Since
(T + A)-1 T u = u - A (T + A)-1 u, we have

(3.52) Qe12 u - T1/2 u = - f A1/2 [(Q. + A)-1 u - (T + A)-1 u] dA
0

00

e f A1/2 (Qe + A)-' (2R + e) (T + A)-' u d A .

0

To estimate this integral, it is convenient to split it into two parts

f and f and to use the integrand in the form of the middle member of
0 6



286 V. Operators in Hilbert spaces

(3.52) in the first part and in the form of the last member in the second
part. Thus, noting the commutativity of R with (T + A)-1 (see Lemma
3.45), we obtain

E

aIIQe12 u - Tl/2uII < f A"' [11(Q0+ A)-'II + II(T+ A)-'I!] IIuII dA +
0

00

+ e f A112II (QE + A)-'II II (T + A)-1II II (2R + e) uII dA <
C

(_ii2d2)IIuII+e(fA-3/2d2)II(2R+e)uII

o \E

= 4 e1/2II uII + 2e/211(2R+ e) uII -> 0 , s -> 0 .

Problem 3.47. If T E .4 (H) is symmetric and nonnegative, then II T11211 = II TII112.

Problem 3.48. If T is m-accretive, the following conditions on u are equivalent:
a) Tu = 0, b) T112 u = 0, c) (A + T)-1 u = A-1 u, A > 0.

Theorem 3.49. Let T be m-accretive. T has compact resolvent i f and
only if Tl/2 has.

Proof. Set S = T1/2. The formula (T + 1)-1 = (S + i)-1 (5 - i)-1
proved above (in the proof of Lemma 3.42) shows that T has compact
resolvent if S has. To prove the converse statement, define TE = T + e
and S. = T812 as above. S,-' is given by (3.43) with T replaced by TE
on the right. Since the integral converges in norm and since (TE + A)-1 is
compact for all A > 0, it follows that SB 1 is compact. Thus SE has compact
resolvent, so that (1 + SE)-1 is compact. Now II (1 + Se)-1 - (1 + S)-1IM

= II (1 + SE)-1(1 + S)-1(S - SE) II 5 II BEII < el/2 -. 0 for e -* 0 by (3.51).
Hence (1 + S)-1 is compact and S has compact resolvent.

Remark 3.50. More generally we can define the fractional powers T",
0 < oc < 1, for an m-accretive operator T by a construction similar to
that given above for T1/2. If T is strictly m-accretive, we have simply to
replace C-1/2 by C-" in (3.41) to obtain T. The formula corresponding
to (3.43) is

Co

(3.53) T-" = sin= a f A-"(T + A)-1 dA.
0

The general case can be dealt with by the method of this paragraph.
It will be noted that T" can be defined for a more general class of operators
acting in a Banach space.

Problem 3.51. Let T,,, T be m-accretive operators such that T. --.>, T in the
generalized sense. Then (T + e)-1/2 -+ (T+ e)-112 in norm for any e > 0.

Problem 3.52. Let T,,, T be m-accretive and (T + (T + A)-1 for all
s

A > 0. Then (T + e)-1/2 (T + e)-112 for any e > 0.
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§ 4. Perturbation of selfadjoint operators
1. Stability of selfadjointness

Since the selfadjoint operators form the most important class of oper-
ators that appear in applications, the perturbation of selfadjoint operators
and the stability of selfadjointness is one of our principal problems'.

The first question is under what conditions the selfadjointness is
preserved under a "small" perturbation. A fundamental result in this
direction is given by

Theorem 4.1. Let T be a selfadjoint operator. Then there is a S > 0
such that any closed symmetric operator S with 8(S, T) < S is selfadjoint,
where S (S, T) denotes the gap between S and T.

Proof. Since ± i belong to P (T), it follows from Theorem IV-3.15
that there is a S > 0 such that 6 (S, T) < b implies + i E P (S). Then S is
selfadjoint by Theorem 3.16.

Corollary 4.2. Let T, T. be closed symmetric operators and let {Tn}
converge to T in the generalized sense (see IV-§ 2.4). If T is selfadjoint,
then T,, is selfadjoint for sufficiently large n.

Although this theorem is rather general, it is not very convenient
for application since the definition of the gap 6 (S, T) is complicated.
A less general but more convenient criterion is furnished by relatively
bounded perturbations.

We recall that an operator A is relatively bounded with respect to T
(or T-bounded) if D (A) D D (T) and
(4.1) IIAull S alluil + b11 TuII , u E D(T) ;
see IV-(1.1). An equivalent condition is
(4.2) IIAuII2 S a'allull'+ b'2IITuII', u E D(T) ,
where the constants a', b' are, of course, in general different from a, b.
As is easily seen, (4.2) implies (4.1) with a = a', b = b', whereas (4.1)
implies (4,2) with a12 = (1 + e-') a2 and b' 2 = (1 + e) b2 with an arbitrary
e > 0. Thus the T-bound of A (defined as the greatest lower bound of the
possible values of b) may as well be defined as the greatest lower bound
of the possible values of Y.

Theorem 4.3.2 Let T be selfadjoint. If A is symmetric and T-bounded
with T-bound smaller than 1, then T + A is also selfadjoint. In particular
T + A is selfadjoint if A is bounded and symmetric with D (A) ) D (T).

1 In this section all operators are assumed to act in a Hilbert space H, unless
otherwise stated.

2 Theorems 4.3 and 4.4 are due to RELLICH [3]. See also T. KATO [3], [4].
These theorems have been found to be convenient for establishing the selfadjointness
or essential selfadjointness of various operators that appear in applications. The
applications to the Schrodinger and Dirac operators will be discussed in § 5. For
the applications to the quantum theory of fields, see Y. KATO [1], Y. KATO and
MUGIBAYASHI [1]; Cf. also COOK [2].
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Proof. Obviously T + A has domain D (T) and is symmetric. We
may assume without loss of generality that (4.2) holds with constants
a', b' such that a' > 0, 0 < b' < 1. In view of the identity (3.12), (4.2)
can be written
(4.3) 1 1 A ulI s 11 (b' T + i a') ull , u E D (T)

With (T + i c') u = v, this gives
(4.4) IIAR(+i c') v11 < b'I1 v11 c' = a'lb'
where R (C) = R (4, T) is the resolvent of T. Since T is selfadjoint,
v changes over the whole space H when u changes over D (T), so that we
have
(4.5) IIB±II Sb'.
Since b' < 1, (1 - Bf)-1 exists and belongs to M(H) (the Neumann
series), so that 1 - Bt maps H onto itself one to one. But T + A + i c'
= (1 - B±) (T + i c') and T + i c' has range H because T is selfadjoint.
Hence T + A + i c' also has range H, which proves that T + A is
selfadjoint. Note that the proof given here is essentially the same as the
proof of Theorem IV-3.17.

Theorem 4.4. Let T be essentially selfadjoint. If A is symmetric and
T-bounded with T-bound smaller than 1, then T + A is essentially self-
adjoint and its closure

(T+A)-

is equal to T+A. In particular this is true
if A is symmetric and bounded with D (A) ) D (T).

Proof. We first prove that A is T-bounded, that is,
(4.6) D (A)) D (T) and 11AujI2 S a" 11uIl2 + b' 2117uII2, u E D (T),

if (4.2) is assumed. For any u E D (T), there is a sequence which is
T-convergent to u (that is, u,, - u and Tu -+ T u). (4.2) shows that
is also A-convergent so that u E D (A) and A u -+ A u. (4.6) is now ob-
tained as the limit of (4.2) with u replaced by u.. Incidentally we have
also (T+ A) u,, -->(T+A)u, so that u E D ((T + A)-) and (T+A)-u
_ (T + A) u. This shows that
(4.7) (T+A)-DT+A.
Note that we have so far not used the fact that b' < 1, which may be
assumed as in the proof of Theorem 4.3.

On the other hand, it follows from Theorem 4.3 applied to the pair
T, A that T + A is selfadjoint (here we use the assumption b' < 1).
Thus T + A is a closed extension of T + A and therefore also of (T + A)
Combined with (4.7), this gives T + A = (T + A) "' and completes the
proof.

Theorems 4.3 and 4.4 are not symmetric with respect to T and
S = T + A. The following symmetrized version generalizes these
theorems. The proof is similar to that of a corresponding theorem for the
stability of closedness (Theorem IV-1.3) and may be omitted.
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Theorem 4.5. Let T, S be two symmetric operators such that D (T)
= D (S) = D and

(4.8) II(S- T)uII sallull+b(IITuII+IISuII), u E D,

where a, b are nonnegative constants with b < 1. Then S is essentially
selfadjoint if and only if T is; in this case .S' and T7 have the same domain.
In particular, S is selfadjoint i f and only i f T is.

2. The case of relative bound 1

In the theorems proved in the preceding paragraph, the assumption
that the relative bound be smaller than 1 cannot be dropped in general
(at least in the "selfadjoint" case). This is seen from the simple example
in which T is unbounded and selfadjoint and A = - T ; here A is T-
bounded with T-bound 1, but T + A is a proper restriction of the
operator 0 and is not selfadjoint.

In this connection the following theorem is of interest, which is
concerned with the case of relative bound 1 (but which does not cover all
such cases).

Theorem 4.6. Let T be essentially selfadjoint and let A be symmetric.
If A is T-bounded and (4.2) holds with b' = 1, then T + A is essentially
selfadjoint.

Proof. First we assume that T is selfadjoint and define the operators
B, as in the proof of Theorem 4.3. We have then IIB±II 5 1 by (4.5),
and the ranges of 1 - B2. need not be the whole space H. Nevertheless
we can show that these ranges are dense in H; then the argument given
before will show that the ranges of T + A F i c' are dense in H and
therefore T + A is essentially selfadjoint [see Problem 3.17, c)].

To see that the range of 1 - B+ is dense in H (1 - B_ can be dealt
with in the same way), it suffices to show that a v E H orthogonal to this
range must be zero. Now such a v satisfies B*_ v = v. According to Lemma
4.7 proved below, this implies also that B+ v = v, that is, A R (i a') v +
+ v = 0 (note that c' = a' by b' = 1). Setting u = R (i a') v E D (T),
we have (T + A - i a') u = 0. But since T + A is symmetric and
a' > 0 (as assumed before), this gives u = 0 and hence v = 0. This
proves the theorem under the strengthened assumption that T is self-
adjoint.

We now consider the general case in which T is assumed only es-
sentially selfadjoint. In this case we have the inclusion (4.7); recall that
this has been proved without the assumption b' < 1. Now 7 is self-
adjoint and (4.6) is satisfied with b' = 1. Applying what was proved
above to the pair 7, A, we see that 7 + A is essentially selfadjoint.
(4.7) thus shows that the closed symmetric operator (T + A) "' is an exten-
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sion of an essentially selfadjoint operator. Thus (T + A) - is selfadjoint,
that is, T + A is essentially selfadjoint.

Lemma 4.7. Let B E 9 (H) and J I B II 5 1. Then B u = u is equivalent
to B*u = u. (Such an operator B is called a contraction.)

Proof. Since B** = B and IIB*II = IIBII 5 1, it suffices to show that
Bu = u implies B*u = u. But this is obvious from

IIB*u - uII2= IIB*uII2+ IIulI2- 2Re(B*u, u) s 2IIulI2-2Re(u, Bu) = 0.

3. Perturbation of the spectrum

The results of IV-§ 3 on the perturbation of the spectra of closed
linear operators apply to selfadjoint operators, often with considerable
simplifications. As an example, let us estimate the change of isolated
eigenvalues.

Let T be selfadjoint and let A be T-bounded, with T-bound smaller
than 1; thus we have the inequality (4.1) with b < 1. In general we need
not assume that A is symmetric; thus S is closed by Theorem IV-1.1
but need not be symmetric. Let us ask when a given complex number
belongs to P (S).

A sufficient condition for this is given by IV-(3.12). Since T is self-
adjoint, however, we have [see (3.16)-(3.17)]

(4.9) IIR(C, T)II= sup JA'-CI-1, IITR(C, T)II= sup IA'IIA'-CI-1
x'E£(T) x'EE(T)

Hence S E P (S) if

(4.10) a sup JA' - CI-1 + b sup IA'I JA' - CI-1 < 1.
x'E£(T) XE£(T)

In particular suppose that T has an isolated eigenvalue A with
multiplicity m < oo and with isolation distance d (see § 3.5). Let r' be the
circle with center A and radius d/2. If C E P, we have then JA' - CI-1 5 2/d
and IA'(A' - C)-'I s 1 + (IC - Al + JAI) JA' - CI-1 5 2 + 2IAI/d. Hence
(4.10) is satisfied if

(4.11) a + b (JAI + d) < d/2.

It follows from Theorem IV-3.18 that P encloses exactly m (repeated)
eigenvalues of S = T + A and no other points of E (S). If, in addition,
A is symmetric, then S is selfadjoint and any eigenvalue of S must be
real. Thus S has exactly m repeated eigenvalues [and no other points of

E (S) ] in the interval I A - 2, A + 2) provided (4.11) is satisfied.

The condition
(4.1\1)

is not always very general; a weaker sufficient
condition may be deduced by a more direct application of Theorem
IV-3.18.
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Problem 4.8. Let T be normal and A E . (H). Let d (C) = E (T)). Then
d(C) > IIAII implies C E P(T + A) and IIR(C, T + A)11;5 l/(d(C) - IIAII)

Remark 4.9. We have seen in IV-§ 3.1-3.2 that the spectrum of a
closed operator T is upper semicontinuous in T but not necessarily lower
semicontinuous. If T is restricted to vary over the set of selfadjoint
operators, however, it can be shown that E (T) is also lower semi-
continuous so that it is continuous in T. Here the lower semicontinuity
of E (T) means that any open set of the complex plane containing a point
of E (T) contains also a point of E (T,,) for sufficiently large n, if T and T
are all selfadjoint and {TJ converges to T in the generalized sense.
This lower semicontinuity of the spectrum will be proved later under
weaker conditions. Here we content ourselves with proving the following
weaker theorem, which however expresses the stated continuity of the
spectrum very clearly.

Theorem 4.10. Let T be selfadjoint and A E 9(H) symmetric. Then
S = T + A is selfadjoint and dist (E (S), E (T)) 5 IIAll, that is,

(4.12) sup dist (C, E (T)) 5 II A II , sup dist E (S)) IIA II
LEE(S) CEE(T)

Proof. Since S is selfadjoint as well as T, it suffices by symmetry to
show the first inequality. For this it suffices in turn to show that any C
such that dist (C, E (T)) > II A II belongs to P (S). But this is obvious since
II R (C, T) II < II A II -1 by (4.9) and the second Neumann series for R (C, T + A)
converges [see II-(1.13)].

4. Semibounded operators

An important property of a relatively bounded symmetric perturba-
tion is that it preserves semiboundedness. More precisely, we have

Theorem 4.11. Let T be selfadjoint and bounded from below. Let A
be symmetric and relatively bounded with respect to T with relative bound
smaller than 1. Then S = T + A is selfadjoint and bounded from below.
I/ the inequality (4.1) holds with b < 1, the following inequality holds for the
lower bounds VT, ys of T and S, respectively:

(4.13) Ys? YT-max(1 a b , a +b IYTI).

Proof. Since the selfadjointness of S is known by Theorem 4.3, it
suffices to show that any real number 4 smaller than the right member of
(4.13) (which we denote by y) belongs to the resolvent set P (S) (see
§ 3.10). Considering the second Neumann series for R (l;, S) = R (l;, T + A),
we have only to show that 11 A R (C) 11 < I for C < y, where R (l;) = R (C, T).
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Now we have by (4.1) and (3.16), (3.17)

(4.14) IIAR(C)II 5 aIIR(C)II + bIITR(C)II s
s a (YT - C)-1 + b sup I2I (2 - )-I

xEE(T)

a(YT - C)-'+ b max(1, IYTI (VT - 0-1)
The last member of (4.14) is smaller than 1 if C < y.

Theorem 4.11 leads to
Theorem 4.12.1 Let T be sel/adjoint and nonnegative. Let A be sym-

metric, D(A) ) D(T) and IIAul! 5 IITull /or u E D(T). Then

(4.15) I(Au, u)I s (Tu, u) , u E D(T) .

Proof. For any real x such that - 1 < x < 1, Theorem 4.11 can be
applied to the pair T, xA with a = 0, b = IxI and YT = 0. The result is
that T + xA is bounded from below with lower bound Z 0. Hence
- x (A u, u) 5 (T u, u), and (4.15) follows on letting x -* ± 1.

Remark 4.13. Theorem 4.11 is not necessarily true if the perturbation
is not relatively bounded. When a sequence of selfadjoint operators T,,
converges in the generalized sense to a selfadjoint operator T bounded
from below, the T,, need not, be bounded from below and, even if each T
is bounded from below, its lower bound may go to -oo for n -+ oo. This
is seen from the following example'.

20(x)/x2
--------------r---- ---

x

Fig. 1. The eigenvalues of -u" - x u on (0, 1] with boundary conditions u(0) = 0, u u'(1) = u(1)

1 This is a special case of a more general inequality due to LSWNER [1] and
HEINZ [1]. See also RELLICH [7], T. KATO [5], [14], CORDES [1].

2 This example is due to RELLICH [5], [6].
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Example 4.14. Let H = L2 (0, 1) and let T (x) be the differential operator
- d2/d x2 with the boundary condition u (0) = 0, x u' (1) - u (1) = 0. It is easily
seen that T (x) is selfadjoint for any real x [cf. § 3.6; note that the boundary condi-
tion at x = 0 is of type III-(2.15) while that at x = 1 is of type III-(2.16)]. The
resolvent R (C, x) = R (C, T (x)) can be represented by an integral operator with the
kernel (Green function)

sin CI12 y
(4.16) [C-uasin llls(1-x)-xcosCi/a (1-x)]

for O< y5 x5 1 (and x, y exchanged for x5 y). This resolvent exists except
for those C for which the denominator vanishes; the exceptional values of l: are
exactly the eigenvalues of T (x). As is easily seen, there is one and only one negative
eigenvalue AO (x) of T (x) for 0 < x < 1, and this AO (x), which is at the same time
the lower bound of T (x), tends to - oo for x " 0, whereas T (0) is nonnegative;
see Fig. 1. Nevertheless, T (x) converges for x -+ 0 to T (0) in the generalized sense;
this is seen from the fact that g (y, x; C, x) --> g (y, x; C, 0), x -+ 0, uniformly for a
fixed nonreal , which implies that R (C, x) R (C, 0) in norm. (The verification
of these results is left to the reader. Cf. also Example VII-1.11.)

5. Completeness of the eigenprojections of slightly
non-selfadjoint operators

In IV-§ 3.7 we mentioned the difficulties encountered when all the
eigenvalues or the eigenprojections of a perturbed operator S = T + A
are considered simultaneously, and then gave an example of a perturbed
operator in a Banach space in which uniform estimates can be given to
all perturbed eigenvalues and eigenprojections. Here we shall consider
the completeness of the eigenprojections of a non-selfadjoint operator S
in a Hilbert space as a perturbation problem for a selfadjoint operator T.
Actually we shall go a little further and deduce a sufficient condition for
S to be a spectral operator.

Theorem 4.15 a. Let T be a self adj oint operator with compact resolvent,
with simple eigenvalues Al < AZ < . Let Ph, h = 1,2, ... , be the
associated eigenprojections (so that Ph Ph = bh k Ph, P)*, = Ph, dim Ph = 1).
Assume further that Ah - Ah_1 -> oo as h -+ oo. Let A E -4 (H) (not neces-
sarily symmetric). Then S = T + A is closed with compact resolvent, and
the eigenvalues and eigenprojections o l S can be indexed as {,a k, uh} and
{Qok, Qh}, respectively, where k = 1, ... , m < oo and h = n + 1, n + 2, .. .

with n z 0, in such a way'that the following results hold. i) I AUh - Ahl is
bounded as h -+ oo. ii) There is a W E .4 (H) with W-1 E .4 (H) such that

m (', Ph) W , Qh = W-' Ph W for h> n .L' Qo k = W`
ksl ASn
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Remark 4.16 a. (a) ii) implies that S is a spectral operator'. In parti-
cular, {Qok, Qh} is a complete family in the sense that

(4.29) Z Qok + ' Qh = 1,
k=i h>n

where the series converges strongly and unconditionally (with an arbitrary
order of summation). This is easily seen by noting that the system

Qok, Qn+1, Qn+2, is similar to (' Ph, Pn+1, Pn+2, .. , the
k llhSn

latter being complete because T is selfadjoint.
(b) The assumption that T be bounded from below is not essential.

The proof given below can be modified in an obvious way to deal with
the case in which T has simple eigenvalues < A-1 < Ao < A,< . .

such that Ah - Ah-1-+ oo as h ± oo .
(c) The theorem can be generalized to the case in which A is not

bounded but relatively bounded with respect to T or some fractional
power of T, with a corresponding assumption on the growth rate of
Ah - Ah-1 as h 00 2.

The proof of Theorem 4.15a is based on the following lemma3.

Lemma 4.17a. Let {Pj}j-o,l,... be a complete family of orthogonal
projections, and let {Q1}1= 0,1.... be a family o l (not necessarily orthogonal)
projections such that QJQk = 61kQ1. Assume that

(4.30) dim P0 = dim Q0 = m< oo ,

00

(4.31) 'E II P1 (Q1 - P,)uJJ2S c hJuh12 for every u E H,
j=1

where c is a constant smaller than 1. Then there is a WE 9(H) with
W' E . (H) such that Q, = W-'P1W for j = 0,1,2.....

Proof. First we shall show that
00

(4.32) W = E Pi Q, E -4 (H)j-0
exists in the strong sense. Since ' P, = 1 by the completeness of {P,}
[see (3.33)], it suffices to show that (P, - Pi Q,) = Li Pi (P, - Q,)
converges strongly. But this is true since

k+p

E P,(P1-Q1)uj=k

2 k+p

=E IIP,(P,-Q1)uhh2- 0, k-+oo,
j=k

1 For spectral operators, see DUNFORD [1], DUNFORD-SCHWARTZ (2).
2 See CLARK [1], H. KRAMER [1], SCHWARTZ [1], TURNER [1, 2, 3].

See T. KATO [20].
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by (4.31). Also (4.31) shows that IIBII S c1/2 < 1 if

(4.33) B= I Pf (P9 - Q1) = 1 - Po - I P J Qt-1 i=1

Now (4.32) implies that W Q5 = Pj Qs = P; W, j = 0, 1,2, .... Thus
the lemma is proved if we show that W-1 E -4 (H) exists.

To this end we define

00

(4.34) W1='E P5Q5=W-P000=1-Po-B.
i=1

Since Po is an orthogonal projection with dim PO = m < oo, 1 - PO is a
Fredholm operator with nul (1- Po) = m, ind (1 - Po) = 0, and y (1 - Po)
= 1 (y is the reduced minimum modulus, see IV-§ 5.1). Since 11 B11 < 1
= y (1 - Po), it follows that W1 is also Fredholm, with

(4.35) nul Yi 1 < nul (1 - Po) = m , ind W1 = ind (1 - Po) = 0

(see IV-Theorem 5.22). Since W = PoQo + W1, where PoQo is compact
by dim PO < oo, W is also Fredholm with ind W = ind W1 = 0 (see IV-
Theorem 5.26). To show that W-1 E .4(H) exists, therefore, it suffices to
show that nut W = 0 .

To this end we first prove that

(4.36) N (W1) = Qo H .

Indeed, we have W,Q0 = 0 by (4.34) so that N (Wl) D Qo H. But since
dim Q0 = m z nul W1, we must have (4.36).

Suppose now that W u = 0. Then 0 = Po W u = PoQou and W1 u =
= W u - PoQou = 0. Hence u = Qou by (4.36) and so Pou = PoQou = 0.
Thus (1 - B)u = Wlu + Pou = 0. Since IIBII < 1, we obtain u = 0. This
shows that nut W = 0 and completes the proof.

Proof of Theorem 4.15 a. Let dh = max{Ah - Ah_1, Ah+1- Ah} be the
isolation distance of the eigenvalue Ah; then dh -> oo as h -* oo. Hence
there is an integer N and S > 0 such that 11 All < S s dh/2 for h > N. For
these h let Ph be the circle with center Ah and radius 6, and let Po be the
circle with a diameter [A1 - S, AN + S]. Then each Ph with h > N encloses
exactly one eigenvalue 'uh of S, Po encloses exactly N repeated eigen-
values of S, and these eigenvalues exhaust the spectrum of S. This is seen
by the same argument as was used in par. 3; note that all the circles
considered are outside one another and IIR(C, T)II < 1/6 < IIAII-1 if C is on
one of the circles or outside all of them, so that R (C, S) exists for such C.
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Let Qh, h > N, be the one-dimensional eigenprojection for the eigen-
value 4uh of S. Then

(4.37) Qh - Ph = - 2.ni f (R (C, S) - R(C, T))d
rh

2ni f R(C, S)AR(C, T)dC.r
If C is inside N, we have (see III-(6.32))

R(S,+)=- (S-Ah)-'Ph+Zh+(S-Ah)Zh+...

where Zh is the reduced resolvent of T at Ah- Similarly

R (C, S) = - (C - ,uh)-'Qh + ZZh + (pS - ,llh) Zh + ... ;

note that R (C, S) has a simple pole at C _ ,uh because dim Q. = 1.
Substitution of these expansions into (4.37) gives

(4.38) Qh-Ph=-QhAZh-ZhAPh, h>N.
Now we use the following lemma to be proved later.

Lemma 4.17b. We have (a) IIQaII M = const, h > N; (b) IIZ'hJJ -+ 0

as h oo ;and (c) ,' IIZhuII2 s cnIIuII2 for u E H, where cn 0 as n-+ oo.
h>n

It follows from this lemma that

(4.39) E I I QhAZhuII2s MZIIA[I2cnjIuII2, u E H, n > N
h>n

(4.40) E IIZZAPhuII2< cnJIAII2 L IIPhuJI2s c'IIAIIZIIuJI2, n > N,
h>n h>n

where c;, = sup IIZJ 2 -+ 0 as n -+ oo. (4.38) to (4.40) give
h>n

(4.41) E II(QA - cnllufl2, cn = 2(M2cn + cn) IIAII2,
h>n

where cK -+ 0 as n -s oo. If we choose n so large that c < 1, we can apply
Lemma 4.17a to deduce the assertion of Theorem 4.15a. Indeed, it
suffices to apply the lemma to the two systems { E Ph, Pn+2 . .

k n

and Q0+ E Qh, Qn+i' Qn+2, . , where Q0 is the total projection for
N<h5n

the eigenvalues of S inside P0.
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Proof of Lemma 4.17b. (a) follows from

Qh= -
1

2Ici ,f R(C, S)dC ,

where rh is the circle with center Ah and radius dh/2; note that llR(C, S)lI
((dh/2) - IIAli)-' for C E rh (see Problem 4.8). Similarly (b) follows from

14
2n% ,f `S - Ph)-1R (S, S)dS, JjUh - Ahl < 6.

r;

To prove (c), we note that [see I-(5.32)]

. r llZhull2 = f !' Ia5 - a ,hl-ZIIP9ull2.
h>n h>nj$h

But since 2' ll Pj u lI 2 s Il u lI 2, it suffices to show that

(4.42) sup I IAj - A,I-2 -' 0 as n ->. ao
jZl h>nhj

(4.42) follows easily from the assumption that Ah - Ah_1-+ 0 as h -)- oo.
The detail may be left to the reader.

Example 4.18. Consider the differential operator S = - d2ldx2 + q (x) on
0 < x < 1 with the boundary condition u (0) = u (1) = 0, where q is a bounded,
complex-valued function. If we denote by A the operator of multiplication by q (x),
we have A E . (H) wehre H = L$(0,1). T = -d2ldx$ with the same boundary
condition is selfadjoint, with the eigenvalues A. = 'ant, n = 1,2..... Thus
Theorem 4.15a applies to this case, showing that S is a spectral operator. In this
example A can be any bounded operator in H, not necessarily an operator of multi-
plication. A may even be unbounded to some degree, since we have A. - 0 (n),
which is stronger than necessary in Theorem 4.15 a.

§ 5. The Schrodinger and Dirac operators

1. Partial differential operators

We shall now apply the foregoing results to some partial differential
operators, in particular to the Schrodinger and Dirac operators, which
appear in quantum mechanics.
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First we consider the Schrodinger operator

(5.1) L = - d + q (x)

in a region E of the 3-dimensional euclidean space R3 with the co-
ordinates x = (x1, x2, x3). Here d denotes the Laplacian

(5.2)
_ a2 a2 a2

.
72 +axa+ax2

and q (x) = q (x1, x2, x3) is a real-valued function defined on E. Starting
from the formal differential operator L, various linear operators in dif-
ferent function spaces can be constructed (just as was the case with
ordinary differential operators, see III-§ 2.3). In what follows we shall
exclusively consider linear operators in the Hilbert space H = L2 (E),
which is most important in applications.

It is not at all obvious that (5.1) defines an operator in H. A function
u = u (x) must be rather smooth if d u is to be meaningful, but q (x) u (x)
may not belong to H = L2 for such functions if q (x) is too singular.
Therefore, we shall once for all assume that q (x) is locally square integrable;
this means that q E L2 (K) in each compact subset K of E. Then q (x) u (x)
belongs to H if u is a smooth function with a compact support in E (that is,
u vanishes outside a compact subset of E, which depends on u). Let us de-
note by Co = Co (E) the set of all infinitely differentiable functions with
compact supports in E, and let S be the restriction of L with D (S) = Ca°°.
S is a densely defined linear operator in H. S will be called the minimal
operator constructed from the formal differential operator L.

The domain of S is narrower than necessary; in the above definition
we could replace Co by Co (the set of twice continuously differentiable
functions with compact supports) because we need only second-order
derivatives in constructing d u, thereby obtaining an extension of S.
Also we can define a larger extension S of S by admitting in its domain
all functions u E H such that u E C2 (E) (twice continuously differentiable
in E) and L u = - A u + q u E H (here u need not have compact support).
In a certain sense S is the largest operator in H constructed from L.
Since S D S, S is densely defined. [S could formally be defined without
assuming that q (x) be locally square integrable, but it is then not easy to
see whether S is densely defined.] One of the basic problems for dif-
ferential operators consists in investigating the relationship between the
operators S, S and their adjoints.

L is formally sel f adjoint ; this means that the Green identity holds :

(5.3) f ((Lu) v - uLv) dx f (an v - uan)dS,
BE,
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where Ea is any subdomain of E with compact closure in E and with
smooth boundary aEo and where dS denotes the surface element and
a/an the inward normal derivative on aEo. If u E D (S) and v E D (S),
we obtain from (5.3) with v replaced by v

(5.4) (S u, v) _ (u, S V) .

This implies that S and S are adjoint; hence

(5.5) S(Scs*, SCS=S**CS*CS*.
In particular S is symmetric and so is its closure S = S**. The

question arises whether the latter is selfadjoint, that is, whether S is
essentially selfadjoint. In general the answer is no, as is inferred from the
case of an ordinary differential operator (see examples in § 3.6). But we
note that S is essentially selfadjoint only if S is symmetric. In fact, the
selfadjointness of S** implies S** = S*** = S* so that (5.5) gives
S* = S* ) S. Conversely, it can be shown that S is essentially selfadjoint
if S is symmetric, under a mild additional assumption on the local pro-
perty of q.

In general there are many selfadjoint operators between S and S*
(in the sense of the extension-restriction relation) ; these are obtained
usually by restricting S* (which is seen to be a differential operator in a
generalized sense) by appropriate boundary conditions (just as in the case
of ordinary differential operators, see § 3.6). For example suppose that
q = 0. Then the boundary condition u = 0 on aE gives an operator
corresponding to the Diyichlet Problem, and similarly the boundary
condition au/an = 0 is related to the Neumann Problem. We shall call
the maximal operator constructed from L.

2. The Laplacian in the whole space
In this paragraph we consider the special case in which E = R3

(the whole space) and q (x) = 0. We shall show that the minimal operator
T constructed from the formal Laplace operator L = - d is essentially
selfadjoint and, furthermore, give a complete description of the self-
adjoint operator Ha = T** = T*.

These results are easily deduced by means of the Fourier transforma-
tion. According to the Fourier-Plancherel theorem (see Example 2.7),
to each u (x) E L2 corresponds the Fourier transform u (k) E La given by
(2.13). For convenience we regard u (x) and u (k) as belonging to different
Hilbert spaces H = La (x) and H = LZ (k). The map u u = U u defines a
unitary operator U on H to H.

If u E Co , it is easily seen that P u = - d u has the Fourier transform
JkJa u (k), where JkJa = k1 + k2 + h . Now let K2 be the maximal multi-
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A

plication operator by IkI2 in the Hilbert space H (see Example 111-2.2).
K2 is selfadjoint (see Problem 3.22). We denote by Ha the operator K2
transformed by U-1:

(5.6) Ha = U-1 K2 U .

Ha is a selfadjoint operator in H, being a unitary image of the selfadjoint
A

operator K2 in H, with D (Ha) = U-1 D (K2). In other words, D (Ha) is
the set of all u E L2 (x) whose Fourier transforms belong to L2 (k) after multi-
plication by 1k12. It follows from the remark given above that H0) T.
That T is essentially selfadjoint is therefore equivalent to the assertion
that T has closure Ho, that is, D (T) = Co is a core of Ho (see III-§ 5.3).

Before giving the proof of this proposition, we note that there are
other subsets of D (Ho) that can be easily seen to be cores of Ha. For
example, the set S of all functions of the form

(5.7) e- IxI'/2 P (x) [P (x) are polynomials in x,, x2, x3]
A

is a core of Ha. To see this, it suffices to show that the set S of the Fourier
transforms of the functions (5.7) forms a core of K2. Since K2 is non-

A

negative, this is true if K2 + 1 maps S onto a set dense in H (see Problem
111-6.3). But the Fourier transforms of the functions (5.7) have a similar
form with x replaced by k. Noting that (JkJ2 + 1) e-"k1'/4 = 1(k) is
bounded, we see that (K2 + 1)

A

S is the image under F [the maximal
A

multiplication operator by f (k)] of the set S' of all functions of the form

(5.8) e-jkj'/4 P(k) .

But the set of functions of the form (5.8) is dense in L2 (k) since it includes
the whole set of Hermite functions'. Since F is a bounded symmetric
operator with nullity zero and, consequently, R (F) is dense in H, (K2 +

A

+ 1) S is dense in H (see Problem 111-2.9).

We can now prove that T = Ho. Let T, be the restriction of Ho with
the set (5.7) as the domain. Since we have shown above that 7, = H0,
it suffices to show that T ) T1 (which implies TD 71= Ha). To this end
we shall construct, for each u of the form (5.7), a sequence u,, E Co°° such
that u, - u and Tu. = -A u,, -,J u = T, u. Such a sequence is

8 8

given, for example, by

1 For the completeness of the orthonormal family of Hermite functions, see
COURANT and HILBERT (1), 95. The three-dimensional Hermite functions considered
here are simply products of one-dimensional ones.



§ 5. The Schrodinger and Dirac operators 301

where w (x) is a real-valued function of Co such that 0 5 w (x) 5 1
everywhere and w (x) = 1 for lxl 5 1. It is obvious that u E Co and
u,, u. Also

(5.10) A u.(x) = w (n) A U (X) + n (grad w) (n) grad u (x) +

+ n2 (d w) (n) u (x)

shows that A u --. A u.
S

Apart from a constant factor and a unit of length, Ha is the Hamilto-
nian operator for a free particle in non-relativistic quantum mechanics
and K2 is its representation in momentum space.

Problem 5.1. Let T be the operator S of par. 1 in the special case L
T is symmetric and essentially selfadjoint with T = H.. Also prove directly that
(Tu, u) is real for each u E D (T).

Remark 5.2. The selfadjoint operator Ha is not a differential operator
in the proper sense, for a function u (x) of D (Ho) need not be differentiable
everywhere. But it (x) has derivatives in the generalized sense up to the
second order, all belonging to L2. The generalized derivative au/ax,
is the inverse Fourier transform of i kf i (k), as a natural generalization
from the case of a "smooth" u, and similarly the generalized 82 it/8x1 axt
is the inverse Fourier transform of - k1 kt s (k). Since u E D (Ha) implies
(1 + Ikl2) 12(k) E L2, all these generalized derivatives belong to L21.

In virtue of this generalized differentiability, functions of D (Ha) are
more "regular" than general functions of L2. In fact every u E D (Ha) is
(equivalent to) a bounded, uniformly continuous function. To see this we
note that

(5.11) (f 14(k)I dk)2 5 f (Ikla+ a2)2
f (1k12 + a2)2 Iei(k)12 dk

a 11 (Ha + a2) ull2 <

where a > 0 is arbitrary. But it is a well known (and easily verifiable)
fact that a function u (x) whose Fourier transform it (k) is integrable is
bounded and continuous, with

(5.12) l u (x) l 5 (2 n)-g/2 f 14 (k) I d k s c a-1/ell (HO + a2) ull

S c (a-1/2IIHO ull + as/2llull) ,

where c is a numerical constant. In particular the value u (x) of u at any
fixed point x is relatively bounded with respect to Ho with relative bound
zero.

1 These generalized derivatives are special cases of derivatives in the theory of
generalized functions (or distributions). For generalized functions see e. g. YOSIDA (1) .
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A similar calculation gives

(5.13) Iu(x) - u(y)I < Cvlx - AV \a 2 _yJ 11,1o u11 + a 2
+v

Hull/

where y is any positive number smaller than 1/2, C., is a numerical
constant depending only on y and a is any positive constant. In deducing
(5.13) we note the following facts. I ei k x - ei k - y l = I ei k (x -Y) - 11 does
not exceed 2 or IkJ Ix - yI, hence it does not exceed 21-YjkIyIx - yly.
And f Ikly Ii(k)I dk is finite if 0 < y < 1/2, with an estimate similar to
(5.11). (5.13) means that u (x) is Holder continuous with any exponent
smaller than 1/2.

(5.12) and (5.13) are special cases of the Sobolev inequalities'.
Remark 5.3. The above results can be extended to the case of n

variables x1...., x. instead of 3, with the exception of (5.12) and (5.13)
which depend essentially on the dimension 3 of the space.

3. The Schrodinger operator with a static potential
We now consider the Schrodinger operator (5.1) in the whole space

E = R3. Here we assume that q (x) is not only locally square integrable
but can be expressed as

(5.14) q= qo + q, where qo E L°° (R3) , q, E L2 (R3)

As before we consider the minimal operator S and the "larger" operator S
constructed from L = -,J + q. Let T be the minimal operator for q = 0
investigated in the preceding paragraph. Then S can be written

(5.15) S=T+Q=T+Qo+Q1
where Q, Q0 and Q, denote the maximal multiplication operators by
q (x), qo(x) and q,(x) respectively; note that S and T have the same domain
Co (R3). S cannot be put into a similar form, however, for there is no
simple relationship between the domains of S and T (the corresponding
operator for q = 0).

We shall now prove that S is essentially selfadjoint. To this end it
suffices to apply Theorem 4.4, regarding S as obtained from T by adding
the perturbing term Q and showing that Q is relatively bounded with
respect to T with relative bound 0. Denoting by H and Ho the selfadjoint
closures of S and P respectively, we shall further show that

(5.16) H = Ho + Q , D (H) = D (Ho) C D (Q) .

Each u (x) E D (Ho) is a bounded function in virtue of (5.12). Therefore

Qi u belongs to L2, with I! Q, u!I S IIq,II2II uII. 5c jj g1II2 (a-1"2II Ho uII + a3/2IIuII)

1 See SosoLEV M.
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Also Qo u E L2 and IIQo u11 s JIgoLJIu11. Hence

(5.17) D(Q) ) D(Ho) ) D(T) , IIQ uIl s allull + bIIHO uII

with b = c a-1/2IIg1II2 , a = c a312IIg1II2 + IIg0II.

Since a may be chosen as large as one pleases, (5.17) shows that Q is
Ho bounded (and T-bounded a fortiori) with relative bound 0. Thus we
see from Theorem 4.3 that Ho + Q is selfadjoint and from Theorem 4.4
that . = 1' + Q is essentially selfadjoint. Since Ho + Q) S is obvious,
Ho + Q coincides with the closure of .. Thus the Perturbed operator H
has the same domain as the unperturbed operator Ho. Finally we note that H
is bounded from below by virtue of Theorem 4.11. Summing up, we have
proved

Theorem 5.41. 1/ (5.14) is satisfied, S is essentially sel f adjoint. The
sel f adjoint extension H o l S is equal to Ho + Q with D (H) = D (Ho) and
is bounded from below.

Problem 5.5. The Coulomb potential q (x) = e jxj-1 satisfies (5.14). For what
values of # is (5.14) satisfied for q (x) = e lxl -S ?

Remark 5.6. The results obtained above can be extended to the
Schrodinger operator for a system of s particles interacting with each
other by Coulomb forces. In this case the formal Schrodinger operator
has the form (5.1) in which d is the 3s-dimensional Laplacian and the
potential q (x) has the form

S

(5.18) q (x) = fe1 + E e",
i=I r5 7 <k rJA

where e1 and e1,% are constants and

r1 = (x31-2 + x31-1 + x31)1/2 ,

r1k= [(x31-2 - x31-2)2+ (x31-1 - x31-1)2+ (x31 - x31)211/2

It can be proved that the minimal operator T constructed from the formal
operator -d is essentially selfadjoint with the selfadjoint closure Ho
(Remark 5.3) and that Q is relatively bounded with respect to Ho as well
as to T with relative bound 0. The proof given above for s = 1 is not
directly applicable, for (5.12) is no longer true, but it can be modified

1 The proof given here is due to T. KATO [4]. This result is, however, not very
strong, although the proof is quite simple. Many stronger results have since been
obtained (see STUMMEL [I], WIENHOLTZ [1], BROWNELL [1], IKEBE and KATO [1],
ROHDE [1], G. HELLWIG [I], B. HELLWIG [I], JORGENS [1]), but most of these
works take into account special properties of differential operators. BABBITT [1] and
NELSON [1] deduce interesting results in this direction using Wiener integrals in
function spaces.
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by taking into account the fact that q (x) consists of terms each of which
depends essentially only on 3 variables'.

Regarding the spectrum of H, we have a more detailed result if we
assume slightly more on q.

Theorem 5.7. In addition to (5.14) assume that qo (x) -> 0 for jxj -> 00.
Then the essential spectrum of H is exactly the nonnegative real axis.
(Thus the spectrum of H on the negative real axis consists only of isolated
eigenvalues with finite multiplicities.) 2

Proof. It is easy to see that the spectrum of Ho is exactly the non-
negative real axis, which is at the same time the essential spectrum of Ho.
In view of Theorem IV-5.35, therefore, it suffices to prove the following
lemma.

Lemma 5.8. Under the assumptions o l Theorem 5.7, Q is relatively
compact with respect to Ho.

Proof. First we consider the special case q0 = 0. Let be a bounded
sequence in H such that {Hour} is also bounded; we have to show that
{Q,,uj contains a convergent subsequence. According to (5.12) and (5.13),
the u (x) are uniformly bounded in x and n and are equicontinuous.
According to the Ascoli theorem, contains a subsequence {vn} that
converges uniformly on any bounded region of R3. Let v be the limit
function; v is bounded, continuous and belongs to H. Hence we have

Ql vn = ql v,,. -- ql v in H

by the dominated convergence theorem.

The general case q0 + 0 can be reduced to the above case by ap-
proximating qo uniformly by a sequence {qo } of bounded functions
with compact support; for example set qo (x) = q0 (x) for I x n
and = 0 for I x I > n. If Qo denotes the operator of multiplication by q0",
we obtain IIQo - Q011 -> 0. But Q1 + Qo is Ho compact by what was
proved above, since q1 + qo" E L2 (RS). Hence (Q1 + Qa) (Ho + 1)-' is com-
pact. Since 11 (Q0 - Q0) (Ho + 1) -111 s 11 Qo - Q011--> 0, it follows from
Theorem 111-4.7 that (Q1 + Q0) (Ho + 1)-' is compact. This implies that
Q = Q1 + Q0 is Ha compact.

Remark 5.9. In the theorems proved above we assumed that q (x)
is real-valued, but this is not essential in a certain sense. Of course S
is not symmetric if q is not real-valued, and the essential selfadjointness
of S is out of the question. Nevertheless we can consider the spectrum

I For details see T. KATO [4].
S For the spectrum of the SchrOdinger operators, see T. KATO [4], [4 a], POVZNER

[1], BIRMAN [5], BROWNELL [2], 2ISLIN [1], IKEBE [1].
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of and, for example, Theorem 5.7 is true if H is replaced by Even
the proof is not changed; it is only essential that Qe and Q, are relatively
compact with respect to He, which is true whether or not qo and ql are
real-valued.

4. The Dirac operator

It is of some interest to consider the Dirac operator in conjunction
with the Schrodinger operator'. For a particle moving freely in space,
this operator has the form (apart from a numerical factor and unit of
length) 2

(5.19) L = i-' a grad -f- fi .

L is again a formal differential operator, but it acts on a vector-valued
(or, rather, spiny-valued) function u (x) = (u, (x), ..., u4 (x)), with 4
components, of the space variable x = (x,, x2, x,). We denote by C4
the 4-dimensional complex vector space in which the values of u (x) lie.
a is a 3-component vector a = (al, a2, a,) with components aA which are
operators in C4 and may be identified with their representations by 4 x 4
matrices. Similarly j9 is a 4 x 4 matrix. Thus L u = v = (v,...., v4) has
components

3 4 4

(5.20) v9 (x) = t-' E E (al)!A au,, +a E N9h ulh (x)
1=1 h=1 ; h=1

The matrices aA and 9 are Hermitian symmetric and satisfy the com-
mutation relations

(5.21) a1 al, + al, a5 = 2bfh 1 , j, h = 1, 2, 3, 4 ,

with the convention of writing 04 = f (1 is the unit 4 x 4 matrix). It
is known that such a system of matrices af, f exists; it is not necessary
for our purpose to give their explicit form.

Since L is a formal differential operator, we can construct from L
various operators in the basic Hilbert space H = (L2 (R$))4 consisting
of all C4-valued functions such that

4

(5.22) 11u112= f ju(x)I2dx <oo, Iu(x)I2= E IuJ(x)I2.
f=1

The associated inner product is
4

(5.23) (u, v) = f u (x) -v (x7 d x , u (x) v x = ' u, (x) v, x .

j=1

I For the selfadjointness of the Dirac operator, see T. KATO [4], PROSSER [1].
See e. g. SCHIFF M.
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In particular we denote by T the minimal operator T u = L u with
domain D (T) = (CO)4 consisting of all u (x) with the components %(x)
lying in Co (R').

T is essentially self adjoint. The proof is again easily carried out by
using the Fourier transformation. Let 4 (k) be the Fourier transform
of u (x) ; this means that 2 (k) has 4 components 2, (k) which are the
Fourier transforms of the u; (x). The mapping u -* Il = Uu defines again
a unitary operator on H to H = (L2 (k))4. It is now easily verified that for
u E D (T), T u = L u = v has the Fourier transform
(5.24) v(k)_ 19)iu(k)_ (k,al+k2a2+ksa,+ f)9(k).
Let us now define an operator K in H as the maximal multiplication
operator by k a + f ; here we use the term "multiplication operator"
in a generalized sense, for k cc + f is not a scalar but a 4 x 4 matrix for
each fixed k. Since this matrix is of finite order, it can easily be shown
that K is selfadjoint (just as for ordinary multiplication operators).
Let Ho be the transform of K by the unitary operator U-1:
(5.25) Ho = U-1 K U .

Ho is a selfadjoint operator in H with D (Ho) = U-1 D (K), and D (K)
is by definition the set of all is E (L2) 4 such that (k a + j9) 11(k) E (L2)4.
Since the matrix k a + f is Hermitian symmetric and
(5.26) (k a + f )2 = (k2 + 1) 1
in virtue of (5.21), 2E E D (K) is equivalent to

(5.27) f (k2+ 1) Iil(k)I2dk= IIKii1I2<oo.
It follows from the remark given above that P c: Ho. Thus P is essentially

selfadjoint if and only if T = Ho.
To prove the essential selfadjointness of T, it is convenient to show

that K is a direct sum of 4 operators, two of which are isomorphic to the
multiplication operator by (1 + k2)'/2 and two by - (1 + k2)1/2. To see
this we need only to introduce, for each k, a new orthonormal basis of C4
consisting of eigenvectors of the Hermitian matrix k a + P. In view of
(5.26), the only eigenvalues of this matrix are ± (k2 + 1)1/2, and it is
known that there are indeed two eigenvectors for each sign forming an
orthonormal set of 4 eigenvectors. With the introduction of such a
basis (which is by no means unique owing to the degeneracy of the
eigenvalues) for each k, the Hilbert space H is seen to be decomposed
into the direct sum of 4 subspaces in each of which K acts simply as a
multiplication by (k2 + 1)1/2 or - (k2 + 1)1/2. The proof of the essential
selfadjointness of T can be effected, then, as in the case of the Schrodinger
operator for a free particle. Details may be left to the reader'.

1 Cf. PROSSER [1].
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The Dirac operator for a particle in a static field with potential q (x)
is given by
(5.28) L= i-1 a- grad + f+ Q
where Q is the multiplication operator by q (x) 1. If q (x) is real and
locally square integrable, the minimal operator S with domain (Co )4
constructed from (5.28) is densely defined and symmetric (cf. par. 1).
To ensure that S is essentially selfadjoint, however, we need a further
assumption. Without aiming at generality, we shall content ourselves by
showing that the Coulomb potential
(5.29) q (x) = ell xl , I xI = (Al + x2 + x32)111,

is sufficient for the essential selfadjointness of . provided lel is not too
large. To see this it suffices to verify that Q is relatively bounded with
respect to He with relative bound smaller than 1 (see a similar argument
in the preceding paragraph). But it is well known that [see VI-(4.24)]

(5.30) f lxI-2lu(x)I2dx 5 4 f Igradu(x)12dx= 4 f k2Nl(k)12dk

at least for a scalar-valued function u E Co ; the same inequality for a
vector-valued function u E (Co°°)4 follows by simply adding the results
for the components u5 (x). In virtue of (5.29) and (5.27), this gives

(5.31) IlQuII 5 21el lIK4II = 2Iel IIHouIl
for u E D (T), and it can be extended to all u E D (Ho) since Ho is the
closure of T as proved above. Thus Q is Ho bounded with relative bound

2l el. In this way we have proved (note Theorems 4.4 and 4.6)
Theorem 5.10. If q (x) = e/lxl with a real e such that lel S 1/2, then

the minimal Dirac operator . is essentially selfadjoint. If lel < 1/2 the
closure of S has the same domain as Ho.

Problem 5.11. A similar result is also valid if

(5.32) q (x) = E eall x - ail + qo (x)
i

where ai, j = 1, 2, . . ., are points of Re, qo (x) is a bounded function and Z l eil 5 1/2.

Remark 5.12. Theorem 5.10 is unsatisfactory inasmuch as the
condition lel S 1/2 is too strong to cover all interesting cases of the
hydrogen-like atoms. Returning to the ordinary system of units, Iel S 1/2
corresponds to the condition IZI S 137/2 = 68.5, where Z is the atomic
number and 1/137 is the fine structure constant. In this connection it is
of some interest to note that the condition Iel s 1/2 can be slightly
improved if we use Theorem VI-3.11 (to be proved in Chapter VI). In
fact, it is easily seen that IHoI = (H20)1/2 is just the multiplication operator
by (k2 + 1)1/2 in H. But we have

(5.33) f IxI-llu(x)I2 dx S 2 f IkI Ila (k) 12 dk S 2 (IHoI u, u) ;
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this can be proved by using the transform by U of the operator JxJ-1
which is an integral operator with kernel 1/2,r21k - k'J 2. It follows from
the cited theorem that i f

(5.34) Jel < 2/n = 1/1.57,

S has a selfadjoint extension with domain contained in D(JH01'/2). The
condition (5.34) corresponds to JZJ S 137/1.57 = 87.

It should be further remarked that, although Theorem VI-3.11 does
not assert the uniqueness of the selfadjoint extension of S for each fixed e,
the extension considered is "analytic" in e and it is a unique extension
with the analytic property. This remarkable result follows from Theorem
VII-5.1 to be proved in Chapter VII.

Chapter Six

Sesquilinear forms in Hilbert spaces
and associated operators

In a finite-dimensional unitary space, the notion of a sesquilinear form and that
of a linear operator are equivalent, symmetric forms corresponding to symmetric
operators. This is true even in an infinite-dimensional Hilbert space as long as
one is concerned with bounded forms and bounded operators. When we have to
consider unbounded forms and operators, however, there is no such obvious rela-
tionship. Nevertheless there exists a closed theory on a relationship between semi-
bounded symmetric forms and semibounded selfadjoint operators'. This theory can
be extended to non-symmetric forms and operators within certain restrictions.
Since the results are essential in applications to perturbation theory, a detailed
exposition of them will be given in this chapter 2. Some of the immediate applications
are included here, and further results will be found in Chapters VII and VIII.

The final section of this chapter deals with the spectral theorem and perturbation
of spectral families. The subjects are not related to sesquilinear forms in any
essential manner, though the proof of the spectral theorem given there depends
on some results in the theory of forms. In view of the fact that the spectral theorem
is of a rather special character, we have avoided its use whenever possible. But since
there are problems in perturbation theory which require it in their very formulation,
the theorem cannot be dispensed with altogether; and the end of our preliminary
treatment of Hilbert space seems an appropriate place to discuss it.

§ 1. Sesquilinear and quadratic forms
1. Definitions

In V-§ 2.1 we considered bounded sesquilinear forms defined on the
product space H x H'. We shall now be concerned with unbounded forms
t [u, v] but restrict ourselves to forms defined for u, v both belonging to a

' This theory is due to FRIEDRICHS [1]. See also T. KATO [8].
2 For other approaches to this problem see ARONSZAJN [4], LIONS 11).
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linear manifold D of a Hilbert space H. Thus t [u, v] is complex-valued
and linear in u E D for each fixed v E D and semilinear in v E D for each
fixed u E D. D will be called the domain of t and is denoted by D (t).
t is densely defined if D (t) is dense in H.

t [u] = t [u, u] will be called the quadratic form associated with
t [u, v]. t [u] determines t [u, v] uniquely according to I-(6.11), namely

(1.1) t[u,v]= 4 (t[u+v]-t[u-v]+it[u+iv]-it[u-iv]).
We repeat the remark that (1.1) is true only in a complex Hilbert space
(Remark 1-6.10). We shall call t [u, v] or t [u] simply a form when there
is no possibility of confusion.

Two forms t and t' are equal, t = t', if and only if they have the same
domain D and t [u, v] = t' [u, v] for all pairs u, v in D. Extensions and
restrictions of forms (t' t or t c: t' in symbol) are defined in an obvious
way as in the case of operators.

The situation that the domain of a form need not be the whole space
makes the operations with forms rather complicated, just as for operators.
The sum t = t1 + t2 of two forms t1, t2 will be defined by

(1.2) t [u, v] = t1 [u, v] + t2 [u, v] , D (t) = D (t1) n D (t2) .

The product a t of a form t by a scalar a is given by

(1.3) (a t) [u, v] = a t [u, v] , D (a t) = D (t) .

The unit form 1 [u, v] is by definition equal to the inner product (u, v)
and the zero form 0 [u, v] takes the value zero for all u, v, both forms
having the domain H. Thus we have 0 t c 0 for any form t, and t + at
= t + at 1 is defined for any form t by

(1.4) (t + a) [u, v] = t [u, v] + a (u, v) , D(t+a)= D(t).
A form t is said to be symmetric if

(1.5) t [u, v] _ [v, u] , u, v E D (t) .

As is seen from (1.1), t is symmetric if and only if t [u] is real-valued.
With each form t is associated another form t* defined by

(1.6) t* [u, v] = [v, u7, D (t*) = D (t) .

t* is called the adjoint form of t. t is symmetric if and only if t* = t.
We have the identity//

(1.7) (a1 t1 + a2 t2) * = al tl + a2 t2

For any form t, the two forms 0, f defined by

(1.8) h = 2 (t + t*) f = 2d (t - t*) ,
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are symmetric and

(1.9) t=h+ie.
h and t will be called the real and imaginary parts of t, respectively, and
be denoted by Re t, t = Im t. This notation is justified by

(1.10) 1 [u] = Re t [u] , t [u] = Im t [u] ,

although h [u, v] and E [u, v] are not real-valued and have nothing to do
with Re (t [u, v]) and Im (t [u, v]).

2. Semiboundedness
A symmetric form h is said to be bounded from below if the set of

(real) values h [u] for (lull = 1 is bounded from below or, equivalently,

(1.11) h[u] z yllull2, uED(h)
This will be written simply

(1.12) hzy.
The largest number y with this property is called the lower bound of
and will be denoted by Y4. If h z 0, t is said to be nonnegative. Similarly
we define the notions of boundedness from above, upper bound, non-
positiveness, etc. Since we are mostly concerned with forms bounded
from below, the symbol y4 will be used exclusively for the lower bound.

If 4 is a nonnegative symmetric form, we have the inequalities
I-(6.32). If a symmetric form h is bounded from below as well as from
above, then h is bounded with bound equal to the larger one of the
absolute values of the upper and lower bounds. In other words, 10 [u] 15
5 MIIu112 for all u E D(h) implies 10 [u, v]I 5 Mllull Ilv11 for all u, v E D(ID).
The proof is the same as in the finite-dimensional case [see I-(6.33)].
It should be remarked that, more generally, I E [u] 1 5 MO [u] for all
u E D = D (0) = D (E) implies I E [u, v] I S MO [u]1/2 h [v]1/2 for all u, v E D,

provided both h and E are symmetric and h is nonnegative.
Let us now consider a nonsymmetric form t. The set of values of t [u]

for u E D (t) with hull = 1 is called the numerical range of t and will be
denoted by 0 (t). As in the case of operators, 0 (t) is a convex set in the
complex plane (cf. Theorem V-3.1). A symmetric form h is bounded
from below if and only if 0 (y) is a finite or semi-infinite interval of the
real axis bounded from the left. Generalizing this, we shall say that a
form t is bounded from the left if 0(t) is a subset of a half-plane of the
form Re I z y. In particular, t will be said to be sectorially bounded
from the left (or simply sectorial) if 0 (t) is a subset of a sector of the form

(1.13) I arg ( I - y) 1 5 0 , 0 5 0 < 2 , y real.
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This means that

(1.14) 0Z y and If [u] I S (tan 0) (0-y) [u], u E D (t) ,

where h = Re t, f = Im t. The numbers y and 0 are not uniquely deter-
mined by t; we shall call y a vertex and 0 a corresponding semi-angle of
the form t. It follows from a (remark given above that

(+/ - Y) [u, v] 15 (h - Y) [u]l/2 (h - Y) [v]1/2 ,
(1.15) It [u, v] 15 (tan 0) (h - y) [u]1/2 (h - Y) [V]1/2'

I (t - Y) [u, v] I s (1 + tan 0) (h - Y) [u]112 (h - y) [v]'I2

In the following sections we shall be concerned mostly with sectorial
forms.

Problem 1.1. It follows further from (1.15) that

(h - y) [u] 5 I (t - y) [u] 15 (sec 0) (, - y) [u]
(1.16) I(t - V) [u + v]1112 S (sec 0)1/2 {I (t - Y) [u]11/2 + I(t - Y) [v]11/2} ,

I(t - y) [u + vii 5 2(secO) {I(t - y) Lull + I(t - y) [v]l}.
Example 1.2. Let T be an operator in H and set

(1.17) t[u, v] = (Tu, v) , D(t) = D(T) .
T and t have the same numerical range. In particular, t is symmetric if T is sym-
metric, and t is bounded from below if T is bounded from below; t is bounded from
the left if T is quasi-accretive; t is sectorial if T is sectorial (see V-§ 3.10).

Example 1.3. Let S be an operator from H to another Hilbert space H' (which
may be identical with H) and set

(1.18) 0 [u, v] = (Su, Sv) , D D (S) ,

where the inner product is, of course, that of H'. is a nonnegative symmetric form.
Example 1.4. Let H= 12 and

M

(1.19) t [u, v] = E ai r 11 for u = (gf) and v = (qi) ,
9=1

where {ai} is a sequence of complex numbers. D (t) is by definition the set of all
u = (fir) E H such that Flail oo. Let t be the restriction of t with D(t)
consisting of all u E H with a finite number of nonvanishing components. t is densely
defined and so is t a fortiori. t is symmetric if and only if all the a, are real. t is
sectorial with a vertex y and a semi-angle 0 if and only if all the a, lie in the sector
(1.13).

A further restriction tl oft is obtained by requiring each u E D (tl) to satisfy the
condition [in addition to u E D(t)]

(1.20) E lei = 0'
i=1

where {#,} is a given sequence of complex numbers not all equal to zero. tl is densely
defined if and only if E I &Q 2 = oo. To see this, let w = (c,) E H be orthogonal to
D (tl). Since the vector 1Yk, 0, ..., - N1, 0, ...) with - fl, in the k-th component
belongs to D (t1), we have fl k C1 - #1 Ck = 0. Since this is true for all h, we have
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C1: C2: ... = fl1 : fl2 : . . . . If E I flil2 = oo, we must have all C, = 0 so that w = 0.
This shows that D (f1) is dense in H. If E Ifl,I2 < oo, (ai) = b belongs to H and (1.20)
implies that D (f1) is orthogonal to b. Hence D (t1) is not dense in H.

Example 1.5. Let H = L2 (E) and

(1.21) t [u, v] = f f (x) u (x) vv (x) d x ,
E

where f (x) is a complex-valued measurable function on E. D (t) is by definition the
set of all u E H such that f It (x) I j u (x) 12 d x < oo. t is densely defined (as in the case
of a maximal multiplication operator, see Example 111-2.2). t is symmetric if f (x)
is real-valued. t is sectorial with a vertex y and a semi-angle 0 if the values of f (x)
lie in the sector (1.13).

Suppose that E is a bounded open set. Then the restriction i of t with domain
D (t) = Cp (E) is also densely defined. Let t1 be a restriction of i with D (t1) consisting
of all u E D(t) such that

(1.22) f g (x) u (x) d x= 0
E

where g (x) is a locally integrable function. Then t1 is densely defined if g j L2 (E)
and not densely defined if 0 + g E L2 (E). The proof is similar to that in the preceding
example.

Example 1.6. Let H = L2(0, 1) and

(1.23) 0 [u,v]=u(0)v.
D (O) is by definition the set of all u (x) continuous (more exactly, equivalent to a
continuous function) on the closed interval [0, 1] ; then u (0) is well defined for
u E D (h). 4 is densely defined, symmetric and nonnegative. Actually [j is a special
case of (1.18) in which Su = u (0), S being an operator from H into a one-dimensional
space C.

Example 1.7. Let H = L2 (a, b) where (a, b) is a finite interval and set
b

(1.24) t [u, v] = f {p (x) u' (x) + q (x) u (x) v z +
a

+ r (x) u' (x) -v -(7x + s (x) u (x) v' (x) d x +

+ h, u (a) -v (7a + hb u (b) _v T .

where P (x), q (x), r (x), s (x) are given complex-valued functions and h hb are
constants. Suppose that p, q, r, s are continuous on the closed interval [a, b] (regular
case), and let D (t) be the set of all u E H such that u (x) is absolutely continuous on
[a, b] with u' (x) E H [so that the right member of (1.24) is meaningful for u, v E D (t)].
t is densely defined. t is symmetric if p, q are real-valued, r-(x-) = s (x) and h hb
are real. If we restrict D (t) to the set of all u (x) with u (a) = u (b) = 0, we obtain a
restriction to of t. to is densely defined. We define a further restriction i of to by
D (i) = Co (a, b)

t is sectorial if p (x) > 0 on [a, b]. To see this we note that there are positive
constants S and M such that P (x) Z S, I q (x) I s M, I r (x) I S M, Is (x) I S M. Thus

Re t [u] z f {o J U112 - M (Iu12 + 2 Iu u'I )} dx - Ih.1 Iu (a) 12 - I hbl Iu (b) I2 .

Since 2Iu u'I S s Iu'I2 + e-1IuI2, we obtain, making use of IV-(1.19) with p = 2,
the inequality

(1.25) 4 [u] = Re t [u] z 61lu'II2 - MIIuII2
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in which the positive constants 6 and M need not be the same as above. Similarly
we have, noting that p (x) is real,

(1.26) IE[u]I = !Imt[u]I S eIIu1II2 + MBIIUII2.

where e > 0 may be chosen arbitrarily small. Thus it is easy to see that we have an
inequality of the form (1.14) with appropriate constants y and 0; 0 can even be
chosen arbitrarily small if - y is taken sufficiently large.

Problem 1.8. The t of the above example is sectorial even if p (x) is not real-
valued, provided Rep (x) > 0 [the continuity of p (x) being assumed as above].

Example 1.9. Let H = L$ (Re) and

(1.27) t [u, v] = f [grad u (x) grad v (x) + q (x) u (x) v (x) ] d x ,

where q (x) is a given function assumed to be locally integrable. As D (t) we may take
C'(R3) (the set of continuously differentiable functions with compact supports).
t is densely defined, and symmetric if q (x) is real-valued. We may restrict D (t) by
requiring more differentiability of u (x), v (x) (for example, D (t) = Co (R3)) without
losing these properties of t; or we could extend D(t) somewhat so as to include
functions with non-compact supports.

3. Closed forms

Let t be a sectorial form. A sequence {un} of vectors will be said to be
t-convergent (to u E H), in symbol

(1.28) un! u, n-+oo,

if un E D (t), un -+ u and t [un - u n] -+ 0 for n, m - no. Note that u may
or may not belong to D (t). Compare also the notion of T-convergence
where T is an operator (see III-§ 5.2).

It follows immediately from the definition that t-convergence is equi-
valent to t + at-convergence for any scalar at. Also, t-convergence is equivalent
to t-convergence where 4 = Re t; this follows from (1.16) by which
(h - y) [un - um] - 0 if and only if (t - y) [un - u n] -* 0. Again,
un i u and v,, i v imply at u,, + l9 v,, ! at u + 9 v. For the proof it suf-
fices to note that t may be assumed to be symmetric and nonnegative by
the above remark; then the result follows from I-(6.32).

A sectorial form t is said to be closed if un t u implies that u E D (t)

and t [un - u] 0. It follows from the above remark that t is closed if
and only if Re t is closed. t is closed if and only if t + at is closed.

Problem 1.10. A bounded form is closed if and only if its domain is a closed
linear manifold.

Let h be a symmetric nonnegative form and set

(1.29) (u, v)4 = (0 + 1) [u, v] = 0 [u, v] + (u, v) , u, v E D (h) .
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(u, v)4 may be regarded as an inner product in D (h), since it is symmetric
and strictly positive:

(1.30) IIuII2'O ° (u, u)q = (h + 1) [u] = h [u] + 11 UP IIul12

D (0) will be denoted by H, when it is regarded as a pre-Hilbert space
with the inner product ( , ) 0.

When a sectorial form t is given, we define a pre-Hilbert space Ht
as equal to HO, with h' = Re t - y z 0 where y is a vertex of t. Ht will
be called a pre-Hilbert space associated with t. Ht is identical with D (t)
as a vector space, but the inner product (, )t = (, )g, of Ht depends on
the choice of y so that Ht is not uniquely determined by t. In any case,
the following are immediate consequences of (1.30). A sequence u E D (t)
is t-convergent i f and only i f it is a Cauchy sequence in Ht. When u E D (t),
un i u is equivalent to II U. - ullt - 0.

From (1.15) and (1.30) we have

(1.31) It [u, v]I s Iv! I(u, v)I + (1 + tang) 0'[u]'/' 0'[v]1/25
lyl lull IIvII + (1 + tan8) IIuJIt IIvIIt 5 (I 'j + 1 .f tang) IIuIIt IIvIIt

This shows that t [u, v] is a bounded sesquilinear form on Ht.
Theorem 1.11. A sectorial form t in H is closed i f and only i f the pre-

Hilbert space Ht is complete.
Proof. Since t is closed if and only if h' = Re t - y is closed, we may

assume that t = h is symmetric and nonnegative and the inner product
of Ht = HO is given by (1.29). Suppose that h is closed, and let {un} be a
Cauchy sequence in Hi,: Ilun - urjI4 0. Then is also Cauchy in H
by (1.30), so that there is a u E H such that un u. Since [u, - um] - 0
by (1.30), {un} is ,-convergent and the closedness of implies that
u E D (h) = H4 and h [u - u] 0. Hence Il un - ull -- 0 by (1.30),
which shows that HO is complete.

Suppose, conversely, that H4 is complete. Let u 4 u. This implies

that 1, [un - u n] -* 0 and llu,, - umll -' 0 so that llu,, - umljD -* 0 by (1.30).
By the completeness of HO there is a uo E H4 = D (y) such that II un -
- uoII4 0. It follows from (1.30) that h [u,, - uo] - 0 and Il un - uoll -* 0.
Hence we must have u = uo E D (h) and h [u,, - u] 0. This proves that
is closed.

Theorem 1.12. Let t be a sectorial form. If u,i u and vi v,

then limt [un, exists. I/ t is closed, this limit is equal to t [u, v].
Proof. We have it [un, vn] - t [um, vm] 15 It [un - um, vu] I + It [um,

vn - vm]I S (1 + tan 0) {h [un - um]1/2 4 [V.]112 + h [u,,]112 h [vn - vm]1/2}
where we have assumed y = 0 [see (1.15)]. Since u t u implies that
h [un - um] -- 0 and 0 [un] is bounded and similarly for vn, lim t [un, vn]



§ 1. Sesquilinear and quadratic forms 315

exists. The second part of the theorem can be proved in the same way
by considering t [un, t [u, v].

Example 1.13. Consider the symmetric nonnegative form 4 [u, v] _ (Su, Sv)
of Example 1.3. 0 is closed if and only if S is a closed operator. To see this, it suffices
to note that u 4 u is equivalent to u S u and 4 [u - u] - 0 is equivalent
to Su -- Su (see III-§ 5.2).

Example 1.14. Consider the form t [u, v] = E as 1 q, defined in Example 1.4
and assume that all the of lie in the sector (1.13) so that t is sectorial. Then
t is closed. In fact we have ]lull' = E(1 + Rea, - y) l$sl' for u = ($,). But
Ht = D (t) is the set of all u E H such that E la,] l$,l' < oo, and it is easily seen that,
under the assumptions made, this condition is equivalent to llullt < oo. Thus Ht
comprises all u = with llullt < oo and therefore it is complete (just as is is).

Example 1.15. Consider the form t [u, v] = f I (x) u (x) vv (x) dx defined in
Example I.S. If the values of f (x) are assumed to lie in the sector (1.13) so that t is
sectorial, t is closed; the proof is similar to that in the preceding example.

Before closing this paragraph, we state a theorem which is important
in deciding whether a given u E H belongs to the domain of a closed
form t. We know from the definition of closedness that u E D (t) if there
is a sequence u E D (t) such that un --->. u and t [u,, - u,n] -> 0. Actually,
however, a weaker condition is sufficient, namely,

Theorem 1.16. Let t be a closed sectorial form. Let un E D (t), u,, -> u
and let It [u ]} be bounded. Then u E D (t) and Re t [u] S lim inf Re t

The proof will be given later, after the representation theorem has
been proved (see § 2.2).

4. Closable forms
A sectorial form is said to be closable if it has a closed extension.
Theorem 1.17. A sectorial form t is closable if and only if u t 0

implies t [un] - 0. When this condition is satisfied, t has the closure (the
smallest closed extension) i defined in the following way. D(f) is the set of
all u E H such that there exists a sequence {un} with u t u, and

(1.32) [u, v] = lim t [un, vn] for any un t u, vt v .

Any closed extension of t is also an extension of f.
Proof. Let tl be a closed extension of t. un! 0 implies un ! 0 so

that t [un] = tl [un] = tl [u,, - 0] - 0 by the, closedness of t1. This proves
the necessity part.

To prove the sufficiency part, let D (f) be defined as in the theorem.
Then the limit on the right of (1.32) exists by Theorem 1.12. We shall
show that this limit depends only on u, v and not on the particular
sequences {vn}. Let {un}, be other sequences such that u,, t u,
v i v. Then u - ui 0, v - vn -t. 0 (see par. 3) so that t [un - un]
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0, t [v - vn] -- 0 by the assumption. Hence t [u,,, t [un, vn]
= t [u - un, v;,] + t [un, vn - vn] 0 as in the proof of Theorem 1.12.

We note that

(1.33) [un - u] - 0 if un t u .

In fact, lim f [un - u] = lim lim t [un - u n] by (1.32) and this is
n-s oo n-s oo m-r oo

zero by u,, t U.

We have defined a form i with domain D (t). Obviously f is sectorial
and f t. Let us show that f is closed. Consider the pre-Hilbert space Hi
associated with f; it suffices to show that Ht is complete (see Theorem
1.11).

Since t, Ht is a linear manifold of H. The construction of t given
above shows that Ht is dense in Ht and that any Cauchy sequence in Ht
has a limit in Ht [see (1.33)]. As is well known, this implies that Hi is
complete'.

That f is the smallest closed extension of t follows also from the
construction, for if t1 D t is closed and un t u, then un t u and so
u E D (t1). Hence D (f) D (t1) and f [u, v] = t1 [u, v] by (1.32) and Theorem
1.12.

Theorem 1.18. Let t, f be as above. The numerical range 0 (t) of t is a
dense subset of the numerical range 0 (Y) of L.

Proof. For any u E D (t) with (lull = 1, there is a sequence un E D (t)
such that u,, t u. We may assume that II unll = 1; otherwise we need
only to replace u,, by un/ll unll. Since t [u,,] -+ [u], the result follows
immediately.

Corollary 1.19. A vertex y and a semi-angle 0 for i can be chosen equal
to the corresponding quantities for t. If h is a closable symmetric form
bounded from below, h and have the same lower bound.

Theorem 1.20. A closable sectorial form t with domain H is bounded.
Proof. t is necessarily closed, for t and i have the same domain H

and hence t = L. We may again assume that t has a vertex zero. The
complete Hilbert space Ht associated with t coincides with H as a vector
space, with the norm Ilulit z (lull. According to the closed graph theorem,
these two norms are equivalent, that is, there is a constant M such that
II ull t 5 M II uli (For the proof consider the operator T on Ht to H defined
by T u = u ; T is bounded with II T II 5 1 and maps Ht onto H one to one,
hence T-1 is bounded by Problem 111-5.21.) Hence 0 s 0 [u] s M2IIu1I2
and It [u, v]l s (1 + tang) M2IIuJI IIvII by (1.45).

1 Let be a Cauchy sequence in H. Since Ht is dense in Ht, there is a sequence
vn E Ht such that lIvn - unjj S 1/n. Then is Cauchy, so that v -# v for some
v E H. Then u,, -+ v, and Ht is complete.
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When t is a closed sectorial form, a linear submanifold D' of D (t) is
called a core of t if the restriction t' of t with domain D' has the closure
t : t' = t. (Cf. the corresponding notion for an operator, III-§ 5.3.)
Obviously D' is a core oft if and only if it is a core oft + a for any scalar
a. If t is bounded, D' is a core of t if and only if D' is dense in D (t) [note
that D (t) is then a closed linear manifold].

The next two theorems follow directly from the proof of Theorem 1.17.
Theorem 1.21. Let t be a closed sectorial form. A linear submani f old D'

of D (t) is a core of t if and only if D' is dense in the Hilbert space H t as-
sociated with t.

Theorem 1.22. Let t', t" be two sectorial forms such that t' Ct". Let Ht,
and Ht., be the associated pre-Hilbert spaces'. I/ t" is closed, t' is closed if
and only if Ht, is a closed subspace of Ht... When t" is closable, if and
only if Ht, is dense in Ht...

Example 1.23. Consider the form 4 [u, v] = (Su, Sv) of Examples 1.3 and 1.13.
is closable if and only if S is closable. In fact, u 0 and 0 0 are equivalent

to u S 0 and Su - 0, respectively. When S is closable, we have

(1.34) [u, v] = (Su, Sv) with D(()) = D(S)

We know also that is closed if and only if S is closed; in this case a subset D' of
D (q) = D (S) is a core of 4 if and only if it is a core of S.

Example 1.24. Consider the form t [u, v] = E of $s i of Examples 1.4 and 1.14.
Assume that all the as lie in the sector (1.13) so that t is sectorial and closed. t is
closable with t = t; this follows from the fact that D (t) is dense in Ht, which can
be easily verified. Next let us consider the closure of t1. The additional condition
(1.20) can be written in the form E (1 + Re a1 - y) 3 ! = 0 where #,(I +
+ Real - y)-1. Noting the expression llullt = E(1 + Reas - y) given in
Example 1.14, we see that D%) is dense in Ht if and only if E (I + Re a1 - y) 1 fl§12
= oo (see a similar argument in Example 1.4). As is easily seen, this condition is
equivalent to

(1.35) E(laal + 1)-1 IPJ12 = oo .

Thus we have t1 = t if and only if (1.35) is satisfied. If the left member of (1.35) is
convergent, on the other hand, D (t1) is a dense subset of the orthogonal complement
M in Ht of the one-dimensional subspace spanned by the vector (flf), which belongs

to Ht, and D (t1) is identical with M. Thus u E D (t1) is characterized by E (la,I +
+ 1) oo and .Z' $1 = 0 [note that Z j! r is absolutely convergent for
u E D (t), as is seen by applying the Schwarz inequality].

Example 1.25. Considei the form t [u, v] = j' f (x) u (x) vv (z) dx of Examples 1.5
and 1.15 and assume that the values of f (x) lie in the sector (1.13) so that t is sectorial
and closed. By an argument similar to that of the preceding example, it can be
shown that t = t, and that t1 = t if and only if

(1.36) f (It(x)I + 1)-I g(x) 12 dx = oo
E

I Here we assume that a common vertex y is chosen for t', t" and the norms in
Ht', Ht,, are respectively given by (Re t' - y) [u] + 11u112, (Re t" - y) [u] + (13112.
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Example 1.26. An example of a densely defined, sectorial (even symmetric
and nonnegative) form which is not closable is given by the form 4 [u, v] = u (0) v (0)
of Example 1.6. To see this, it suffices to note that u 0 implies that 0

and limun(0) = at exists (where is a sequence of continuous functions); but this
does not imply or = 0.

5. Forms constructed from sectorial operators
Let us recall that an operator T in H is said to be sectorial if its

numerical range is a subset of a sector of the form (1.13) (see V-§ 3.10).
Let T be sectorial and set (see Example 1.2)
(1.37) t [u, v] = (T u, v) with D (t) = D (T)

The form t is obviously sectorial with a vertex y and semi-angle 0.
Theorem 1.27.1 A sectorial operator T is f orm-closable 2, that is, the

form t defined above is closable.
Proof. We may assume without loss of generality that T has a vertex 0

so that h = Re t >_ 0. Let u,, E D (t) = D (T) be t-convergent to 0: un -- 0
and t [u, - u n] -> 0; we have to show that t [un] -. 0.

We have by (1.15)

1138)
It [un] I S It [un, U. - um] I + It [un, um] 15

5 (1 + tan 0) h [un]1/2 [un - un]1/2 + I (Tun, u+n) I

For any e > 0 there is an N such that [itn - um] S 62 for n, m z N,
for 4 [un - um] - Q. Since 4 [u,,] is bounded in n for the same reason,
it follows from (1.38) that

(1.39) It [un] I s M e+ I (Tun, un,.) I, n, m z N,
where M is a constant. On letting m -* oo, we obtain It [un] I S Me for
n z N, which proves the required result t [u,,] -+ 0.

Corollary 1.28 A symmetric operator bounded from below is f orm-
closable.

Problem 1.29. In Theorem 1.27 we have { [u, v] _ (T u, v) for every u E D (T)
and v E DO).

Example 1.30. Consider the t of III-§ 2.3 for X = H = L' (a, b), which is the
minimal operator in H constructed from the formal differential operator L u = po u"
+ pl u' + p$ u. An integration by parts gives

b

(1.40) (Tu,v) f{-pou'v + (p1-po)u'v+p$uv}dz.
a

This is of the same form as the form t considered in Example 1.7, and defines a
sectorial form if po(r) < 0 and p,,, po, p,. and ps are continuous on the closed finite
interval [a, b]. Hence t is form-closable.

I This theorem is due to M. SCHECHTER [3]. The author originally proved it
only when 0 < n/4; cf. T. KATO [15].

' Note that a sectorial operator is closable as an operator if it is densely defined
(see Theorem V-3.4).
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6. Sums of forms

Theorem 1.31 Let t,. ..., t, be sectorial forms in H and let t = t, +
+ + t8 [with D(t) = D (tl) n n D(Q]. Then t is sectorial. I/ all
the t, are closed, so is t. I/ all the t; are closable, so is t and

(1.41) f Cf1+...+I,,
Proof. Without loss of generality all the t1 may be assumed to have a

vertex zero. Let 01 be a semi-angle oft; for vertex zero. Since the numer-
ical range of t1 is a subset of the sector largCl S 01 < a/2, the numerical
range of t is a subset of the sector largCl S 0 = max 01 < n/2. Thus t is
sectorial with a vertex zero and semi-angle 0.

Suppose that all the t1 are closed and let u i u. Then u, u for

Re t = 01 + + t , h1= Re t1, which implies that h [u - 0,
n, m -> oo. Since h1 z 0, it follows that t [u - u,,,] --->. 0 for each j.
Thus un --* u and hence u, u, so that u E D (t1) and t1 [u - u] -- 0

br tj
for each j. Hence u E D (t) and t [u - u] -- 0. This proves that t is closed.

Next suppose that all the t1 are closable. Then f1 + + f3 is closed
by what was just proved and is an extension of t. Therefore t is closable
and (1.41) holds.

Remark 1.32. The inclusion C in (1.41) cannot in general be replaced
by equality, even when all the t1 are symmetric'. Theorem 1.31 can be
extended to the case in which there are an infinite number of forms to be
summed, with certain assumptions to ensure the convergence and the
sectorial boundedness of the sum.

Let t be a sectorial form in H. A form t' in H, which need not be
sectorial, is said to be relatively bounded with respect to t, or simply t-
bounded, if D (t') ) D (t) and

(1.42) It' [u] 15 a ll ull2 + bit [u] I , u E D (t) ,

where a, b are nonnegative constants. The greatest lower bound for all
possible values of b will be called the t-bound of V.

Obviously t-boundedness is equivalent to (t + oc)-boundedness for
any scalar a. Also t-boundedness is equivalent to h-boundedness for
4 = Ret, for (1.42) is equivalent to [see (1.16)]

(1.43) It' [u] 15 a JIU112 + b0 [u] , u E D (t) = D (0) ,

with a, b not necessarily equal to the a, b of (1.42).
If both t and t' are sectorial and closable, (1.42) is extended to all

u E D () with the same constants a, b and with t, t' replaced by f, ',
respectively [D (i') D D () being a consequence]. To see this it suffices

1 For a counter-example see T. KATO [8].
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to consider, for each u E D (i), a sequence {un) such that u t u and use

an appropriate limiting argument.
For symmetric forms we can define relative semiboundedness. Let

be a symmetric form bounded from below. A symmetric form y', which
need not be semibounded, is said to be relatively semibounded from below
with respect to 0, or simply lj-semibounded from below, if D (0') D D (0) and

(1.44) 0' [u] z - a'llullI - b' h [u] , u E D(0) ,

where a', b' are nonnegative constants. Similarly, h' is 0-semibounded
from above if D (0') D D (0) and

(1.45) 0'[u] s a" II ull a + b" h [u] , u E D (h)

If h' is h-semibounded both from below and from above, t,' is h-bounded.
Note that h-semiboundedness from above and from below are not quite
parallel since h is assumed to be semibounded from below.

Theorem 1.33 Let t be a sectorial form and let t' be t-bounded with
b < 1 in (1.43). Then t + t' is sectorial. t + t' is closed if and only if t is
closed. t + t' is closable i f and only i f t is closable; in this case D (t + t')

D ().
Proof. We have D (t + t') = D (t) since D (t') D D (t). We may assume

without loss of generality that t has a vertex zero so that h = Re t z 0;
note that replacement of h by 4 - y does not change the b of (1.43)
though it may change a. Denoting the semi-angle oft by 0 and setting
f = Im t, h' = Re t', f' = Im t', we have
(1.46) (1+ t') [u]I s If[u]I+ If'[u]I s If[u]I+ It'[u]I s

s (tan 0+b)0[u]+allulI2,
(1.47) (h + h') [u] z h [u] -14' [u]I z (1- b) h [u] - allulla .

Hence

(1.48) (f + f') [u] I S (1 - b)--1 (tan 0 + b) ((h + h') [u] + a) + a

for lull = 1. This shows that the numerical range of t + t' is a subset of
the sector Iarg (C + R) 1 s 0' with sufficiently large R and 0' < 3/2:
t + t' is sectorial.

It follows from (1.42) that u i u implies ui u and hence
u,, t+i u. Conversely, it follows from (1.47) that u i- , u (which is
equivalent to u t+i u) implies u 4 u (which is equivalent to ut u).

Similarly we see that t [u - u] -+ 0 and (t + t') [u - u] -+ 0 are equi-
valent. The remaining statements of the theorem are direct consequences
of these equivalences. We note, incidentally, that all the above inequali-
ties are extended to u E D (t) with t, t + t', etc. replaced by f, (t+ t') -, etc.
when t is closable.
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Remark 1.34. If t' is also sectorial and closable in Theorem 1.33,
then D (') D D (i) and (t + t')_= i + '. In fact, we have (t + t')- C i+ '
by Theorem 1.31 but also D ((t + t') = D (f) by Theorem 1.33.

Remark 1.35. If t, t' are symmetric in Theorem 1.33, it suffices to
assume that t' is t-semibounded from below and from above with b' < 1
in (1.44).

Example 1.36. Consider the form t of Example 1.7. t can be expressed as
t = t1 + t$ + ty with

t1[u,v]= fp(x)u'v dx,
(1.49) to [u, v] = f {q (x) u v + r (x) u' D + s (x) u F} d x ,

t3 [u, v] = he u (a) a (a) + ha u (b) v 1"1

and D (tl) = D (tg) = D (t8) = D (t). If we assume that p (x) > 0 as before, tl may be
written as t1[u, v] _ (Su, Sv) where S is a linear operator defined by Su(x)
= p (x)1/2 u' (x) with D (S) = D (t). With the D (t) described in Example 1.7, S is a
closed operator in H [see Example 111-5.14 and Problem 111-5.7; note that p (x)-1 is
bounded]. Hence t1 is nonnegative and closed by Example 1.13.

On the other hand ty and t8 are tl-bounded with tl-bound 0; in effect this
was proved in Example 1.7. Thus we see from Theorem 1.33 that t is closed. Simi-
larly, the restriction to of t mentioned in Example 1.7 is closed; this is due to the
fact that the corresponding restriction So of S is closed (see Example 111-5.14).

Problem 1.37. Let t, t' be sectorial, t closed and t' closable. If D (t') ) D (t), then t'
is t-bounded [hint: Theorem 1.20].

7. Relative boundedness for forms and operators
We have introduced the notions of relative boundedness, which are

important in perturbation theory, for operators and for quadratic forms
(the latter only in Hilbert spaces). Both notions can be applied to
sectorial operators S and S': on the one hand S' may be bounded relative
to S and, on the other, the sectorial form (S' u, u) may be bounded
relative to the form (Su, u). Under appropriate assumptions on closedness
and the smallness of the relative bound, S + S' and S have the same
domain in the first case, and the corresponding closed forms have the
same domain in the second case.

In general it is not clear whether there is any relationship between
these two kinds of relative boundedness. If we restrict ourselves to
considering only symmetric operators S, S', however, form-relative
boundedness is weaker than operator-relative boundedness. More
precisely, we have

Theorem 1.38. Let T be selfadjoint and bounded from below, let A be
symmetric and T-bounded with T-bound b. Then the form (A u, u) is
relatively bounded with respect to the form (T u, u) with relative bound S b,
and the same is true of their closures'.

I This theorem is essentially the same as Theorem V-4.11.
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Proof. We have the inequality 11 A ull 5 a' ll ull + b' ll T ull , u E D (T),
where b' may be chosen arbitrarily close to b. It follows from Theorem
V-4.11 that T (x) = T + xA is selfadjoint and bounded from below for
real x with IxI < b'-1, the lower bound y (x) of T (x) satisfying

(1.50) Y M z YT - lxl max (1 b, N , a' + b'lyTl) .

That y (x) is the lower bound of T (x) implies that

(1.51) -x(Au, u) < -y(x) (u, u) + (Tu,u), uED(T).
Since ±x can be taken arbitrarily near b'-1, and hence to b-1, (1.51)
shows that the form (A u, u) is relatively bounded with respect to (T u, u)
with relative bounds b. The last assertion of the theorem follows from
a remark in par. 6.

§ 2. The representation theorems
1. The first representation theorem

If t [u, v] is a bounded form defined everywhere on H, there is a
bounded operator T E 9 (H) such that t [u, v] = (T u, v) (see V-§ 2.1).
We can now generalize this theorem to an unbounded form t, assuming
that t is densely defined, sectorial and closed. The operator T that
appears will be sectorial as is expected from the sectorial boundedness
of t. Actually T turns out to be m-sectorial (see V-§ 3.10), which implies
that T is closed and the resolvent set P (T) covers the exterior of 0 (T).
In particular T is selfadjoint and bounded from below if t is symmetric.
The precise result is given by

Theorem 2.1. (The first representation theorem) 1. Let t [u, v] be a densely
defined, closed, sectorial sesquilinear form in H. There exists an m-sectorial
operator T such that

i) D (T) C D (t) and

(2.1) t [u, v] = (Tu, v)

for every u E D (T) and v E D (t);
ii) D(T) is a core of t;

iii) if u E D (t), w EH and

(2.2) t [u, v] = (w, v)

holds for every v belonging to a core of t, then u E D (T) and T u = w. The
m-sectorial operator T is uniquely determined by the condition i).

1 Whent is symmetric, this theorem is due to FRIEDRICHS [1]. The generalization
to nonsymmetric t appears to have been given by many authors, at least implicitly;
a systematic treatment may be found in LIONS [1)J, where the theorem is given in a
somewhat different form.
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Corollary 2.2. If a form to is defined from the T of Theorem 2.1 by
to [u, v] = (T u, v) with D (to) = D (T), then t = L.

Corollary 2.3. The numerical range E) (T) of T is a dense subset of the
numerical range 0 (t) of t.

Corollary 2.4. If S is an operator such that D (S) C D (t) and t [u, v]
_ (Su, v) for every u E D (S) and every v belonging to a core of t, then
S C T.

T will be called the m-sectorial operator (or simply the operator)
associated with t. We shall often write T = Tt to express this correspon-
dence.

Theorem 2.5. 1/ T = Tt, then T* = Tt.. In other words, if T is the
operator associated with a densely defined, closed sectorial form t, then T* is
associated in the same way with t*, the adjoint form of t (which is also
densely defined, sectorial and closed).

Theorem 2.6. If h is a densely defined, symmetric closed form bounded
from below, the operator T = TO associated with h is self adjoint and bounded
from below. T and h have the same lower bound.

Theorem 2.7. t -> T = Tt is a one-to-one correspondence between the
set of all densely defined, closed sectorial forms and the set of all m-sectorial
operators. t is bounded if and only if T is bounded. t is symmetric it and
only if T is sel f adjoint.

Remark 2.8. These results will show that the closed sectorial forms
are convenient means for constructing m-sectorial operators (in particular
selfadjoint operators bounded from below), for such forms are easy to
construct owing to the fact that there are no "maximal" sectorial forms.

2. Proof of the first representation theorem

In the proof of Theorems 2.1 and 2.5, we may assume without loss
of generality that t has a vertex zero so that h = Re t z 0. Let Ht be the
associated (complete) Hilbert space into which D (t) is converted by
introducing the inner product (u, v)t = (u, v)4 given by (1.29).

Consider the form t, = t + 1. t1 as well as t is a bounded form on Ht.
Hence there is an operator B E 2 (Ht) such that

(2.3) t1 [u, v] _ (Bu, v)t, u, v E Ht = D (t) .

Since JIuIIt = (h + 1) [u] = Ret1 [u] = Re(Bu, u)t S JIBuIIt I!ullt, we have
Ilulit 5 IlBuIlt. Hence B has a bounded inverse B-1 with closed domain
in H. This domain is the whole of Ht so that B-1 E M(Ht) with JIB-lilt S 11.
To see this, it suffices to show that a u E Ht orthogonal in Ht to D (B-1)
= R(B) is zero. This is obvious from JIuI1r = Re(Bu, u)t= 0.

1 This result is known as the Lax-Milgram theorem, see LAX-MILGRAM [1].
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For any fixed u E H, consider the semilinear form v -+ lu [v] = (u,v)
defined for v E Ht. l,, is a bounded form on Ht with bound 5 1lull, since
Ilu[v]l 5 Hull Ilvii 5 lull JIvilt By the Riesz theorem (see V-§ 1.1), there
is a unique u' E Ht such that (u, v) = lu [v] = (u', v)t, llu'IIt 5 hull. We now
define an operator A by A u = B-1 W. A is a linear operator with domain
H and range in Ht. Regarded as an operator in H, A belongs to M(H)
with 11A 11 s 1, for IIA ull = 11B-1 u'll s 11B-1 wilts llu'llt s dull. It follows
from the definition of A that

(2.4) (u, v) _ (u', v)t = (BAu, v)t = t1 [Au, v] _ (t -F 1) [Au, v] .

Hence

(2.5) t[Au,v]= (u-Au,v), uEH, vEHt= D(t).
A is invertible, for A u = 0 implies by (2.4) that (u, v) = 0 for all

v E D (t) and D (t) is dense in H. On writing w = A u, u = A-1 w in (2.5),
we get t [w, v] _ ((A-' - 1) w, v) = (T w, v), where T = A-' - 1, for
every w E D (T) = R (A) C D (t) and v E D (t). This proves i) of Theorem
2.1.

T is a closed operator in H since A E 2 (H). T is sectorial, for 0 (T) C
C 0 (t) because (T u, u) = t [u] by (2.1). T is m-sectorial, for R (T + 1)
= R (A-1) = D (A) = H (see V-§ 3.10).

To prove ii) of Theorem 2.1, it suffices to show that D (T) = R (A)
is dense in Ht (see Theorem 1.21). Since B maps Ht onto itself bi-
continuously, it suffices to show that B R (A) = R (BA) is dense in Ht.
Let v E Ht be orthogonal in Ht to R (B A). Then (2.4) shows that (u, v) = 0
for all u E H and so v = 0. Hence R(BA) is dense in Ht.

Corollary 2.2 is another expression of ii) just proved, and Corollary 2.3
follows from it by Theorem 1.18.

To prove further results of the theorems, it is convenient at this
point to consider t*, the adjoint form oft. Since t* is also densely defined,
sectorial with a vertex zero, and closed, we can construct an associated
m-sectorial operator T' in the same way as we constructed T from t.
For any u E D (t*) = D (t) and v E D (T'), we have then

(2.6) t* [v, u] _ (T' v, u) or t [u, v] _ (u, T' v) .

In particular let u E D (T) C D (t) and v E D (T') C D (t). (2.1) and (2.6)
give (Tu, v) = (u, T'v). This implies that T' c: T*. But since T* and T'
are both m-sectorial (which implies that they are maximal accretive,
see V-§ 3.10), we must have T' = T* and hence T'* = T too.

This leads to a simple proof of iii) of Theorem 2.1. If (2.2) holds for
all v of a core of t, it can be extended to all v E D (t) by continuity.
Specializing v to elements of D (T'), we have then (u, T' v) = t [u, v]
= (w, v). Hence U E D (T' *) = D (T) and w = T' * u = T u by the
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definition of T'*. Corollary 2.4 is a direct consequence of iii), and the
uniqueness of an m-sectorial operator T satisfying i) follows from this
Corollary. This completes the proof of Theorem 2.1.

Theorem 2.5 follows immediately from T' = T* proved above.
Theorem 2.6 results from it since t = t* implies T = T*; the assertion
on the lower bounds of t and T follows from Corollary 2.3.

Proof of Theorem 2.7. We first note that the mapping t -+ T = Tt
is one to one; this is a direct consequence of Theorem 2.1 and Corollary
2.2. It remains to show that any m-sectorial operator T is associated in
this way with a densely defined, closed sectorial form t. As is suggested
by Corollary 2.2, such a t is obtained as the closure of the form

(2.7) to [u, v] = (T u, v) , D (to) = D (T) .

to is densely defined and sectorial; it is closable by Theorem 1.27. Let
t = fo and define the associated operator Tt; then Tt D T by Corollary 2.4.
But since both T and Tt are m-sectorial, we must have T = Tt.

Proof of Theorem 1.16. We can now give the promised proof of Theorem
1.16. By hypotheses the sequences and {(Re t - y) [u.]} are bounded.
Since h' = Re t - y is closed with t and since u,,i u is equivalent to
u,, u (see § 1.3), we may assume without loss of generality that
t = lj is symmetric and nonnegative.

Consider the Hilbert space H4 defined before. Since {IIu ll} and
[u,,]} are bounded, forms a bounded sequence in H. Consequently,

there exists a subsequence of which is weakly convergent in H4
(see Lemma V-1.4). Let v E H4 be the weak limit of {vn}, and let H = T.
For any w E D (H), we have

(v., (H + 1) w) + 1) [v., w] = (v., w)D -+

--> (v, w)o = (h + 1) [v, w] _ (v, (H + 1) w) .

Since we have (v,,, (H + 1) w) --> (u, (H + 1) w) on the other hand, we
have (u - v, (H + 1) w) = 0. But (H + 1) w varies over the whole of
H when w varies over D (H). This gives u = v so that u E H4 = D (h).

We have also Iluk, = IlvllD 5 lim in view of (1.30),
equivalent to h [u] 5 lim inft, [v,,]. Since we could have replaced
by any subsequence, this gives h [u] S lim info

3. The Friedrichs extension
In this paragraph we denote by S a densely defined, sectorial operator.

Define the form s by s [u, v] = (Su, v) with D (s) = D (S). Then s is
closable by Theorem 1.27. Let t = s and let T = Tt be the associated
m-sectorial operator. It follows from Corollary 2.4 that T ) S, for D (S)
= D (s) is a core of t. T will be called the Friedrichs extension of S.



326 VI. Sesquilinear forms in Hilbert spaces and associated operators

Originally the Friedrichs extension was defined for a semibounded
symmetric operator S, in which case T is selfadjoint by Theorem 2.61.

Theorem 2.9. If S is m-sectorial, the Friedrichs extension of S is S
itself. In particular, the Friedrichs extension of the Friedrichs extension T
of a densely defined, sectorial operator is T itself.

This is clear since an m-sectorial operator has no proper sectorial
extension (see V-§ 3.10).

The following two theorems characterize the Friedrichs extension.
Here S, s, t, T are as above.

Theorem 2.10. Among all m-sectorial extensions T' of S, the Friedrichs
extension T has the smallest form-domain (that is, the domain of the as-
sociated form t is contained in the domain of the form associated with any
other T').

Proof. Define the form t' by t' [u, v] = (T' u, v) with D (t') = D (T').
Then T' is associated with the form ' (see Theorem 2.7). But since
T' D S, we have t' D s and so PD s = t. This implies D (f') D D (t).

Theorem 2.11. The Friedrichs extension of S is the only m-sectorial
extension of S with domain contained in D (t) 2.

Proof. Let T' be any m-sectorial extension of S with D (T') < D (t).
Let t' be as above. For any u E D (T') and v E D (t), we have (T' u, v)
= P [u, v] = t [u, v] since T' = Ti., l' ) t, and u E D (T') C D (t). It follows
from Corollary 2.4 that T' C T. But since T' and T are both m-sectorial,
we must have T' = T.

Remark 2.12. The importance of the Friedrichs extension lies in the
fact that it assigns a special m-sectorial extension to each densely defined,
sectorial operator S, even when the closure 3 of S is not m-sectorial.

4. Other examples for the representation theorem
Example 2.13. Consider the form 4 [u, v] = (Su, Sv) studied in Examples 1.3,

1.13 and 1.23. Assume that S is densely defined and closed so that 4 has the same
properties. Let T = T4. Since (Su, Sv) = (Tu, v) for all u E D(T) and v E D(0)
= D(S), it follows that TC S* S. Since S* S is obviously symmetric and T is
selfadjoint, we must have T = S* S. Also D (T) is a core oft and hence of S by
Theorem 2.1 and Example 1.23. This gives another proof of the facts that S* S is a
selfadjoint operator in H whenever S is a densely defined, closed operator from H to
H' and that D (S* S) is a core of S (see Theorem V-3.24).

1 See FRIEDRICHS [1], FREUDENTHAL [1]. For the generalization of the Fried-
richs extension to operators from a Banach space X to its adjoint space X* see
BIRMAN [2].

2 Cf. FREUDENTHAL [1]. We do not consider the problem of determining all
m-sectorial extensions of S. For semibounded selfadjoint extensions of a semi-
bounded symmetric S, this problem is solved by KREIN [1], [2]. See also BIRMAN [1],
VIAIK [1].
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Example 2.14. Consider the form t [u, v] = E a; $1 ; of Examples 1.4, 1.14 and
1.24. Let T = Tt, u = E D (T), T u = w = (C;) and v = (71;) E D (t). We have
E C, , = (w, v) _ (T u, v) = t [u, v] = E a; ; al;. In particular set 77; = S; b; then we
obtain jk = a,, sek. Since w E 12, it is necessary that E la4 l$;la < oo. This condition
is also sufficient for a u E 12 to belong to D (T), for then t [u, v] = E a; se, , = E Ca la
_ (w, v) so that Tu exists and is equal to w = (a; ;) by Theorem 2.1, iii).

Next consider the restriction t1 of t with the additional condition E 0
for u E D (t1), where we assume

(2.8) E 1#iI2 = oo . E (Ia3I + 1)-1 I#rla < oo .

Then t1 is densely defined but t1 is a proper restriction oft (see loc. cit.). Let T, = Tt,,

u = (;) E D (TI), T, u = w = (C;) and v E D (t1). Then we have as above E
- a; ;) & = 0. In particular set 771 = 9r, 711, = - #1, other r7; being zero [then
v E D (t1)]. This gives C, - a1 $1 : CA - aA $k = fl1: ftk and, since this is true for allk,
we have C; - a; ; = Q fl; with a number e independent of j. w E 12 requires that Q
should be such that E la; ; + 8 &12 < oo. In view of (2.8), there is at most one 8
with this property. Each u E D (TI) therefore satisfies the conditions

(2.9) E(Iajl+1)I$5I2<0O, E#,$,=0 and Ela;se,+et,I2<00
for some Q .

These conditions are also sufficient for u E 12 to belong to D (TI), for then we have

u E D (t1) and t1 [u, v] = Ear a a = E (aa a + p & , = (w, v) with w = (a, .sea -i-
+ e f4,) E 12, for every v = (71;) E D (t1). Thus T, u exists and equals w by Theorem
2.1, iii).

Example 2.15. The form t [u, v] = J f u v dx of Examples 1.5, 1.15 and 1.25
can be dealt with as the preceding example. The result is that T = Tt is the maximal
multiplication operator by f (x) (see Example 111-2.2). If g (x) is such that f Ig (x) isdx
= oo but the integral on the left of (1.36) is convergent, then T, = Tt, is given by
T1 u (x) = f (x) u (x) + B g (x) where 8 is determined by the condition T, u E L2.

Example 2.16. Consider the form t of Example 1.7 and 1.36 under the as-
sumptions stated there. Let T = Tt and u E D (T), Tu = w. The relation (w, v)
= (T u, v) = t [u, v], v E D (t), means

6 b

(2.10) Jw6dx= J{pu'0'+qu6+ru'6+sufl'}dx+
a a

+ h, u (a) v (a) + hb u (b) v '_(b) .

Let z be an indefinite integral of w - q u - r u' (which is integrable) :

(2.11) z'=w-qu-ru'.
b b 6

Then J(w-qu-ru')0dx= f z'vdx=z(b)v(b) -z(a)v(a) - Jz0'dx,and
a a a

(2.10) gives
b _

(2.12) f (p u' + z + s u) O' dx + [ha u (a) + z (a)] v (a) +
0

+ [hb u (b) - z (b) ] v (b) = 0 .

(2.12) is true for every v E D (t), that is, every v such that v (x) is absolutely
b x

continuous and v' E L2 (a, b). For any v' E L2 such that f v' d x = 0, v (x) = f v'(x) d x
a a

satisfies the conditions v E D (t) and v (a) = v (b) = 0, so that p u' + z + s u is



328 VI. Sesquilinear forms in Hilbert spaces and associated operators

orthogonal to v' by (2.12). Thus p u' + z + s u must be equal to a constant c,
being orthogonal to all functions orthogonal to 1. Substituting this into (2.12),
we obtain

(2.13) [- c + ho u (a) + z (a) ] v (a) + [c + hb u (b) - z(b) ] v (b) = 0 .

Since v (a) and v (b) vary over all complex numbers when v varies over D (t),
their coefficients in (2.13) must vanish. Noting that c = p (a) u' (a) + z (a) +
+ s (a) u (a) = p (b) u' (b) + z (b) + s (b) u (b), we thus obtain

(2.14) p (a) u' (a) + (s (a) - ho) u (a) = 0, 1' (b) u' (b) + (s (b) + ha) u (b) = 0 .

From p u' + z + s u = c it follows that p u' is absolutely continuous and (p u')'
= - z' - (s u)' = - w + q u + r u' - (s u)' or w = - (p u')' + q u + r u' - (su)'.
In this way we have proved that each u E D (T) has the following properties:

i) u (x) and u' (x) are absolutely continuous and u" E La (a, b) ;
ii) u (x) satisfies the boundary condition (2.14).
Conversely, any u E L8 satisfying i) and ii) belongs to D (T) and

(2.15) Tu=w= -(pu')'+qu+ru'- (su)'.
In fact, an integration by parts shows that t [u, v] = (w, v) for every v E D (t) and the
assertion follows immediately from Theorem 2.1, iii). Thus we have the characteriza-
tion: T = Tt is the second-order differential operator (2.15) with the boundary condi-
tion (2.14). T is an operator analogous to the T. of III-§ 2.3.

This gives a proof that such a differential operator is m-sectorial, in particular
selfadjoint is real-valued, r(x) = s(x) and h hb are real.

Example 2.17. Consider the restriction to of the form t of the preceding example
defined by restricting the domain to a subset of D (t) consisting of all u such that
u (a) = u (b) = 0. to can be shown to be closed in the same way as t. Let us
determine To = T. If U E D (To) and To u = w, we have again (2.10) where v (a)
= v (b) = 0. The same argument as above thus leads to the result that w is given by
(2.15). Therefore, each u E D (To) has the property i) of the preceding example and

ii') u (x) satisfies the boundary condition u (a) = u (b) = 0.
These conditions are also sufficient for a u E L$ to belong to D (TO); in this case

To u is given by the right member of (2.15). The proof again follows from the fact
that to [u, v] = (w, v) for every v E D (to), as is seen by an integration by parts.
Thus To is the differential operator (2.15) with the boundary condition u (a) = u (b) = 0.

Note that this boundary condition was already required in the definition of to.
On the other hand, the boundary condition (2.14) for T in the preceding example
is not imposed on t but only on T. In this sense (2.14) is called a natural boundary
condition'.

Problem 2.18. Let t be the minimal operator in La (a, b) constructed from the
formal differential operator (2.15). All the operators T of Example 2.16 with dif-
ferent constants h hb and the To of Example 2.17 are m-sectorial extensions of T.
Which of them is the Friedrichs extension of t (cf. Example 1.30) ?

5. Supplementary remarks
Selfadjointness is an important property, but a rather delicate one

and hence not easy to establish. The correspondence h -. H = To
furnishes a convenient means of producing selfadjoint operators, inas-

' By the analogy of a similar notion in the calculus of variations.
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much as it is relatively easy to construct closed forms. The examples
given in par. 4 show indeed that various kinds of selfadjoint operators
can be constructed in this way. The only defect of this method is that
not all but only semibounded selfadjoint operators can be obtained.
If we consider nonsymmetric forms, however, all m-sectorial operators
can be constructed by means of sesquilinear forms.

The convenience of this way of constructing selfadjoint or m-sectorial
operators is further illustrated by the following considerations. If t1
and t2 are closed sectorial forms, the same is true of their sum t = t1 + t2
by Theorem 1.31. If t is densely defined, the associated m-sectorial
operators T, T1, T2 are defined. T may be regarded as the sum of T1, T2
in a generalized sense, and we may express this by writing

(2.16) T=T1-I-T2.
For any two selfadjoint operators T1, T2 bounded from below, the
associated forms t1, t2 exist and the generalized sum of T1, T2 can be
defined as equal to Tt if t = t1 + t2 is densely defined. The stated condition
is weaker than the requirement that the ordinary sum S = T1 + T2
be densely defined, and S need not be selfadjoint or essentially self-
adjoint even when densely defined. In any case T is an extension of
T1 + T2 and so its unique selfadjoint extension if T1 + T2 is essentially
selfadjoint, as is easily seen by applying Theorem 2.1, iii).

This result can be extended to the case in which T1 and TZ are m-
sectorial; then the associated closed forms t1, t2 exist and the generalized
sum (2.16) is defined if D (t1) n D (t2) is dense (see Remark 2.8).

If T1, T2 are selfadjoint and bounded from below and if T1 + T2 is
densely defined, the Friedrichs extension TF of T1 + T2 is defined
(see par. 3). In general, however, TF differs from (2.16). This is illustrated
by the following example.

Example 2.19. Let t1, to be the forms (1.24) for different choices of the pair of
constants he, hb which we assume to be real. For simplicity we further assume that
p (x) = 1 and q = r = s = 0. Then t = 2 (tl + t2) is again of the same form. Thus
ti, t9 and t are all symmetric, and the associated operators T, T1, T$ are selfadjoint
operators formally given by - d2/dx2, with boundary conditions of the form (2.14)
with p = 1, s = 0 and with different pairs of constants he, hb. Thus S =

2

(T1+T2)
has domain D (S) = D (T1) n D (T2) consisting of all u with u't E L2 that satisfy
the boundary conditions u (a) = u (b) = u' (a) = u' (b) = 0. Now the closure of the
form (Su, v) defined with domain D (S) is the to of Example 2.17 (see also Example
1.30) so that Tr is the differential operator - d2/d x$ with the boundary condition
u (a) = u (b) = 0 and differs from T.

Another convenience in considering symmetric forms rather than
symmetric operators is the ease of extending such a form : except for
bounded forms with domain H, any closed symmetric form bounded
from below admits a proper closed symmetric extension bounded from



330 VI. Sesquilinear forms in Hilbert spaces and associated operators

below ; there is no such thing as a maximal symmetric form, whereas
maximal symmetric operators do exist (selfadjoint operators are maximal
symmetric). Similar remarks can be made for more general, sectorial
forms on the one hand and m-sectorial operators on the other.

A question arises: what is the relationship between the m-sectorial
operators H1, Ha associated with two forms 0, 02 such that hl C h2 ?
The answer is not straightforward; there is no simple relationship bet-
ween the domains of H1 and H2. Later we shall give a partial answer to
this question.

Another question concerns the relationship between the selfadjoint
operators H1, H2 associated with two symmetric forms Hl, h2 such that
01 > h2. We find it convenient to define the order relation 01 z h2 for
any two symmetric forms 01, h2 bounded from below by

(2.17) D (01) (: D (h2) and 01 [u] z h2 [u] for u E D (hi) .

Note that according to this definition, if 01, 02 are symmetric and bounded
from below, then 01 C 02 implies 01 h2

Problem 2.20. 01 Z 42 implies 61 Z 4a

Let H1, H2 be the selfadjoint operators bounded from below associated
respectively with closed symmetric forms 01, h2 bounded from below.
We write H1 z H2 if hl z h2 in the sense defined above. This notation
is in accordance with the usual one if H1, H2 are symmetric operators
belonging to M(H).

Theorem 2.21. Let H1, H2 be selfadjoint operators bounded from'below
with lower bounds yl, ya, respectively. In order that H1 z H2, it is necessary
that yl L Y2 and R (C, H1) 5 R (C, H2) for every real C < y2, and it is
sufficient that R (C, H1) 5 R (C, H2) for some C < min (y, y2) (R denotes
the resolvent).

Proof. Necessity. Let 01, h2 be the associated symmetric forms
bounded from below. Hl z H2 is equivalent to hl z h2 by definition,
which implies y4, z y4,. Since y1= y4,, y2 = y4, by Theorem 2.6, it
follows that yl z y$. Thus the resolvents R (C, H1) and R (C,'H2) exist for
C < y2. Replacing hl - C, h2 - C, H1 - -, H2 - C by 01, h2, H11 H2 re-
spectively, it suffices to show that H1 z H2 z a > 0 implies H1 -1 5 Hit
[where Hit, Hat E.i(H)].

For any u E H, set v1= HT' u, v2 = Hi' u. Then we have

(HT 1 u, u)2 = (v1, H2 v2)2 = h2 [v1, v2]2 5 h2 [v1] h2 [v2]

5 01 [vl] h2 [v2] = (H1 v1, v1) (H2 v2, v2) _ (u, HT I u) (u, Ha 1 u) ,

which gives the desired result (Hl 1 u, u) (Hi' u, u). Note that
v1 E D (H1) C D (01) C D (02), and that H1, H2, Hi 1, Hi 1 are all symmetric
and nonnegative.
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Sufficiency. Again replacing H, - C, etc. by Hl, etc., it suffices to
show that, if both H, and H2 have positive lower bounds and Hi 1 5 HZ
then Hl z H2, that is, h1 z 02 To this end we first apply the foregoing
result of the necessity part to the pair S1= Hi 1, S2 = HZ 1 of nonnegative
bounded operators, obtaining (S1 + a)-1 > (S2 + a)-1, a > 0, from the
assumption S1 5 S2. Denoting by 0111, hen the forms associated with the
bounded symmetric operators (S1 + w-1)-1 = H, (1 + 11-1 H,)-1 and
H2(1 + n-1 H2)-1, we thus have 0111 ? 0211.

On the other hand we have 0111 5 01, 0211 5 02. In fact, let u E D (H,) ;
then 01, [u] = (H, (1 + w-1 H,)-1 u, u) 5 (H1 u, u) = 0, [u] by Problem
V-3.32. The result is generalized to all u E 'D (01) because D (H,) is a
core of 01

Let u E D (01). Then we have by what is proved above 02n [u] 5 0111 [u]
5 01 [u] so that 02- [u] is bounded. Set un = (1 + 11-1 H2)-1 u E D (H2) C
C D/(02). Then 02- [u] = (H2(I+ n-i H2)-1 u, u) _ (H2un, (1 + n-1 H2) un)

/(H2 u11, un) + n-111H2 unJJ2 Z (H2 un, u11) so that (H2 u11, u11) = 02 [un]
is bounded from above by 01 [u].

Since un -> u by Problem V-3.33, we conclude by Theorem 1.16 that
u E D (02) and that 02 [u] 5 01 [u]. This proves the required result that
h1zh2 '-

Problem 2.22. Let K be a symmetric operator bounded from below and let H
be its Friedrichs extension. Then H Z H' for any selfadjoint extension H' of K
which is bounded from below.

6. The second representation theorem
Let 0 be a densely defined, closed symmetric form bounded from

below, and let H = To be the associated selfadjoint operator. The
relationship 0 [u, v] _ (Hu, v) connecting 0 with H is unsatisfactory in
that it is not valid for all u, v E D (0) because D (H) is in general a proper
subset of D(0). A more complete representation of 0 is furnished by the
following theorem.

Theorem 2.23. (Second representation theorem). Let 0 be a densely
defined, closed symmetric form, 0 z 0, and let H = To be the associated
sel f adjoint operator. Then we have D (H1/2) = D (0) and

(2.18) 0 [u, v] = (H1/2 u, H1/2 v) , u, v E D(0)

A subset D' of D (0) is a core of 0 if and only if it is a core of H1/2.
Remark 2.24. We recall that H1/2 was defined in V-§ 3.11, for a non-

negative selfadjoint operator H is m-accretive. What is essential in

1 The proof of Theorem 2.21 given above is not simple. A somewhat simpler
proof is given in par. 6 by using the second representation theorem.



332 VI. Sesquilinear forms in Hilbert spaces and associated operators

Theorem 2.23 is that H1/2 is selfadjoint, nonnegative, (H'!2)2 = H and
that D (H) is a core of H1/2 (see Theorem V-3.35).

Proof of Theorem 2.23. Let us define the symmetric form 0'[u, v]
_ (H'!2 u, H1/2 v) with D (lj') = D (Hl/2). Since H1/2 is densely defined, and
closed (because it is selfadjoint), the same is true of h' (see Example 1.13).
Since D (H) is a core of H1/2, it is also a core of h' (see Example 1.23).
On the other hand, D (H) is a core of h by Theorem 2.1. But the two forms
h and h' coincide on D (H), for we have

(2.19) h [u, v] = (Hu, v) = (HI/2 u, Hl/a v) , u, v E D (H) .

Thus h and h' must be identical, being the closure of one and the same
form - the restriction of h to D(H). This proves (2.18). The last statement
of the theorem follows from h = h' and Example 1.23.

Problem 2.25. Let 4 be a densely defined, symmetric, closed form bounded
from below with lower bound y and let H = To. For any y, we have then
D (4) = D ((H - S)1/2), l, [u, v] ((H - )112 u, (H - )1/2 v) + $ (u, v)

Theorem 2.26. Let h, H be as in Theorem 2.23 and, in addition, let h
have a positive lower bound. Then a subset D' o l D (h) is a core o l t i f and
only if HOOD' is dense in H.

Proof. This follows from Theorem 2.23 and Problem 111-5.19 [note
that Hl/z has positive lower bound, as is seen from Theorem 2.23, so that
its inverse belongs to M(H)].

Corollary 2.27. Let h be a densely defined, symmetric form, h ? 0,
and let H be the self adjoint operator associated with its closure h. Then D (0)
is a core o t H1/2. 1/ 4 has a positive lower bound, H1/2 D (h) is dense in H.

Remark 2.28. In Corollary 2.27, D (h) need not be a core of H even
when it is a subset of D (H).

Remark 2.29. The second representation theorem was proved only
for symmetric forms. A corresponding theorem for nonsymmetric forms
is not known. A natural generalization of that theorem to a nonsym-
metric form t would be that t [u, v] _ (T'!2 u, T#1/2 v) with D (t) _
= D (Tl/$) = D (T*1/2) where T = Tt; but the question is open whether
this is true for a general closed sectorial form t (with a vertex z 0),
although the operators T1/2 and T* 1/2 are well-defined (V-§ 3.11) 1.

As an application of the second representation theorem, we shall give
another formulation of the order relation H, z H2 for two selfadjoint
operators bounded from below. In the preceding paragraph this was
defined as equivalent to h, z ha for the associated closed forms 0l, tea,
which means that D (hl) C D (p2) and 01 [u] z h2 [u] for all u E D (Ih).
According to Theorem 2.23, this is in turn equivalent to

(2.20) D (Hi/$) C D (H$/2) and 11H,1/2 uII z IIH21/2 uII for u E D (Hr/r),

1 For this question see Lioxs [1], T. KATO [16].
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if we assume that both H, and H2 are nonnegative (which does not
restrict the generality, for H1 z H2 is equivalent to H1 + a z H2 + a).
If we further assume that H, has a positive lower bound so that Hl 1/2
= (Hi/2)-1 E-4 (H), then (2.20) is equivalent to

(2.21) 1 2 1 2 Hi 1/2 E . (H) , 11H$/2 HI-1/211 S 1

We could have chosen (2.21) as the definition of H, z H. in the case
under consideration.

We can now give a simpler proof of Theorem 2.21. As noted in the
proof of this theorem given before, the essential point is that H, z H2
is equivalent to H1 -1 HQ 1 when both H, and H2 have positive lower
bounds. In view of the equivalence of H1 z H2 with (2.21), what is to be
proved is contained in the following lemma.

Lemma 2.30. Let S, T be densely defined closed operators in H such
that their adjoints S*, T* are invertible. I/ D (S):) D (T) and IISuII 5 II T uII
for all u E D (T), then D (T*-1) ) D (S#-1) and II T* -1 ull 5 IIS*-1 uII for all
u E D(S*-1).

Proof. Let u E D (S* -1) = R (S*) ; u = S* g for some g E D (S*). For
any v E D (T) C D (S), we have then (u, v) = (S* g, v) = (g, S v) and so
I(u, v)I s IIgHI IISuII s IIgII II Tv!I. Thus Tv = 0 implies (u, v) = 0 and
T v, = T V2 implies (u, v1) = (u, v2) . Therefore, (u, v) may be regarded as a
function of w = T v and as such it is semilinear in w. Since R (T)1 = N (T*)
= 0, w varies over a dense linear manifold of H when v varies over D (T).
Since this semilinear form is bounded with bound 5 IIgII as is seen from
the inequality given above, it can be extended by continuity to all w E H.
Then it can be represented in the form (f, w) with a uniquely determined
/ E H such that 11/11 :5 IIg!I. Thus we obtain (u, v) = (f, w) = (f, T v) for all
v E D (T), which implies that f E D (T*) and u = T* /. Thus u ER(T*)
= D(T*-1) and IIT*-1 ull = II/II s IIgII = IIS#-1 uII, as we wished to show.

Example 2.31. Consider the form t [u, v] of Examples 1.4, 1.14, 1.24 and 2.14.
Assume that all the as are real and nonnegative, so that t is symmetric and non-
negative. Let T = Tt; T has been characterized in Example 2.14. It is now easy
to see that T1j2 is the maximal diagonal-matrix operator (r4'2). Similarly, for the
form t [u, v] = f f u v dx of Examples 1.5, 1.15, 1.25, and 2.15, Tl/2 is the maximal

E
multiplication operator by / (x)i12, provided we assume that / (x) Z 0 so that t is
nonnegative symmetric.

Remark 2.32. Except in simple examples such as those given above,
the operator T1/2 is hard to describe in elementary terms, even when T
can be easily described. In particular this is the case for differential
operators T as in Example 2.16. In this sense, the expression (2.18) is of
theoretical rather than of practical interest. As we shall see later, how-
ever, there are some results of practical significance that can be deduced
more easily from (2.18) than by other methods.
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7. The polar decomposition of a closed operator

Let T be a densely defined, closed operator from a Hilbert space H
to another one H'. Consider the symmetric form h [u, v] = (Tu, Tv).
As we have seen in Example 2.13, h is nonnegative and closed, with the
associated selfadjoint operator To = H = T* T. Let G = H1/2. The
second representation theorem gives

(2.22) (Tu, Tv) = (Gu, Gv) , IITuII = IIGuII , u, v E D(T) = D(G) .

This implies that G u --> T u defines an isometric mapping U of R (G) C H
onto R (T) C H': T u = UG u. By continuity U can be extended to an
isometric operator on R [the closure of R (G)] onto 1 ((TT). Furthermore,
U can be extended to an operator of -4 (H, H'), which we shall denote
again by U, by setting Uu = 0 for u E R (G)1 = N (G). Thus defined, U is
partially isometric with the initial set RT) and the final set R(T) (see
V-§ 2.2), and we have

(2.23) T= UG, D (T) = D (G) .

(2.23) is called the polar decomposition of T ; here G is nonnegative
selfadjoint and U is partially isometric. If U is required as above to have
initial set W), the decomposition (2.23) is unique. In fact it is easily
seen from (2.23) that

(2.24) T*= GU*

[which implies that D (T*) is the inverse image of D (G) under U*],
and so T* T = G U* UG = G2 because U* Uu = u for u in the initial
set of U. Thus G must be a nonnegative square root of T* T, which
determines G uniquely (see V-§ 3.11). Then (2.23) determines U on R (G)
and hence completely since U = 0 on R (G)1 by hypothesis.

By analogy with the case of complex numbers, G is called the absolute
value,of T and is denoted by I TI. Thus I TI is defined for any densely
defined closed operator from H to H' and is a nonnegative selfadjoint
operator in H ; of course it should be distinguished from the scalar II T11.

Similarly, I T* I is a nonnegative selfadjoint operator in H'; it is
related to I TI by

(2.25) IT*I = UITI U* .

To see this set G'= U I T I U* = UGU*. Then G' u = 0 for u E R (T)1
since U* u = 0, and R (G') C R (U) = RM. Thus G' is zero on R (T) 1, and
on R-(7)- it is unitarily equivalent to the part in R_(G of G. Hence G'
is selfadjoint and nonnegative. But G12= UG U* UG U* = UGGU*
= T T*. Hence G' must be equal to IT* I by the uniqueness of the square
root.
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From (2.23), (2.24), (2.25) we obtain the following relations:

(2.26) T= UITI= IT*IU = UT* U, T* = U* IT*I= ITIU* = U*TU*.
ITI= U*T= T*U= U*IT*IU, IT*I= UT*= TU*= UITIU*.

In particular T* = U* IT* I is the polar decomposition of T*.
Problem 2.33. N(T) = N(ITI), R(T) = R(IT*I).
Example 2.34. The canonical expansion of a compact operator T E a (H, H')

discussed in V-§ 2.3 is a special case of the polar decomposition. Let U q' = lpR,
k = 1, 2, ..., in V-(2.23). If {qpk} is not complete, set Uu = 0 for u L op", k = 1,
2, .... Then I TI = L' ak ( qpk) pl, [see V-(2.26)] and V-(2.23) is exactly identical
with T = UITI.

Let us now consider the special case in which T = H is selfadjoint:
H* = H. Let H = U IHI be its polar decomposition. Since H = H*
= U* IH*I = U* IHI is the polar decomposition of the same operator,
we must have U* = U by the uniqueness proved above. Furthermore,
the initial set R I ) and the final set RH) of U coincide by Problem 2.33;
we denote by R this common subspace of H. We have U2u = U* Uu = u
for u E R and Uu = 0 for u E R. Any u E R can be written as u = u+ + u_
where Uu+= u+ and Uu_ = -u_; it suffices to set u}= (1 ± U) u/2.
Moreover, it is easy to see that such a decomposition is unique. Let M±
be the subspaces of R consisting of all u such that Uu = +u. We have
thus the decomposition

(2.27) H=M+eM_eMO, MO =R1,

the three subspaces being orthogonal to one another.
It follows also from (2.26) that UH = U* H = IHI = IH*I = H U*

= H U; hence H commutes with U. Similarly CHI commutes with U.
From the definition of R, Mt, it then follows that H as well as IHI is
decomposed according to the decomposition (2.27). For U E Mo, we have
Hu = IHI u = 0, for Me = R (IHI)1 = N (IHI) = N (H) (see Problem 2.33).
For U E M+ we have Hu = H Uu = IHI u, and similarly Hu = - IHI u
for u E M_. Since IHI is positive in R, it follows that the part of H in M+
is positive and that in M_ is negative. Thus (2.27) gives a decomposition
of H into positive, negative and zero parts and the associated decomposi-
tion of IHI.

In particular it follows that H and IHI commute, because this is
obviously true in each of the three subspaces. [By this we mean that the
resolvents R (C, H) and R (c', IHI) commute, for the commutativity of two
unbounded operators has not been defined.]

Problem 2.35. If H is selfadjoint, D (H) = D (IHI) and for u E D (H)

«)II IHI -11,
(2.28)

II H-11

s II(IHI
I(Hu,

Ill
(IHI

(IH+ual u, u) s ((IHI + laI) u, u)
[hint for the last inequality: V-(4.15).]
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Problem 2.36. The orthogonal projections onto the three subspaces M+, M_
and M. are respectively given by

(2.29) P+ = (U2 + U)12, P_ _ (U2 - U)/2, Po = l - U2.
Lemma 2.37. If A E 9 (H) commutes with H, then A commutes with

IHJand U.
Proof. A commutes with the resolvent of H, hence also with the

resolvent of H2 in virtue of (H2 - c)-1= (H - C1/2)-1(H+ C1/2)-1. Hence A
commutes with IHI = (H2)1/2 by Theorem V-3.35. To show that A com-
mutes with U, we note that A U I HI = A H C HA and UA IHI C U I HI A
= HA. Hence A Uu = UA u for u E R. If u E R1 = M,= N (H), on the
other hand, we have A Uu = 0 = UA u since Hu = 0 implies HA u
= A Hu = 0. Hence A U = UA.

Lemma 2.38. The decomposition (2.27) of H into positive, negative and
zero parts for H is unique in the following sense. Suppose that H is reduced
by a subspace M' and (Hu, u) z 0 [(Hu, u) S 0] for every u E M' n D (H).
Then M' must be a subspace of M+ ® M, = Ml (M_ (D M, = M+).

Proof. Let P' be the orthogonal projection on M'. Since M' reduces
H, P' commutes with H. It follows from Lemma 2.37 and (2.29) that P'
commutes with U and P±, Po. Thus P'P_ = P_ P' is the projection on
M' n M_. But this subspace is 0, for u E D' = D (H) n M' n M_ implies
u = 0 [otherwise we have the contradiction that (Hu, u) z 0 and
(Hu, u) < 0] and D' is dense in M' n M_ because the latter reduces H.
This proves that P' P_ = P_ P' = 0 and hence that M' C M 1.

§ 3. Perturbation of sesquilinear forms and the
associated operators

1. The real part of an m-sectorial operator
In this section we shall consider the perturbation of an m-sectorial

operator T when the associated form t undergoes a small perturbation.
Lemma 3.1. Let i be a densely defined, symmetric, nonnegative closed

form with the associated nonnegative sel f adjoint operator H = To. Let a
be a form relatively bounded with respect to h, such that

(3.1) Ia[u]I s bh[u], uED(h)

Then there is an operator C E.4 (H) with 11 C11 S e b (where e = 1 or 2
according as a is symmetric or not) such that

(3.2) a [u, v] = (CGu, Gv) , G = H1/2 , u, v E D (O) = D (G) .

Proof. (3.1) implies that

(3.3) Ia [u, v]I S e b o [u]1/2 0 [v]1/2 = E bIIGuJJ IIGvhI
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as. is seen by applying (1.15) to Re a and Im a and noting that h [u] = Il'Gu112
by the second representation theorem. (3.3) implies that the value of
a [u, v] is determined by Gu, Gv, for Gu = Gu', Gv = Gv' implies that
a[u',v']-a[u,v]=a[u'-u,v']+a[u,v'-v]=0. Thus a [u, v] may
be regarded as a bounded sesquilinear form in x = G u, y = G v, and it
can be extended to all x, y in the closure M of the range of G. It follows
that there exists a bounded operator C on M to itself such that 11C11 < e b
and a [u, v] = (Cx, y). For convenience C may be extended, without
increasing the bound, to an operator of 2 (H) by setting Cx = 0 for
x E Ml.

As an application of this lemma, we shall deduce an expression
connecting an m-sectorial operator T with its real part H. Let T be
associated with a closed, densely defined sectorial form t by Theorem 2.7.
Let H = To where the symmetric form h = Re t is also closed. H is by
definition the real part of T, H = Re T in symbol. It is obvious that
H = 2 (T + T*) if T is bounded, but this is in general not true. It
follows directly from Theorem 2.5 that Re T* = Re T.

Theorem 3.2. Let T be an m-sectorial operator with a vertex 0 and semi-
angle 0. Then H = Re T is nonnegative, and there is a symmetric operator
B E -4 (H) such that JIB11 5 tan 0 and

(3.4) T = G (1 + i B) G , G = H1/2.

Proof. Let T = Tt and h = Re t, f = Im t. Since f [u] 5 (tan 0) h [u]
by hypothesis, we have f [u, v] = (BGu, Gv) by Lemma 3.1, where
B is symmetric and 11 B11 S tan 0. Hence

(3.5) t[u,v]= (0+ if) [u, v]=((1+iB)Gu,Gv).

Now let u E D (T). We have t [u, v] = (T u, v) for all v E D (t) = D
D (G) by the definition of T. Comparing this with (3.5) and noting

that G is selfadj oint, we see that G (1 + i B) G u exists and is equal to T u.
This shows that T c G (1 + i B) G. But it is easy to see that G (1 + i B) G
is accretive. In view of the fact that T is m-accretive, we must have
equality instead of inclusion. This proves (3.4).

Theorem 3.3. Let T be m-sectorial with H = Re T. T has compact
resolvent if and only if H has.

Proof. We may assume without loss of generality that T has a
positive vertex, so that C = 0 belongs to the resolvent sets of T and of H
[that is, T-1 and H-1 belong to M(H)]. Suppose that H has compact
resolvent. Then the same is true of G = H1/2 (see Theorem V-3.49).
Since T-1= G-1(1 + i B)-1 G-1 by (3.4), it follows that T-1 is compact,
which implies that T has compact resolvent. The proof of the converse
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proposition is somewhat complicated. It is known that G T-" E 9 (H)
for 1/2 < a < 11 and that T- (1-") is compact if T has compact resolvent 2.
Hence G T-1= G T-" T-(1-11) is compact and so is G-1= (1 + iB) G T-1.
Thus H-1= G-2 is compact, and H has compact resolvent.

2. Perturbation of an m-sectorial operator and its resolvent
Let t be a densely defined, closed sectorial form and let T = Tt

be the associated m-sectorial operator. Let us ask how T is changed when
t is subjected to a "small" perturbation. We shall consider this problem
in the case in which the perturbation of t is relatively bounded.

We recall that t + a = s is also sectorial and closed if a is relatively
bounded with respect to t with relative bound smaller than 1 (Theorem
1.33). It is not easy to compare the associated operator S = TB directly
with the unperturbed operator T, for S and T need not have the same
domain. But we can compare the resolvents R (C, S) and R (C, T) and
estimate their difference in terms of the relative bound of a with respect
to t.

Theorem 3.4. Let t be a densely defined, closed sectorial form with
= Re t z 0 and let T = Tt be the associated m-sectorial operator. Let a

be a form relatively bounded with respect to t, with

(3.6) Ia [u]J s aIIuJI2 + b h [u] , u E D (h) = D(t) C D(a) ,

where a, b are nonnegative constants and b < 1. Then s = t + a is also
sectorial and closed. Let S = TB be the associated m-sectorial operator. If
b < 1/2, the resolvents R (t;, T) and R (C, S) exist, with

(3.7) IIR(C, S) - R(C, T)II s

(-Re-2a)(-Re) for - < Ret; < -2a ,b

2b a
(1 - 2b) (-Reg) for Re C S -

b

(if b = 0 read no for alb) . If T has compact resolvent, the same is true of S.
Proof. The closedness of s was proved in Theorem 1.33. Let e > 0

(to be determined later) and t' = t + Q h' = Re t' = h + Q, and let
T' = T + Q, H' = H + Q z e > 0 be the associated operators. By (3.5)
we have t' [u, v] = ((1 + iB') G'u, G'v) with G' = H'1/$ and B' * = B' E
E 9 (H). On the other hand, (3.6) can be written

(3.8) 1 a [u]J 5 k h' [u] with k = max (b, a/Q) .

1 See T. KATO [15], [16].
See Theorem V-3.49 and Remark V-3.50.
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Hence a [u, v] = (CG'u, G'v), 11 C11 5 2k, by Lemma 3.1. For the form
s' = s + e, we have the expression s' [u, v] = (t' + a) [u, v] = ((1 +
+ i B' + C) G' u, G' v). As in the proof of (3.4), this leads to

(3.9) S + e = S'= G'(1 + iB'+ C) G', IICII 52k.

We nowhave S-C= S'-C.= G'(1 -C'H'-1 +iB'+C)G'where
C'= C + e, so that
(3.10) R(C, S) = R(C', S') = G'-1(1 - C' H'-1+ iB'+ C)-1 G'-1 ,

provided the middle factor on the right exists and belongs to 9(H).
But (1 - H' -1 + i B')-1 E 9 (H) exists and has norm 5 1 if e is chosen
so that Re C' = Re C + e;5 0, for then 1 -C'H'-'+ i B' E M (H) has
numerical range in the half-plane Re z z 1. It follows [see I-(4.24)]
that the factor in question exists and

(3.11) 11(1-l;'H'-1+iB'+C)-1- (1 -C'H'-1+iB)-1II 5
S 2k(1 - 2k)-1

if 2 k < 1. Then we see from (3.10) and a similar expression for R (C, T)
obtained by setting C = 0 in (3.10) that

(3.12) IIR(t, S) - R(5, T)II 5 2k(1 - 2k)-1 e-1,

where we have also used the fact that IIG'-1II 5 P-1/2. If we set e = - Re l;,
(3.12) gives the desired result (3.7), by the definition (3.8) of k.

If T has compact resolvent, the same is true of H, H' and G' by
Theorems 3.3 and V-3.49. Hence G'-1 is compact and so is R(l;, S) by
(3.10).

Remark 3.5. Theorem 3.4 shows that IIR(C, S) - R(l;, T) 11 is small
if a, b are sufficiently small. (3.7) shows this explicitly only for C with
Re l: < 0. According to Remark IV-3.13, however, it is true for any
C E P (T) ; an explicit formula estimating R (C, S) - R (l;, T) could be
obtained by using IV-(3.10), though we shall not write it down. Such a
formula will be given in the next paragraph in the special case of a
symmetric T, since it is then particularly simple.

Theorem 3.6. Let t be a densely defined, closable sectorial form, and let
be a sequence of forms with D D (t) such that

(3.13) I(t - tn) [u]I 5 anlluII2 + b , [u] , u E D (t)

where h = Re t and the constants a,,, b > 0 tend to zero as n -> oo. Then
the t are also sectorial and closable for sufficiently large n. Let f, f be
respectively the closures of t, t and let T, T,, be the associated m-sectorial
operators. Then converges to T in the generalized sense (of IV-§ 2.4).
If T has compact resolvent, the same is true of T. for sufficiently large n.
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Proof. That t is sectorial and closable follows from Theorem 1.33.
We note also that (3.13) holds with t, to replaced by respectively.

We may assume without loss of generality that fj z 0; otherwise
we need only to add a common constant to t and t,,. We may further as-
sume that an = b1,; otherwise it suffices to replace a and b by the com-
mon constant max(a,,, Then it follows from (3.7) that

1, T) 11 5 2 a (1 - 2 -1 -+ 0, which proves that T converges
to T in the generalized sense. The last assertion of the theorem also
follows from Theorem 3.4.

Remark 3.7. Theorem 3.6 gives a convenient criterion for a sequence
of operators T to converge to T in the generalized sense. Compare a
similar criterion, related to a relatively bounded perturbation of an
operator, given by Theorem IV-2.24.

Remark 3.8. All the results pertaining to a sequence of operators
converging in the generalized sense can be applied to the T of Theorem
3.6. For instance, we note that the spectrum of T does not expand
suddenly and, in particular, any finite system of eigenvalues is stable
when T is changed to T (see IV-§ 3.5).

3. Symmetric unperturbed operators

Theorem 3.9. Let h be a densely defined, closed symmetric form bounded
from below and let a be a (not necessarily symmetric) form relatively bounded
with respect to h, so that D (a) ) D (h) and

(3.14) la[u] 5alIull 2+b0 [u],

where 0 5 b < 1 but a may be positive, negative or zero. Then s = h + a
is sectorial and closed. Let H, S be the operators associated with s, re-
spectively. I/ C E P (H) and

(3.15) a 11(a + b H) R (C, H) II < 1 ,

then C E P (S) and

(3.16) hIR(C, S) - R(C, H)11 5 (1
4e 11

Ia + bH)RR(CHH)II)$ IIR(C, H)II

Here e = 1 or 2 according as a is symmetric or not.
Proof. First we assume that b > 0 and set h' = h + a b=' + 6,

s' = s + a b-' + 8 with a 6 > 0 to be determined later. s' is closed as
well as s by Theorem 1.33. The operators associated with h' and s' are
respectively H' = H + a b-1 + 6 and S' = S + a b-1 + 6.

We have h + a b-1 z 0 by (3.14) so that y' Z 6. (3.14) implies
also I a [u] I 5 b 0'[u]. We can now apply the same argument that was
used in the proof of Theorem 3.4; we note that a [u, v] may be written
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in the form (C G' u, G' v) with II CII S s b, where s = 1 or 2 according
as a is symmetric or not (see Lemma 3.1), and that G' z 6'/2 or II G`111
S 6-1/2. In this way we obtain

(3.17) IIR(C,S)-R(C,H)IISsbM2(1-ebM)-1b-1 if 6 bM<1,

where M = II (1 - C' H`1) -1II for C' = C + a b-' + S (note that here B'
= 0 because T = H is symmetric). Thus

(3.18) M = II (H' (H' - C')-1II = II (H + a b-1 + S) (H - C)-1II

5 b-1II (a + b H) R H) II + b II R H) II

The desired inequality (3.16) follows from (3.17) by substituting for M
from (3.18) and setting 6 = a(l - a) (1 + a)-1 N-1 where a= ejl (a +
+ bH) H) 11 and 9 = s bljR(g, H)II ; note that 1 - s bM = (1 - a)
(1+a)-1>Oif z<1.

The case b = 0 can be dealt with by going to the limit b --> 0.
Remark 3.10. The condition (3.15) for C E P (S) is fairly satisfactory,

but the estimate (3.16) is not very sharp, as is seen by considering the
special case b = 0; in this case one has a sharper estimate with the
right member s ajIRII2(1 - e aIIRII)-1 by I-(4.24) (R = R(C, H)), for

Ia [u]I = I(s - h) [u]I 5 allull2 implies Ia [u, v]I 5 s aIIuII IIvii so that
a [u, v] = (Cu, v), S = H + C with II CII <_ s a. But the merit of Theorem
3.9 lies rather in the fact that a may be negative. A more satisfactory
result could be obtained by using the lower bound y z 0 of a + b H
explicitly in the estimate.

4. Pseudo-Friedrichs extensions
The Friedrichs extension was defined for a densely defined, sectorial

operator; it is thus inherently connected with sectorial boundedness.
We shall now introduce a new kind of extension, similar to the Friedrichs
extension, which can be applied to a not necessarily sectorial operator
and which produces a selfadjoint operator when applied to a symmetric
operator'.

Theorem 3.11. Let H be a selfadjoint operator and let A be an operator
such that D = D (A) C D (H) and

(3.19) I(Au, u)I S aIIuII$+ b(IHI u, u) , u E D(A) ,

where 0 5 b < 1 or 0 5 b < 1/2 according as A is symmetric or not.
If D (A) is a core of I HI'/2, there is a unique closed extension T of H + A

1 The results of this paragraph are not related to sesquilinear forms in any
essential way. We consider them here simply because the techniques used in the
proofs are similar to those of the preceding paragraphs.
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such that D (T) C D (IHI'/a), D (T*) c D (IHII/a) and in E P (T) for all real ,
with sufficiently large I, . T is selfadjoint if A is symmetric. (T will be
called the pseudo-Friedrichs extension of H + A.)

Proof. Recall that IHI = (H2)1/2 is selfadjoint with D (IHI) = D (H)
and commutes with H in the sense stated in § 2.71.

We may assume b > 0 without loss of generality. Set H' = IHI +
+ a b-1 + b with a b > 0. (3.19) implies I (A u, u) I s b (H' u, u) =
= bIIG' uII2, where G' = H'1/2. Since D(A) is a core of IHI1/2, D(A) is
also a core of G' and the last inequality implies that (A u, v) can be
extended to a form a [u, v] with D (a) = D (G') such that Ia [u, v] I s
< e bll G' uII II G' v ll , where e = 1 or 2 according as a is symmetric or not
(see the preceding paragraph). This gives (see par. 1)

(3.20) a[u,v]= (CG'u,G'v), CEM(H), IICII s e b.

We now claim that the operator T defined by

(3.21) T = G' (HH' -1 + C) G'

has the properties stated in the theorem. It is clear that D (T) C D (G')
= D (I H11/2). Let u E D (A). Then G' HH'-1 G' u exists and equals Hu
since H' = G' 2 and G'- I and H commute. Since, furthermore, (A u, v)
= a [u, v] = (CG' u, G' v) for all v E D (A) where D (A) is a core of G',
G' C G' u exists and equals A u. Thus T u exists and equals (H + A) u,
that is, T ) H + A.

Let C E P (H). Then T- C= G' [(H - C) Hl-'+ C] G' since 1 D

G' H' -1 G', so that

(3.22) (T - c)-1= G'-1 [(H - C) H'-' + C]-1 G'-'
provided (H - C) H'-' + C has an inverse in 69 (H). This is true if
C [(H - C) H' -1]-1 = CH' (H - C)-1 has norm less than 1 (the Neumann
series), or if

(3.23) 11 C11 II (IHI + a b-1 + 6) (H - C)-III < 1

Recalling that II CII 5 e b, we see that this condition is satisfied if

(3.24) ell (a + b I HI + b 6) (H - C)-111 < 1 .

Since j a + b 61 11 (H - i r1)-III can be made arbitrarily small and
II IHI (H - i 71)-III = 11H (H - i ?7)-Ill S 1 by choosing q real and very
large, (T - i r1)-1 E.V(H) exists if e b < 1 and I,qI is sufficiently large.
Thus T is closed with non-empty P (T) .

If A is symmetric, then C is symmetric and so is T (note that HH'-1
is symmetric). Hence T must be selfadjoint.

1 This commutativity is essential in the proof; this is the reason why H must be
assumed selfadjoint.
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It follows from (3.22) that (T* - C)-' = G'-1 [(H - C) H' -1 +
+ C*]-1 G'-1; note that [(H - C) H'-1 + C*] -1 exists as above in virtue
of IIC*II = IICII It follows that D(T*) = R((T* - C)-1) C R(G'-1) = D(G')
and

(3.25) T* = G'(HH'-1+ C*) G' .

Finally we prove the uniqueness of T. Suppose T, is a closed exten-
sion of H + A with the properties stated in the theorem. Let u E D (T,*)
and v E D (A). Then u E D (G') and (Ti u, v) = (u, T, v) = (u, (H + A) v)
= (u, T v) = (u, G' (H H' -1 + C) G' v) = ((H H' -1 + C*) G' u, G' v). Since
this is true for all v E D (A) and since D (A) is a core of G', T* u =
= G' (HH' -1 + C*) G' u exists and is equal to Tl u. This shows that
Tl C T*, hence T,) T and T, - ) T - . But since l; = i q belongs
to both P(T) and P(T1) for sufficiently large Iq1, we must have T1 - C
=T - Cor T1=T.

Corollary 3.12. Let H be selfadjoint and let A, n = 1,2, ..., satisfy
(3.19) for A with constants a, b replaced by a, b,, such that a,, - 0, b,, - 0,
n -> 00, where it is assumed that D (As) C D (H) is a core o l IHI'/2 for each n.
Then the pseudo-Friedrichs extension T,,, o l H + A,, is defined for su f -
ficiently large n and T,, - H in the generalized sense.

Proof. First we note that we may assume a,, = b1, > 0. We can apply
the proof of Theorem 3.11 with H' = IHI + 1 (set b = 0). (3.24) is true
for any C E P (H) if a, b are replaced by a, b,, and n is sufficiently large.
For such n the resolvent (T,, - C)-1 exists and converges to (H - C)-1 in
norm, for

[(H - C) H'-1 + Cn]-1-+ [(H - C)
H'-1]-1

by II C,,11 -> 0 (with the obvious definition of Cu). Thus T,, --* H in the
generalized sense (see Theorem IV-2.25).

Remark 3.13. Since D (IHI) = D (H) and I (Hu, u) 15 (IHI u, u) by
(2.28), (3.19) is satisfied if

(3.26) I(Au, u)I 5 aIIujI2+ bI(Hu, u)I , u E D(A) .

Problem 3.14. Let H be selfadjoint and A symmetric with D (A) = D (H).
If A is H-bounded with JjAuJJ25 a2IIuI1$ + b2jjHujj2, then A satisfies (3.19). [hint:
Note that jjA ujl S 11 (a + bIHI) ull and use Theorem V-4.12.]

§ 4. Quadratic forms and the Schrodinger operators
1. Ordinary differential operators

Since the simple types of regular differential operators have been
dealt with in several examples above (see Examples 2.16, 2.17), we
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consider here a singular differential operator of the form'

(4.1) L=-d2/dx2+q(x), 0<x<oo.
For simplicity we assume that q (x) is real-valued, though this is not
necessary. For the moment we further assume that q (x) z 0 and that
q (x) is locally integrable on the open interval (0, oo).

As in V-§ 5, we are mainly interested in constructing from the formal
differential operator L a selfadjoint operator acting in H = L2(0, 00).
It should be remarked at this point that, under the rather weak assump-
tion made on q (x), the "minimal" operator such as the 1' of III-§ 2.3
or V-§ 5.1 cannot be defined, for Lu need not belong to L2 for u E Co
[because q (x) is not assumed to be locally L2].

Instead we consider the sesquilinear form

(4.2)

where

(4.3)

h=ho+h',

00 [u, v] = f u' v' d x = (u', v') , u (0) = v (0) = 0 ,
0

Co

(4.4) 0'[u, v] = f q(x) u v dx .

0

D (00) is by definition the set of all u E H such that u (x) is absolutely
continuous, u' E H and u (0) = 0. As before (cf. Example 1.36) 0o is
symmetric, nonnegative and closed. D (h') is the set of all u E H such that
f q (x) J ul2 d x < oo ; t,' is also symmetric, nonnegative and closed (Example
1.15). Thus 4 = 00 + h' is symmetric, nonnegative and closed by Theorem
1.31. Moreover, h is densely defined since Co (0, oo) c D (h) = D (h0) n
r D (1,').

According to the representation theorem, there is a nonnegative
selfadjoint operator H = TO associated with the form h. As in Example
2.16, H can be described as follows : u E D (H) is characterized by the
conditions that i) u and u' are absolutely continuous on (0, oo) and belong

00

to H, ii) u (O) = 0, iii) f q (u12 dx <oo, and iv) L u = -u"+ q u E H ; for
0

such u we have Hu = Lu. In deducing this result, one should note the
following points. In the proof of the necessity of the conditions i) to iv),
we consider an identity similar to (2.12) in which v E Co and the boundary
terms are absent and in which an indefinite integral z of w - q u is used
(set r = s = 0) ; note that w - q u is locally integrable because w = Hu E
E L2, u E D (H) C D (h) is continuous and q is locally integrable. In the

1 We take the semi-infinite interval (0, oo) because it is more important for
applications than the whole interval (- oo, oo). The latter case can be dealt with
in a similar way.
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proof of the sufficiency part, we note that if u satisfies the stated
conditions i) to iv), then u E D (h) and for any v E D (h),

fu'J'dx+ fquidx(4.5) 0[u,v]= lim
a->0, b-roo

a a
w

lim u'(a)v(a m u'(b) v(b + u"+qu)vdx.
0

If the first two terms on the right are zero, we have t [u, v] _ (- u" +
+ q u, v) and we obtain u E D (H), Hu = - u" + q u by Theorem 2.1,
iii). Now (4.5) implies the existence of the limits limn' (x) -v-(7x for
x -> 0 and x - oo. Then lim u' (x) v (x must be zero since u' v is integrable

X-±oo

on (0, oo), both u' and v being in H. lim u' v = 0 follows in the same way
x-r0

from the fact that v/x is square-integrable near x = 0 while l/x is not
integrable. In fact, we have the inequality'

(4.6) f x-21u(x)I2dx < 4 f lu'(x)12dx= 400[u] , u E D(lI0) .
0 0

Remark 4.1. Hu = - u" + q u belongs to H = L2 for u ED (H),
but u" and q u need not belong separately to L2, even locally. But they
do belong separately to L' locally2.

We shall now weaken the assumption q (x) 0 made above. Suppose
that
(4.7) q=q1+q2+q3, g1(x)0,
where q1 (x) is locally integrable while q2 (x) is locally uniformly integrable
(though not necessarily nonnegative) and q3 (x) satisfies the inequality

(4.8) l q3 (x) 1 5 a/4x2 , a< 1.
That q2 (x) is locally uniformly integrable means that

a+1

(4.9) f lg2(x)l dx_M<oo, az0,
a

with M independent of a.

If u E CO', (4.6) can be proved by integrating the identity d (x-1IuI2)/dx
_ -x-2IuI2 + 2x-1 Reu' u and noting that

f x-2IuJ2 dx = 2Re f x-1 u'u dx 5 2 (f x-21u12 dx)112 (f Iu,I2 dx)112.

For general u E D (00), (4.6) follows by going to the limit, for C4 is a core of 1, .

2 H is of course densely defined; although this is by no means trivial, it is not
difficult to prove directly by making use of special properties of the differential
operator L.
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We now define the forms j = 1, 2, 3, by (4.4) with q replaced by
q5. 0' is 0,-bounded with relative bound 0. To see this we use the inequality

x+1 x+1
(4.10) Iu(x)I2sef Iu'(y)I2dy+6f Iu(y)I2dy,

x

which follows from IV-(1.19) with p = 2; here e > 0 may be taken
arbitrarily small if S is chosen large enough. (4.9) and (4.10) give [set
q2 (x) = 0 for x < 0]

00 00 y

(4.11)
f Ig2(W )I Iu(x)I2dx f (eIu'(y)I2+8Iu(y)I2)dyy f Jg2(x)I dx 5

M(e ho [u] + o1Iu1I2)

On the other hand, 03 is ho bounded with relative bound a < 1, as is
seen from (4.6) and (4.8). Hence 03 is also (00+ h2)-bounded with relative
bound a (cf. Problem. IV-1.2, a similar proposition holds for forms in
place of operators). Since he is closed, it follows that h0 + 02 and then
ho + hz + hs are bounded from below and closed (see Theorem 1.33).

Since 0' is nonnegative and closed as before, the sum h = (he + ha +
+ 03) + hi = 0o + h' is closed by Theorem 1.31. The characterization
of the associated operator H = TO can be obtained exactly in the same
way as above. In this way we have proved

Theorem 4.2. Let q (x) = ql + q2 + q3, where all the qj are real, ql is
nonnegative and locally integrable, q2 is uniformly locally integrable, and q3
satisfies the inequality (4.8). Let the operator H be defined by Hu = - u" +
+ q (x) u, with D (H) consisting of all u E H = L2 (0, oo) such that i) u and u'
are absolutely continuous on (0, oo) and u' E H, ii) u (0) = 0, iii) q1/2 u E H,
and iv) - u" + q u E H. Then H is sel f adjoint in H and bounded from
below.

Remark 4.3. Note that Theorem 4.2 is stated without any reference
to the theory of forms. It could be proved without using the theory of
forms, but the proof would not be very simple.

Remark 4.4. It can be shown that Co is a core of If one knows this,
one can dispense with the consideration of the integrated terms in (4.5),
for v may be restricted to functions in Co and no such terms appear.

2. The Dirichlet form and the Laplace operator
We now consider the Dirichlet form

(4.12) [u, v] = (grade, grade)
=2U 20 au av au a

( 2x1 2x3 + axe axe + axe axe) dx
R'
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in the 3-dimensional space R3. The dimension 3 is not essential; most of
the following results are valid in the m-dimensional space. We regard h
as a sesquilinear form defined in the basic Hilbert space H = L2 (R3).
For the moment the domain D (h) is assumed to consist of all functions
u = u (x) with continuous first derivatives such that h [u] is finite.
Obviously h is densely defined, symmetric and nonnegative.

h is closable. This can be proved in various ways. For instance, (4.12)
may be written as h [u, v] = (T u, T v) where T u = grade is a linear
operator from H to H'= (L2 (R3))3 consisting of all vector-valued func-
tions with 3 components each belonging to L2 (R3). [The notation (grad u,
grade) in (4.12) corresponds exactly to this interpretation.] The adjoint
T* of T exists and is formally given by T* u' = - divu'. In fact we have
(gradu, u') = - (u, divu') at least if the vector-valued function u' (x) is
continuously differentiable and has compact support. Since such func-
tions form a dense set in H', T* is densely defined and hence T is closable
(see V-§ 3.1). Hence h is closable by Example 1.23.

Another way to deal with the form h is to introduce the Fourier
transforms l (k), v (k) of u (x), v (x) (see Example V-2.7). Then (4.12) can
be written

(4.13) h[u,v]= f JkJsis(k)v"(k)dk, IkI2=ki+ka-}; k3.

(4.13) defines a closed form 4 if its domain consists of all u E H such
that f JkJ2 111(k) 12 dk is finite (see Example 1.15), for the map u -+ is is
unitary. Actually our definition of D (h) as originally given is not as
wide as that, but this shows at least that h is closable. Furthermore, the
closed form just mentioned is equal to the closure of the original 0;
this can be proved as in V-§ 5.2 where we proved the essential self-
adjointness of the Laplace operator. In fact we could have restricted
D (h) to Co (R3) without affecting the result.

An immediate consequence is that the operator H = T4 associated
with the closure 5 of 4 is given by (see Example 2.15)

(4.14) (H U) A (k) = JkJ2 4(k) ,

with domain D(H) consisting of all u E H such that I k 1 2 i1 (k) E L2(R3).

Thus H is identical with the closure of the negative Laplacian -A
considered before (V-§ 5.2).

In particular we have

(4.15) h [u, v] = (-d u, v)

for any v E D(0) if, for instance, u (x) has continuous second derivatives
and u, A u E H. (4.15) is even true for all u E D (H) and v E D (5) if 4
is replaced by 5 and the differentiation in d u is interpreted in the
generalized sense (cf. Remark V-5.2).
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3. The Schrodinger operators in R3
Let us consider the Schrodinger operator

(4.16) L=-d+q(x)
in the whole space R3, where q (x) is assumed to be real-valued. Here we
do not assume that q is square-integrable even locally. Thus the "minimal"
operator such as S of V-§ 5.1 does not in general exist as an operator in
H = L2 (R8), since L u need not belong to H for u E Co (R8).

But we shall assume that q is locally integrable on R8. Then we can
construct the form h = ho + 0', where ho [u] = grad u112 is the closed
Dirichlet form (the closure of the h considered in the preceding par.) and
where

(4.17) 0'[u, v] = f q (x) u (x) v (x) dx .
PIG

Since ij' need not be semibounded, it is convenient to write

(4.17 a) q = q1 + q2 where q1 0, q2 s 0,

q1, q2 being locally integrable, and set

(4.17b) h'=h,+hz, hj[u,v]= fgfuvdx, j=1,2,
D (01) being by definition the set of all u E H with f I qai I u I $ d x < oo .

h, is a nonnegative, symmetric closed form, so that 40 + 0, is (densely
defined and) nonnegative and closed by Theorem 1.31. hz is not neces-
sarily bounded from below, but we shall assume that

(4.17c) 42 is 0, -bounded with ho bound smaller than 1 .

Later we shall give several sufficient conditions for (4.17c) to be true.
Under condition (4.17c), ha is a fortiori bounded relative to ho + hl

with relative bound smaller than 1. It follows from Theorem 1.33 that
h = (bo + hl) + ha is (densely defined and) bounded from below and
closed. Let H be the selfadjoint operator associated with h by Theorem 2.1.
We shall show that H is a restriction of L in a generalized sense. Suppose
u E D (H) and v E Co (R8). Then

(4.18) (Hu, v) = h [u, v] = Oo [u, v] + h' [u, v] = (u, -d v) + f quv dx

by (2.1) and (4.15). Hence

(4.19) (u, -d v) = f (Hu - qu) v dx .

Here Hu E H = L2(R8) and qu is locally integrable, since 2IquI S
qI + IqI Iui2 and both IqI and IqI Iui2 are locally integrable (note that
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u E D(h;) n D(h2)). Hence Hu - qu is locally integrable, and (4.19)
implies

(4.20) -du=Hu-qu or Hu=-Au+qu=Lu,
the differentiation A u being interpreted in the generalized sense'.

This shows that H is indeed a restriction of L. But we want to go one
step further and obtain a characterization of D (H). The result is given by
the following theorem.

Theorem 4.6 a. Let q = ql + q2 be as above. Let D be the set of all
u E H such that i) the generalized derivative grad u belongs to H' = (L2 (R3))3,
ii) f ql (x) Ju12 d x < oo, and iii) the generalized derivative A u exists and
L u = -A u + q u belongs to H. Define the operator H by H u = L u with
D (H) = D. Then H is selfadjoint in H and is bounded from below. (Note
that ii) implies that qu E as shown above.)

The operator H we have constructed above was already shown to
satisfy D (H) C D. Thus it only remains to show that D C D (H). To this
end let u E D. Then u E D (fjo) C D (,2) by i) and u E D (01) by ii). Hence
u E D (h) and we have for each v E Co (R3)

(4.22) t,[u,v]=00[u,v]+0'[u,v]

(u,-Av)+ f quvdx=(Lu,v)
since Lu exists and belongs to H. According to Theorem 2.1, (4.22)
implies that u E D (H) with Hu = L u provided we know that Co (R3) is a
core of h. Thus the proof is reduced to

Lemma 4.6b. Co (R3) is a core of h.

Proof. Since h = (ho + 0,) + 02 in which the second term is bounded
relative to the first term, a simple consideration reduces Lemma 4.6b to

Lemma 4.6c Co (R3) is a core of ho + 0

Proof. ho + h is nonnegative and closed as shown above. Hence it
suffices to show that Co is dense in the Hilbert space D (ho + 0,)
D (00) n D (01) equipped with the inner product (ho + h, + 1) [u, v] (see
Theorem 1.21). Suppose that u is orthogonal to Co in this space:

(4.22a) (ho + 0', + 1) [u, v] = 0 for all v E Ca (R3)

we have to show that u = 0.
An argument similar to the one used to deduce (4.20) from (4.18)

shows that (4.22 a) implies

(4.22b) A u = (ql + 1) u

i This is exactly the definition of d in the generalized sense; see e. g. YosIDA Ui).
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in the generalized sense, where q,u is locally integrable. Now it can be
shown that the only function u E H that satisfies (4.22b) is u = 0. This is
a nontrivial result in partial differential equations, and we shall not
prove it here'.

Remark 4.7 a. Although we have characterized D (H), the question
remains whether or not there are other restrictions of L that are self-
adjoint. It is known that if q2 is bounded, then there are no selfadjoint
restrictions of L other than H. To see this we may assume g2 = 0 (by chang-
ing L into L + const. if necessary). It suffices to show that if u E H and if
Lu exists (by which is implied that qu is locally integrable) and belongs
to H, then u E D (H). Let v = (H + 1)-' (L + 1) u E D (H). Since H C L,
it follows that (L + 1) (u - v) = 0. Thus u - v E H satisfies (4.22b) and
hence must vanish as above. This shows that u = v E D (H), as required.
It can be shown that the same result holds if q2 is locally square-integrable
with local square-integrals not growing too rapidly at infinity.

We shall now give several sufficient conditions for (4.17c) to be met.
A simple potential satisfying (4.17c) is given by

(4.23 a) q2 (x) = E e; Ix - a;I-2 with E ej > - 1/4 ,

i

where the as are fixed points in R3. (Here it suffices to consider only
negative e5, for the terms with positive e3 can be absorbed into q1.)
(4.23 a) implies (4.17c) by the well-known inequality

(4.24) f Ix-al-2lu(x)I2dxs 4 f Igraduj2dxs 40,[u],

which can be proved in the same way as (4.6) (use the polar coordinates
with origin at x = a).

Another sufficient condition for (4.17c) is given in terms of the
function

(4.25 a) Me, (x; r) = f Ix-yI-'lg2(y)I dy
I x-yl <.

Lemma 4.8 a. Assume that M., (x; r) -+ 0 as r -+ 0, uniformly in
x E R3. Then (4.17c) is true.

Proof. We have to show that II Ig2I1/2UII2 = Ih2 [u]I 5 b(00 [u] + k2IIuII2)
= b II (Ho + k2)'/2uII2 for an arbitrarily small b > 0 if k2 is chosen ap-
propriately. Thus it suffices to show that

(4.25b) II Tk1I -- 0 as k -* oo , where Tk = Ig2I1/2 (Ho + k2)-1/2 .

1 For the proof see T. KATO [25].
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Since II TkII = II Tk T,
*t111/2, it suffices in turn to show that II Tk TA*. 11-> 0

as k -+ oo. But Tk Tr) Ig211/2 (HO + k2)-l Ig2I 1/2, where (H0 + k2)-l is an
integral operator with the kernel

(4.25c) g(y, x; k) = e-klr-x1/4;rly - xI

[see IX-(1.67) ]. Let us estimate 11 T,, Tk* vII. If v E D (Ig2I1/2) and

w = (Ho + k2)-I Ig2I1/2v, we have

w(Y) = f g(Y, x; k) Ig2(x)11/2v(x)dx .

By the Schwarz inequality we obtain

Iw (Y) I2 < ck f g (Y, x; k) IV (x) I2dx ,

where

(4.25d) ck = sup f g(y, x; k) Ig2(x)I dx .
YER

Since TkTr v = Ig2I1/2w, we have (anticipating that it is in H)

IITkTkv112=

IIIg2I1/2w112< ckff Ig2(Y)Ig(Y,x; k)IIv(x)I2dxdy

Ck f Iv(x)I2dx = ckIIvII2.

Hence 11 Tk Tk 11 5 ck. Thus the lemma will be proved if we show that
ck -+O as k -+oo.

To this end, let e > 0 and choose r > 0 so small that the integral in
(4.25d) taken on Ix - yl < r is smaller than e; this is possible by the
assumption that M.. (x; r) -+ 0 as r -+ 0 uniformly in x. The remaining
part of the integral can be made smaller than e by choosing k sufficiently
large, uniformly in y. We may leave the detail to the reader.

Lemma 4.8b. (4.17c) is true i/ q2 E L3/2(R3).

Proof. We may assume that the L3/2-norm of q2 is as small as we
please, since q2 may be approximated in L3/2-norm by a bounded func-
tion, which contributes to 02' only a bounded form. Then the desired
result follows from the Sobolev embedding theorem', which shows that
u E D (h0) implies u E LB (R3) with IIuII2. const. 40 [u], combined with
the Holder inequality

f I q2I I u 12 d x< const. I I g2II L.,1
I I U

II L-

Remark k 4.9 a. Theorem 4.6a and the lemmas given above can be
extended without essential change to the case of Schrodinger operators in
Rm with m > 3. The only changes required are to replace: - 1/4 in

1 See NIRENBERG [1].
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(4.23 a) by - (m - 2)2/4, 4 in (4.24) by 4/(m - 2)2, Ix - yj-1 in (4.25 a) by
Ix - yl'" - 2, and L3/2 (R3) in Lemma 4.8b by Lm/2 (R'"). Lemma 4.8a is
still true for m = 2 if in the definition of M9, (x; r), Ix - yI-1 is replaced
by -logIx - yj.

4. Bounded regions
If the region E of R3 or R" in which the differential operator (4.16) is to be

considered is bounded, there are complications arising from the possibility of
imposing various boundary conditions. To simplify the matter, let us assume that E
is open and has a smooth boundary a E and that q (x) is a smooth function in the
closed region E. Then the minimum operator . in H = L2(E) can be defined as in
V-§ 5.1, and it would seem that one need not invoke the theory of forms in con-
structing selfadjoint operators from L. Nevertheless considering a form h = hU + h',
such as the one discussed in the preceding paragraph (the integrations should now
be taken over E), is a convenient way to obtain various selfadjoint extensions of S.

First let us assume that D (h) = Co (E), the set of infinitely differentiable
functions with compact supports in E; as before it can be shown that h is densely
defined, symmetric, bounded from below and closable. We denote this form by 01
and set H1 = Ti,. Next we extend the domain of h and include in D (h) all functions
continuously differentiable in the closed region r; the resulting form, which we
denote by 02, is densely defined, symmetric, bounded from below and closable.
We set H. = T. Obviously 01C h3 and so 01C ha. According to the definition of the
order relation for selfadjoint operators given in § 2.5, this implies that 61 Z 62 and
H1 Z H3,

We define a third form 03 by

(4.35) h3 Cu. v] = h3 [u, v] +a f a u v d S , D (h3) = D (43) ,

where the integral is taken on the boundary aE and a is a given smooth function
defined on aE. It can be shown that the additional term in (4.35) is relatively bounded
with respect to 03 with relative bound 0. The proof is omitted, but the assertion
corresponds to the fact, in Example 1.36, that t3 is t1-bounded.

We set H3 = r,. Note that 03 Do, and so 63 )fj1, for the boundary term in
(4.35) vanishes for u E D %). Again this implies that 63 S 61 and H. S H1.

It can now be shown that H1, H31 H. are all selfadjoint extensions of the minimal
operator S and restrictions of the maximal operator S*. Roughly speaking, these
are the formal differential operator L = -A + q (x) with the following boundary
conditions on aE:

(4.36)

u=0 for H1,
aulan = 0 for H3 ,

au/an - a u = 0 for H3 ,

where a/an denotes the inward normal derivative, as is suggested by comparison
with ordinary differential operators (see Example 2.16). But this statement needs
some comments. A function u in the domain of any of these operators need not be
differentiable in the ordinary sense, and the operator Lu must be interpreted in a
generalized sense; also the boundary conditions (4.36) must be interpreted accord-
ingly. In any case it is easily seen that a function u with continuous second deri-
vatives in E and satisfying the boundary condition au/an = 0 belongs to D(H2)
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and Hau = Lu. For this we need only to verify that 0.[u, v] = (Lu, v) for all
v E D (p2) (see Theorem 2.1) ; here we are dealing only with smooth functions and
there is no difficulty.

These results can be generalized to the form

3 au av
(4.37) 0 [u, v] = bh I [pr a (x) ax axk + q(.) u v] dx + f a u v d S ,

aE
where (p, k (x)) is a symmetric 3 X 3 matrix whose elements are real-valued smooth
functions of x, and it is assumed that the matrix is uniformly positive definite; this
means that there exist constants a, ft > 0 such that

(4.38) Z P
k

for all complex vectors (1,a. s) (4.38) is equivalent to the condition that the
eigenvalues of the symmetric matrix (Pi k (x)) lie between a and fl. Incidentally,
these eigenvalues are continuous functions of x; this is a consequence of the pertur-
bation theory for symmetric operators (see II-§ 5.5).

(4.38) implies that the 0 of (4.37) is comparable with the old 4 in the sense
that the two are relatively bounded with respect to each other, so that the two
have the same domain as do their closures. (As before we have to distinguish three
different forms h,,, n = 1, 2, 3.) Thus we are led to the selfadjoint operators H,,,
n = 1, 2, 3, which are formally the same differential operator

(4.39) L u= 'E a zzj Pi k (x) a k 14 (x) u

but with distinct boundary conditions. These are similar to (4.36) but differ in that
a/an means differentiation in the direction of the conormal, which is determined by
(pa k (x))

The fact stated above - that the domain of the closure of 0. is identical with
that !of the special case pi k (x) = 6 f k and so independent of the coefficients p, k (x),
q (x) and a (x) as long as (pi k (x)) is uniformly positive definite and q (x), a (x) are
smooth - is one of the merits in considering the forms 0,,. There are in general
no simple relationships between the domains of the H. for different choices of
coefficients.

A deeper theory of differential operators' shows, however, that the dependence
of the domain of H. on p, k (x) etc. is due exclusively to the change of the boundary
condition. The interior properties of functions u of D are the same for all n and
independent of pi k (x) ; the main point is that u should have generalized derivatives
of second order that belong to L2. Among the various boundary conditions
considered above, the Dirichlet condition (u = 0 on aE) is independent of pik(x)
and q (x). Hence it follows that D (H3) is independent of the coefficients p, k (x) and q (x).

5. The spectral theorem and perturbation of
spectral families
1. Spectral families

Let H be a Hilbert space, and suppose there is a nondecreasing
family {M (A)} of closed subspaces of H depending on a real parameter A,
-oo < A < +oo, such that the intersection of all the M (A) is 0 and their

' See e. g. LIONS M.
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union is dense in H. By "nondecreasing" we mean that M (A') C M (A") for
At < All.

For any fixed A, then, the intersection M (A+ 0) of all M (A') with
A' > A contains M (A). Similarly we have M (A) D M (A - 0), where M (A - 0)
is the closure of the union of all M (A') with A' < A. We shall say that the
family {M (A)} is right continuous at A if M (A + 0) = M (A), left continuous
if M (A - 0) = M (A) and continuous if it is right as well as left continuous.
As is easily seen, {M (A + 0)} has the same properties as those required of
{M (A)} above and, moreover, it is everywhere right continuous.

These properties can be translated into properties of the associated
family {E (A)} of orthogonal projections on M(A). We have:

(5.1) E (A) is nondecreasing: E (A') 5 E (A") for A' < A".

(5.2) s-lim E (A) = 0, s-lim E (A) = 1.

(5.1) is equivalent to

(5.3) E (A) E (,u) = E(y) E (A) = E (min (A, 'u)) .

A family {E (A)} of orthogonal projections with the properties (5.1), (5.2)
is called a spectral family or a resolution o l the identity.

The projections E (A ± 0) on M (A ± 0) are given by

(5.4) E(A ± 0) = s-lmE(A ± e) .

Thus {M (A)} is right (left) continuous if and only if {E (A)} is strongly
right(left) continuous. Usually a spectral family is assumed to be right
continuous everywhere :

(5.5) E (A + 0) = E (A) , -oo < A < -I-oo ,

and we shall follow this convention. In any case the family {E (A + 0)}
is right continuous everywhere.

{E (A)} will be said to be bounded from below if E (eu) = 0 for some
finite 4u [then E (A) = 0 for A < y a fortiori] ; the least upper bound of
such ,u is the lower bound of {E (A)}. Similarly, {E (A)} is bounded from
above if E (y) = 1 for some finite ,u and the upper bound is defined ac-
cordingly. Note that E (A) need not be zero when A is equal to the lower
bound, while E (A) = 1 if A is equal to the upper bound; this is due to the
convention (5.5).

For any semiclosed interval I = (A', A"] of the real line we set

(5.6) E (I) = E (A") - E (A') ;

E (I) is the projection on the subspace M (I) = M (A") e M (A') 1. If
two such intervals I,, 12 have no point in common, M (I,) and M (12) are

1 M e N = M r Nl is the orthogonal complement of N in M (see I-§ 6.3).
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orthogonal; for, if Il is to the left of 12, M (I2) = M (Aa) e M (2) 1
1 M (Aa) ) M (A") ) M (Ii). The corresponding relation for the projec-
tions is
(5.7) E(11) E (I2) = E (I2) E (I1) = 0 for disjoint 111,21

which can also be verified directly by using (5.3)
The projection on M (A) A M (A - 0) is

(5.8) P (A) = E (A) - E (A - 0) .
As above we have

(5.9) P(A)P(1z)=P(1z)P(A)=O for A +,u .

P (A) + 0 if and only if E (A) is discontinuous at 2. If H is separable,
an orthogonal set of nonzero projections is at most countable. Hence
there are at most countably many points of discontinuity of E (A) in a
separable space.

If S is the union of a finite number of intervals (open, closed or semi-
closed) on the real line, S can be expressed as the union of disjoint sets
of the form I or {A} stated above. If we define E (S) as the sum of the
corresponding E (I) or P (A), it is easily seen that E (S) has the property
that E (S') E (S") = E (S' n S"). E (S) is called a spectral measure on the
class of all sets S of the kind described. This measure E (S) can then
be extended to the class of all Borel sets S of the real line by a standard
measure-theoretic construction.

For any u E H, (E (A) u, u) is a nonnegative, nondecreasing function
of A and tends to zero for A-> -oo and to IIull2 for A - . +oo. For any
u, v E H, the polar form (E (A) u, v) can be written as a linear combination
of functions of the form (E (A) w, w) by I-(6.26). Hence the complex-
valued function (E (A) u, v) of A is o l bounded variation. This can be seen
more directly as follows. For any I = (A', A"] we have

(5.10) I (E (A") u, v) - (E (A') u, v)I = I (E (I) u, v)I

= I (E (I) u, E (I) v)I s IIE (I) ull IIE (I) vll

If I,, ..., I. is a set of disjoint intervals of the above form, we have

(5.11) P I (E (Ii) u, v)I s EIIE (Is) ull IIE (Is) vjl s

s (EIIE(I1) u1I$)1'2(EIIE(I,) v112)1,2

= [E(E (Ii) u, u)]'/2 [E(E (Ii) v, v)]'12

= (EE(Ii) u, u)111(EE(It) v, v)1/1:_!5 IluII lIvil

Thus the total variation of (E (A) u, v) does not exceed hull Ilvll.
A = a is called a point of constancy with respect to {E (A)} if E (A) is

constant in a neighborhood of a: E (a + e) = E (a - e), 8 > 0. a is then
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an internal point of a maximal interval in which E (A) is constant. The
set of all points which are not points of constancy is called the support
of {E (A)} [or of the spectral measure E (S)]. {E (A)} is bounded from
below (above) if and only if the support of E (A) is.

2. The selfadjoint operator associated with a spectral family
To any spectral family {E (A)}, there is associated a selfadjoint

operator H expressed by
+00

(5.12) H= f A dE (A) .
_00

D (H) is the set of all u E H such that1
+D

(5.13) f A2 d (E (A) u, u) < oo .

For such u, (Hu, v) is given by
+00

(5.14) (Hu, v) = f A d(E (A) u, v) , v E H .
-00

The convergence of the integral in (5.14) follows from the estimate
(5.10), which maybe written jd (E (A) u, v)1;5 [d (E (A) u, u) d(E (A) v, v)]1/a
and from (5.13) by means of the Schwarz inequality. That H is symmetric
is obvious. The selfadjointness of H will be proved below. We note that

+00
(5.15) IIHU112 = (Hu, Hu) = f A d (E (A) u, Hu)

-00
+00 +00

= f A dx f ,u d,, (E (A) u, E (,u) u)
M -00
+00 z +00

= f A dx f ,ud(E (u) u, u) = f Aa d(E (A) u, u)
_W -M -00

for u E D (H), where (5.3) has been used.
More generally, we can define the operators

+00
(5.16) O(H) = f O(A) dE(A)

-00

in a similar way. (5.14) corresponds to the special case (A) = A. 0 (A)
may be any complex-valued, continuous function z. If 0 (A) is bounded
on the support E of {E (A)}, the condition corresponding to (5.13) is

1 The integrals in (5.13) and (5.14) are Stieltjes integrals. These are quite
elementary since the integrands A and A2 are continuous functions.

2 More general functions tS can be allowed, but then the integral (0 (H) u, v)
= f 0 (A) d (E (A) u, v) must be taken in the sense of the Radon-Stieltjes integral.
For details see e. g. STONE Ill.
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always fulfilled, so that D (ci (H)) = H and 0 (H) is bounded [cf. (5.15) ] :

(5.17) I10(H)II s sup Ic(A)I
AE E

Thus 0 (H) belongs to 2 (H). Furthermore it is normal. This follows from
the general relations

(5.18) O(H)* _ (H) if

(5.19) 0 (H) = 01 (H) 02 (H) if 0 (A) = 01 (A)'02 (A)

(5.20) 0 (H) = ai 01 (H) + as fit (H) if 0 (A) = ai fil (A) + as 0a (A)

where 0, 01 and 02 are assumed to be bounded on E. The proofs of
(5.18) and (5.20) are simple. (5.19) can be proved by a calculation similar
to that given in (5.15). These relations justify the notation 0 (H) for the
operator (5.16).

An important special case is 0 (A) = (A - c)-' for a nonreal constant
The corresponding O(H) is seen to be the resolvent (H - c)-', which
shows that H is selfadj oint. To prove this, we first note that 0 (H) (H - C) u
= u for all u E D (H) ; again this is easily proved by a calculation similar
to (5.15). This implies that 0(H) ) (H - On the other hand, any
u E R (qi (H)) satisfies the condition (5.13) ; this is due to the fact that
A(A - c)-' is a bounded function [again a calculation similar to (5.15) is
to be used here]. It follows that (H - c)-' = 0 (H) as we wished to show.

(H - C)-' = f (A - C)-' dE (A) is defined and belongs to -V(H) not
only for nonreal C but also for any real C which is a point of constancy for
E (A), for (A - c)-' is bounded for A E E. Hence such a C belongs to the
resolvent set P (H). This implies that E (H) C E. Actually we have E (H)
= E. To show this we note that

+00
(5.21) II(H-#)uIIB= f (A- y)'d(E(A)u,u), uED(H),

as is seen by applying (5.15) to H - ,u. If ,u E E, E' = E (,u + e) -
- E (,u - e) + 0 for any e > 0. Hence there is a u + 0 such that E' u = u,
which implies E (,u - e) u = 0 and E (,u + e) u = u. Then it follows

/4+8
from (5.21) that II (H - u) U112 = f S 82 11 u II 2. Since such a u exists for

each e > 0, a does not belong to P (H). This implies E C- E (H) and hence
E= E(H).

It follows also from (5.21) that (H - u) u = 0 if and only if (E (A)u, u)
is constant except for a discontinuity at A = ju so that E (,u) u = u,
E (,u - 0) u = 0. Hence ,u is an eigenvalue of H if and only if P (,u) + 0,
and u is an associated eigenvector if and only if P (,u) u = U.
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An operational calculus can be developed for the operators 0 (H).
(H) is in general unbounded if 0 (A) is unbounded; D (0 (H)) is the

set of all u E H such that f I 0 (A) I 2 d (E (A) u, u) < no. When 0 or 01,
02 are unbounded, it can be shown that (5.18) is still true but (5.19),
(5.20) must be replaced in general by

(5.22) 0 (H)) 01(H) 02 (H) , 0 (H) D a, 0, (H) + a2 02 (H)
respectively. But (5.19) remains true if both 02 and 01 02 = 0 are
bounded on E.

Problem 5.1. All the E (A) and E (A - 0) commute with H. Equivalently, all the
M (A) and M (A - 0) reduce H.

Problem 5.2. The union of the ranges M (y) e M (A) of E (y) --E (A) for all A,
,u with - oo < A <,u < oo is a core of H.

Problem 5.3. H > y if and only if E (y - 0) = 0.
W

Problem 5.4. If H z 0, then H""2 = f A1/2 dE(A).
0

Problem 5.5. If H1 Z H2 in the sense of § 2.5, then dim El (A) 5 dimE2 (A)
(a generalization of Theorem I-6.44)1.

We have shown that any spectral family {E (A)} determines a self-
adjoint operator H by (5.12). We shall now show that different spectral
families lead to different selfadjoint operators. To this end, it suffices
to give an explicit formula for determining E (A) from H.

Define the operator
+00 +00 0

(5.23) IHI = f JAI dE(A) = f AdE(A) - f AdE(A) .

01 -00

D (IHI) is the same as D (H). It is easily seen that IHI is selfadjoint and
nonnegative, and that N (IHI) = N (H) = R(P(0)). Also it is easy to see
that IHI u= Hu if E (O) u= O and IHI u = -Hu if u= E (- 0) u. Hence

(5.24) H= [1 - E(0) - E(-0)] CHI .
But U = 1 - E (0) - E (- 0) has the properties that Uu = 0 for
u E N (H) = R (P (0)) and II UuII = IIull if P (0) u = 0. Thus (5.24) is
exactly the polar decomposition of H (see § 2.7), which determines IHI
and U uniquely from H.

Applying the same argument to H replaced by H - A, we see that

(5.25) U (A) = 1 - E (A) - E (A - 0)

is the unique partially isometric operator that appears in the polar
decomposition H - A = U (A) IH - Al of H - A. Since (5.25) implies

(5.26) E(A) = 1 - 2 [U(A) + U(A)2] ,

E (A) is determined by H.
1 If H is finite-dimensional, E(A) is purely discontinuous in A; the points of

discontinuity are exactly the eigenvalues of H.
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The determination of U (A) given above is not explicit, however.
An explicit formula is given by

Lemma 5.6. We have

(5.27)

where

(5.28)

sdlimUere(A) = U(A)= 1 - E(A) - E(A-0)
e +m

r -e Q

Ud,e(A)_ f +f (H-A-i27)-1dt)
-Q e

e

= 2 f (H - A) [(H - A)2 + q2]-' d t .

Proof. (5.27) is obviously true if applied to any u E R (P (A)) = N (H- A),
for then Ue,e (A) u = 0 identically and (1 - E (A) - E (A - 0)) u = 0.
Thus it suffices to prove that (5.27) is true when applied to any u EM(A-0)
or u E M (A)1. Since the two cases can be treated similarly, we may
assume u E M (A)1, that is, E (A) u = 0, and prove

(5.29) U,5,, (A) u u = (1 - E (A) - E (A - 0)) u .

Now it is easy to see that

(5.30)

where
U0,e(A) = 0e,e,z(H) ,

/e

(5.31) 00,e,z(,u) n J ( -'u A
A)2 + rl' d

a

[arctan
A]- Q

for u + A.

Thus 1c6 , e, z (7.c) I s 1, which implies IIU(2) II S 1. To prove (5.29) for
E (A) u = 0, it is therefore sufficient to prove it for any u such that
E (A + e) u = 0 for some e > 0 [such u form a dense subset of M (A)1 ].
We have

00

(Ua, a (A) u, u) = f 0a, e, z (,u) d (E (,u) u, u) -+
+
M

f d (E (y) u, u) = (u, u) , 8 --> 0, e - oo ,
z+8

since Oa,Q,z(,u) -+ 1 uniformly for u ? A+ e. Hence 11Ua,a(A) u - u11 2
= II Ud,e(A) u112+ I1 u112 - 2Re(U6,e(A) u, u) s 21Iu112 - 2Re(Ua,e(A) u, u) ->

0, which proves (5.29).

Problem 5.7. For any real A and ,u such that A <,u, we have

(5.32)

2

[E (,u) + E (Fi - 0) ] - 2 [E (A) + E (A - 0) ] = slim 2 n i f (H - C) -1 d ,

e
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where FE is the union of the two rectifiable curves r+ and r defined in the following
way: r is any curve in the upper half-plane beginning at it + i e and ending at
A + i e, and r is any curve in the lower half-plane beginning at A - i e and
ending at ,u - i e.

Problem 5.8. A E R (H) commutes with H, if and only if A commutes with
E (A) for all A. In particular a subspace M of H reduces H if and only if the orthogonal
projection P on M commutes with all E (A). This is in turn true if and only if M is
invariant under all E (A).

Problem 5.9. Let H = f A dE (A). A E P (H) if and only if E (A + e) - E (A - e)

= 0 for some e > 0, and A E E (H) if and only if E (A + e) - E (A - e) + 0 for any
e>0.

3. The spectral theorem

We have shown above that every spectral family {E (A)} determines a
selfadjoint operator by (5.12). The spectral theorem asserts that every
selfadjoint operator H admits an expression (5.12) by means of a spectral
family {E (A)} which is uniquely determined by H.

A natural proof of the spectral theorem is obtained by reversing the
order of the argument given in the preceding paragraph. We define E (A)
by (5.26), where U(A) is the partially isometric operator that appears
in the polar decomposition H - A = U (A) JH - Al of H - A. We have
to show that the E (A) form a spectral family and that the H determined
by (5.12) coincides with the given H.

First we note that E (A) = 1- P+ (A) = P_ (A) + PO (A), where P± (A),
P0(A) are the Pt, P. of (2.29) corresponding to H replaced by H - A.
Hence ((H - A) u, u) S 0 for u E D (H) n M (A) where M (A) = R (E (A)).
If i > A, ((H - ,u) u, u) 5 0 a fortiori for such a u. Since M (A) reduces
H (see § 2.7), it follows from Lemma 2.38 that M (A) C M (,u). This is
equivalent to (5.1).

Since {E(A)} is thus a monotonic family of projections, the strong
limits E (± oo) = s-lim E (A) exist [cf. (5.4) ]. Since all the M (A) reduce

a-.t 00
H, M (±oo) = R (E (±oo)) also reduce H and D (H) n M (±oo) is dense in
M (± oo). Let u E D (H) n M(-oo). Then U E M (A) for all A and so
((H'- A) u, u) S 0 for all A < 0. Hence (u, u) S A-'(Hu, u) for all
A < 0 and u must be 0. This proves M (-oo) = 0 or E (-oo) = 0. Similarly
we can prove E (oo) = 1.

Thus {E (A)} has been shown to form a spectral family. It remains
to show that E (A) is right continuous. E (A + 0) is the projection on
M (A + 0), which is the intersection of all the M (,u) for ,u > A. Since the
M(;u) reduce H, the same is true of M (A + 0). For every u E D (H) n
n M (A + 0), we have (Hu, u) S 4u (u, u) for all ,u > A so that (Hu, u) s
S A (u, u). It follows from Lemma 2.38 that M (A + 0) c M (A). This
shows that E (A + 0) 5 E (A). Since the opposite inequality is true, it
follows that E (A + 0) = E (A).
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Finally we have to show that the selfadjoint operator H' = f A dE (A)
coincides with H. Since both H and H' are selfadjoint and since the
union of the ranges M (A, ,u) = M (,u) e M (A) of E (,u) - E (A) is a core of
H' (see Problem 5.2), it suffices to prove that M (A, ,u) C D (H) and
Hu = H' u for u E M (A, A.

To this end we first note that M (A, ,u) reduces H and that A (u, u)
(Hu, u) s ,u (u, u) for u in D' = M (A, ,u) n D (H). Thus H is bounded

in the latter subset and, since D' is dense in M (A, 1u), D' must coincide
with M (A, ,u) by the closedness of H. In other words, we have M (A, ,u) C
C D (H). Since H has upper bound ,u and lower bound A in M (A, ,u),
H - (A + ,u)/2 has bound (,u - A)/2.

Now divide the interval I = (A, ,u] into n equal subintervals I,
I,,, and let Ak be the middle point of Ik, k = 1, ..., n. Define E (Ik)

as in (5.6) and set uk = E (Ik) u. We have u = ul + + un and the up
are mutually orthogonal. Since each E (Ik) H reduces H, Huk belongs to
E (Ik) H and so the vectors (H - Ak) uk are also mutually orthogonal.
Furthermore, we have II (H - Ak) ukll <__ (a - A) IIukII/2n by the remark
given above. Thus

(5.33) II Hu - E AP ukII2 = 11Z (H - Ak) ukII2
k

= G II (H - 2k) uk112 4.n2 )2 IIukII2 = 0A4-n2 )2 IIuII2 .

A;

On letting n -s oo we obtain lim Ak E (Ik) u = Hu. This implies that
k

(H'u, v) = f A(dE(A) u, v) = lim A,, (E (Ik) u, v) _ (Hu, v) for every
k

v E H, hence H'u = Hu as we wished to show.

4. Stability theorems for the spectral family
Since the spectral family {E (A)} associated with a given selfadjoint

operator H is a very important quantity, a question suggests itself
whether E (A) depends on H continuously in some sense or other'. It is
clear that in general the answer is no; for even when the underlying
space H is finite-dimensional, Ex (A) for the operator H,, = H + x will be
discontinuous at a value of x for which H + x has an eigenvalue A.

But this kind of discontinuity of E (A) as a function of H is inherently
related to the discontinuity of E (A) as a function of A. It is reasonable to
expect that E (A) will change continuously with H if A is a point of
continuity of E (A). It turns out that this may or may not be true ac-
cording to the meaning of "continuously".

' In what follows {E (A)}, {E, (A)} etc. denote respectively the spectral
families for the selfadjoint operators denoted by H, H', H,,, etc.

9 In this paragraph we are concerned with the continuity of E (A) in norm.
The continuity of E (A) in the strong sense will be considered in Chapter VIII.
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The simplest result of this kind is obtained when we consider the
case in which E (H) has gaps at A = a and A = f4, a < fi (see V-§ 3.5).
Then a and fi are points of constancy with respect to {E (A)}. It follows
from (5.32) that

(5.34) E(19)-E(a)=-2nif (H-C)-1dC
r

where r is, say, a closed, positively oriented circle with a diameter
connecting a, P. (5.34) is exactly the orthogonal projection P on the
subspace M' corresponding to the part E' of E (H) enclosed in r [see
V-(3.18)]. We know that such a part E' of the spectrum is upper-semi-
continuous and that P changes continuously if H changes continuously
in the sense of generalized convergence (see Theorem IV-3.16). Thus
we have

Theorem 5.10. Let H be self adjoint and let E (H) have gaps at a,
(a < j9). Then there is a 6 > 0 such that for any self adjoint operator H'

with S (H', H) < 6, E (H') has gaps at a, ,B and

(5.35) II [E' (19) - E(a)] - [E (19) - E (or)] 11 -> 0
if 6(H',H)-.0.

Remark 5.11. S (H', H) will be small if H' = H +A where A is
symmetric and H-bounded with small coefficients a, b in V-(4.1) (see
Theorem IV-2.14). In this case, furthermore, H' is bounded from below
if H is (see Theorem V-4.11) and the lower bound of H' tends to that of H
when a, b -> 0. If at is chosen sufficiently small (algebraically), therefore,
we have E' (a) = E (a) = 0 in (5.35). Thus II E' (f3) - E (fl) II -+ 0, a, b -+ 0,
if E (H) has a gap at j9. It is a remarkable fact, however, that this is
true even if H is not semibounded. We have namely

Theorem 5.12.1 Let H be sel f adjoint and let A,, be symmetric and
H-bounded: II A uIi 5 anIIu1I + b,, 11 Hull, u E D(H) c D(A,,), where a -+ 0,
b -+ 0 as n -* oo. Then H,,, = H + A is sel f adjoint for sufficiently large n
and H,,, -- H in the generalized sense. If E (H) has a gap at f3, then E has
a gap at fi for sufficiently large n and II E,, (f4) - E (f4) II -* 0, n -+ oo.

This theorem can further be generalized to 2
Theorem 5.13. Let H be selfadjoint, and let A be symmetric with

D (A,,,) C D (H). Assume that

(5.36) (An u, u) 15 a (u, u) + b (I HI u, u) , u E D (A,,.) ,

where a --I 0, b -+ 0. If D (A,,) is a core of IHII/2 for each n, the pseudo-
Friedrichs extension H,,, of H + A,,, is defined for sufficiently large n and

I This theorem was proved by HEINZ [1]. The proof of the generalized Theorem
5.13 given below is essentially due to HEINZ.

8 Note that (5.36) is satisfied if A. is H-bounded as in Theorem 5.12 [set D (A.)
= D (H) and use Problem 3.14].
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H. -> H in the generalized sense. It E (H) has a gap at 9, then E (H,, )
has a gap at j9 for sufficiently large n and II E (P) - E (19) II - 0, n - oo.

Proof. It was proved in Corollary 3.12 that the H,n exist and H,n H
in the generalized sense.

To simplify the proof, we note that the IHI on the right of (5.36)
may be replaced by IH - #I, with a possible change of a, bn, for
(IHI u, u) s I flI (u, u) + (IH - #1 u, u) by (2.28). This means that we
may assume fl = 0 without loss of generality. Then IHI has a positive
lower bound, so that we may further assume that an = 0, with a change
of bn if necessary. Then we can set 6 = 0 in the construction of the
pseudo-Friedrichs extension given in the proof of Theorem 3.11, for
S was introduced to make H' have a, positive lower bound. With these
simplifications, we shall use the notations of the proof of Theorem 3.11;
in particular we have H' = IHI.

Now (3.22) gives

(5.37) R. (C) = G'-1 H'R(C) [1 + C. H'R(C)]-1 G'-1
00

E [-C.K(C)]pG'-1,
p=1

where

(5.38) K (C) = H'R (C) = IHI (H -
The generalized convergence H,, -* H already implies that E (H,,)

has a gap at /1 (see Theorem IV-2.25). Thus we have by Lemma 5.6
e

1 - 2E,, (0) = U (0) = s-lim 1 f R,, (in) d rl
e-+OO n

-e
and a similar expression for 1 - 2E(0). In virtue of (5.37), we have
for any u, v E H

e
(5.39) E(0)] u, v) = lim f rl) - R(i rl)] u, v) d9J

e-* °° -e
Q

00= lim f (G'-1 K(i q) ,' [-C K(i rl)]Q G'-1 u, v) d9l .

e->M_e p=1

Let us estimate the last integral. We have IIK(i r1)II = II IHI (H - i r1)-iII S 1.
Since IIC,II s bn by (3.20), the integrand on the right of (5.39) is majorized
by the series

CO

' b IIK(i n) G'-1 uII II K(i 9)* G'-1 vII
P=1

1 b*bn 11 G' R(i 9l) uhi IIG'R(i 97)* vII

(note that IHI = H'= G12).
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Hence the integral in (5.39) is majorized by

b
1 - b

But

i/z

fG'R(_1V2d97)112.f
G'R(i)uII2d- 00 - 00

(H2+92)_'u,u),
00 00

IIIG'R(i ii) ullzdii= f ((H2+ A) u, IHI u)2-'/2d2
-00 0

_r((H2)-'lzu,IHI u)=n(IHL'u,IHIu)_;IIIuIIZ

[see V-(3.43) and note that IHI = (H2)'/2 by definition]. It follows that

2n I([En(o) - E(0)] u, v) I s
1 IIvii , or

IIEn(Y)-E(N)II5 2(1-bn)-> 0, n

Remark 5.14. II En (,9) - E (9) II 0 is not necessarily true when
H - H in the generalized sense. A counter-example is given by Example
V-4.14, where T(x) is selfadjoint for real x and dimEx(0) = 1 for 0 <
< x < 1 [because T (x) has one negative eigenvalue] but Ee (0) = 0
[because T (0) is positive].

Chapter Seven

Analytic perturbation theory
The theory of analytic perturbation is historically the first subject discussed in

perturbation theory. It is mainly concerned with the behavior of isolated eigenvalues
and eigenvectors (or eigenprojections) of an operator depending on a parameter
holomorphically.

We have already studied this problem in the special case in which the basic
space is finite-dimensional. Formally there is very little that is new in the general
case discussed in this chapter. Once the notion of holomorphic dependence of an (in
general unbounded) operator on a parameter is introduced, it is rather straight-
forward to show that the results obtained in the finite-dimensional case can be
extended, at least for isolated eigenvalues, without essential modification.

Thus the main problems in this chapter are the definition of holomorphic families
of operators and various sufficient conditions for a given family to be holomorphic.
A general definition can be obtained in a natural way from the theory of generalized
convergence discussed in Chapter IV. There are several useful criteria for a given
family to be holomorphic. We thus consider different types of holomorphic families:
(A), (B), (B0), and (C). Type (A) is defined by the relative boundedness of the per-
turbation with respect to the unperturbed operator. Type (B) is defined in a Hilbert
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space in terms of a holomorphic family of sesquilinear forms, where the perturbing
form is relatively bounded with respect to the unperturbed form. Type (Bo) is a
special case of (B) and is related to the notion of Friedrichs extension. Type (C) is
formally similar to (B0) but differs from it in many respects. It is a matter of course
that each of these special types has its own special properties.

§ 1. Analytic families of operators
1. Analyticity of vector- and operator-valued functions

In what follows we are concerned with a family u (x) of vectors in a
Banach space X or a family T (x) of operators from X to another Banach
space Y, and we are particularly interested in the case in which u (x) or
T (x) is holomorphic in x in a domain D of the complex plane. We have
already defined u (x) to be holomorphic if it is differentiable at each
x E D; it is immaterial whether the differentiation is taken in the strong
or weak sense (see III-§ 1.6). Thus u (x) is holomorphic if and only if
(u (x), f) is holomorphic in x for every / E X*. For applications, the
following criterion is often convenient : u (x) is holomorphic in x if and
only if each x E D has a neighborhood in which 1Iu (x) 11 is bounded and
(u (x), f) is holomorphic for all fin a fundamental subset of X* (see Remark
III-1.38).

Sometimes we consider a family u (x) depending on a real parameter x,
a < x < b. u (x) is real-holomorphic if u (x) admits a Taylor expansion at
each x. In such a case u (x) can be extended by the Taylor series to
complex values of x in some neighborhood D of the real axis. The extended
u (x) is a holomorphic family for x E D.

Example 1.1. Let X = Ln(0, oo), 1:5 p < oo, and let u(x) = u(x; x) = e-"x.
In order that u (x) E X, x must be restricted to the half-plane Re x > 0. Since
du (x)ldx = - x u (x) E X, u (x) is holomorphic for Re x > 0. If we take X = LP (a, b)

for a finite interval (a, b), u (x) = e-x F is holomorphic for all x. Next set u (x)
= u (x; x) _ (x - x)-' and X = LP (a, b), (a, b) being finite or infinite. u (x) is
holomorphic in the domain obtained from the whole plane by removing the points
a:5' x5 b on the real axis.

In considering an operator-valued holomorphic function T (X),
we first restrict ourselves to the case T (x) E 9 (X, Y). T (x) is holomorphic
if it is differentiable in norm for all in a complex domain. Again we
have the criterion : T (x) E 69 (X, Y) is holomorphic if and only if each x
has a neighborhood in which T (x) is bounded and (T (x) u, g) is holomorphic
for every u in a fundamental subset of X and every g in a fundamental
subset of Y* (see III-§ 3.1).

We note also that if T (x) E 2K Y) is holomorphic and T (xo) E

E -V(Y, X) exists, then T (x)-1 exists, belongs to M(Y, X) and is holo-
morphic for sufficiently small Ix - xoj. This is a consequence of the
stability theorem for bounded invertibility (see the Neumann series
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expansion of the inverse in Theorem IV-1.16) ; we have (d/dx) T (x)-11
_ - T (x)-1(d T (x)/dx) T (x)-1 by I-(4.28).

A real-holomorphic family T (x) can be defined as in the case of a
vector-valued, real-holomorphic family u (x) ; T (x) can be extended
to a holomorphic family on some domain D of the complex.plane.

2. Analyticity of a family of unbounded operators
For applications it is not sufficient to consider bounded operators

only, and the notion of analytic dependence of a family of operators on a
parameter needs to be generalized to unbounded operators. In order to
distinguish the current sense of holomorphy from the extended sense to
be introduced in a moment, we shall say T(m) is bounded-holomorphic if
T (x) E 2 (X, Y) and T (x) is holomorphic in the sense so far considered.

The extension to unbounded operators is suggested by the notion of
generalized convergence introduced in IV-§ 2.4. A family of operators
T (x) E ' (X, Y) defined in a neighborhood of x = 0 is said to be holo-
morphic at x = 0 (in the generalized sense) if there is a third Banach
space Z and two families of operators U (x) E 9 (Z, X) and V (x) E 9 (Z, Y)
which are bounded-holomorphic at x = 0 such that U (x) maps Z onto
D(T(x)) one to one and

(1.1) T (m) U (m) = V (x)1 .

T (m) is holomorphic in a domain D of the complex plane if it is holo-
morphic at every x of D. If T (x) is holomorphic, then it is continuous in x
in the generalized sense: T (x) -+ T (xo) in the generalized sense if x -+ xo,
as is seen from Theorem IV-2.29.

The new notion is a generalization of the old one: T (n) E -4 (X, Y) is
holomorphic in the new sense if and only if it is bounded-holomorphic.
To prove the "only if" part, it suffices to note that the U(x) of (1.1)
maps Z onto X so that U(x)-' E -4 (Y, X) (see Problem III-5.21). Then
U (x) is bounded-holomorphic (see par. 1), and the same is true of T (x)
= V (x) U(x)-1.

We note also that if T (x) is holomorphic and T (xo) E -4 (X, Y), then
T (x) E 9 (X, Y) for sufficiently small Ix - xol [so that T (x) is bounded-
holomorphic for such x]. This is a- consequence of Theorem IV-2.23, 'for
T (x) is continuous in x in the sense of generalized convergence.

The notion of a real-holomorphic family T (m) could be defined in
the same way by requiring only that U(m), V(x) be real-holomorphic.

1 This definition corresponds to Theorem IV-2.29, which gives a sufficient
condition for generalized convergence. It is a formal generalization of a definition
given by RELLlcx [3], in which Z = X = Y is assumed.



§ 1. Analytic families of operators 367

But it is in general impossible to extend a real-holomorphic family to a
complex-holomorphic family. It is true that U (x) and V (x) can be
extended to complex x, but U(x) may not be a one-to-one mapping for
nonreal x 1.

Problem 1.2. If T (x) is holomorphic and A (x) is bounded-holomorphic, T (x) +
+ A (x) is holomorphic.

Theorem 1.3.2 Let T (x) E V (X) be defined in a neighborhood of x = 0
and let c E P(T (0)). Then T (x) is holomorphic at x = 0 if and only if

E P(T (x)) and the resolvent R (C, x) = (T (x) - c)-1 is bounded-holo-
morphic for sufficiently small jxj. R (C, x) is even bounded-holomorphic in the
two variables on the set of all , x such that E P(T(0)) and 1XI is sufficiently
small (depending on C).

Proof. The proof is similar to the corresponding one for generalized
convergence (see IV-§ 2.6). Suppose T (x) is holomorphic and let U(x),
V (x) be as in (1.1). We have (T (x) - ) U(x) = V (x) - C U (m), and
V (0) - C U (0) maps Z onto X one to one. Therefore its inverse belongs
to R (X, Z) and [V (x) - C U (x) ]-1 is bounded-holomorphic near x = 0
(see a similar argument above). Thus (T (x) - )-1= U(x) [V (x) -
- U(x)]-1 is bounded-holomorphic. Conversely, suppose that x)
is bounded-holomorphic in x. We need only to set Z = X, U (x) = R (c, x),
V (x) = I + C U(x) to satisfy (1.1). That R x) is holomorphic in the
two variables follows from Theorem IV-3.12, according to which R (C, x)
is holomorphic in C and R(C0, x).

The holomorphy of T (m) as defined here is peculiar in that a T (M)
may be holomorphic for all complex x, including x = oo 8, without being
constant. An example is given by

Example 1.4. Let T (m) be the ordinary differential operator on the interval
(0, 1) given by T (x) u = - u" with the boundary condition u (0) = 0, u'(1) + x u (1)
= 0. T (x) depends on x only through the boundary condition at x = 1. It is defined
even for x = oo; then the boundary condition is u (1) = 0 by definition. The resolv-
ent R (C, x) is an integral operator with kernel (the Green function) g (y, x; C, x)
given by

siniy[cosCT(1-x) +xC`$sinC(1 -x)]
j cos Cg + x sin Cyl

1 For example let T (x) = (U - x) -1 for real x, where U E 6W (X). Suppose U
has a set of nonreal eigenvalues dense in a complex neighborhood of 0. Then T (x) is
real-holomorphic [as is seen by taking U (x) = U - x, V (x) = 1], but it cannot be
extended to complex x. In fact 0 E P (T (0)) since T (0) = U E 61 (X) ; hence
0 E P (T (x)) and T (x)-1 is bounded-holomorphic for sufficiently small Ixl if such an
extension exists (Theorem 1.3). Then we must have T (x)-1 = U - x since this is
true for real x. But this is a contradiction since U - x is not invertible if x is an
eigenvalue.

2 This theorem is due to RELLICH [3] when T (x) is a selfadjoint family (see § 3).
8 As usual, T (x) is holomorphic at x = oo if T (lax) is holomorphic at x = 0

with a suitable definition of T (oo).
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for 0 5 y;5 x :!g 1, with x, y exchanged if x5 y. For a fixed C. (1.2) is holomorphic
in x with the single exception of a pole at x = -C1/2 cot Y,l/s. For any given x,, a I
can be found such that x is not a pole if it is near enough to xo. According to Theorem
1.3, therefore, T (x) is holomorphic in the whole complex plane including x = oo.

Example 1.5. Similarly, let T (m) be the operator T (m) u = - u" with the
boundary condition u(0) = 0, x u'(1) - u(1) = 0. T(x) is identical with the
T (-x'1) of Example 1.4 and is holomorphic for all x. R (C, x) is given by the
Green function V-(4.16).

Remark 1.6. Does the holomorphic function T (x) defined above
possess the unique continuation Property? In other words, let T, (x) and
T2 (x) be holomorphic in a (connected) domain D and let T, T2 (x.)
for a sequence {x,,} converging to a point xo E D different from any of
the x,,. Then is it true that T, (x) = T2 (x) for all x E D ? It is not clear
whether this is true in general. But it is if Y = X and T, (x), T2 (x) have
nonempty resolvent sets for every x E D.

To see this, we first note that T, (x,,) = T2 T1, implies T, (xo)
= T2 (xo) = To in virtue of the uniqueness of the generalized limit. Let
Co E P (To) ; then R (Co, T, (x)) and R (Co, T2 (x)) exist and are bounded-
holomorphic in a neighborhood of xo by Theorem 1.3. Since the unique
continuation theorem holds for bounded-holomorphic functions just
as for numerical functions [it is sufficient to consider the function
(R (CO, T, (x)) u, /) for fixed u E X and / E X*], we conclude that
R(Co, T, (x)) = R (Co, T2 (x)), and therefore T, (x) = T2 (x), in this neigh-
borhood.

It is now easy to show that T, (x) = T2 (x) holds for all x E D. This
extension of the domain of validity of T1 (x) = T2 (x) from a neighborhood
to the whole D follows the standard pattern' and may be omitted.

3. Separation of the spectrum and finite systems of
eigenvalues

Theorem 1.7. If a family T (x) E ' (X) depending on x holomorphically
has a spectrum consisting of two separated parts, the subspaces of X cor-
responding to the separated parts also depend on x holomorphically.

Comment and proof. To be precise, this theorem means the following.
Let T (x) be holomorphic in x near x = 0 and let E (0) = E (T (0)) be
separated into two parts E' (0), E" (0) by a closed curve r in the manner
described in III-§ 6.4. Since T (x) converges to T (0) as x 0 in the
generalized sense, it follows from Theorem IV-3.16 that r c P (x)
= P(T (x)) for sufficiently small Ixl and E (x) = E (T (x)) is likewise
separated by r into two parts 1'(x), E" (x) with the associated decom-
position X = M' (x) ® M" (x) of the space. The projection on M' (x) along

1 See KNOPP (l), p. 87.
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M" (x) is given by

(1.3) P (x) _- 2, i ,l R (C, x) d C
r

by IV-(3.11). Since R (C, x) is bounded-holomorphic in C and x jointly
by Theorem 1.3, it follows from (1.3) that P (x) is bounded-holomorphic
near x = 0. This is what is meant by saying that the subspaces M' (x),
M" (x) depend on x holomorphically.

When E (x) is separated as in Theorem 1.7, the eigenvalue problem
for T (x) is reduced to the eigenvalue problems for the parts of T (x) in
the two subspaces M' (x), M" (x). But it is somewhat inconvenient that
these subspaces depend on x. This inconvenience can be avoided by the
following device.

Since the projection P (x) on M' (x) is holomorphic in x, there exists a
transformation function U (x) E -4 (X) which is bounded-holomorphic
together with its inverse U (x) i E R (X) and which transforms P (0)
into P (x) :

(1.4) P(x) = U(x) P(0) U(x)-';

see II-§ 4.2, the results of which are valid in a Banach space X as well.
Since T (m) commutes with P (x) (see 111-§ 6.4), it follows that the
operator

(1.5) T (x) = U (x)-1 T (x) U (x)

commutes with P (0). Thus the pair M'(0) = P (0) X and M" (0) = (1 -
- P (0)) X decomposes T (x) for all x. But the eigenvalue problem for the
part of T (x) in M' (x) is equivalent to that for the part of T (x) in M' (0),
for the eigenvalues (if any) are the same for the two parts and the eigen-
projections and eigennilpotents for them are related with each other
through transformation by U (x).

Let us describe this relationship in more detail under the assumption
that Z'(0) consists of a finite system of eigenvalues (III-§ 6.5). Then
M' (0) is finite-dimensional and the same is true of M' (x) by (1.4). Let

(1.6) T (x) Ph (x) = Ah (x) Ph (x) + Dh (x) , h = 1, ..., s ,

be the solution of the eigenvalue problem for the part of T (x) in M' (0),
where

(1.7)
Ph (x) P (0) P (0) Ph (x) Ph (x)

Dh (x) P (0) = P (0) Dh (x) = Dh (x)

[see 1-(5.35)]. Then the solution for T (m) in M' (x) is given by

(1.8) T (m) Ph (x) = 2h (x) Ph (x) + Dh (x) , h= 11 ..., s ,
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with
(1.9) Ph (x) = U k Ph (x) U()-1, Dh (x) = U (M) Dh (x) U(m)-l.

Now all the results of Chapter II on the analytic perturbation theory
in a finite-dimensional space can be applied to the eigenvalue problem
for T (x) in the fixed subspace M' (0). In this way the study of a finite
system of eigenvalues for T (m) has been reduced to that of a problem
in a finite-dimensional space. Note that the part of T (m) in M'(0) is
equal to the part in M' (0) of the bounded-holomorphic function T (m) P (0)
= U (x)-1 T (x) P (x) U (m); T (x) P (x) is bounded-holomorphic as is seen
from III-(6.24).

Recalling the results of II-§ 1.8, we have thus proved
Theorem 1.8.1 I/ T (x) is holomorphic in x near x = 0, any finite

system of eigenvalues 2, (x) of T (x) consists of branches of one or several
analytic functions which have at most algebraic singularities near x = 0.
The same is true of the corresponding eigenprojections P, (m) and eigen-
nilpotents Dh (x).

More detailed properties of these functions can be read from the results
of II-§ 1, all of which are valid as long as we are concerned with a finite
system of eigenvalues.

As an application, let us prove some theorems on "nonlinear eigen-
value problems" a.

Theorem 1.9. Let T (x) be a family o l compact operators in X holo-
morphic for x E Do. Call x a singular point i f 1 is a an eigenvalue o t T (x).
Then either4 all x E Do are singular points or there are only a finite number of
singular points in each compact subset o l Do.

Proof. Let xo ED,. If xa is not singular, 1 E P(T (xa)) since T (xo) is
compact. Then 1 E P(T (x)) for sufficiently small Ix - xoj, by Theorem 1.3.
If xa is singular, 1 is an isolated eigenvalue of T (xa) with finite multi-
plicity (see III-§ 6.7). It follows from Theorem 1.8 that T (x) has only a
finite system of eigenvalues in some neighborhood of 1 if Ix - xa1 is
small and that these eigenvalues have at most an algebraic singularity
at x = xo. If some of these eigenvalues are identically equal to 1, all the x
near xo are singular. Otherwise there is no singular point x + xa if Ix - xoj
is sufficiently small.

1 This theorem was proved by Sz.-NAGY [2], WOLF [1], T. KATO [6]. See also
BAUMGARTEL [1] (which contains the most complete description of the analytic
functions Ar,(x) etc.), SCHAFKE [1]-[5].

8 See footnote 1 of p. 35. If T (x) = x T where T is compact, a singular point x
in Theorem 1.9 is the reciprocal of an eigenvalue of T. This is the reason why we
speak of a "nonlinear eigenvalue problem". Theorem 1.9 is due to ATKINSON [2]
(see also Sz. -NAGY [4]) where T (x) is assumed to be a polynomial in x.

8 The value 1 has no particular meaning; it can be replaced by any a = 0.
' The first alternative is excluded if 11 T (xo) 11 < 1 for some xo E Do.
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Summing up, for each x, E Da there is a neighborhood D such that
either every x E D is singular or no x E D is singular except xo. The
result follows immediately.

Theorem 1.10. Let T (x) E ' (X) be a holomorphic family for x ED,
and let T (x) have compact resolvent for each x. Call x a singular Point i f 0
is' an eigenvalue o l T (x). Then the same result holds as in Theorem 1.9.

Proof. For each xo, there is a nonzero u E P(T (xa)) and Cu R (C,0, x)
is compact and holomorphic in x near xa. A singular point x is a singular
point for the compact family - a R (Ca, x) in the sense of Theorem 1.9.
Hence the result follows at least in some neighborhood of xo. But since
xo E Do is arbitrary, the same is true in the whole of Do.

4. Remarks on infinite systems of eigenvalues
When an infinite, number of eigenvalues of T (m) are considered

simultaneously, various complications arise2. To make the situation
simpler, suppose that T (x) has compact resolvent for each x ED,.
For convenience assume that x = 0 belongs to Do. Then each eigenvalue
A (0) of T (0) is isolated with finite multiplicity and can be continued to
one or several eigenvalues A (x) of T (x), each of which is analytic in a
certain domain D' C Do. D' may be large for some A (x) and small for
others. Furthermore, these A (x) need not exhaust all the eigenvalues of
T (x), no matter how small jxj is. In an extreme case T (0) may have no
eigenvalue at all (empty spectrum) while T (x) for x + 0 has an infinite
number of eigenvalues. Thus it is in general impossible to speak of "the
set of all eigenvalues of T (x) as analytic functions of x."

Example 1.11. Consider the family T (x) of Example I.S. Here T (x) is holo-
morphic in the whole extended complex plane and has compact resolvent. For a
fixed x, the eigenvalues of T (x) are given as the zeros of the entire function

C-1/2 sinV2 - x cost'/5

that appears in V-(4.16) as the denominator of the Green function. The eigenvalues
for x = 0 are A = ns n8, n = 1, 2, ... and the associated eigenfunctions j sinn n x
form a complete orthonormal family in H = L2 (0, 1). Since each of these eigen-
values is simple, the corresponding eigenvalue A. (x) of T (m) is holomorphic in a
neighborhood of x = 0. For real x, it is evident from Fig. 1 (see p. 292) that
A. (x) - A grows with n for fixed x, suggesting that the convergence of the power
series of A (x) becomes worse with increasing n.

There is another peculiarity in this example. It is easily verified that the A. (x)
are the only eigenvalues of T (x) for x S 0, but another eigenvalue AO (x) exists for
x > 0. If 0 < x < 1, AO (x) is given by AO (x) = - Q (x)$ where e (x) is determined as
the unique positive root of the equation tanh Q = x Q. Ao (x) is holomorphic on and

1 Again the value 0 may be replaced by any complex number.
2 See RELLICR [5], which contains Example 1.11 below and other examples.
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near the positive real axis, and Ao (x) -* - oo when x ' 0; it cannot be continued to
x < 0 as long as x is confined to a real neighborhood of x = 01.

If complex values of x are considered, it turns out that all the A. (x), including
n = 0, have analytic continuations and constitute a single analytic function A (x),
which is exactly the inverse function of the meromorphic function C-1/2
This analytic function A(x) behaves in a very complicated way near x = 0; there
are branch points which accumulate at x = 0. This explains the absence of the
graph of AO (x) for x < 0; within any neighborhood of x = 0, it is possible to go
from the branch AO (x) to any A. (x) with sufficiently large n by circling around an
appropriate branch point.

The convergence radii of the series expansion of the A. (x) could be determined
if these branch points were computed.

Example 1.12. As a simpler example than the preceding one, consider the
first order differential operator T (x) _ - i d(dx, 05 x S 1, with the boundary
condition (1 + i x) u(0) _ (1 - i x) u(1). As in the preceding example, it is easily
seen that T (m) is holomorphic for all complex x including x = oo. The eigenvalues
of T(m) are

(1.10) : L

T(e) is selfadjoint for real x if considered in the Hilbert space L2(0, 1), and the
eigenvalues A. (x) are real for real x. It is seen from (1.10) that the Taylor series for
each has the convergence radius 1. If x is unrestricted, all the form a
single analytic function 2 arctanx, which has logarithmic singularities at x = ± i.

It is instructive to inquire what these singularities mean with respect to T (m).
The answer is that T (± i) have no eigenvalues at all : their spectra are empty.
If T (i) is regarded as the unperturbed operator with the perturbation parameter
x' = x - i, there is no perturbation series for T (x) = T (i + x') to be considered
(hence there is no contradiction to the general result that the perturbation series
for simple eigenvalues are convergent Taylor series).

Remark 1.13. In the above examples, T(m) is holomorphic but
D (T (x)) varies with x. Better behavior may be expected of the eigen-
values in the case where T (x) has a constant domain. We shall discuss
this question later (see §§ 3.5, 4.7).

5. Perturbation series
The formal series in powers of x for the eigenvalues etc. of T (m) in a

finite system, as considered in par. 3, can be obtained by the method of
II-§§ 2, 3 applied to the operator

(1.11) Tr (x) = T (x) P (x) = Tr + x Ty1) + xa T;$) + .. .

which is bounded-holomorphic in x. The following remarks should be
added.

1 For real x, T (m) is selfadjoint and its eigenvectors 97.(x) form a complete
orthonormal family. If x > 0, this family contains the eigenvector quo (x) for the
eigenvalue AO (x). Thus if one starts from the complete family {q/ (0)}, n 1, for
T (0) and considers the perturbed family {p (x)}, n > 1, one sees that the latter
is not complete for x > 0.
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a) The transformation function U (x) used in par. 3 need not be
introduced explicitly; it suffices to apply the results of II-§§ 2, 3directly
to (1.11).

b) If one is interested only in the R-group eigenvalues (see II-§ 1.2),
where 2 is an isolated eigenvalue of T = T (0), it is convenient to choose
as P a circle enclosing the single eigenvalue R of T ; then P (x) coincides
with the P(x) of II-§§ 2, 3. It should be noted that the series II-(2.1) is
now meaningless because T (m) need not be bounded-holomorphic. Thus
the coefficients T() should be replaced by the coefficients of (1.11).
For the operator S [see II-(2.11)], the S given by III-(6.31) should be
used. The definition of P(l), SJ(i> etc. is exactly as before.

c) The traces of various operators, for instance tr T (x) P (m) used in
II-(2.5), are also defined in the present case and obey the rules of calcula-
tion with the trace. This is due to the fact that at least one factor in each
expression under the trace sign is a degenerate operator in the present
situation, whereas the remaining factors belong to .4 (X) (see the theory
of trace given in III-§ 4.3). For example, the operators P(x), P, D, P(10,
S(') are all degenerate with rank < m, m being the multiplicity of R.
Moreover, the coefficients T"> of (1.11), which should replace the T011
of the finite-dimensional case according to the remark above, are also
degenerate; this follows from Lemma 11-2.12, for T,. (x) = T,. (x) P (m)
where T,. (x) is bounded-holomorphic and P = P (0) is degenerate.

6. A holomorphic family related to a degenerate
perturbation

Let T (x) E (f (X) be defined for x near x = 0 and suppose that there
are two operators T°, TO in ' (X) such that

(1.12) To c T (m) c TO, [T (x)I T°] = [T°/T()] = m < co.

In other words, T (x) is an extension of finite order m of a fixed "minimal
operator" To and at the same time a restriction of order m of a fixed
"maximal operator" TO. (Such a situation occurs very often with ordinary
differential operators, as will be seen from Example 1.15 below.) Further-
more, we assume that the resolvents R (C, x) = (T (x) - C)-1 exist for
some C for all x.

We now ask under what conditions T (x) is holomorphic in x. To answer
this question, we first note that

(1.13) A (C, x) = R (C, x) - R (C, 0)

is degenerate and can be expressed as

(1.14) A (C, x) u = ask (C, x) (u, f9) wk
9,k=1
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where wk, k = 1, ..., in, form a fixed basis of N (T° - C) and f;, j = 1,
., m, form a fixed basis of R (T° - )1 (see Lemma 111-6.36).
Let j = 1, ..., m, be m vectors of X linearly independent modulo

R (T° - and constituting a biorthogonal set with {f}. On setting u = us
in (1.14) and substituting (1.13), we obtain

(1.15) R(C, x) u; - R(C, 0) is, a, k (C, x) wk .
k=1

Let e,, j = 1, ..., in, be any m linearly independent linear forms defined
on D (T°) such that det (ei [wk]) + 0. Application of ej to (1.15) gives

m

(1.16) ej [ R (C, x) u;] - ei [R (C, 0) u,] = a , , x) ej [wk] ,
k=1

ij =1, M.

(1.16) determines the coefficients a, x), so that these coefficients are
holomorphic in x if
(1.17) ei[R(C,x)u;], i,j=1,...,m,
are holomorphic in x. Returning to (1.14) and then to (1.13), we see that
R (C, x) is then holomorphic in x. Thus we have proved

Theorem 1.14. Under the above assumptions, T (x) is holomorphic if
the m2 functions (1.17) are holomorphic in x.

Example 1.15. Consider the ordinary differential operator

(1.18) L u = p° (x) u" + p, (x) u' + p, (x) u

on a finite interval (a, b), with the boundary condition

(1.19) u' (a) - h, u (a) = 0, u' (b) + ho u (b) = 0 .

Suppose that h, and h, are holomorphic functions of x. Then the operators T (M)
defined from L in X = LP (a, b) or X = C [a, b] with the boundary condition (1.19)
(as the T. of III-§ 2.3) form a holomorphic family. To see this we can apply Theorem
1.14 with the "minimal" operator To and the "maximal" operator TO = T (see
III-§ 2.3). Here m = 2, and wk E N (T - C) and t j E R (T° - C)1 = N (To - C)

may be any two linearly independent solutions of the equation (L - C) w = 0 and
the formal adjoint equation (M - f) f = 0, respectively. As the linear forms ej we
may choose, for example, ej [wk] = wk (ci), where c1, c$ are any two points of (a, b)
such that det (w,, (cr)) + 0. Then the functions (1.17) are holomorphic and Theorem
1.14 is applicable. In fact, for any is E X, v = R (g, x) is is the unique solution of
(L - C) v = u under the boundary condition (1.19), and it is easily seen that v (x)
for any fixed x is a holomorphic function of x if h hb are holomorphic in x, unless C
happens to be one of the eigenvalues of T (x).

In this way we see that a boundary condition holomorphic in the parameter
gives rise to a holomorphic family of operators. It should be remarked that under
"holomorphic" boundary conditions, we may even allow conditions of the form

(1.20) 1, u' (a) - h, u (a) = 0 , lb u' (b) + hb u (b) = 0
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where d h la, hb are holomorphic in x with nonvanishing determinant. This
implies that, in the original form (1.19) of the boundary condition, h, (x) and hb (x)
may take the value oo. This is the case if, for example, h hb are linear in X. Thus
it is possible that T (x) is holomorphic for all x of the complex plane including
x = oo (cf. Examples 1.4, 1.5).

§ 2. Holomorphic families of type (A)
1. Definition

An important special case of a holomorphic family T (m) of operators
is furnished by what we shall call a holomorphic family of type (A)'.
A family T (x) E ' (X, Y), defined for x in a domain Da of the complex
plane, is said to be holomorphic of type (A) if i) D (T (x)) = D is indepen-
dent of x and ii) T (x) u is holomorphic for x E Do for every u E D.

In this case T (m) u has a Taylor expansion at each x E D0. If, for
example, x = 0 belongs to Do, we can write

(2.1) T(x)u= Tu+xTl')u+x2T(2)u+... uED,

which converges in a disk I ml < r independent of u. T = T (0) and the
T(') are linear operators from X to Y with domain D [their linearity
follows from the uniqueness of the expansion (2.1) and the linearity of
T (x)].

That a holomorphic family T (x) of type (A) is actually holomorphic
in the sense of § 1.2 can be seen as follows. Fix an arbitrary point of D0,
which may be assumed to be x = 0 without loss of generality. Since
T = T (0) is closed, D = D (T) is converted into a Banach space Z by
introducing the new norm IIIuIII = IIuII + IITull (see Remark IV-1.4).
Denote by U the operator that sends each u E Z to u E X; U is bounded
since lull s IIIuIII Each T (x) may be regarded as an operator from Z
into Y; when thus interpreted it will be denoted by V (x). The closedness
of T (x) implies the same of V (x) in virtue of lull S IIIuIII. But since
V (x) is defined everywhere on Z, V (x) is bounded and belongs to a (Z, Y)
(Theorem 111-5.20). Since V (x) u = T (x) u is holomorphic for each
u E Z, V (x) is bounded-holomorphic (see Theorem 111-3.12). Since U
maps Z onto D one to one and T (x) U = V (x), this proves that T (x) is
holomorphic.

Incidentally, that V (x) is bounded-holomorphic implies that (IIuII +
+ II V (xI) ubb)/(IIuII + II V (x2) uhi) is bounded when xl and x2 vary over a

1 This type has been studied extensively, including the special case of bounded-
holomorphic families, starting with RELLICH [1] and [3] (which are restricted to
selfadjoint families). See HEINZ [1], HOLDER [1], T. KATO [1], [3], [6], SZ.-NAGY [1],
[2], PORATH [1], [2], RELLICH [6], [7], [8], ROSENBLOOM [1], SCHAFKE [3], [4], [5],
SCHRODER [1], [2], [3], AMUL'YAN [1], WOLF [1].
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compact subset D of Da and u varies over Z. Since V (x) u = T (x) u, we
have

(2.2) (Ilull + II T (xl) ull)/(Ilull + II T (x2) ull) s M, xi, x2 E D, u E D.

Furthermore we have T' (x) u = V' (x) u, where the operator T' (x) with
domain D is defined by T' (x) u = d T (x) u/dx. But since 11 V' (x) uIl/(Ijull +
+ 11 V (x) u11) is bounded for x E D and u E Z, we have an inequality of
the form

(2.3) 11 T'(x) ull S a'jjujj +b'11 T(x) ull , xED, uED.
Note, however, that T' (x) (with domain D) may not be closed; hence it
need not be a holomorphic family.

Similarly it can be shown that, for any e > 0, there is a 6 > 0 such
that
(2.4) IIT (xl) u - T(x2) ull s s(Ilull + I!T (x) uIU , Ixl - x21 < 6,

as long as x, x2 and x belong to D. These results may be expressed
roughly by saying that any T (x) is relatively bounded with respect to any
other and T (m) is relatively continuous.

Example 2.1. In what follows we shall encounter many holomorphic families
of type (A). Here we give an almost trivial example. Let T E W (X) and let
T (x) = x T. T (x) is holomorphic of type (A) for x $ 0. In general x = 0 must be
excluded, for, the operator 0 with domain D(T) is not closed if T is unbounded.
The exclusion of x = 0 might have been unnecessary if we did not require the

closedness of T (m) in the definition of a holomorphic family, but it is convenient
for many purposes to admit only closed T (m).]

Furthermore, T (x) = x T cannot be made holomorphic [to say nothing of
type (A) ] including x = 0 by defining T (O) = 0 (with domain X). T (O) is then
indeed closed, but it is easy to see that the resolvent R (C, x) = (T (x) - C)-' is not
bounded-holomorphic at x = 0 for any C + 0 [even when there exists a C + 0
belonging to P (T (x)) for all x near x = 0]. In view of Theorem 1.3, T (m) cannot be
holomorphic.

Remark 2.2. The question is open whether or not a holomorphic
family T (x) with constant domain is necessarily of type (A)1. But this
is true under a slight additional condition; namely we have

Theorem 2.3. Let T (x) E '(X) be holomorphic near x = 0 and have constant
domain D = D (T (x)). Furthermore, assume that T (0) has nonempty
resolvent set, that T (O) and T (O)* are densely defined (in X and X*,
respectively) and that T (0) R (C, x) is uniformly bounded near x = 0 for
some fixed C E P (T (0)). Then T (x) is of type (A) near x = 0.

1 In this connection it is interesting to note that RELLlcx [5] gives an example
of a real-holomorphic family T (x), with D = D (T (x)) independent of x, for which
T (x) u is not real-holomorphic for all u E D. This T (x) has a (complex-)holomorphic
extension T, (x), for which, however, D (Ti (x)) is no longer constant.
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Proof. Before giving the proof, we note that D (T (0)) = D (T (x))
already implies that T (0) R x) and T (x) R (C, 0) belong to -4 (X)
(see Problem 111-5.22). The essential assumption is that T (0) R (C, x)
be uniformly bounded near x = 0.

For the proof we may assume = 0 for simplicity. Then R (0, x) is
bounded-holomorphic by Theorem 1.3. Hence 0 (x; f) = (T (0) R (0, x) u, f)
= (R (0, x) u, T (0) * f) is holomorphic near x = 0 for each it E X and
/ E D (T (0)*) = D* E X*. Since D* is dense and II T (0) R (0, x)II is bounded
in x by hypothesis, it follows from Theorem 111-3.12 and a remark
following it that T (0) R (0, x) is bounded-holomorphic. Hence the same
is true of the inverse (T (0) R (0, x))-1 = T (x) R (0, 0) (see the remark
at the end of § 1.1). This implies that T (x) u is holomorphic for every
u E D (T (0)).

A holomorphic family of type (A) has many properties not shared by
general holomorphic families, as we shall see in the course of the following
sections. Here we note

Theorem 2.4. Let T (x) E `'(X) be holomorphic of type (A) and have nonemp-
ty resolvent set for each x. Then T (x) has compact resolvent either for all x
or for no x.

Proof. Let D' be the set of all x such that T (x) has compact resolvent ;
we have to show that D' is open and closed relative to Do, the domain
of definition of the family T (x). That D' is open follows from Theorem
IV-3.17, for T (x2) is relatively bounded with respect to T (x1) if Ixs - X1I is
sufficiently small [see (2.4)]. On the other hand, Theorem IV-2.26
shows that D' is closed relative to Do [here T (x) need not be of type (A)].

Example 2.5. An example opposite, in a certain sense, to Example 2.1 is furnish-
ed by a family T (x) = (U + x)-1, where U E 2 (X) is quasi-nilpotent but invertible.
Then D (T (x)) = X for x * 0 while D (T (0)) = R (U) is a proper subset of X. T (x)
is holomorphic of type (A) for x +_ 0; in fact it is even bounded-holomorphic. It is
interesting to note that T (x) is holomorphic even when x = 0 is included, though
it is no longer of type (A). This is verified by writing T (x) U (x) = 1, U (x) = U + X.

Suppose now that U is in addition compact. Then T (0) = U-1 has compact
resolvent, for T(O)-1 = U is compact. But T (m) does not possess this property if
x + 0. This remark shows that Theorem 2.4 is not true for a general holomorphic
family T (m).

2. A criterion for type (A)

Theorem 2.6.1 Let T be a closable operator from X to Y with D (T) = D.
Let TO), is = 1, 2, ..., be operators from X to Y with domains containing D,
and let there be constants a, b, c z 0 such that

(2.5) IITHull 5 c"'-1(a llull+b11Tull), u E D, n = 1, 2, . . . .

1 This theorem is essentially due to RELLICH [3] (where it is restricted to self-
adjoint families).
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Then the series (2.1) defines an operator T (x) with domain D for IxI < 1/c.
If IxI < (b + c)-1, T (x) is closable and the closures T (x) for such x form a
holomorphic family of type (A).

Remark 2.7. The form of the condition (2.5) is so chosen as to be
particularly convenient when T(2) = T(M) _ = 0. In this case we can
choose c = 0 if

(2.6) IIT(1)ullcallull+bIITull, uED.

Note also that the required constants a, b, c exist if the series (2.1) is
finite and the T(n) are T-bounded (see IV-§ 1.1).

Proof of Theorem 2.6. T(x) is well defined by (2.1) if IxI < c-1, for

Ilxn T(n) u + ... + xn+rT(n+?) uII <
(cn-1IxIn + ... + cn+r-l Ixln+p) (allull + bIITull) <

s cn-llxln(1-clxl)-1(allull+bIITull)->0, n -aoo

and the series on the right of (2.1) converges.
If we write (2.1) in the form T (x) u = T u + A (x) u, it follows from

the above inequality that

(2.7) IIA (x) uII s IxI (1- clxi)-1(aIluii + b11 Tull) , it E D .

Thus A (x) is T-bounded with T-bound not exceeding b IxI (1 - c IxI)-1,
which is smaller than 1 if IxI < (b + c)-1. It follows from Theorem
IV-1.1 that T (x) is closable for such x. Incidentally we note the following
inequality, which follows from IV-(1.3):

(2.8) allull + bII TuII s (1 - clxl) (1- (b + c) IxI)-1(aIIuII + bII T (x)uII).

Let T be the closure of T, with domain D ) D. D is converted into a
Banach space Z by introducing the norm IIIuIII = (a + e) (lull + bIITull
where e > 0. That T is the closure of T implies that D is dense in Z.
Let V(n) be the operator T(n) regarded as an operator from Z to Y; V(n)
is densely defined and II V(") uII 5 cn -1 IIIuIII Hence V M has closure
V(n) E 9 (Z, Y) with II r(n)II S cn-1. If we denote by V (x) and V the T (x)
and T, respectively, as operators from Z to Y, we have

(2.9) V (x) = V + x V(1) + x2 V(2) + . ,

and V (x) obviously has the closure V (x) obtained by replacing V and the
V(n) by r and the 7(n) on the right of (2.9). Thus T (x) u = V (x) u is
holomorphic for each u E D if IxI < (b + c)-1.

Remark 2.8. The inequalities (2.5) are also necessary for T (x) to be
holomorphic of type (A), in the following sense. If T(m) is holomorphic
of type (A) in a neighborhood of x = 0, we have the expansion (2.1) with
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the coefficients TO) satisfying (2.5). This follows from the fact that the
V (x) used above is bounded-holomorphic near x = 0 and, consequently,
developable into a power series of the form (2.9). Then we have II M011 <
s Mr-n where r is any positive number smaller than the convergence
radius of this series (Cauchy's inequality). Hence II T (n) U11 = II

V (n) U11 S

s Mr-nlllulll, which is equivalent to (2.5).

3. Remarks on holomorphic families of type (A)
The results concerning a holomorphic family T (x) of operators are

simplified and become more explicit when T (x) is of type (A). Here we
collect such results in a series of remarks.

Remark 2.9. Suppose the spectrum E = E (T) of T is separated into
two parts by a closed curve P. Then E (x) = E (T (x)) is likewise separated
by r for sufficiently small x by Theorem 1.7. Here we can estimate how
small IxI should be. According to Theorem IV-3.18, it suffices that
IV-(3.14) be satisfied for all C E P, with the constants a, b replaced by
alxl (1 - c Ixl)-1, blxl (1 - c IxI)-' in view of (2.7). This means that
separation of the spectrum occurs at least if

(2.10) IxI < ro = min (a IIR (C, 7)11 + b 1l TR (C, T)11 + c)-1.

Then the projection P(x) given by (1.3) is holomorphic in x. If the part
of E inside r is a finite system of eigenvalues, it follows that the eigen-
values, eigenprojections and eigennilpotents of T (x) in question are
analytic for (2.10) with only algebraic singularities (see § 1.3).

Remark 2.10. The existence of the formal power series for T (x),
which did not occur in the case of a general holomorphic family, makes it
possible to take over directly the results of II-§§ 1, 2 without replacing
T(n) by T;n) (see § 1.5). This is due to the fact that II-(1.13) is valid in
spite of the unboundedness of the TO); in fact, these operators appear in
the formulas there only in such combinations as T (n) R (c), TM S,
TO) P, TO) D = TO) PD which all belong to .4 (X) (by Problem 111-5.22).
In this way we see that all formulas of II-§§ 1, 2 are valid in the present
case.

There is one important point to be noticed, however. The use of the
trace in a formula such as II-(2.28) is not justified here, for the operators
that appear under the trace sign are in general not degenerate. Never-
theless the final result II-(2.29) (or similar formulas that follow) is true,
in which all operators under the trace sign are degenerate because they
contain at least one factor P. This is easily seen by calculating the
integral explicitly in the fashion of II-(2.18) ; then it becomes a poly-
nomial in operators of ,1 (X) each term of which contains, as just men-
tioned, at least one degenerate factor. When one takes the trace of such a
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monomial, the order of the factors can be changed cyclically. As is
easily verified, this amounts to the validity of II-(2.30).

Remark 2.11. For applications it is often convenient to generalize
(2.5) tot

(2.11) IIT(n) uIl < cn-1 z(IIull, IITuJI) , u E D , n = 1, 2, ... .

Here x (s, t) is a nonnegative function of two variables s, t z 0 with the
following properties: i) x (s, t) is positive-homogeneous of order 1:
x (k s, k t) = k x (s, t) fork > 0; ii) x (s, t) is monotonically increasing in s,
t: x (s, t) x (s', t') for 0 _<_ s <_ s', 0 <_ t s t'. We can now generalize
Theorem 2.6 by replacing (2.5) by (2.11), the conclusion being that 7(x)
is holomorphic o l type (A) for I.I < (x (+ 0, 1) + c)-1. Also (2.10) should be
replaced by

(2.12) ro = min(x(II T) 11 , II T)iI) + c)-1 .

Examples of the function x (s, t) are :

(2.13) as+bt, a(st)1/2, (as2+bt2)1/2,

It should be noticed that (2.11) actually implies (2.5) with appro-
priate constants a, b. The point is that by strengthening the assumption,
the conclusions are also strengthened.

Example 2.12. Consider the formal differential operator

(2.14) L (x) u = po (x, x) u" + pi (x. x) u' -}- pa (x. x) u

on a finite interval [a, b], in which the coefficients p, (x, x) are assumed to be holo-
morphic in x near x = 0 (uniformly with respect to x) and real-valued for real x,
with appropriate continuity properties with respect to z. Furthermore, let
- p0 (x, x) Z 6 > 0 for real x. Let T (x) be the operator in X = C [a, b] or
X = L9 (a, b) constructed from L (x) as the T1 of III-§ 2.3 [boundary condition u (a)
= u (b) = 0]. T (x) satisfies the assumptions of Theorem 2.6. In fact T (x) can be
written in the form (2.1) with T(n) u = L(n) u (T = T(0)) with the same boundary
condition as above, where
(2.15) D' u = p(On) (x) u" + p( In) (x) u' + p2) (x) u

and the p(P) (x) are the coefficients of xn in the Taylor expansion of p, (x, x). Since
these coefficients satisfy inequalities of the form jp() (x) 5 K Nn, the inequalities
(2.5) follow from IV-(1.27). Recalling that the spectrum of T = T (O) consists of
isolated eigenvalues of multiplicity one (see Example 111-6.20), we see from
Theorem 2.6 that these eigenvalues are holomorphic in x near x = 0 together with
the associated eigenprojections.

Example 2.13. Consider the Schr6dinger operator

(2.16) L(x)u=-du+q(x)u+xq(i)(x)u
in R3. Assume that the potential q (x) is real-valued and can be written in the form
q = q0 + q1 where q1 E L2 (R') and q0 is bounded. Then there is a selfadjoint
restriction H of L (0) [acting in H = L$ (R')] which is defined as the closure of the

1 See SCHR6DER [1], SCHAFKE [4], PORATH [1].
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minimal operator (see V-§ 5.3). Actually D (H) is identical with D (Ho), where Ho
is the special case of H for q = 0, the multiplication operator Q = q (x) being
Ho-bounded with relative bound zero. It follows that QM = 01) (x) is also Ho-
bounded and hence H-bounded with relative bound zero if q(l) is likewise the sum
of two real-valued functions of La and of L°°. Hence the operators T (M) defined
as the closure of the minimal operators for the L (x) form a selfadjoint family of
type (A) defined for all complex x. It follows that the isolated eigenvalues and
eigenprojections of T (m) are holomorphic in x at least in a neighborhood of the
real axis'.

4. Convergence radii and error estimates
The estimates of the convergence radii and the errors for the perturba-

tion series given in the finite-dimensional case (see II-§ 3) can be taken
over to the case of type (A) without essential modification. The projection
P (m) as given by (1.3) is holomorphic for Ixi < ro, where ro is given
by (2.10) or (2.12) as the case may be. In particular this is true for the
total projection P (x) for the A-group eigenvalues of T (m) when A is an
isolated eigenvalue of T with finite multiplicity m; then r should be
chosen as a closed curve around C = A in such a way that ro becomes as
large as possible. The weighted mean A (x) of these eigenvalues is also
holomorphic for IxI < ro, so that the power series for P (x) and A (x) have
convergence radii not smaller than ro. If the A-group consists of a single
eigenvalue A (x) (no splitting), which is certainly the case if m = 1, then
A (x) itself is a power series convergent for I ml < ro.

The results of II-§ 3.2-3 on majorizing series hold true without
modification; note that the operators in II-(3.10) are bounded in the
case under consideration (see Remark 2.10).

Other results of II-§ 3 are also useful in the present case. Naturally
we have to set N = oo in general in the formula II-(3.45) and the follow-
ing ones in which the demension N of the underlying space X appears
explicitly. These estimates may in general not be very sharp, but
most of them are still the best possible of their kind, since this was true
even in the finite-dimensional case (see II-§ 3.5, in particular).

The estimate I I-(3.32) for (T - A) 99(x), which is also valid here,
deserves special attention. Since T - A is in general an unbounded
operator, this estimate is rather strong. Combined with the estimate
II-(3.30) for 92 (x) itself, it makes possible an error estimate of p (x) with
respect to a norm such as

(2.17) Iiiuiil = aIIuII + #II(T - A) ull

which is stronger than the original norm IIuII. In this way one is able to
estimate, for example, the error of the eigenfunction in L°°-norm in a

' Here we used some results on selfadjoint families (see § 3).
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theory within an L2-space, or estimate even the error of the derivatives
of the eigenfunction.

Example 2.14. Let X = C [0, n] 1. Consider the family T (x) = T + x 2'(1)
where T is the differential operator T u = - u" on the interval 0 5 x 5 n with
the boundary condition u (0) = u (n) = 0 (see Examples 111-6.21 and IV-3.20)
and where T'1> is a bounded operator. Each eigenvalue An = n2 of T is isolated
and simple, so that the corresponding eigenvalue 2,, (x) of T (x) is holomorphic at
least for small IxI. Let us estimate the convergence radius for the Taylor series of

To this end we consider a closed curve r. similar to the IF, used in Example
IV-3.20 but larger in size: IF. consists of the two parabolas = a$ - 1)$/400

1
[see III-(6.49)] corresponding to a = n ± 2 and the two horizontal lines _

_1
f (2n - 1)/n. It follows then from III-(6.48) that IIR(C)II < n - 2)for
C E I. Since r. encloses exactly one eigenvalue A. of T, a lower bound for the
convergence radius of A. (x) is given by (2.10) with b = c = 0 and a = II T°'II
In this way we obtain

(2.18) ro ? n - 2 I n a where a = II Vl>II

The coefficients An''> in the Taylor series of A (x) can be estimated, for example,
by II-(3.5). For this we need the maximum distance o of A. = ne from r.. A straight-
forward calculation gives the inequality o < (1 + 4 r 2)112 n S 1.2n, so that

(2.19) IA:)IC
1.2n7ra l° n,v=1,2,...

(W
.

- 1/2 J

This estimate is not very sharp, at least for small v. A better estimate can be obtained
from the method of majorizing series. For this we need the quantities p, q, s of
II-(3.15) for A = n2. Now the operator S = S. is an integral operator with the

n
kernels (y, x) given by III-(6.46), so that 11 S11 is estimated by 11 S11 S sup f Is (y, x) I dx

0
(see Example 111-2.11; note that X = C [0, n] here and the estimate for p = 00
is applicable). Thus we have 2 IISII < 1.7/n and IIS - P/4n2II S j/2 /n. Sincewe know
that IIPII = 4/n < 1.3 (see Example 111-3.23), p, q, s are estimated by II-(3.15) as

(2.20) p < 1.3 a, q < 1.7 a/n , s < 1.5/n .

Substitution of (2.20) into II-(3.21) gives a lower bound for the convergence radius
in question:
(2.21) r > 0.136 n/a ,

which is not so sharp as (2.18) obtained above. But II-(3.22) gives

(2.22) IA;,1>I < 1.3 a, 2.3 a2/n , IA;,s>I < 8.1 ae/n$ ,

which are much sharper than (2.19). Similarly, the remainder for after the
first order term is given by II-(3.18) :

(2.23) I A (x) - ne - x 22>I S 8.8 IxI $ ae/n for IxI S 0.136 n/a.

1 We shall later consider the same problem in X = L2 (0, n) ; see Example 2.17.
S See RosENBLOOM [1], where the same example is treated by a different

method. Note that S - P/4n2 has the kernel represented by the first two terms in
the kernel of S.
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Note that the coefficient 8.8 on the right of (2.23) depends on the range of x con-
sidered; it can be reduced if this range is narrowed. If, for example, we restrict IxI
to the range 0.12 n/a, II-(3.18) gives

(2.24) IA. (c) - n2 - x 5 4.9 Ixla ae/n for IxI < 0.12 n/a .

The eigenfunction normalized according to II-(3.26) is estimated by II-(3.38) as

(2.25) II9,. (x) - sinn xII S 3.7 IxI a/n for IxI < 0.12 n/a ,

where sinn x is the unperturbed eigenfunction with norm 1. Note that, in II-(3.26),
we have V(x) = 2x1 sinn x so that the normalization implies that 4Tn(x) - sinn x
should be orthogonal to sin n x.

The estimates for (T - 2,,) qp (x) (x) - n2 qp (x) are given by II-(3.40).
Since its right member is the same as that of II-(3.38) with one factor so omitted, we
have (for the same range of x as above)

(2.26) II,pri (x) + na 92. (x) II < 2.2 IxI a .

(2.25) and (2.26) give

(2.27) II d2/dx2 (pn (x) - sinn #1 < (2.2 + 3.7 n) IxI a

and, on integration,

(2.28) sinn x)II < n(2.2 + 3.7 n) IxI a;

note that the function i'n (x) - sinn x vanishes at x = 0 and n and so its derivative
vanishes somewhere in (0, x).

Remark 2.15. The estimate (2.28) is rather crude. A better result can be obtained
by using the formula

(2.29) T. (x) - sin -n x = S. (T - (qp (x) - sin -n x) ;

note that S. (T - 1 - P. and P. (q,, (x) - sinn x) = 0 by the normalization
of 97. (x) employed. Since S. is the integral operator with the kernel s = s (y, x)
mentioned above, we have by differentiatix£g (2.29)

(2.30) dx sinn x] = S (T - An) (97. (m) - sinn x),

where S, is the integral operator with the kernel ay s (y, x), which is piecewise

continuous in x, y. Hence

[97. (m) - sinn x](2.31) < 2.2I a aIISnII

na s (y, x) dx, which can be shown to be boundedHere IISpii is majorized by sup f
lay

Q

for n -)- oo. Thus (2.31) would lead to a sharper result than (2.28).
Problem 2.16. In Example 2.14, estimate by II-(3.19) and (3.41) the remainders

after the second-order term of A. (x) and after the first-order term of q,, (x).

5. Normal unperturbed operators
If X = H is a Hilbert space and T = T (0) is a normal operator, the

foregoing results are considerably simplified. The situation is similar to
the finite-dimensional case (see I I-§ 3.5), and few modifications are needed.
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In virtue of the inequalities V-(4.9), (2.12) becomes

(2.32) ro = min [x( sup IA' - I-1 , sup IA'I JA' - CI-1) + CJ-1
CEr WEE(T)

if (2.11) is assumed. If we consider an isolated eigenvalue A of T with
isolation distance d, it is convenient to take P as the circle IC - Al = d/2.
Then IA' - CI-1 <= 2/d and IA'I IAA - CI-1 5 1 + ICI IAA - CI-1 1 +
+ (JAI + 2-1 d) 2d-1 = 2 + 2 JAI d-1 for A' EE(T) and4 Er. Hence

(2.33) To >= 1/[x l d , 2 + 2dAI + c]

If (2.5) is assumed, we have

(2.34) ro> 1/[2(a dbJAI) +2b+c,

corresponding to II-(3.51).
For majorizing series discussed in the preceding paragraph, we can

take over the results of II-§ 3.2-3 by setting

(2.35) '=II TO)PII, q = II TMSII, s=IISII=1/d

[see II-(3.15) and V-(3.20)]. If TM is bounded, we can use

(2.36) p = II T(1)II , q = II T(1)II/d , s =1/d

since II PII = 1.
Example 2.17. Let us consider the problem of Example 2.14 in the Hilbert space

H = Le (0, n). Now the operator T is selfadjoint; it has the eigenvalues A. = n'
as before, but the normalized eigenfunctions 97. = (2/n)1/e sinn z have different
factors due to the different norm employed. The resolvent R (C) of T is again given
by the integral operator with the kernel s (y, z), but R (C) has a different norm from
the former case. In particular, the norm of the reduced resolvent S for the eigenvalue
A = n2 is now given by IISII = 1/d [see (2.35)], where the isolation distance d = d
for A is

(2.37) for n>2 and d1=3.
Consider now a perturbed operator T (x) = T + x T° where Ta) is T-bounded

as in (2.6). The convergence radius for the n-th eigenvalue A (x) of T (x) is estimated
by (2.34) with c = 0. If, in particular, 211) is bounded, we can set a = II T1l>II, b = 0
and obtain

(2.38) ro Z d/2a = (n - 1/2)/a (replace n - 1/2 by 3/2 for n = 1)

as a lower bound for the convergence radius. This is apparently sharper by a factor n
than the corresponding estimate (2.18) obtained in the case X = C [0, n], but it
must be noticed that an operator TM bounded in C need not be bounded in L2, and
need not have the same bound even if bounded. If 111) is a multiplication operator
by a function q (x), however, 112'(1) 11 = sup Iq (z) I is the same whether considered in C
or in L2; in such a case the L$-theory certainly gives a sharper estimate for ro.

In this connection it is instructive to calculate various estimates furnished by
the method of majorizing series. Substituting the value of d = d from (2.37) into
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(2.36) and using II-(3.21), we get r = (n - 1/2)/2a as a lower bound for the con-
vergence radius, which is less sharp by a factor 2 than (2.38). On the other hand, the
following estimates are obtained in the same way as in Example 2.14:

a2 xa

(2.39) A. (x) - A -c ' P ( x ) m a x +
n - 1/2

1

ax/ +
\

2a m \1/2
n-12 1 n-121

1\ 2ax 1/2 2axn-21 1- n-12
] 2ax

/ 1 } I1- n-1/2>

(2.40) IA»1'l S a, IA(.2)l 5 a2/2 (n - 1/2), IA2)1 S a3/2(n - 1/2)$, .. ,

(2.41) IA. (m) - n2 - x A( .1)1 < 2 IM12 a2/(n - 1/2) for lxl <
n - 1/2

2a

(2.42) qn(x) - V a sinnxll S N2-
1/2 , IHI S n 2a /2

In all these formulas n - 1/2 should be replaced by 3/2 for n = 1. The results
should be compared with the corresponding results of Example 2.14. It must be
borne in mind that the norm 11 11 used here is the L2-norm whereas that in the former
example is the maximum norm, but the eigenvalues are the same in both cases and
eigenfunctions differ only in the normalization factor. It will be seen that the
L2-theory as a rule gives sharper results than the C-theory, at least if II Pull is the
same in both cases (as for a multiplication operator).

In estimating the eigenvectors the C-theory has its own interest, for the C-norm
is stronger than the L2-norm. However, we can even use the result of the L$-theory
in the C-estimate of the eigenfunctions. In fact, in deducing the majorizing function
(in C-norm) II-(3.30) for the eigenfunction, we have made use of the majorizing
function W(x) of the eigenvalue A(x) - A, but this TV(x) can be taken from the
result of L2-theory if convenient (because the eigenvalue is the same for the two
theories).

Finally it 'should be noted that estimates for the eigenfunctions in C-norm can
be deduced in the framework of pure L2-theory. To this end we first estimate (T -

_2 C2
(fin (x) - sinn x) by II-(3.32) and then use (2.29) I in which a factor

should be attached to sinn x owing to the different normalization) . If we calculate

the /bound of S. as an operator from L2 to C, we can estimate the C-norm of 97n (x) -
2

- V sinn x. Such a bound for S. can be estimated by sup Is (y, ) II. in terms of the

kernel s(y, x) of S. [lls(y, -)II, means the L$-norm of s(y, x) as a function of,x for
a fixed y].

§ 3. Selfadjoint holomorphic families
1. General remarks

When we consider a holomorphic family T (m) of operators in a
Hilbert space H, the most important case is the one in which T (m) is
selfiadjoint for real x. More specifically, suppose that T(x) E'(H) is
holomorphic for x in a domain Do of the complex plane symmetric with
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respect to the real axis, T (x) is densely defined for each x and that
T (x) * = T (x). Then we shall call T (x) a self adjoint holomorphic family.
It is clear that T (x) is selfadjoint for each real x E D0.

The selfadjointness of T (m) permits much simplification in the
general results on a holomorphic family given in the preceding sections.
For example, suppose that for some real xo E Do the spectrum E (xe)
= E (T (xo)) has gaps at a and P. Let r be a closed curve passing through
a, 6, such as considered in V-§ 3.5, with the resulting decomposition of
the space H = M' (x0) ® M" (xo). According to the general results of § 1.3,
E (x) = E (T (x)) is also separated by r into two parts E' (x), E" (x) with
the associated decomposition H = M' (x) ® M" (x) if x is sufficiently
close to xo. In particular the spectrum E (x) of the selfadjoint operator
T (x) for real x close to xa has gaps at a and P. The projections P (x) on
M' (x) along M" (x) form a selfadjoint family:

(3.1) P (x) * = P (R) .

To see this, it suffices to note that (3.1) is true for real x because T (x)
is then selfadjoint and so P (x) is an orthogonal projection. Then (3.1)
is extended to all x by the unique continuation theorem [which is here
trivial since P (x) is bounded-holomorphic].

The part of T (m) in the invariant subspace M' (x) may be identified
with T,. (x) = T (x) P (x) = P (x) T (x) P (x), which is bounded-holo-
morphic and selfadjoint. To avoid the inconvenience that M' (x) depends
on x, we could introduce the transformation function U (x) as in § 1.3.
This operator U(x) is now unitary for real x, as in the finite-dimensional
case (II-§ 6.2). Thus the T(x) of (1.5) form a selfadjoint family, and it
may be considered a selfadjoint bounded-holomorphic family in the
(fixed) Hilbert space M' (xo) [which is invariant under f (x)]. In particular
if M' (xo) is of finite dimension in, the same is true of M' (x), and the results

of II-§ 6 can then be applied directly to T (x).
These considerations lead to the following results. If T (xo) has a finite

system of eigenvalues for a real xo, these eigenvalues change with x
holomorphically in a neighborhood of xo. There may be splitting of eigen-
values, but they have no singularities. The associated eigenprojections
are also holomorphic in x and the eigennilpotents are identically zero.
In short, there is nothing different from the situation in the finite-
dimensional case as long as we are concerned with a limited part of the
spectrum E (x) for x close to xo.

Concerning the general properties of the perturbation series for a
selfadjoint holomorphic family T (x), we refer to the results of § 1.5 and
II-§ 2. The selfadjointness insures that the reduction process, starting
from an isolated eigenvalue A of T with multiplicity m < oo, can be
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continued indefinitely (as in the finite-dimensional case, see II-§ 6.1),
until a stage is finally reached after which there is no more splitting and
therefore the weighted mean of the group of eigenvalues at that stage is
the eigenvalue itself. This indefinite reducibility is due to the fact that,
at each stage, the operator T('') (0) is a (finite-dimensional) selfadjoint
operator. We need not repeat the details, for there is nothing new
compared with the results of II-§ 6.1 once we start from the bounded-
holomorphic family T, (x) = T (x) P(x), which is essentially the part
of T (x) in the m-dimensional subspace M (x) = P (x) H.

Problem 3.1. A necessary condition for no splitting of A (x) is that Tai (0) be a
scalar operator. [When T (x) is defined by (2.1), TM (0) is equal to P TX') P.]

If T (m) is a selfadjoint holomorphic family in a neighborhood of
x = 0 and, in addition, is of type (A), T (m) has the expression (2.1),
in which T is selfadjoint and all the T(n) are symmetric [because (TO'') u, u)
must be real]. Conversely, the family T (x) defined by (2.1) is selfadjoint
and of type (A) if T is selfadjoint, the T() are symmetric and satisfy
the conditions (2.5) or (2.11) ; this is a direct consequence of Theorems 2.6
and V-4.4.

2. Continuation of the eigenvalues
If T (m) is a selfadjoint holomorphic family, every isolated eigen-

value A of T = T (0) with finite multiplicity splits into one or several
eigenvalues of T (x) which are holomorphic at x = 0 [assuming that x = 0
is in the domain of definition Do of the family T (x)]. Each one A (x) of
these holomorphic functions, together with the associated eigenprojec-
tion P(x), can be continued analytically along the real axis, and the
resulting pair represents an eigenvalue and an eigenprojection of T (M).
This is true even when the graph of 2 (x) crosses the graph of another such
eigenvalue, as long as the eigenvalue is isolated and has finite multi-
plicity. In this way there is determined a maximal interval I of the real
axis in which A (x) and P (x) are holomorphic and represent an eigenvalue
and an eigenproj ection of T (x) 1.

In general this maximal interval I differs from one A (x) to another.
At one or the other end of I, A(x) can behave in various ways: it may
tend to infinity or be absorbed into the continuous spectrum 2. We
shall illustrate this by some examples.

Example 3.2. An example in which A (x) -* - on at the end of the maximal
interval is furnished by the Ao (x) of Example 1.11. Here the maximal interval is
(0, oo) and A (x) -a - oo as x -* + 0 (see Fig. 1 on p. 292).

1 Then the transformation function U (x) exists and is unitary for x E I, so that
an orthonormal basis {q7, (x)} of P (x) H exists such that each 97, (x) is holomorphic for
xEI;see§1.3andII-§6.2.

2 Exact definition of the continuous spectrum is given in X-§ 1.
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Example 3.3. An example of absorption of the eigenvalue by the continuous
spectrum is given by the Schrodinger operator with the so-called square-well
potential. Consider the differential operator T (x) = - d2/dx2 + x q (x) in H =
= L2 (0, co) with the boundary condition u (0) = 0, where q (x) is assumed to have
the form
(3.2) q(x)=-1, 0<x<b; q(x)=0, xZb.
As is seen from the remark at the end of par. 1, T (x) is a selfadjoint holomorphic
family of type (A) ; here we have even a bounded perturbation since the multiplica-
tion operator by q (x) is bounded. Suppose that T (x) has a negative eigenvalue
A = A (x), with the eigenfunction 97 (x) = q' (x ; x). 92 is a solution of the differential
equation

(3.3) q""-{-(A+x)4p=0 for 0<x<b and p"-}-A4p=0 for xZb.
Hence p = a sin (A + x)'" x for x < b and 97 = f e-(_A)ii': for x > b. The constants
A, a, fi should be determined in such a way that 92 (x) and 4p' (x) are continuous at
x = b, for any function in D (T (x)) = D must satisfy these conditions. This leads
to the following equation to be satisfied by It = - A (x) > 0:

(3.4) Vx - u cot(vx -u b)
It can be shown without difficulty that (3.4) has exactly N positive roots ,u if

(3.5) xN < x < xN+i , where xN =
N--L)2

n2 b-2,

and that each of these roots is an increasing function ofx, starting with 0 at the
value of x where it appears (see Fig. 2).

Fig. 2. The spectrum of - u" + x q (x) u = A u on (0, oo), with boundary condition u (0) - 0, for a
"square-well" potential a; qtx) with width n and depth x

On the other hand it is known that T (m) has no nonnegative eigenvalue, the
spectrum of T (x) consisting of negative isolated eigenvalues and a continuous
spectrum covering exactly the positive real axis'.

Suppose now that x is increased continuously from x = - oo. There is no
eigenvalue of T (x) if x < xl, the first eigenvalue Al (x) appears at x = ,e + 0 and

' A rigorous proof of this fact will be given in Chapter X; see footnote S of
p. 546.
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decreases from zero, the second eigenvalue AE (x) appears at x = x, + 0 and
decreases from zero, and so on. The maximal interval for is (x,,, oo). At the
left end of this interval A (x) merges into the continuous spectrum. A simple
calculation shows that A. (x) behaves at the ends of (x,,, oo) like

E

(3.6)
A.

(x) _ - (x - xn) E + ... X\ X. .

-x+Nb2E- x/"oo.

3. The Mathieu, Schrodinger, and Dirac equations
We shall give other examples of selfadjoint holomorphic families of type (A).
Example,, 3.4. The Mathieu equation is

(3.7) u" + (A + 2xcos2x) u = 0, -nS x< n.
Let us consider the solutions of this equation (Mathieu functions) which are periodic
in x with period 2n. These are the eigenfunctions of the operator

(3.8) T (m) = T -{- x V'), T = - dE/d xE , T'> _ - 2 cos 2 x ,

where T is associated with the periodic boundary condition

(3.9) u (- n) = u (a) , u' (- n) = u' (n)

It is convenient to regard the operators (3.8) as acting in the Hilbert space
H = L2 (-a, n). Then T is selfadjoint with a discrete spectrum. The eigenvalues
and the normalized eigenfunctions of T are

Ao = 0, q'o (x) = (2n)-IIE

(3.10) =n2, 97.+(X) = n-ICE cosn x ,
= nE 97;

(x) = n-112 sinn x, n = 1, 2, 3, . .

each positive eigenvalue n2 having multiplicity 2. The multiplication operator T'>
by -2 cos2x is symmetric and bounded with 11T'>11 = max12 cos2xl = 2. Ob-
viously T (m) is a selfadjoint holomorphic family of type (A). The degeneracy of
the eigenvalues of T does not complicate the eigenvalue problem for T (x), for both
T and T<'> are decomposed according to

(3.11) H = Mo a M1+9 Mo a Mi

where the superscripts ± denote respectively the sets of functions symmetric
and antisymmetric with respect to x = 0 (even and odd functions) and where the
subscripts 0 and 1 denote respectively the sets of functions symmetric and anti-
symmetric with respect to x = n/2 (here we suppose all functions continued on the
whole real line periodically with period 2n). Thus, for example, Mo is the set of
functions symmetric with respect to x = 0 as well as with respect to x = 7F/2.
It is obvious that the four subspaces of (3.11) are mutually orthogonal and span
the whole space, and that T and T'> are decomposed according to (3.11), the parts
of these operators in each subspace being again selfadjoint. But each part of 2' has
only simple eigenvalues as given by the following schema:

Ma : Ao, q7o and An, q>n, it = 2, 4, 6, .. ,

Mi:A,q'n, n=1,3,5,. ,

n=1,3,5,.. ,

n=2,4,6.....
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In considering the perturbed operator T (m), we may therefore regard each
eigenvalue Ao or An as simple, and its isolation distance do or dA may be evaluated
in the appropriate subspace, with the results that

(3.12) do = 4, dl = 8, d2 = 4, da = 12,
do =us-(n-2)z=4(n-1) for nZ3.

Since II TMII = 2, lower bounds for the convergence radii rA for the series of the
corresponding eigenvalues and eigenfunctions of T (x) are given by df/211 T(I)II [see
(2.34), put b = c = 0], that is,

(3.13) ro Z 1, rl Z 2, ra > 1, ra > 3, rn Z n - 1 for n Z 3 I .

Also the majorizing series for each eigenvalue and eigenfunction can be written
down according to II-§ 3 with the aid of (2.36).

It should be noted that a similar treatment can be given also in the space
C [- n, n] (or rather its subspaces consisting of periodic functions) instead of
L2 (-n, n). Although the results may be less sharp as regards the eigenvalues, those
for eigenfunctions may be useful, in particular if they are improved by using the
estimates of eigenvalues obtained by the L2-theory (cf. Example 2.17).

Example 3.5. Consider the Schrodinger operator

(3.14) T(x)=-d+Q+xQ'
in R3, where Q and Q' are multiplication operators by real-valued functions q (x)
and q' (x), respectively. If we assume that each of q and q' is expressible as the sum
of a function in Lz (R3) and a function in L°O (R3) as in V-§ 5.3, q + x q' has the same
property for each x and so T (x) is selfadjoint for real x (if the Laplacian d is inter-
preted in the generalized sense, see loc. cit.).

Furthermore, since Q as well as Q' is relatively bounded with respect to H = - d
with relative bound 0, Q' is relatively bounded with respect to T (0) = H + Q with
relative bound 0 (see Problem IV-1.2). Therefore T (x) forms a selfadjoint holomorphic
family of type (A). That the eigenvalues and eigenvectors of (3.14) are holomorphic
functions of x is an immediate consequence of this, and estimates for the convergence
radii and error estimates for their series could be given as in preceding examples
(see also Example 4.23).

We can treat the Dirac operator

(3.15) +fl+Q+xQ'
in the same way with the same result if the potentials Q and Q' are of Coulomb type
and Q is not too strong (see V-§ 5.4, in particular Remark 5.12).

4. Growth rate of the eigenvalues
It is of some interest to know how rapidly the eigenvalue A (x) of T (x)

is able to grow with x. For simplicity we shall restrict ourselves to a
selfadjoint holomorphic family T (x) and to real values of x, so that T (M)
is selfadjoint and A(x) is real.

In general it is rather hard to estimate the growth rate. In Example
1.11 there is one eigenvalue A, (x) which exists for x > 0 and tends to

I See also SCHAFKE [4]. ro has been studied also by WATSON [1] (who showed
that ro Z V2-) and BOUWKAMP [1] (ro = 1.468...) by more direct but complicated
methods.
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- oo as x -* + 0. However, it will now be shown that such a rapid
growth of eigenvalues does not occur in the case of a holomorphic family
of type (A).

For this purpose it is convenient to consider not only the holomorphic
function formed by an individual A (m), but also any piecewise holo-
morphic, continuous function ,u (x) formed by connecting some of the
A (m). Such a p (m)(x) is obtained by moving arbitrarily from one A (X)
to another at a crossing point where their graphs cross. The eigenvalues
,u; (x) considered in II-§ 6.4 are of this type. Such a It (x) may be defined in
a larger interval than any one of the holomorphic functions A (x) which
is a "part" of it.

Suppose now that we have a selfadjoint holomorphic family T (M)
of type (A) defined for x E Do. We have then the inequality (2.3), which
asserts that T' (x) is relatively bounded with respect to T (x) :

(3.16) IIT'(x)ullsa'Ilull+b'IIT(x)ull, uED, xEI,
where D = D (T (x)) and I ( Do is a compact interval of the real axis.
In general the constants a', b' may depend on the choice of I. For con-
venience I is assumed to contain x = 0.

Theorem 3.6. Let T (x), I, a', b' be as above and let,u (x) be any continuous,
piecewise holomorphic eigenvalue of T (x) of the kind described above. Then

(3.17) Iy (x) - u (0) I s (a' + b' Iu (0) I) (eb I'll - 1)

as long as x E I and ,u (x) is defined.
Proof. For any x at which ,u (x) is holomorphic, we have

(3.18) y' (x) = (T' (x) 9, (x), 9, (x)),

where 99 (x) is a normalized eigenvector associated with the eigenvalue
,u (x)1; (3.18) can be proved in the same way as in II-(6.10), with only the
inessential difference that T' (x) is not constant here. It follows from
(3.18) and (3.16) that

(3.19) I,u' (x) I < II T' (x) '()II s a' + b' II T (x) 99(x)II = a' + b' I u (x) I

Since I4u (x) l is piecewise holomorphic as well as ,u (x) itself, it is easy
to solve this differential inequality to arrive at (3.17).

Remark 3.7. (3.17) shows that ,u (x) cannot grow faster than an
exponential function. Thus an eigenvalue A (m) can never go to infinity
at a real x E D0. The same is true of any ,u (x) made up by joining several
A (x) in the manner stated above.

1 The existence of a normalized eigenvector ip (x) which is piecewise holomorphic
for x E I follows from footnote 1 of p. 387.
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Problem 3.8. In Theorem 3.6 suppose that T (O) is bounded from below. Then
the same is true of all T (x) for x E I and the lower bound y (x) of T (x) satisfies the
same inequality (3.17) as for ,u (x). This is true even if T (x) has a continuous spec-
trum. [hint: Use V-(4.13) for T = T (m), S = T (m + dx) to deduce the same
differential inequality (3.19) for y(x).]

5. Total eigenvalues considered simultaneously

The result of the preceding paragraph is important in the study of
the behavior of the set of eigenvalues of T (x) as a whole, in the case of
selfadjoint holomorphic family of type (A). Since there is an essential
difficulty if a continuous spectrum is involved, we assume that T (x)
has compact resolvent. It suffices to assume this for a single value of x,
for then the same must be true for all x in virtue of Theorem 2.4. In
this case, any eigenvalue A (x) starting from an eigenvalue A = A (0) of
T = T (0) can be continued holomorphically to all real x E Da (again we
assume that x = 0 belongs to D0) ; in other words, the maximal interval
for A (m) coincides with the whole interval Io of real x belonging to Do
(for simplicity we assume that Io is connected).

To see this, let I be the maximal interval of A (m) considered and
suppose that the right end x, say, of I is interior to I. Since A (x) is
bounded for x /1' x, by Theorem 3.6, it is impossible for I A (x) I to tend to oo.
We shall show that A (x) tends as x /' x, to an eigenvalue ,u of T (xl).
Since T (xl) has compact resolvent, there are only a finite number of
isolated eigenvalues ,ul, . . ., IuN of T (xl) in the interval I Al < M, where M
is a constant such that IA (x) I < M for x / x,, all other points of this
interval belonging to P(T (x,)). It follows from the upper semicontinuity
of the spectrum (see IV-§ 3.1) that the part of E(T (x)) within this
interval is confined to an arbitrarily small neighborhood of these N
points ,uj, provided Ix - xlI is sufficiently small. Hence A (x), being an
eigenvalue of T (x), must converge to some ,u = ,uj as x >' xl. Then A (x)
must coincide with one of the holomorphic functions representing the
eigenvalues of T (x) that arise from the splitting of the eigenvalue ,u of
T (x,). This implies that A (x) admits an analytic continuation beyond xl,
contradicting the supposition that x, is the right end of the maximal
interval for A (x).

Theorem 3.9.1 Let T (x) be a sel f adjoint holomorphic family of type (A)
defined for x in a neighborhood of an interval Io of the real axis. Further-
more, let T (x) have compact resolvent. Then all eigenvalues of T (x) can be
represented by functions which are holomorphic on I. More precisely,
there is a sequence of scalar-valued functions ,u (x) and a sequence of
vector-valued functions q,n (x), all holomorphic on I0, such that for x E Io,

1 This theorem was proved by RELLICH [5] by a different method.
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the un (x) represent all the repeated eigenvalues of T (x) and the q,, (x) form a
complete orthonormal family of the associated eigenvectors of T (x).

Proof. The first half of the theorem has already been proved above 1
It remains to show that the eigenvectors form a complete set. But this is
another expression of the fact that all the eigenprojections of a self-
adjoint operator with compact resolvent form a complete set (see V-§ 3.8).

Remark 3.10. Each A,, (x) is holomorphic in a complex neighborhood
of To, but this neighborhood will depend on n, so that it will be in general
impossible to find a complex neighborhood in which all the A,, (x) exist.

Remark 3.11. The assumption in Theorem 3.9 that T (x) has compact
resolvent is rather crucial. A similar result might be expected for a
selfadjoint holomorphic family T (m) of compact operators, but the
existence of the limit point 0 of the eigenvalues of a compact operator
causes some difficulty. Every eigenvalue A (m) of T (m) can indeed be
continued analytically as long as it does not reach the value 0. Once
A (x) = 0 for some x, A (x) may have no further' analytic continuation.
There is a sufficient condition that A (m) never equals 0 unless it is iden-
tically zero; then the result of Theorem 3.9 remains true if the system
q (x) is supplemented with the eigenvectors belonging to the eigen-
value A (x) = 0 (if any) of T (x). An example of such a sufficient condition 2
is that there exist positive constants in, M such that for real x

(3.20) m!IT(0)uII 5 IIT(x)uII 5 MIIT(0)uII, uEH.

In fact, (3.20) implies that the null space N of T (x) is independent of x
for any real x. Thus any orthonormal family of N can be a part of
{T (x)} with 1 (x) = 0. Since T (x) is selfadjoint for real x, it is decompos-
ed according to H = N ® N -L. In the subspace N -L, T (x) has no eigen-
value 0 so that the result of Theorem 3.9 is true.

§ 4. Holomorphic families of type (B)
1. Bounded-holomorphic families of sesquilinear forms

Let {t (x)} be a family of sesquilinear forms in a Hilbert space H.
Suppose that t (x) is a bounded sesquilinear form with domain H for each
x E Do, where Do is a domain in the complex plane, and that t (x) [u]
is holomorphic in Do for each fixed u E H. Then the family {t (x)} is said
to be bounded-holomorphic.

1 For the existence of an orthonormal family {q7 (x)} of eigenproj ections see
footnote 1 on p. 387.

2 Another sufficient condition is 0 < m T (0) S T (x) S M T (0) ; the proof is
the same as for (3.20). These conditions are essentially given by RELLicx [5].
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It follows by polarization that t (x) [u, v] is holomorphic in Do for
each fixed u, v E H [see VI-(1.1)]. The family of operators T (x) E -4 (H)
defined by (T (x) u, v) = f (m) [u, v] is a bounded-holomorphic family of
operators; this follows from Theorem 111-3.12. In particular it follows
that t (x) is uniformly bounded in each compact subset of Do.

A similar result holds for a family t (x) originally defined for real x.
Suppose t (x) is defined for - r < x < r and t (x) [u] has a power series
expansion convergent for - r < x < r. Then the family T (x) of the
associated operators can be extended to all complex x with Ixl < r so as
to form a bounded-holomorphic family.

To see this, it suffices to show that t (x) can be continued analytically
to all x with jxj < r, preserving its property of being a bounded form. Let

(4.1) t (x) [u, v] = t [u, v] + x t1> [u, v] + x2 t(2) [u, v] +

be the Taylor expansion of the numerical function t (x) [u, v] of the real
variable x, - r < x < r, obtained by polarization from the expansion
of the t (x) [u]. t = t (0) is obviously a bounded sesquilinear form. We
shall show that all the t(') are also bounded sesquilinear forms. The
sesquilinearity of t('') is a simple consequence of that of t (x) and the
uniqueness of the Taylor expansion (4.1).

(4.1) implies that t(1) [u, v] = lim x-11 (t (x) - t) [u, v]. Since this

limit exists for every u, v E H and since t (x) - t is a bounded form for
every real x, it follows from the principle of uniform boundedness that
t(') is bounded (Problem 111-1.30). Then we have from (4.1) that t(2) [u, v]
= Jim x-2(t (x) - t - x t()) [u, v], and a similar argument shows that t(2)

33 +0

is bounded, and so on.
Thus there are operators T() E .4 (H) such that t() [u, v] = (T (n) u, v),

and (4.1) can be written

(4.2) (T (x) u, v) = (T u, v) + x (TM u, v) + x2 (TM u, v) + .

This series converges for jxj < r for all u, v E H. Hence r'n (T(3) u, v) -a 0,
n -* oo, for all u, v and any r' < r. Again the principle of uniform bound-
edness (see Problem 111-3.13) shows that {r' n llT (n) IJ } is bounded as
n -> oo. Hence
(4.3) TM = T + x TM + x2 TM +

is absolutely convergent (in norm) for IxI <r and defines TM E.4(H).
Thus t (x) [u, v] = (T (x) u, v), valid for real x, has been extended to all
x with IxI < r, T (x) forming a bounded-holomorphic family.

Remark 4.1. Let t (x) be a family of sesquilinear forms with domain H
and let t (x) [u] be holomorphic for x E Do for every u E H. Then t (x)
is a bounded-holomorphic family of forms if there is a sequence xn E Do,
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converging to a xo E Do different from any x,,, such that t is a bounded
form for every n = 1, 2, ... .

The point is that the assumptions imply that t (x) is bounded for
every x E Do. This is seen again by invoking the principle of uniform
boundedness. We may assume xo = 0, x,, + 0. The existence of lim

n-* 00
(T u, v) = lim t [u, v] = t [u, v] implies that T is uniformly
bounded and hence t is bounded with the associated T. Then t(') [u, v]
= t) [u, v] shows that t(1) is bounded, and so on as above.
Thus we see that t (x) is bounded near x = 0, and this property propagates
to all x E Do.

2. Holomorphic families of forms of type (a) and
holomorphic families of operators of type (B)

We now consider a family t (x) of (not necessarily bounded) ses-
quilinear forms defined for x ED,. t (x) will be called a holomorphic
family of type (a) if i) each t (x) is sectorial and closed with D (t (x)) = D
independent of x and dense in H, and ii) t (x) [u] is holomorphic for
x E Do for each fixed u E D. Note that ii) implies, by polarization, that
t (x) [u, v] is holomorphic in x for each fixed pair u, v E D. (For sectorial
forms see Chapter VI.)

Theorem 4.2. Let t (x) be a holomorphic family of forms of type (a).
For each x let T (x) = Tt (.,) be the associated m-sectorial operator (see
Theorem VI-2.7). Then the T(x) form a holomorphic family of operators,
and the T (x) are locally uniformly sectorial.

A holomorphic family of m-sectorial operators associated with a
holomorphic family of forms of type (a) according to Theorem 4.2 will
be called a holomorphic family of type (B) 1.

Proof of Theorem 4.2. We may assume that x = 0 belongs to Do and
Re t Z 1, t = t (0) ; otherwise this situation can be attained by

shifting the origin of the x-plane and adding a suitable constant to t (x).
Let H = To z 1 be the selfadjoint operator associated with the

closed form t Z 1 [H is by definition the real part of T = T (0), see
VI-§ 3.1 ], and consider the forms to (x) [u, v] = t (x) [G-1 u, G-1 v] where
G = HI/2. Since G-1 u E D (G) = D (0) = D by the second representation
theorem (Theorem VI-2.23), to(x) is a'sectorial form defined everywhere
on H. Since to (x) is closable as is easily verified, it follows from Theorem
VI-1.20 that to (x) is bounded. Since to (x) [u, v] is obviously holomorphic
for x E Do for each fixed u, v E H, to (x) forms a bounded-holomorphic
family of forms. Thus we have the expression to (x) [u, v] = (To (x) u, v),
where {T0 (x)} is a bounded-holomorphic family of operators (see the

1 A special case (selfadjoint) of this type was introduced in T. KATO [8].
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preceding paragraph). Replacing u, v respectively by Gu, Gv, we thus
obtain the expression

(4.4) t(x) [u, v] = (To(x) Gu, Gv) , u, v E D, G = H1/2.

An argument similar to that used in deducing VI-(3.4) then gives

(4.5) T (m) = G To (x) G,

(4.6) T (m)-l' = G-1 To (x)-1 G-1.

Here G-1 E V (H) and To(x)-1 is bounded-holomorphic near x = 0,
for To (x) is bounded-holomorphic and To (0)-1 E V (H) exists because
To(0) is of the form 1 + iB, B* = B [see VI-(3.4)]. Therefore T(x)
is holomorphic near x = 0 by Theorem 1.3. Since x = 0 is not distinguish-
ed from other points, T (x) is holomorphic for x E Do. Finally it is clear
from (4.4) that the t (x) are uniformly sectorial near x = 0, for To (0)
= 1 + i B and the To (x) are uniformly bounded near x = 0. Hence the
same is true of the T (x).

Theorem 4.3. Let T (x) be a holomorphic family of operators of type (B).
T (x) has compact resolvent either for all x or for no x.

The proof is similar to that of Theorem 2.4; we need only replace
Theorem IV-3.17 used there by Theorem VI-3.4. (Note that an m-
sectorial operator has a non-empty resolvent set.)

Remark 4.4. In the definition of a holomorphic family t (x) of forms
of type (a), it suffices to require in i) the closedness of t (x) only
for a sequence x = x converging to a xo E Do different from any of
the x,,. To see this we note that, in the proof of Theorem 4.2, to (x) is
first seen to be bounded for x = x,,. Then we see by Remark 4.1 that to (x)
is bounded for all x = Do and the proof of Theorem 4.2 is valid. Then it
follows from (4.4) that t (x) is closed for sufficiently small I4I4 and then we
can generalize this to all x E Do.

This remark is useful since we need to verify that t (x) is closed,
say, only for real x when Do meets the real axis.

Remark 4.5. For a holomorphic family t (x) - of type (a) we have the
following inequalities, which correspond to similar inequalities (2.2)-(2.4)
for a family of operators of type (A). (Here we assume that h z 1, as in
the proof of Theorem 4.2.)

it(x1) [u] I s bIt(x) [u]
(4.7) It'(xl) [u, v] 1 s b'It(x) [u]11/21 It (X) [v]11/2,

I(t (x1) - t (x2)) [u, v] I S e It (x) [u] 11/2 It (x) [v] 11/2

Here u E D and a, b, a', b' are constants as long as x and x1 remain in
a compact subset of Do; a may be made arbitrarily small if Ixl - x21
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is sufficiently small. (4.7) can be easily proved by making use of (4.4).
Also we note that the it (x) [u] I on the right of these inequalities may be
replaced by h (x) [u] = Re t (x) [u] with possible change of the constants
a, b, etc. [see VI-(1.42)-(1.43)]. (4.7) expresses that, roughly speaking, the
t (m) are relatively bounded with respect to one another and the change
of t (x) is relatively continuous with respect to t (x).

Remark 4.6. There are several useful identities for the resolvent
R (C, x) of T (x). Assuming t 1 as in the proof of Theorem 4.2, we have

(4.8) ((T (xi)-1- T(2)-') u, v) = - (t (xl) - t (x2)) [T (xi) -1 u, T (x2) *-1 v] .

This follows from t (x1) [T (x,) -l u, g] _ (u, g) and t (x2) [f, T (x2) * -1 v]
= t(x2)* [T (X2)*-' v, f] _ (v, v), where f = T (xl)-1 u E D,
9ET(x2)*-1vED.

Letting xl - x2 in (4.8), we obtain

(4.9) (x T (x)-l u, v) t' (x) [T (x)-1 u, T (x) * -1 v] ,

since T (m)-l' u is continuous (even holomorphic) in the norm IIwlit = IIGwII
in virtue of (4.6).

If we replace t (x) and T (x) by t (x) - C and T (x) - C, respectively,
(4.8) and (4.9) give

(4.10) ((R (C, x1) - R (C, x2)) u, v) = - (t (xl) - t (x2)) [R (C, x1) u, R (C, x2) * v] ,

(4.11) (M R (C, x) u, v) t' (x) [R (C, x) u, R (C, x) * v] .

In view of (4.7), we obtain from (4.11)

(a R (C, x) u, v) I s b' It (x) [R (C, x) u] I1/2 It (X)* [R (C, X)* v] Iu/2

= b' I (T (x) R (C, x) u, R (C, x) u)I1/2 I (T* (x) R (C, x)* v, R (C, x) * V)11/2.

But II T (x) R (C, x) II 5 1 if C < 0 (Problem V-3.31) and II T (x) * R (C, x) *
II

S 1 similarly. Hence

(4.12)
I dx R(C, x)II s b'IIR(C, x)II1/2IIR(C, x)*II1/2

=b'IIR(C,x)IIl-C, C<0.
Remark 4.7. If t (x) is a holomorphic family of forms of type (a)

and if t (x) [u] is real for real x (assuming that Do intersects the real
axis), then it is easily seen that t (x) * = t (x) ; in this sense t (x) is a self -
adjoint family. Then T (x) * = T (p), and T (x) forms a selfadjoint family
of operators (see § 3.1) ; in particular T (x) is a selfadjoint operator for
real x.

In this case (T (x) + A)1/2 has constant domain D for real x and
large A, by the second representation theorem. But it is not clear whether
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the same is true for complex x, though (T (x) + 2)1/2 is well defined by
V-§ 3.11. Thus we do not know whether (T (x) + 2)1/2 forms a holo-
morphic family of type (A) when T (m) is of type (B), even when it is a
selfadjoint family.

In any case, however, (T (x) + 2)1/2 is a holomorphic family. To
see this we note that

00

(4.13) (T (x) + 2)-1/2 f u-1/2(T (x) +A+ 1u)-1 du
0

by V-(3.43). (4.13) can be differentiated under the integral sign, for
we have the estimate II d(T (x) + 2 + ,u)-1/dxll s b' (2 + ,u)-1 by (4.12);
so that the resulting integral converges absolutely. This shows that
(T (x) + 2)-1/2 is bounded-holomorphic in x. Thus (T (x) + 2)1/2 is holo-
morphic by Theorem 1.3.

3. A criterion for type (B)

Theorem 4.8. Let t(n), n = 0, 1, 2, . . ., be a sequence o/ sesquilinear
forms in H. Let t = t(O) be densely defined, with D (t) = D, sectorial and
closable. Let t('), n Z 1, be relatively bounded with respect to t so that
D (t(n") D D and

(4.14) It(n)[u]Iscn-1(aJIuII2+bh[u]), uED, n 1,

where h = Re t and a, b 0. Then the /orm
00

(4.15) t (x) [u] = E xn t(n) [u] , D (t (x)) = D ,
n=0

and the associated polar form t (x) [u, v] are defined for Ixj < 1/c. t (m) is
sectorial and closable for lxl < 1/(b + c). Let f(x) be its closure. {f (x)} is a
holomorphic family of forms of type (a) for Ixj < 1/(b + c). The operator
T (x) associated with i (x) forms a holomorphic family of type (B).

Proof. The right member of (4.15) converges for Ixl < 1/c and defines
a quadratic form. By polarization the sesquilinear form t (x) [u, v] is
defined also for Ixl < 1/c. We have

(4.16) #(x) - t) Cull S 1 I xI(all u112 + b h [u]) , Ixl < 1/c.

By Theorem VI-1.33, t (x) is sectorial and closable if b lxl/(1 - c IxI) < 1,
that is, if lxl < 1/(b + c). It follows also from the same theorem that the
closure i (x) has the same domain b = D () as L. What remains is to
show that f (x) [u] has a power series similar to (4.15) for every u E D :

00

(4.17) i (x) [u] = X xn fi''') [u] , u E D ;
n=0
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here f(°) = i and i(n) is an extension of t(n) with domain b (not neces-
sarily the closure of t(71)), for which the same inequality (4.14) holds with h
replaced by 6 = Ref. J(n) [u] is defined for u E D by (n) [u] = lim t(o ') [uk]

where {uk} is a sequence such that uk i u and the existence of this
limit is insured by (4.14). (4.17) follows from (4.15) with u replaced by uk
on going to the limit k -* oo.

Since T (x) is holomorphic in x in Theorem 4.8, the resolvent R (C, X)
= R(C, T (x)) is holomorphic in and x jointly in an appropriate region
of the variables. Let us estimate this region and the convergence radius
and errors for the Taylor series. Such estimates can be obtained from the
proof of Theorem VI-3.4. For simplicity assume 4 = Ret > 0 and a 0.
It suffices to replace the S of VI-(3.10) by T(); then the C on the right
of this formula should be replaced by the operator C (x) defined by
(i (x) - f) [u, v] = (C (x) G' u, G' v). Recall that G' = H'1/2, H' = H +
+ e z 0. In view of (4.17), C (x) has the form

00

(4.18) C (x) C(' , C(') E °,$ (H) , (CO) G' u, G' v) = J(n) [u, V].
n=1

We have

(4.19) IIC(n)II 20 -1 k , k = max(b, ale)

[see VI-(3.8)-(3.9)]. Thus R (C, S) = R(C, T (m)) = R (C, x) becomes

(4.20) R x) = G' -1(1 - ' H' -1 + i B' + C (x))-1 G' -1
00

= R (C) + G'-1 E J (C) (- C (x) J (C))' G'-1 ,
P-1

where

(4.21) R.(C) =R(C,0) =R(C, T), J(C) = (1-C'H'-1+iB')-1, C'=4+e,
if IxI is so small that

(4.22) IIC(x)II IIJM II s IIJM II E Ik!nIIC(n)II < 100
n=1

In view of (4.19), (4.22) is satisfied if,

(4.23) IxI < (2kIIJ(C)II + c)-l.

Here it has been tacitly assumed that J M E .Q (H) ; in general
it is not easy to see when this is satisfied, but it is certainly the case
if Red'' S 0, for we have then IIJ(C)II 5 1 (see loc. cit.). and (4.23) is
satisfied if

(4.24) IxI<(2k+c)-1, ReC'=ReC+eos 0.
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In particular if -Red' > a/b, we can choose e > alb without violating the
condition Re C' _< 0; then we have k = b and (4.24) becomes IxI < (2b +
+ c) -1. In other words x) is a convergent power series in x for IxI <
< (2 b + c) -1 i f - Re > 0 is sufficiently large. This gives another proof
that T (x) is holomorphic at x = 0.

These results admit some refinements if the unperturbed form t = h
is symmetric so that the associated operator T = H is selfadjoint. Then
we need not assume h >_ 0, the constant a may be negative and J P E
E -4 (H) is true for any C E P (H). To see this we need only make the
following modifications. We set o = a b-1 + 6, 6 > 0; then H' = H +
+ e z 6 > 0 by (4.14), and (4.19) is true with k = b and R (C, x) con-
verges as a power series in x for IxI < (2bljJ(C)II + c)-1 [see (4.23)]. Since
we have B' = 0 now, J (1 - C'H'-1)-1 = H'(H' - c')-1 = (H +
+ a b-1 + S) (H - )-1 = b-1 (a + bH + b 6) R(C). Since 6 > 0 is arbi-
trary, we conclude that R (C,x) converges as a power series in x if IxI <
< (211(a + b H) R (C) II + c)-1. Here even the factor 2 can be dropped if
all the t(n) are symmetric, for then I t(n) [u] I < b 0'[u] implies It(,,) [u, v] I <
S b II G' ull II G' v11. The case b = 0 can be dealt with by going to the limit.
These modifications yield

Theorem 4.9. In Theorem 4.8 let t = 1 be symmetric (with the associated
operator T = H selfadjoint) and let a in (4.14) be not necessarily non-
negative. For any C E P (H), the resolvent R (C, x) o l T (x) exists and is a
convergent power series in x for

(4.25) IxI < (eII (a + bH) R(C, H)II + c)-1

where e = 1 or 2 according as all the t(') are symmetric or not.
Remark 4.10. Not only the convergence radius but R (C, x) itself

can be estimated as in VI-(3.16), in which a and b must now be replaced
by appropriate functions of x. We omit the details.

Example 4.11. Consider the form

b b

(4.26) f (m) [u, v] = f P (x) u' v' d z + J [q (z) + x q(1)(z) ] u V d x +
a a

+ (ho + x h () ) u (a) v (a) + (hb + x h') u (b) vv (8) ,

where p (x), q (x), q(l) (x) are continuous on a :!g x:!-, b and p (x) < 0 [see Example
VI-1.7; here we have set r (x) = s (z) = 0 for simplicity, but we could have retained
them without affecting the following results]. As we have seen in Example VI-1.36,
t(x) satisfies the assumptions of Theorem 4.8 with an arbitrarily small b because all
forms on the right of (4.26) except the first are relatively bounded with respect to
the first term, with relative bound 0. The operator T (x) associated with t (x) is given
by (see Example VI-2.16)

(4.27) T (x) u = - (p u')' + (q + x q(1)) u
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with the boundary condition

(4.28) p (a) u' (a) - (h, + x h( ") u (a) = 0, p (b) u' (b) + (ha + x ha'") u (b) = 0 .

Thus the T (m) form a holomorphic family of type (B) defined for all complex X.
If we start from the restriction to (x) of t (x) with domain restricted by the

boundary condition

(4.29) u (a) = 0, u (b) = 0,

we get another holomorphic family To (x), which is given formally by (4.27) with
boundary condition (4.29) (see Example VI-2.17). But this is rather trivial, for
To (x) has a constant domain and the perturbing term x q(1) in (4.26) is a bounded
operator, so that To (x) is actually of type (A).

By restricting the domain oft (x) by the condition u (a) = 0 only, we arrive at a
third family of operators (4.27) with the boundary condition: (4.28) at x = b and
(4.29) at x = a, which is again holomorphic of type (B).

4. Holomorphic families of type (Bo)
In Theorem 4.8, the unperturbed form t may not be closed. If t is

closed, the perturbed form t (m) is closed too, for we have then D (I (x))
= D. But it is convenient to have the theorem in its generality without
assuming t to be closed.

As an important application, suppose we are given a family of
operators S (x) of the form

(4.30) S (M) = S + MS(1) + x2S(2) + .. .

where S is densely defined and sectorial, D (S (n)) ) D (S) and

(4.31) I(S(n) u, u)I s c"-1(aIIujI2 + b Re(Su, u)) , u E D(S)

with constants a, b such that a z 0, 0 5 b < 1.
Then the assumptions of Theorem 4.8 are satisfied by setting t [u, v]

_ (Su, v) and t(n) [u, v] = (S(n) u, v), for the form t is closable (see Theorem
VI-1.27). The resulting operator T (x) is the Friedrichs extension of S (x)
(see VI-§ 2.3). Thus we have

Theorem 4.12. Let S (x) be as above. The Friedrichs extension T (x)
of S (x) exists and forms a holomorphic family of type (B) for Ixj < (b + c)-1.

A family T (x) as in Theorem 4.12 will be called a holomorphic
family of type (BO)1. It is a special case of type (B), and the domains of
the T (x) for different x have a dense common part D (S), which is not
true for a general family of type (B).

T (x) is a closed extension of S (x) but it may or may not be identical
with the closure of S (x). If not, it is possible that there is another family
T1 (x) consisting of m-sectorial extensions of S (x). In this connection,
the following theorem, essentially due to RELLICH [3], is remarkable.

1 A special case (selfadjoint) of type (Bo) was introduced by RELLicH [3].
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Theorem 4.13. I l the closure . o l S is m-sectorial, the family T (x) o t
Theorem 4.12 is the unique holomorphic family 1 defined near x = 0
consisting o l extensions o l S (x) such that T (0) = 9.

Proof. We have T = T (0) = . since T is an m-sectorial extension
of S. Suppose that T, (x) is a holomorphic family such that T, (x) D S (x)
near x = 0 and T, = T, (0) = . = T. Then P (T,) is not empty. If
C E P(T,),

(4.32) R + x R, + x2R2 +

is bounded-holomorphic near x = 0 by Theorem 1.3. For any u E D (S),
we have R(g, Tl (x)) (S (x) - C) u = u since T, (x) D S (x). Hence

(4.33) (R+xR,+x2R2+...) (S-C+xS(')+x2$(2)+...)u=u

and comparison of coefficients gives

R(S-C)u=u,
(4.34). R, (S - u = -RS(') u,

R2(S-u=-RS(2)it-R,SMu,

for any u E D (S). These equations determine the operators R, R,,
R2, ... E .1(H) uniquely, for (S - C) D (S) = (T - C) D (S) is dense in H
because T = . ' (see Problem 111-6.3).

Remark 4.14. The essential point in Theorem 4.13 is that the closure
of S (x) need not coincide with T (x) for x + 0 and yet T (x) is the unique
family with the stated property. In many problems in applications T (x)
is actually the closure of S (x) or even T (x) = S (x). Even in such a case,
application of Theorem 4.8, in particular the estimate (4.25) when
T = H is selfadjoint, often leads to an improvement of results obtained
otherwise.

Example 4.15. Consider the formal differential operator

(4.35) L (m) u = _U11 + x z-$ u , 0 < x < oo .

Let t (x) be the minimal operator in H = L2 (0, oo) constructed from (4.35), with
D (T (x)) = Co (0, oo), t (x) is symmetric for real x; it is sectorial for every complex x

00

with Re x > - 1/4 in virtue of the inequality VI-(4.6) and - (u", u) =
J

1u'1$ dx.
0

Thus the family t (x) satisfies the assumptions for S (x) in Theorem 4.12, and the
Friedrichs extension T (x) of t (x) forms a holomorphic family of type (B0).

Is T (m) the unique holomorphic family consisting of m-sectorial extensions of
T (x) ? The answer depends on the region Do of x considered. It is yes if Do contains

1 As is seen from the proof, the uniqueness holds even if T (x) is assumed to be
only real-holomorphic.
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x = 3/4. In fact, it is known that t(3/4) is essentially selfadjointl; thus we have the
situation of Theorem 4.13 if x = 0 is replaced by x = 3/4 (see also Remark 1.6).
It is interesting to note that for x < 3/4, 2` (x) is not essentially selfadjoint and,
consequently, T (m) is not the only selfadjoint extension of t (m). Nevertheless it is
unique as a holomorphic extension of the family t (x).

This unique family T (x) is characterized by the condition D (T (x)) C D (t),
where t is the closure of the form t = t (3/4) associated with T (3/4), namely, t [u]

_ (u', u') (3/4) f xa Ju12 dx, u E Co . In view of VI-(4.6), it is easy to see that D ('t)
0

is the set of all u E H such that u' E H and u (0) = 0 (cf. Problem VI-2.18). Therefore,
T (x) must be the restriction of L (x) such that u E D (T (x)) implies u' E H and
U (O) = 0.

5. The relationship between holomorphic families of
types (A) and (B)

It is natural to ask whether there is any relationship between a
holomorphic family of type (A) and one of type (B). In general there is
no such relation, for the former is defined in any Banach space while
the latter is defined only in Hilbert spaces. If we restrict ourselves to
selfadjoint families of sectorial operators, however, the families of type (B)
form a wider class than those of type (A). More precisely, we have

Theorem 4.16. A self adjoint holomorphic family T (x) o l type (A) is
also o l type (B0), at least in a neighborhood o l the real axis, if T (x) is
bounded from below for some real x (whereupon T (x) is bounded from
below for all real x).

Proof. We may assume that x = 0 belongs to the domain Do in which
the family is defined and that T = T (0) is selfadjoint and nonnegative.
Then we have the expression (2.1) for T (x) u, u E D = D (T (x)), where
the coefficients TM are symmetric and satisfy inequalities of the form
(2.5) (see Remark 2.8). Noting that aIlull + b11Tulj V211(a+ bT) ull,
we see from Theorem V-4.12 that

(4.36) I (T("') u, u) s y2 c"'-1((a + bT) u, u) , it = 1, 2, ... .

Let Tp(x) be the Friedrichs extension of T(x). In view of (4.36),
we. see from Theorem 4.12 that T p (x) exists in a neighborhood of x = 0
and forms a holomorphic family of type (B). But we have T p (x) = T (x)
for real x, . since T (x) is selfadjoint and T7 (x) is a selfadjoint extension
of T (x). Since both T (x) and T p (x) are holomorphic families, it follows

i At x = 0, the differential equation (4.35) is in the limit point case if x 3/4
and in the limit circle case if x < 3/4 (cf. CODDINGTON and LEViNSON (1J, p. 225).
In fact, L (x) u = 0 has two linearly independent solutions u± = x5±, where 2 at
= 1 +(1 + 4x)1"8; both u± belong to L$(0, 1) if 4x <-3 but u_ does not belong to
L2 (0, 1) if 4x Z 3. It follows that for real x, t (x) is essentially selfadjoint if (and
only if) x> 3/4 (at x = oo the equation is in the limit point case for any real x).
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from the unique continuation property (Remark 1.6) that T (M) = TF (x)
for all x in the common region of definition of T (m) and TF (x) . This
proves that T (x) is of type (B) in a neighborhood of x = 0; note that
this implies that T (x) is sectorial and, in particular, bounded from below
for real x.

To complete the proof of the theorem by showing that the same
result holds in a neighborhood of any real x, it suffices to prove that T (x)
is bounded from below for every real x E DO where T (x) is defined.
Suppose T (x0) is bounded from below for a real x.,. Since by (2.4) T (x) -
- T (xo) is relatively bounded with respect to T (xo) with relative bound
< 1 for sufficiently small Ix - xol, it follows from Theorem V-4.11 that
T (x) is bounded from below for real x near xo. Since the required small-
ness of Ix - xol is uniform in any compact subset of Do, the semibound-
edness of T (x) propagates from x = 0 to all real x E Do.

6. Perturbation series for eigenvalues and eigenprojections
The general results of § 1.3 on finite systems of eigenvalues of T (X)

apply to a holomorphic family T (m) of type (B). We collect here some
results that are peculiar to this type. For simplicity we restrict ourselves
to dealing with the case of Theorem 4.9.

Consider an isolated eigenvalue A of H with the eigenprojection P,
00

dim P = m < oc. The total projection P (x) = P + x" P(n) for the
"=1

A-group eigenvalues of T(x) is holomorphic in x, being given by (1.3).
Substitution of (4.20) gives [cf. 11-(2.8)]

(4.37) P(") = - ' (-1)°
P=1 vl+... Fvy=n r

' J (C) ... J (C) Cc"nl J (C) G'-1 d.C

Here G' = H'1/2, H' = H + e = H + a b-1 + 6 and J(g) is given by
(4.21) where B' = 0 since we assumed t to be symmetric:

(4.38) J() = H' (H' - C')-1= H'R (C) , R(C)=(H-C)-1.

The CM are given by (4.18). The power series for the weighted mean
of the eigenvalues under consideration can be obtained as in II-§ 2.2.
It should be remarked, however, that the expression II-(2.23) cannot be
used now, for the operators TM are not defined. Instead we have

(4.39) ,Z (x) - A = - 2n i m tr f log (1 +
`

x" C") J (C)1 d C .

r \ " /
This can be proved by using the property of the trace trAB = trBA
and by integration by parts, starting from the expression II-(2.25)
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where we substitute R (C, x) from (4.20). The integration by parts makes
use of the fact that J G'-'J(C) = H' R (C) 2 = (d/d ) H' R (C) .The use
of the formal equality trAB = trBA under the integration sign is not
directly justified, but it can be justified by the consideration given in
§ 2.3 in the case of a family of type (A).

(4.39) gives the following expressions for the coefficients of the series
(x) = A + E xn AN [cf. 11-(2.30)]:

(4.40)

AN = 2nim trE (_1)9 E fC(°')J(C)C(I-)...J(C)C(°Q)J(C)dC
P=1 vl+...+vP=nr

If the reduced resolvent S of H for the eigenvalue A is introduced
according to R (C) = - ( - A)-1 P + S + (C - A) S2 + [see I-(5.18)
and III-(6.32)], (4.37) and (4.40) reduce to [cf. II-(2.12, 31)]

(4.41) P(n) _ -f (- 1)P ' G'-1 J(k,) C(vi) ... J(ho) C(vo) J(k,+i) G'-1,

P

(4.42) 1('1) = 1 f'
(-1)r

trC(vl) J(k,) ... C(VP) J(kP)'IfM P P v,+...+vy=n

where

(4.43) J(°)=-H'P=-(A+ab-1+6)P, JO)=H'Sk, kz 1.
It is desirable to express these results in terms of the given forms t(n)

alone, without using such auxiliary quantities as H', G', C('i), etc. This
is not simple in general, but can be done without difficulty at least for
the first few coefficients. For example,

(4.44) A()= - m trC(1) J(°) =

m

trC(1) H'P = m E (C(1) H' 9, 91j)
9=1

1= '(1) [G' 99s G'-1 9f] =m (1) [91A
M y=1 i=1

where 99f, j = 1, ..., m, form an orthonormal basis of the eigenspace PH
[note that G' - q23 = (A + a b-1 + 6) ± 1/2 99f].

Problem 4.17. (4.37) and (4.40) are formally identical with II-(2.8) and II-(2.30),
respectively, after substitution of (4.38) for J(C) and of C1°) = G'-1 V^) G'-1.

Let us now estimate the convergence radius of the series for P (m).
According to (4.25), a lower bound for this convergence radius is given by

(4.45) re = inf (ell (a + bH)R II + c)-1
tof

a

+
b p I+

C)-1,Er
pEE(H)

where e = 1 or 2 according as all the t(") are symmetric or not. As before,
the knowledge of r0 will lead to estimates for the convergence radius, the
coefficients and the remainders for the series of A (x).
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If r is chosen to be the circle IC - Al = d/2 where d is the isolation
distance of the eigenvalue A of H, we have IIR II < 2/d and II (H -
- A) R (C) II < 2 for E P (see § 2.5). Hence

(4.46) II (a + b H) R II 5 (a + b A) 11R (C) II + b II (H - A) R II

==

d
(a+bA)+2b

(note that, although a need not be nonnegative, a + b A > 0 since
a + bH >- 0 and A is an eigenvalue of H). Thus (4.45) gives

(4.47) ro> 1/r28(ad+bA) +2sb+c].

It is interesting to note the similarity and the difference between (4.47)
and the estimate (2.34) for the case of type (A).

Of course a more careful choice of r will lead to an improvement of
(4.47) (see the examples below).

Remark 4.18. The reduction process used in determining the series
for the eigenvalues and eigenprojections should start from the operator
Tr(x) given by (1.11). The process is rather complicated since T(x) is
not given directly in the form of a power series [as in the case of type (A)].

This inconvenience can be avoided to some extent by considering
the eigenvalues and eigenprojections of the operator R (C,x) = (T (x) -
- C)-1 for a fixed C. Since R (C, x) is bounded-holomorphic in x with the
Taylor expansion (4.20), its eigenvalues and eigenprojections can be
calculated by the reduction process described in the finite-dimensional
case. Since these quantities are in a simple relationship with those of
T (x), we obtain in this way the required perturbation series for T (x)'.

For example, the repeated eigenvalues of R (C, x) corresponding
to the eigenvalue (A - C,)-1 of the "unperturbed" operator R (0,
= R (C) have the form

(4.48) j = 1 , . . m,

where the v1 are the eigenvalues of the operator

(4.49) PG'-1 J(C) Ca) J(C) G'-1 P = A +ab-1
$

s PCi') P(A-0
regarded as an operator in the finite-dimensional space P H. But PC(1) P
is the bounded operator associated with the bounded form (PC(') Pu, v)
= (C(')Pu,Pv) _ail) [G'-1Pu, G'-1 Pv] = (A + a b-1+6)-1f(1) [Pu, Pv].
Hence we have v = (A - ,)-214 where the ,uy are the m repeated
eigenvalues of the m-dimensional operator associated with the form
f(l) [u, v] restricted to the m-dimensional space P H. It follows from (4.48),

I The use of the family T (x)-1 instead of T (m) itself was made by T. KATO
[3], [7] and V. KRAMER [1], [2] (mainly for asymptotic perturbation theory).
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then, that the eigenvalues of T (x) must have the form

(4.50) A + x ,u' '+ .

Note that this refines (4.44), which gives only the mean of the m eigen-
values ,uj'. Higher order coefficients of the series for the eigenvalues can
be computed in a similar fashion.

Problem 4.19. A necessary condition that there be no splitting at the first order
is that t"1> [u, v] = A' (u, v) for u, v E PH with a constant A'. This constant is equal
to the common value ui = . . . = ,um.

Example 4.20. Consider the differential eigenvalue problem

(4.51) -u"+xq(x)u=A(x)u, u(0)=u(n)=0, 0SxSn.
Assume, for simplicity, that q (x) is continuous on [0, n]. This problem is a special
case of Example 2.17 in which T1 is the multiplication operator by q (x), so that
the results of that example are applicable with II TW II = IIg1Ioo = max Iq (x) I. But the
estimates for the convergence radii or other quantities may be quite crude if
max I q (x) I is very large while I q (x) I is not very large on the average. In such a
case the results of this paragraph may be useful. Note that here we have a family
T (m) = T + x T1> of type (A) and (B) simultaneously; this is obvious since TW is
bounded.

Let s (x) be an indefinite integral of q (x). We have
n n n

(4.52) 1f glul3dxl = I .f s'Iu12dxI = I f s(u'u+uu')dxI<
0 0 0

< (maxlsl) 2IIu1I Ilu'll < ailulI2 + b(Tu, u)

where a, b > 0 are arbitrary if a b = (maxlsl)$ [note that Ilu'llI = (Tu, u)]. An
estimate for the convergence radius for the unperturbed eigenvalue A = A. = n$
is then given by (4.47) with c = 0, d = 2n - 1 (d = 3, if n = 1) (see loc. cit.).
The best choice of a under the restriction stated above is a = (n2 + 2n - 1)1/2 .

(max Is 1) ; then (set e = 1 if q (x) is real)
2n - 1

(4.53) roZ 4e (0 + 2n - 1)1/a(maxlsl)
x

The indefinite additive constant in s (x) = f q (x) d x should be chosen so as to
minimize maxlsl. Since maxlsl may be small while maxlgI is very large (even
infinite), the estimate (4.53) is independent of the ones given in Example 2.17 [such
as (2.35)] in which II Tl'II = max Igl was used.

The same method could be applied to the Mathieu equation (see Example 3.4).
But the coefficient q(x) = cos2x is too smooth for (4.53) to give an improvement
over the former results.

7. Growth rate of eigenvalues and the total system of eigenvalues
For a selfadjoint family T (x) of type (B), we can estimate the growth

rate of the eigenvalues in the same way as in the case of type (A) (see
§ 3.4). We use the inequality [see (4.7)]

(4.54) It' (x) [u] s a' (u, u) + b' t (x) [u] , u E D , x E I ,

where D = D(t(x)) = const. and I is an interval of the real axis, which
is assumed to contain x = 0. Again we consider a piecewise holomorphic
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function a (x) formed by connecting several isolated eigenvalues of T (x)
in the manner described in § 3.4.

Theorem 4.21. Let ,u (x) be as above. Then

(4.55) ly (x) - u (0) f b'
(a' + b' u (0)) (eb" I' - 1) .

Proof. (4.55) is similar to the corresponding estimate (3.17) for type
(A), with the slight difference that here ,u (0) appears in place of j u (0) j.
The proof of (4.55) is also similar to that of Theorem 3.6, but some
modification is needed since T' (x) 99 (x) does not make sense here. Instead
we use the result of Problem 4.19, which shows that

(4.56) ,u' (x) = t' (x) [99 (x) ]

for any x at which no crossing of ,u (x) with other eigenvalues occurs.
Hence

(4.57) ,u' (x) < a' + b' t (x) [99(m)] = a' + b' (T (x) 99(m), 99(m))

=a'+b',u(n).
This differs from (3.19) only in the lack of the absolute value signs.
Solution of this differential inequality leads to (4.55).

Remark 4.22. As in § 3.5, it follows from Theorem 4.21 that Theorem
3.9 is true also for a selfadjoint family T (m) of type (B) with compact
resolvent [again T (x) has compact resolvent for all x if this is the case
for some x, see Theorem 4.3]. Thus there exists a complete family of nor-
malized eigenvectors and the associated eigenvalues of T (x) which are
holomorphic on the whole interval of x being considered'.

8. Application to differential operators
The theory of holomorphic families of operators of type (B) has wide application

in the perturbation theory of differential operators. Simple examples were given in
Examples 4.11 and 4.20 for regular ordinary differential operators. Here we add
some further examples related to regular partial differential operators and certain
singular differential operators, both ordinary and partial.

Example 4.23. Consider the formal differential operator

(4.58) L (x) u=- E a
ps 7, (x, x)

8 u+
q (x, x) u

9,k=1 axf axA

in a bounded region E of R. The coefficients p, m (x, x) and q (x, x) are assumed to be
sufficiently smooth functions of z in the closed region 1Z and to depend on the real
parameter x holomorphically. Furthermore, it is assumed that p (x, x) and q (x, x) are
real-valued and the matrix (pi)(z, x)) is symmetric and positive definite uniformly
with respect to x and x.

As we have seen in VI-§ 4.4, several selfadjoint operators in H = L2 (E) can be
constructed from the formal differential operator L (x) by considering the quadratic

1 Cf. RELLICH [5], where this is proved for families of type (B0).
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form

(4.59) h (x) [u] = f . ps s (x, x)
au au +

q (x, x) lull ] dx .axR axj
E

The restriction hl (x) of this form with D (01) consisting of functions u satisfying the
zero boundary condition u = 0 on a E leads to the operator HI (x) = L (x) with the
same boundary condition. The form 03 (x) = 4 (x) without any boundary condition
leads to H3 (x) = L (x) with the generalized Neumann condition [au(an = 0 where
n is the conormal to the boundary, which is determined by p, k (x, x) and so depends
on x]. The form 0,(m) obtained by adding to h3 (x) a boundary term such as
f a (x, x) JuI3 d S will lead to H3 (x) = L (x) with a generalized boundary condition

aE
of the third kind aufan - a u = 0.

According to the results of VI-§ 4.4, these forms h,, (x) with different x (but with
fixed n = 1, 2, 3) are relatively bounded with respect to one another and the same
is true of their closures. It follows easily from Theorem 4.8 that the closed 0. (x) has
an analytic continuation t (x) which is a holomorphic family of forms of type (a)
defined for x on and near the real axis. Hence H. (x), defined above for real x, has
an analytic continuation T. (x) for x on and near the real axis. T. (x) forms a self-
adjoint holomorphic family of type (B). In particular it follows that the eigenvalues
and eigenprojections of T. (x) are holomorphic on and near the real axis of X.

Actually Tl (x) is not only of type (B) but also of type (A). We shall not prove it
here, but it is related to the fact that D (Hl (x)) is independent of x, as was noted
earlier (loc. cit.). It should be noted, however, that the analyticity of the eigenvalues
and eigenprojections of Hl (x) follows already from the fact that it is holomorphic
of type (B), which has been proved very simply.

Example 4.24. Consider the singular differential operator

(4.60) L (x) u = - u" + q (x) u -}- x q(I) (x) u , 0 < x < oo ,

in which q (x) and qa> (x) are allowed to have certain singularities. We assume,
as in VI-§ 4.1, that q can be written q = ql + qs + q3, where all the qj are real-
valued, qr Z 0 is locally integrable, q2 is uniformly locally integrable and q3 is

m
majorized by 1/4 x2 as in VI-(4.8). Then a closed form I) [u] = f (lu'13 + q (x) 1u12) dx

0
can be constructed and the associated selfadjoint operator H (0) = L (0) in H
= L2 (0, oo) with an appropriate domain [including the boundary condition u (0) = 0]
is defined (see loc. cit.). We further assume that q(I) can likewise be written as the
sum of three functions qu with properties similar to those stated above. In addition
we assume that qll) < ig qr with some constant P. Then it is easily seen that the
form Ou)[u] = f q( (x) Ju13dx is relatively bounded with respect to h, for &
and q3 are relatively bounded with respect to 40 [u] = f lu'I3 dx (see loc. cit.).
It follows from- Theorem 4.8 that t (x) = 4 + x O(1) is a selfadjoint holomorphic
family of forms of type (a and that the associated operator T (x) = L (x) (with an
appropriate .domain) forms a selfadjoint holomorphic family of type (B). The
domain of T (x) consists of all u E H = L2 (0, oo) such that i) u and u' are absolutely
continuous for 0 < x < oo and u' E H, ii) u (0) = 0 and iii) q}'3 u and L (x) u belong
to H (see Theorem VI-4.2). Note that D (T (x)) depends on x through iii).

It should be noticed that a perturbing "potential" q(I) (x) of such a high singular-
ity as 1/x3 still leads to a holomorphic family T (x).

Example 4.25. Consider the Schrodinger operator

(4.61) L(x)u=-du+q(x)u+xgl>(x)u
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in the whole 3-dimensional space R3. We assume (see VI-§ 4.3) that q can be written
in the form q = q1 + q2, where the qk are real-valued, locally integrable, q1 Z 0,
q2S 0, and where q2 satisfies condition (4.17c). [Several sufficient conditions for
(4.17c) to be met were given there.] Then a selfadjoint restriction H of L (0) can be
defined by Theorem 4.6a. We assume further that q(1) can also be written as
qc1) = gj11 + q(2') with the qk 1 satisfying conditions similar to the above ones, except
that q2) have 4o bound smaller than 1 (which is not necessary since we are consider-
ing only small IxI). In addition we assume that g111 5 13g1 for some positive constant
fl. Then it can be shown, as in the preceding example, that there is a selfadjoint
holomorphic family of operators T (x) in H = L2 (R3) of type (B) defined for small
Ixl, such that T (x) is a restriction of L (x) with D (T (x)) defined as follows:

u E D (T (x)) if and only if i) gradu belongs to H' = (L3 (R3))3, ii) f g1lu12dx < oo,
and iii) the generalized derivative zl u exists and L (x) u E H. Here again D (T (x))
depends in general on x unless the singularity of ge11 is weak enough (as in Ex-
ample 2.13, for example).

9. The two-electron problem 1
As another application, we consider a typical problem in quantum mechanics.

Consider an atomic system consisting of a fixed nucleus and two electrons. The
Schrodinger operator for such a system is given by 3

(4.62) H=-d1-z2-? -? + 2

r1 r2 Zr1E

in an appropriate system of units. Here the basic space is the 6-dimensional euclidean
space R6, the coordinates of which will be denoted by x1, y1, z1, x2, ,y2, z2; LI is the
3-dimensional Laplacian a304 + a3/ay; + a3/azq, j = 1, 2; r, = (4 + y, + z2)1/2,
and r12 = [(x1 - x2)2 + (y1 - y2)2 + (z1 - z$)2]1/2. Z is the atomic number of the
nucleus, Z = 1, 2, 3. ... .

H is selfadjoint in H = L2 (Re) if the differentiations z11 and A. are taken in the
generalized sense. Or one could define H first on Co (R6) and afterwards take its
closure. In any case the selfadjoint operator H is determined uniquely, with the
domain D identical with that of -d1 - d2. These results follow directly from the
results of V-§ 5.3 (see Remark V-5.6).

We now write

(4.63) H = H (x) = Ho + x Hat,

Ho=-d1-d2-2r11-2ra1, HM =2rla, x=Z-1,
and regard H (x) as produced from Ho by the perturbation x H11. We are interested
in how the eigenvalues of H (x) depend on x, starting from those of Ho = H (0).

First of all it should be remarked that HIM is relatively bounded with respect
to Ho with relative bound 0. This follows from the results (see loc. cit.) that each
of 2ri 1, 2ra 1 and 2ri91 is relatively bounded with respect to Ho with relative bound 0
(see Problem IV-1.2). Therefore, H (x) (or rather its extension to complex x) forms
a selfadjoint family of type (A) defined for all complex x (see Theorem 2.6). This
implies that the eigenvalues and eigenprojections of H(x) are holomorphic in x on
and near the real axis of the x-plane, as long as the eigenvalues are isolated and have
finite multiplicities.

1 See T. KATO [3].
3 See KEMBLE 111, p. 209; we assume that the nucleus has infinite mass.
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In what follows we are interested in the convergence radius for the power series
representing the lowest eigenvalue AI (x) of H (x). This could be estimated by the
formulas given in § 2.5, but we shall rather use the estimates of § 4.6. As we shall see,
this is much easier; in fact H (x) is of type (Bo) as well as of type (A) since H (x) is
bounded from below for any real x (see Theorem 4.16).

The structure of H. is well known. The basic space H = L2 (Ro) can be regarded
as the tensor product' H, 0 H2 of two copies Hl, H. of L2 (R3), and Ho has the form
(HI 0 1) + (1 0 He) where HI, H2 are copies of the operator -d + 2r-' acting
in L2 (R'). This last one is the Schrodinger operator for the hydrogen atom (in a
suitable system of units), and its spectrum is known to consist of isolated negative
eigenvalues - n- 8, n = 1, 2, 3, ..., with multiplicities n2 and of a continuous
spectrum covering the whole positive real axis $. According to the structure of Ho
stated above, the lowest part of the spectrum of Ho consists of isolated eigenvalues

(4.64) AI = -2, Ae = -514, ..., A. = - 1 - n- 2, .. .
which converge to - 1. AI is simple, but the other A. have multiplicities 2n2.

Since AI is simple, the convergence radius for the power series representing the
corresponding eigenvalue AI (x) of H (x), as well as the series for the associated eigen-
projection PI (x), has a lower bound ro given by (4.45). To calculate ro we have to
know the constants a, b. To this end we first consider the operator

(4.65) Ho-PH(')=(-adl-2ri')+(-adz-2ra')+
+ C-(1 - a) (di +d2) - 2Pr'i217

where a, # are constants such that 0 < a < 1, > 0. The first term on the right
has the form H, a 0 1 with H,, a copy of the operator - a A - 2r-' in L' (R').
In general the operator - a d - 2 fl r-I has the lowest eigenvalue (that is, the
lower bound) - f2/a; this follows from the special case a = i3 = 1 stated above
by a simple scale transformation. Hence the first term on the right of (4.65) has
lower bound -1(a, and the same is true of the second term. The third term can be
reduced to a similar form by a linear transformation of the coordinates (correspond-
ing to the separation of the motion of the center of gravity from the relative motion),
which shows that this term has the lower bound - p2/2(1 - a). Thus we obtain

s
(4.66) ((Ho - Hay) it, u)

a + fl l - 00(u, u) .

This leads to the inequality

(4.67) 0 S (HU) it, u) S a (u, u) + b (Ho it, u)
with

2 l4 1
(4.68) a= ap + 2(1

a)
, b= ;

here a, fl are arbitrary except for the restrictions 0 < a < 1, fi > 0. The best
choice of a for a given b is easily seen to be given by

1 '
(4.69) a=2b-} 2b

+2.
We now apply (4.45) with these. constants a, b and with c = 0, e = 1 (note

that H>'> is symmetric). The curve r must be chosen so as to enclose AI = - 2 but
to exclude other eigenvalues of (4.64). In calculating (4.45), the critical value of C

1 For the tensor product see DIXMIER (1). We need only elementary results of
the theory of tensor products, which are familiar in quantum mechanics.

2 See e. g. KEMBLE (1), p. 157.
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is the point Co at which r intersects the negative real axis between k = - 2 and
d$ = - 5/4; other C are not essential if the shape of r is chosen suitably, for example
as a rectangle with sufficiently large vertical sides. To make ro as large as possible,
Co is to be chosen in such a way that

(4.70)
a+b21 a+bAs= l
Co - Al As - Co ro

(note that a + b A, > 0). This gives
13a - 20b 3 3

(4.71) Co=- 8a-13b ' r0 8a-13b
_

3b+4b-1+16
Since b > 0 was arbitrary, the best value of ro is attained for b = 2/31/2:

3 1

ro = = 7.6416+41/3
Thus we arrive at the conclusion that the series for 1 (x) and P1 (x) are convergent
if Ixl < 1/7.7 or I21 > 7.7.

Remark 4.26. There is no reason why one must decompose H into the particular
form (4.63). Some fraction of - 2ri 1 - 2ra 1 could as well be included in the
perturbation. Let us see whether we can in this way improve the above result.

Set
(4.73) Hy (x) =Hoy + x Hy ) ,

Hoy=-41-A2-2(l-Y)(ril+rz'), 0<y<l.
Hy)=-2Y(ri1+r21)+2Z-1r14

Hy (x) differs from H (x) except for x = 1, though the two are essentially similar.
The constant y will be determined later.

We proceed as above by considering the operator Hoy - fi Hy3. A simple
calculation similar to that used in deducing (4.67) leads to

s
(4.74) (H y u, u) <

L

(1

a
P

Y) + 2 (1 - a) Ze ] (u. u) + (Ho y u, u) .

Since Hy 3 is not positive-definite, unlike Ha3, we must also estimate - (Hy D u, u)
from above. To this end we note that

(4.75) Hoy+fH, Z
Z -2(1-Y+fly)$.

obtaining

(4.76) - (Hy u, u) S (I + P V) l (u, u) + (Hoy u, u)

Again we minimize the coefficient of the first term on the right of (4.74) with respect

to varying a. The result is 11 - y - fl y + z ZZ if 1 - y - i4 y 0. It is
convenient to choosey in such a way that this coefficient is equal to the coefficient
of the first term on the right of (4.76). This is attained by taking

(4.77) y = 1/4Z .

Then we have

(4.78) ((HY u, u) S a (u, u) + b (Hoy u, u)

where b = 1/# and

'j-b-)',
b.1, y = 1

(4.79) a=2bI1- 4Z
1+

4 1 - y 4Z - 1
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In applying (4.45) with these constants, it must be borne in mind that the
eigenvalues of H0 are not (4.64) but - (1 - y) 2 (1 + n-8), n = 1, 2, 3, .... This
remark changes (4.71) to

r__/. 1 1 \2 --i
i8a 3

(4.80) ro=3 (1 -y)2 - 13b=
b

- 13
$

(1

1

4Z)
Maximizing ro with respect to varying b gives finally

3(Z- 4) 2Z- 1
1 1

(4.81) ro =
7.64

for b =
3

(Z - 1 > 4 7_ - 18+213 V- 4).
If ro > 1, the perturbation series under consideration converges for the value

x = 1 for the real system. It follows from (4.81) that this is the case if Z > 4.1.
This is a considerable improvement on the condition Z > 7.7 deduced above,
but still it is not good enough to cover the most important case of the helium atom
(Z = 2).

§ 5. Further problems of analytic perturbation theory
1. Holomorphic families of type (C)

In § 4.4 we considered a family T (x) of operators defined as the
Friedrichs extensions of operators of the form

(5.1) S(x) = S+xS(1)+x2S(2)+...

in which S was assumed to be sectorial. This assumption is essential
since we have defined the Friedrichs extension only for sectorial operators.
If S is symmetric, this necessarily restricts S to be bounded from below.

If S = H is selfadjoint, however, there is a certain case in which
we can define a holomorphic family T (x) similar to the above one even
when H is not semibounded. Such a T (x) is given by the pseudo-Fried-
richs extension discussed in VI-§ 3.4.

Theorem 5.1. Let S = H be sel f adjoint, let D = fl1 D (S(")) C D (H) and

(5.2) I(S(") u,u)I s cn-1(aIIuII2+b(IHI u, u)), uED, n= 1,2,3,.

where the constants b, c >,= 0 but a is arbitrary. If D is a core of IHI1/2
(or, equivalently, a core, of the form associated with I HI) , the pseudo-
Friedrichs extension T (x) of the operator S (x) given by (5.1) is defined for
IxI < (e b + c) -1 and forms a holomorphic family, where e = 1 or 2 according
as all the S(") are symmetric or not. [T (x) will be called a holomorphic family
of type (C).] The family T (x) is selfadjoint if the S(") are symmetric. T (x)
is the unique holomorphic extension of S (x) if D is a core of H.

Proof. The proof is essentially the same as in Theorem VI-3.11.
With the notations used there, we have I (S (n) u, u) I S b c" -1 II G' u1I 2 so
that (S(") u, u) can be extended to a form t(") [u] with domain D (G').
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t(n) can be expressed as t(nl [u, v] = (CO G'u, G'v) where CO E _q (H),
IIC(n)II <- s b cn-1 [see VI-(3.20)]. If we set

00

(5.3) T(x)=G'(HH'-1+C(x))G', C(x)_ Z xnC(),
n=1

it is easily seen that T (x) > S (x) and T (x) is a holomorphic family in some
00

neighborhood of x = 0 [cf.VI-(3.21)-(3.22)]. Since 11C (m) 11 < eb f cn-1lxln
n=1

= s b Iml (1 - c Ixl)-1, the permitted range of Iml is given by e b Iml (1 -
- c lxl)-1 < I or Iml < (e b + c)-1.

The uniqueness of T (x) can be proved exactly as in Theorem 4.13.
Remark 5.2. If S is symmetric and bounded from below, the Fried-

richs extension T (x) of S (x) defined in § 4.4 is a special case of the pseudo-
Friedrichs extension considered here; it suffices to set H equal to the
Friedrichs extension of S and replace the S(n) by their restrictions to
D = D (S). As is easily seen, (4.31) then implies (5.2) and D is a core
of IH11/2 (cf. Remark VI-3.13). On the other hand, Theorem 2.6 for a
family of type (A) is also a special case of the pseudo-Friedrichs extension
provided the unperturbed operator T z 0 is essentially selfadjoint and the
T (n) are all symmetric, for (2.5) implies I (T (n) u, u) J < VT cn -1((a +
+ b I TI) u, u) by (4.36). Thus the family of type (C) is rather general,
including the important cases of holomorphic selfadjoint families of
types (A) and (B0).

Remark 5.3. Most of the results regarding a family of type (Bo) can
be taken over to a family of type (C) by obvious modifications. Here we
only note that the estimates (4.45) and (4.47) are valid if H and A are
respectively replaced by IHI and IAI.

2. Analytic perturbation of the spectral family
In analytic perturbation theory, we are concerned with the analytic

dependence of various quantities on the parameter x, assuming that
the given family T (x) of operators is analytic. Among the quantities
that have been considered so far, there are the resolvent R (r;, x)
= (T (x) - 4) -1, the isolated eigenvalues An (x), the associated eigen-
projections Pn (x) and eigennilpotents D. (x), and also the projection P (x)
on a subspace corresponding to a separated part of the spectrum F (T (x)).

There are many other quantities that could be considered in this
respect. For instance, for any function of a complex variable, the
question can be raised whether or not the "function" O(T (x)) of T (x)
depends on x analytically. In general 0 should be itself holomorphic
in a certain domain of the complex plane. If T(x) is a selfadjoint family,
however, 0 (C) could belong to a wider class of functions as long as only
real x are considered, according to the definition of 0 (H) for a selfadjoint
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operator H given in VI-§ 5.2. One of the most important functions is
ei E c with a real parameter t. This problem will be dealt with in

Chapter IX.
The spectral theorem for selfadjoint operators furnishes other func-

tions to be considered. One of them is the spectral family E (A, x) for
T (x), defined for real x, when T (x) is a selfadjoint family. A simple
consideration excludes, however, the possibility that E (A, x) depends
analytically on x for each fixed A, even if T (x) is a holomorphic family
(see VI-§ 5.4). Nevertheless, there are certain cases in which E (A, x) is
holomorphic in x.

Suppose H is a selfadjoint operator with the spectral family {E (A)}.
If the spectrum E = E (H) of H has gaps at a and fl, a < j3, we know
that E (f1) - E (a) changes continuously with H (see Theorem VI-5.10).
Suppose now that H (x) is a holomorphic selfadjoint family. Suppose
further that the spectrum of H = H (0) has gaps at a and j3. Then we
know that the spectrum E (H (x)) of the selfadjoint operator H (x) with
real x also has gaps at a, fi and that the projection P(x) corresponding
to the separated part of E (H (x)) lying between a and j3 is holomorphic
for small I44. Since P (x) = E (fl, x) - E (a, x), this shows that E (fl, x) -
- E (a, x) is holomorphic near x = 0 if E (H) has gaps at a and P. It should
be noted that, although the E (A, x) are defined only for real x, E (j3, x) -
- E (a, x) has an analytic continuation P (x) which is holomorphic
near x = 0.

In general E (fl, x) itself is not holomorphic in x when E (H) has a
gap at j9. A counter-example is furnished by Example 1.11; here E (H (x))
is a subset of the positive real axis for x 5 0 but a negative eigenvalue
Ao (x) exists for 0 < x < I such that Ao (x) -+ - oo for x -, 0. Thus
dimE (0, x) is 0 for n :50 and 1 for 0 < x < 1, so that E (0, x) is not
holomorphic at x = 0 although E (H (x)) has a gap at 0 for all real x < 1.

However, E (fl, x) can be shown to be holomorphic in x in the special
but important case of a holomorphic selfadjoint family of type (A) or,
more generally, of type (C).

Theorem 5.4.1 Let H (x) be a selfadjoint holomorphic family of type (C)
and let E (A, x.) be the associated spectral family for real x. Let E (H (0))
have a gap at a real P. Then E (H (x)) has a gap at 9 for small real x and
E (fl, x) is holomorphic near x = 0.

Proof. It suffices to take over the proof of Theorem VI-5.13 with
minor modifications. These are: to replace H,,, R. E. (2) by H (x),
R x), E (A, x) respectively; to replace C by C (x) used in the proof of
Theorem 5.1; to replace a,,, b respectively by a cn-1Ix1, b cn-1 jxI. It is
easy to see that we then arrive at an expression of E (0, x) - E (0, 0)

1 This theorem was proved by HEINZ [2] in the case of type (A). Note that the
result is trivial for type (B) (see Problem 5.5).
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as a power series in x which converges for sufficiently small Ixl (again
assuming 9 = 0 without loss of generality).

Problem 5.5. Let H (x) be a selfadjoint holomorphic family such that H (x)
has a common finite lower bound y for real x near x = 0. Then E (i$, x) is holo-
morphic near x = 0 if E (H (0)) has a gap at P. [hint: E (a, x) = 0 for sufficiently
small a.]

3. Analyticity of IH(x)I and IH(x)I0
We continue to consider the family H (m) of type (C) discussed in

Theorem 5.4, assuming that fi = 0 belongs to P (T). That E (0, x) is
holomorphic implies the same for IH (x) I for real x, for we have

(5.4) IH(x)I = (1 - 2E(0, x)) H(x) , IH(x)1-1 = (1 - 2E(0, x)) H(x)-1

for real x ; note that I H (x) I = U (x) H (x) by VI-(2.26) where U (x) = 1 -
- 2E(0, x) by VI-(5.25).

(5.4) implies that IH (x) I-1 is a convergent power series in x because
both (1 - 2E(0, x)) and H (x)-1 are. The family IH (x) I can even be
extended to a holomorphic family H1(x) defined near the real axis,
although H1 (x) is not equal to J H (x) I for nonreal x.

It follows also from (5.4) that if H (x) is of type (A), then H1 (x) is
also of the same type.

We can generalize these results and assert that the family I H (x)10

has an analytic continuation which is holomorphic in x, for any 0 such
that 0 S 0 5 11. To see this it is convenient to use the formula [see
V-(3.53)]

00

(5.5) IH(x)I-0=
sinxO /1U_0(IH(x)I+'u)-' du, 0<0<1.

79

0

To prove that IH (x) I - 0 can be expanded into a convergent power series
in x, we can proceed as in the proof of Theorem 5.4; we may omit the
details.

Remark 5.6. It can be proved that IH (x)10 (has an analytic continua-
tion which) is of type (A) if 0 5 0 < 1/2. If H (m) is of type (A), IH (x)10
is also of type (A) for 0 5 0 5 1.

§ 6. Eigenvalue problems in the generalized form
1. General considerations

So far we have been considering the eigenvalue problems in the form
T u = A u in which T is a linear operator in a Banach space X. In applica-
tions one often encounters eigenvalue problems of a more general form

(6.1) Tu = AAu

1 The analyticity of IH(x)10 was proved by HEINZ [1] for a family of type (A).
See Remark 5.6.



§ 6. Eigenvalue problems in the generalized form 417

where T and A are operators in X or, more generally, operators from X
to another Banach space Y.

There are several ways of dealing with this general type of eigenvalue
problem. For instance, (6.1) may be transformed into

(6.2) A-'Tu=Au
if A-' exists. (6.2) has the standard form so far considered in detail,
for A-' T is an operator in X. Or (6.1) may be written

(6.3) TA-'v=Av, v=Au;
then we have again a standard form, this time the operator TA -I acting
in the space Y.

A transformation into a more symmetric form is given by

(6.4) A-1/2 TA-112 w= A w, w = A1/2 U.

This is particularly convenient when T and A are symmetric operators
in a Hilbert space. In any case the construction of A11/2 would require
that Y = X.

In each transformation given above, however, it appears that there is
something arbitrary involved; there is no reason to choose one over the
other. Besides, the relationship between the original eigenvalue problem
and the spectra of the operators A-' T or TA-1 is not clear. It is true
that any eigenvalue A of (6.1) is at the same time an eigenvalue of (6.2)
or (6.3) and that any eigenvector of (6.1) is also an eigenvector of (6.2),
the eigenvector of (6.3) being related to that of (6.1) by the transforma-
tion v = A u. But it is not clear what is meant by an isolated eigenvalue
of (6.1) or the algebraic multiplicity of such an eigenvalue; for it might
happen that A is an isolated eigenvalue of (6.2) but not of (6.3) and vice
versa.

A more natural generalization of the results obtained for the standard
problem T u = A u to the general problem (6.1) would consist in the
study of the generalized resolvent (T - CA)-' and the generalized spectrum
associated with it. Of course several modifications would be required of
the former results when one considers such a generalization. For example,
the resolvent equation should read

(6.5) (T -C'A)-1- (T -C"A)-1= (T-C'A)-1A (T-CAA)-1

Furthermore, there is in general no sense in speaking of the commutati-
vity of the resolvents for different C, for the resolvent is an operator
from Y to X.

In this book, however, we shall not pursue this problem in any
generality. Instead we shall content ourselves with considering some
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special cases in which it suffices to consider the problem in the form
(6.2) or (6.3).

Let us assume that T E'' (X, Y), A E -4 (X, Y) and A-1 E .4 (Y, X).
Then A-' T E W (X) and TA-1 E W (Y), and (6.1) is equivalent to either
of (6.2) and (6.3).

Let A be an isolated eigenvalue of A-1 T with a finite algebraic
multiplicity in, with the eigenprojection P and the eigennilpotent D.
We have [see III-(6.28)-(6.29)]

(6.6) PA-1TCA-1TP=AP+D, D=DP=PD.
Q = A PA-1 is a projection in Y, for Q E .V (Y) and Q2 = Q. Similarly
G = A D A-1 is a nilpotent in Y. On multiplying (6.6) by A from the left,
we obtain

(6.7) QTCTP=AAP+AD=AQA+GA, G=GQ=QG.

The consideration of the eigenvalue A of TA-1 leads to the same results;
in fact, Q is exactly the eigenprojection associated with the eigenvalue A
of TA-1 and G is the associated eigennilpotent.

The resolvent (A-1 T - C,)-1 of A-1 T has the expansion

(6.8) (A-1 T - C)-1

_ - ( - A)-1 P - I (C - Dn -f- A)n Sn+1
n=1 n=0

near = A [see 111-(6.32) ]. Here S is the reduced resolvent of A-' T
at C = A. Multiplication from the right by A-1 gives

00

(6.9) (T - CA)-1= - (C - A)-1 PA-1 - Y ( - A)-n-1 Dn A-' +
n=1

00

+ A)n Sn+l A-1
nl== O

00

n=1
00

+ f (C - A)n A-' Un+1,
n=0

where U = A S A-1 is the reduced resolvent of TA-1.
If we consider a system Ah, h = 1, . . ., s, of isolated eigenvalues of

A-' T, with the associated eigenprojections Ph and eigennilpotents Dh,
we have (Qh = A PhA-1, Gh = A Dh A-1)

(6.10) QhTCTPh=AhAPh+ADh=A,,Q,,A+G,,A,
Dh=DhP,,= PhD,,, Gh=GhQh=Q,,G,,, P,,Pk=BhhPh,

QhQk = ahkQh
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Suppose, in particular, that both T and A are symmetric operators
in a Hilbert space X = Y = H. In this case neither A-1 T nor TA-1 is
symmetric in general. But A-1 T becomes a symmetric operator if the
new inner product

(6.11) ((u, v)) = (Au, v)

is introduced, assuming in addition that A is positive. Note that H
is also a complete Hilbert space with this new inner product under the
stated assumptions on A. Consequently, A or the Ah must be real and P
or the Ph are orthogonal projections (and therefore have bounds 1) in the
new metric, and D or the Dh must be zero. Returning to the old metric,
we see that P or the Ph are bounded with bounds not exceeding a fixed
number depending only on A. In fact, it can easily be seen that

(6.12) IIPII < IIA-1IV1/2lIAII1/2.

We also note that (in the symmetric case)

(6.13) Q=P*, P=Q*.
The proof depends on the observation that, since P is the eigenprojection
for A of A-1 T, P* is the eigenprojection for 1 = A of (A-' T) * = TA-1.

An alternative way of dealing with the symmetric case is to use the
transformation to (6.4). A-1/2 TA-1112 is symmetric and similar to A-' T
and to TA-1. It is therefore selfadjoint if it (or A-1 T or TA-1) has at
least one isolated eigenvalue. The associated eigennilpotent must be zero
and the associated orthogonal projection is identical with A1/2 PA-112.

2. Perturbation theory

Here we are mainly interested in the eigenvalue problems of the form

(6.14) T (x) u= A (x) A (x) u,

where T (x) as well as A (x) is a holomorphic family of closed operators
from X to Y defined near x = 0. We inquire whether or not the eigen-
values A (x) and the associated eigenvectors can be expressed as holo-
morphic functions of x.

According to the restrictions introduced in the preceding paragraph,
we shall assume that A (x) is bounded-holomorphic, so that it can be
expressed as a convergent power series

(6.15) A(x)=A+xA(1)+x2A(2)+..., A,A(n)Ei(X,Y).

Furthermore, A will be assumed to have an inverse A-1 E .4 (Y, X),
so that A (x)-1 also exists and belongs to l(Y, X) for small Ixl, with the
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expansion

(6.16) A(m)-l= A-1 - xA-1 A(1) A-1 + x2(A-1 A(1) A-1 A(1) A-1 -
-A-'A(2)A-1)+...

(6.14) is now equivalent to the eigenvalue problem

(6.17) Ta (x) u = A (x)-1 T (x) u = A (m) u.

Here Ta (x) is a closed operator acting in X and forming a holomorphic
family, as is easily verified from the property of T (m). Thus the
analytic perturbation theory developed in this chapter can be applied to
Ta (x). It follows, for example, that any isolated eigenvalue of the
unperturbed operator T. = T. (0) = A-1 T (0) can be continued as an
analytic function 2 (x) of x, which is an eigenvalue of T. (x) for each M.
Similar results hold for the associated eigenprojection P(x) and the
eigennilpotent D(x) for the operator Ta(x), and for the eigenprojection
Q (x) = A (x) P (x) A (x)-1 and eigennilpotent G (x) = A (x) D (x) A (x)-1
for the operator Tb(x) = T (x) A (x)-1 = A (x) Ta(x) A (x)-1 (cf. the
preceding paragraph).

There is another transformation of (6.14) [which is particularly
convenient when T (m) and A (x) are selfadjoint]. We write (6.15) in the
form

(6.18) A (x) = (1 + x C2 (x)) A = (1 + x C2 (x))1/2 A (1 + x C, (x))1/2 ,

where
00 00

(6.19) C2 (x) = fxn A (n +1) A-1 E -V(Y) , C, (x) = Zxn A -1 A (n +1) E ,off (X)
n=0 n=0

are bounded-holomorphic. The validity of the first equality of (6.18) is
obvious. The second is a consequence of the general formula

(6.20) (1 + BA-1)k A = A (1 + A-1 B)k , A, B E .9 (X, Y) ,

which holds for any number k and any B with sufficiently small II BII
To verify (6.20) one need only to develop both sides into binomial series.

(6.18) permits the transformation of (6.14) into

(6.21) (1 + x C2 (x))-1/2 T (m) (1 + x C1 (n))-1/2 w = 2 (x) A w

where

(6.22) w = (1 + x C, (x))1/2 u .

It should be noted that the operator on the left of (6.21) forms a self-
adjoint family if both T (x) and A (x) are selfadjoint families.

The operator A on the right of (6.21) can be eliminated, if desired,
by a further transformation of the form (6.4). This is not necessary,
however, since A is independent of x. In the selfadjoint case with A > 0,
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it suffices to introduce the new metric (6.11) so that the operator on the
left of (6.21) becomes selfadjoint after multiplication from the left by A-',
thus reducing the problem to the standard form. The procedure described
here is particularly convenient inasmuch as no fractional powers (such
as Al/2) of operators are needed except those which can be calculated by
binomial series.

Problem 6.1. Let T (x) and A (x) be selfadjoint families with A > 0. Then 2 (x)
is real for real x, 2 (x) and P (x) are holomorphic near the real axis, and D (x) = 0.

3. Holomorphic families of type (A)

Suppose that the T (x) of (6.14) is holomorphic of type (A) near
x = 0, with the expansion (2.1). Then Ta(x) = A (x)-1 T (x) has the same
property, and we have

(6.23) Ta(x) u = A-' Tu + x(A-1 T(1) - A-' A(1) A-' T) u + .

The series for the eigenvalues A; (x) that arise by splitting from an
isolated eigenvalue A of T. (0) = A-1 T and for the associated eigen-
projections P5(x) can then be calculated by application of the formulas
of II-§ 2 to Ta(x). We shall write only the series for the averaged eigen-
value A (x) :

(6.24) (x) = A + x P) + .. .

P) = 1 tr(A-1 T(1) - A-' A(1) A-' T) P
M

= m tr (A-1 T(1) - A A-1 AM) P,

where P is the eigenprojection for A of A-' T, m = dim P and the as-
sociated eigennilpotent is assumed to be zero.

If {uk}, k = 1, . . ., m, is a basis of the eigenspace PX and {ek} is the
adjoint basis of P* X* (forming a biorthogonal set with {uk}), we have

1

(6.25) ,.(1) =.- f (A-' (T(1) - A A(1)) uk, ek)M k

1 m
nx ((T(1) --A AM) uk, fk) ,

k=1
where

(6.26) fk = (A-)* ek E A*-1 P* X* = (PA-)* X*

_ (A-1Q)*X*=Q*A*-1X*=Q*Y*

are characterized by the properties that

(6.27) (A uf, f k) = S;k , (A u, f k) = 0 for P u = 0 .
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In the special case in which X = Y = H is a Hilbert space, T (m)
and A (x) are selfadjoint and A is positive, it is convenient to choose uk
in such a way that f k = uk. This is equivalent to choosing uk according to

(6.28) (A u;, uk) = b k

If, in particular, m = 1, we have
a>) u u)

(6.29) A(,) = (Tw -

(A u, u)

where u is an eigenvector for A of A-' T. The coefficients AN for n z 2
can be calculated by the same method.

Of course one arrives at the same results if one starts from the
symmetric form (6.21) of the eigenvalue equation. But here there is some
inconvenience arising from the fact that the operator-valued function
on the left of (6.21) is not necessarily of type (A), thus preventing the
straightforward application of the formulas of II-§ 2.

4. Holomorphic families of type ($)
Suppose that T (x) of (6.14) is a holomorphic family of type (B) near

x = 0. Thus T (x) is an m-sectorial operator associated with a family t (x)
of sectorial forms with a constant domain D = D (t (x)) which has a
Taylor expansion of the form (4.15).

In this case we have again the results of par. 2, but the calculation
of the perturbation series is not so straightforward as in the case of
type (A) considered above. Here it is convenient to consider T(X)-1

instead of T (x) itself, assuming for the moment that t (x) has a positive
vertex y independent of x. Then T (x)-1 is bounded-holomorphic. Since
the inverse A (x) -I of the eigenvalue A (x) of (6.14) is an eigenvalue of the
inverted eigenvalue problem

(6.30) T (x)-1 v = A(x)-1 A (x)-1 v , v = A (x) u ,

A(x)-1 can be calculated by the method of the preceding paragraph,
from which the series for A (x) can be obtained. For example, if we have
a simple eigenvalue A of the unperturbed equation T u= A A u or
T-1 v = A-1 A-1 v, we obtain in this way

(6.31) AM = A +
ta> [u] - A(A(1) u., u)

x + .(A u, u)

the calculation is similar to that given in § 4.6 and may be omitted
(see in particular Remark 4.18).

We have assumed above that T (x) has a positive vertex, but this
assumption can be eliminated if the bounded form (A (x) u, u) has
a positive vertex. In this case we have only to consider T, (x) = T (x) +
+ a A (x) instead of T (x). If a is a sufficiently large real number, T, (x)
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has a positive vertex, while the eigenvalue Al (x) for the problem (6.14)
with T (x) replaced by TI (x) is equal to A (x) + a.

Remark 6.2. Eigenvalue problems of the form T u = A A u arise in a
natural way when one considers two quadratic forms t [u] and a [u].
In our treatment of forms t [u] in a Hilbert space H, we have been
mainly concerned with the relation between t [u] and the unit form hJuh12
which is a special quadratic form. When two forms t and a are to be
considered without any reference to a third form such as hJull2, there is no
longer any point in supposing that t and a are defined in a given Hilbert
space. Instead one could start from a vector space X in which both t
and a are defined and, if desired, make X into a Hilbert space by intro-
ducing an inner product suitably related to these forms. If a is a positive
symmetric form, for example, we may take a [u, v] as the inner product.
The perturbation theory for an eigenvalue problem (6.14) could also be
treated accordingly'.

We shall not go into this general theory. It will only be remarked
that the eigenvalue problem T u = A A u can be formulated directly in
terms of the forms t and a associated with T and A by

(6.32) t [u, v] = A a [u, v] for all v E D (t) n D (a) .

It will also be noted that, when both t and a are symmetric and certain
conditions are satisfied so that the eigenvalues form a discrete set bounded
from below, the eigenvalues of T u = A A u are characterized by the
minimax principle applied to the ratio t [u]/a [u] in place of I-(6.72).

5. Boundary perturbation
As an application of the preceding results, let us consider the so-

called boundary perturbation 2. A simple example is the eigenvalue problem

(6.33) - A u (x) = A u (x) , x E E C R'1

with the zero boundary condition

(6.34) u(x)=O, x E 2 E.

The main question is how the eigenvalues are changed by a small deforma-
tion of the region E.

In dealing with this problem, it is convenient to consider a family
E (x) of bounded regions depending on a small real parameter x and

1 For a general theory of quadratic forms see ARONSZAJN [2], [4].
2 See RHLLICH [8], COURANT-HILBERT (1), p. 419, SEGEL [1]. For formal

theory, see also MORSE-FESHBACH (1), SAITO [1]. For the stability of the essential
spectrum under variation of the boundary, see WOLF [3], KREITH and WOLF [1];
for the stability of the absolutely continuous spectrum, see BIRMAN [6].
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inquire into the dependence of the associated eigenvalues A (x) on M. We
shall assume that E (x) is obtained from E = E (0) by a one-to-one
transformation
(6.35) x -*y = x + x O(x)

where (x) is a sufficiently smooth function defined in an open set con-
taining the closure E = E v a E of E. 0 (x) may be regarded as a vector-
valued function with components 0k (x) = 07, (xl, ..., xn), k = 1, ..., n.

The eigenvalue problem (6.33), (6.34) to be considered in the region
E (x) is associated with the quadratic form

(6.36) f (grad u(y)l$ dy
E (m)

defined in the Hilbert space H (x) = L2 (E (x)) with the norm

(6.37) IIuIl2 = f !u(y)1a dy .
E(x)

To avoid the difficulty that the underlying Hilbert space H (x) depends
on x, we introduce the transformation

(6.38) u (x) = u (y) with x, y related by (6.35)

of functions u E H (x) to functions 4 E H = H (0). Note that u satisfies
the boundary condition u = 0 on aE if and only if u satisfies the boundary
condition u = 0 on aE (x).

Now (6.36) and (6.37) define two quadratic forms in H depending on x :

(6.39) t (x) [u]
E

f (grad u (y) I$ dy = f E I E ayk aax,) 12
J (x) dx ,it I

m) E

(6.40) a (x) [u] = f Ju (y) is dy = f 14 (x)1$ J (x) dx
E (m) E

where j (x) is the Jacobian of the transformation (6.35) :

(6.41) J(x) = J(x, x) = det (a,k + x aka )

By our assumptions on c, j (x) is a smooth function on E and so a (x) is
a bounded -symmetric form with positive lower bound. The associated
bounded operator A (x) is simply the multiplication operator by j (x, x).

Now' the eigenvalues A (x) to be considered are exactly the eigen-
values associated with the two forms t (x) and a (x) in the sense stated in
the preceding paragraph, that is,

(6.42) T (m) u= A (m) A (m),4

where T(x) is the operator associated with the form t(x). The forms
t (x), a (x) as well as the operators T (x), A (x) are dependent on x but
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they are defined in the fixed Hilbert space H, so that the preceding
results are applicable if T (x) and A (x) are shown to be holomorphic in M.

Since the k (x) are smooth, it follows from (6.41) that J (x) is a
polynomial in x with the constant term 1. Hence A (x) is bounded-
holomorphic in x and A (x) z S for some S > 0 if IxI is sufficiently small.
As regards T (x) or t (x), it should be observed that on the right of (6.39),
the axf/ayk as well as J(x) depend on x. But since the matrix (ax;/ay,)
is the inverse of (ay;/axle) = (61k + x it is easily seen that t(x)
can be expressed in the form

(6.43) t(x) [u]=t[u]+xt(')[i]+x2t(2)[12]+
where

(6.44)

t [u] = f grad ii (x) 11 dx ,
E

t(r) [u] =
J PPi('2(x) dx

d i ax{ axg
E

and the p, (x) are smooth functions such that

(6.45) IP,k(x)I <bc'-1, xEE,
with positive constants b, c. By making use of the Schwarz inequality,
it is then easy to show that the t(r) satisfy the inequalities of the form
It(T) [u]1 S b cr-1 t [u] with b, c not necessarily identical with those in
(6.45). This shows that t (x) has an analytic continuation which is holo-
morphic of type (a), and hence that T (x) is holomorphic of type (B),
according to Theorem 4.8.

It follows from the results of par. 2 that the eigenvalues A(x) of the
problem (6.33) - (6.34) are holomorphic in x near x = 0 when the underlying
region E (x) is obtained from E = E (0) by a transformation of the form
(6.35). The eigenfunctions u (x) = u (y, x) are also holomorphic in x,
but it requires a new definition because the region E (x) of the vari-
able y depends on x. We shall not go into this question, contenting our-
selves with the remark that the transformed eigenfunction u (x) = u (x, x)
is holomorphic in x as a vector-valued function with values in H.

These results can be generalized in several directions. First, the zero
boundary condition (6.34) can be replaced by others, for instance the
Neumann condition au/a'n = 0. In this case one need only to replace t (x)
defined above by its extension t1 (x) whose domain comprises all smooth
functions not restricted by boundary conditions. The associated operator
Tl (x) will be a second order differential operator with the Neumann
boundary condition, which acts on functions is (x) E H = L2 (E) as above.
The boundary condition of the third kind

(6.46) an + v(x) u = 0 for x E aE (x)
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can be treated in the same way by adding to tl (e) [it] a term depending
on the boundary value of u determined properly from the transformation
(6.35) (cf. VI-§ 4.4).

Second, the differential operator in (6.33) need not be the simple
Laplacian -d. There is no essential change if it is replaced by a second
order differential operator of elliptic type, such as

(6.47) Lu= - a ail. (x) au + bj(x) au + c(x) U.
j.5 axj ax_ j axj

Then it suffices to consider, instead of (6.36), the form

(6.48) f L aj k (y) aau au
k ayj + P bi (y) ayj u + c (y) hula, dy.

E(x)

Third, there is no essential difference even if the operator L and the
boundary condition (6.46) depend on x through the coefficients ajk (x),
b5 (x), c (x) and 6 (x) (simultaneous perturbation of the differential operator
and the boundary).

Chapter Eight

Asymptotic perturbation theory
In the foregoing chapters we have been concerned almost exclusively with

analytic or uniform perturbation theory, in which the continuity in norm of the
resolvent in the parameter plays the fundamental role. We shall now go into a study
in which the basic notion is the strong continuity of the resolvent. Here the as-
sumptions are weakened to such an extent that the analyticity of the resolvent or
of the eigenvalues of the operator as functions of the parameter cannot be concluded,
but we shall be able to deduce, under suitable conditions, the possibility of asym-
ptotic expansions of these quantities.

As in analytic perturbation, the behavior of the resolvent is basic for the
theory. We shall even define the notion of generalized strong convergence for
unbounded operators in terms of strong convergence of their resolvents.

An inherent difficulty in this generalized problem is that an isolated eigenvalue A
need not remain isolated under perturbation. Thus it is necessary to distinguish
between stable and unstable eigenvalues, with respect to a given perturbation. For
stable eigenvalues we can develop a theory of asymptotic expansion; the perturbed
eigenvalues and eigenvectors have asymptotic expansions in the parameter up to
certain orders, depending on the properties of the unperturbed eigenspace.

If A is not stable, it may happen that it is absorbed into the "continuous
spectrum" as soon as the perturbation is "switched on". Then it does not make
sense to talk about the perturbed eigenvalue. But the resulting continuous spectrum
is supposed to have a particular concentration near A - the so-called spectral
concentration phenomenon.
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The asymptotic theory developed here roughly corresponds to what is called
singular perturbation in the theory of differential equations'. The results given in
this chapter are abstract and should be applicable to differential equations. At
present, however, the abstract theory is not advanced enough to comprise singular
perturbation theory for differential equations.

§ 1. Strong convergence in the generalized sense
1. Strong convergence of the resolvent

Let be a sequence of closed operators in a Banach space X.
In the present section we are concerned with general considerations on
strong convergence of the resolvents R (C) = (T - C)-1. Let us recall
the fundamental result on the convergence in norm of the resolvents:
if R (C) converges in norm to the resolvent R (C) = (T - C)-1 of a closed
operator T for some C E P (T), then the same is true for every C E P (T)
(see Theorem IV-2.25, Remark IV-3.13, and Problem IV-3.14).

There is no corresponding theorem for strong convergence of the
resolvents. Nevertheless, we can prove several theorems on the set of
points C where the R,,, (C) are strongly convergent or bounded.

Let us define the region of boundedness, denoted by Lb, for the sequence
{R;, (C)} as the set of all complex numbers C such that C E P for
sufficiently large n and the sequence is bounded [for n so large
that the R (C) are defined] 2. Furthermore, let Og be the set of all C such
that s-lim R (C) = R' (C) exists. Og will be called the region of strong
convergence for {R. (C)}. Similarly we define the region Au of convergence
in norm for {R (C)}. Obviously we have Au C 4 C Ob.

Theorem 1.1. Ob is an open set in the complex plane. {R. (C)} is bounded
uniformly in n and C in any compact subset of Ob.

Proof. Let Co E Ob; we have the Neumann series (see III-§ 6.1)
00

(1.1) R.(C) = Z' (C - Co)k Rn(C0)k+1 for IC - Col < IIRn(C0)II-1
k=0

If IIR.(Co)II 5 M0, then IIR.(C)II S Mo(1 - Mo IC - Col)-1 for IC - Col <
< Mo 1. The theorem follows immediately.

Theorem 1.1 implies that Ob consists of at most a countable number
of connected open sets Ab1, Ab2, ...,(the components of Ab).

Theorem 1.2. A. is relatively open and closed in Ab (so that A. is the
union of some of the components Ob k of Ab). The strong convergence R. (C) -
- R' (C) is uni f orm2 in each compact subset of A,

1 For a general discussion see FRIEDRICHS [5].
S For convenience we call Ab also the region of boundedness for the sequence

if there is no possibility of confusion. Similarly for AS and 0,,.
The strong convergence R. (C) - R' (C) is uniform in C if 11R (4) u - R' (C) u11 -

- 0 uniformly in 4 for each fixed u E X.



428 VIII. Asymptotic perturbation theory

Proof. If s-lira R,,, (Co) = A exists, we have s-lim R,,, (Co)k = Ak,
k = 1, 2, .... Since the series on the right of (1.1) is majorized in norm
by the numerical series ' Mok+1 IC - Colk, it follows that s-limR (C)
exists and is equal to A (1 - (4 - Co) A)-1 for IC - oI < Mo 1. This
shows that As is open and at the same time proves the last assertion of the
theorem.

To prove the relative closedness of As, let 4 E Ab and assume that in
each neighborhood of C there is a Co E As C E Ab implies that IIR. (C) 11 5 M
for a constant M. Take a Co E As such that IC - CoI < 1/2M. Then
IIR. (C0)II < (1 - 2-1)-'M = 2M = M, and s-limR (C) also exists because
IC - Col < 1/2M = Mi 1. Hence C E As.

The strong limit R' of R,, (C) for C E As need not be the resolvent
of an operator. In any case, however, R' satisfies the resolvent equation

(1.2) R' (CI) - R' (C2) = (Cl - C2) R' (C,,) R' (S2), C11 C2 E As ,

as the strong limit of operators R,, (C) which satisfy the same equation.
For this reason R' is called a Pseudo-resolvent. Note that R' (C1) and
R' (C2) commute.

(1.2) implies that the null space N = N (R' (C)) and the range R
= R(R' (a)) of R' (C) are independent of C. In fact, it follows from (1.2)
that R' (C, 2) u = 0 implies R' (C1) u = 0 and that u = R' (C2) v implies
u = R' (C,) w with w = v - % - S2) u.

The pseudo-resolvent R' (C) is a resolvent (of a closed operator T)
if and only if N = 0. The necessity of this condition is obvious. To prove
its sufficiency, we note that every u E R can be written as u = R' (C) v (C);
here v (C) is uniquely determined if N = 0. Application of (1.2) to u gives

R' (Ci) R'%) (v (b2) - v (Ci)) = R' (CI) u - R' (C2) u = (Cl - S2)R' (Ci) R' (C2) u

and hence v (C,2) - v (CI) = (Cl - b2) u by N = 0. This implies that
v (C) + C u is a vector independent of C ; we shall denote it by T u, T is a
linear operator in X with D (T) = R and T u - C u = v (C) = R' (C)-1 u.
Hence R'(C) = (T - b)-1 is the resolvent of T; the closedness of T
follows from the fact that R' M E Note that As is a subset of the
resolvent set P (T).

Theorem 1.3. Let A. be nonempty. There are the alternatives: either
R' (C) is invertible for no C E As or R' (C) is equal to the resolvent R (C)
= (T - a)-1 of a unique operator T E '(X). In the latter case we have
As = P (T) n Ab.

Proof. Only the last statement remains to be proved. We have
As C P (T) n Ab since we proved above that As C P (T). To prove the
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opposite inclusion, we note the identity

(1.3) R. (C) - R (C) _ (1 + (C - Co) R. (C)) (R (Co) - R (Co)) (1 + (C - Co) R (C))

for C, Co E P(T) n Ab; this is a simple consequence of the resolvent
equations for R (C) and R (C). If Co E As, we have s-lim R (CO) = R'(C0)
= R (CO) so that (1.3) gives s-lim R,, (C) = R (C) by the uniform bounded-
ness of {R (C)}. This shows that C E AS and completes the proof.

Corollary 1.4. Let T and T be selfadjoint operators in a Hilbert space,
with the resolvents R (C) and R (C). If s-lim R,, (C) = R (C) for some complex
number C, then the same is true for every nonreal C.

Proof. Since 11Rn(C)Jj 5 1/lImCl, all nonreal numbers C are included
in Ab as well as in P (T). Thus P (T) n Ab also includes all nonreal C,
and the assertion follows from Theorem 1.3.

When the second alternative of Theorem 1.3 is realized, we shall say
that R (C) converges strongly to R (C) on A, and that T converges strongly
to T (T,, - T, in symbol) in the generalized sense'.

s

A criterion for generalized strong convergence is given by
Theorem 1.5. Let T, T E ' (X) and let there be a core D of T such that

each u E D belongs to D for sufficiently large n and T u T u. If
P (T) n Ab is not empty, T converges strongly to T in the generalized sense
and A5 = P (T) n Ab.

Proof. For any C E P (T) n Ab, we have R (C) u - R (C) u = R (C)
(T - T) R (C) u -> 0 if R (C) u E D (note that the IIR (C) 11 are bounded).

But such u form a dense set in X because D is a core of T (see Problem
111-6.3). Since the IjR (C) II are bounded, it follows that R (C) . R (C)

(see Lemma 111-3.5). Thus A. ) P (T) n Ab and the second alternative of
Theorem 1.3 must be realized.

Corollary 1.6. Let T, T be selfadjoint operators in a Hilbert space,
and let there be a core D of T such that T u -* T u for u E D. Then
R (C) 5 R (C) for every nonreal C, and T converges to T strongly in the

generalized sense.
Remark 1.7. In general there is no simple relationship between the

strong convergence of in the generalized sense and that of
(assuming that the T are densely defined so that the T, exist). This is
true even when T E -4 (X) and s-lim T = T exists in the proper
sense. But the following theorem should be noted.

Theorem 1.8. Let {T} and {Tn*} converge strongly to T and T*, re-
spectively, in the generalized sense, T and T being densely defined. Let As
and A$ be the regions of strong convergence of the resolvents of T and
respectively. Then A: is identical with the mirror image Os of A. with
respect to the real axis.

1 For a related notion cf. MASLOV [2].
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Proof. This is a direct consequence of the formula 4 = Ab n P (T)
and a similar one for A,*, for we have Ob = b and P (T*) = I (see
Theorem 111-6.22).

Remark 1.9. We have been considering the strong convergence of a
sequence {R,, (C)} of resolvents, but we can deal in quite the same. way
with a family of resolvents R (C, x) = (T (x) - a)-' depending on a
continuous parameter x. In what follows we shall do this without any
explicit comments.

Example 1.10. Let H be a selfadjoint operator in a Hilbert space H, and let
T. = n-I H. Then T. u -+ 0 for every u E D (H). Since D (H) is dense in H, it is a
core of the bounded operator T = 0. Hence Corollary 1.6 is applicable, with the
result that R. (4) --> R (4) = -1/C strongly for any nonreal C. This implies that
(1 - n-1 a H)-I 1 strongly for any nonreal a. This result is not quite trivial. If
the spectrum E (H) of H is the whole real axis, Eb is the union of the upper and
lower half-planes (ImC C 0), and Ab = As = P (T) n Ab [P (T) is the whole plane
with the exception of the origin].

Example 1.11. Let X = L2(0, oo) and

(1.4) T. = -d2/dx2 + qn(x) , T = -d2/dx2 + q(x)

with the boundary condition u (0) = 0, say, where q (x) and the q (x) are real-
valued functions. Under certain conditions (see V-§ 3.6) T. and T are selfadjoint
and Co (0, oo) is a core of T. Suppose now that

b

(1.5) f Jgn(x) -q(x)I2dx-+0
a

for any a, b such that 0 < a < b < oo. Then we have T. u --> T u for u E COT. It
follows from Corollary 1.6 that R. (4) s R (4) for every nonreal C. This means that
the solution of the boundary value problem

(1.6) =l(x), u(0) = 0, uEL2(0,cc),

converges in L2 (0, oo) to the solution of the same problem with q replaced by q.
See also the examples of par. 4.

Example 1.12. Consider the operator T (x) = T + x A in which T and A are the
shift operators in P (- oo, oo) discussed in Example IV-3.8. The spectrum E (T (x))
for x 4 0 is the unit circle J41 = 1. Let R (g, x) = (T (x) - C)-I. Since JJR (C, x) 11 5
S (ICI - 1)-I for ICI > I and Jul S 1 (see Problem IV-3.10), the exterior of the unit
circle belongs to the region of boundedness Ab for R (4, x) for x -* 0. But the interior
of this circle does not belong to Ab (see be. cit.). Here we have the relations P (T)
= Ab = As = the exterior of the unit circle.

Example 1.13. Let T be a closed, maximal symmetric operator in a Hilbert space
H and suppose T is not selfadjoint. We may assume that the upper half-plane
I m C > 0 is the resolvent set P (T), whereas the lower half-plane has no point in
P (T). Let be a sequence of orthogonal projections with the following properties.
i) The P. are nondecreasing (P15 P2 5 ) with s-lim P = 1; ii) P. X C D (1);

00

iii) P. T P. u -+ T u if u belongs to the linear manifold D = U P. X; iv) D is
n=1
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a core of T. Such a sequence can be constructed in the following way'. Let u,, E D (T)
be a sequence dense in H. Let be the orthonormal family obtained by applying
the Schmidt orthogonalization process to the sequence {u,,, (T - i)-1 un}. If P. is
the projection on the n-dimensional subspace spanned by v1, ..., v,,, has
the required properties.

Set T. = P. T P.. The T. are obviously bounded and symmetric, hence self-
adjoint. Thus the region of boundedness Ab for {Tn} comprises all nonreal numbers.
Furthermore, it follows from iii), iv) and Theorem 1.5 that As = P(T) r) Ob is
exactly the upper half-plane. This is an example in which As is a proper subset of Ab.

2. Generalized strong convergence and spectra

We have seen before that the spectrum E (T) is upper-semicontinuous
with respect to the generalized convergence (convergence in gap) of the
operator, that is, Y. (T) does not expand suddenly when T is changed
slightly in the sense of generalized convergence (in gap). The situation
is quite different if generalized convergence (in gap) is replaced by
generalized strong convergence defined above or even by strong con-
vergence. This is one of the reasons why we had to introduce the region
of strong convergence Os in the theorems proved above.

A very simple counter-example is furnished by a sequence of
orthogonal projections in a Hilbert space such that E -- 0. The limit

s

operator 0 has the single point C = 0 in its spectrum, but E in general
contains two points C = 0, 1. Since, on the other hand, E (T) is in general
not lower-semicontinuous even in the sense of convergence in norm,
we conclude that it is neither upper- nor lower-semicontinuous in the
sense of strong convergence.

However, the lower-semicontinuity of the spectrum can be proved
under certain restrictions.

Theorem 1.14. Let H, H be sel/adjoint operators in a Hilbert space H
and let H converge to H strongly in the generalized sense. Then every open
set containing a point of Y. (H) contains, at least a point of Y. for sul-
fieiently large n.

Proof. LetA E(H) and set C = A+ i e, e>. 0. We have 11 R (C) 11 = 1/8
since H is selfadjoint, so that there is a u E H such that 11R (C) ull z 1/2 s,
11 u11 = 1. But we have R (C) u -* R (C) u by hypothesis (see also Corollary
1.4). Hence JJR,, (C) ull z 1/3 s for sufficiently large n. Since H. is self-
adjoint, this implies that there is a 4 E E such that IA,, - Cl 5 3 s or
I2 - Al S 4 e. Since s > 0 is arbitrary, this proves the theorem.

Theorem 1.14 can be strengthened in a certain sense to the following
one:

1 See STONE (1), p. 166.
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Theorem 1.15. In Theorem 1.14 let H = f H = f dE(A)
be the spectral representations o l the operators involved. Then 1, a

(1.7) s-lim E,1(A) = E (A) if E (A - 0) = E (A) .
n_00

Proof. We may assume without loss of generality that A = 0. We
recall that E. (0) + E,1 (- 0) is given by Lemma VI-5.6 with A = 0 and H
replaced by H. Or we may write

(1.8) (1 - E.(0) - H. (H.2 + 1) -1
00

f H. (Hn + r1a)-1 H. (Hn + 1) -1 dr1;
0

e
in this form we need not write lim f on the right, for the integral is

e-*0 ee M
absolutely convergent by

(1.9) II Hn(HH + rl2)-1 HH(Hn + 1)-11I 5 min(1, 77-2)

Furthermore, we note that (E (0) - E. (- 0)) H. (Hn + 1)-1 = 0, for
E. (0) - E. (- 0) is the projection on the null space of H. Hence the
E,,(-0) on the left of (1.8) can be replaced by E (0) . We have also a
formula similar to (1.8) with H, E replaced by H, E respectively.

The integrand in (1.8) tends to H(Ha + 172) -1 H(Ha + 1) -1 strongly
as is -+ oo since R (C) -3. R (C) for any nonreal C. In view of (1.9), it

s

follows by the principle of dominated convergence that

(1.10) (1 - 2E,, (0)) H,, (H.2 + 1) -1g (1 - 2E(0)) H(Ha + I)-I.

On the other hand, 1)-1-H(H2+ 1)-1 byR.(fi) g R(+i).
Hence
(1.11) (1 - 2En(0)) [H.(HH+ 1) -1 - H(H2+ 1)-1]g0.

(1.10) and (1.11) together give

(1.12) (E (0) - E (0)) H (Ha + 1) -1 . 0.
S

1 (1.7) can be generalized to s-limE (An) = E (A) for 4 -+ A. For the proof it
suffices to note that E E;, (A) where E is the spectral family for H = H. -
-(A. - A) and thatHagH since A.- 2 -+ 0. We remark also that s-limEn (An - O)
= E (A) is true. For the proof note that E. (A - n-1) has the same
strong limit E (A), so that E. (A - n-1) g 0; then 0 S E. (A -

E. E. E. E. (An - 0) g 0.
S We could also raise the question whether 0 --b (H) is true for a given

s
function 0. We shall not consider this problem in the general form. For a related
problem for spectral operators see FOGUEL [1].



§ 1. Strong convergence in the generalized sense 433

This implies that E (0) u --. E (0) u if u = H (Ha + 1) -1 v, v E H,
in other words, if u is in the range of H (Ha + 1)-1. But this range is
dense in H, for H(H2+ 1)-1 is a selfadjoint operator with nullity zero
[see III-(5.10)]. Since E71(0) is uniformly bounded, it follows that
E,,, (0) -. E (0) (see Lemma 111-3.5).

S

Remark 1.16. The argument used in the above proof may be generaliz-
ed in the following way. One wants to prove a strong convergence
A,,, -> A, but one first proves A 0 A q (H) for a certain function c.

S

One also proves 0 (H.) (H). Then A,, (H..) - A7, 0 (H) --. 0 if A
S S

is known to be uniformly bounded. Hence (A,,, - A) 0 (H) -. 0. If 0 is such
S

that the range of 0 (H) is dense in H, one then concludes that A. -.. A.
S

3. Perturbation of eigenvalues and eigenvectors
The lack of upper-semicontinuity of the spectrum under a perturba-

tion in the strong sense is rather embarrassing in the perturbation
theory of spectra and, in particular, of isolated eigenvalues. Contrary to
the case of a small perturbation in the sense of gap, it may well happen
that an isolated eigenvalue of an operator T becomes involved in the
"continuous spectrum"' as soon as T is subjected to a perturbation
which is small in the strong sense. Let us show by simple examples how
such seemingly singular phenomena sometimes take place and sometimes
do not.

Example 1.17. Let X = L2 (- no, oo) and let T be an integral operator with the
kernel t (y, x) = - f (y) f (x), where f (x) is a continuous function with 11th = 1 and
f (x) + 0 everywhere. Let PI) be the maximal multiplication operator by x:
211) u (x) = x u (x). T is bounded and selfadjoint, and has the eigenvalues 0, - 1; -1
is simple but 0 has multiplicity no.

Set T (x) = T + x PI) for x + 0. T (x) is selfadjoint for real x. For a complex x
the numerical range O (T (x)) of T (x) is a subset of the strip 1Ix between the two
straight lines i _ tang and i = -1 + $ tanO, where C = $ + i ri and 0 = argx.
Now (T (x) - C)-1 = x-1(T"u + x-1 T - x-1 C)-1 exists and belongs to V (X)
at least if jr'ITIC = Ix-1I < IIm (x-1 C) I = II (Tu) which means that C
is sufficiently far from the strip IIX. Thus T (x) has deficiency index (0, 0) and the
exterior of that strip belongs to P (T (u)), with II R (g, x) I S 1(dist (g, (see V-
§ 3.2).

Suppose now that x varies over the region D.: IImxI < M IRexl. It follows from
the above result that if C belongs to one of the two sectors > ¢ (g) + e, 11 <

where e >0 and
(1.13)

then IIR(C, x)11;5 ---I (MI + 1)112.

1 We have not defined the notion of the continuous spectrum of an operator.
We use this term here in a rather vague sense, implying the set of non-isolated
points of the spectrum. We shall give a precise definition later for selfadjoint
operators (Chapter X).
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Now let x -+ 0 with x E Do. It follows from the above result that the two sectors

(1.14) and

belong to Ob. Furthermore, T (x) u -* T u if u E D (T1)). Since D (T'>) is a core of T
and II± E P (T), II± also belong to As by Theorem 1.5. Thus T (m) ---' T in the

s
generalized sense.

Similar results hold when x is restricted to the region D,: JImxI > m lRexl,
m > 0. In this case Ab and As contain two sectors InI < m and 1271 < - m ( + 1),
and T (x) - T in the generalized sense when x 0 within D,

s
Let us consider the spectrum of T (x). It is clear that E (TM) is exactly the real

axis, which is at the same time the essential spectrum Me W'>) of TW (see IV-§ 5.6).
Since T is degenerate with rank 1, 2'W + x'1 T has the same essential spectrum as
211> (see Theorem IV-5.35). This implies that, for any x 4 0, the essential spectrum
of T (x) = x (T<') + x-1 T) is the straight line passing through 0 and x, so that the
rest of E (T (x)) consists of isolated eigenvalues with finite multiplicities (see loc. cit.).

If, in particular, x is real, T (x) has no isolated eigenvalue (since it is selfadjoint
and has its spectrum on the real axis). Furthermore, it has no eigenvalue at all.
In fact, suppose T (x) u = A u. This implies that

(1.15) - (u, f) / (x) + x x u (x) = A u (x) ,

(1.16) U W =
c l (x)

xx -A
,

c = (u, f) .

But such a u belongs to X only if u = 0, for the denominator x x - A has a
zero at x = A/x if A is real. On the other hand T (m) has no nonreal eigenvalue as
noted above. It can be shown that T (m) has a pure continuous spectrum over the
real axis'.

If x is not real, on the other hand, the u of (1.16) can belong to X without
being 0. The eigenvalue A is determined by the equation

0
(1.17) f i/(x)I2 dx = (u, f)lc = Ixx - A

-00

It can be shown that (1.17) determines A uniquely as a function of x, at least for
small IxI and IA + 11, and that A = A (x) tends to A (0) = -1 if x -+ 0 with x E Dl.

Thus the isolated eigenvalue -1 of T becomes absorbed into the continuous
spectrum of T (x) when x is real, though it can be continued as an isolated eigenvalue
if x E Dl. The other eigenvalue 0 of T also diffuses into the essential spectrum in any
case; this should be expected from the fact that it has multiplicity co.

Example 1.18. Let X and T be as in Example 1.17 and let 711> = x2. Again
T (x) = T + x TO) converges strongly to T in the generalized sense, if x -+ 0
within De or D,. In this case, however, T (x) has just one eigenvalue for real x > 0;
for the eigenfunction u (x) corresponding to (1.16) has the denominator x x2 - A,
which does not vanish if A < 0. It is easy to show that the condition corresponding
to (1.17), with x x - A replaced by x x9 - A, determines A = A (x) as a negative,
increasing function of x for x > 0 and that A (x) -* -1 for x y 0. Furthermore, the
essential spectrum of T (m) coincides with the nonnegative real axis for x > 0.
E (T (x)) consists of one negative eigenvalue A (x) and a continuous spectrum
covering the positive real axis if x > 0. The perturbation of the spectrum looks

1 This can be proved by observing that T (x) = x (T11) + x'' T), where PI)
has an absolutely continuous spectrum and T is a degenerate operator (see Theorem
X-4.4).
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quite normal for x > 0 so far as concerns the isolated eigenvalue -1 of T. Similar
behavior of the spectrum of T (x) may be expected when x is not real but 1argx1 S
sX-e,e>0.

But the situation is entirely different if x is real and negative. In this case it is
easily seen that T (x) has no eigenvalue; the isolated eigenvalue -1 of T is absorbed
into the continuous spectrum as soon as T is changed into T (m).

Example 1.19. Let X be any one of the function spaces L9(0, 1), 1 S p < oo,
or C [0, 1]. Let

d d$
(1.18) T(x)=2adx-xdxa' a+0,
with the boundary condition

(1.19) u(0) = u(1) = 0.

T (x) is closed for x + 0 with D = D (T (n)) independent of x. T (x) is even self-
adjoint if X = L', x is real, x + 0 and at is pure imaginary. A simple calculation
shows that if x + 0 the spectrum of T (x) consists of isolated eigenvalues

(1.20) (x) = n$ n$ x + n = 1, 2, 3, ... .

What is the "limit" of T (x) as x 0 ? Formally one would have T (0) = 2 at d/dx.
If one keeps the boundary condition (1.19) for this first-order differential
operator, the spectrum of the closure T (O)- of T (O) is the whole complex plane
(Example 111-6.8). But T (0)" is not a reasonable limit of T (x) since it is natural to
require not two, but only one boundary condition of a first-order differential
operator. There are an infinite number of possible boundary conditions compatible
with (1.19), namely
(1.21) u(0)=0u(1)

where 0 is a fixed complex number (including 0 = oo). The question is the choice
of a "correct" boundary condition from among (1.21). This is a typical problem
of the singular perturbation of differential operators.

The difficulty of this problem lies in that it is not covered by Theorem 1.5.
We have indeed T (x) u -+ T (0)" u, x 0, for u E D, but P (T (0)') is empty and it is
impossible to find an extension of T (0)" which has a nonempty resolvent set and for
which D is a core.

Actually T (x) converges to a definite closed operator T in the generalized sense,
not only in the strong sense but even in gap, provided that x 0 with x/a being kept
away from the imaginary axis. This is seen most directly by constructing the
resolvent R (C, x) = (T (x) - 0-1 as an integral operator with the kernel g (y, x; C),
the Green function. A straightforward calculation gives

(1.22) g. (y, x.; C) =

(Y-x)

U«' - xa' - x C sinh -
x

8 - 8 -
sinh

a
x

x
y) sinh

a
x

x C (1 - x) , Y;5 x,

C (1 - y)) sinh a x x x), y z X.sinh V a x



436 VIII. Asymptotic perturbation theory

Now let x -+ 0. If this is done under the restriction larg (x/a) I S 6 < ac/2, it can be
shown without difficulty that

0, y <x,
(1.23) gx (y, x; 0) - g (y, x; 0) = 1 y>x,
gm (y, x; 0) being uniformly bounded in the square 0 < x < 1, 0:&- y S 1. The
limiting kernel g (y, x; 0) is exactly the Green function for the operator T = 2 a d/dx
with the boundary condition u (0) = 0, which corresponds to (1.21) with 0 = 0.
(1.23) implies that

1 1

(1.24) f f Igx(y,x;0) -g(y,x;0)12dxdy-* 0
0 0

by the principle of bounded convergence. If we consider the case X = L2, IDR (0, x) -
- R(0)I12 does not exceed the left member of (1.24) (see Problem 111-2.5), where
R (C) = (T - C)-1. Hence we have R (C, x) R (C) in norm for C = 0 and this
implies the same for every C E P (T) (see Remarks IV-3.13, 14). In other words,
T (x) T in the generalized sense (in gap). Thus we conclude that the correct choice
among the boundary conditions (1.21) is the one with 0 = 0, it the limit x -+ 0 is taken
in such a way that Iarg(x/a) I S & < x/2. It is interesting to note that the spectrum
of T (x) recedes to infinity as x 0; if, for example, a is real positive, E (T (x)) is
contained in the half-plane Re 4 Ixl-1 cos8. This does not conflict with the upper
semicontinuity of the spectrum under perturbation small in gap, for the spectrum
of T is empty (see Example 111-6.8).

Similarly, the correct boundary condition for the "limit" T of T (x) is given by
0 = oo in (1.21) if the limit x 0 is taken in such a way that larg(-x/a)I < & <
< n/2. On the other hand, T (x) has no generalized limit (even in the strong sense)
when x ->- 0 with x/a kept pure imaginary. We shall omit the proof, but this
may be expected from the fact that no distinguished 0 in (1.21) exists in this
case. The spectrum of T (x) behaves in a complicated way when x 0. If, for
example, a is pure imaginary and x > 0, the eigenvalues (1.20) are all real. Each
A, (x) tends to - on as x + 0, whereas the spacing of the eigenvalues becomes
more and more dense. Thus the whole real axis may be regarded as the limit of
E (T (x)).

Example 1.20. Let X be as in Example 1.19 and let

(1.25) T (x) _ - a d2/d x2 + x d6/d 0 ° , a > 0 ,
with the boundary condition

(1.26) u(0) = u'(0) = u(1) = u'(1) = 0.

For small x > 0, T (x) represents the operator that governs the motion of a stretched
string with small rigidity clamped at both ends. If x + 0, T (x) formally tends to
T (0) = -a da/dx$. But the boundary condition (1.26) is too strong for a second
order differential operator d2/dx2, and we have again a problem of singular perturba-
tion: the basic problem is the determination of the correct boundary condition for
T (0). Physical intuition leads immediately to the conjecture that

(1.27) u(0) = u(1) = 0
is the required boundary condition. In fact, it can be shown that T (m) T
= - a d2/dx8 with the boundary condition (1.27) in the generalized sense, at least
for X = L2. This could be seen directly by considering the Green function as in
Example 1.19, but we shall deduce this later from a more general point of view
(see Example 3.8).
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The generalized convergence T (m) -* T (in gap) implies that each isolated
eigenvalue A. of T is continued continuously to the corresponding eigenvalue
A. (x) of T (x). It is known that'

r x1 112

(x) = n2 n2 a
L1

+ 4 -/ +0(.)] , x > 0 .

Thus the eigenvalues are continuous at x = 0 but not differentiable.

These examples will suffice to show that the spectrum of an operator
can behave in quite a complicated way under a "singular" perturbation.
In particular, it should be noticed that the behavior may be essentially
different for different directions from which the parameter x tends to zero.
Thus the perturbation is not very singular in Examples 1.19 and 1.20
if a > 0 and x 0, for here we have a generalized convergence in gap
of T (m) to T.

Under such a singular perturbation an isolated eigenvalue does not
in general remain isolated; it may be absorbed into the continuous
spectrum. If one wants to develop a singular perturbation theory of
isolated eigenvalues, therefore, it is necessary to assume explicitly that
such an absorption does not take place. But the question of deciding
when this assumption is satisfied is complicated, and a satisfactory
answer does not seem to exist in general. We shall consider these ques-
tions in due course.

If the eigenvalue A is absorbed by the continuous spectrum, we can
no longer speak of the perturbation of the eigenvalue A. Sometimes,
however, the perturbed continuous spectrum has a certain kind of
concentration near A. This phenomenon of spectral concentration will be
discussed in § 5.

4. Stable eigenvalues
According to the remark given in the preceding paragraph, we

consider the perturbation of an isolated eigenvalue under the assumption
that it remains isolated in spite of the perturbation. To make this
assumption more precise, we introduce the following definition.

Let T.n -. T, n ->- oo, in the generalized sense. An isolated eigenvalue A
s

of T with finite multiplicity is said to be stable under this perturbation if
the following conditions i), ii) are satisfied.

i) The region of convergence A, for R,,(C) contains a neighborhood
of A with the exception of A. In other words, there is a 6 > 0 such that
every C with 0 < IC - Al < 6 belongs to P (T,,) for sufficiently large n
(depending on C) and R. 5 R (C), n oo.

This condition implies that the circle P : - Al = r, 0 < r <
is a subset of A., and that the convergence R,, (C) --i R (C) is uniform on r

8

' See RAYLEIGH (1), p. 300.
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(see Theorem 1.2). Therefore, the projection

(1.29) P11 = - 2 % J
R. (C) d C

r
is defined and

(1.30) P,
S

P=-2n% f R(C)dC,
r

where P is the eigenprojection for the eigenvalue A of T.
ii) dim P. s dim P for sufficiently large n.
In view of (1.30), ii) actually implies that

(1.31 a) dim P = dim P for sufficiently large n ,

(1.31b) JJ(P,,-P)PII-.0, 0, 1J(P,,-P)2F1-0,

(1.31c) PX) -> 0 , n -- oo,

where 8 is the gap function introduced in IV, § 2.1. These relations follow
from Lemma 1.23 proved below. [We shall express (1.31 c) by saying
that P -> P in gap.]

dim P = dim P = m < oo implies that the spectrum of T. inside the
circle r consists of isolated eigenvalues with total multiplicity m. Since
this is true for any choice of the radius r of r provided n is sufficiently
large, it follows that these isolated eigenvalues of T. converge to A.
At the same time, (1.31 c) implies that the total projection associated with
these eigenvalues (that is, the projection to the m-dimensional space
which is the direct sum of the algebraic eigenspaces for these eigenvalues)
tends in gap to the eigenprojection P for A of T. Thus the stability of 2
implies already the convergence of the eigenvalues and the eigenspaces
involved. It should be remarked, however, that the eigenspace for each
individual eigenvalue of T 'need not be convergent ; such an eigenspace
need not even have constant dimension.

Example 1.22. The eigenvalue -1 of T of Example 1.17 is not stable for the
perturbation considered if x is real and x -. 0. But it is stable if x -. 0 along a
straight line different from the real axis. In Example 1.18, the eigenvalue -1 of T
is stable if x -. 0 along a ray different from the negative real axis. In Example 1.19,
T has no eigenvalue at all so that there is no question of stability. In Example 1.20,
all the eigenvalues of T are stable if x ->- 0 along the positive real axis.

Lemma 1.23. Let n = 1,2, . . . , be a sequence of projections in a
Banach space X such that P, P E 9(X). Then P is also a projection.
Suppose further that dim P.;5 dim P < oo for all n. Then (1.31 a), (1.31 b),
and (1.31 c) are true.
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Proof. Pn = P and P. - P together imply P2 = P, so that P is a
projection. Let {x1, . . ., x.) be a basis of P X, where m = dim P. Then

M

(1.33) P= E ( ,ek)xk, ejEP*X*
k=1

by III-(4.6); the fact that e; E P* X* can be seen by noting III-(4.9). The
condition P2 = P leads, as is easily seen, to

(1.35) (xk,eI)=8;k, k,j=1,...,m.
Hence {e1, . . . , e,,} is exactly the basis of P* X* adjoint to the basis
{x1,...,x,,} of PX.

Set

(1.36) ask = (Pnxk, ej) , j, k = 1, ... , m ; n = 1,2, ... .

Since Pnxk -> Pxk = xk as n -*oo, we have

(1.37) cck-+ bjk, n->oo

In particular det(a7k) 1, which implies that Pnx1, ... , P,, x,n are line-
arly independent if n is sufficiently large. Since dim P m by hypo-
thesis, they form a basis of P. X with dim P,, = m. This proves (1.31 a).

Also we can write
m

(1.38) Pn= , ' (,/) Pnxk,
k=1

where {fl, ... , fm} is the basis of P* X* adjoint to the basis {Pnx1
.... Pnxm} of P X (see the argument for P given above). Thus

711

P*= Fi (,Pnxk)!.
k=1

(again by III-(4.9)) and, in particular,

by (1.36). Hence

m m
nnP* et = E (ei, Pnxk) !k = E ayklk

k=1 k=1

M

(1.39) / = E fk1 P* e, ,
i=1

where (S7k) is the inverse matrix to (4h), so that

(1.40) P7k-+ f, , n-* oo.
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Since P,, P implies P* w P*, we have P* e1 w P* e i = ej. Hence
(1.39) and (1.40) give

(1.41) fk w ek, n-*oo

Now we can complete the proof of the lemma. The first convergence
in (1.31 b) follows from Pn s P and dim P < oo by virtue of Lemma III-
3.7. Indeed, II (Pn - P) PII = sup II (Pn - P) Pull sup II (Pn - P) vil

II-11S1 IIvIE IIIPIIP

0. To prove the second one, we note that (1.38) implies

(Pn-P)Pn=Fi (,fk)(P.-P)Pnxk,
k=1

hence

IIPn- P)Pnil s X IIfkII IIPn- P)Pnxkll
k=1

Since Ilfkll 5 const. by (1.41) (see Problem 111-1.30) and since
II (Pn - P) Pnxkll - 0 by Pn P, we have II (P,, - P) Pnll -> 0 as required.

Obviously the last convergence in (1.31 b) follows from the preceding
two.

To prove (1.31c), it suffices to notice that

8 (P X, P. X) = sup dirt (u, P. X) ` sup II (P - P) Pull
uEPX,llullsl uEPx,llulls1

II(P.-P)PII-O
by (1.31b) and similarly 6(P,, X, P X);5 ll (P,, - P) P,II --).. 0. Then we
have 6(P X, PX) = max{6(P, X, PX), 6(PX, P,, X) 0 as required.
This completes the proof of Lemma 1.23.

For later use we add

Lemma 1.24. In addition to the assumptions of Lemma 1.21 a, assume
that P* P*. Then IIPn - PII - 0.

Proof. In this case we have P* e, -> P* e, = e; . Hence (1.39) and
(1.40) give

(1.42) 1"-sek,

Since
M

P. - P = E [( , fk) (Pn xk - xk) + (, fk - ek) xkl
k=1

by (1.33) and (1.38), we obtain

m

IIPn - PII: E [IIfk1IIIPnxk-xkif+ll/, -ekUllxkll] -,0
k=1
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§ 2. Asymptotic expansions
1. Asymptotic expansion of the resolvent

In what follows we shall be concerned with a rather special but
practically important case in which T (m) is given formally by T (m)
= T + x T(1). More precisely, we assume that two operators T, T(1) and a
parameter x are given, such that

i) T E W (X)
ii) D = D (T) n D (T(1)) is a core of T ;

iii) T (x) E' (X) and it is an extension of the operator T + x T(l)
defined with domain D 1, where x is restricted to

(2.1) 0 < x < 1.

Let us make some comments on these assumptions. The condition
(2.1) on the range of x is not very restrictive. Even when x is complex,
we have in general to restrict ourselves to the case in which x goes to 0
along a ray, in view of the varying behavior of T (m) for different
directions of approach of x to 0 (see Examples in the preceding section).
In such a case the range of x can be reduced to (2.1) by writing x = Iki eie
and replacing (xI by x and ei0 T(') by TM, respectively. If ii) is not
satisfied, we can replace T by the closure of its restriction to D ; this
restores ii) without affecting the definition of T (m).

We can now define the region of boundedness A b and the region of
strong convergence A, for the family of resolvents R (C, x) = (T (x) - C,)-11
when x -+ 0 (see Remark 1.9). We have by definition

(2.2) Jim yuPIIR(C, x)II = M(C) < oo , C E Ob

Since T (x) u -+ T u, x -+ 0, for u E D and D is a core of T, it follows from
Theorem 1.5 that T (x) T in the generalized sense with

(2.3) As = Ob n P (T) ,

provided that we assume in addition that
iv) Ab n P (T) is not empty.
Thus we have

(2.4) s-Jim R (C, x) = R (C) , C E / .

1 Thus T (m) may be quite discontinuous in x for x > 0, for it need not be
uniquely determined by T + x Tu).
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This means that R (C, x) u -+ R (C) u for every u E X. We now want to
estimate the rate of this convergence more precisely. To this end, however,
we have to make specific assumptions on each u to be considered. We
shall prove a series of theorems on such estimates ; in what follows i) to iv)
are assumed unless otherwise stated.

Theorem 2.1. Let C E A, If R (C) u E D (T(1)), we have

(2.5) R (C, x) u = R (C) u - x R (C) TM R (C) u + o (x) .

Here o (x) denotes an element of X with norm of the order o (x) as x -> 0.

Proof. In view of (2.4), (2.5) follows directly from the identity

(2.6) R (C, x) u - R (C) u = - R (C, x) (T (x) - T) R (C) u
x R (C, x) TM R (C) u ;

note that R (C) u E D = D (T) n D (TM) by assumption.

Theorem 2.2. Let C E As. I/ R (C) u E D (TM) and R (C) Tel) R (C) u E
E D(T(1)), then

(2.7) R (C, x) u = R (g) u - x R (C) TM R (C) u +
+ xs R (C) TM R (g) TM R (C) u + o (x$) .

Proof. Apply (2.5) to the right member of (2.6) with u replaced by
TM R (C) u.

It is obvious that we can proceed in the same way, obtaining the
expansion of R (C, x) u in powers of. x under stronger and stronger as-
sumptions. The series that appear in these expansions are exactly the
second Neumann series for R (C, x) [see II-(1.13)]. We know that the
second Neumann series is a convergent power series in x if Tel) is rela-
tively bounded with respect to T (see Theorem IV-3.17). Here we have
assumed no such relative boundedness, but the above theorems show
that the second Neumann series is valid as an asymptotic expansion up
to a particular power of x as long as the relevant terms are significant.

The formulas (2.5) and (2.6) lead to corresponding expansions of the
scalar quantity (R (C, x) u, v) for u E X, v E X*, under the stated as-
sumptions on u. Since (R (C, x) u, v) = (u, R (C, x) * v), a similar expansion
is valid if v satisfies conditions similar to those made on u above, under
the basic assumptions for T* and T(')* similar to the ones for the pair T,
Tel). For simplicity, we shall state the results when T and the T (x)
are selfadjoint, assuming X to be a Hilbert space. A remarkable result
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here is that the expansion of (R (C, x) u, v) can be obtained up to the
order x2 if both u and v satisfy the condition of Theorem 2.1, namely

Theorem 2.3. Let X = H be a Hilbert space and let T and T (x) be
sel f adjoint and Till symmetric. I/ both C and belong to i and i f R (C) u E
E D(T(')), v= R(C)* v E D(T(')), then

(2.8) (R (C, x) u, v) = (R (C) u, v) - x (R (C) T(1) R (C) u, , v) +

+ M2 (R (C) T(1) R (C) u, T(') R v) + o (x2)

Proof. From (2.6) we have

(2.9) (R (C, x) u, v) - (R (C) u, v) x (T(1) R (C) u, R (C, x) v)

since R (C, x) * = R x). (2.8) follows from (2.9) by applying (2.5) with
and u replaced by and v, respectively.

In the same way we can obtain the expansion of (R x) u, v) up to
the order x4 if TM R (C) TM R (C) u and Till R (C) T(') R ( ) v exist.

Remark 2.4. (2.5) and (2.7) give asymptotic expansions for the
solution of (T (x) - C) v = u, which is, for example, a boundary value
problem when T (x) is a differential operator. However, the use of these
formulas is restricted since the assumptions are rather strong. In §§ 3, 4
we shall develop a more satisfactory theory of asymptotic expansion of
R (C, x) based on the theory of sesquilinear forms in a Hilbert space.

Example 2.5. Consider the T (x) of Example 1.17. If we write T (x) = T +
+ Ixl ete T(l) and replace Ixl, et0 T(l) by x, T'1> respectively, T (m) satisfies the basic
assumptions i) to iv) [for iv) see Example 1:17]. The applicability of Theorems 2.1,
2.2 depends on the properties of u and /. Since T 1, it is easy to
compute R (C) u; we have

If u and t belong to D (T<1>), then R (C) u E D (T<1)) and Theorem 2.1 is applicable.
In this case R (C) T(l) R (C) u is a linear combination of Tu> u, TO) f and f. If [T<1>]2 u
and [T(1)]2 f exist, then R (C) T11> R (C) u E D (Tu)) and Theorem 2.2 is applicable,
and so forth. Similar results can be stated for Example 1.18.
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2. Remarks on asymptotic expansions
In general the asymptotic expansions of the resolvent given by (2.5) or (2.7)

are valid only under certain specific restrictions on u, as stated in these theorems.
The expansions are valid, moreover, only up to a certain order in x determined by u.
Thus the expansions are of a more general kind than what is usually called asympto-
tic expansions, in which it is required that the expansion be possible to any order
of the parameter.

This remark is of particular importance in view of the fact that, in the theory
of singular perturbation for ordinary differential operators, the expansion for
R (C, x) u is usually given to any order in x, with the restriction that one or both
ends of the interval considered should be excluded. Consider, for example, the
operator T (x) of Example 1.19 and set = 0, u (x) = 1. A simple calculation gives
then

2a

x x x
(2.10) R (0, x) u (x) =

2
- 2

2a (1 - e x )

in which the first term x/2 a is equal to the zeroth approximation R (0) u (x). The
additional term on the right of (2.10) has the asymptotic expansion 0 (which is
valid to any order in x) provided OS x < 1, and this expansion is uniform for
05xSb'<1.

Thus one might suppose that, in this example, no restriction is necessary for the
asymptotic expansion of R (C, x) u and, furthermore, that the expansion is valid
to any order, at least if u (x) is a smooth function. But this is not correct. Although
the remainder term on the right of (2.10) is smaller than any finite power of x for a
fixed x < 1, it is not necessarily small in the whole interval (0, 1). In fact, a simple
calculation shows that the L2-norm of this remainder term is

'/2
(2.11) 6ae) +'
where denotes a function of x tending to zero faster than any finite power of X.
Therefore, we have to say that in this example the expansion of R (0, x) u as an
element of L2 is valid only up to the zeroth order of x, the remainder being of the
order xl1s.

It should be noted, furthermore, that the situation cannot be improved by
considering the asymptotic expansion of (2.10) in powers of, say, MIN. A glance at
(2.10) is sufficient to exclude such a possibility. In this sense the impossibility of
the asymptotic expansion for (2.10) is essential, if one considers the vector R (0, x) u
of L2 and does not confine one's attention on a fixed value of x. Similar remarks
apply to all asymptotic expansions encountered in the singular perturbation of
differential operators'.

' The second term on the right of (2.10), which has the asymptotic expansion 0
for each x < 1, is called the boundary layer term. In general the asymptotic expansion
of R (0, x) u (x) must be supplemented by a boundary layer term, which has the
asymptotic expansion 0 for a fixed interior point x but which need not be small
globally. For detailed theory of the boundary layer and singular perturbation in
general, see e. g. HARRIS [1], [2], HURT [1]-[7], KUMANO-GO [1], LADYIENSKAJA
[1], LEVINSON [1], MORGENSTERN [1], MOSER [2], NAGUMO [1], VAIK and LYUSTER-
NIK [2].
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3. Asymptotic expansions of isolated eigenvalues and
eigenvectors

We now consider the rate of convergence of the eigenvalues and
eigenvectors of T (m) arising from an eigenvalue A of T (see § 1.4), under
the basic assumptions of par. I and the additional assumption that A is
stable: We assume that A has multiplicity m < oo. We take over the
notations Ob, Os, 6, r, r, etc. of § 1.4. In particular we note that the
region of strong convergence Os contains the set of C such that 0 <
<IC-AI<6.

We recall also that E (T (x)) inside the circle P : IC - Al = r consists of
isolated eigenvalues with total multiplicity m and that these eigenvalues
converge to A as x 0. Let us denote these repeated eigenvalues by
It, (x), ..., ,u, (x):

(2.12) ,u5(x)-.A, x--> 0, j=1,...,m.
The total projection

(2.13) P (M) _- 2 n i f R (C, x) d C
r

tends in gap to P, the eigenprojection for A [see (1.31 a, b, c)] :

(2.14 a)
II(P(x)-P)PII-0,

II (P (x) - P) P (x) II - 0, dim P (x) = dim P = m .

If m = 1, P(x) is itself the eigenproj ection on the one-dimensional
eigenspace of T (x) for the eigenvalue A (x) _ p, (m), which converges to A.
(2.14) implies that an eigenvector 92 (x) of T (x) for the eigenvalue A (x)
can be chosen in such a way that

(2.15) T (x) -+ c , x -- 0 ,

where 92 is an eigenvector of T for the eigenvalue A:

(2.16) T qp = A p, T (x) qp (x) = A (x) qp (x) .

To see this, it suffices to set 99 (x) = P (x) 99.
In general it is impossible to deduce more precise results on the rate

of convergence in (2.12) or (2.14) or (2.15). Such a refinement is possible,
however, if one makes further assumptions on the eigenspace P X of T.
We have namely'

Theorem 2.6. Let A be an isolated, semisimple eigenvalue o l T with the
eigenprojection P, dimP = m < oo. Let A be stable and let PX C D (T(1)).

1 The results of this and the following paragraphs were proved in T. KATO [1],
[3] for selfadjoint operators by making use of the spectral representations. The
generalization to operators in Banach spaces given here needs an entirely different
proof.
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Then the eigenvalues, u1 (x) admit asymptotic expansions'

(2.17) ,u3 (x)=A+x,u(1) +o(x), j=1,...,m,
where the 1u,(1) are the repeated eigenvalues of the operator P TM P considered
in the m-dimensional space P X. The total projection P (x) for these eigen-
values has the property that

(2.18) P (m) P= P- x S TM P+ o (x) ,

where S is the reduced resolvent for A of T (see III-§ 6.5) and o (x) denotes
an operator such that x-1 11 o 0 as x 0. If in particular m = 1, an
eigenvector 99 (x) for the eigenvalue A (x) = ,u1(x) of T (x) can be chosen in
such a way that
(2.19) q9(x)=99 -xST(11g9+o(x),
where 99 is an eigenvector of T for A.

Proof. I. We start with the remark that R Pv = (A - 0-1 Pv E
E D (T(11) for every v E X so that (2.6) gives

R (C, x) Pv = (A - Pv - x (A - c)-1 R (C, x) TM Pv
= (A-l;)-1Pv-x(A-lc)-1R(C) T(11 Pv+o(x)

where o (x) is uniform in C for C E P. Since dim P X = m < oo, this
implies 2

(2.20) R (C, x) P = (I - a)-1 P - x (R - l;)-1 R (C, x) T(1) P
_ (I-c)-1P-x(I-l;)-1R(C) T(11 P+o(x)u,

where o (x) is uniform in C E r. Substitution of (2.20) into (2.13) multi-
plied by P from the right leads immediately to (2.18) ; recall the expansion
R (C) = (A - a)-1 P + S + (C - 2) S2 + [see III-(6.32) where D = 0
by assumption] and note that

(2.21) T(11 P E 9 (X)

by the assumption that PX C D(T(1)). (2.19) follows from (2.18) on
setting 99(x) = P (m) 99 = P (m) P qq for a 92 EM= P X

II. To deduce the asymptotic expansion for ,u1 (x), we introduce
the operator [see (2.18) just proved]

(2.22) V (x) = 1- P+ P (x) P= 1- x S TM P+ o (x),, .

Since V (x) P = P (x) P and V (x) (1 - P) = 1 - P, V (x) maps the eigen-
space M = P X onto M (x) = P (x) X and leaves every element of the
complementary subspace (1 - P) X unchanged. The map M - V (x) M

1 If T and T (x) are selfadjoint (in a Hilbert space), we have expansions of the
µJ (x) up to the order x2, see Theorem 2.9 and the attached footnote.

2 Note that A B s 0 implies 11A B11 -+ 0 if B has finite rank.
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= M (x) is onto since 11 (P (x) - P)211 -+ 0 by (2.14 a) (see Problem 1-4.12).
It follows that the inverse

(2.23) V (x)-' = 1 + x ST(') P+ o (x)u

maps M (x) onto M, keeping every element of (1 - P) X invariant.
We now consider the operator R1 (C, x) = V (x)-1 R (C, x) V (x) P.

V (x) P has range M (x) by the above remark, R (C, x) sends M (x) into
itself because P (x) commutes with R (C, x), and V (x)-1 maps M (x) onto
M; hence R1 (C, x) has range in M. Thus

Rl x) = PR, (g, x) = P V (x)-l R (C, x) V (x) P

(P + o (x)u) R (C, x) (P - x S TM P + o (x)u)

(note that PS = 0). Substituting for R (C, x) P from (2.20) and noting
that R (C, x) S TM P -> R (C) S TM Pin norm, PR (A - C)-' P, and
PS = 0, we obtain

(2.24) V (x)-' R (C, x) V (x) P

= (A-c)-1P-x(A-C)-2PT('> P+o(x)u,
where o (x)u is uniform for C E P.

Since

(2.25) T (x) P (x) 2 n i f C R (C, x) d C
r

[see III-(6.24)], integration of (2.24) along P after multiplication by
- g/2 a i gives'

(2.26) V (x)-' T (x) P (x) V (x) P= 2 P+ x P T (1) P+ o (x)u .

Now the p, (x) are the repeated eigenvalues of T (x) considered in the
m-dimensional subspace M (x), hence equal to the eigenvalues of T (x) P (x)
in M (x) and therefore also to those of V (x)-' T (x) P (x) V (x) = To (x),
which is similar to T (x) P (x). Since V (x)-' M (x) = M as remarked above,
these are in turn equal to the eigenvalues of To (x) P, that is, of the
operator (2.26), considered in M. In view of (2.26), this remark leads
immediately to the result (2.17) by Theorem 11-5.4 concerning the
differentiability of eigenvalues in a finite-dimensional space. This
completes the proof of Theorem 2.6.

Remark 2.7. (2.18) shows that P (x) P admits an asymptotic expan-
sion up to the first order in x. P (x) itself does not seem to have such an
expansion, for the formal expansion of P (x) is P (x) = P - x (S TM P +
+ P TM S) + [see II-(2.14) ], in which the term P TM S need not

1 In view of the unboundedness of T (m), it would be difficult to deduce (2.26)
by simply expanding the left member into a formal power series in x.
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make sense under the present assumptions. (This is one reason why the
proof of Theorem 2.6 is rather complicated.) Thus the expansion (2.19)
of the eigenvector (but not of the eigenprojection) is the best one can
obtain even for m = 1.

In Theorem 2.6 it is in general impossible to give any statement on
the behavior of the eigenvectors or eigenspaces of T(x) except in the
case m = 1. If we assume that the p(l) are distinct, however, we have

Theorem 2.8. In Theorem 2.6 assume that the m eigenvalues i(1) of
PTM1> P are distinct, and let P(1) be the associated eigenprojections. Then
the, a1 (x) are also distinct for sufficiently small Ix 1. Let P(1) (x) be the one-
dimensional eigenprojections o l T (x) for the eigenvalues ,ui (x). Then

(2.27) P1 ')(x) -> P(') in gap as x -+ 0 .

Proof. (x) is the eigenprojection of the operator T (') (x) = x-1(T (x) -
- A) P (x) for the eigenvalue x-1(,uf (x) - A) = /z(1) + o (1). But we have,
in virtue of (2.26),

(2.28) V (x)-1 TM (x) V (x) P = PTM1> P + o (1)

since V (x)-1 P (m) V (x) P= V (x)-1 V (x) P = P. Since PT(') P has m
distinct eigenvalues jz,(1), the operator (2.28) has the same property.
Thus we can choose its m eigenvectors v. (x) E M in such a way that
vi (x) - 99f, 991 E M being the eigenvectors of P TM P (continuity of
eigenvalues and eigenprojections, see II-§ 5.1). Now 9,s (x) = V (x) tp, (x)
is an eigenvector of TM (x) and qq, (x) - qq; since V (x) - 1.

The 99j (x) form a basis of M (x), so that for any w E X we have

P W w = $1(x) 991 (x) + ....+ $m (x) 99m (x)

Since 91j (x) -> 991 and the 99j form a basis of M and since P (x) w - Pw,
it is easily seen that lim s (x) = 1:s exists and Pw = S1 921 + - - - + 92..

On the other hand we have $j (x) 99; (x) = P(1) (x) w and $j q21= P(1) W.
Hence we conclude that P,(1) (x) w -* P11> w, that is, P(1) (x) -> P(1) strong-
ly. Since dim Pj(') (x) = dim Pj(') = 1, the convergence is actually in gap
by Lemma 1.23. This completes the proof of Theorem 2.8.

4. Further asymptotic expansions
We shall now show that a higher approximation to the eigenvalues

can be obtained if we assume that P TM is bounded, in addition to the
assumptions of Theorem 2.6. Since P TM has range in the finite-dimen-
sional subspace M = P X, it can then be extended to an operator of
-V(X) with range in M. Such an extension is not unique unless TM is
densely defined, but we take any such extension and denote it by [P TM];
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we note that P [P TM] _ [P T(1)]. If TM is densely defined, P TM is
bounded if and only if T(')* P* E .4 (X*) ; in this case [P TM] is unique.

To state the theorem that gives the higher approximation, it is
convenient to modify the notations of Theorem 2.6 and introduce
further ones. Let d j, j = 1, . . ., s, be the distinct eigenvalues of P T(11) P
(that is, the different ones among the ,u;) in the subspace PX and let PJl)
be the associated eigenprojections. Then we have

Theorem 2.9.1 Assume D is a core o l T (m) for x > 0. In Theorem 2.6
suppose that P TM is bounded and define [P TM] E .4 (X) as above. Let all
the eigenvalues A,(1) o l P TM P be semisimple2. Then the m eigenvalues ,a; (x)
can be renumbered in the form yj1,(u), j = 1, . . ., s, k = 1, ..., m}1), in
such a way that they have the asymptotic expansions

(2.29) lei k (x) x A(1) X2 k + o (x2) ,

where the ,u k , k = 1, ... , m(1), are the repeated eigenvalues o l

- p(1) [P TM ] S TM P(1). The total projection P}1) (x) for the m(l) eigen-
values ,uf k (x) for k = 1, . . ., m,(1) has the asymptotic expansion

(2.30) P(1) (x) = p(l) + X p(ll) + o (X)s ,

where o (u)s denotes an operator such that x-1 o (x)s --> 0 and
5

p(lu) _ - p(l) [PT(')] S + Pi(t) [P T(1)] STMT) S}1) -
(2.31) -STMT) P(1) + S(1) [PTMJ STM1) P(1) ,

S?l) _ - (A(1) - )(1)) pil)

The total projection P (x) for the m eigenvalues µj t (x) has the expansion

(2.32) P (m) = P - x (S T (1) P + [P T (l) ] S) + o (m), .

Remark 2.10. The formulas (2.29) to (2.32) are formally identical
with certain formulas of Theorem II-5.11, but they are more complicated
than the latter since here we are dealing with unbounded operators. It
should be noted, nevertheless, that the operators Tel) P, TM P11)
= TM PP11), TM S(1) = TM belong to 9 (X).

1 This theorem gives an expansion of eigenvalues up to the order x2. No doubt
we can generalize this theorem and obtain an expansion to the order X" under
additional conditions, but there is no existing proof except for the special case in
which T and T (m) are selfadjoint and some assumptions are made on the mode of
splitting of eigenvalues (see T. KATO [1], [3]).

2 All these conditions are satisfied under the assumptions of Theorem 2.6 if X
is a Hilbert space, T and T (x) are selfadjoint and Ti" is symmetric, for P Ti"
C (Ti') P)*. It should be noticed that in this case we need not assume that D is a
core of T (x). This assumption is used only in the proof of (2.33), but (2.33) follows by
taking the adjoint of (2.20) with C replaced by C.
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Proof. The proof of this theorem is rather complicated. We shall give
it in several steps.

1. We start with the identity

(2.33) PR (C, x) = (A - c)-1 P - x (A - C)-1 [P T(1)] R (C, x) ,

which is in a certain sense dual to (2.20). To prove it, we denote by A
the right member; then

(2.34) - x (A - C)-1 [P T(1)] u
=Pu+x(A-C)-1PTO1)u-x(A-C)-1PT(1)u=Pu

for any u E D = D (T) n D (T(1)) (note that P T C T P = A P). Since D
is a core of T (x) by hypothesis, the final result of (2.34) can be extended
to all u E D (T (x)). This shows that A = PR (C, x) as required.

Since R (C, x) -> R (C) as x -+ 0, (2.33) gives"

(2.35) P - x(d - )-" o(x)s

where o (x)s is uniform in C E r, that is, x-1 o (x)5 u --> 0 uniformly in C
for each u.

Now we multiply (2.33) from the right by P and substitute (2.20)
for the R (C, x) P that appears on the right, obtaining

(2.36) PR(C,x)P=(A-C)-1P-x(A-C)-2PT(1)P+
+x2(A-C)-2[PT(1)]R(g) T(1)P+o(x2)

[note that [PT(1)] P = PT(1) P since PXC D(T(1))].
Integration of (2.35) and (2.36) along r gives, as before,

(2.37) PP(m) = P - x[ P T (1)] S + o(x)S .

(2.38) P P (x) P = P - x2 [P DO] S2 TO) P + o (x2)u ,

where we used the expansion R (C) = (A - C) -1 P + S + (C - A) S2 +
II. To prove (2.32), let us write Q (x) = P (x) - P. Making use of (2.37)

and a similar expansion (2.18) for P (m) P proved above, we obtain

(2.39) Q(x)2 = P (x) + P - P (x) P - P P (x) = Q (x) - x ' P(1) + o (x)s ,

Hence
P(1) = - S T(1) P - [P T(1)] S .

(2.40) (1 - Q (x)) (Q (x) - x P(1)) = x Q (x) P(1) + o (x)s = o (x)5

because Q(x) = o(1)8. Hence,

(2.41) Q (x) - XP(1) = (1 - Q (x))-1 o (x)8 = o (x)8
which proves (2.32); note that II(1 - Q(x))-1II s const. because
IIQ(x)200 - 0 by (2.14 a).

1 In (2.35) o (x)s cannot be replaced by o (x)u. Even when B has finite rank,
A. -- 0 does not imply JIBA 11 -+ 0; cf. footnote 2 on p. 444.

S
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III. We now introduce the operator

(2.42) U(x) = (1 - Q(x)2)-1/2[(1 - P(x)) (1 - P) + P(x) P]
= 1 - P - P(x) + 2P(x) P + O(x2)u ;

note that Q (x) = 0 (x)u by (2.41), for o (m) r, = 0 (x)u by the principle of
uniform boundedness. By (2.18) and (2.32), we obtain

(2.43) U(x) = I + x([PT(')] S - ST(1> P) + o(x)5.

The properties of U (m) have been studied in detail in I-§ 4.6. It
follows from the results proved there that

(2.44) U(x)-1= (1 - Q(X)I)-112[(l - P) (1 - P(x)) + PP(x)]
= 1 - P - P(x) + 2PP(x) + O(x2)u
= I + x(STcl) P - [PTT] S) + o(x)5,

(2.45) P (M) = U (M) P U (x)-1 .

Recall, in particular, that Q (x)2 commutes with P and P (x).
We further note that P U (x) P can be expanded to the second order:

(2.46) P U (x) P = P(1 - Q (x)2)-1/2 P (x) P

= PP(M) P + P Q (x) 2 P + 0 (x3)u

= P- x2[PT(1)]S2TM P+o(x2)u;

note (2.38) and that P(P('))2 P = [P T(1)] S2 TM P in virtue of PS
= S P = 0. Here we have also made use of the fact that o (x)s P = o (x)u
because dim P < cc. In quite the same way it can be shown that

(2.47) PU(x)-1P=P- x2[PT(l)]S2TM P+o(x2)u.

IV. U (x) will now replace the V (x) used in the proof of Theorem 2.6.
The advantage of U (x) over V (x) lies in the transformation property
(2.45) that V (x) does not possess. In this connection, it should be remark-
ed that U (x) becomes useful only under the present assumptions by
which [PT(') ] S makes sense.

We now calculate P U (x)-1 R (C, x) U (x) P. This can be written in the
form

(2.48) P U (x)-1 R (C, x) U (m) P = Al + As + A 3 + A4,

Al = PU(x)-1 PR(C, x) PU(x) P,
As = P U (x)-1(1 - P) R (C, x) P U (x) P,

As = P U (x)-1 PR (C, x) (1 - P) U (x) P ,

A4 = PU(x)-1(1 - P) R(C, x) (1 - P) U(x) P .
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In Al we substitute (2.36), (2.46) and (2.47) to obtain (note P = P2)

A1= (A - c)-1 P- x(A - C)-2 PT(1) P - x2(A - C)-'[PT('] S2T() P+
+ x2 (A - C)-2 [P Tel)] R (C) T(1) P + o (x2)u

In A2 we note that [see (2.44) and (2.20)]

(2.49) PU(x)-1(1 - P) = -m [PTO)] S+o(x)s,
(2.50) (1 - P) R(C, x) P = -x(A- C)-1(1 - P) R(C) TO) P+ o(x),,,

obtaining [note 1 - P = (1 - P)2 and SP = 0]

A2 = x2 (A - C)-1 [PT(1)] SR (g) T(1) P + o(x2),

where o (x)5 o (x)0 = o (x2)0 because the factor o (x)0 involves a factor P
to the extreme right. Similarly we have

A3 = x2 (A - C)-1 [P T(1)] R (C) S TO) P + 0 (X2)u,

A4 = x2 [P TM] SR (C) S T(1) P + o (x2)u

Collecting these terms, we arrive at [note that R (C) and S commute]

(2.51) PU(x)-1 R(g, x) U(x) P
=(A - C)-1 P - x(A - ')-2 PT(1) P - X2 (A - C)-1 [PT(')] S2 T(1) P +

+ x2 (A - C)-2 [P T(1)] R (C) [1 + 2 (A - C) S + (A - C)2 S2] T(1) P + o(x2)0.

Finally we multiply (2.51) by C and integrate on P. Since all terms
o (x2)0 are uniform for C E r, we thus obtain by (2.25)

(2.52) P U (x)-1 T (m) P (m) U (m) P

=AP+xPT(')P-x2[PT(')]ST(')P+0(x2)0;

note that the coefficient of x2 in (2.51) simplifies to [P T(1)] [(A - C) -.3 P +
+ (A - C)-2 S] T(1) P.

V. We are now able to complete the proof of Theorem 2.9. As before
we consider the operator 7(') (x) = x-1(T (x) - A) P (x). Since P (m)
commutes with T (x) and U (x)-1 P (x) U (x) = P by (2.45), we have by
(2.52).

(2.53) 7(')(x) = U(x)-1 T(1)(x) U(x)
= PT(1) P-x[PT(')]ST(') P+0(x)0.

This can be regarded as an operator in the m-dimensional space M = P X.
The first term on the right of (2.53) has the eigenvalues A,(1) with the
associated eigenprojections P(1). Application of Theorem 11-5.4 to (2.53)
(replace T by PT(1) P, A by A,(1), P by P(1), T'(0) by - [P TM] ST(1) P)
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shows immediately that the 2)-group eigenvalues of Toll (x) have the form

(2.54) A w -1- x It(2)
(k

+ o (x) , k = 1, ..., mil)

with the ,u, k as given in the theorem. TVI) (x) has exactly the same eigen-
values, and the eigenvalues of T (x) are given by (2.29). Also the total
projection for the 24')-group eigenvalues of Tal) (x) is given by II-(5.9)
with P replaced by P(1), T'(0) by - [P TM] ST(1) P and S by Sail.
This gives

(2.55) Pk1) + x{P(1) [PT(')] S T(1) S}') + S,(') [PT(')] S T(1) p(1)} + 0M.-

The corresponding projection P(1)(x) for T(l)(u), which is the total
projection for the d + x )41)-group eigenvalues of T (x), is obtained from
(2.55) by multiplication from the left by U (m) and from the right by
U(m)-l. Noting that (2.55) is unchanged by multiplication by P either
from the left or from the right and that

(256)
U(x) P = P-xST1) P+o(x),,,

PU(x)-1= 1 -x[PT(1)]S+o(x)s,

we obtain the required result (2.30). This completes the proof of Theorem
2.9.

Example 2.11. The assumptions of Theorems 2.6 and 2.9 are simple and easy
to verify'. Here we consider the T (m) of Example 1.17. Rewriting it as T (M) = T +
+ x TM as in Example 2.5, with x > 0 and T'> = 00 x, the eigenvalue d = -1
of T is stable if ete is not real (see Example 1.22), which will be assumed in the fol-
lowing. Since the eigenvector of T for the simple eigenvalue -1 is f and since T'>
differs from a selfadjoint operator x only by a numerical factor et0, Theorem 2.9
is applicable if f E D (T(')), that is, if z f (z) E L2. [Of course this can be verified
directly from (1.17).] Similar results can be stated for the T(x) of Example 1.18;
Theorem 2.9 is applicable to the eigenvalue -1 of T if f E D (T1)).

§ 3. Generalized strong convergence of sectorial
operators

1. Convergence of a sequence of bounded forms
Let be a sequence of bounded sesquilinear forms defined on a

Hilbert space H. We say that t converges to a form t, in symbol t,,-+ t, if t
is also bounded and defined on H and if t [u, v] - t [u, v] for all u, v E H.
By virtue of the polarization principle VI-(1.1), it suffices to assume that
t [u] -+ t [u]. Let T., T E (H) be the operators associated with these

1 They are satisfied in many problems related to differential operators, except
when T'> is of higher order than T and involves boundary conditions which are
not satisfied by elements of P H. Some of the examples considered later (§ 4) in
connection with the theory of forms can also be regarded as examples of Theorems
2.6, 2.8, and 2.9.
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forms. Then t -> t is equivalent to (T,, u, v) (T u, v) for all u, v,
that is, T,, - T. In general, however, it is difficult to draw from the weak

convergence T -. T any interesting conclusion regarding the spectral
w

properties of T and T. Thus we have to assume something more on the
mode of convergence of the sequence in order to attain results of
interest from the point of view of perturbation theory.

A fundamental theorem on the convergence of bounded forms in is
given by

Theorem 3.1. Let be a sequence of bounded sesquilinear forms
defined everywhere on H. Let be uniformly sectorial in the sense that

(3.1) Ilmt [u] I s M Ret [u] , u E H,

where M > 0 is independent of n. I/ t 0, the operator T E -4 (H) as-
sociated with t tends to zero strongly. The same is true of T.*.

Proof. (3.1) implies that h = Ret 0. It follows by VI-(1.15) that

(3.2) I (T. U, v) I =It. [u, v] I s (1 + M) h,, [u]1/2 hn [V]1/2.

Set v = T,, u in (3.2). Since T is weakly convergent and thus uniformly
bounded (II Tnji S N), hn [v] = hn [T u] = Re (T u, T u) is bounded
by N3 11 U II 2. Since h,, [u] = Re t [u] 0 by hypothesis, it follows from
(3.2) that II T. oil -+ 0. Since the adjoint forms to satisfy the same condi-
tions as t,,, we have also Tn* --. 0.

s

Corollary 3.2. If a sequence of bounded, nonnegative selfadjoint operators
converges weakly to 0, it converges strongly to 0.

A related theorem is
Theorem 3.3. Let {fjn} be a nonincreasing sequence of bounded sym-

metric forms on H bounded from below:

(3.3) 01
?4$?...z-c.

Then there is a bounded symmetric form 4 such that 4,, z 0 and 0,,-* 0.
The associated bounded selfadjoint operators H. and H have the property
that H. -+ H strongly.

Proof. (3.3) implies that, for each u E H, hn [u] is a nonincreasing
sequence bounded below by - c II u II 2. Hence lim 4n [u] exists, so that
lim hn [u, v] = h [u, v] exists for each u, v by polarization. h is bounded by
the principle of uniform boundedness. We have h,, z h and 0, and
the assertion on H. follows from Corollary 3.2.

Remark 3.4. In Corollary 3.2 the sequence need not be monotonic
but the existence of the limit is assumed. The situation is in a sense
reversed in Theorem 3.3. Obviously there are similar theorems in which
the inequalities Z are replaced by :!9.
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These results will be generalized to unbounded sectorial forms in the
following paragraphs. Here we add another theorem.

Theorem 35. In Theorem 3.3 let H,, - H be compact for all n. Then
IIHn-HIHH0.

Proof. Set H,, - H = K,,; we have K. z 0 and K,,-> 0 strongly
by Theorem 3.3. Since KI is compact, we can find, for any e > 0, a
decomposition H = M ® N of H into the direct sum of orthogonal sub-
spaces M, N, both invariant under KI, in such a way that dim M < oo and
IIKI uDI S EIIuII for u E N (see V-§ 2.3). For any u E H, let u = u' + u",
u' E M, u" E N. Since K z 0, we have by the triangle inequality

(3.4) 0 5 (K,, u, u) s 2 (K u', u') + 2 (K u", u") .

Since M is finite-dimensional, the convergence K -* 0 is locally uniform
on M, so that there exists an N such that

(3.5) 0 S (K u', u') s SIIu'II2 for n > N .

On the other hand, the definition of N gives

(3.6) 0 s (K u", u") S (KI u", u") e I) u" II 2 for all n.
It follows from (3.4)-(3.6) that

(3.7) 0s (K,, u, u) s 2s(IIu'II2+IIu"II2)=2EIIulI2 for n > N.

Hence IIK,II S 2s for n > N so that IIK,II - 0, n- oo.

2. Convergence of sectorial forms "from above"
Let us now consider the convergence of a sequence of unbounded

sesquilinear forms t in H. The following is a fundamental theorem, which
generalizes Theorem 3.1.

Theorem 3.6. 1 Let t,,, n = 1, 2, ..., and t be densely defined, closed
sectorial forms in H with the following properties:

i) D (Q C D (t), n = 1, 2, ... .

ii) t = t - t is uniformly sectorial in the sense that

(3.8) n = 1, 2,..., M > 0.
iii) There is a core D o l t such that D C lim inf D (that is, each

u E D belongs to D for sufficiently large n) and

(3.9) lim t [u]=t[u] if uED.
IS- 00

I The results of this and the following paragraphs were proved in T. KATO [3],
[7], [8], for symmetric forms and the associated selfadjoint operators. For their
applications see KILLEEN [1]. See also BIRMAN [3], [4], GOL'DBERG [1]. Similar
results for nonsymmetric forms were first given by HuET [1], [2]; these and sub-
sequent papers [3] - [7] by HUET contain applications to partial differential equations.
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Let T and T be the m-sectorial operators associated with t and t, respecti-
vely, according to the first representation theorem (Theorem VI-2. 1). Then
T and T and T*, respectively, strongly in ,the generalized
sense. More precisely, let Os, A* be the regions of strong convergence for

respectively. Then A* is the mirror image of A, with respect to
the real axis and both i and A* contain the half-plane Re C < y, where y
is a vertex of t, and we have as n -+ 00

(3.10) R. (C) - R (c) , t [R (C) u - R (C) u] -+ 0 , to [R,a (C) u] -. 0 ,

R. (C) s R (C) t [R,, (C) * u - R (C) * u] -+ 0, to [R. (C) * u] -+ 0 ,

for C E A, and u E H, where R. (C), R(C) are the resolvents of T,,, T, re-
spectively. The convergences in (3.10) are uniform in each compact subset
of 4.

Proof. I. Set hn = Re t,,, Re t, h» = Re t;,. By adding a suitable
scalar to t and to t if necessary, we may assume that t has a vertex
y = 0, so that

(3.11) t [u] > h [u] > 0, u E D C D (t) ,

where is a consequence of (3.8). Thus the half-plane ReC < 0
belongs to P(T) with [see V-(3.38)]

(3.12) S 1/Re(-C) , IIR(C)II s 1/Re(-C) , Ret; < 0.

Recalling the definition of T and T, we see that, for any u E H

(3.13) (4 - ) [R,a (C) u] < (4n - $) [R,a (C) u] = Re (t - C) [R,, (C) u]
= Re ((T. - C) R. (l;) u, R. (C) u) = Re(u, R. (C) u) 5

Hull llR.(C) u)) S ((h - s) [R,,(C) u])1/1

It follows from (3.13) first that (h - ) [R,, (C) u] S (- )-1 1IuIl2 and then,
considering the second and the last member, that

(3.14)
[R. (C) u]

} S (hn - ) [R. (C) U] S (- )-1 )IujJa .
[R. (C) u]

II. Let'v E D and u E H. By hypothesis we have v E D (t), R. (C) u E
E D

(t - C) [R. (C) u - R (C) u, v] _ (t,2 - C) [R. (C) u, v] -
- t [R. (C) u, v] - (t - [R (C) u, v] _ - [R. (C) u, v]

since the first and the third terms in the middle member cancel each
other, both being equal to (u, v). It follows by (3.8) and VI-(1.15) that

(3.16) 1 (t - C) [Rn (C) u - R (C) u, v] I s (1 F M) h;, [Rn (C) u]1/2 hn [v]lta -> 0,
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since the h [R,,, (C) u] are bounded by (3.14) and l [v] = Re t [v] -+ 0
by iii).

Let Ho be the Hilbert space into which D (t) is converted on introduc-
ing the inner product (u, v)q = h [u, v] + (u, v) and the associated norm
IIuII, (see VI-§ 1.3). That D is a core of t means that D is dense in H,
(Theorem VI-1.21). On the other hand, (3.14) shows that the sequence
R (C) u is bounded in H4. Therefore, the relation (3.16) is extended to all
v E Ho = D (t) since t is a bounded form on H4. In particular we have

oo .(3.17) (t - C) [R (C) u - R (C) u, R (C) u], 0, n,

III. We have now

(3.18) (t - C) [R. (C) u - R (C) u] + t;, [R. (C) u]
_ (tn - C) [R. (C) u] + (t - C) [R (C) u] -

- (t - C) [R. (C) u, R (C) u] - (t - C) [R (C) u, R. (C) u]
_ (t - C) [R (C) u - R. (C) u, R (C) u] -> 0 ,

since the first and the last terms in the middle member cancel each other,
both being equal to (u, R (C) u). Taking the real part of (3.18) and noting
that t , - and fj;, are all nonnegative, we see that R (C) u -* R (C) u,
h [R (C) u - R (C) u] - 0 and 0,, [R (C) u] -> 0 for n -+ oo. In virtue of
the sectorial property of the forms t and t;,, this gives the first three
convergences in (3.10) for Re C < 0.

IV. So far we have been assuming that Re C < 0. We shall now
eliminate this restriction. The first formula of (3.10) is true for all C E A,
by the very definition of Os. To prove the second, it suffices to show that
h [R (C) u - R (C) u] --> 0. Substituting from (1.3), we have

(3.19) h [R. (C) u - R (C) u] = 4 [(1 + (C - Co) R. (C)) v.] S 2 h [v.] +

+2IC-Coll0[R.(pb)v,],

where v = (R (Co) - R (Co)) (1 + (C - Co) R (c)) u and Co is any fixed
number with ReCo < 0. Now 0 by what was proved above.
Furthermore, h [R. (pp S) v,,] S i

,
[R,, (S) v.] = Re (t - C) [R,, (C) v,,] +

+ ReC IIR.(C) v,IIQ = Re(v,,, R.(b) v.) + ReCIIRn(pb) vnlla-. 0 since 0
and R (C) is uniformly bounded as n -->. oo by C E Os. Thus the right
member of (3.19) goes to zero as n -+ oo as we wished to show. (3.19)
also shows that the convergences in question are uniform in C on any
compact subset of ; note that R (C) u varies over a compact subset
of Ho and apply Lemma 111-3.7.

Once the first two formulas of (3.10) have been extended to every
C E i , the same is true of the third by (3.18).

Finally we remark that the assumptions of the theorem are also
satisfied for the adjoint forms t*. Therefore, the above results hold
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true when T, T are replaced by T,*,, T* respectively. This proves (3.10),
and Os = OS follows from Theorem 1.8.

Theorem 3.6 is very useful as a criterion for the generalized strong
convergence T. - T. In many cases it is more powerful than Theorem 1.5

s
when X = H.

Example 3.7. Let H = L2(0, oo) and

(3.20)

t[u] = f (Iu1 (x)I2 + q(x)lu(x)12) dx,00
0

to [u] = f (I u' (x)12 + qn (x) j u (x) 12) dx,00
0

where q and q are real-valued functions with the properties stated in VI-§ 4.1,
so that t and t are closed symmetric forms bounded from below (with an appropriate
definition of their domains). Furthermore, let q (x) Z q (x) and

b

(3.21)
a

for any a, b such that 0 < a < b < oo. It is easily verified that the assumptions
of Theorem 3.6 are satisfied [with D = D(t)]. The operators associated with these
forms are T = -d2/dxs + q(x) and T. = -d2/dx2 + q. (x) (see Theorem VI-4.2)
with appropriate domains. It follows from Theorem 3.6 that T. - Tin the generaliz-

e
ed sense. Note that the condition (3.21) is weaker than the corresponding one (1.5)
in Example 1.11. It will also be remarked that q and q need not be real-valued;
the main condition is that the q - q are uniformly sectorial.

Example 3.8. Consider the operator T (m) of Example 1.20. It is obvious that
Theorem 3.6 is applicable to this case with T. replaced by T (M). If Re a > 0 and
Rex > 0, T (x) is the operator associated with the form

(3.22) t (x) [u, v] = f (a u' (x) v' (x -{- x u" (x) v" (x)) dx
0

with the boundary condition (1.26). It is easy to show that t(x) is sectorial and
closed. We have t (x) t, x -+ 0, in the sense required in Theorem 3.6, where
t [u, v] is given by the first term of (3.22) with the boundary condition u(0) = u (1)
= 0. In fact, we have t (x) [u] -+ t [u] if u E D = D (t (x)) (which is independent of x),
and D is a core of t as is easily seen.

The operator associated with this t is exactly the T of Example 1.20. Since,
moreover, t (x) - t is uniformly sectorial in the sense of (3.8) if x is restricted to a
sector jargxj < 6 < x/2, Theorem 3.6 shows that T (x) -+ T in the generalized
sense. If we further assume that a and x are real positive, T (x) and T are self-
adjoint and have compact resolvents (as is always the case with a regular differential
operator on a bounded domain), and the monotonicity of t (x) [u] in x implies that
T (x)-1 is monotone nondecreasing as x -+ 0 (see Theorem VI-2.21). It follows
from Theorem 3.5 that T (x)'1-+ T-1 in norm, so that we have also R (C, x) -> R (C)
in norm and T (x) --a T in the generalized sense (in gap). This gives a complete proof
of the statements given in Example 1.20.

Note that Theorem 1.5 is not applicable to this example, for D (T (n)) is not a
core of T. In this connection it should be remarked that even Theorem 3.6 is not

t
applicable to Example 1.19, for the limiting form t [u, v] = 2 a f u' (x) j _(x) d x that

0
would correspond to the limiting operator T is not sectorial.
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Remark 3.9. Another remark to Theorem 3.6 is that the convergence
(3.9) is required only for u E D, D being some core of t such that D C
C lim inf D (t ). It is not necessary that (3.9) hold for all u E lim inf D (t.).
A pertinent example is given by

Example 3.10. Let H = L2 (0, 1) and define t by
1

(3.23) t,,[u] = n-1 P
J Ju'(x)12 dx + (u(0)12 + Ju(1)12
0

with no boundary condition. D Do is the set of u E L2 such that u' E L2;
Do is independent of n. Theorem 3.6 is applicable if we set t = 0 [with D (t) = H].
The only condition to be considered is iii).,the other two conditions being trivially
satisfied. iii) is satisfied if D is chosen as the set of u E Do such that u(0) = u(1) = 0.
Even with these restrictions D is a core of t, for t is bounded and D is dense in H.
It follows from Theorem 3.6 that 0 in the generalized sense. This result is by

s
no means trivial. T. is the differential operator -n-1 d2/dx2 with the boundary
condition u'(0) = n u(0), u'(1) = -n u(1).

It should be noted that limt [u] exists for all u E Do, but it is not necessarily
equal to t [u] = 0.

3. Nonincreasing sequences of symmetric forms
In Theorem 3.6 it is assumed that the limiting form t is given.

It would be desirable to have a theorem in which only the sequence
is given and the limiting form t, or at least the limiting operator T, is
to be constructed. The circumstance stated in Remark 3.9 and Example
3.10, however, suggests that this is not easy, for in Theorem 3.6 limt [u]
need not be equal to t [u] for all u for which this limit exists. Thus the
attempt to construct t by t [u] = lim t [u] must fail.

At present there seem to exist no theorems of the desired kind for a
sequence of nonsymmetric sectorial forms. But we can give at least a
theorem on monotonic sequences o l symmetric forms.

Let us recall that, when 41 and 4$ are symmetric forms bounded
from below, 01 z 4z means that D (fjl) C D (02) and 01 [u] z t 2 [u] for
u E D(t)1) (the larger form has the smaller domain!) (see VI-§ 2.5).
A sequence of symmetric forms bounded from below is nonincreasing
(nondecreasing) if 0,, z 0,,+, (0"-;5 0,.+,) for all n.

Theorem 3.11. Let be a nonincreasing sequence o l densely defined,
closed symmetric forms uniformly bounded from below : h z y, y being a
constant. I l H is the sel f adjoint operator associated with fj,,, H converges
to a selfadjoint operator H Z y strongly in the generalized sense. We have
as n-> oo (writing R(C) = (H - C)-1)

(3.24) R5()-+R(), Re C < y ,

(3.25) (H - S)1/2 u W (H - )1/2 u for u E U D(`/n) and < y .
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It, in Particular, the symmetric form h defined by 1 [u] = lim hn [u] with
D (tj) = U D (tx) is closable, then H is the self adjoint operator associated

with 6, the closure o l 1, and the convergence in (3.25) is strong convergence.

Proof. We may assume without loss of generality that y = 0, so
that 0n and Hn are nonnegative. As we know (see Theorem VI-2.21),
the nonincreasing property of {0,,} implies that the sequence of bounded
selfadjoint operators Rn with e < 0 is nondecreasing. Since the Rn
are uniformly bounded from above by (-it follows from Theorem3.3
(with the order relation reversed) that s-lim Rn R exists. R is
invertible, for, since 0 s Rn S R (i), R u = 0 implies Rn u = 0
and so u = 0. It follows from Theorem 1.3 that R (l:) is the resolvent of a
closed linear operator H. H is selfadjoint since R is. It follows also
that Rn (C) S R (C) _ (H - c)-1 for any C with Re C < 0, for such
belong to Ab, the region of boundedness.

0 5 Rn S R for e < 0 implies Hn - H - by Theorem
VI-2.21, which implies that D(fjn) = D((H,, - e)11/2) c D((H - x)1/2).

Similarly we have D (1)m) C D (fjn) for m < n. For any u E D (hm), v E H
and n > m, < 0, we have therefore

(3.26) ((H. - S)1/2 u - (H - )1/2 u, (H1 - S)-1/2 v)

=(u-
(Hn - ) 1/2 (H1 - 1:)-1/2 E M(H) because D ((HH - x)1/2)

= D (hn)) D %); note that Rn (l:) S R implies R. g R

(see Problem V-3.52) and that 11 B,,11 5 1 because 0. 5 0, Since 11 (H, -
- )1/2 uil < II (Hm - )1/2 uil is bounded for n-+ oo and (H1 - )-1/2 v
varies over D %), which is dense in H, when v varies over H, it
follows that (Hn - l:)1/2 u -, (H - $)1/2 U if u ED (tam). Since m is

w

arbitrary, we have proved (3.25).

Suppose now that the limiting form h as defined in the theorem is
closable. Then we have a situation of Theorem 3.6, with tl, t replaced
respectively by tin, 6. Let Ho be the selfadjoint operator associated with 6.
We must have H. = H, for both (H - tc)-1 and (Ho - a)-1 are the strong
limit of Rn (la). It only remains to show that (3.25) is a strong convergence.
Since the weak convergence has been proved, it suffices (see Lemma
V-1.2) to show that 11 (H,, - )1/2 u112 _. 11 (H - )1/2 0112 for u E U D (0.).

But this is another expression of the assumption that tin [u] - h [u]
=6[u]

Remark 3.12. In general the weak convergence in (3.25) cannot be
replaced by strong convergence. This is seen from Example 3.10, in
which tin [u] 0 [u] is not true for all u E Do.
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4. Convergence from below
Theorem 3.13a. Let 015 02S ... be a monotone nondecreasing sequence o l

closed symmetric forms bounded from below. Set 0[u] = lim On[u] whenever
n- 00

the finite limit exists. 0 is a closed symmetric form bounded from below.
Suppose 0, and hence all the On, are densely defined, and let H and Hn be
the associated self adjoint operators, with the resolvents R and R. Then we
have, as n-,

(3.28a) On [u, v]-O [u, v] , u, v E D(O) ,

(3.29x) R,(,)s.R(,) , Re l<y, (the lower boil 'dolt),),

(3.30a) s u E D(O) , <y,

Before proving this theorem, it is convenient to introduce the
improper extension text of a symmetric form f bounded from below.
It is defined by text [u] =f [u] if u E D(f) and feRt[u] _ +00 otherwise.

Lemma 3.14a. t is closed i f and only i f text is lower semicontinuous.

Proof. Suppose teYt is lower semicontinuous. Let un E D(t), un-*u E H,
and t[un-um]-+0. Then text [un-u] 5 limt[un-um] by the lower semi-

m

continuity, so that lim suptext [un-u] <lim linmt[un-um] =0. Hence
un-u E D(t), u E D(t), and t [un-u]->0. This proves that t is closed.

Suppose, conversely, that f is closed. We have to show that
lim inffext [un] Z text [u] whenever un->u. We may assume that the
lim inf=c<oo. Going over to a subsequence, we may further assume
that text [un] =f[un]-+c. If we regard D(f) as a Hilbert space He as in
VI-§ 1.3, the un form a bounded set in He. Hence it contains a subse-
quence (which we denote again by un) converging weakly in He. The
limit must be identical with u. Hence u E D(f), feXt [u] =t[u] s limt[un] =c
as required [see III-(3.26)].

Proof of Theorem 3.13a. It is easy to see that D(0) is a linear manifold,
is a quadratic form, and that (3.28a) holds [see VI-(1.1), (1.16)]. To see

that 0 is closed, it suffices to note that Oext is lower semicontinuous
(Lemma 3.14a). Indeed, the semicontinuity follows from that of the
On,ext because On,ext [u] tOext [u] for each u E H.

Suppose now that 0 is densely defined, so that the same is true of the
On. Then H,SH25,,,<H and R,( )zR2( for <yl. As in
the proof of Theorem 3.11, it follows that Ro(1:)'=s-limRn($) exists and
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Re(d)>R(e). Since is invertible, the same is true of Ro(d), which
is therefore the resolvent of a selfadjoint operator H0 H. If tjo is the
associated form, we have In view of the definition of 1j,
however, one must have fjo =fj. Hence Ho =H, R, =R, and we have
proved (3.29a) (cf. Proof of Theorem 3.11).

It remains to prove (3.30a). For uED(O) set Since
IIvnII < II (H-e)1/2uII by H,,s H, we may assume that v W v E H, going over

to agg subsequence if necessary. For any f E H, we have then (u, f) _
(Rn(b)1/2vn, f) =(v., f)_+( R(e)112f) because

S (see

Proof of Theorem 3.11). Thus or v=(H-e)1/2u. Since this
implies IIvn.II<IIvii, we must have Since we could have started with

s

any subsequence of v, with the same limit v, we have proved (3.30a).

5. Spectra of converging operators
Suppose {T,n} is the sequence of operators defined in one of Theorems

3.6, 3.11 or 3.13a. is strongly convergent to T in the generalized
sense. Let A be an isolated eigenvalue of T with finite multiplicity m.
If A is stable in the sense defined in § 1.4, there are exactly m repeated
eigenvalues of T,, in the neighborhood of A and these eigenvalues converge
to A. This follows exactly in the same way as in § 1.4.

In the case of Theorem 3.6, A is stable (with respect to the perturba-
tion T ->- if and only if is a stable eigenvalue of T* (with respect to
the perturbation T*-. T,*,). This follows easily from Theorem 3.6.

In all these cases, (1.31b, c) can be strengthened to

IIP - PII - o
(see Lemma 1.24).

Theorem 3.15. I l the lower part A < ,B o l the spectrum o l H o l Theorem
3.11 consists o l isolated eigenvalues with finite multiplicities, these eigen-
values are stable under the perturbation considered. The same is true in
Theorem 3.6 i f t,, and t are symmetric so that T = H and T,, = H,, are
sel f adjoint. When n oo the eigenvalues 1uk"> o f H,, tend from above to the
corresponding eigenvalues ,uk of H.

Proof. Since R. z H y, we have (see Problem VI-5.5)

(3.33) dim R. (A) dim E (A) , - oo < A < co ,

where E (A) and E (A) are the spectral families for the selfadjoint opera-
tors H,, and H, respectively. If A < P, we have dim E (A) < oo and hence
dim E,, (A) < oo for A < j$. This implies that H,, also has a spectrum
consisting of isolated eigenvalues in the part A < P. Let us denote the
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repeated eigenvalues of H and H in this part respectively by

(3.34) 5 fps 5 ... < P , i4' - lu2ri) - ... < P
Then (3.33) implies that (cf. Theorem 1-6.44)

(3.35) AA")Zftk, n,k=1,2,... .
In the case of Theorem 3.11 in which 0 and H are nonincreasing, each
sequence ,z") for fixed k is nonincreasing in n.

Now we have
(3.36) IIEn(A)-E(A)II->0, n oo, A<j9, A+/z,.
To see this, we first note that E. (A) - E (A) for every A such that E (A - 0)

= E (A), in particular, for every A < f different from any of the ,uk
(see Theorem 1.15). In view of (3.33) and dimE (A) < oo, (3.36) then
follows by Lemma 1.23. (3.36) in turn implies that dim E. (A) = dim E (A)
for such A for sufficiently large n. It is easy to see that this implies
ykn) -* p,, n-* oo.

Since II R. (C) II 5 E (Hn)), every real number C + 1u, belongs
to the region A b of boundedness and hence to A, by Theorem 1.3. This
proves the theorem.

Example 3.16. Applying Theorem 3.15 to Example 3.7, we see that the eigen-
values of T = - d2/dx$ + q (x) are stable under the perturbation considered,
provided the real-valued potential q (x) is such that T has isolated eigenvalues at the
lower part of the spectrum.

Remark 3.17. The above result does not appear to hold in the non-selfadjoint
case. At first it might be expected that in Theorem 3.6, in which the forms t tend
to t "from above" (in the sense that Ret), the eigenvalues of T. should
also tend to the eigenvalues of T from above, at least in a region of the spectrum of T
consisting of isolated eigenvalues. This conjecture is wrong, however. For example,
consider Example 1.19 with X = L2 and a > 0, x > 0. Here the operator T (x)

i
is associated with the quadratic form t (x) [u] = 2 at f [u' (x) u7 + x Iu' (x) 12] d x,

0
which is sectorial and closed for x > 0 and which is decreasing for decreasing X.
But the eigenvalues of T(x) are given by (1.20), each of which is increasing for
decreasing x for sufficiently small x.

§ 4. Asymptotic expansions for sectorial operators
1. The problem. The zeroth approximation for the resolvent

We resume the study, begun in § 2, of asymptotic expansions' for
x->- 0 of the resolvent R (g, x) and the isolated eigenvalues of an operator
T (x) depending on the parameter x. We shall again be concerned with

' The results of this section were given by TITCHMARSH [1], [2], T. KATO [3],
[7], [8], V. KRAMER [1], [2] in the symmetric case. Some results in the nonsymmetric
case are given by HURT [1], [2]. The proof of the theorems given below can be
greatly simplified in the symmetric case; see the papers cited above.
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the case in which T (m) may be written T + x T(') formally, but now the
exact definition of T (m) will be given in terms of a sectorial form in a
Hilbert space H.

Consider a family of sectorial forms t (x) in H given by

(4.1) t(x) =t+xt('), 0<x s 1 .
Throughout the present section, we make the following fundamental
assumptions.

i) t and t(') are densely defined, closed sectorial forms.
ii) t(') has a vertex zero; t has a vertex

iii) D = D (t) n D (t(')) is a core of t.
Again we make some comments on these assumptions. ii) is not a

restrictive assumption, for if t and t(l) have vertices y and y(l), we may
write t(') = y(') + t', where t' is sectorial with a vertex 0, and (4.1)
becomes

(4.2) t(x)=xy(l) +t+xt'.
Here the first term x y(') is a small scalar, has no importance in most
problems to be considered below and may be omitted, and we may
replace t' by 0). Again, (4.1) implies that D (t (x)) = D (t) n D (t(')) = D.
If D were not a core of t, we could replace t by the closure of its restriction
to D; this does not affect t (x), while D is a core of the new t. For the same
reason we could have assumed that D is also a core of t(1>, but we need
not assume this explicitly.

Since both t and t(') are closed sectorial, the same is true of t (x)
(see Theorem VI-6. 1). D(t(x)) = D is dense, since it is a core of the
densely defined form t by iii). Let T (x) be the m-sectorial operator
associated with t (m) by the first representation theorem. Similarly, we
denote by T the m-sectorial operator associated with t.

Now Theorem 3.6 is applicable to the present problem, with t,
t, T replaced by t (x), t, T (x), respectively. It follows that T (x) converges
as x -> 0 strongly to T in the generalized sense. More precisely, we have
by (3.10)

(4.3) R (C, x) s R R (, x) * 5 R x ->- 0,

(4.4) t [R (C, x) u - R ( )_ u] -. 0, t [R x) * u - R (C) * u] - 0 C E A5,

(4.5) x tC') [R (C, x) u] -. 0 , x t(l) [R x) * u] 0 u E H,

where we write R (g, x) = (T (x) - ()-1, R (g) = (T - -1 as usual.
The convergences (4.3)-(4.5) are uniform in each compact subset of A5.
AS contains the half-plane ReC < y.

In the following paragraphs we shall study under what conditions
the expressions R (C, x) u and (R (C, x) u, v) admit asymptotic expansions
in powers of x.
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We write
(4.6) h = Ret, h(') = Ret(l), fj(x) = Ret(x) = h + x fjnl , = ReC,

and denote by Tt1>, H, H(1>, H (x) the operators associated with tnl,
t, , ('), h (u), respectively. Also we have

(4.7) IImt [u] I S M(1 - y) [u] . IImt(1) [u] I < M' t') [u] .

Where M = tan 0, M' = tan 0' if 0, 0' are the semi-angles for the sectorial
forms t, t (1). Finally we note that there need not be any simple relationship
between D (T) and D (T(')), so that T (u) need not be equal to T + u TO).

Remark 4.1. Since D (t*) = D (t), etc., the assumptions i) - iii) imply
the same for their adjoint forms.

2. The 1/2-order approximation for the resolvent
Theorem 4.2. Let C E AS, u E H and R (C) u E D (t(1)). Then we have

as x-* 0
(4.8) II R (C, x) u - R (C) ull = o (xl/2)

(4.9) t [R (C, x) - R (C) u] = o (x) , t(1) [R (C, x) u - R (C) u] = o (1) .

I/ R (C) u E D (0)) and R (C) * v E D (t (1)), then

(4.10) (R (C, x) u, v) _ (R (C) u, v) - x t(l)[R (C) u, R (C)* v] + o (u) .

Proof. I. Set
(4.11) w=w(x)=R(C,x)u-R(C)u;
note that w E D since R (C) u E D (T) C D (t) and R (C) u E D (t M) by
assumption and since R (g, x) u E D (T (u)) C D (t (x)) = D. Then we have

(4.12) (t (x) - C) [w] = (t (x) - C) [R (C, x) u - R (C) u, w]
= (u, w) - (u, w) - x t(') [R (C) u, w] = - x t(1> [R (C) u, w] .

Suppose, for the moment, that = Reg < 0, assuming y = 0 for sim-
plicity (which does not affect the generality). Then Re (t (x) - C) = 4 -
- + x ha) z x lM >_ 0, and (4.12) implies

(4.13) x 00) [w] s x it() [R (g) is, w] I S (1 + M') is fj(l) [R (g) u]1/2 0(1) [w ]1/2

[see VI-(1.15)] and hence

(4.14) h(1) [w] < (1 + M')2 h(1) [R (C) U]

This shows that w = w (x) is bounded as is -> 0 with respect to the norm
IIwJJ (I) = (4(1) [w] + IIw1I2)1/2 by which D (t(1)) becomes a Hilbert space Ht(1).
But we have, for any v E H, (h(1) + 1) [w, (H(') + 1)-1 v] = (w, v) ->. 0
because w-. 0 by (4.3). Since (H(1) + 1)-1 H = D(H(1>) is a core of h(l)
and hence dense in Ht(x), it follows that w-. 0 weakly in Ht(1). Since t(1)
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is a bounded form on Ht(i), this implies that t(l> [R (C) u, w] -+ 0. Thus
the right member of (4.12) is o (x).

Again taking the real part of (4.12) and noting that Re (t (x) - C) [w]
h [w] + (- ) IIwII2 + x I)(l) [w],- in which all three terms are non-

negative, we see that h [w], IIwII2 and x 1(') [w] are all o (x). This proves
(4.8) and (4.9).

II. Now (4.8), (4.9) can be extended to the general case in which
C E A. and R (C) u E D (t(')). To show this we use a version of (1.3) :

(4.15) R x) - R
(1 + (C - Co) R (C, x)) (R (Co, x) - R (Co)) (1 + (C - Co) R (C)) ,

in which we choose Co as a fixed number with ReCo < 0. Set x = (1 +
+ (C - Co) R (C)) u. Then we have R (Co) x = R (C) u E D (t(')) by the resol-
vent equation. Hence y (x) = (R (Co, x) - R (Co)) x = o (xl/2) by what was
proved above. Since R(C, x) is bounded when x -* 0, (4.8) follows from
(R (C, x) - R(C)) u = (1 + (C - Co) R(C, x))y(x)

To prove (4.9), we note that

(4.16) t (x) [(R (C, x) - R (C)) u] (x) [y (x) + (C - Co) R (C, x) y (x)] S

5 2l (x) [y (x) ] + 2 I C - Co I2 4 (x) [R (C, x) y (X)]

We shall show that the last member of (4.16) is o (x). This is true for the
first term by what has already been proved. In the second term, we may
replace 4 (x) by 4 (x) - since IIR (C, x) y (X)112 = o (x) as shown above. But

(fj (x) - ) [R (C, x) y (m)] = Re (t (x) - C) [R (C, x) y (m)]

= Re (y (x), R (C, x) y (x)) s 11R (C, x) II IIy (x)II2 = 0 (x)

Thus (4.16) is o (x) and hence (4.9) follows immediately.
III. To prove (4.10), we use the identity

(4.17) (w, v) _ (t - C) [w, R(C)* v]
_ (t - C) [R (C, x) u, R (C) * v] - (t - C) [R (C) u, R (C) * v]

_ (u, R (C) * v) - x 0) [R (C, x) u, R (C)* v] - (u, R (C) * v)

_ -x t(') [R (C) u, R(C)* v] - x t(') [w, R(C)* v] .

This is true since R (C) * v E D, which follows from the assumption that
R())* v E D(t(')) as before. (4.10) follows from (4.17) in virtue of (4.9),
which implies that w -* 0 in Hj(i).

3. The first and higher order approximations for the resolvent
Once Theorem 4.2 for the 1/2-order approximation has been establish-

ed, the further approximations are rather straightforward. For example,
we have
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Theorem 4.3. Let E A5 and u E H. If R (C) u E D (T(1)), we have as
x-> 0
(4.18) R(C,x)uR(C)u-xR(C)T(1)R(C)u+o(x).
If R(C) u E D(T(1)) and R(C)* v E D(T(1)*), then

(4.19) (R (C, x) u, v) = (R (C) u, v) - x (R (C) TM R (C) u, v) +

+ x2(R(C) T(1) R(C) u, T(1)* R(C)* v) + o(x2)

Proof. Using the same notations as in the preceding paragraph, we
have for any v E H
(4.20) (w, v) _ (t (x) - C) [w, R (C, x) * v]

_ (t (x) - C) [R (C, x) u, R (C, x) * v] - (t (x) - C) [R (C) u,R (C, x) * v]

_ (u, R (C, x) * v) - (u, R (C, x) * v) - x 0) [R (C) u, R (C, x) * v]

_ - x (T(1) R (C) u, R (C, x) * v) _ - x (R (C, x) TM R (C) u, v)

since R (C) u E D (T(1)). Hence

(4.21) R(C,x)u-R(C)u=wxR(C,x)T(1)R(C)u.
(4.18) follows from (4.21) in virtue of (4.3).

Suppose now that R(C)* v E D(T(1)*). Since T*, T(x)* and T(1)*
are the operators associated with the adjoint forms t*, t(x)* and t(1)*,
respectively, application of (4.21) to these adjoint forms with C replaced
by leads to
(4.22) R(C,x)*v-R(C)*v=-xR(C,x)*T(1)*R(C)*v.

Taking the inner product of (4.22) with u and using (4.21), we obtain

(4.23) (R(C, x) u, v) - (R(C) u, v) = -x(R(C, x) u, T(1)* R(C)* v)

= -x(R(C) u, T(1)* R(C)* v) + x2(R(C, x) T(1) R(C) u, T(1)* R(C)* v) ,

from which (4.19) follows in virtue of (4.3).
Theorem 4.4. 1/ R (C) T(1) R (C) u exists and belongs to D (t(1)),

(4.24) R (C, x) u = R (C) u - x R (C) TM R (C) u + o (x3/2) .

If, in addition, R())* T(1)* R(C)* v exists and belongs to D(t(1)),

(4.25) (R (C, x) u, v) = (R (C) u, v) - x (R (C) TM R (C) u, v) +

+ x2(R(C) T(') R(C) u, T(1)* R(C)* v) -
.- x3 t(1) [R (C) TM R (C) u, R (C) * T(')* R (C) * v] + o(x3)

Proof. (4.24) follows by applying (4.8) to the right member of (4.21).
To prove (4.25), it suffices to apply (4.10) to the last term of (4.23)
[with u, v replaced by T(1) R(C) u, T(1)* R(C)* v, respectively].

It is now easy to see how further approximations should proceed.
It will not be necessary to write them down explicitly.
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Problem 4.5. If R (C) 211) R (C) u exists and belongs to D (tu)) and if R (C) * v E
E D (tu)), then
(4.26) (R (C, x) u, v) = (R (C) u, v) - x (R (C) T(l) R (C) u. v) +

+ x8 ill) [R (C) Ta> R (C) u, R (C) * v] + o (x8)

Remark 4.6. All the above formulas are, in spite of their different forms, essen-
tially the second Neumann series for the resolvent, which may be written formally

(4.27) R x) = R x R (C) T<1> R (C) + x$ R (C) T(l) R (C) Ta> R (C) + .. .

For example, the coefficient of ms in (4.25) is formally equal to

(4.28) - t(l) [R (C) r') R (C) u, R (5) * T('>* R v]
(Ta) R T(l) R (C) is, R ()) * T(')* R (C) * v)

(R (C) Tl) R (C) T'> R (C) To) R (C) u, v) ,

corresponding to the coefficient of x' in (4.27). Actually (4.28) is correct only when
T(l) R (C) Tl) R (C) T(l) R (C) is makes sense. The left member of (4.28) exists,
however, without assuming so much on is if we impose on v the assumptions stated.
The formula (4.25) is particularly useful when t and t(') are symmetric and C is real;
then T(')* = Ta>, R (C) * = R (C) so that it is valid for v = is if we assume only that
R (C) To) R (C) u E D (t(')). A similar remark applies to all the other formulas.

Example 4.7. Consider the differential operator

(4.29) T (x) = - d2/d x2 + q (x) + x qu> (x) , 0 x < oo ,

with the boundary condition is (0) = 0. T (x) is associated with the quadratic form

(4.30) t (x) [u] _ f [Iu'(x) 12 + q (x) j u (z) 11 + x q(1) (x) Iu (z)12] dx .00
0

This example is a version of Example 3.7 with a continuous parameter x rather than
a discrete one n. If q (x) satisfies the assumptions of Theorem VI-4.2 and if qu> (x)
is nonnegative and locally integrable, T (x) is selfadjoint and the above results are
applicable. The zeroth approximation (4.3) for the resolvent is valid for every
u E H = L2 (0, oo), the 1/2-order approximation (4.8) is true if R() u E D (t 1),
that is, if

00

(4.31) f q(1) (x) I R (C) U (X) 12 d x < oo ,
0

and the first order approximations (4.18) and (4.19) with v = u are valid if R (C) is E
E D (Tu>), that is if

(4.32)
00

'f qu> (X)2 IR (C) u (x) I' d x < oo ,

0
and so on.

Suppose, in particular, that q (x) -> 0 as x -> oo, as is often the case in the
Schr6dinger operators. w = R (C) is is the solution of (T - C) w = u or

(4.33) - w" + q (x) w - C w = u (x) , w(0)=0.
If C is real and negative, it can be shown that the solution w (z) of (4.33) belong-
ing to L2 must decrease in magnitude very rapidly as x -> oo, provided this is the
case with is (x). In such cases (4.31) and (4.32) are satisfied even when I qu) (x) I is large
asx ->oo.

q(l) (x) may also have a rather strong singularity at x = 0. If q (x) is o (x- 2) as
x -> 0, w (z) = R (C) is (z) is 0 (x). In order that (4.31) be satisfied, therefore, q(l) (x)
need only be of the order 0 (x- 8 } 8) with s > 0. Similarly, a singularity of 0 (X-1.6+8)
is allowed to qu> (x) for (4.32) to be satisfied. Thus the above results are quite
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satisfactory when applied to problems of this kind. A similar remark applies to the
perturbation of Schrodinger operators in three or higher dimensional spaces.

Example 4.8. Consider the operator

(4.34) T (m) _ -a d2/dx9 + x d4/dx4 , 0 < x 5 1,
of Example 1.20. T (m) is the operator associated with the form t (M) of (3.22).
The zeroth order approximation R (C, x) u R (C) u is again true for any u E H
= L2 (0, 1). The assumption of Theorem 4.2 for the 1/2-order approximation requires
that w = R u E D (t(1)), that is, w (x) be twice differentiable and satisfy the
boundary condition w(0) = w'(0) = w(1) = w'(1) = 0. The differentiability is
automatically satisfied since w (x) is the solution of (T - C) w = u, which is a
second order differential equation. Also the boundary conditions inherent in T
imply that w (0) = w (1) = 0, but the remaining conditions w' (0) = w' (1) = 0 are
satisfied only in exceptional cases. A necessary and sufficient condition for this is
given by

(4.35)

I
f e±(-;>'"'xu(x)dx=0,

0

for the required condition means that u is in the range of the restriction To - of
T - C with the stated four boundary conditions, and this is true only if u is ortho-
gonal to the null space of (To - But To is simply the differential operator
-d2/dx2 without any boundary condition, so that the null space in question is
spanned by the two functions of (- CS'I' x.

Thus we conclude that "in general" the estimates (4.8) - (4.10) are not valid. For
example if u (x) = 1 and C = 0, we have

(4.36) f (x) = R (0, x) u (x)

x(1 - x) sinh 2
V

,c I cosh 2
V

-cosh
2 at

[cosh

i

x

cosh V X
- 111

It is true that this function has the asymptotic expansion

(4.37) f(x) = x(12a
x)

2a V a I
... X(12

x) = T-1 u(x)

for each fixed x such that 0 < x < 1, the remainder ... being smaller than any
finite power of x as x -. 0. But this remainder is not quite so small in the whole
interval (0, 1). In fact, a simple calculation shows that it is exactly of the order xa14
in norm. Thus

,/(4.38) R (0, x) u = T-1 u - tar
a + 0

the order x°14 being exact. A similar result can be expected for any other u (x) if it is
at least smooth enough on [0, 1]. In this way we see that a satisfactory asymptotic
expansion is impossible in this example, at least if one is concerned with the global
behavior of the function R x) u.

It is known, on the other hand, that the scalar quantity of the form (R (C, x) u, v)
admits an asymptotic expansion in powers of x1/2 to any order if u (x), v (x) are
sufficiently smooth. Of course our general theorems proved above are not capable of
dealing with such asymptotic expansion in fractional powers' of x.

1 The appearance of fractional powers of x is quite common in the singular
perturbation theory of differential operators; see references on footnote 1 of p. 442.
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4. Asymptotic expansions for eigenvalues and eigenvectors
Let us now consider an isolated eigenvalue A of T with finite

multiplicity m and assume that A is stable with respect to the perturbation
T T (m) (in the sense of § 1.4). Since T (m) converges to T strongly in
the generalized sense, there are exactly m (repeated) eigenvalues of T (x)
in the neighborhood of A and these eigenvalues tend as x -* 0 to A
(see § 3.5).

We denote by ,uf (x), j = 1, ..., m, these (repeated) eigenvalues of
T (u), and follow the notations of §§ 2.3-2.4 for other related quantities.

Theorem 4.9. Let the eigenvalue A of T be semisimple and let the ranges
o l P and P* be contained in D (t(1)). Then the eigenvalues ,u; (x) admit the
asymptotic expansions

(4.39) AUf(x)=A+xIt()+o(x), j= 1,...,m,
where = 1, ..., m, are the eigenvalues o l the sesquilinear form
t(1) [Pu, P* v] considered in the m-dimensional space PH (see Remark
4.11 below). The total projection P (m) for these m eigenvalues u5 (x) has
the property that
(4.40) 11P(M) - P11 = o (x1/2)

Remark 4.10. If t is symmetric (so that T is selfadjoint), P* = P
and the assumptions reduce to P H C D (t(')).

Remark 4.11. Let t be an arbitrary sesquilinear form in H. Let P
be a projection such that both PH and P* H are contained in D (t).
Then tP [u, v] = t [Pu, P*v] defines a form tp with domain H. It is easy
to prove that tP is bounded if dim P = m < oo. Thus there exists an
operator TP E.4 (H) such that tp [u, v] _ (Tp u, v) for all u, v E H. Since
tP [Pu, v] = tp [u, v] = tp [u, P*v] for all u, v, it follows that TPP
= TP = P Tp. Thus the subspace M = P H is invariant under T.
The eigenvalues of TP considered in M will be called the eigenvalues of
the form tp in M.

If t is closed sectorial and if P H C D (T), where T = Tt is the operator
associated with t, it can be readily seen that Tp = P T P. In general,
however, P T P need not be defined on a sufficiently wide domain.

Proof of Theorem 4.9. I. First we note that [for notation see (2.18)]

(4.41) R (C, x) P - R (l;) P =0 (x1/2) , t; E AS ,

o(x1/2) being uniform on any compact subset r of AS. (4.41) follows
from the fact that u E PH implies R (l;) u = (A - C)-1 U E D (t(1)) so that
R (C, x) u - R (C) u = o (x1/2) by (4.8) [cf. the proof of (2.20)]. The uni-
formity in C E r can be proved easily by using (4.15). Taking as r the
circle - Al = r and integrating (4.41) on r, we thus obtain

(4.42) P (x) P - P = 0 (x1/2) .
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Since A is a stable eigenvalue of T* by the remark given in § 3.5,
we have a result similar to (4.42) with P and P (x) replaced by the
adjoints P* and P(x)*, respectively. Taking the adjoint of this formula,
we have

(4.43) P P (x) - P = o (x1/2) 0,

It follows from (4.42) and (4.43), using an argument similar to the one
used in the proof of (2.41), that Q (x) = P (x) - P = o (x1/2) 0. This
proves (4.40).

II. We now introduce the operator U (x) defined by (2.42) and consider
the operator U (x) R (C, x) U (x) P. Recalling that U (x) P = P (x) U (x)
[see (2.45)], that Q (x)2 = (P (x) - P)2 = o (x)0 commutes with both P
and P (x), and that P (x) commutes with R (C, x), and noting (2.42)
and (2.44), we have

(4.44) U(m)-l' R (C, x) U (m) P = U(m)-l' P (m) R (C, x) P (m) U (m)

_ (1 + o (x)0) PP (x) R (C, x) P (x) P(1 + o (x)0)
= PP(x) R (C, x) P + o(x) 0

= PP(x) PPR(C, x) P + PP(x) (1 - P) (1 - P) R(C, x) P + o(x)0.

The second term on the right is o (x)0 ; this is seen by noting that P P (x)
(1 - P) = P(P(x) - P) (1- P) = o (x1/2)0 by (4.40) and (1 - P) R (C, x) P

= (1 - P) (R (C, x) - R (C)) P = o (x1/2)0 by (4.41). In the first term we
note that PP (x) P = P - PQ (x)2 = P + o (m), Hence

(4.45) U(m)-1 R (C, x) U (m) P = PR (C, x) P + o(x)0 .

The first term on the right of (4.45) can be calculated by using (4.10).
Replacing u, v respectively by Pu, P*v in (4.10), we obtain

(4.46) (PR(, x) Pu, v) = (R (C, x) Pu, P* v)
= (2 - C)-1(Pu, v) -X (2 - C)-2 t(1) [Pu, P*v] + o (x) .

Since dim P < oo, this gives

(4.47) PR(, x)- P = (2 - c)-1 P - x (2 - C)- 2 TP' + o (x)0

where T' is the bounded operator associated with the form tP> [u, v]
= t(1> [Pu, P*v] (see Remark 4.11).

Substitution of (4.47) into (4.45) gives an expansion similar to (2.24),
and the expansion (4.39) for p1 (x) follows as in the proof of Theorem 2.6.

We proceed to the expansion of the eigenvalues ,u, (x) up to the
second order in x.

Theorem 4.12. In Theorem 4.9 assume further that P H C D (T(1)) and
P* H C D (T(l)*). I/ the (distinct) eigenvalues A1, j = 1, . . ., s, ol T(') are
semisimple, then all the results o l Theorem 2.9 are true.
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Remark 4.13. The operator [P T01)] of Theorem 2.9 is here equal to
(T (')* P*) * ; note that T (')* P* E a (H) by the assumption P* H C D(T (')*).

Proof of Theorem 4.12. If u E P H we have R (C) u = (I - 0`u E D (T(')),
so that we have the expansion (4.18) for R (C, x) u. The o (x) on the right
of (4.18) is uniform in C on any compact subset of Os, as is seen from
(4.21) and Lemma 111-3.7. Considering that dimP < oo, we again obtain
the formula (2.20) for R (C, x) P.

Considering the adjoints R(C)* etc., we arrive at the same formula
(2.20) with P, R (c), ... replaced by P*, R (C)*, .... Taking the adjoint
of this result, we obtain the formula (2.35) for PR(C, x), with o(x)5
replaced by o (x),,.

Once we have these two expressions, the proof of Theorem 2.9 can
be applied without change to deduce the required results.

Remark 4.14. In the same way we could proceed to the expansion of
the eigenvalues and eigenvectors to higher orders of x. We shall not give
the details', for the second approximation for the eigenvalues is suf-
ficient for most problems in application. It will only be noted that, in
view of the formal expansion of A (x) in which the third coefficient A(3)
contains the term trT(') ST(') ST(') P = t(') [ST(') 92, S* T(')* 99] (assum-
ing m = 1), we have to assume that
(4.48) ST(') P X (:D (t(')) , S* T (')* P* X C D (t(')) ,

in order to obtain the expansion of the eigenvalues up to the order x8.
Similarly, the expansion of the eigenvalues up to the order x4 would
require the existence of
(4.49) T(') ST(') F , T(')* S* T(')* p* E V(H) .

Example 4.15. Consider the differential operator T (m) given by (4.29) with the
boundary condition u (0) = 0 (see Example 4.7). To be definite, assume that the
real-valued unperturbed potential q (x) tends to zero as x oo. Then it is well
known that the unperturbed operator T has only negative eigenvalues, which are
all isolated. Let A be one of them and let T be the associated eigenfunction (A is
simple). Since the associated eigenprojection P is the orthogonal projection on the
one-dimensional subspace spanned by p, Theorem 4.9 is applicable to A if

00

(4.50) f qa> (x) IT(X)12 d x < oo .

0

Similarly, Theorem 4.12 is applicable if (note that P and Ti'> are selfadjoint here)
M

(4.51) f q(1) (x)' 19, (x) I' d z < co .

0

In other words, we have the expansion of A (x) up to the order x if (4.50) is satisfied,
and up to the order x' if (4.51) is satisfied.

It is well known, however, that 9' (z) behaves like x as x -s 0 and like
exp [- (- A)1I$ x] as x -a co [more precise behavior depends on q (x)]. Therefore,

1 See V. KRAMER [1], [2], where a detailed result is given in the special case when
H (x) is a selfadjoint Friedrichs family [that is, t (x) is defined by t (x) [u] = (K (x) u, u)
from a given family K (x) of symmetric operators].
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(4.50) and (4.51) are very weak conditions on q(1). For example, (4.50) is satisfied if
qa> (x) is O (x- 8 } e) as x -> 0 and O (x") as x oo with any n. Also it can be seen that
the conditions (4.48) and (4.49) are satisfied under very general conditions on q(1);
it suffices to note that w = S 711> q> is the solution of the differential equation
- w" + q (x) w - A w = y> (z) with the auxiliary condition (w, q>) = 0, where
V = (1 - P) T11> q> [that is, v> (x) = q(1) (x) 92 (x) - c q> (x) with c given by (4.50)].

§ 5. Spectral concentration
1. Unstable eigenvalues

In considering the perturbation of an isolated eigenvalue A, we have
assumed that I is stable under the perturbation in question (see §§ 1.4,
2.3, 2.4, 3.5, 4.4). Some sufficient conditions for the stability have been
given, but these are not always satisfied. It happens very often that a
given eigenvalue A is not stable; then the spectrum of the perturbed
operator can behave in various ways and it would be difficult to give a
general account of its behavior.

If we restrict ourselves to selfadjoint operators, the most common
phenomenon with an unstable eigenvalue 2 is the absorption of 2 by the
continuous spectrum: the perturbed operator has a continuous spectrum
that covers an interval containing I and has no eigenvalue near 21.
In such a case it does not make sense to speak of "the perturbation of the
eigenvalue A".

Nevertheless it is often possible to compute the formal series for the
"perturbed eigenvalue A (x) " according to the formulas given in Chapter
VII, at least up to a certain order in x. The question arises, then, as to
what such a series means.

It has been suggested that, although the spectrum of the perturbed
operator is continuous, there is a concentration of the spectrum at the
points represented by these pseudo-eigenvalues computed according to the
formal series.

It is the purpose of this section to give a definition of "concentration"
and to prove some theorems showing that such concentration does exist
exactly where the pseudo-eigenvalues lie $.

1 There is an opposite phenomenon in which a continuous spectrum is changed
into a discrete spectrum by perturbation, but we shall not consider this problem;
see MASLOV [1], [3].

Spectral concentration was considered by TITCHMARSH [3], [4], [5] in special
cases of ordinary differential operators, where it is shown that the analytic continua-
tion of the Green function, which is the kernel for the resolvent of the perturbed
operator, has a pole close to the real axis (as a function of the resolvent parameter ]),
whereas the unperturbed kernel has a pole A on the real axis. More abstract results
were given by FRIEDRICHS and REJTO [1], CONLEY and REJTO [1]. T. KATO [3]
contains a somewhat different formulation of the problem. Spectral concentration
is closely related to the so-called weak quantization in quantum mechanics; in this
connection cf. also BROWNELL [4].
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2. Spectral concentration
Let H be a Hilbert space and {H,,} a sequence of selfadjoint operators

in H, with the associated spectral families {En (A)}. We denote by En (S)
the spectral measure 1 constructed from En (2), where S varies over
subsets of the real line R. (In what follows all subsets of R considered are
assumed to be Borel sets.)

Let Sn C R, n = 1, 2, .... We say that the spectrum of Hn is (asym-
ptotically) concentrated on Sn if

(5.1) E'n(Sn) s 1 , n-* oo,
or, equivalently,

(5.2) En (R - Sn) s 0,

where R - Sn is the complementary set of Sn with respect to R. Here
Sn = S may be independent of n; then we say that the spectrum of Hn
is concentrated on S. It is obvious that if the spectrum of Hn is con-
centrated on Sn, it is concentrated on any S such that Sn C S.

Thus spectral concentration is an asymptotic notion related to a given
sequence (or a family) {Hn} of operators; it does not make sense to speak
of spectral concentration for a single operator H (except in the trivial
special case of a sequence {Hn} in which all Hn are equal to H).

More generally, we shall say that the part of the spectrum of Hn in a
subset T of R is (asymptotically) concentrated on Sn if

(5.3) En (T - Sn) s 0,

where T - Sn = T n (R - Sn) (the S. need not be subsets of T). It
is obvious that (5.2) implies (5.3) for any T because En (T - Sn) S
S En (R - Sn). If, conversely, the parts of the spectrum of Hn in T and
in R - T are concentrated on Sn, then the spectrum is concentrated on
Sn, for E. (R - Sn) = E. (T - Sn) + E. (R - T - Sn). For this reason it
suffices, for most purposes, to consider concentration with respect to
some given set T.

A basic result for spectral concentration is given by
Theorem 5.1. Let Hn H in the generalized sense, where H is sell-

s

adjoint. Let S ( R be an open set containing E (H). Then the spectrum of Hn
is asymptotically concentrated on S. Furthermore, we have En (S n I) -/ E (I)

s

for any interval I if the end points of I are not eigenvalues of H (E denotes
the spectral measure for H).

1 See VI-§ 5.1 and X-§ 1.2. Here we need only elementary properties of the
spectral measure; in most cases it suffices to consider sets S which are unions of
intervals.
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Proof. The open set S is the union of at most a countable number of
disjoint open intervals I, all of which are finite except possibly one or
two. E (H) C S implies that ' E (Ik) = E (S) = 1, in which the series

k

converges in the strong sense. Hence the span of the subspaces E (Ik) H
is dense in H. In order to prove (5.1), therefore, it suffices to show that
E (S) u -* u whenever u E E (Ik) H for some k.

First assume that It = (ak, bk) is finite. Then a, b, belong to P (H),
for they cannot belong to E (H). Thus there are ak, bk such that at <
< ak < bk < bk and the two intervals [ak, ak], [bk, bk] are subsets of
P (H). On setting Ik = (ak, bk), we have E (Ik) = E (Ik) and so En (Ik) u
=En(bk-0)u-En(ak)u-> E(bk)u-E(ak)u=E(Ik)u=E(Ik)u=u
(see Theorem 1.15 and the attached footnote). Since Ik C S, we have
E. (It) S E. (S) and so E,, (S) u -+ u, as we wished to show.

When Ik is not a finite interval, we need a slight modification in the
above proof. If, for example, bk = oo, we set bk = oo ; then E,, (oo) u
= u = E (oo) u and the above proof goes through.

The last assertion of the theorem follows from E,, (S n I) = E,, (S) E,,(I)
by noting that E (I) - E (I) in virtue of Theorem 1.15.

S

3. Pseudo-eigenvectors and spectral concentration

Theorem 5.1 shows that if H H in the generalized sense, the
s

spectrum of H is asymptotically concentrated on any neighborhood of
E (H). In particular let A be an isolated eigenvalue of H with isolation
distance d, and let I = (A - d/2, A + d/2). Then the part of the spectrum
of H. in I is asymptotically concentrated on an arbitrarily small neigh-
borhood of A [see (5.3)].

We shall now sharpen this result by localizing the concentration to a
smaller interval (or intervals) depending on n, under some additional
assumptions.

Theorem 5.2. Let H -. H in the generalized sense, and let A and I
s

be as above. Let P be the eigenprojection of H for A and let dim P = m < oo.
Suppose there exist m sequences of "pseudo-eigenvalues" {A1n} and "pseudo-
eigenvectors" {99;n} of Hn, j = 1, . . ., m, such that

(5.4) II (Hn - A!n) 9,j.JJ = e,n -+ 0 , 99in -*99i , n "oo ,

where 4p, . . , 99. form a basis of PH with II 9'3II = 1. Then the part of the
spectrum of Hn in I is asymptotically concentrated on the union of m
intervals IJn = (Afn - an Efn, A3n + an Efn), where {an} is any sequence of
positive numbers such that an -> oo.
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Proof. (5.4) implies that
00

Ean = f Cu - 2. )2 d(En(u) (Pin, 9'9n) z
_00

tCn Ean f d(E.(p) 9P1n, 9,,n)
µfflio

= an Ean 11(1 - E. (I,.)) 991n112 .

Hence 11 (1 - En(I1n)) (P;nll s 1/a -> 0, n -*. oo. Since X1(1- En(Iin))
(9Pin -';)p s 1199j. - qq;jj - 0, it follows that

(5.5) (1 - E. (Iin)) 991 + 0 , n -> oo .

If we denote by In the union of Iln, ..., Imn, then 1 - En (In) S 1 -
- En (Iin) and so (5.5) implies (1 - En (In)) 99j -+ 0. Since the 99a span P H,
it follows that

(5.6) (1 - En (In)) P + 0 in norm .

On the other hand we have

(5.7) En (I) (1 - P) s 0,

since En (I) s E (I) = P by Theorem 1.15. Multiplying (5.6) by En (I),
(5.7) by 1 - E. (In) and adding the results, we obtain En (I - In)
= E. (I) (1 - E. (In)) . 0, as we wished to prove.

s

Remark 5.3. We can arrange that II,, f = 2an efn ->- 0 by choosing
an -> oo appropriately. Hence the part of the spectrum of H. in I is
asymptotically concentrated on a set In with measure II, 1 -> 0, and
Theorem 5.2 strengthens Theorem 5.1. It should be noted that for any
neighborhood I' C I of A, In C I' is true for sufficiently large n. In fact,
let I" be a proper subinterval of I' containing d; then En (I") q'; ->- P Q,;
= 99f so that En (Ifn n I") q'; = E. (Iin) En (I") q'3 -> Tf by (5.5). Since
I I;,, I --- 0, this implies I1,. C I', and hence In C I', for sufficiently large n.
In particular we must have A -. A for every j.

4. Asymptotic expansions

We now consider a family H(x) of selfadjoint operators formally
given by H + x H('), where H is selfadjoint and H(') is symmetric. More
precisely, we assume the conditions ii), iii) of § 2.1, namely that D
= D (H) n D (H(')) is a core of H and that H + x H(') (with domain D)
has a selfadjoint extension H (x) for 0 < x 5 1. Then iv) of § 2.1 is
automatically satisfied, for Ob n P (H) contains all nonreal complex
numbers.
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Under these conditions it has been shown that H (x) x -+ 0H,
s

, ,

in the generalized sense (see loc. cit.)". It follows from Theorem 5.1 that
the spectrum of H (x) is asymptotically concentrated on any neighborhood
of E (H). If d is an isolated eigenvalue of H with the isolation distance d
and the eigenprojection P, then the part of the spectrum of H(x) in
I = (A - d/2, A + d/2) is asymptotically concentrated on any small
neighborhood of d, with

(5.8) E (I, x) S P, x ->O.

We shall now sharpen this result by making specific assumptions on the
unperturbed eigenspace P H.

Theorem 5.4. Let dim P = m < oo and P H D (H(1)). Let 0.), j = 1,
m, be the repeated eigenvalues of the symmetric operator PH(') P in the

m-dimensional subspace PH. Then the Part of the spectrum of H (x) in I
is asymptotically concentrated on the union of m intervals with the centers
A + x y() and with the width o (x).

Remark 5.5. The result of Theorem 5.4 may be interpreted to mean
that H (x) has m pseudo-eigenvalues A + x ,u(l) + o (x) (cf. the correspond-
ing Theorem 2.6 when A is assumed to be stable). Of course such a state-
ment is not fully justified unless the corresponding pseudo-eigenvectors
are constructed, which will be done in the course of the proof.

Proof. Let {qqj} be an orthonormal basis of PH consisting of eigen-
vectors of PH(I) P:

(5.9) PH(1) P 921 = y(1) q,j j = 1, . . ., m.

We shall construct pseudo-eigenvectors of H (x) in the form

(5.10) 991 (x) = 993 + x 9914) (x) , II q,;l) (x) II s M

so that as x -- 0

(5.11) x-1 II (H (x) - A - x ,1)) cPJ(x) II < S M - 0

Then an application of Theorem 5.2 will lead to the desired result (with
the discrete, parameter n replaced by the continuous one x); it suffices to
take the interval Ijx with center 2 + x u(i) and width 2 x a (x) 6 (x),
where a (x) -+ oo and a (x) a (x) - 0.

Let S be the reduced resolvent of H for A (see III-§ 6.5). S has the
properties S E 9(H), (H - 2) S = 1 - P [see III-(6.34)]. Let s > 0.
Since - SH(1) q, E D (H) and D is a core of H, there is a q' E D such that
II99;II s IISH(1) ggjII + 1 s M and II(H - A) (mi + SH(1) 99j)II < E12. Since
(H - 2) SH(1) q'1 = (1 - P) H(1) q'f = H(1) qq, - 1u(1) 993, we have [note

1 The same result holds if we replace the above assumptions by those of § 4.1,
with the additional assumption that t = 4 and P) = 000 are symmetric [so that
T = H and T(x) = H(x) are selfadjoint].
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that (H - R) q, = 0]

M-1 II (H (x) - A - x j4'1) (99j + x 99i) II = x-1 II (H - d) qq, +
+ x (H - R) 99i + x (HO) - ju;1)) 993 + x2 (Ha) - p(')) 99i II S

s (e/2) + x II (HM - ,u(1)) 99i II

Thus there is a 6 > 0 such that

(5.12) x-1II(H (x) - A - e (1)) (991 + x 99j') 11 < s for 0 < x < 8 ;

note that 99i also depends on s.
Now let e1 > e2 > , en -* 0. Let 8n and 99, be the 6 and q of

(5.12) corresponding to e = e,,. We may assume that 81 > 82 > ,
An -> 0. Set

(5.13) 99j (x) = q't + x cpi for 6n+1 x < 8n .

Then (5.11) is satisfied, with

s (m) = e for Sn+1 S x < 1 .

This completes the proof.
Remark 5.6. Theorem 5.4 shows that the pseudo-eigenvalues admit

asymptotic expansions to the first order in x, with the spectral concentra-
tion on the union of m intervals of width o (x). Similarly, it can be shown
that the pseudo-eigenvalues admit asymptotic expansions up to xn,
with the spectral concentration on the union of m intervals of width
o (xn), if the following condition is satisfied' : all possible expressions
of the form X1 ... Xk P are defined on the whole of H, where k s n and
each X; is equal to either S or TM S. It is easily seen that under this
condition the formal expansion of the total projection P(x) given in
II-§ 2.1 makes sense up to the order xn.

Example 5.7. Spectral concentration occurs for the operator T (x) = H (x) of
Example 1.17 if x is real, where we now write H, H(1) for T, 711) (in the notation of
Example 2.5, this corresponds to the case eie = ± 1). In fact, we know that the
basic assumptions of this paragraph are satisfied (see loc. cit.). If x f (x) E L2, then
the assumption of Theorem 5.4 is satisfied, so that we have a spectral concentration
for H (m) near A = -1, with the pseudo-eigenvalue A + x f x 1f (x)12 dx and with
the width o (x). It can be shown that if f (x) tends to 0 rapidly as x -+ f oo, there is a
concentration of higher order.

Example 5.8. (Stark effect) A typical example of spectral concentration is
furnished by the operator of the Stark effect. If we restrict ourselves to the simplest
case of hydrogen-like atoms, the operator to be considered is defined in H = L2 (R8)
formally by

(5.14) -A-2+xx1.
The unperturbed operator H = - A - 2/r is the Schr6dinger operator for the
hydrogen atom and has been studied in V-§ 5.3; it is known that H is selfadjoint

1 This result is proved by RIDDELL [1,2J.
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and Co is a core of H. It can be shown' that (5.14) for real x r 0 is also essentially
selfadjoint if restricted to have domain Co ; we shall denote by H (x) the unique
selfadjoint extension of this restriction. Then D = D (H (x)) n D (H) contains Co
and so it is a core of H as well as of H(x). Thus the fundamental assumptions are
satisfied. Now it can be shown that for any eigenvalue A of H (which is necessarily
negative), the condition stated in Remark 5.6 is satisfied for any positive integer n.
It follows 2 that the pseudo-eigenvalues have asymptotic expansions up to any order
in x (thus coinciding exactly with the formal perturbation series), with the spectral
concentration on the union of a finite number of intervals of width o (x") for any n.

Chapter Nine

Perturbation theory for semigroups of operators
The subject of this chapter originates in the so-called time-dependent perturba-

tion theory in quantum mechanics, in which the main question is the perturbation
of the unitary group generated by a given Hamiltonian due to a small change in the
latter. This problem is generalized in a natural way to perturbation theory for
semigroups, which is no less important in applications.

The chapter begins with a brief account of basic results in the generation theory
of semigroups of operators. Only restricted types of semigroups - quasi-bounded
semigroups - are considered here. But the importance of the holomorphic semi-
groups, which are special cases of quasi-bounded semigroups, is emphasized.

In the following section various problems of perturbation theory are considered.
It will be seen that holomorphic semigroups are rather well-behaved with respect to
perturbation, whereas general quasi-bounded semigroups are not necessarily so.
In the last section, an approximation theory of semigroups by discrete semigroups is
presented.. This theory serves as a basis in the approximation of some differential
equations by difference equations.

§ 1. One-parameter semigroups and groups of operators
1. The problem

In this chapter we consider the time-dependent perturbation theory.
In applications to quantum mechanics, it is concerned with the solution
of the time-dependent Schrodinger equation

(1.1) du/dt = -i Hu,

where the unknown u = u (t) is a vector in a Hilbert space H and H
is a selfadjoint operator in H. If H = H (x) depends on a small parameter
x, the question arises how the solution of (1.1) depends on x.

' See STUMMEL [1], IKEBE and KATO [1].
$ For details see RIDDELL [1].
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(1.1) is a particular case of equations of the form

(1.2) du/dt= - Tu
in a Banach space X. Here T is a linear operator in X and t is usually
restricted to the semi-infinite interval 0 < t < oo, with the initial condi-
tion given at t = 0. The solution of (1.2) is formally given by u = u (t)
= e-tT u (0). Thus our first problem will be to study how the exponential
function e-tT of T can be defined; then we have to investigate how
e- t T changes with x when T = T (x) depends on a parameter x.

e-tT is a particular "function" of T. So far we have considered
perturbation theory for several functions of T. The simplest one among
them was the resolvent (T - c)-', which was discussed in detail in
preceding chapters. When T = H is a selfadjoint operator in a Hilbert
space, we also considered such functions of H as JHI, IHIl/a, and E (A),
the spectral family associated with H. The importance of the function
e-tT lies in its relation to the differential equation (1.2), which occurs
in various fields of application. In reference to the basic identity e-(8+t)T
= e-8T a-t T, the family {e-tT}t, o is called a one parameter semigroup o/
operators. If t is allowed to vary over -oo < t < oo, {e-tT} is a one-
parameter group.

2. Definition of the exponential function

Let X be a Banach space. If T E 9 (X), the operator e- *I can be
defined simply by the Taylor series

(1.3) a-tT = f
n I

to Tn00

n=0

which converges absolutely for any complex number t (see Example
1-4.4). Thus a-tT also belongs to R(X) and is a holomorphic function of t
in the whole t-plane (entire function). The group property

(1.4) e-(a+t)T = e-8T a-tT

can be verified directly from (1.3). We have also

(1.5) e-tT = -Te-tT_ -e-tT T,

where the differentiation may be taken in the sense of the norm. Thus
u (t) = e- tT uo is a solution of the differential equation (1.2) for any
uo E X.

If T is unbounded, however, it is difficult to define a-tT by (1.3),
for the domain of Tn becomes narrower for increasing n. The formula
e-tT = Jim (1 - T)n, suggested by the numerical exponential func-

n-aoo ` 9t



§ 1. One-parameter semigroups and groups of operators 481

tion, is not useful for the same reason. But a slight modification of this
formula, namely,

(1.6) a-tT = lim (1 + t T

is found to be useful. In fact (1 + t T)-1
is the resolvent of - T, apart

from a constant factor, and it can be iterated even when T is unbounded.
The following is a sufficient condition in order that the limit (1.6)

exist in an appropriate sense.
i) T E '(X) with domain D(T) dense in X.

ii) The negative real axis belongs to the resolvent set of T, and the
resolvent (T + )-1 satisfies the inequality

(1.7) 11 (T + e)-111 s 1/ , E > 0 .

To see this, we note first that (1.7) implies

(1.8) 11(1 +a T)-1J1 s 1, a? 0.
Set

(1.9) VV(t) _ I+ t T)-n

, t z 0, n = 1, 2,... .

It follows from (1.8) that jjV,,(t)Ii s 1, so that the V, (t) are uniformly
bounded. Furthermore, Vn (t) is holomorphic in t for t > 0, for
(T + )-1 is holomorphic in 1: > 0; in particular

(1.10) dt V. (t) T 1 -} n T)-n-1E R(X), t> 0.

Vn (t) is not necessarily holomorphic at t = 0, but it is strongly continuous :

(1.11) V. (t) g V n (0) = 1 as t' 0 ;
this follows from

(1.12) (1+aT)-1 S 1, a\0,
which can be proved in the same way as in Problem V-3.33.

To prove the existence of lim Vn (t), we estimate V. (t) u - Vm (t) u.
For this we note that, in virtue of (1.11),

t-8

(1.13) Vn (t) U - V. (t) u = lim f a [Vm (t - s) V. (s) u] ds
e

9-8

=
lim

f [- V;n (t - s) Vn (s) u + Vm (t - s) V (s) u] d s .
8
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The integrand can be calculated easily by using (1.10) ; the result is
(1.14) V,, (t) u - Vm(t) u

t-e

lim f In t m s)Ta(1 + t m S
T)-"`6-1 (1 n T)-"-suds.

e t
It is not easy to estimate (1.14) for a general u. But it is simple if

u E D (T2). Since the resolvent of T commutes with T (in the sense of
III-§ 5.6), (1.14) gives then

(1.15) V. (t) u - V. (t) u
t

- f (n t
m S) (1 + t m T)-m-1(1

F n T)-n-1T2uds;
o

/

note that the integrand is continuous for 0 s s s t by (1.11). It follows
by (1.8) that

t

(1.16) II Vv(t) u - Vm(t) u11 s IIT2uJI f (n + t m
)

ds
0

= 2 (n + m) IIT2u11

Thus the V (t) u form a Cauchy sequence and Jim V,, (t) u exists, uni-
formly in t in any finite interval, provided that u E D (T2). But D (T2)
is dense in X, for D (T2) = (T + )-1 D (T) for $ > 0 and (T + $)-1

has range D (T) which is dense in X (see Problem 111-2.9). In view of the
uniform boundedness of the V,, (t), it follows that

(1.17) U (t) = s-lim Vn (t) = s-lim (1 + T)-n' t z 0 ,
n-s ao n-- oo n

exists (see Lemma 111-3.5). In the following paragraph we shall show
that U (t) has the properties expected of the exponential function, and
we shall define e- IT as equal to U(t).

Problem 1.1. 11 U(t) u - V. (t) ull S 2n 11 T2 U11, u E D(T$).

Problem 1.2. The strong convergence (1.17) is uniform in tin each finite interval
[that is, V. (t) u U (t) u uniformly in tin each finite interval for each fixed It E X].

Problem 1.3. 11 T(T + ) -111 S 2 if T satisfies (1.7). Compare Problem V-3.32.

3. Properties of the exponential function
Since V. (t) u -> U (t) u uniformly in t in any finite interval (see

Problem 1.2) and V. (t) u is continuous in t, U (t) u is continuous in t.
In other words, U (t) is strongly continuous for t Z 0. Furthermore, we
have
(1.18) 11U(t)II S 1, U(0)=1,
since 11 V,, (t) 11 s 1 and V,, (0) = 1.
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Now it follows from (1.10) that

(1.19) (1+n T)-1

TVn(t)(1+ t T)-1
But

(1.20) T(1+T)-lu=(1+nT)-1Tu->Tu for uED(T)
by (1.11). Hence the third member of (1.19), when applied to u, tends
to' - U (t) T u. Since the factor after T of the fourth member, when
applied to u, tends to U (t) u for a similar reason, it follows from the
closedness of T that T U (t) u exists and equals U (t) T u. In other words T
commutes with U (t) :
(1.21) T U (t) ) U (t) T.

It follows also from (1.10) and (1.11) that
e

(1.22) Vn(t) u - u = - f (1 + n T)-n-1 Tu ds, u E D(T) .
0

Since I+ T(1 + t T)-1
Vn(t) S U(t) uniformly in t in

each finite interval, we can go to the limit n -* oo under the integral
sign in (1.22), obtaining

t

(1.23) U(t)u-u=- f U(s)Tuds, uED(T).
0

Since U (s) T u is continuous in s, (1.23) shows that U (t) u is differentiable
in t if u E D (T), with

(1.24) tU(t)u=-U(t)Tu=-Tu(t)u, tz0, uED(T),
the second equality being a consequence of (1.21). Thus u(t) = U(t) u0
is a solution of the differential equation (1.2) with the initial value
u (0) = u0, provided the initial value u0 belongs to D (T).

This solution is unique. In fact, let u (t) be any solution of (1.2) ;
by this we mean that u (t) is continuous for t z 0, the strong derivative
du (t)/d t exists for 2 t > 0, u (t) E D (T) for t > 0 and (1.2) holds true.
Then (see Lemma 111-3.11)

(1.25)
d

U (t - s) u (s) U' (t - s) u (s) + U (t - s) u' (s)

= U(t - s) Tu(s) - U(t - s) Tu(s) = 0, 0<s-<-t,
1 Here and in what follows we frequently use, without further comments, the

lemma that A. --* A and B. -- B imply An B - A B (Lemma 111-3.8).
S

s s

8 In the initial value problem it is customary not to require the differentiability
at t = 0 of the solution.
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by (1.24). Thus U(t - s) u(s) is constant for 0 5 s S t (see Lemma
111-1.36). On setting s = t and s = 0, we have

(1.26) U (t) = U (t - s) U (s) = U (t) U (O) , 0 s s s t.
Applying (1.26) to the solution u (t) = U (t) u0, we obtain U (t) u0

= U (t - s) u (s) = U (t - s) U (s) u0. Since this is true for all u0 E D (T),
we have U (t) = U (t - s) U (s). This may be written

(1.27) U (t + s) = U (t) U (s) , s, t Z 0.

Thus {U(t)}too forms a one-parameter semigroup. Since JjU(t)jj S 1,
{U (t)} is called a contraction semigroup. - T is called the infinitesimal
generator (or simply the generator) of this semigroup. We write U (t)
= e-tT.

Finally we shall show that different generators generate different
semigroups. For this it suffices to give a formula expressing T in terms
of U (t). Such a formula is

00

(1.28) (T+l;)-1 f e-ctU(t)dt, Ret>0,
0

which shows that the resolvent (T + c)-1 of T is the Laplace transform
of the semigroup U(t). Note that the integral on the right of (1.28) is an
improper Riemann integral, defined as the limit as z - oo (which exists

in the sense of the norm) of the strong Riemann integral f [which is
0

defined as an operator A (z) such that A (r) u = f e-tt U(t) u dt for
0

every u E X, the last integral being defined because the integrand is a
continuous function of t] ; see III-§ 3.1.

To prove (1.28), let u E D (T). Then d U (t) u/dt = - U (t) Tu and
(d/d t) e- t t U (t) u = - e- t t U (t) (T + l;) u. Integration of this equality

00

gives u = f e-tt U(t) (T + l;) u dt. With v = (T + C) u, this becomes
0

00

(T + l;)-1 v = f e-C' U(t) v dt. If l; is real and C > 0, then C E P(- T)
0

and so v varies over X when u varies over D (T). Hence we obtain (1.28)
if C > 0. But the right member of (1.28) is holomorphic in C for ReC > 0,
as is easily seen by noting that 11 U (t) ( S 1. Thus (1.28) must be true for
ReC > 0 (see Theorem 111-6.7).

In particular the half-plane Re C > 0 belongs to P (- T) and
00

(1.29) JI(T + l;)-1IF 5 f le-tt1 dt = 1/Relt, ReC > 0,
0

although we started from the assumption ii) which means that (1.29)
is true for real l; > 0. Of course (1.29) can be deduced directly from ii).
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Remark 1.4. We have constructed a strongly continuous, contraction
semigroup U (t) starting from a given generator - T. If, conversely,
a strongly continuous, contraction semigroup U (t) is given, we can
define the generator - T of U (t) by (1.28) and show that T satisfies the
conditions i), ii) and that the semigroup generated by - T coincides with
U (t). We shall not give a proof of this part of semigroup theory, though
it is not difficult'. We shall be content with the following remark.

Suppose T satisfies i), ii) and suppose there is an operator-valued
00

function V (t) such that 11 V (t) JI is bounded and f e- E t V (t) d t = (T + )-'
0

for all 1 > 0. Then V (t) = U(t) = e-tT
00

To prove this, set W (t) = V (t) - U (t). Then f e-E t W (t) dt = 0
0

for all > 0. Writing a-t = s, we see that f sE -' (W (log s-') u, /) d s = 0
0

for all 1 > 0 and for all u E X, l E X*. Thus the continuous function
s(W(logs-') u, /) is orthogonal to all s"', n = 0, 1, 2, ..., and so must
vanish identically. This proves that W (t) = 0.

Remark 1.5. We have seen above that e-tT u is strongly differentiable
in t if u E D (T). The converse is true in the following strengthened form:
if e-tT u is weakly differentiable at t = 0 with the weak derivative v, then
u E D (T) and - T u = v. To prove this, we note that h-' (U (t + h) u -
- U (t) u) = U (t) h-' (U (h) u - u) has a weak limit U (t) v as h ' 0.
Hence e-t(U(t) u, /) has the right derivative e-Et(U(t) (v - u), /) for
every / E X*. Since this derivative is continuous in t, we have on integra-

tion (u, f) f e-Et(U(t) (v - 1+ u), /) dt and so u= - f e-EtU(t)
0 0

(v - u) d t = -(T+ )-' (v - u). This shows that u E D (T) and that
Tu + $ u = -v + u, that is, Tu = -v.

Example 1.6. If X = H is a Hilbert space and T = iH with H a selfadjoint
operator, both T and - T satisfy the conditions i) and ii). Hence U (t) = e-'T is
defined for - oo < t < + oo and satisfies (1.24). It follows as above that (1.27)
is satisfied for all real s, t, positive, negative or zero. In particular U (t) U (- t)
= U (0) = 1, so that 11 U (t) u11 = Hull and U (t) is isometric. Since U (t)-' = U (- t) E

E 9(H), U(t) is even unitary: U(t) = e-61H forms a unitary group.
Example 1.7. Let X = U, (0, oo), 1 Sp <oo, and T = d/dx with the boundary

condition u (0) = 0. For > 0, (T + )-' i9 the integral operator given by (see
Problem 111-6.9)

(1.30)
Y

(T + e)-1 u(y) = f e-Ecv-xI u(z) dz.
0

M X

Since f e-$(Y) dy = 1/e and f e-VY-14 dz5 1/e, we'have 1](T + g)-' S 1/e
0

(see Example III-2.11). Thus the conditions i), ii) are satisfied and - T generates a

' For this result and for more details on semigroup theory, see HILLE and
PHILLIPS Q11, YOSIDA Q11.
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semigroup U (t) = e-' T. This semigroup is given by U (t) u (x) = u (x - t) for x > t
and U (t) u (x) = 0 for x < t. This may be seen from the remark above, for

00 z
f e-6' U(t) u(x) dt = f u(x - t) dt
0 0

f u(s) ds = (T + $)-1 u(x)
0

Example 1.8. In the preceding example replace T by another operator T
defined by T = -d/dx without any boundary condition. Then (see Problem
111-6.9)

(1.31) (T + i)-' u(Y) = f u(x) dx
Y

and it can be shown as above that T satisfies i), ii). The semigroup U(t) = e- 12' is
given by U(t) u(x) = u(x + t).

Problem 1.9. Let X = L9 (- oo, + oo) and T = d/dx. Both T and - T satisfy i),
ii) so that T generates a group U (t) = e- which is given by U (t) u (z) = u (x - t)
(see Problem 111-6.10).

Problem 1.10. In the examples and problems given above, construct e-12'
directly according to the formula (1.17).

Problem 1.11. If Tu = A u, then a-'T u = e-2' u, t Z 0.
Problem 1.12. In Example 1.6 we have

00

(1.32) e-(tH= f e-ttxdE(A).

where {E (A)} is the spectral family for H.

4. Bounded and quasi-bounded semigroups

In order that an operator - T generate a semigroup U (t) of bounded
linear operators, it is not necessary that T satisfy the conditions i),
ii) stated in par. 2. For example, the inequality (1.7) can be replaced by a
weaker condition

(1.33) jj(T+ )-kjjs 0 , k= 1, 2, 3, ... ,

where M is a constant independent of and k.
In fact, (1.33) implies

(1.34) jI(1+aT)-kjC5M, a2;0,
so that the operators V (t) defined by (1.9) are uniformly bounded by
11 V (t) 11 5 M. Thus the construction of U (t) = s-lim V,, (t) can be carried
out exactly as before; the only modification needed is to put the factor M2
into the right member of (1.16). The operator e-tT = U (t) is again
strongly continuous for t Z 0 and satisfies

(1.35) 11 U (t) HH 5 M , U (O) = 1 .
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The semigroup property of U (t) and all the other results of the preceding
paragraphs can be proved quite in the same way. We shall call U (t) a
bounded semigroup.

The condition ii) on T can further be relaxed as follows.
ii') Let the semi-infinite interval > f belong to the resolvent

set of - T and let

(1.36) SM($-f)-k, >f, k=1,2,3,... .

Then T1= T + P satisfies the assumptions sated above, so that the
bounded semigroup U1(t) = e-tT1 is defined. If we set U(t) = ept U1(t),
it is easily verified that U (t) has all the properties stated above, with the
following modification of (1.35) :

(1.37) IIU(t)II s Melt, U (0) = 1 .

We define by e- IT = (t)-thTTUMjgrbup generated by - T. Here II U (t) II
need not be bounded as t - -. We shall call U (t) a quasi-bounded
semigroup. The set of all operators T satisfying the conditions i) and ii')
will be denoted by', 2 (M, P). - T is the infinitesimal generator of a
contraction semigroup if and only if T E T(1, 0).

Problem 1.13. M z I if 9 (M, P) is not empty3.
Problem 1.14. T E 9(M, P) implies T - at E 9(M, at + P) and e-t(T-00

= eat a-t'
Problem 1.15. If T E 9F (M, fl), we have

00

(1.38) f the-tte-tTdt=hi(T+Ret>)4.
0

It follows from (1.38) that the half-plane Rel > P belongs to the resolvent set
P (- T) and the following generalizations of (1.36) hold [cf. (1.29)]:

(1.39) II(T+C)-kIISM(ReC-P)-A, ReC>P, h=1,2,... .
Problem 1.16. If T E 9 (M, 0), then

(1.40) II(l+at T)-"(1+a'T)-"IISM, a,a'Z0, h,h=1,2,....
Also generalize this to the case of more than two factors. [hint: (1.38).]

Problem 1.17. Let T E 9F (M, 0). Use the preceding problem to show that we
need only to put the factor M (instead of M2 as stated above) into the right member
of (1.16). Furthermore

e

(1.41) IIU(t)26-V (t)ubs 2n IIT'uII,

Problem 1.18. Let X be a Hilbert space. Then T E 9F (1, 0) if and only if T is
m-accretive, and T E 9F (1, )4) for some )4 if and only if T is quasi-m-accretive.

1 There are more general kinds of semigroups (see HILLS-PHILLIPS (1)), but
we shall be concerned only with quasi-bounded semigroups.

2 The infimum of the set of )4 for which T E OF (M, fi) is called the type of the
semigroup {e-t)}.

3 Assuming dim X > 0.
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5. Solution of the inhomogeneous differential equation
Let T E (M, f). U (t) = e-tT gives the solution of the differential

equation du/dt = - T u in the form u = u (t) = U (t) u(0); see (1.26).
U (t) can also be used to express the solution of the inhomogeneous
differential equation
(1.42) d u/d t = - T u + f (t) , t > 0 ,

where f (t) is a given function with values in X and is assumed to be
strongly continuous for t Z 0.

If u = u (t) is a solution of (1.42), a calculation similar to (1.25) gives
(d/d s) U (t - s) u (s) = U (t - s) / (s). Integrating this on (0, t), we obtain
[note that U (t - s) f (s) is strongly continuous in s]

(1.43) U (t) = U (t) u0 + f U (t - s) 1(s) d s , u0 = u(0).
0

In particular this implies that the solution of (1.42) is uniquely determin-
ed by u (0).

Conversely, we have
Theorem 1.19.1 Let T E 9 (M, P) and let f (t) be continuously differen-

tiable for t Z 0. For any u0 E D (T), the u (t) given by (1.43) is continuously
differentiable for t > 0 and is a solution o l (1.42) with the initial value
u(0)=u0.

Proof. Since we know that the first term U(t) u0 on the right of (1.43)
satisfies the homogeneous differential equation and the initial condition,
it suffices to show that the second term satisfies (1.42) and has initial
value 0. Denoting this term by v (t), we have

1
(1.44) v(t) = f U(t - s) 1(s) ds = f U(t - s) 1f (0) + f f'(r) dr1 ds

But

=I f U(t-s)dssf(0)+ f If U(t-s)dsJf'(r)dr.

t
(1.45) T f U(s)ds=U(r)-U(t), 0<rst.

r

To see this we note that if u E D (T), T U (s) u = - d U (s) u/d s and hence
t

f T U (s) u d s = U (r) u - U (t) u. Recalling the definition of the integral

and the closedness of T, we may write this as T f U(s) u ds = (U(r) -

- U (t)) u. This can be extended to an arbitrary u E X by choosing
a sequence u E D (T) such that u ->. u and going to the limit, for

1 See PHILLIPS [1].
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t t
f U(s) u.d s -> f U (s) u d s and (U (r) - U (t)) u (U (r) - U (t)) u
r r
(here again the closedness of T is essential). In this way we obtain (1.45).

(1.45) implies that
t

(1.46) T f U(t-s)ds=1-U(t-r), 05r<t.
r

It follows from (1.44) and (1.46) that v (t) E D (T) and

(1.47) T v (t) = (1 - U (t)) f (0) + f (1 - U (t - r)) /'(r) d r
0

t
= 1(t) - UM /(0) - f U (t - r) 1'(r) dr.

0

On the other hand, v (t) = f U (s) f (t - s) d s and so
0

(1.48) d v (t) /d t = U (t) f (0) + f U (s) 1'(t - s) d s .

0

Comparison of (1.47) and (1.48) shows that d v (t)/d t = - T v (t) + f (t),
as we wished to prove. Also it is easy to show that (t) -> 0, t -> 0. The
continuity of dv(t)/dt can be concluded easily fro9fn (1.48) using the
continuity of 1'(t).

For later use we shall estimate 1l u' (t) II and II T u (t)11. We see from (1.43)
and (1.48) that

(1.49) IIu'(t)11 s IIU(t) Tuoll + Iiv'(t)it s
t

s Me"(11 Tuoll + 111(0)11) + M f e1811 f'(t - s)11 ds
0

IITu(t)II = Ilu'(t) -f(t)II s Ilu'(t)II + Ill(t)11

6. Holomorphic semigroups
The construction of the semigroup U(t) = e-tT described in the

preceding paragraphs is rather complicated. One may raise the question
whether a Dunford-Taylor integral of the form

(1.50) U(t)=2nz ett(T+C)-'dc
rJ

cannot be used. Obviously (1.50) is valid if T E 9 (X) and r is a positively-
oriented, closed curve enclosing the spectrum of - T in its interior. In the
more general case of T E 9 (M, 9), one may try to justify (1.50) by taking
as r the straight line running from c - i oo to c + i oo with c > P, by
analogy with the ordinary inverse Laplace transformation. But it is not
easy to prove the convergence of this integral.
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(1.50) is useful, however, if we assume slightly more on T. Suppose
that T is densely defined and closed, P (- T) contains not only the half-

plane ReC > 0 but a sector 2 + w, co > 0, and that for any
e>0,
(1.51) (T + C)-1II S M8/ICI for IargCI s 2 + CO - s

with Me independent of C1. Then the integral in (1.50) is absolutely
convergent for t > 0 if r is chosen as a curve in P (- T) running, within

the sector mentioned, from infinity with argC = - (2 + CO - e) to infin-

ity with arg C = 2 + co - s, where e < co.
The semigroup property of U (t) thus defined can be easily proved by a

standard manipulation of Dunford integrals. Suppose U (s) is given by a
formula like (1.50) with r replaced by another path P similar to r
but shifted to the right by a small amount. Then

(1.52) U(s)U(t)i)2f.1 ec's+tt(T+(T+C)-1dCdC
r' r

_ ( 1 )2r f et'-(T + c')-1 dC' r ett(C - c')-1 dC -L r
- f e;t(T + C)-1 dC f e;',' (C - a')-1 dc']

r r, J
1 f et (t+s) (T + a)-1 dC = U (t + s) ,2ai r

where we have used the resolvent equation (T + C1)-1 (T + C)-1

_ (C - c')-1 [(T + a')-1- (T + C)-1] and the relations f e" (C - c')-1 dC
=0, f e;8(C-a')-'dC'=-2n iec8. r

r'
(1.50) is defined even for complex t if Jarg tJ < w, for then we can

deform r to ensure that Iarg t CI > z for C E P and J CJ -> oo. Since (1.50)

can be differentiated in t under the integral sign, it follows that U (t) is
holomorphic in tin the open sector Iarg tI < w. In fact we have

(1.53) U(t) Tc: TU(t) = -dU(t)/dtE .4 (X) , Iargtl <w,

fordU(t)/dt= 2ni f ectC(T+C)-1dC= 2-- f ett(1-T(T+C)-1)dC
r r

= 2 scZ T f et t (T -I- C) -1 d C = T U (t) ; here the closedness of T is
r

used to justify taking the factor T out of the integral sign.

1 The main difference of (1.51) from (1.39) for T E OF (M, P) is the appearance
of ICI instead of ReC.
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On changing the integration variable to C' = Ct, we obtain from (1.50)

(1.54) U (t) = 2,c i t ,f ec ( T+ t)-I dC',r
where r, may be taken independent of t. Since II(T+ t)-I s const.

It/C'I for largtl s co - e, we have IIU(t)II s const. f ICSI-I IdC'l

= const. Thus U (t) is uniformly bounded : r
(1.55) IIU(t)II s M' for largtl s co - e .

Similarly we have the estimate

(1.56) IIdU(t)/dtil =IITU(t)II S M' Itl-I, largtl s w - e.
Furthermore,

(1.57) U(t) - 1 = zn i ,f e; ((tT + )-I - c'-I) dC'r
= 2 i f V

T (t T d C,,

so that II U (t) u - uII S const. Itl II T ull f let I ICI I-2 IdC' I -> O for u E D (T)
r,

when Itl -+ 0 with largtl S co - s. Since D (T) is dense and U(t) is uni-
formly bounded, it follows that

(1.58) s-limU(t) = U(0) = 1 (largtl s co - s) .

Thus we have proved that U(t) is holomorphic for largtl < co, uni-
formly bounded for largtl 5 co - e and strongly continuous (within this
smaller sector) at t = 0 with U (0) = 1. U (t) = e- tT will be called a
bounded holomorphic semigroup'.

Remark 1.20. Since U (t) is holomorphic, it can be differentiated any
number of times. A calculation similar to the one used in deducing (1.56)
gives the estimates (for simplicity we consider only real t > 0)

(1.59) II do U(t)ldt"II = II TO U(t)II S M,, t-' , t> 0.
Also we note the inequality

(1.60) II T(U(t) - U(s))II 5 M2(t - s)/t s , 0 < s s t .
For the proof, it suffices to note that

II T (U(t) - U(s))II =
7f rd r drdr

t t
= II f T2 U(r) drII s M2 f r-2 dr = M,(t - s)/st.

S s

I This is a special case of holomorphic semigroups discussed in detail in HILLE-
PHILLIPS (1) and YOSIDA Q11.
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We shall denote by .*' (co, 0) the set of all densely defined, closed
operators T with the property (1.51). We denote by .*'(w, 9), P real,
the set of all operators of the form T = T° - P with T° E .*'(co, 0).
Obviously e-4T = est e-IT, is a semigroup holomorphic for jargtj < Co.
e-tT need not be uniformly bounded, but it is quasi-bounded in the sense
that Ile-tTll S const. left) in any sector of the form Jargtj < co - e.

Remark 1.21. It is not obvious that (1.51) is stronger than the as-
sumption (1.33) for the generator of a bounded semigroup. But this is
true, as is seen from Theorem 1.23 below.

Remark 1.22. If T E .*'(w, A), u(t) = e-tT u° satisfies du(t)/dt
_ - T u (t) for t > 0 for any u° E X [see (1.53)]. This is a great differ-
ence from the case T E 9 (M, fi).

Theorem 1.23. T E J r (co, 0) is equivalent to the existence, for each
e > 0, of a constant M' such that et ° T E 9 (Me, 0) for any real 0 with
101 S co - s. In Particular it implies T E T (M, 0) for some M.

Proof. Let T E .*'(co, 0). From (1.53) we can again deduce the inver-
sion formula (1.38). Since 11U(t)11 s const. for real t> 0 by (1.55), it
follows that JI(T + l:)-k-1lj s M' $-71-1, It = 0, 1, 2, ..., for 1: > 0.
This shows that T E 9 (M', 0). Furthermore, we may shift the integra-
tion path in (1.38) from the positive real axis to the ray t = r ei0, r > 0,
provided that 101 s co - e. Since I U (t) 11 < const. for such t by (1.55),
we obtain the inequality l (l a-d0 + T)-k-111 S M;> 0 (set

_ e- d°). This proves that ed0 T E 9 (Me, 0).
Conversely, let 00 T E 9 (Me, 0) for 101 s co - e. This implies that

the spectrum of 08T is contained in the half-plane ReC Z 0 for each 0

with 101 < co. Hence the sector IargCI < z + co belongs to P(- T). If

0 5 argC 5 n+ co -2e, then Ree-d(w-e) t; z JCJ sine > 0 and so
e-d(°'-e) T e-d(°'-e) C)-111 s MB Ree-'(-1) s M;IICI sine [see

(1.39)]. Since a similar result holds for - (2 + co - 2e) s argC S 0,
we have proved (1.51).

Another convenient criterion for - T to be the generator of a holomor-
phic semigroup is given by

Theorem 1,24. Let T be an m-sectorial operator in a Hilbert space H
with a vertex 0 (so that its numerical range 0(T) is a subset of a sector

jargCj 2 - co, 0 < co s 2 ). Then T E.* (w, 0), and e-tT is holo-
morphic for jargtl < co and is bounded by jje-tTjj S 1.

Proof. According to Theorem 1.23, it suffices to show that e{° T E
E 9 (1, 0) for 101 s co. 0 (ed8 T) = eiB 0 (T) is a subset of the right half-
plane if 101 s co. Thus edB T is m-sectorial and the left half-plane is
contained in P (et0 T). If ReC > 0, therefore, 11(C+ ed° T)-1lI does not exceed
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the inverse of the distance of C from the imaginary axis. In particular
it does not exceed l;-1 for real C > 0. This shows that et0T E 9(1, 0).

Example 1.25. If H is a nonnegative selfadjoint operator in a Hilbert space,
e-'$ is holomorphic for Ret > 0 and Ile-'9 S 1.

Example 1.26. Consider a differential operator L u = po (x) u" + pl (x) u' +
+ p2 (x) u on a S x s b, where p0 (x) < 0. It is known that the operator T1 in
H = L2 (a, b) defined by L with the boundary condition u (a) = u (b) = 0 is m-
sectorial (see Example V-3.34). Hence T1 E X (0), P) for some uw > 0 by Theorem
1.24. A similar result holds for second-order partial differential operators of elliptic
type.

7. The inhomogeneous differential equation for a holomorphic
semigroup

If - T is the generator of a holomorphic semigroup, we have a stronger
result than Theorem 1.19 for the solution of the inhomogeneous dif-
ferential equation (1.42).

Theorem 1.27. Let T E .*' (co, f) and let f (t) be Holder continuous for
tz0:
(1.61) II/(t) - f(s)II 5 L(t-s)k, 0 s s 5 t,
where L and k are constants, 0 < k s 1. For any u0 E X, the u (t) given
by (1.43) is continuous for t Z 0, continuously dillerentiable for t > 0 and
is a solution o l (1.42) with u (0) = u0.

Proof. Since U (t) uo satisfies the homogeneous differential equation
and the initial condition (see Remark 1.22), it suffices to show that the
second term v (t) on the right of (1.43) satisfies (1.42) for t > 0. [Again
it is easy to show that v (t) -). 0, t -)- 0, since U (t) is bounded as t - 0. ]

We have

(1.62) v (t) = f U (t - s) [f (s) - 1(t)] d s + [ f U (t - s) ds] f (t) ,

so that T v (t) exists and is given by

(1.63) Tv(t) = T f U(t - s) [f (s) - 1(t)] ds + [1 - U(t)] 1(t)
0

[see (1.46)]; the existence of the first integral on the right follows from
the estimate

II T. U (t - s) II 11t (s) - f (t) II 5 const. (t - s)-1 L (t - s) k = const. (t - s) J1 -1

due to (1.56) and (1.61).
On the other hand, we have from (1.44)

(1.64) V (t + h) = [f +t f kI
U (t + h - s) 1(s) ds

o t
t+h

= U (h) v (t) + f U (t + h - s) 1(s) d s ,
t
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where t > 0 and h > 0. Computing lim h-1 [v (t + h) - v (t)], we obtain
h1+0

(D+ denotes the right derivative)

(1.65) D+v(t) = - Tv(t) + f(t)

since it is known that v (t) E D (T).
Now T v (t) is continuous for t > 0 as will be proved in Lemma 1.28

below. Thus D+ v (t) is also continuous. It follows' that dv (t)/dt exists for
t > 0 and equals - T v (t) + f (t), as we wished to prove.

Lemma 1.28. T v (t) is continuous for t Z 0 and Holder continuous for
t ? e with the exponent k, for any e > 0.

Proof. The second term on the right of (1.63) satisfies the assertion of
the lemma, for f (t) is Holder continuous and U (t) is holomorphic for t > 0.

Let the first term on the right of (1.63) be denoted by w (t). Then

(1.66) w (t + h) - w (t) = T f [U(t+h-s)-U(t-s)][f(s)-f(t)]ds
t 0

+ T f U (t +0 h - s) Y (t)(t) - 1(t + h) ] d s +
0
t+h

+ T f U(t+h-s) [f(s)- f(t+h)]ds
t

= wl + w2,+ w3, say.

To estimate w1, we use (1.60) and (1.61) :
t

IIw,II s f IIT[U(t+h-s)- U(t-s)]II Ill(s)- f(t)II dss
0

t
s M2 Lh f (t + h s)-' (t - s)-l+k ds S

0
00

S M2 Lh f (s + h) -1 s-1+11 ds S const. hk .
0

w2 is estimated by using (1.45) and (1.61) :

IIW2ll = II [U(h) - U(t + h)] [f (t) - 1(t + h)]II s 2M0 Lhk .

To estimate w3, we use (1.59) with n = 1:
t+h

IIw3I1 s f IITU(t+h-s)IIIIt(s)-/(t+h)II ds
t t+h

=M,L f (t+h-s)-'+kds s const.hk.
t

1 If D+ v (t) is continuous, then dv (t)ldt exists and equals D+ v (t). For the proof,
t

set w (t) = f D+ v (s) d s where a > 0. Then D+ (w (t) - v (t)) = 0. Since w(t) - v (t)
a

is continuous, it must be constant (see Lemma 111-1.36). Hence dv (t)/dt = dw(t) dt
= D+ v (t).
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Collecting the above estimates, we see that w (t) is Holder continuous
with the exponent k, uni f ormly1 for t z 0.

8. Applications to the heat and Schrodinger equations
We mentioned above (Example 1.26) that the semigroup e-12' is holomorphic

when T is a second-order partial differential operator of elliptic type. Let us consider
in some detail the semigroup generated by the Laplacian A in R3.

We have shown before (see V-§ 5.2) that -d defines in a natural way a self-
adjoint operator in the Hilbert space L2 (R8). Here we shall consider T = - A in
the Banach space X = L9 (R3), 1 S p < oo, or X = C (R8). The simplest definition
of T is given indirectly by the explicit formula for the resolvent (T + c)-1 of T
as an integral operator with the kernel

e Iv-xl _
(1.67) 4nly_xI ,

It can be seen from Example 111-2.11 that this kernel defines an integral operator
G (C) E -4 (X), with

(1.68) IIG(C)II S f Ig(Y, x; C)I dY = f Ig(Y, x; C)I dx< (Re j)-2 = 1/ICI sine
2

for IargCI 5 n - e. It is a well known fact that (C - d) G (C) u = u for sufficiently
smooth function u (x), say u E Co (R3). With - d defined on the set of such smooth
functions, T should be defined as that extension of -d for which (T + is
exactly equal to G (c).

It follows from (1.68) that T E ,aG° 12 , 01 and - T generates a semigroup e-'T

holomorphic for Ret > 0. Furthermore, a-'-' is a contraction semigroup for real
t > 0:
(1.69) IIe-891 < I for real t > 0;
this is seen from II(T + )-'II = JIG(e)II S leg for > 0, which follows from (1.68)
fore=x.

For any uo E X, u (t) = e-'T uo is a solution of the differential equation d u (t) Id t
T u (t), which is an abstract version of the heat equation

(1.70) at =du.
Such a solution is unique for the given initial value uo if it is required that u (t) E X.
Thus any solution of the heat equation belonging to X is holomorphic in t (as an X-valued
function). In general this does not imply that the function u (t, x) of the space-time
variables is analytic in t for each fixed x. But the latter does follow from the abstract
analyticity if we choose X = C (R8), for convergence in this space means uniform
convergence of the functions.

In view of (1.50), e-'T is represented by an integral operator with the kernel

(1.71) h(y, x; t) = 2ni ,f et`g(Y, x; C) dt'
r

_ (4n t)-812 a-I r-xl'la' Ret > 0 ,
where r is chosen as in par. 6.

1 But T v (t) is not necessarily Holder continuous up to t = 0, since U (t) need
not be so.



496 IX. Perturbation theory for semigroups of operators

(1.71) suggests that e- rtT is the integral operator with the kernel

(1.72) h(y, x; i t) _ (4a i t)-312 e-ly-x('l41t

But this is not obvious; it is even not clear in what sense (1.72) is an integral kernel.
We know, however, that if X = L3(R3), T is selfadjoint and hence {e-4t T} is a
group defined for - oo < t < + oo. In this case a-rtT is in fact the integral operator
with the kernel (1.72), in the sense to be stated below.

To simplify the description we shall consider, instead of (1.72), its one-dimen-
sional analogue

(1.73) h (y, x; i t) _ (4n i t)-1/3 e-(y-x)'/art

where x, y, and t vary over the real line (- oo, + oo). Then

(1.74) K(t) u(y) = f k(y, x; i t) u(x) dx

is defined at least if u (x) tends to zero sufficiently rapidly as x -+ f oo. For
example, an elementary calculation shows that

(1.75) K(t) u(x) _ (1 + 4i b t)-1/3 e-b(x-°)'/a+4rbt>

for u(x) = e b(x-°)', b > 0.

If we take two functions ut (x) = e-b9(z-°t)', j = 1, 2, of this form and construct
K(t) of by (1.75), we obtain by a straightforward calculation

1/3 - bb b(1.76) (K (t) u1, K (t) u2) _ (u1, us) _ I e ios
b1 + b$

It follows that any linear combination u of functions of the form (1.75) satisfies the
equality JJK(t) ull = 1lull. In other words, K(t) is isometric if defined on the set D
of such functions u. But D is dense in L3. To see this it suffices to verify that the
set of Fourier transforms of the functions of D is dense in L2 (since the Fourier
transformation is unitary from L2 to L3). The Fourier transform 4 of the u of (1.75) is
given by 4(p) = (2b)'/3 e-p'/4b-r°p. Suppose a v(() E L$ is orthogonal to all func-
tions 4 of this form with fixed b and varying a. This means that W' (P) = e-P'/4bv" (p),
which belongs to L', has the Fourier transform zero; thus zew (p) = 0, v" (p) = 0,
showing that the set of u is dense.

Therefore, the K (t) defined on D can be extended uniquely to an isometric
operator on L2 to La, which will again be denoted by K (t). K (t) may not be an
integral operator in the proper sense, but it is an integral operator in a generalized
sense:

w
(1.77) K(t) u(y) = 1.i.m. (4x it)-113 f e-(Y-x)'14 itu(x) dx, -oo <t < co,

_00

just as was the case with the Fourier-Plancherel transform.
It remains to show that the generalized integral operator K (t) coincides with

e-ttT. For this it suffices to show that K(t) u = e-rtT u for u E D. This is seen to be
true by letting t approach a real value from the lower half-plane Imt < 0, where this
equality is obvious (see Problem 1.29 below).

In the 3-dimensional case we have only to modify the above arguments by
taking as D the set of linear combinations of functions of the form u (x) = e-b ix-ol',
b > 0, a E R8. In this way we see that a-t tT is given by the integral operator

(1.78) e-"2'u (y) = l.i.m. (4n i t)-313 f e-ly-xl'/" u(z) dx, - oo < t < oo .
R'
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These results can be further extended to the m-dimensional space, the only modifica-
tion needed being replacement of 3/2 by m/2.

Problem 1.29. When X = L2, e-'T is strongly continuous and ile-`TII < 1 for
Re t Z 0.

§ 2. Perturbation of semigroups
1. Analytic perturbation of quasi-bounded semigroups I

We now ask, does the infinitesimal generator of a semigroup retain
the properties of a generator if subjected to a small perturbation ? And
if it does, how does the generated semigroup change? First we shall show
that the property of being a generator is stable under the addition of a
bounded operator. More precisely

Theorem 2.1. Let T E 9 (M, fl) and A E a (X). Then T + A E 9r (M,
+ MIIAII) and e-d(T+A) is, for fixed t > 0, a holomorphic function of A.

In particular, a-d (T+XA) is an entire function o l the complex variable x.
Proof. If - (T + A) is to be a generator of a quasi-bounded semi-

group V (t) = e-t (T+ A), we must have the differential equation

(2.1) dv (t) /d t = - (T + A) v (t)

for v (t) = V (t) u0, u0 E D (T + A) = D (T) ,

According to § 1.5, the solution of (2.1) must satisfy the integral equation

(2.2) v (t) = U (t) u0 - f U (t - s) A v (s) d s ,
0

where U (t) = e- 17' is the unperturbed semigroup. Substituting v (t)
= V (t) u0, this gives

d

(2.3) V (t) = U (t) - f U (t - s) A V (s) d s .
0

It should be noted that (2.3) has not been proved to be true except when
applied to a u0E D (T). But (2.3) is true since the two members belong
to 9 (X) and D (T) is dense in X. Note further that the integral on the
right is a strong integral : U (t - s) A V (s) u0 is continuous in s for every
u0 E X so that it is integrable.

Let us solve (2.3) by successive approximation :
00

(2.4) V (t) U. (t)
n=0

(2.5) UU+I(t)=- f n=0,1,2,...,
0

where UO (t) = U (t). Since U (t) is strongly continuous, it is easily seen
by induction that all the U (t) are defined [the integral in (2.5) is a strong

1 For details see HILLE and PHILLIPS (1), Chapter 13; PHILLIPS [1].
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integral of a strongly continuous function] and are strongly continuous
in t. Furthermore, we have the estimates

(2.6) II Un (t) II s Mn+l II All n ePt to/n ! , n=0, 1,2, ... ,
which can be proved by induction. In fact, (2.6) is true for n = 0;
assuming it for n, we have from (2.5), noting that II U (t - s) II s MOO-),

t

II U-+1(t)II s Mn}2IIAIIn+1 n!-' f 00-8) eft8 sn ds
0

= Mn+2IIAIIn+l est to+l/(n + 1) ! .

We see from (2.6) that the series (2.4) is absolutely convergent, the
sum V (t) is a solution of the integral equation (2.3) and that

00

(2.7) IIV(t)II s E IIUn(t)II s Me(a+MIIAII)t.

n=0

To show that V (t) is in fact the semigroup generated (T + A),
we multiply (2.3) by e-Ct and integrate over 0 5 t < oo, assuming
Rel;>

(2.8) R1(C) = f e-11 V (t) dt = f U(t) dt -
0 0

-[7e_t U(t) dt] ALf e-;tV(t)dt]
0

_ (T + a)-1 - (T + C)-1 A R1 (C)

This shows that (T + l;) R1 (l;) = 1 - A R1 (l;) or (T + A + l;) R1 (g) = 1.
Since -l; E P(T + A) in virtue of IIAII < M-1 Re (C - fl) S 1/11 (T + C)-111
[see (1.39)], it follows that R1(C) _ (T + A + c)-1.

Thus we have for k = 0, 1, 2, ...,

(2.9)
II (T +A + C)-71-1II = k,

1

ck R1M
00

(T + A + c)-1

s k) f tkle-ttl IIV(t)II dt
0

M dt = M(ReC - - MIIAII) -11-1,kl
rtk e-(Re;-p-MIIAII)t

which shows that T + A satisfies (1.36) with 9 replaced by 9 + M II A II :

T + A E 9(M, P + MIIAII)
Then we see from Remark 1.4 [or rather its generalization to T E

E `.Pi(M, 9)] that V(t) = e-t(T+A).
The expression (2.4) for V (t) = e-t (T+A) has the form of an expansion

in powers of A. This shows that V (t) is a holomorphic function of A
(see Remark 11-5.17).
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Remark 2.2. The above proof is indirect in so far as it concerns the
property of - (T + A) being a generator. It is possible to verify directly
the final inequalities of (2.9). This proof is in general not very simple; it is
necessary to make some combinatorial computations'. But the proof is
trivial if M = 1. In this case we need only to verify (2.9) for k = 1, but
this is obvious from the second Neumann series for the resolvent

00

(T + A + c)-1= E (T + 4)-1 [-A (T + 4)_1]n and II (T + C)-11I s
=

(Red' - fl)-I.
n 0

Problem 2.3. Prove by successive approximation that v (t) = U. (t) uo satisfies
the differential equation d t = - T v. - A v _1 (set v_1 = 0) and v = E v
satisfies dv/dt = -(T + A) v, provided that uo E D(T). [hint: Theorem 1.19.]

2. Analytic perturbation of holomorphic semigroups
In the preceding paragraph we considered a bounded perturbation of

the generator - T of a quasi-bounded semigroup. In general it is dif-
ficult to add an unbounded operator A to T without destroying the
property of - T being a generator. For example, - (T + A) need not be a
generator of a quasi-bounded semigroup even if A is relatively bounded
with respect to T.

If - T is assumed to be the generator of a holomorphic semigroup,
however, perturbations of a wider class are permitted.

Theorem 2.4.2 For any T E and s > 0, there exist Positive
constants y, S with the following properties. I/ A is relatively bounded with
respect to T so that

(2.10) IIAull s alluII+bilTull , uED(T)CD(A),
with a < 6, b < 6, then T + A E .*'(co - e, y). 1/, in Particular, fi = 0 and
a=0, then T+AE. ((O - e,0).

Proof. As is easily seen, we may assume = 0 without loss of genera-
lity 2. (2.10) implies that

(2.11) IIA(T+C)-III s all(T+C)-III+bilT(T+

If Iargt;I 5 2 + co - e, we have II(T + C)-III < MEflCI by (1.51) and
IIT(T+C)-III=II1-C(T+C)-III s 1+M..Hence

(2.12) IIA (T + C)-III s
aM.ICI-I + b(1 +

1 See HILLS and PHILLIPS [11, p. 389.
2 See HILLS and PHILLIPS [11, p. 418.
S If #<O, T E -Y(w, fl) C JY(w, 0). If #>O, set To= T+ fl; then To E

E .7r (w, 0) and IIA ull S (a + b P) IIull + bui To uII If yo, do denote the y, d of the
theorem for fi = 0, then To + A E .7£° (w - s, Yo) for a + b fi < do, b < do. Hence
T + A E -W (w - e, yo + f4) if a < do/2, b < min (do, do/2 fl), so that it suffices to
take y = Yo + Ii. d = min (do/2, do/2 fl).
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and the second Neumann series for (T + t + A) -I converges if the right
member of (2.12) is smaller than 1, with

(2.13)
M-ICI-1' A -IT

Me[1 - b(1 + Me)]-1

+ + )II( II - 1 -aM.I-I-1-b(1 +M8) -aM8[1 -b(1 +M.)]-1

If b < (1 + M,)-', (2.13) shows that II (T + A + C)-III s M'fi4 - yI
for Iarg (C - y) 15 2 + co - e, where M' and y are some positive
constants depending on a, b and M,. If a = 0, we can take y = 0.

Corollary 2.5. 1/ - T is the generator of a quasi-bounded holomorphic
semigroup and A is T-bounded with relative bound 0, then - (T + A) is
also the generator of a quasi-bounded holomorphic semigroup.

Proof. It suffices to observe that b can be chosen arbitrarily small in
the proof of Theorem 2.4.

Theorem 2.6. Let T (x) E ' (X) be a holomorphic family of type (A)
defined near x = 0. 1/ T (0) is the generator of a quasi-bounded holomorphic
semigroup, the same is true for T (x) with sufficiently small In 1. In this case
U (t, x) = e-IT (x) is holomorphic in x and t when t is in some open sector
containing t > 0. Moreover, all a" U (t, x) lam" are strongly continuous in t
up to t = 01. 11, in particular, T (x) = T + x A where T and A satisfy the
conditions of Corollary 2.5, then e- t (T +uA) is an entire function of x fort
in such a sector.

Proof. Since T (x) - T (0) is relatively bounded with respect to T (0)
(see VII-§ 2.1), T (x) belongs to some .° (co, fi) for sufficiently small IxI.
Replacing T (m) ,by T (x) + fi if necessary, we may assume T (x) E .%°(w, 0).

It follows from (1.50) for U (t,lx) that

(2.14) 2x^ U(t' x) = 2n i f ect ' (T (x) + C)-I dC.
r

But we have

(2.15) 2x (T (x) + C)-I = 2ni f (T (x') + a)-I (x' - x)-"-1 du' ,
c

where C is a small circle in the x-plane and x is inside C. Since (1.51) is
true for T = T (x) uniformly in x near x = 0, we have

(2.16)
II a (T (x) + )-III 5

M, NA n!
, IargCI S 2 + w - e,

ICI

I As is seen from the proof, the conclusions of this theorem are true for any
holomorphic family T (m) provided that T W E Jr (w, f4) for small IxI. The "type
(A)" assumption is used to show that T (O) E Jr (wo, flo) implies TM E Jr (w, M.
It is easy to show that "type (A)" can be replaced by "type (B)" (see VII-§ 4);
in this case t(x) - t(0) is relatively bounded with respect to t(0) [t(x) denoting
the form associated with T (x) ], so that T (x) E r (co, fl) is true with some constants
w, fi for all x in any compact subset of the domain in which x varies.
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with some constant N if Ixl is sufficiently small. Thus the same argument
as given in § 1.6 shows that an U (t, x)/a x" is holomorphic in t in some
open sector and strongly continuous up to t = 0. In particular, this
implies that U (t, x) is holomorphic in x with its Taylor coefficients
holomorphic in t.

The last statement of the theorem is true since T (m) satisfies the
above condition for all x in virtue of Corollary 2.5.

These results show that holomorphic semigroups are rather stable
under perturbation.

3. Perturbation of contraction semigroups
We have remarked in the preceding paragraph that when - T is the

generator of a bounded semigroup, - (T + A) need not be such a
generator even when A is relatively bounded with respect to T. An
exception to this statement occurs when both - T and - A are generators
of contraction semigroups. We have namely

Theorem 2.7.' Let T and A belong to T (1, 0) and let A be relatively
bounded with respect to T with T-bound < 1/2. Then T + A E T (1, 0) too.

Proof. P(T) covers the half-plane Red' < 0 and 11 (T + )-III S -I
for > 0. A satisfies an inequality of the form (2.10), with b < 1/2, so that

s 5 if
is sufficiently large. It follows from the second Neumann series that the
resolvent (T + A + )-I exists for such .

Let us estimate (T + A + $)-I. To this end we consider the vector
v(t) = e-ta e-t(T+E) u where u E D(T) C D(A). We have

(2.17) u - v(t) = (u - e-to u) + e- to (u - e-t(T+f) u) .

Since a-ta u and e-t(T+f) u are differentiable in t, we have

(2.18) limt-,(u
t`-A 0

by (1.24). On the other hand, we have Il v (t) II 5 e- t1 jI uII since e- t & and
e-tT are contraction semigroups. Hence

(2.19) t-Illu - v(t)II z t-I (IIuII - e-tf lull) -* $IIull , t -+ 0 .

It follows from (2.18) and (2.19) that

(2.20)

II (T + A + $)-III < -I, at least for $ sufficiently
large that (T + A + i)-' exists. Then one sees by means of the first

I This theorem and Theorem 2.11 are essentially contained in TROTTER [2],
in which the semigroup e-t(T+&) is constructed as the limit of (e-UUt">T e-""n)e)' as
n -+ oo. An interesting application of this method is given by NELSON [1]. Cf. also
BABBITT [1].
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Neumann series that (T + A + a)-1 exists with the same inequality
for every > 0. This shows that T + A E 9(1, 0), as we wished to show.

Problem 2.8. If T E 9 (1, fl), A E T (1, fi') and A is T-bounded with T-bound
<1/2, then T+AE9(1,fi+fi').

Problem 2.9. The bound 1/2 for the T-bound of A in Theorem 2.7 and Problem
2.8 can be replaced by 1, if X is a Hilbert space.

Remark 2.10. Theorem 2.7 does not imply that e- t (T+. 4A) is holo-
morphic in x. In fact x < 0 is in general not permissible if xA is to belong
to 9 (1, fl). But it can be shown that e- t (T+xA) is strongly continuous in ;e
for x z 0. More generally, e- t e-7' if A,, tends to zero in the

s

sense that A,, is T-bounded and II A,,u II S a,,II u II + b,,I) T u lI with an, b -*0.
This is a consequence of Theorem 2.16 proved below.

The T-boundedness of A in Theorem 2.7 is used essentially only
in showing that - E P (T + A) for sufficiently large . The proof of
(2.20) is valid without any such assumption if u E D (T+ A) = D (T) n D (A).
If the range of T + A + is dense in X and if T + A is closable, it
follows that - E P (S) with 11 (S + )-1I1 S -1, where S is the closure
of T + A. If S is densely defined, it follows as above that S E 9r (1, 0).
Thus we have the following theorem, which is symmetric with respect
to T and A.

Theorem 2.11. Let T and A belong to 9 (1, 0), let D (T) n D (A) be
dense in X and let T + A + have a dense range for sufficiently large real $.
If T + A is closable, its closure S belongs to 9(1, 0).

4. Convergence of quasi-bounded semigroups in a restricted
sense

Let us return to the generators of quasi-bounded semigroups in
general. When - T is such a generator, it is in general difficult to prove
the same for - S = - (T + A) for an unbounded perturbation A. If we
assume that -S is also a generator, however, we can show that a-ts -
- e-tT is small relative to T provided A is small relative to T, even
if A is unbounded. More precisely, we have

Theorem 2.12. Let T, S E (M, A), f z 0, and let S = T + A where A
is T-bounded so that (2.10) is true. Then we have for > 8

(2.21) II(e- ts - e-tT) (T + )-11I s

sM2 tes4 [b(M+1)+(a+bP)M(

Proof. Let u E D (T) = D (S). Then we have, as in (2.2),
t

(2.22) (e-ts-e-tT)u=- f e-(t-8)s Ae-8Tuds;
0
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here Ae-8T u = A (T + $) -1 e-8T (T + ) u is continuous in s because
A (T + a)-1 is bounded. Since (T + a)-1 v E D (T) for any v E X, (2.22)
applied to u = (T + )-1 v gives

t
(2.23) (e-IS - e- IT) (T + )-1 = - f e-(t-8)s A (T + )-1 a-8T ds .

0

Since IIe-(t-0811 < MOO-8), IIe-8TII < Me'B, and

(2.24) IIA(T+ )-III < all (T+ )-III + bjIT(T+ )-III < fl)-1

(2.21) follows from (2.23).
Remark 2.13. Theorem 2.12 shows that (e-18 - e-tT) u tends to zero

when a, b -+ 0, not uniformly for IIulI 1 but uniformly for all u E D (T)
with II (T + ) ull < 1.

In this direction we can go further and obtain a certain kin(t of
estimate for e-t8 - e- IT without assuming anything on S - T.

Theorem 2.14. Let T, S E 07 (M, fl). Then

(2.25) II(S + C)-1 (e-ts - e- IT) (T + S)-III < M2 t efttlI(S + b)-I -
-(T+C)-III, Red'>

Proof. e-tT (T + l;)-1 is strongly differentiable in t: (d/d t) e-tT (T +
+ C)-I u = -e-tT T (T + C)-I u = _ e-tT [1 - C (T + C)-I], and simi-
larly for e- t s (S + C) -1. Hence

(2.26)
ds

e-(t-8)s(S +C)-I e-8T (T + C)-I = e-0-8)s8)s a-8T (Tpp+ C)-I -
- e- (t-8) S (S + C)-I a-BT = e- (t-8) S [(T + C)-1 - (S + b)-il a-8T.

Integrating with respect to s on (0, t), we obtain J

(2.27) (S + C)-1(e-tT - e-ts) (7' + C)-I
t

= f e-(1-8) s [(T + C)-I - (S + C)-'] a-8T ds
0

from which (2.25) follows by IIe-0 -8)s9I 5 Me(t-8)0 and IIe-8TII s Me"8.

Example 2.15. Let T = iH where H is a selfadjoint operator in a Hilbert space
H. If K is a symmetric operator relatively bounded with respect to H with H-bound
< 1, H + K is selfadjoint (see Theorem V-4.3). The unitary operator e-Wa+a)
tends.to a-"$ in the sense of Remark 2.13 when K tends to zero in the sense stated.

5. Strong convergence of quasi-bounded semigroups
If we content ourselves with strong convergence of the semigroups

generated by a given sequence of generators, we can weaken the assump-
tions on the perturbation considerably. The following theorem is funda-
mental in the approximation theory of semigroups.
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Theorem 2.16. Let T and Tn, n = 1, 2, ..., belong to 9(M, f). If

(2.28) (Tn + (T +
for some l; with Re l; > f, then

(2.29) a-tT a-tT
S

uniformly in any finite interval of t > 01. Conversely, if (2.29) holds for all t
such that 0 S t S b, b > 0, then (2.28) holds for every 4 with Re4 > j9.

Proof. We may assume = 0 without loss of generality. We start
from the identity (2.27) in which S is replaced by T. Since IIe- (t-s) Tall 5
s M, we have for any u E X

(2.30) II (Tn + YY S)-1 (e- IT- - e- tT) (T + S) -1 uiJ S
t

s M f II [(T. + C)-1- (T + ) -1] e- IT uJI ds .
0

If (T,, + I,)-1--. (T + t;)-1, the integrand on the right of (2.30) tends as
S

n -> cc to zero for each fixed s. Furthermore, the integrand is majorized
by 2M -1 MIIuiI, which is independent of n, where = Ret; > 0. There-
fore, the right member of (2.30) tends to zero by the principle of bounded
convergence. Obviously the convergence is uniform in t in any finite
interval.

On writing v = (T + C)-1 u, we have thus shown that

(2.31) (Tn + C)-1 (e-tT - e-tT) v -+ O , n-+ oo ,

uniformly in t. This is true for all v E D (T), since v varies over D (T) when
u varies over X. But the operator on the left of (2.31) is uniformly
bounded with bound not exceeding 2M2 r-1. Hence (2.31) is true for all
vEX.

On the other hand we have

(2.32) (Tn + C)-1 a-tT v - e-tTn(T + c)-1 v

= e-tT L(T. + p b)-1 v - (T + ppb)-1 v] -' 0,

since IIe-IT"II S M and (Tn + C)-1 v - (T + la)-1 v - 0. Similarly,

(2.33) . (Tn + C)-l a-tT v - e-tT(T + C)-l v

= [(T. + C)-1 _ (T + C)-1] a-tT v -* 0.

It follows from (2.31)-(2.33) that

(2.34) (e-tTn - e-tT) (T + C)-1 v -, 0.

Recall that (2.28) means that T.
I

T in the generalized sense (see VIII-§ 1)

Sufficient conditions for (2.28) are extensively studied in VIII-§§ 1 and 3.
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This means that (e-tT- - e- tT) w -* 0 for all w E D (T). It follows as
above that e-tTn - e-IT -. 0.

s

That this convergence is uniform in t follows from the uniformity of
convergence in (2.31)-(2.33). For (2.31) this was remarked above. For
(2.32) it is obvious. For (2.33) it follows from the continuity of 6- IT v in t,
which implies that the set of e- 9T v for all t of a finite interval is compact,
so that Lemma 111-3.7 is applicable.

Conversely, suppose that (2.29) is true for 0 S t < b. By e-mtT
_ (e-tT)m etc., it follows that (2.29) is true for any t > 0. Then

00

f e-tt(e-tTn - e-II) dt--. 0, Red' > 0,
0 s

by dominated convergence. In view of the inversion formula (1.28),
this gives (2.28) for every 4 with ReZ > 0.

In Theorem 2.16 the limit - T of the generators - T is assumed
to be a generator. The question naturally arises whether this is a conse-
quence of the other assumptions. It turns out that the answer is yes if
one assumes a certain uniformity on the behavior of the resolvents of
the T. We have namely

Theorem 2.17.1 Let T.E 9 (M, A n = 1, 2,..., and let s-lim (1 + a
a *0

= 1 uniformly in n. Let s-lim (T + t;)-1 exist for some t; with Re C > B.

Then there is a T E 9 (M, j9) such that the results of Theorem 2.16 hold.
Proof. Again we may assume P = 0. T E 9 (M, 0) implies that the

(T + C,)-1 are uniformly bounded inn for each fixed complex number C
with ReC > 0. In other words, the right half-plane Red' > 0 belongs to
the region of boundedness Ab for the sequence of the resolvents of - T
(see VII 1-§ 1.1). But it follows from the assumptions that at least one C
with Red' > 0 belongs to the region of strong convergence A8. Since A,
is relatively open and closed in Ab by Theorem VIII-1.2, A. must contain
the half-plane Re t; > 0.

Thus s-lim (T + C) -1 = -R' (C) exists for all t; of this half-plane, and
R' (C) is a pseudo-resolvent (see loc. cit.). We shall now show that R' (C)
is the resolvent of a densely defined closed operator - T.

For any u E X wehave u =
a
lim

0
(1 + a T)-1 u = limes

Since this convergence is uniform in n by hypothesis, it follows that

(2.35) U=- lim R' u , u E X .

Now the R' (C) have a common null space N and a common range D
(see loc. cit.). If u E N, we have R' u = 0 so that u = 0 by (2.35).

1 Cf. TROTTER [1].
S s-lim (1 + a T.) -1 = 1 follows from T. E 9(M, fl); see (1.12). The uniformity

in n of this convergence is the essential assumption.
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Thus N = 0. Also (2.35) implies that D is dense in X, for any u E X is the
limit of - R'($) u E D. It follows (see loc. cit.) that R' (C) is the resolvent
of a densely defined operator - T: R' (C) = - (T + C)-1.

The inequalities 11 (Ti, + )-kll S go over for n --> oo to the same
inequalities for 11 (T + )-kll This shows that T E 9r (M, 0), completing
the proof.

6. Asymptotic perturbation of semigroups
We have been able to develop a satisfactory analytic perturbation

theory for quasi-bounded semigroups only for bounded perturbations
(see par. 1). In the more restricted class of holomorphic semigroups,
it was possible to admit relatively bounded perturbations (see par. 2).
In applications, however, we have often to deal with non-holomorphic
semigroups, the most important case being the unitary groups in a
Hilbert space. Therefore, it is desirable to develop the perturbation
theory for non-holomorphic semigroups further by admitting unbounded
perturbations. Naturally, then, we have to content ourselves with
obtaining weaker results than the analytic dependence of the semigroup
on the parameter x. In this way we are led to consider asymptotic series
in x which are valid for x -+ 0. A simple example of asymptotic behavior
of semigroups is obtained if we set A = x TM and let x -+ 0 in Theorem
2.12 [assuming that T + x T (') E 9 (M, 9) for all x]. What we are going
to do in the sequel is to extend the result to higher orders of the para-
meter 1 x.

For simplicity we shall consider a family of operators

(2.36) T (m) = T + x TM,

though we could as well consider a formal infinite series in M. We assume
that T E 9(M, j9) and Tel) is T-bounded:

(2.37) II TC') ull 5 a llull + b lI T ull , u E D (T) C D (TM) .

As remarked before, this does not guarantee that - T (x) is the generator
of a semigroup, though T (x) is a closed operator with domain D = D (T)
for Ixl < 1/b by Theorem IV-1.1. Therefore we add the assumption that
T (x) E 9 (M, 0) for x E Do, where Do is a subset of the disk I,I < 1/b.
Do may be an open set, a subset of the real axis or a subset of the positive
real axis. In what follows x is always assumed to belong to Do. Also we
assume = 0, for this does not affect the generality [otherwise consider
T (x) + 8 instead of T (x)].

Under these assumptions, - T (x) generates a semigroup U (t, x)
= e- 17(11) for each x. We write U (t, 0) = U (t). The U (t, x) are uniformly

1 The following theorems were given by T. KATO [3] in the case in which the
T(x) are selfadjoint.
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bounded by
(2.38) IIU(t, x)II S M, t z 0.

Theorem 2.18. U (t, x) - U (t), x --> 0, uniformly in t in any finite
S

interval.
Proof. This is a direct consequence of Theorem 2.12.
Theorem 2.19. Let u E D. Then

(2.39) U (t, x) u = U (t) u + x u(') (t) + o (x) , x -> 0 ,

with

(2.40) UMW f U(t - s) TM U(s) uds ,

0

where o (x) denotes a vector with norm o (x) uniformly in each finite interval
of t. The integrand on the right of (2.40) is continuous in s so that the
integral is well defined.

Proof. The second term on the right of (2.39) is formally identical
with the v1 (t) = U1 (t) u of par. 1 if we set A = x TM and u0 = u. Although
TM is not bounded, the integrand of (2.40) is continuous in s because

(2.41) TM U(s) u = B (C) U(s) {T + l;) u ,

where [cf. (2.24)]

(2.42) B(C) = T 1)(T + C)-1 E '(X) , ReC > 0 ,

(2.43) II B (C) II 5 a M r-1 + b (l + M) , 1:' = Re.

Similarly TM U (s, x) u is continuous in s. To see this we write

(2.44) TM U (s, x) u = B (C, x) U (s, x) (T (x) + l;) u,

where

(2.45) B (C, x) = T (1) (T (x) + ))-1 E -4 (X)

because TM is T (x)-bounded too (see Problem IV-1.2). B x) is even
holomorphic in C and x, for we have from the second Neumann series
for (T (x) + C)-1 = (T + C + x TM) -1

(2.46)
00

B(S, x) = Lr (-x)k-1 B(C)I.

Since u E D implies that U (t, x) u E D and d U (t, x) u/ d t=
- T (x) U (t, x) u = - T U(t, x) u - x TM U (t, x) u, it follows from (1.43)
that
(2.47) U (t' x) u = U (t) u - x f U (t - s) TM U (s, x) u d s.

0

(2.39) follows from (2.47) if it is proved that the integral on the right
tends as x -+ 0 to -un> (t) uniformly in t. For this it suffices to show
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that 11 TM U (t, x) u - TM U (t) u VV -+ 0 boundedly in t (principle of
bounded convergence). But this is obvious from (2.44) and (2.41) since
B (C, x), U (t, x), (T (x) + C) u = (T + l4) u + x TM u are all uniformly
bounded, B (C, x) u B and U (t, x) S U (t) by Theorem 2.18 (we
need only a fixed 0.

Theorem 2.20. Let u E D (T2). Then

(2.48) U (t, x) u = U (t) u + x u(l> (t) + x2 u(2) (t) + o (x2)

uniformly in each finite interval o l t, where u(') (t) is given by (2.40) and

(2.49) u(2) (t) f U(t - s) TAM u(') (s) ds .

0

TM 0) (t) exists and is continuous in t, so that the integrand in (2.49) is
continuous in s.

Proof. First we show that TM U (t) u, which exists because U (t) u E
E D, is continuously differentiable in t, with

T Ml> UM u=- TM U (t) Tu.(2.50)
'-Wt-

fact, we have TM U (t) u = B (C) U (t) (T + t;) u by (2.41) and soIn
(d/d t) TM U (t) u = - B (C) U (t) T (T + C) u = - B (C) U (t) (T + C) T u
_ - TM U (t) T u because T (T + t;) u exists by hypothesis.

According to Theorem 1.19, it follows that the u(1) (t) given by (2.40)
is continuously differentiable and Tun) (t) is continuous. Then TM u('> (t)
= B (C) (T'+ C) u(') (t) is also continuous. This proves the last statement
of the theorem.

In view of (2.47), (2.41) and (2.49), (2.48) will be proved if it is
shown that

(2.51) f U(t-s)TM{x [U(s,x)u-U(s)u]-UM (s)}ds-+0
0

uniformly in each finite interval of t. Since 11 U (t - s) 11 5 M and TM
is T-bounded, (2.51) is true if

(2.52) (T + t;) { [U(t, x) u - U(t) u] - un> (t)}.+ 0

boundedly for a fixed But we have

(2.53) (T + C) [U (t, x) u - U(t) u]

(1 + x B(C))-1 U (t, x) (T + C + x TM) u - U (t) (T + C) u
=-xB(4)(1+xB(C))-1U(t,x)(T+C +xTMM>)u+

+ [U(t, x) - U(t)] (T + C) u + x U(t, x) TM u.
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Hence

(2.54) (T + C) [U (t, x) u - U (t) u] -+

--B(C) U (t) (T + C) u + v(1) (t) + U (1) Ti') u ,

where v(') (t) is the coefficient of x in the asymptotic expansion of
U(t, x) (T + C) u, which exists by Theorem 2.19 because (T + C) u E
E D(T); in other words,

(2.55) V M (t) f U (t - s) TM U (s) (T + C) u d s .

0

Since B (l4) U (t) (T + l4) u = TM U (t) u, the right member of (2.54)
is equal to

(2.56) - DO U (t) u + U (t) TM u - f U (t - s) T (l) U (s) (T + C) u d s
t 0

(T + C) f U(t - s) TO) U(s) u ds,
0

where we have used (1.47) with 1(t) = TO-) U (t) u, noting (2.50). This
proves (2.52) and completes the proof of Theorem 2.20.

Remark 2.21. The proof of Theorem 2.20 is somewhat complicated
since the assumption u E D (T2) does not imply u E D (T (x)3). It is not
easy to go on in the same way to higher approximations of U (t, x) u
without introducing severe restrictions on u. For example, it is not
possible to expand U (t, x) u up to the third order in x under the assump-
tion u E D (T3) alone; it would be necessary to assume that T(l) u E D (T)
in addition. We shall not pursue this problem any further.

Example 2.22. Let T = iH where H is a selfadjoint operator in a Hilbert
space H, and T11) = iK where K is symmetric and H-bounded. Then H + x K is
selfadjoint for sufficiently small real x and T (x) = T + x VI) generates a unitary
group, as does T. Thus the fundamental assumptions are satisfied if we take as Do
a neighborhood of x = 0 on the real axis, and Theorems 2.18 to 2.20 are applicable
to U (t, x) = e-MH+MA).

§ 3. Approximation by discrete semigroups
1. Discrete semigroups

The perturbation theory of semigroups discussed in the preceding
section may be regarded as a theory of approximation of a semigroup
U (t) by a family of semigroups, which may depend on a discrete para-
meter n (Theorems 2.16, 2.17) or on a continuous parameter x (Theorems
2.18-2.20). In this section we consider approximation of a semigroup U (t)
by a sequence of discrete semigroups ; the result will have applications to
the approximation theory of differential equations by difference equations'.

1 The following presentation leans heavily on TROTTER [1].
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A discrete semigroup is simply a family {Uk}k = 0, 1, 2,... consisting
of powers of an operator U E °.,A N; it has the semigroup property
U' Uk = U1 +k. In approximation theory, however, it is necessary to
correlate the exponent k with the "time" variable t. To this end we
associate a "time unit" r > 0 with each discrete semigroup {U71} and
write Uk = U(k r), k = 0, 1, 2, ..., the function U(t) being thus defined
only for a discrete set of values t = k T. {U (k r)} will be called a discrete
semigroup with time unit r. To distinguish them from discrete semigroups,
the semigroups {U (t)} considered in preceding sections will be called
continuous semigroups.

A discrete semigroup {U (k r)} is said to be bounded if II U (k r) ( s
M, k = 0, 1, 2, ..., with a constant M, where M z 1 since U(0) = 1.
For a discrete semigroup {U (k r)} with time unit r, set

(3.1) T=r-1(1-U(r)).
- T is called the generator of {U (k r)}. Thus

(3.2) U(k r) _ (1 - r T)k .

Since T Ed N, - T also generates a continuous semigroup {e-tT},
which will be called the continuous semigroup associated with {U (k r)}.
{e- I'} is an approximation to {U (k r)} in a certain sense, as is seen from

Lemma 3.1. I l {U (k r)} is bounded by II U (k r) II 5 M, the semigroup
{e- tT} is also bounded by 11 e- t TII < M and

(3.3) I U (k z) u - e-kTlull 5 Mk r2 11 T2 ulI .

Proof. a-tT can be defined simply by the Taylor series. Since -tT
_ - (t/r) + (t/r) U (r), we have

00(3.4) U (k r) e-41= e- t/r U (k r) 0' nil U (n T)
n0

00= e-t/T E (n1 )a U((n + k) r) ,
n=0

hence

(3.5) II U(k r) e-tTII S Me-tIT ltn!}n = M.
n-0

In particular IIe-tIII 5 M.
Since the U (k r) and T commute, we have

(3.6) U(kr)-e-krT=IlU((k-j-1)r)e-5TT](U(r)-e-TT).
r o
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But

U(r)-e-=T= 1-rT-e-=T=-f (r - s) e-8T T2ds
0

so that

II U((k -j - 1) r) a-5rT(U (r) - e-tT) uII 5

f (r- s)MIIT2UIIds= 2 MIIT2UII

by (3.5). Thus (3.3) follows from (3.6).
Remark 3.2. To avoid the inconvenience that a discrete semigroup

U (t) is defined only for t = k r, we set

(3.7) U (t) = U ([ 2, r)

for any t z 0, where [t/r] is the greatest integer not exceeding (Jr. Of
course {U(t)} is then not a continuous semigroup, but we have

(3.8) IIU(t) u - a-°T UII s 2 MrtIIT2UII +MrIITup .

In fact, let k r 5 t < (k + 1) r ; then U (t) = U (k r) and 116-IT u -

- e_ T uII 5 I f e-ST T u d sl 5 M rII T u II , so that (3.8) follows from
kr

2. Approximation of a continuous semigroup by discrete semi-
groups

Consider a sequence {Uj of discrete semigroups with time units T.,
n = 1, 2, . . ., where r,, -+ 0, n --> oo. {Uj is said to approximate a conti-
nuous semigroup U = {U (t)} at t = to if

(3.9) Un (kn rn) -, U (to) , n -+ oo ,

for any sequence {k."} of nonnegative integers such that k.T,, -> to.
{U."} is said to approximate U on an interval I of t if (3.9) is true for each
to E I.

Lemma 3.3. Il {Uj approximates U on an interval 0 s t < b, {UJ
approximates U on the whole interval 0 5 t < oo. (In this case we simply
say that {Uj approximates U, and write U,, -+ U.)

Proof. Let to z 0 and k. r,, -+ to. Let m be an integer such that
to < m b, and let k,, = m q,, + r,,, 0 s r < m (qn, r,, are integers). Then
r,, r,, -+ 0 and q r,, -+ to/m < b. Hence U,, (r,, r,,) U (0) = 1 and

g

U. (qn r,,) - U (t0/m), so that U. (kn r,,) = U. (qn r.")"" U. (rn 'r.) s U (to/m) m

= U (to).
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Lemma 3.4. 1/ U -* U, the U,, are uniformly quasi-bounded in the
sense that

(3.10) II U. (t) II 5 Me' t , t z 0 ,

where M and fi are independent o l n and t, and where U,, (t) is defined for
all t z 0 according to (3.7).

Proof. For each fixed u E X, the values II U (k u11 are bounded
for all integers n and k such that k r 1; otherwise there would exist a
sequence {k,,} such that II U. (k r -* to 5 1, when n -> 00
along a subsequence, contrary to the assumption. It follows from the
principle of uniform boundedness that II U. (k r S

M
k r k = q m + r, 0 5 r < m = [1/r,,]

(q, r are integers). Then

IIUm(krm)II = IIUm(mnrn)11 Un(rrn)II <

< II U. (mn rn) II a 11 U. (r rn) II < M4+1

But since m + 1 > 1/r,,, we have q < k/m < rr < 1/2. Hence II U (k 11 5 M exp (2 k r log M), which is also true
for k -r,,;5 1. Since U (t) = U (k where k = [t/r,,] 5 t/r,,, we obtain
II U.(t)II M exp (2t log M). Since there are only finitely many n for
which r > 1/2, this proves the lemma with fi = 2 logM, with some later
change in M and fi if necessary.

Lemma 3.5. For U -+ U, it is necessary that U (t) -, U (t) uniformly
S

in each finite interval o l t, and it is sufficient that this be true for some
interval [0, b].

Proof. Let U -+ U and suppose that for some u E X and some finite
closed interval I, it is not true that U (t) u -+ U (t) u uniformly for t E I.
Then there is a sequence t E I such that

(3.11) II U.(t,.)u-U(t,,)ujI Ze>0

(replacing by a subsequence if necessary). Choosing a further
subsequence, we may assume that t --- to E I, n --- oo. Set k,, = [t /r ].
Then k r -+ to because r -- 0. Since U U (k by (3.7) and
since U u -+ U (to) u by the strong continuity of U (t), (3.11) gives
lim sup II U. (k u - U (to) u II z e, a contradiction to (3.9).

Suppose, conversely, that U (t) u -+ U (t) u uniformly for t E [0, b]
for each u E X. Then U (k r,,) u - U (k r,,) u -+ 0 for k r E [0, b].
In particular it is true if k r -+ to < b. Since U (k r,,) u -+ U (to) u by the
strong continuity of U (t), (3.9) follows for to < b. Hence U -+ U by
Lemma 3.3.
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3. Approximation theorems
In this paragraph we consider a sequence {Un} of discrete semigroups

with time units -r,, and generators - T, where zn -+ 0. For {U,,} to approx-
imate a continuous semigroup, it is necessary that {Un} be uniformly
quasi-bounded (see Lemma 3.4). Therefore we consider only such a
sequence {U,,}.

Theorem 3.6. Let {U,.} be uniformly quasi-bounded as in (3.10), and
let U be a continuous semigroup with the generator - T. For Un -+ U, it is
necessary and sufficient that T,, -. T in the generalized sense ; in other

s

words, it is necessary that

(3.12) (T. + s (T +

for every l; with Re 4 > f, and it is sufficient that (3.12) hold for some C
with Ret > j9.

Proof. It is not difficult to see that the general case can be reduced
to the case P = 0 by the transformations U,, (t) -+ e-t U,, (t), U (t) -+
-+ a-P t U (t). Thus we assume that {U,,} is uniformly bounded : 11 U,, (t) IJ

s M, t z 0, where U, (t) is defined for all t z 0 according to (3.7).
Suppose now that U -+ U. Then U (t) U (t) uniformly in each

finite interval of t by Lemma 3.5. Hence for Re4 > 0

(T. + 0-1 = [ + Zn 1h1 - U. (r.))]-1
00

0-0+ U (k TO - /' U (t) d i
= ZukG (1 J (1 +to0117n]+1

0

It follows by the dominated convergence theorem that
00

(T. + )-1 $ f e-tt U (t) dt = ( T + ) ' ;
0

here it should be noted that (1 + r ) - It/T-] -1-+ e- t t dominatedly, for

I(1 + Zn C)-[t/T-]-1I s (1 + Z,, Ret;)-[t/TR]-1 S

(1 + Z,, Re C) (1 + t Red' -} 2 t2(Ret;)2

the last member being integrable on 0 S t < oo.
Suppose, conversely, that (3.12) is satisfied by some C with Ret > 0.

Since T,, E 9 (M, 0) by Lemma 3.1, it follows from Theorem 2.16 that
(3.12) is true for any C with Red' > 0 and that e-tT uniformly

s

in each finite interval of t. Thus it remains to show that

(3.13) U,, (t) - e- t Ta 0
S

uniformly in each finite interval.
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To this end we apply (3.8) with U replaced by U,,. Replacing u by
(T + 1)-2 u, we see that

II (Un (t) - e-1Tn) (T + 1)-211

Ma l2 t1ITn(T.+ 1)-211 + IIT.(T.+ 1)-2p) 0

since II T.1 (T. + 1)-211 S (1 + M)2, II T. (T + 1)-211 S M(1 + M). Since
(T + 1)-2 5 (T + 1)-2 and U (t), e-17'- are uniformly bounded, it
follows that

(UU(t) - e-tT°) (T + 1)-2 0.
Since R ((T + 1) - 2) is dense in X, (3.13) follows again by using the uniform
boundedness of and e-II,.

Remark 3.7. (3.12) is satisfied if there is a core D of T such that
T,, u-+ T u for u E D (see Theorem VIII-1.5).

Example 3.8. Let T E 9 (M, fi) and U (t) = e-12. Let U (kin) = (1 + n-1 T)- k.
U. is a discrete semigroup with time unit T. = l/n. The generator - T. of
U. is given by T. = n [1 - (1 + n-1 T)-1] = T (1 + n-1 T)-1. Hence T. u
= (1 + n-1 T)-1 Tu - Tu if u E D (T) [see (1.12)]. Thus U. -- U by Remark 3.7;
this is another formulation of the result of § 1.4, where U (t) was defined exactly
in this way.

The following theorem, which does not assume explicitly that the
limit in (3.12) is the resolvent of a generator, can be proved exactly as
Theorem 2.17.

Theorem 3.9. Let be uniformly quasi-bounded and let
(1 + at 1, a \ 0, uniformly in n. Let s-lim(T + C,)-1 exist for

s n - 00
some C with Red' > P. Then there is a continuous semigroup U(t) = e-tT
such that U. -+ U and T. T in the generalized sense.

S ,

4. Variation of the space
The approximation theorems proved in the preceding paragraph

are not directly applicable to the approximation of a differential equation
by difference equations', since the difference operators act in spaces
different from the one in which the differential operator acts. To deal
with such a problem, it is necessary to consider the approximation of a
continuous semigroup U of operators in a Banach space X by a sequence

of discrete semigroups acting in other Banach spaces X,,.
Let X and X. be Banach spaces. Suppose there exists, for each n,

a P E .1 (X, such that

i) II PnII s N (N independent of n) ;
ii) 1IP uIl - IIull, n -+ oo, for each u E X;

1 Except when only the time variable t is discretized.
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iii) there is a constant N' (independent of n) such that each v E X
can be expressed as v = Pn u with dull 5 N' jjv jj.

Then a sequence {un}, u,, E X,,, is said to converge to u E X, in symbol
un -* u, if,

(3.14) Ilun-Pnull--0, n-.oo.
A sequence An E 4 (X,,) is said to converge strongly to A E 9 (X), in
symbol An . -> A, if

S

(3.15) An Pn u -+ A u , that is, jjAn Pn u - Pn A u Il -+ 0 .

With this definition of the strong convergence An , A, it is easy to
S

show that An -+ A implies that the An are uniformly bounded, An -+ A
s S

and Bn - B imply A Bn --> A B, etc.
S S

Once the notion of strong convergence is defined with these properties,
it is easy to define the approximation Un -* U of a continuous semigroup
U in X by a sequence { Un} of discrete semigroups, where Un acts in Xn,
exactly as before. Then it is easy to verify that Lemmas and Theorems
3.3-3.9 are valid. Details may be left to the reader2.

Example 3.10. Let X be the subspace of C[0,1] consisting of all func-
tions vanishing at 0 and 1, X. = CN [the set of m,, dimensional numerical
vectors v = s',,,,,) with the norm IIvII = max l'4] . For each u E X set P. u
= v = (gf) E X. with 4a = u (j h.), h = 1/(m + 1). P. u is the approximation of a
continuous function u (x) by the set of its values at the m mesh points for the mesh
width h,,. If m -* oo, the conditions i) to iii) are satisfied with N = N' = 1. The
notion of convergence u -+ u defined as above is well adapted to such an ap-
proximation.

Now consider the operators T and T. defined as follows. T is an operator in X
given by Tu = -d2 uldx2 with D (T) consisting of all u E X with u" E X. T. is
an operator in X. such that for v = ($j), T. v = w = (ref) is given by

i]f = - ($f+1- 2srf + f-1)/h2 (set eo = 0)

Then it is easily seen that T. P u -+ T u for u E D (T), in the sense of (3.15). Thus
the condition corresponding to Remark 3.7 is satisfied. It follows that the discrete
semigroups U. generated by the - T. approximate U (t) = e-IT provided that
the U. are uniformly quasi-bounded8. Whether or not this condition is satisfied
depends on the rate of convergence Sr,, -+ 0. It is known * that it is satisfied if
r*1h2,, S c < 1/2. If, on the other hand, we set TA = T. (1 + T. T.)-1 and define the
discrete semigroup Un generated by - T' with time unit T,,, the condition of Theorem
3.6 is satisfied and U' i U is true if only Sr,, - 0 (without any restriction on the
ratios {U,) and {U.) correspond respectively to the choice of the forward and
backward difference coefficients in time, in the approximation of the heat equation
aulai = a2u/ax2 by difference equations.

1 In what follows we denote by II
II

the norms in different spaces X and X,,,
but there should be no possibility of confusion.

2 Cf. TROTTER [1].
8 This is called the stability condition.
4 See e. g. RicETMYER Q1D.
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Chapter Ten

Perturbation of continuous spectra
and unitary equivalence

This chapter is concerned with the perturbation theory for continuous spectra.
The operators considered are mostly selfadjoint. The stability of the continuous
spectrum under a small perturbation has been studied rather extensively, though
the results are by no means satisfactory. It is known that the continuous spectrum is
rather unstable, even under degenerate perturbations. In this respect it is much
worse-behaved than the essential spectrum (which is in general larger than the
continuous spectrum). On the other hand, the absolutely continuous spectrum
(which is in general smaller than the continuous spectrum) is stable under certain
restricted perturbations; furthermore, the absolutely continuous parts of the
perturbed and the unperturbed operators are seen to be unitarily equivalent.

These results are closely related to scattering theory in: quantum mechanics.
They are even proved here by the so-called time-dependent method in scattering
theory, for it seems to be the most elementary way to deduce general results. There
are other useful methods (stationary methods) in scattering theory. It is impossible
to include these methods in full here, partly because they are currently under rapid
development. But an account of a special one of them is given in the last section,
which has results not covered by the time-dependent method.

§ 1. The continuous spectrum of a selfadjoint operator
1. The point and continuous spectra

Let H be a selfadjoint operator in a Hilbert space H. We have the
spectral representation (see VI-§ 5)

00

(1.1) H= f AdE(A),
-00

where {E (A)} is the right-continuous spectral family associated with H.
We set

(1.2) P (A) = E (A) - E (A - 0) .

P (A) = 0 if and only if A is an eigenvalue of H; in this case P (A) is the
orthogonal projection on the associated eigenspace. The P (A) for dif-
ferent A are mutually orthogonal: P (A) P (p) = 0 for A + 4u.

The set of all eigenvalues of H is called the point spectrum of H,
Ep (H) in symbol. It is at most a countable set if H is separable.
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Let Hp be the closed linear manifold spanned by all the P (A) H.
If Hp = H, H is said to have a Pure Point spectrum', or to be spectrally
discontinuous. In general Hp reduces H since each P (A) does. Let Hp
be the part of H in Hp. Hp is spectrally discontinuous; in fact P(A) H
is, if not 0, exactly the eigenspace of Hp for the eigenvalue A.

If Hp = 0, H is said to have a Pure continuous spectrum or to be
spectrally continuous; in this case E(A) is strongly continuous in A. In
general, the part He of H in H, = HP is spectrally continuous. E (He) is
called the continuous spectrum2 of H and is denoted by Z, (H).

Hp and H, will be called the (spectrally) discontinuous and continuous
parts, respectively, of H. The subspaces Hp and Ht are called the sub-
spaces of discontinuity and of continuity, respectively, with respect to H.

Remark 1.1. An eigenvalue of H need not be an isolated point of
E (H), even when H has a pure point spectrum. A point spectrum can be
a countable set everywhere dense on the real axis.

Problem 1.2. u E He if and only if (E (A) u, u) is continuous in A.

A convenient means for separating the point spectrum from the
continuous spectrum is furnished by the mean ergodic theorem. This
theorem gives a formula that expresses P (A) in terms of the group {ei tH}
generated by iH. (For eiaH see Example IX-1.6.)

Theorem 1.3. For any real A we have

(1.3) P(A) =
a,

S-lirn (t2 - t1)-1 f ei"H a-ixa dt.
ti

Proof. We may assume that A = 0; this amounts simply to considering
H - A instead of H. If u E P(0) H, then Hu = 0 and so eitH u = u; hence

a,

(1.4) (t2-t1)-1 t2-t1 -*oo.
a,

If u is in the range of H so that u = H v, v E D (H), then ei aH u = e{ 4H H v
= -i(d/dt) ecaH v by IX-(1.24). Hence the left member of (1.4) is equal
to - i (t2 - tl)-1(ei a,H - ei a=H) v -* 0 = P (0) u, for P (0) u = H P (0) v = 0.
Thus (1.3) is true when applied to any u belonging to the span of the
ranges of P (O) and of H. But this span is dense in H, for any u E H
orthogonal to the range of H belongs to P (0) H, the null space of H* = H

1 This does not imply E (H) = Ep (H), for E (H) is a closed set but Ep (H)
need not be closed. But it implies that E (H) is the closure of Ep (H).

2 Here we follow Rixsz and Sz.-NAGY [11. There is a different definition of
continuous spectrum, which can be applied to any operator T E 'B (X) in a Banach
space X. By this definition a complex number A belongs to the continuous spectrum
of T if and only if T - A is invertible with dense range but (T - A)-1 is not bounded.
It must be admitted that there is a disparity between the definitions of point and
continuous spectra.
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[see III-(5.10)]. Since the operator on the right of (1.3) is uniformly
bounded, it follows that (1.3) is true (see Lemma 111-3.5).

Remark 1.4. If A is an isolated point of the spectrum of H, P (A) can be
expressed as a contour integral of the resolvent of H [see VI-(5.34)].
In general this is impossible and (1.3) is a convenient substitute for it.

2. The absolutely continuous and singular spectra
It is convenient to divide the spectrally continuous part H', of a

selfadjoint operator H into two parts.
The spectral family {E (A)} determines a spectral measure E (S).

If S is the interval (a, b], E ((a, b]) = E (b) - E (a). For other types of
intervals, we define E ([a, b]) = E (b) - E (a - 0), E ([a, b)) = E (b - 0) -
- E (a - 0), E ((a, b)) = E (b - 0) - E (a). It is seen that this determines
a projection-valued function E (S) defined for all Borel sets S of the real
line with the properties'

(1.5) E (S n S') = E (S) E (S') ,

(1.6) E (S u S') = E (S) + E (S') if S and S' are disjoint ,

(1.7) E (nU E E if S,,, S.m are disjoint for m + n .

For any fixed u E H, mu (S) = (E (S) u, u) = JJE (S) uIl2 is a nonnegative,
countably additive measure 2 defined for Borel sets S. If this measure is
absolutely continuous (with respect to the Lebesgue measure ISI), we
shall say that u is absolutely continuous with respect to H. In other words,
u is absolutely continuous with respect to H if and only if ISO = 0 implies
E (S) u = 0. If, on the other hand, mu (S) is singular, we shall say that
u is singular with respect to H. Thus u is singular if and only if there is a
Borel set So with JSOJ = 0 such that mu (S) = m (S n So). It is equi-
valent to (1 - E (So)) u = 0.

The set of all u E H which are absolutely continuous (singular) with
, (H5) and is called the subspace of absoluterespect to H is denoted by Ha,

continuity (of singularity) with respect to H (see the following theorem).
Theorem 1.5. 3 Hac and H5 are closed linear manifolds o l H, are ortho-

gonal complements to each other and reduce H.
Proof. First we show that Hac L H. Let u E Hac and V E Ha. There

is a Borel set So with ISO1 = 0 such that (1 - E(So)) v = 0. Hence (u, v)
_ (u, E (So) v) = (E (Se) u, v) = 0 since E (So) u = 0.

1 For the exact definition of the spectral measure see standard books on Hilbert
space theory, e. g. HALMOS (1), STONE (1).

t For elementary results of measure theory used here and below, see e. g.
ROYDEN [1D.

8 This is a special case of a theorem of HALMOS [11, p. 104.
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Next we show that Hac + H5 = H, that is, any w E H can be written
as a sum u + v with u E Hac and v E H5. To this end we decompose the
nonnegative measure me (S) into the sum of an absolutely continuous
measure m' (S) and a singular measure m" (S) (the Lebesgue decomposi-
tion). With m" is associated a Borel set So with ISOI = 0 such that m" (S)
= m" (S n So). Let v = E (So) w and u = w - v; we assert that u E Hac
and v E H5. In fact, me(S) = IIE (S) vII2 =IIE (S) E (S0) wII2 = IIE (S n
n So) W112 = mu, (S n So) = m" (S) since m' (S n So) = 0 and m" (S n So)
= m" (S), and m,,(S) = IIE (S) u1I2 = IIE (S) (1 - E (S,)) wII2 = IIE (S) wII2 -
- IIE (S n So) wII2 = mw (S) - m" (S) = m' (S). Thus mu is absolutely
continuous and me is singular: u E Ha, and v E H5.

As is easily seen, Hac 1 H5 and Hac + H5 = H proved above imply
that Hay and H5 are closed linear manifolds of H and are orthogonal
complements to each other.

If u is absolutely continuous, the same is true of all E (A) u, for
E (S) E (A) u = E (A) E (S) u = 0 for ISI = 0. Thus Hac reduces H, and so
does H. = H -L. This completes the proof of Theorem 1.5.

Theorem 1.6. Let M be a subspace of H that reduces H. Then the ortho-
gonal projections E on M and P on Hac commute. In other words, u E M
implies Pu E M and u E Hac implies Eu E Hac.

Proof. Q = 1 - P is the projection on H5. For any w E H, we have
Qw = v = E(SO) w with an So such that ISoI = 0, where So may depend
on w (see the proof of Theorem 1.5). Since M reduces H, we have EE (SO)
= E (So) E so that (1 - E (So)) E Q w = 0 and E Q w is singular. Thus
PE Q w = 0 for all w E H and so PE Q = 0, E Q = QEQ. Taking the
adjoint gives QE = QEQ and so QE = EQ, PE = EP.

(see Problem 1.2). Hence H5) H. WeIt is obvious that Hao H,
write H. 8 Hao = H50. Thus

(1.8) H = HacG H5C® HP= Hac® H5= H09 H.

If Hao = H (so that H. = 0), H is said to be (spectrally) absolutely
continuous. If H. = H, H is (spectrally) singular; if H50 = H, H is
(spectrally) singularly continuous. In general, the part H., (H., H. of H
in the reducing subspace Ha, (H5, H5C) is called the spectrally absolutely
continuous (singular, singularly continuous) part of H. E (Hac) (E (H5),
E (H5C)) is the absolutely continuous (singular, singularly continuous)
spectrum of H and is denoted by Ea,,(H) (E5(H), E50(H)).

Theorem 1.7. It u E Hao and / E H, then (E (R) u, f) is. absolutely
continuous in A and

(1.9) aR (E (A) u, fl
2

d a,
/ 0 ,

almost everywhere, where fo is the projection of / on Hao.
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Proof. Note that the right member of (1.9) is nonnegative and finite
almost everywhere, for (E (A) u, u) and (E (A) fo, f o) are absolutely
continuous and nondecreasing in A.

Now (E (A) u, f) _ (E (A) u, fo) since E (A) u E Hac by Theorem 1.6.
But (E (A) u, fo) is absolutely continuous as is easily seen by the polariza-
tion principle I-(6.26). (1.9) follows immediately from the estimate

l (E (I) u, fo)I2 S IIE (I) uII2 IIE (I) /oil2 = (E (I) u, u) (E (I) fo, fo)

where E (I) = E (A") - E (A') , A' S All
Remark 1.8. For most selfadjoint operators that appear in applica-

tions, the (spectrally) continuous part is absolutely continuous so that
there is no singularly cgntinuous part. But there are second order
ordinary differential operators which are (spectrally) singularly conti-
nuous'.

Example 1.9. Consider the selfadjoint multiplication operator H defined by
Hu (x) = I (x) u (x) in H = L2 (E), where I (x) is a real-valued measurable function
on a region E of R", say. Then the range of E (A) is the set of u E H such that u (x) = 0
if / (x) > A. Hence 11E (S) u112 = f l u (x) 12 dz. If f (x) is continuously differen-

/-'(S)
tiable and grad f (x) + 0 almost everywhere in E, then it follows that H is spectrally
absolutely continuous.

Example 1.10. Let H be the selfadjoint operator defined from -j in H = L2(RI)
(see V-§ 5.2). H is unitarily equivalent to the multiplication operator by 1x12, hence H
is spectrally absolutely continuous.

Remark 1.11. There is a third way of decomposing the spectrum of a
selfadjoint operator H into two parts. Remove from the spectrum all
isolated points which are eigenvalues with finite multiplicities; the
remaining set Ee (H) is the essential spectrum of H (see IV-§ 5.6) 2.

A point A of Z. (H) is characterized by

(1.10) dim [E (A + e) - E (A - e) ] = oo for any 6>0.

Another characterization is that nul' (H - A) = def' (H - A) = co [see
IV-(5.33)]. The equivalence of the latter condition with (1.10) is easily
verified if one recalls the definition of nul' and def' (see Theorem IV-5.9).
Set M, = [E (A + e) - E (A - e) ] H. If (1.10) is true, 11 (H - A) ull S s IIull

for all u E M, where dim M, = oo. Since e > 0 is arbitrary, it follows that
nul' (H - A) = oo; note that def' (H - A) = nul' (H - A) since H is
selfadjoint. If, on the other hand, dim M, = m < oo for some e > 0,
then nul' (H - A) < oo. To see this, let N, be a subspace such that
II (H - A) uIl 5 e1IuOI/2 for u E N,. If dim N, > m, there would exist a

1 See ARONSZAJN [3].
2 It was remarked (see loc. cit.) that there are many different definitions of

Z. (T). But all these definitions coincide when T is selfadjoint.
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u E N,, u +- 0, such that u 1 M,. Then II (H - A) u11 z E 11 u 11, contradicting
the above inequality. Thus dim N. < m so that nul' (H - 1) < m < oo.

Problem 1.12. Ee (H) ) Ec (H) .

3. The trace class
In what follows we are concerned with certain classes of compact

operators in separable Hilbert spaces. We have already considered the
Schmidt class M2(H, H') in some detail (V-§ 2.4). We now consider the
so-called trace class, denoted by 91(H, H') (or by 91(H) if H' = H).

Let T E 9o (H, H') (the class of compact operators on H to H') and
let oc be the singular values of T (see V-§ 2.3). We define the trace norm
of T by

00

(1.11) 11 T111 = ' ock

k=1

We set 11 Till = oo if the series on the right diverges. The set of all T
with 11 Till < oo is the trace class 91 (H, H'). That 11111 has the properties
of a norm can be proved easily except for the triangle inequality, which
will be proved later.

Since the nonzero singular values of T, T* and ITI are identical,
we have [see V-(2.34)]

(1.12) 11 Till = 11T*II1=111TI III =111TI1/2112

It is obvious that

(1.13) 11T112 S 11Till, 91(H, H') C 9 2(H, H') .

Furthermore, we have

(1.14) IIS TI!1 IIS11211 T112;

this should be read in the following sense: if T E -42 (H, H') and S E 92 (H',
H"), then ST E.41(H, H") and (1.14) is true. To prove it, let

(1.15) ST=ENk( , 'k)Vk, Nk> 0,
be the canonical expansion of S T E .4do (H, H ") [see V-(2.23) ]. We have
by definition

(1.16) IISTill =E#k=E(ST4Vk,Vk)=E(T+Vk,S' Vh") S

s Ell T Vkll IIS* Vk11 (EIIT v1, 112)1"2 (E 11 S* pk112)"2 s

S 11T112IIS*II2= 11TII2IIS112

Conversely, any operator T E 21(H, H') can be written as the product
of two operators of the Schmidt class, and the latter may be taken from
.92 (H) if T E.41 (H). For example, we may write T = U I TI = U I T1112 I TI112
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by VI-(2.26), where Til/2 belongs to -42 (H) by (1.12) and U I TII12 belongs
to -42 (H, H') since U E -4 (H, H').

We have the further inequalities

(1.17) IISTIII s IISII 11T111, IITSIII s 11 Till IISII

which should be read in a sense similar to (1.14). To prove (1.17), let
T = U I TI as above. We have S T = S U I TI = S U I TIl/21 TI1/2, so that

(1.18) IISTIII s IISUITI'121121IITI1/2112 s IISUII IIITII/2112 s IISII IITIII

by (1.14), V-(2.30) and (1.12). The second inequality of (1.17) can be
proved in the same way, or may be deduced from the first by 11 TSIII
= IIS* T*IIl

Finally we shall prove the triangle inequality

(1.19) I1T+Sill s IITIII+IISIII -

Let T = UITI, S = V ISI, T + S = WIT + SI be the polar decomposi-
tions of T, S, T + S, respectively. Denoting by xk the eigenvectors of
I T + SI and setting xk = W xk, we have, as in (1.16),

(1.20) 11 T + Sill = u ((T + S) xk, xk) =f [(T xk, xk) + (S xk, xk)
k k

_ [(UITI xk, xk) + (VISI xk, xk))
k

=f [(I T1112 xk, I Till' U* xk) + (ISII12 xk, ISII/2 V* xk)]
k

IITII/2112 111 T1112 U*112 + 111 S 1'/2112 IIISI112 V*II2 s

I I TIl/2112 + II ISII/2112 = 11 Till + IIS111

.41(H, H') is a normed vector space with the norm II IIl It is a complete
normed space, but the proof will be omitted'.

Problem 1.13. If T E 9I (H, H'), the canonical expansion V-(2.23) of T converges
in the norm II III.

Problem 1.14. If T E 9I (H) is symmetric, 11 TIII is equal to the sum of the absolute
values of the repeated eigenvalues of T.

Remark 1.15. There are other classes of compact operators than the
Schmidt and trace classes with more or less analogous properties. Each
of these classes can be defined in terms of a certain: norm. An example
of such a norm is the p-norm

(1.21) 11TIIfl=(Eak)l/fl, 15co,
k

The set of all compact T with II Tllp < oo forms a normed vector space
with the norm II II.. Again this space is complete and is a two-sided ideal
of .4 (H) if H' = H.

I See SCHATTEN M.
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More generally, a similar norm IIITIII can be defined as a certain
function of the singular values ak of T, which is symmetric in the uk and
nondecreasing in each ak. We shall not state an exact condition for this
function to define a true norm. In any case IIITIII is unitarily invariant
in the sense that

(1.22) III U T VIII = IIITIII

for any unitary operators U, V ; this is a simple consequence of Problem
V-2.13. The set of all T with IIITIII < oo forms a Banach space. The
norm III III is usually normalized in such a way that III TIII = 1 if I TI is a
one-dimensional orthogonal projection. These norms are called cross
norms'.

The p-norm for p = oo is identical with the ordinary norm :
II II = II II

as is seen from the fact that a' = III TI 11 = II TII. The ordinary norm and
the trace norm are the smallest and the largest ones among the cross
norms; we have namely

(1.23) II TII 5 III Till s II TIII

for any T E-4o(H, H').

Problem 1.16. If T E 9(H, H') is of finite rank m, IITIJbS m"1PIITII.
Problem 1.17. If II T" - T II -* 0 and II T" II s S M, then II T II n S M. [hint :

II T. - TII -+ 0 implies 11 1 T"I8 -I TI2II - . 0 so that orb. -; orb for each k, where the
ap,,, k = 1, 2, ..., are the singular values of T<"> (continuity of the spectrum for

m m
selfadjoint operators). Thus E ax S lim sup E aR" S M9 for any m.]

k=1 k=1

4. The trace and determinant

We, have considered the trace tr T of operators in earlier chapters
(III-§ 4.3, IV-§ 6), but it was restricted to degenerate operators T. We
shall now show that tr T can be defined for operators T of the trace
class .°,d, (H). As we have seen above, T E 41 (H) can be written as the
product T = A B of two operators A, B of the Schmidt class 9, (H).
We define

(1.24) trT = (A, B*) = (B, A*)

in the notations of V-(2.31) [see also V-(2.35)]. (1.24) is independent of
the particular decomposition T = A B, for

(1.25) trT = (B, A*) (B 9k, A* pk) (AB yak, p h)
k k

(T pk, 9pk)
k

I For details see SCHATTEN QlJ.
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Thus tr T is the diagonal sum of the matrix of T in any matrix re-
presentation of T in terms of a complete orthonormal family. (1.25)
implies that the diagonal sum is always absolutely convergent.

It follows from (1.24) that

(1.26) trAB = trBA

for A, B E 92 (H). It is true more generally for A E `42 (H, H') and
B E °92 (H', H) ; in this case we have A B E °.,A, (H') and B A E 9, (H), and
the proof follows from V-(2.35). (1.26) is true also for A E 9, (H, H')
and B E -4 (H', H) ; then we have again A B E -41(H'), BA E 91(H).
For the proof let A = CD with C E 92 (H, H') and D E A2 (H). Then
trAB = trCDB = trDBC = trBCD = trBA, where we have applied
(1.26) first to the pair C, D B (both of the Schmidt class) and then to the
pair D, B C.

The determinant has been defined so far only for operators of the
form 1 + T with a degenerate T. Now we can extend it to the case when
T E .4, (H). We set

(1.27) det (1 + T) = etr log (1 + T).

This definition is not complete inasmuch as log (1 + T) is not defined
unambiguously for all T E -4, (H). If II TII < 1 (or, more generally, if
spr T < 1), however, log (1 + T) can be defined by the Taylor series
log (1 + T) = T(1 - T/2 + T2/3 - ) and belongs to .41(H) with T.
Hence (1.27) defines det (1 + T) for II TII < 1. Even in the general case,
(1.27) is useful if the operator log (1 + T) is defined more carefully.
Another way to define det (1 + T) is by the analytic continuation of the
function det(1 + z T), which is defined as above by the Taylor series at
least for Izi < II T11 -1. We shall not go into details since we shall not
have occasion to use det (1 + T) for general T E .41(H)1.

Example 1.18. Let H = L2 (a, b) and T E M1 (H). T can be written as T = R S
with R, S E M2(H). R, S can be regarded as integral operators with kernels r(y, x),
s (y, x) of Schmidt type (Example V-2.19). Thus T is an integral operator with the
kernel

b

(1.28) t (y, x) = f r (y, z) s (z, x) d z .
a

Then tr T = (R, S*) = f f r (x, z) s* (x, z) dx dz = f f r (x, z) s (z, x) dz dx or
b

(1.29) tr T= f f (x, x) d x.
a

It should be remarked, however, that (1.29) is correct only if one uses the
particular kernel given by (1.28). Note that t(x, x) as given by (1.28) is defined for
almost all x. If, on the other hand, one is given simply a kernel t (y, x) of T as
an integral operator in some sense or other, the right member of (1.29) need not

1 For details on the trace and determinant, see e. g. DuNFORD and SCHWARTZQl).
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make sense, for one could change the values of t (x, x) arbitrarily without changing
the operator T.

It can be shown that if T E 691 (H) is represented by a kernel t (y, x) continuous
in x, y, then the trace formula (1.29) is correct. But it must be noticed that not all
integral operators with a continuous kernel belong to the trace class. In such a
case one could define tr T by (1.29), but it might not have the properties of the trace
deduced above,

§ 2. Perturbation of continuous spectra
1. A theorem of WEYL-VON NEUMANN

One of the important results on the perturbation of continuous
spectra was given by H. WEYL and later generalized by VON NEU-
MANN. This theorem asserts that any selfadjoint operator H in a
separable Hilbert space H can be changed into a selfadjoint operator
H + A with a pure point spectrum by the addition of a suitable "small"
operator' A. The smallness of A can be expressed by the condition that A
can be chosen from the Schmidt class 92(H) with arbitrarily small
Schmidt norm IIAII2 More precisely, we have

Theorem 2.1.2 Let H be a sel f adjoint operator in a separable Hilbert
space H. For any e > 0, there exists a sel f adjoint operator A E M2 (H) with
IIAII2 < e such that H + A has a pure point spectrum.

To prove this theorem, we need a lemma.
Lemma 2.2. For any / E H and , > 0, there is a finite-dimensional

orthogonal projection P and a selfadjoint operator Y E92(H) such that
11(1 - P) /II < 71, 11 Y112 < i? and H + Y is reduced by P H.

00

Proof. Let H = f A dE (A) be the spectral representation of H.

Let a > 0 be chosen in such a way that-00

(2.1) II[1-(E(a)-E(-a))]/II <

which is possible because the left member tends to 0 as a -+ oo. Let n
be a positive integer and set

(2.2) Ek=E(2kn na)-E(2k-n -2 a), k=1,2,...,n..
The El, form an orthogonal family of orthogonal projections: E3 Ek
= Bf4Ek. Set
(2.3) fk=Ekf, gkllfkll-1fk, k= 1,2.... ,n
with the agreement that gk = 0 whenever fk = 0. Since 4, gk E Ek H,
the gk form a normalized orthogonal family (if those gk equal to 0 are

1 This is a rather negative result as regards the perturbation of continuous
spectra.

2 The proof given below is due to VON NEUMANN [1]. This theorem will be
generalized in the following paragraph; see Theorem 2.3.
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omitted). We have
n n

(2.4) II/7,1Ig7, = /,=((E(a)-E(-a))/.
k=1 k=1

The gk are approximate eigenvectors of H in the sense that

(2.5) I I (H - 2 )gkll aln, A =
2k

n
- 1 a,

as is seen from VI-(5.21). Let P be the orthogonal projection on the
subspace spanned by g1i ..., gn, so that dim P S n. Since (1 - P) gk = 0,
we have

(2.6) II (1 - P) HgkII = II (1 - P) (H _ Ak) gk II s II (H - Ak) gkll S a/n.

Furthermore, we have

(2.7) ((1-P)Hg,,(1-P)Hgk)=0, j+k.
To see this it suffices to show that (1 - P) Hgk E Ek H. But Hg, E Ek H
since gk E Ek H and Ek H reduces H. Hence Hg, 1 g,, j + k, and there-
fore PHgk = ' (Hgk, g;) g; = (Hgk, gk) gk E Ek H and so (1 - P) Hgk E

E Ek H.
For any u E H, we now have by (2.7), (2.6) and the Bessel inequality

(2.8) 11(l - P) HPu1I2 = III (u, gk) (1 - P) Hg1,11
2

_' I(u,gk)I2II(1- P) HgkII2 a2n-2IIuII2
k

that is,

(2.9) II (1 - P) HPII s a/n .

The operator (1 - P) HP is degenerate with ranks n. Hence
(see Problem 1.16)

(2.10) II (1 - P) HPII2 s n1/2II (1 - P) HPII s a/n112.

Now we have

(2.11) H=PHP+(1-P)H(1-P)+(1-P)HP+[(1-P)HP]*.
The first two terms on the right are reduced by PH. Each of the last
two terms has Schmidt norm not exceeding a/n1/2 by (2.10), which can
be made smaller than 27/2 by choosing n large enough. On the other hand,
(2.4) implies that (1 - P) ((E (a) - E (-a)) / = 0 so that

(2.12) II(1-P)/II=II(1-P) [}-((E(a)-E(-a))/]II <ij

by (2.1). Thus the lemma is proved by setting - Y = (1 - P) H P +
+ [(1 - P) HP]*.
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Proof of Theorem 2.1. Let {uk}, k = 1, 2, . . ., be a dense subset of H.
We apply Lemma 2.2 for H, / = u1 and q = 8/2; let the resulting P and Y
be denoted by P1 and Y1, respectively. Then we apply the same lemma
to the part of H + Y1 in the subspace (1 - Pl) H with / = (1 - Pl) u2
and ,q = e/22; let the resulting P and Y be denoted by P2 and Y2. We
extend P2 and Y2 to the whole space H by simply setting P2v = 0,
Y2v = 0 for v E P1 H ; then H + Y1 + Y2 is reduced by P1 H and P2 H.
We then apply the lemma to the part of H + Y1 + Y2 in (1 - P1- P2) H
with / = (1 - P1- P2) u3 and rl = e/23, denoting the resulting P and Y
by P3 and Y. and extending these operators to the whole H by setting
them equal to zero in (P1 + P2) H. Proceeding in the same way, we get
series of projections Pl, P2, ... and selfadjoint operators Y1, Y,,. . . such
that II (1 - P1 - ... - Pk) ukll s e/2k and II YJ 2 S 8/21

Set A = Y1 + Y2 + ; this series converges by II YkI! 2 S e/211 in the
Schmidt norm and so defines a selfadjoint operator A E °.,A2(H) with
IIAII2 5 e. We shall show that A has the other properties required by
Theorem 2.1.

The Pk form an orthogonal family of projections by construction.

This family is complete: Pk = 1. To see this, let any u E H and
k=1

rl > 0 be given. Then there is an n such that 11u,, - uHI < 77 and 8/20 < 77.
Since e/2'n<77 we have 11(1-P1-.. -
- P,4) uII 5 2rj. This shows that Z Pk u = u as required (note Lemma
V-2.3).

Next we show that each Pk H reduces H + A. By construction P H
is a subspace of (1 - P1 - - P,1) 1) H and reduces H + Y1 + +
+ Y,,. Hence P commutes with H + Y1 + + Y,,. Since P,, Yk
= Yk P,, = 0 fork > n, P,, commutes with H + A, that is, P,, H reduces
H + A.

The fact that P H reduces H implies that there are a finite number
of eigenvectors of H + A that constitute an orthonormal basis of P,, H,
which is finite-dimensional by construction. By the completeness of
the totality of these eigenvectors for all n forms a complete orthonormal
family of H. This shows that H + A has a pure point spectrum, com-
pleting the proof of Theorem 2.1.

2. A generalization

The appearance of the Schmidt norm IIAII2 in Theorem 2.1 is not
essential. We have the following generalization due to S. T. KURODA [1].

Theorem 2.3. In Theorem 2.1, A can be chosen in such a way that
111A III < e. Here III III is any (unitarily invariant) cross norm, with the single
exception of the trace norm or its equivalent.
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Proof. It suffices to show that II YII2 in Lemma 2.2 can be replaced by
IIIYIII; then the proof of Theorem 2.1 works by simply replacing II 112 by
111 111. If one recalls the inequality (2.10) used in the proof of the lemma,
in which the essential point is that the right member tends to zero as
n -- oo, we need only to prove that

(2.13) IIIXnIII S n CnII Xnll

for any degenerate operator X of rank n, where c,, is a constant tending
to zero as n -* oo.

Since both III III and I II are unitarily invariant, we may assume that X,a
is nonnegative symmetric. Let oc z a2 z z an be the positive
repeated eigenvalues of X, , so that IIX,,II = al. Since IIIXnIII is non-
decreasing in each al, (see Remark 1.15) it suffices to prove the state-
ment for al = = an = 1, that is, that

(2.14) n-1 IIIEnIII = cn -+ 0

for any orthogonal projection En with dimEn = n. Note that IIIEnIII
depends only on n by the unitary invariance.

En can be written as the sum P1 + + Pn where the Pk form an
orthogonal family of one-dimensional orthogonal projections. Hence

(2.15)

s
+IIIP2+...+Pn+IIII

1) IIIEnIII

since IIIP1 + + PnIII = IIIP2 + + Pn+IIII etc. by the unitary in-
variance of III III (2.15) implies that cn is a nonincreasing function of n.

Suppose that (2.14) is not true, that is, cn z c > 0. Then IIIEnIII n c
and, for al, z 0,

(2.16) n c (al + + o6) s (al + + an) IIIEnIII

(Pl+...+PP)III
IIIaIP1+ +anP-III+IIIa2P1 P-III+ +

+IIIanPI+...+an-IPnIII=nIIIa1P1+ +anPnlli,

again by the unitary invariance of 111 111. With al P1 + + an Pn = X,,
(2.16) gives

(2.17) cIIXXI11 5 IIIXnIII ,

which is valid for any degenerate operator Xn of arbitrary rank. Now
(2.17) can be extended to all X with IIIXIII < oo by approximating X
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by a sequence of degenerate operators X,, and going to the limit n -+ oo.
The resulting inequality IIIXIII c II X IIl means, however, that III III is
equivalent to the trace norm II IIi, for the opposite inequality is always
true [see (1.23)]. This proves the required generalization of Lemma 2.2
and completes the proof of Theorem 2.3.

Remark 2.4. The question remains whether or not Theorem 2.1 is
true with IIAII2 replaced by IIAIJ,. The answer is no; we shall see later that a
selfadjoint operator H with a nonvanishing Hae (absolutely continuous
part) can never be changed into an operator with a pure point spectrum
by the addition of an operator of the trace class (Theorem 4.3)1.

Remark 2.5. Theorems 2.1 and 2.3 state that a pure continuous
spectrum can be converted into a pure point spectrum by perturbing
the operator by a "small" amount. It should not be imagined that this
point spectrum consists of isolated eigenvalues. On the contrary, the
distribution of the eigenvalues will be everywhere dense in an interval I,
if the continuous spectrum of the unperturbed operator covers I. This
is a consequence of the stability of the essential spectrum under the
addition of a compact operator (see Theorem IV 5.35), for E,. (H) is a
subset of Ee (H) so that I C Ee (H) = Ee (H + A). (This implies that the
set of the eigenvalues of H + A must be dense in I, if H + A has a pure
point spectrum.)

§ 3. Wave operators and the stability of absolutely
continuous spectra

1. Introduction
In what follows we are exclusively concerned with a separable Hilbert

space H. Let Hl, H2 be two selfadjoint operators in H. Consider the one-
parameter groups e - t tH=, e - t tH9 generated by - i Hl, - i H2, respectively,
and the one-parameter family of unitary operators

(3.1) W(t)=eitH,a-teH,, -00<t<0o

In general W (t) does not form a group. We are interested in the
asymptotic behavior of W (t) as t -* ± oo, which is important in physical
applications because W (t) is used to describe the motion of a quantum-
mechanical system in the so-called interaction representation. In particu-
lar, the limits Wt of W (t) as t -> ± oo, if they exist, are called the wave
operators and S = W+ W_ the scattering operator; these are basic quanti-

i For the perturbation of the continuous spectra of ordinary differential opera-
tors (Sturm-Liouville problems), see ARONSZAJN [3], PUTNAM [1], [2], BUTLER
[2], [3], MosER [1].
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ties in scattering theory'. On the other hand, the question has an indepen-
dent mathematical interest, for it is closely related to the problem of the
unitary equivalence of Hl and H2, as will be seen from the theorems
proved below.

In these studies, the existence of the wave operators is one of the
main problems. Naturally, the wave operators exist only under rather
strong restrictions. It would be necessary that H2 differ from Hl only
slightly in some sense or other; thus the problem essentially belongs to
perturbation theory. Another important question is the unitarity of S.
As the limits of W (t), W} may be expected to be unitary. But this
is not necessarily the case. If we assume Wt to be the strong limits
of W (t), they are isometric but need not be unitary. S = W+ W_ is
unitary if and only if the ranges of W± are the same 2. In physical applica-
tions it is essential that S be unitary3. Thus the second of the main
mathematical problems will be to see under what conditions the ranges
of W± coincide.

The theory centering around the wave operators is peculiar to an
infinite-dimensional Hilbert space, without having any analogue in
finite-dimensional spaces. In fact, the wave operators can reasonably
be expected to exist only when Hl has a pure continuous spectrum.
Suppose that Hl has an eigenvalue R : Hl u = A u, u + 0. Then W (t) u
= e' t (H. _) u. If W+ = s-lim W (t) should exist, we must have 11 W (t +a) u -

t'00
- W (t) u ei a (H, -A) u - ujj -- 0, t -* oo, for any real a. This implies
that ef a(H4-A) u = u and so H2 u = A u. Thus any eigenvector of Hl
must also be an eigenvector of H2 with the same eigenvalue. Except for
such special cases, the wave operators exist only when Hl has a pure
continuous spectrum.

Example 3.1. Let H = L2 (- oo, + oo) and Hi = - i d/dz, H$ i d/dz +
+ q (z), where q (z) is a real-valued function. Hl is selfadjoint. H. is also selfadjoint
at least if q (x) is a bounded function (so that it defines a bounded operator). We
know that -iH, = - d/dx generates a group a-itHi given by e_itHi u (x) = u (x - t)

i For the mathematical formulation of scattering theory see FRIEDRICHS [4],
JAUCH [1], [2], KURODA [2]. What we consider in this chapter corresponds to a very
special case of scattering phenomena (simple scattering system according to JAUCH).
There are few mathematical results for more general, multi-channel scattering,
except JAUCH [2], HACK [2], FADDEEV [1], [2].

2 Sometimes the W± are themselves unitary so that S is automatically unitary.
In such a case the W± have their own spectral representations. Here we are not
interested in the spectral properties of W±. For these and related problems see
PUTNAM [4], [6], [8], [9], [10].

8 As is easily seen, S commutes with Hi. Therefore, S can be expressed as a
direct integral of unitary operators S (2), - oo < A < oo, where S (d) acts in a
Hilbert space Hl (d) and Hl is the direct integral of the scalar operator R in Hi (d)
(for direct integrals see DIXMIER (1)). S (A) is called the S-matrix.
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(see Problem IX-1.9). Let us find what the group e-"$e is. As is easily verified,
H2 may be written as H2 = Wo 1 H1Wo, where Wo is a unitary operator given by

/
W. u (x) = e'n(x) u (x) with p (x) = f q (y) dy. Thus (H2 - C)-1 = Wo' (H1 - C)-1W.

0
for any nonreal C, and it follows from the construction of the groups that e tH1
= Wo i e11H, Wo. Hence eiiH, u(x) = e-trcx> eftH, Wo u(x) = e-'9(x) eiP(+0 u(x + t)
It follows that W(t) is simply the multiplication operator by e'(D(x+°>-P(x)). Going
to the limit t -* oo, we obtain

(3.2) W+ = exp (ifq(y)dyJ

provided the improper integral f q (y) d y exists. It is easy to verify that the limit
0

(3.2) exists as a(strong limit. Obviously W+ is unitary. Similarly W_ exists and is

given by exp I - i f q (y) d y 1 provided the relevant improper integral exists.
-oo

If both these integrals exist, we have S = W.* W_ = exp (_ifq(y) d y) , which

is simply a multiplication by a scalar with absolute value 1. -00

2. Generalized wave operators
We denote by Hk,aC, k = 1, 2, the spectrally absolutely continuous

part of Hk, that is, the part of Hk in the space Hk,ac of absolute continuity
for Hk. The orthogonal projection on Hk,ac will be denoted by Pk,
k=1,2.

We have remarked above that the wave operators will in general not
exist unless H, has a pure continuous spectrum. As we shall see, it
happens frequently that

(3.3) W± = W± (H21 Hl) = s-lim W (t) Pl
t_* ± 00

exist even when the proper wave operators do not exist'. For this and
other reasons, we prefer to consider the limits (3.3) rather than the
proper wave operators. Wt will be called the generalized wave operator(s)
associated with the pair Hl, H2 whenever one or both of them exist.
If in particular H, is spectrally absolutely continuous so that Pl = 1,
Wt coincide with the proper wave operators.

The basic properties of the generalized wave operators are given by
the following theorems 2.

Theorem 3.2. It W+ = W+ (H2, H,) exists, it is partially isometric
with initial set Hj,ac and final set M+ contained in H2,ao. M+ reduces H2-

I The choice of strong limit is essential for W± to be partially isometric. Some-
times, however, one defines Wt as the weak limits or in some weaker sense. Cf.
Coox [2]. The limits as t -+ ± no of operators of the form W (t) A W (t)-' are
considered by Y. KATO and MUGIBAYASHI [1].

2 See T. KATO [10], [11], [17], KURODA [2].
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Thus

(3.4) W+ W+ = P" W+ W+ _ E,;5 P2

(3.5) W+=W+P1=E+W+= P2W+, W+*=P1W+=W+E+=W+P2,

where E+ is the orthogonal projection on M+ and commutes with H2. Further-
more, we have

(3.6) H2 W+ = H2 P2 W+ = W+ H1 P1) W+ H1 , H1 W+) W+* H2 .

In particular (3.6) implies that H1,ac is unitarily equivalent to the part of
H2,ac in M+ and Eac(H1) C Eac(H2). Similar results hold for W+ replaced
by W_ whenever the latter exists.

Proof. W+ = s-lim W (t) P1 implies II W+ u II = lim II W (t) P1 u II = II Pi u II
for every u E H, which is equivalent to W+ W+ = P1. Hence W+ is
partially isometric with initial set P1 H = H1,ac (see V-§ 2.2). E+= W+W+
is the projection on the final set of W+, which we denote by M+. These
remarks prove (3.4) and (3.5) so far as P. is not concerned (see loc. cit.).

On the other hand 1, we have for any real s

(3.7) es8H. W+ = s-lim W (s + t) e'8Hz = W+ e18Hi .

Multiply both members by e- i 8, Im C < 0, and integrate on 0 < s < 00
(Laplace transformation) ; then [see IX-(1.28)]

(3.8) (H2 - 0-1 W+ = W+(H1 -

The same is true for Im C > 0 too; we need only to integrate on - 00 <
< s < 0. (3.8) is equivalent to 2

(3.9) H2 W+ 7 W+ H1 .

As is easily seen, (3.9) implies the adj oint relation H1 W+) W,,* H2.

It follows that

(3.10) E+ H2 = W+W+H2CW+H1W+C H2 W+W.*F= H2 E+.

This shows that E+ commutes with H2 and so M+ reduces H2. Also we
have E+ H2 E+ C H2 E+ E+ = H2 E. Here, however, we must have
equality instead of inclusion, for E+ H2 E+ and H2 E+ have the same
domain. Hence H2 E+ = E+ H2 E+ and so (3.10) must give all equalities

1 (3.7), (3.8), (3.9) and (3.12) are true even if W+ is a weak limit of W (t) instead
of a strong limit. But then W+ need not be partially isometric and might even be
zero; then these results will be void.

2 The proof of the equivalence of (3.8) and (3.9) is similar to the proof that
a bounded operator W commutes with H if and only if W commutes with the
resolvent (H - 0-1; see Theorem 111-6.5.
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when multiplied by E+ from the right. In particular E+ H2 E+
= W+ H1 W+ E+ = W+ H1 W+ and hence

(3.11) H2W+=H2E+W+=E+H2E+W+=W+H1W+W+=W+H1P1.

Let E, (2), k = 1, 2, be the spectral family for Hk. For every 2 at
which Ek (R) is continuous, Ek (A) can be expressed as an integral of
(Hk - )-1 along a certain curve (see Lemma VI-5.6). Since there are at
most a countable number of discontinuities of Ek(2), it follows from
(3.8) that

(3.12) E2 (2) W+ = W+ El (1) , - ao < 2 < oo ,

at first except for the discontinuities of either of Ek (A) and then for all I
by the right continuity of Ek ().). Hence I!E2(1) W+ u1I2 = II W+ El (A) U112

= II P1 E1(1) u1I2 = IIE1 (A) P1 u1I2 is absolutely continuous in I by P1 u E
E Hl,ac. Thus W+ u E H2,ac= P2 H for any u E H. Since the range of W+
is M+= E+ H, this proves that M+C H2,ac or E+ 5 P2. In particular
W+ = P2 W+ and W* = W** P2, and this completes, together with (3.11),
the proof of (3.6) and the remaining equalities in (3.4) and (3.5).

In Theorem 3.2, M+ is a subset of H2,ac and in general a proper
subset. If M+ = H2,ac or, equivalently, E+ = P2, the wave operator W+
will be said to be complete'. A similar definition applies to W_. It either
W+ or W_ exists and is complete, then H1,ac is unitarily equivalent to H2,ac

Theorem 3.3. If W+ = W+ (H2, H1) exists, we have the following strong
convergence as t --> oo.

(3.13) eitH, a-it'. P1-1. W+, eitH, a-itI, E+_, W*
S S +

(3.14) e - i t H, W + - e - t t H, P1 _., 0, e i * H, e - t t H, yy+ _, P1
S S

(3.15) (W+- 1) a-itH, Pl ..0, (W+- 1) a-itH, p1 5 0

(3.16) eitH, W+ a-sex, s pi eitH, W+*, a- itH, pl S Pl

(3.17) (1 - E+) a-itH, Pl 5 0 , (1 - P2) a-ttH, P1g 0.

Similar relations hold as t -* - oo with W+ replaced by W_ if the latter
exists.

Proof. The first of (3.13) is the definition of W+, from which the first
of (3.14) follows by multiplication from the left 2 by e- i tH, and the second

1 For an example of non-complete W+, see T. KATO and Kuxonn [1].
s Note that any relation of the form A, - 0 may be multiplied from the left

by a uniformly bounded operator B,, while multiplication of B, from the right is in
general not permitted unless B, is independent of t.
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by a further multiplication by ei tH-. The second of (3.13) follows from
the second of (3.14) by multiplication from the right by W. The first of
(3.15) is the same thing as the first of (3.14) in virtue of (3.7) and W+
= W+ P1, and the second of (3.15) follows from it by multiplication
from the left' by - W+ (note that W+ W+ = P1 commutes with e1 tH=).
The two relations of (3.16) follow from the corresponding ones of (3.15)
by multiplication from the left by et tH=. Finally, the first of (3.17)
follows from 11(1 - E+) a-itHi P1 ull = Il ettHs(1 - E+) e-itH P1 ull =
= 11(1 - E+) e:tHE e-itHi P1 u11 -+ X1(1 - E+) W+uDl = 0, and the second
follows from it because 1 - P2 < 1 - E+.

Theorem 3.4. (The chain rule) I/ W+ (H2, H1) and W+ (H3, H2) exist,
then W+ (H3, Hi) also exists and

(3.18) W+ (H31 Hi) = W+ (H3 H2) W+ (H21 Hi)

A similar result holds for W+ replaced by W_.
Proof. We have W+(H2, H1) = s-limeitHz a-itH. P1 and W+(H3, H2)

= s-limeitH, a-itH. P2. Hence

(3.19) W+ (H3, H2) W+ (H21 H1) = s-lim ei tH. P2 e-i tH1 Pi

since P2 and ei tH, commute. The proof of the theorem is complete if we
show that s-limeitH, (1 - P2) e-11H, P1= 0. But this is obvious from
the second relation of (3.17).

Theorem 3.5. Let both W+ (H21 H1) and W+ (H1, H2) exist. Then

(3.20) W+ (H1, H2) = W+ (H21 H1) * ;

W+ (H2, H1) is Partially isometric with initial set Hl,ao and final set H2,ac,
while W+(HI, H2) is partially isometric with initial set H2 ao and final
set Hi,ao. Both of these two generalized wave operators are complete, and
H1,ac and H2,ac are unitarily equivalent. Similar results hold with W+
replaced by W_.

Proof. We can set H3 = H1 in Theorem 3.4; we obtain W+ (H1,
H2) W+ (H2, H1) = P1 since it is obvious that W+ (H1, H1) = P1. Writing
W21 = W+ (H2, H1) etc. for simplicity, we have thus W12 W21 = P1 and so
W21 W12 = P2 by symmetry. In virtue of (3.5) and (3.6), it follows that
W12 = P1 W12 = (W 1 W21) W12 = Wi(W21 W12) = W& P2 = W. This
proves (3.20), and the other assertions follow automatically.

Remark 3.6. In the theorems proved above it is not at all essential
that the P1 appearing in the definition (3.3) of Wt is the projection on
Hl,ac. We could as well have chosen P1 to be the projection on H1the
space of continuity for H1. The importance of the choice of H1,ao will be
recognized when we consider the conditions for the existence of W.
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3. A sufficient condition for the existence of the wave operator

The following theorem gives a sufficient condition for the existence
of the generalized wave operator, which is not very strong but is con-
venient for application.

Theorem 3.7.1 Let there exist a fundamental subset D of H1,ac with the
following properties: it u E D, there exists a real s such that e-" H, u E
E D (Hl) n D (H2) toy s < t < oo, (H2 - H,) e- i tH, u is continuous in t,
and II (H2 - Hi) e-i tHI ull is integrable on (s, oo). Then W+ (H2, H,) exists.
(A similar theorem holds for the existence of W_ (H2, H,), with an obvious
modification.)

Proof. If u E D we have (d/d t) W (t) u = (d/d t) ei tH, e-i t H, u
= i ei tH, (H2 - Hl) e- i tH, u (see IX-§ 1.3), and this derivative is conti-
nuous by hypothesis. Hence we have by integration

(3.21) W(t") u- W(t') u=if eitH,(H2-H1)e-itH,udt.

Since IleitH'II = 1, we have

t'

(3.22) 11 W(t") U - W(t') u11 < f II(H2 - Hl) a-itH, u11 dt .

E'

Since the integrand on the right is integrable on (s, oo), the right member
tends to zero when t', t" -> oo and s-limW (t) u exists.

t-> 00

Since this is true for all u of D, which is fundamental in Hi,ac, and
since W (t) is uniformly bounded, it follows (see Lemma 111-3.5) that
the same limit exists for every u E Hl,ac = P, H. This is equivalent to the
existence of W+ (H2, HI).

In connection with the identity (3.21), we note the following lemma
for future use

Lemma 3.8. Let H2 = H1 + A where A E .4 (H). I/ W+ = W+ (H2, H1)
exists, then we have for any u E H1,ac

00

(3.23) IIW+u - W(t) u1I2= -2Im f (e'BH,W*Ae-i8H,u, u) ds.
t

Proof. If u E D(H1), we have the identity (3.21). This identity is even
true for every u E H if we replace H2 - H1 by A, for the two members of
(3.21) are then elements of -4 (H). If in particular u E H1,a,, lim W (t") ut y

= W+ u exists, so that
Co

(3.24) W+u-W(t)u=i f ei8H2Ae-18H,uds, uEHl,ac.
I

1 See Coox [1], JAUCH [1], KURODA [2].
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Since II W+ uII = lull because u E Hi,ac and since W (t) is unitary, II W+ u -
- W (t) u1I2 = 2IIu112 - 2 Re (W (t) u, W + u) = 2 Re (W + u - W (t) u, W+u).
Thus substitution from (3.24) gives (3.23) if we note that W+ ei8Hs
= eii" W+ [a relation adjoint to (3.7)].

4. An application to potential scattering
Let H= L2 (R3) and set

(3.25) H1= -A, H2= -J + q (x) ,

where d is the Laplacian and q (x) is a real-valued function. We know
that H1 is selfadjoint if d is taken in a generalized sense and that H2 is
also selfadjoint with D (H2) = D (H1) at least if q (x) is the sum of a
function of L2(R3) and a bounded function (see Theorem V-5.4). We
further note that H1 is spectrally absolutely continuous (see Example
1.10) so that P1= 1.

We shall show that Theorem 3.7 is applicable to the pair H1, H2 under
some additional restrictions on q (x). Set

(3.26) u (x) = e - Ix- al'/2 a E R3

Then we have

(3.27) e-4'H, u(x) = (1 + 21 t)-3/2 e-1x-al'/2(1+2it)

as is seen from the results of IX-§ 1.8 [the corresponding one-dimen-
sional formula is IX-(1.75)]. The function (3.27) is bounded in x with
bound (1 + 412)-3/4. Consequently,

(3.28) 11(H2 - H1) a-11H. uII S (1+4 t2) - 81411qll

provided q E L2 (R3), where II4I1 denotes the L2-norm of q. Obviously
(3.28) is integrable on - oo < t < oo. Since the set of functions of the
form (3.26) with different a is fundamental in H (see loc. cit.), it follows
from Theorem 3.7 that Wt (H2, H1) exist, and they are proper wave
operators since P1= 1. In particular, H1 is unitarily equivalent to a part
of H2. This implies, in particular, that E (H2) includes the whole positive
real axis. This is not a trivial result and is not easy to deduce by an in-
dependent consideration.

The assumption made above that q E L2 can be weakened slightly
if one notes that the rate of decrease as t-+ ± oo of the right member of
(3.28) is Iti-3/2, which is stronger than necessary for the integrability.
To obtain a better estimate, we note that

(3.29) v(x) _ (H2 - H1) e_ 11H' U (X)
(%) x-aa-80

' e-fix-al /2 (1+2{t)_ (1 + 2 i t)-1-12 Ix -4 al(-s)/2 (1 + 2 i 9)(1-4/2
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for any s with 0 < s < 1. The product of the last two factors in the
last member is bounded in x with bound independent of t [note that
lexp (- Ix - al2/2(1 + 2 i t))I = exp(- Ix - all/2(l + 4t2)]. The second
factor is majorized by a constant times lq(x)l/(1 + IxU(1-8)/2 in the
region Ix - al z 1. Hence the integral of Ivt (x) 12 in this region does not
exceed a constant times (1 + 4t')-l-2 if

(3.30) f (1 + Ixi)-1+8 jq(x) 12 dx < oo for some s > 0.
R'

On the other hand, the integral of Ivt (x) I2 taken in Ix - al S 1 is majoriz-
ed by (1 + 4t2) - 3/2 times the integral of I q (x) I2 in this bounded region

[for the same reason as in (3.28)]. Hence Ilv,II S const. (1 + 4t2)-

and IIvtj) is integrable on (- co, oo).
Thus we have proved
Theorem 3.9.1 Let H1, H2 be as above, where q (x) is the sum of a func-

tion of L2 (R2) and a bounded function. If q (x) satisfies the additional
condition (3.30), then Wt (H2, H1) exist and are proper wave operators.
In Particular, H1 is unitarily equivalent to a part of H2, and Eac(H2)
includes the positive real axis.

Remark 3.10. (3.30) is satisfied if q(x) = 0(Ixl-1-e) as IxI - oo.
Remark 3.11. According to Theorem V-5.7, H2 has only isolated

eigenvalues on the negative real axis under a condition similar to that
of Theorem 3.9; but it showed only that the positive real axis is Y'. (H,).
Thus Theorem 3.9 and Theorem V-5.7 complement each other.

§ 4. Existence and completeness of wave operators
1. Perturbations of rank one (special case)

We are now going to prove several theorems on the existence and
completeness of the generalized wave operators W± (H,, H1). The proof
needs several steps. We begin by considering a very special case.

Let H = L2 (- oo, oo) and let H1 be the maximal multiplication
operator defined by H1 u (x) = x u (x). H1 is selfadjoint and spectrally
absolutely continuous, with D (H1) consisting of all u E H with x u (x) E H.
Let A be an operator of rank one given by

(4.1) Au= c(u, f) /,

where c is a real constant and f is a given element of H with I f II = 1.
We further assume that f = f (x) is a smooth function and rapidly
decreasing as x-+ ±oo.

1 See KURODA [2]. Cf. also COOK [1], HACK [1], JAUCH and ZINNES [1], BROW-
NELL [3]. For the wave operators of many-particle systems, see HACK [2].
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Set H2 = H1 + A ; H2 is selfadjoint with D (H2) = D (H1). We shall
show that W± (H2, H1) exist. For this it suffices to show that the as-
sumptions of Theorem 3.7 are satisfied. For any u E H, we have

(4.2)

and

A e- b tH, u= c (e- t H, u, f) 1

(4.3) 1IA e-atH, ull = lcl J (e-"H, u, /)I = J CJ

00

f e-{t" u(x) [J dx

If u (x) is a smooth, rapidly decreasing function, the Fourier transform of
u f is again smooth and rapidly decreasing, so that (4.3) is integrable in t
on (- oo, oo). Thus the assumptions of Theorem 3.7 are satisfied, for the
set of such functions u is dense in H = Hl,ac

Let us estimate the rate of convergence W (t) -+ W+, t-* oo. Sub-
stitution of (4.2) into (3.23) gives

00

(4.4) lI W+ u - W (t) u112 = -2c Im f (e-f8H, u,/) (et8H1 W+ 1, u) ds s
I

S21cl 1(e-iSH,u.f)12ds]l
It

I(el8H,W+1,u)I2ds[f
00t J : 1

The integrals on the right of (4.4) are convergent. In fact (e-t8H1 u, f)
is the Fourier transform of u f as noted above, so that (Parseval's
equality)

CO

(4.5) f I(e-18H. u,f)I2ds=2n11u1111 2r1I111211ulI2 =2n11u11010
-00

and the same inequality holds for the other integral in (4.4). 11 U11 denotes
the maximum norm of u (x), which is smooth by assumption. Note that

W,* /11 s 11111= 1 since W* is partially isometric.
Since we do not know what kind of a function W+* f (x) is, we shall

replace the second integral on the right of (4.4) by its majorant 2,n11u112.,
obtaining

ll2
(4.6) IIW+u- W(t) u112 _<2Ic1(27v)1/211u1100 [11e_iaHi u , f)12ds]

This estimates the rate of convergence W (t) u-> W+ u. Taking the
square root of (4.6) and subtracting two inequalities for different values
of t, we obtain

(4.7) II W u - W (t') ull (8,x)1/4lel1/2IIuII1//2 .

11 11{{Jie_isui1)12ds]+ [tf I(e-isH,u,/)12ds]1

It should be remarked that (4.7) does not contain W. or W*. More-
over, the fact that f (x) is smooth does not appear explicitly in this
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inequality [the integrals involved are finite if only f E H, see (4.5)].
This suggests that (4.7) is true for any / E H and any u E H n L°°. We shall
prove this by going to the limit' from smooth / and u.

First let f (x) be smooth and rapidly decreasing and assume u E H n L°°.
There exists a sequence {u,,} of smooth, rapidly decreasing functions such
that llun - ull - . 0 and I1unll00-> llull0. Since (4.7) is true for u replaced
by u, we obtain (4.7) for u itself by going to the limit n-- oo, making
use of the inequality

(4.8)

00

Itun,/)I2ds]1/2-
t

1/2

V I (e-idH. u, f)I2 ds]

< It-u),f)I2ds]1,2< (2r)'/2llun-ullllflloo-- 0.
t

The first inequality in (4.8) is the triangle inequality in L2 (t, oo) and
the second is the same as (4.5) with the roles of u and f exchanged.

Consider now the general case f E H, 1If11 = 1, and u E H n L°°. Let fn
be a sequence of smooth and rapidly decreasing functions such that
Ilfnll = 1 and llfn - f 1l - 0. If we define Hen = H1 + c (4.7) is true
when f is replaced by f n and W (t) by Wn (t) = e2 t H,,, e- i tH, Then (4.7)
follows on letting n -+ co ; here we make use of the following facts. Since
IIHzn - Hill < 2lcl Ilfn - fll -+ 0, II W. (t)-W(t)ll =lleitH, -eitHall-*0by
Theorem IX-2. 1. Again, the integrals on the right of (4.7) with f replaced
by fn converge to the ones with f as n -+ oo; the proof is similar to (4.8),
with the roles of u and f exchanged.

Since the integrals on the right of (4.7) exist, (4.7) implies that
lim W (t) u exists for any u E H n L°°. From this we conclude as above

t-. 00
that s-lim W (t) = W+ (H2, H1) exists. Since the situation for t -> - 00

is the same, we have proved
Theorem 4.1. Let H = L2 (- oo, oo) and let H1 be the multiplication

operator H1 u (x) = x u (x). Then H1 is spectrally absolutely continuous,
and the wave operators Wt (H2, H1) exist for any self adjoint operator H2
obtained from H1 by a perturbation of rank one : H2 = H1 + c ( , f) f, f E H.

Remark 4.2. For future use we shall give here a formal generalization
of Theorem 4.1. Suppose that H1 is a selfadjoint operator in an abstract
Hilbert space H, and that Hl ac is unitarily equivalent to the H1 of
Theorem 4.1. Then we maintain that W± (H2, H1) exist for any H.
=Hi+c( ,f)f, /E H.

This can be proved by the same arguments as in the proof of Theorem
4.1. First we note that H1,a° may be identified with L2(-oo, oo) and
Hl ac with the H1 of Theorem 4.1. Then we set f = g + h, g = P1 /,

I It is rather embarrassing that no direct proof of (4.7) has been found.
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h = (1 - P1) /. g belongs to Hi,ac = L2 so that it is represented by a
function g (x). We first consider the case in which g (x) is a smooth and
rapidly decreasing function. Then the existence of W± can be proved in
the same way as above. The only change required is to restrict u to
elements of Hl, ac [so that u = u (x) E L2]; then u = P1 u and (e- i tx1 u, f)
_ (e-ith i u, P1 /) = (e-ttH. U, g) can be expressed by the integral in
(4.3) with / replaced by g. Also the estimate (4.4) is true with / replaced
by g (W+ *1 should not be changed, but it belongs to H1,a° and so is
represented by a function of L2). Hence (4.6) and (4.7) remain true with f
replaced by g.

Then the extension of (4.7) from smooth u (x) to any u (x) E L2 n L°°
can be done in the same way as above (always with / replaced by g).
The further extension to an arbitrary / can also be achieved in the same
way; here we define fn = gn + h where gn = gn (x) E Hl ac are smooth
functions such that IIgnll = 1Jgil and 11g,, - g1l - 0 (so that fnll = 1,
JIfn - /11 -> 0), and the proof proceeds without modification.

It follows that lim W (t) u exists for any u E L2 n L°°. Since such u
form a dense set in L2 = Hl,a°, the existence of s-lim W(t) has been proved.

2. Perturbations of rank one (general case)
In Theorem 4.1 proved above, the unperturbed operator H1 was a

very special one: multiplication by x in H = L2 (- 00, oo). We shall now
remove this restriction.

First we take the case in which H = L2 (S), where S is an arbitrary
Borel set on the real line (- on, oo), and H1 is the maximal multiplication
operator H1 u (x) = x u (x) with D (H1) consisting of all u (x) E H such that
x u (x) E H ; H1 is spectrally absolutely continuous as before. We shall
show that the wave operators Wt (H2, H1) exist for any H2 = H1 + c (, f) f
obtained from H1 by a perturbation of rank one.

H can be regarded as a subspace of a larger Hilbert space H' =
= L2 (- oo, oo), consisting of all u E H' such that u (x) = 0 for x ff S.
Let Hi be the maximal multiplication operator by x in H'. Then the
subspace H of H' reduces Hi, and the part of Hi in H is identical with H1.
Let H2= Hi + c ( , f) f, where / is regarded as an element of H' by setting
I (x) = 0 for x ( S. Then H2 is also reduced by H and its part in H is H2.
Thus e-ttH1' and e-tta,' are also reduced by H and their parts in H are
e-ttH1 and a-11H., respectively.

But we know from Theorem 4.1 that W' (t) = eitH,' a-ttal" has strong
limits as t -> ± no. Since W' (t) is also reduced by H and its part in H is
W M = et t H, e- i tH1, it follows that Wt = s-lim W (t) exist.

Again we can extend the result obtained to the more general case in
which H1 need not be absolutely continuous, in the manner described
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in Remark 4.2. Suppose that Hl,ac is unitarily equivalent to the H1
considered above: multiplication by x in L2 (S). We assert that, for any
H2 = H1 + c ( , f) f, / E H, the generalized wave operators Wt (H2, H1)
exist. For the proof it suffices to proceed in the same way as in Remark
4.2. We may identify Hi,ae with L2 (S) and Hl,ac with the multiplication
operator by x, and regard Hl, ac = L2 (S) as a subspace of a larger Hilbert
space Ho = L2 (- 00, co) and, accordingly, H as a subspace of H' = Ho
® H1,,. (H1,s is the subspace of singularity for H1.) Then H1 may be
regarded as the part in H of the operator H'1 = Hi, ac ® H1, s where Hi, ac
is multiplication by x in Ho = L2 (- oo, co). We set H2 = H'1 + c ( , /) /,
where / is regarded as an element of H' by setting f = g + h, g E Ho,
h E H1,,, where g (x) = 0 for x J S [originally g (x) was defined for x E S].
In this way the same argument as given above applies, using Remark 4.2
in place of Theorem 4.1.

Now we shall consider the perturbation of rank one without any
assumption on H1. Let H1 be an arbitrary selfadjoint operator in a
Hilbert space H and set H2 = H 1 + c ( , f) f, where / E H with 1 1/ 1 1 = 1
and c is real. Let Ho be the smallest subspace containing / which reduces
H1, and let PO he the projection on Ho. Ho may be characterized as the
closed span of the set of vectors {E1 (A) t) for all real A. H2 is also reduced
by Ho, for Po u E D (H1) = D (H2) if u E D (H2) = D (H1) and H2 PI U

H1Pou+c(Pou,f)/EHO.
Let Ho be the orthogonal complement of Ho. in H. Ho reduces

i tH, .both H1 and H2 and H1 u = H2 u for u E HO L. Hence W (t) u = e
e-i tg= u = u for ucE Ho . Since u E Ho implies P1 u E Ho by Theorem 1.6,

W (t) P1 U = P1 u and so s-lim W (t) PI u = P1 u for u E Ho . In order to
prove the existence of Wt (H2, H1) = s-lim W (t) P1, it is therefore
sufficient to prove the existence of s-limW (t) P1 u for u E Ho. Since Pl,
H1 and H2 are all reduced by Ho and since Hk,ao n Ho, k = 1, 2, is
exactly the subspace of absolute continuity for the part of Hk in Ho
by Theorem 1.6, we may assume from the outset that Ho = H (this
amounts simply to changing the notation).

Thus we assume that the smallest subspace containing f which
reduces H1 is the whole space' H. Let

(4.9) f=g+h, g=Plf, h=(1-P1)f.
Since the subspace spanned by the set {E (A)/} is Ho = H, the two
subspaces spanned by the sets {E (A) g} and {E (A) h} together span the
whole space H. But these two subspaces consist respectively of absolutely
continuous vectors and singular vectors with respect to H1. Hence they
must coincide with the subspaces of absolute continuity and of singularity

1 In other words, H1 has a simple spectrum and / is a generating vector.
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for HI. In other words, Hi,ae is spanned by the set {E (A) g} and H,,5 is
spanned by {E (A) h}. Thus Hj,ac is the closure of the set of all vectors

00

of the form 0 (HI) g = f 0 (A) dE (A) g, where 0 (A) is any bounded (Borel
-00

measurable) function [or one may restrict 0 (A) to smoother functions].
Now we have

00

(4.10) (q1 (Hi) g, 02 (Hi) b') = f o, (A) Y'2 (A) d (E, (A) g, b') = f iV1(A) 7V2 (A) d A
-00 s

where

(4.11) k=1,2, P(A)=d(E,(A)g,g)ldA,
and S is the set of all A such that d(El (A) g, g)ldA exists and is positive;
note that this derivative exists almost everywhere because g E H1.ac
S is a Borel set.

If 0 (A) varies over all bounded functions, tp (A) _ c (A) P (A)1/2

varies over a dense subset of L2(S). Hence we may identify H1,ac with
L2 (S) by the correspondence q (HI) g-* tp. In this realization of H,,ac,
the operator H1 is represented by multiplication by A I. Therefore, the
absolutely continuous part H,,ac of H, is of the type considered above,
and the existence of the generalized wave operators follows. This proves
the following theorem (note Theorem 3.5).

Theorem 4.3.2 Let H1, H2 be selfadjoint operators in a Hilbert space H
such that H2 = H, + c ( , f) f, f E H, c real. Then the generalized wave
operators W± (H2, HI) and W± (HI, H2) exist and are complete. In particu-
lar, the absolutely continuous parts HI ac, H2, a c of these two operators are
unitarily equivalent.

3. Perturbations of the trace class
Theorem 4.3 can further be generalized to
Theorem 4.4.3 Let HI, H2 be selfadjoint operators in a Hilbert space H

such that H2 = HI + A where A belongs to the trace class .°,d1 (H). Then the
generalized wave operators W± (H2, HI) and W± (HI, H2) exist and are
complete4. The absolutely continuous parts of HI, H2 are unitarily equi-
valent.

1 This is essentially the theorem that any spectrally absolutely continuous,
selfadjoint operator with a simple spectrum is unitarily equivalent to the multiplica-
tion operator by A in some space L2 (S) ; see e. g. STONE Ill.

2 Cf. T. KATO [10], in which the theorem is proved by a "stationary method".
8 This theorem was proved by ROSENBLUM [1] when both H1, H9 are spectrally

absolutely continuous, and by T. KATO [1l] in the general case.
4 The scattering operator S = W+ W_ is unitary on P1 H to itself and commutes

with H1. The corresponding S-matrix S (A) (see footnote 3 on p. 528) has been studied
by BIRMAN and KREIN [1] using the trace formula due to LIFlIC [4] and KREIN
[3], [6].
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Proof. Let the expansion of A [see V-(2.20)] be given by
00

(4.12) A ck (, fk) fk ,
k=1

where the fk form an orthonormal family of eigenvectors and the ck
(real) are the associated (repeated) eigenvalues. A E .41(H) implies that

00

(4.13) E IckI = IIAIII < co
k=1

(see Problem 1.14).
Let A,, be the partial sum of the first n terms of the series in (4.12),

and set H(n) = H1 + An with the convention that H(°) = H1. Then each
H(n) - HO-1) is of rank one and W f (H(n), HO-1)) exist by Theorem
4.3. By successive application of the chain rule (Theorem 3.4), it then
follows that Wn f = W± (H(n), H1) exist for n = 1, 2, ... .

We see from Lemma 3.8 that for each u E Hl,ac, with W,,(t)
= eitH<n1 a-itH,,

00

(4.14) II Wn+u - W. (t) u112= - 2 Im f (eisH, W.* A,, 6-i8H, u, u) ds .
t

Let us estimate the right member of (4.14). Since
n+

(4.15) (ei"H, Wn* An e-i8H, u, u) = c,, (e-£aH, u &) (eiaH, u7n+fk, u)
k=1

we have by the Schwarz inequality
00 00 11/2,

f J (e-181, u, fk) I2 ds(4.16) II Wn+ u - Wn (t) ujI2 s 2 [ I ck 1

+
k=1 t

1[L Iekl f I(ei8H,gkn,u)I2ds]1I2
00

k=1 t

where gkn = W. fk, Ilgknll s 1.
The right member of (4.16) is finite, not necessarily for all u E P1 H

but for some restricted u. This is due to the following lemma, the proof
of which will be given later.

00

Lemma 4.5. Let H = f A dE (A) be a sel f adjoint operator in H. Let

u E H be absolutely continuous with respect to H and let

(4.17) IIIuIII2 = ess-sup d (E (A) u, u)/d A .

Then we have' for any / E H
00

(4.18) f I (e-itH u, f)I2 dt s 2n IIIu1112 IIfI12.
-00

I This is a generalization of (4.5).
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It follows from this lemma that the first factor (except 2) on the
right of (4.16) does not exceed y2n IIIuIII (E ckl)111= IIIuIII (2orIIAIII)h"a
since IIfkjj = 1. The same is true of the second factor. We use this estimate
only for the second factor, obtaining

(4.19)

where
II Wn+ u - W. (t) ull 5 IIIu!I1111(8nVIAII1)1!471 (t; U)114'

00 00

(4.20) it (t; u) I ckI f I
(e_tBH,

u, fk)I2 ds S 2n IIIulII2 IIAIII
k=1 t

From (4.19) we further obtain

(4.21) II Wn (t") u - W. (t') uII IIIuCIII/a (82IIA III)1!4 [77 (t'; u)1/4 + n
(t"; U)1/41,

which is valid for any u E Hl,ac
We can now go to the limit n-+ oo in (4.21). Since Ha = H(n)'+

+ A - An and II A - A,n!I -+ 0, we have e1 t H" -- et t H, in norm (see
Theorem IX-2.1) and so Wn (t) -; W (t) in norm, for any fixed t. Thus
(4.21) gives

(4.22) II W
(t")

u - W (t') u!i s IIIu!II1/2(8y!IAIII)1/4 [,q(t'; u)1/4 +,q(t"; u)1/4J,

which shows clearly that tlim W (t) u exists if IIIuIII < co, for then 77 (t; u) --0 0
00

as is seen from (4.20).
The set of all u E Hl,ac such that IIIuIII < oo is dense in Hi,ao. In fact,

let v E H,,ac; we have to show that there are u E Hl,ac such that IIIun!II <oo
and un -+ v. (E, (A) v, v) is absolutely continuous and o (d) = d (El (A) v,
v)/d A exists almost everywhere and is nonnegative. Let S be the set
of values A for which o (A) > n; then {Sn} is a nonincreasing sequence with
IlimSnl = 0. Set un = (1 - E, (Sn)) v. Then (E1 (A) un , un) _ ((1 - E, (Sn))

'El (A) v, v) = f (1 - X. (A')) d (E1(A') v, v) = f (1 - xn (A')) o (A') dA',
-00 -00

where xn (A') = 1 for A' E Sn and = 0 for A' I S, . Hence d (El (A) un, un)/d A
= (1 - X. (A)) o (A) s n almost everywhere and IIIunIII2 s n. Since
E, (Sn) v -+ 0 by the absolute continuity of v, it follows that un -+ v.

Since W (t) is uniformly bounded, it follows that lim W (t) u exists
for every u E Hj,ac = P, H. In other words,

i
s-limW(t) P, = W+ exists.

Since the same is true of s-lim W (t) P, and since H, = H2 - A witht-. -
00- A E 91 (H), the proof of Theorem 4.4 is complete.

Incidentally we note that, on letting t" -+ co in (4.22) and writing
t for t', we get

(4.23) IIW+u-W(t)UII S IIIu!III!a(8n1IAIII)1"4, (t; u)1/4 S IIIuIII (4n1IAI6)1112.

Proof of Lemma 4.5. Denote by P the projection on the space Ha,, of
absolute continuity with respect to H. Since u = P u, (E (A) u, f) is
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absolutely continuous and its derivative is majorized by [ d
A

(E (A) u, u)

dA (E (A) fo, f0)]
1/2

Illulll
d AA (E (A) fm f0)] 1/2 where fo = PI (see Theo-

rem 1.7). Hence dA (E (A) u, f) belongs to L2 (- 00, co) with L2-norm not

exceeding Illulll [f d (E (A) /0' fo)]1/2 = IIJUJII DD f o1I plulll 11/11. But (e-c tH u, f )
00

f d(E (A) u, f) is just the Fourier transform of d(E (A) u,- f).

-00Hence Lemma 4.5 follows from the Parseval theorem.

4. Wave operators for functions of operators
We shall now show that not only the (generalized) wave operators

Wt = W± (H2, H1) but also the wave operators W± (0 (H2), 0 (H1)) exist
for certain functions 0 (A) provided H2 - H1 belongs to the trace class
-41(H). This will extend the applicability of Theorem 4.4 to a great ex-
tent. Moreover, we have the remarkable result that W± (0 (H2), 0 (H1)) do
not depend on 0 for a wide class of functions 0. This result will be called
the invariance of the wave operators.

First we prove
Lemma 4.6. Let 0 (A) be a real-valued function on (- oo, co) with the

following properties : the whole interval (- oo, oo) can be divided into a
finite number of subintervals in such a way that in each open subinterval,
0 (A) is dillerentiable with 0'(A) continuous, locally of bounded variation,
and positive. Then, for every w (A) E L2 (- oo, oo) we have

00

(4.24) 2;rflwii2 f dt
0

l.i.m. f e-ttA-t8d(x) w(A) dA00

-00

2

-+ 0

as s-* -I- oo .

Proof. Let H be the selfadjoint operator Hw(A) = A w (A) acting in
H = L2 (- oo, oo), and let U be the unitary operator given by the Fourier
transformation. Then the inner integral of (4.24) represents the function
(2yr)1/2(Ue-t80(r) w) (t), and the middle member of (4.24) is equal to
27rflEUe-'80('7) w112 s 2n IIw112 where E is the projection of H onto the
subspace consisting of all f (t) such that f (t) = 0 for t < 0. Hence (4.24)
is equivalent to s-lim EUe-'80(27) = 0. Since EUe-i80(H) is uniformly

s--3.+ 00

bounded with norm < 1, it suffices to prove (4.24) for all w belonging to a
fundamental subset of H. Thus we may restrict ourselves to considering
only characteristic functions w (A) of finite intervals [a, b] : w (A) = I for
A E [a, b] and = 0 otherwise. Furthermore, we may assume that [a, b] is
contained in an open interval in which q (A) is continuously differentiable
with the properties stated in the lemma.
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We have then
00 b

(4.25) v(t, s) = f w(t) d22 = f e-iex-s86(A) d t
a

b

= if (t + s 0' (A))-I ade-.tx-i8¢(x) dd.
A

If t, s > 0, v (A) _ (t + s is positive and of bounded variation.
An elementary computation shows that the total variation of v(A) on
[a, b] satisfies

b

f idV(2) 15 Ms/(t+ c s)2 s M/c (t + c s) ,
a

where c > 0 is the minimum of 0'(A) and M is the total variation of
0'(A), both on [a, b]. Integrating (4.25) by parts, we thus obtain

dtp(.,)v(t, s) = I['(,I) e-i:x-'80(1)]ba - if e-itx-'80(4

b

i v (t, s) j 5 7' (a) + 7' (b) + f I d y, (A) I < (2c + M)/c (t + c s) .
a

Hence the middle member of (4.24) is
00

f Iv (t, S)I2 dt < (2c + M) 2/C3 S-+ 0 , s-). +oo .
0

We can now prove the invariance of the wave operators in the
following form.

Theorem 4.7. 1 Let H1, H2 be sel f adjoint operators such that H2 = H, + A
where A E 91(H). I l 0 (A,) is a function with the properties described in
Lemma 4.6, the generalized wave operators W±(q (H2), 0 (H1)) exist, are
complete, and are independent of 0; in particular they are respectively
equal to Wt (H2, H1).

Proof. We start from the estimate (4.23) in which u is replaced by
v = e-E 80 (H') u. Since (E1 (A) v, v) = (EI (A) u, u), we have IlIvIjI = IjjuIII by
(4.17). On setting t = 0, we obtain

(4.26) II(W+ - 1) e-180(") uIl 5 IIIuIVV1/2 (8 vjIAIII)1/4, (0; e-c80(H1) u)1/4,

where
00 00

(4.27) i(0; e-i80(H1) u) _ f Ickl f i(e -t(Hx-s8¢(Hi) u, fk)I2dt
k=1 0

by (4.20).

I This theorem can further be generalized by permitting 0 to be increasing in
some subintervals and decreasing in others. Then W ± , ,, = W (cb (He), 0 (H1)) still
exist, though they are no longer equal to W±. Instead we have W±, 0 u = Wt u or
W±, d u = W:F u for u E El (I) H, where I is one of the subintervals in which 0 is
increasing or decreasing. The proof is essentially the same as that of Theorem 4.17.
See T. KATO [17], BIRMAN [9], [10], [11].
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The integrals on the right of (4.27) have the form (4.24), where w (A)
is to be replaced by d (El (A) u, f,0)/d2, which belongs to L2 (- 00, oo) with
L2-norm S IIIuIII as noted at the end of par. 3. According to Lemma 4.6
each term on the right of (4.27) tends to 0 as s + oo. Since the series is
uniformly (in s) majorized by the convergent series EI ckI 2n IIIuIII2
= 2n IIIuIII2 IIAII1, (4.27) itself tends to 0 as s-> +oo. Thus the left member
of (4.26) tends to 0 as s-> +oo. Since the set of u with IIIuIII < co is dense
in P1 H as remarked in par. 3, it follows that

(4.28) (W+ - 1) e-is11 (H1) P , 0 , s-> +oo .
S

But W+ e-28O (Hl) = e-4d# (H') W+ by (3.12) [note that e-'WHO
00

= f e-48 (x) dE, (2) ]. On multiplying (4.28) from the left by ei80 (Ha)

we thus obtain

(4.29) s-lim es89S (H,) a-"# (g1) P1= W+ P, = W+
S->+00

This proves the existence of W+(0 (H2), 0 (H,)) and its identity with
W+= W+ (H2, Hl), provided we can show that P1 is also the projection
on the subspace of absolute continuity for O (H1), that is, the latter
subspace is identical with H1,ac.

To see this, let {Fl (2)} be the spectral family associated with
(H1). Then'

(4.30) F1(S) = E,(0-1(S))

for any Borel subset S of the real line, where -1(S) denotes the inverse
image of S under the map 0. If ISI = 0, we have I0-1(S)I = 0 by the
properties of 0, so that F, (S) u = 0 if u E Hl,ac. On the other hand,
Fl(O (S))= E,(0-1[0(S)]) z E,(S).If ISI = 0, we have 10 (S) 0 so that
IIE,(S) uII IIF,(q(S)) uII = 0 if u is absolutely continuous with respect
to 0 (H1). This proves the required result.

By specializing 0 we get many useful results2 from Theorem 4.7.
For example,

Theorem 4.8.2' Let H,, H2 be selfadjoint operators with positive lower
bounds (so that their inverses belong to 9 (H)). If Hi Hl a belongs to the
trace class for some at > 0, then Wt (H2, H,) exist, are equal to W:F (Hi-
Hi-) and are complete.

1 See STONE (11.
9 If we take 0 (A) = 2 arc cot 2, then the unitary operator e-10(Hk) = (HA -i)

(HR + i)-1 = Up is the so-called Cayley transform of Hg. Since 0 satisfies the
condition of Theorem 4.7, it follows that lim Ut " U1 P1 = Wt (0 (H2), 0 (H1))

"- ±00
= W± (H8, H1). This limit is a discrete analogue of (3.3). Cf. BIRMnx and KREIN [1].

a See BIRMAN [8]. The idea to consider Hi 1, Ha 1 in proving the unitary equi-
valence of H1, H8 is found in PUTNAM [2]. See also BIRMAN and KREIN [1].
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Proof. The function q (),) defined by 0 (A) = for A z y and
(A) = A for A < y satisfies the conditions of Lemma 4.6 (where y > 0

is the smaller one of the lower bounds of H1 and H2). Theorem 4.8 follows
from Theorem 4.7 applied to H1, H, replaced by Hi a, Hi -a respectively,
with the above 0 (A) ; here the values of 0 (A) for A < y are immaterial.
Note that T± (H2, H,) = WT (- H2, - HI).

Theorem 4.9.1 Let H1 be selfadjoint and bounded from below. Let V
be symmetric and relatively bounded with respect to H1 with H1-bound less
than 1. Furthermore, let V = V" V' where V' (Hl - y)-1 and V" * (HI - y)-I

belong to the Schmidt class for some y smaller than the lower bound o l H1.
Then H, = H1 + V is selfadjoint and bounded from below, and Wt (H2, HI),
W± (HI, H2) exist and are complete.

Proof. H, is selfadjoint and bounded from below by Theorem V-4.11.
Since W± (H2 - y, HI - y) = Wt (H21 H1), we may assume that both
HI, H, have positive lower bounds and the assumptions of the
theorem are satisfied with y = 0. [Note that if V' (HI - l;)-1 E °.4z (H)
for C = y, then the same is true for any t; E P (HI) because V' (HI - C)-I

= V' (H1 - y)-' (Hi - y) (HI - C)-1 where (Hi - y) (H1 - O' E °M (H).]
Thus the theorem follows from Theorem 4.8 with a= 1 if we can

show that Hi -1 - Hi-' E .4I (H). Now Hi -1 - Hi -1 = - Hi -1 V Hl 1 =
= - (V" * H21)* (V' Hi 1) belongs to °9I (H) since V" * H21 and V'Hi 1
belong to . , (H). For V' Hl1 this is the assumption. For V" * H2 I
= (V" * Hi 1) (HI Hi'), it follows from the assumption and the fact
that H1 HQ' E 9(H).

Example 4.10.' Let us again consider the operators H, H8 = - d +
+ q (x) in H = L' (R'), see § 3.4. We have shown (Theorem 3.9) that Wf (Ha, HI)
exist under certain general conditions on q (x), but we have not ascertained whether
or not they are complete.

We shall show that Wt (H$, H1) are complete if'

(4.31) q E L1 (R') r L'(R') .

Since we know that q E L' implies that V = q (x) is Hl-bounded with HI-bound 0,
it suffices to show that JV 111 (HI + c')-1, c > 0, belongs to the Schmidt class,

1 See KURODA [2], [3]. There is an analogous theorem in which H1, H. are
respectively associated with symmetric forms hI, h, bounded from below, such that
ha = 01 + a where a is "of relative trace class with respect to h1". We shall not state
the exact theorem but refer to KURODA [2], [4]. See also Problem 4.14.

' As other examples in which the above theorems have been applied, we mention:
the absolute continuity of the Toeplitz's matrices by PUTNAM [3], [5], RosEN-
BLUM [2]; the invariance of the absolutely continuous spectrum of partial dif-
ferential operators under variation of the boundary and boundary condition by
BIRMAN [6], [7]; some problems in neutron scattering by SHIZUTA [2].

Similar results hold in the one-dimensional problem: H, = -d'/dx', H$
d'/dx' + q (x) in H = L' (0, oo) [with boundary condition u (0) = 0], if

q E L1(\ L'. An improved theory (see footnote 1 above) shows that q E L1 is enough
(in this case H8 must be defined as in Theorem VI-4.2).
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where I VI1/2 is the multiplication operator by I q (x) I1/2. (Apply Theorem 4.9 with
V = V11 V

V,

= I V I1r2 V = U I V1112, where 'U is the multiplication operator by
sign q (x) and is bounded.)

(H1 + c2)-1 is an integral operator with kernel e-0 I '- x1 /4 n l y - xI [see IX-(1.67) ].
Hence I V I1/2 (H1 + c2) -1 is an integral operator with kernel Iq (y) I1/2 a-0 lv - XI /4 n I y - xI.
This kernel is of Schmidt type since

J J

Iq(y)I a-211Y X1 r e-2e' if I'Vr dx CoJ Iq(Y)I dyIY - xIa
dxdyS R R

R'xR'

if q E L'. The same is true for UI V11/2 (HI + c2)-'.

It follows, in particular, that H2, ac is unitarily equivalent to H1 (H1 is itself
absolutely continuous). In general H2 will have a singular part H2,5, including
a discontinuous part. It is not known whether or not H2 can have a continuous
singular part'.

5. Strengthening of the existence theorems

The assumption that H2 - Hl be in the trace class, made in Theorems
4.4 and 4.7, will now be weakened. First we prove

Lemma 4.11. Let Rk (Hk - l;)-1 be the resolvent o l HA, k = 1, 2.
If R2 (l;) - RI M E °1(H) for some nonreal 4, then it is true for every
nonreal 4.

Proof. Suppose R2 (CO) - RI (Co) E .i (H). From the Neumann series
for the R, (t;) given by I-(5.6), we have

00

R2 M - R1(S) = E (S - So)n [R2 (So)n+1 - Rl (So)n+1I
n=0

for IC - Col < IImCol [note that IIRk(Co)II 5 IImC0I-1]. But

IIRZ
(Co)n+ l -

R1
(Co)n+lII1 f RZ (n-k(RZ (Co) - Rl (Co)) Rl (Co)k= o)

k=0

s E IIR2(Co)IIn-k

IIR2(Co) - Rl(Co)II1 IIR1(Co)IIk <
k=0

s (n + 1) IImCoL-nIIR2(Co)
-R1(40)II1

' It is known that H. has no continuous singular part under somewhat different
assumptions on q (x). This was proved by IKEBE [1] by a stationary method, where
the Wt are constructed explicitly as singular integral operators, whose kernels are
improper eigenfunctions (not in L2) of H2. For these eigenfunctions see also BUSLAEV
[1], HUNZIKER [1], IKEBE [2]. For a similar result regarding the operator -d
in a domain exterior to a bounded set in R3, see SHIZUTA [1], IKEBE [3]. For
the phase shift formula see GREEN and LANFORI. [1], KURODA [6]. There are
scattering problems related to the wave equation (even nonlinear) instead of the
SchrOdinger equation; see BROWDER and STRAUSS [1], LAx and PHILLIPS [1],
NIt:NIK [1], STRAUSS [1], [2].
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Hence (see Problem 1.17)
00

IIR2(0 - R,(C)II15 IIR2(CO) - R1(CO)Ill -' (n + 1) IIm4ul-n IC - Coin=
n=0

= IJR2(Co) - Ri(Co)II1(1 - ImCoJ-1 IC -
Col)-2

which shows that R2 P - R, (4) E -41(H) for all 4 inside the circle having
center o and touching the real axis. Repeated application of the same
process shows that all nonreal 4 in the half-plane containing o have the
same property. The same is true of all C on the other half-plane in virtue
of R2 (4) - R, (C) = (R2 (c) -

Theorem 4.12.1 Let R2 (4) - R, M E 9, (H) for some nonreal C. If 0
is a function as in Lemma 4.6, W± (0 (H2), 0 (H1)) exist, are complete, and
are independent of 0. In particular W± (H2, H1) exist and are complete,
and the absolutely continuous parts of H, and H2 are unitarily equivalent.

Proof. I. Let r > 0 and define

(4.32) 7Vr(A)=A/(1+r-2A2), -oo<A<oo,
(4.33) ryr(u) = 2,u/[1 + (1 - 4r-2 y2)1/2] , -r/2:5--,u5 r/2.
97r (,u) is the inverse function of tpr (A) restricted to - r 5 A 5 r (in which
4pr is univalent). For formal convenience we shall extend T, ('u) to all
real ,u by setting (p,. (,u) = 2,u for I,uI > r/2, so that 97r satisfies the con-
ditions of Lemma 4.6.

/ 11. x$611i
%

11

------------

r sue -
Fig. 3. The functions X, (A), X. (1) and the intervals I, J,, Ja

Set Zr (A) = 9 . (°r (A)) ; Zr is a continuous odd function and

(4.34) xr (A) = A for - r 5 A:5 Y.

For A z r, X, (A) decreases monotonically to 0 as A-* oo (see Fig. 3).
Now we set
(4.35) Hk, r = r (Hk) , K7,,. = Xr (Hk) , k = 1, 2.

According to the operational calculus for selfadjoint operators2, we have

(4.36) Kk,r = 99r(tVr(Hk))= 99r(Hk,r) , k= 1, 2.
1 See BiRMnx [9], [10], T. KATO [17].
2 See STONE (1), Chapter 6.
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In virtue of (4.34), however, K,,,, and Hk coincide on the subspace
H,,, - (El (r) - El, (- r)) H, which reduces Hk and K,,,. Hence

(4.37) a-it9S(K .d u = e- itd(Hs) u for u E Hk,, .

II. Since Hk, , = Hk (1 + r- 2 H2)-1= (r2/2) [(H,, + i r)-1 + (Hk -
- i r)-1], it follows from Lemma 4.11 that H2,1 - H1,, E -41(H). Hence

(4.38) W+(0 (cp, (H2, T), 0 (w, A, r)) = W f (w, (H2, r), A, r)) =

exist by Theorem 4.7 for any 0 satisfying the conditions of Lemma 4.6,
for the composite function 0 (99, (A)) also satisfies the same conditions.
In view of (4.36), this implies that

s-lim e i tO (K, ,) e- i t 6 (K,..) p1= W+, , ;t-,+ o0

here P1 is the projection on Hl,ao but the subspace of absolute continuity
, (the proof is the same as in the proof offor 0 (K1,,) coincides with H1,a,

Theorem 4.7). Using (4.37) for k = 1, we have therefore

(4.39) eitO(K,..) e-tt¢(H,) P1 u-+ W+,, u for uE H1,, .

III. Let I = (a, b] where 0 < a < b < r. The inverse image of I
under the map x, is the union of I itself and another finite interval J,
lying to the right of r (see Fig. 3). If we denote by Fk,, the spectral
measure for Kk, , = x, (Hk), k = 1, 2, we have [see (4.30) ]

(4.40) Fk, r (I) = Ek (X;71 (I)) = E,,(I) + Ek (Jr) z Ek (I)

Let u E El (I) H. Then u E Hl,, and (4.39) holds. Since W+, , = W+ (K2, ,,
K1,,) by (4.38) and u E Fl, (I) H by (4.40), we have

(4.41) W+,, u E F2,, (I) H .

From (4.39) and (4.41), we obtain for u E El (I) H

II (1-F2,,(I)) e-it#(H,)piuII
= II(1-F2,,(I)) eitd(Ks,r) e-it0(H,)PiuI -*

II(1-F2,,(I)) W+,,Ull =0, t-*+0

note that F2,,(I) and eitl(K,.,) commute. Hence

(1), e-it"(H') Plu ,r F2,,(I) e-itm(H,) Plu

where - means that the difference of the two members tends to zero as
t -+ + oo. The same is true if r is replaced by any s > r, which result will
be called (1)S. Ifs is sufficiently large, we have F2,,(I)F2,S(I) = E2(I) as
is easily verified. Multiplying (1), from the left by F2,,(I) and using
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(1), we thus obtain
e-it¢(H1) P,u ^' E2(I) e-it0(.%)plu

and hence by (4.37) and (4.39)
eifO(H") e-itt(x,)Plu - eito(Ha)E2(I) a tt-A(H,) plu

= E2(I) eit o (K2. r) e-"O (Hi) pl u -* E2 (I) W+ , u .

Thus lime it"'(H,) e`0 (H,) Plu exists and is independent of .
IV. We have proved that

(4.43) W, (t) P , u -W+, , u , t + + O ,
provided u E El (I) H where I = (a, b] and 0 < a < b < Y. The same
result holds when I is replaced by (- b, -a]. The allowable u and their
linear combinations form a dense set in H1,, = (E1(r) - El (- r)) H,
except for the possible eigenspaces of H1 for the eigenvalues 0 and r.
But these eigenspaces are unimportant, being annihilated by P1.

Since W, (t) is unitary and uniformly bounded, it follows that (4.43)
holds for all u E H1,,..

Since s-lim W, (t) P1 u exists for all u E Hl,, and since the union
of all H1, , for r > 0 is dense in H, it follows finally that s-lim Wo (t) P,
= W+(0 (H2), 0 (H,)) exists. This limit is independent of 0 as is seen
from (4.43). Obviously the same is true for W_. Since the assumption
of the theorem is symmetric in H, and H2, the same is true when H1, H2
are exchanged, so that these wave operators are complete.

Remark 4.13. The assumption R2 (4) - R, (0 E 91(H) in Theorem 4.12
is not essential. The point is that for any r > 0, there is a function iv,. (R)
with the following properties :

1) tp, (R) is piecewise monotonic like 0 (d) but may be increasing in
some subinterval and decreasing in others;

2) ip, (d) is univalent for - r < 2 < r;
3) lVr (H2) = V,. (Hj) + A, where A, E 2, (H).
The proof of Theorem 4.12 can be adapted to this general case with a

slight modification'.
According to this generalization, the results of Theorem 4.12 are true

if R2 Mm - R, (0 m E .41(H) for every pure imaginary C (or at least for a
sequence c',, = ±i r,, with rb -+ oo). In this case we need only to take
V, (A) = i [(r + i 2) - (r - i A)-m] with r = r,,, V, (A) is univalent on a
neighborhood of 2 = 0, the size of which is proportional to Y.

Problem 4.14. In Theorem 4.9 remove the assumptions that H, is bounded below
and y is real. The conclusions are still true, except the one that H. is bounded from
below.

I This gives very general sufficient conditions for the existence and completeness
of the generalized wave operators. There are some conditions not included in this
category; see BIRMAN [11], BIRMAN and ENTINA [1], STANKEVI6 [1].
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6. Dependence of W.. (H2, H1) on H1 and H2
Theorem 4.15. Let H1, H2 be self adjoint operators such that W+ (H2, H1)

exists. Then W+ (H2 + A, H1) and W., (H2, H1 + A) exist for any A E °.,A1(H)
and

(4.44) W + (H2 +
A,

H1) S W+ (H2, H1)

W+ (H2, H1 + A) -. W+ (H21 Hi)
W

as II A 111-+ 0. Similar results hold with W+ replaced by W_.
Proof. W+ (H2 + A, H2) exists by Theorem 4.4 and, therefore,

W+ (H2 + A, H1) exists and equals W+ (H2 + A, H2) W+ (H2, H1) by
Theorem 3.4. Similarly, W+ (H21 H1 + A) = W+ (H21 H1) W+ (H1, H1 + A)
exists. Thus it suffices to prove (4.44) for the special case H2 = H1.

We see from (4.23), on setting t = 0, that 11 W+ (H1 + A, H1) u - ull 5
5 IIIujfl (4avIIAjj1)112_ 0 as IIAII1-* 0. Since the set of u with IIIuIII < cc is
dense in P1 H, it follows that W+ (H1 + A, H1) = W+ (H1 + A, H1) P1-i. P1

5

= W+ (H1, H1) as 11 A 111- 0. Since W+ (H1, H1 + A) = W+ (H1 + A, H1) *
by Theorem 3.5, it then follows that W+ (H1, H1 + A) W Pl = P1
= W+(H1, H1).

Remark 4.17. The above results on the continuity of W± (H2, H1) as
functions of H1, H2 are very weak inasmuch as a very strong topology is
employed for H1, H2. A stronger result is obtained by using Theorem 4.12
instead of Theorem 4.4. Thus, for example, W+ (H2 + A, H1) - W+ (H2, H1)

if A tends to zero in the sense that 11 (H2 + A - c)-1 - (H2 - C)_1111-+ 0
for some nonreal C; here A need not even be bounded'. In general
Wt (H2, H1) are not continuous in H1, H2 jointly2.

Problem 4.18. Discuss the continuity of Wf (H2, H1) in Example 4.10 when q (x)
is changed.

§ 5. A stationary method
1. Introduction

There are other ways to construct the generalized wave operators
Wt (H2, H1). In contrast with the "time-dependent" method developed
in preceding sections, these schemes do not make explicit use of the
"time variable" t, and in consequence are known as the stationary

1 It is difficult to deduce a stronger continuity of W± (H2, H1) by the method
used above. But there is a different topology for H1, H2 under which W± (H2, H1)
aquires stronger continuity, for example, continuity in norm. A special case will be
considered in the following section. The discontinuity of Wf in norm was discussed
by PUTNAM [7].

2 See T. KATO [11].
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methods. There are several varieties among them'. In this section we
shall give an account of one of them, which seems to complement the
time-dependent theory most effectively.

In this method the Wt are constructed as solutions of certain opera-
tional equations. To deduce these equations, it is convenient to start
from the time-dependent formulas (inasmuch as we have defined W±
in the time-dependent scheme). For simplicity let us assume that H2
= Hl + A where A E 9 (H). Then we have the formula (3.21), from which
we obtain the identity

(5.1) WV11) - W (t') = if eitH, Ae-itHi dt
t'

(see the proof of Lemma 3.8). Similarly, we have by exchanging Hl, H2,
r.

(5.2) W(t")-'-W(t')-'=,-i f eitH,Ae-lH,dt.
11

Suppose now that W+ = s-li(t) PI exists. Then W (t)-' W. Pl5
as t -+ co. Thus (5.2) gives, when multiplied by - W+ from the right,
with t' = 0 and t" co

Co

(5.3) W + - PI = i f ei tHl A W+ e- i 1H' d t (strong),
0

where we have also used the relationship e_ i tH= W+ = W+ e-i tH,
C

[see (3.7)]. The integral on the right of (5.3) exists as the strong limit of f
0

as t"-+ oo, which is indicated by the symbol (strong).
At this point it is convenient to introduce the notations

(5.4) f1 T= f;,T=i f eitH,Te- ItH- dt,
0

whenever one or both of the integrals on the right exists as the strong
t"

limit 2 off as t" -+ ± oo. Then (5.3) can be written
0

(5.5)+ W+ = PI + f'j (A W+) .

Similarly, if W_ = W_ (H2, HI) exists, it must satisfy

(5.5)_ W_ = PI + f i (A W_) .

Let us now forget all about the assumption on the existence of
Wt (H2, HI). Instead we start from the "integral equations" (5.5) f

i For stationary methods see BIRMAN and ENTINA [1], DE BRANGES [1],
T. KATO [10], KURODA [7], [8] and the papers related to the Friedrichs equation
referred to in footnote I on page 553.

2 Sometimes it is convenient to define weak 1'i, in which weak convergence is
used instead of strong convergence. We do not consider this definition, however.
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and try to construct W+ as their solutions. These equations are "statio-
nary", for the time t does not appear in them explicitly.

The operations 1'1 and the equations (5.5)± were introduced by
FRIEDRICHS, though the original definition is formally different from the
above'. It should be noted that they are linear operators acting in the
space _I(H) of bounded linear operators in H ; their domains are not
the whole space 9(H) since (5.4) need not exist for all T E .4(H).

In the following paragraphs we shall study basic properties of I'1
and, using the results obtained, show that the solutions of (5.5) ± are
indeed the generalized wave operators W± (H2, H,). Then we shall
proceed to the problem of solving (5.5) f.

2. The I' operations
The T1 = I'H1 as defined by (5.4) depend on the selfadjoint operator

Hl. In this paragraph we write H for Hl and I't for T1; H may be any
selfadjoint operator. The domains and ranges of T+ are denoted by
-9 (f) , . ? (TI), respectively ; these are linear manifolds of a (H).

Lemma 5.1.2 Let B E .4(H) commute with H. Then T E -q (I'+) implies
that B T and T B are in 3 (T+) and I'+ (B T) = B (T+ T), T+ (T B)

(T+ T) B. Similarly for F-.
Proof. Obvious since B commutes with e+ i tH.
Lemma 5.2. Let T E -9 (T+) and S = T+ T. Then S D (H) C D (H),

Tu = SHu - HSu for every u E D (H) and Se-itH- 0 as t--> +oo.
s

Similarly for T-, with + oo replaced by - oo in the last proposition.
Proof. We have

+00
(5.6) eitH Se-"H = i f e'BH Te-18H ds (strong)

i

as is seen by multiplying (5.4) by 01H from the left and by e-i4H from the
right. Denoting by S (t) the right member of (5.6), we have ei tH S
= S (t) 04H. Since d S (t)/d t = - i ei tH T e- i tH in the strong sense, we have

d ei4HSu= d S(t)eitHu=-ieiOHTu+iS(t)e' Huat at
for u E D (H). Thus ei 1H Su is strongly differentiable in t, which implies
SuE D(H) (see Remark IX-1.5) so that (d/dt) eitHSu= ieitHHSu.

1 Friedrichs defines T, T for integral operators T of special types; see FrIED-
RICHS [2], [3], [7]. (5.5)± are called the Friedrichs equations. For these equations
see also FADDEEV [3], LADYIENSKAJA and FADDEEV [1], REJTO [1], [2], SCHWARTZ
[2], [3], [4]. A discrete analogue of the Friedrichs equation was considered
recently by FREEMAN [1], in which T is defined in terms of a discrete semigroup
instead of a group e- «$.

9 The properties of P± given in the following lemmas are proved in FRIEDRICHS
[2], [3]. Here we need different proofs since we employ a formally different definition
of r±.
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On setting t = 0, we thus obtain HSu = - Tu + SHu, which proves
the first part of the lemma.

The last part follows from (5.6), which implies that ettHSe-t1H_,0

Sas t -- +oo; multiplication from the left by the unitary operator e-{tH
gives Se-ttH-, 0.

s

Lemma 5.3. A necessary and sufficient condition for an S E 9(H)
to belong to R (T+) is that S D (H) C D (H), S H - H S [defined on D (H) ]
be bounded, and Se-ttH-, 0 as t-+ +oo. In this case S = T+ T if T is the

s

closure of S H - HS. Similarly for T-, with + co replaced by - oo.
Proof. The necessity part was proved in Lemma 5.2. To prove the

sufficiency part, we note that

(5.7) ds ei8H Se-88H u = i eisH(HS - SH) a-t8H u

if u E D (H), for then e-"H u E D (H) and so Se-{8H u E D (H) by hypo-
thesis. Since HS - SH can be replaced by its closure - T, we obtain
by integrating (5.7) on 0 S s S t

(5.8)

t

0

Here the restriction u E D (H) can be removed, since the operators
involved are bounded and D (H) is dense in H. Then, going to the limit
I--> + oo and using the assumption S e-t t H -+ 0, we see that the right

s

member of (5.8) has the limit - Su. This means that I'+ T exists and
equals S.

Lemma 5.4.1 Let T', T" E .9 (I'+). Then (I'+ T') T" + T' (I'+ T")
belongs to .9 (1'+) and

(5.9) I'+ [(f+ T') T" + T' (1'+ T") ] = (I'+ T') (I'+ T") .

Similarly for I'-.
Proof. Set r+ T' = S', r+ T" = S". We claim that S' S" E 9P (I+)

Since both S' and S" map D (H) into itself by Lemma 5.2, S' S" has the
same property. If u E D (H), we have

(5.10) S'S"Hu-HS'S"u=S'(S"Hu-HS"u)+ (S'H-HS')S"u
=S'T"u+T'S"u

by Lemma 5.2. Thus S' S" H - HS' S" has a bounded extension

(5.11) T=S'T"+T'S"Ef(H).
Finally
(5.12) 5'S" e-ttH= S'(S"e-t.tH) 0 as t-).+oo

s

(eitH Se-itH - S) u = - (i f eisH Te-t8H ds) u
.

1 Similarly one can deduce rf [T' (I'-. T") + (r+ T') T"] = (r+ T') (I' T"),
assuming T', T" E .9 (I'+) n 9 (I'-), and many other formulas of a similar kind.
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by Lemma 5.2. It follows from Lemma 5.3 that T E -9 (P+) and F+ T
= S' S", which is exactly (5.9).

Remark 5.5. Lemma 5.3 shows that the operator I'+ is in a certain
sense inverse to the commutator operator S-* [S, H] = SH - HS.
(5.9) is a relation inverse to the formula

(5.13) [S'S", H] = S' [S", H] + [S', H] S".

Lemma 5.6. 1/ both T and T* belong to-9 (I'+), then (I'+T)* _ F+ (T*)
Similarly for T-.

Proof. Obvious from the definition (5.4). Note, however, that TE9 (I'+)
need not imply T* E .9 (I'+).

Remark 5.7. We have considered above the operations I'+ T only for
T E a (H). This restriction is neither necessary nor natural, and can be
weakened to some extent. Set

(5.14) (I's T)u= feitHTe-atHudt.
0

(5.14) has a meaning for u E D (H) at least if T is relatively bounded
with respect to H. If (I's T) u has a limit v as s -. + co, we may write
v = S' u. If S' is bounded, its closure determines an operator S E -4 (H),
which we define as T+ T. Most of the results stated above remain valid
for this generalized definition of I'+, but we shall not consider it in detail.

3. Equivalence with the time-dependent theory
We can now prove
Theorem 5.8. Let H1 and A be selfadjoint and let A E 9 (H). Suppose

that there exists a W+ E . (H) satisfying (5.5)+. Then the generalized wave
operator W. (H8, H1) exists and coincides with W+, where Hz = H1 + A.
Similarly for (5.5)_.

Proof. Since W+ - P1= fj (A W+), it follows from Lemma 5.2
that (W+ - PI) H1 u - H1(W+ - P1) u = A W+ u for u E D (H1). Since
P1 H1 u = H1 P1 u, this implies H$ W+ u = W+ H1 u or

(5.15) H2 W+) W+ H1 .

This further implies (H2 - C)-1 W+ = W+ (H1 - c)-1 for every nonreal
C and hence (recall the construction of e'1H*, IX-§ 1.2)

(5.16) ei t H, W+ = W+ et t H, _00<t<+00.

It follows also from Lemma 5.2 that (W+ - Pl) e-1tHi -, 0 as
g

t-* --oo. In view of (5.16), this implies a-stHa W+ - e-ttH' P1- 0. On
multiplying from the left by ettH., we obtain W+ - ettH, a-ttH, P1 0.

This shows that W+ (H2, H1) exists and coincides with W+.
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Remark 5.9. The equations (5.5) _ make sense, and can have solutions,
even if A is not symmetric. The above proof is valid in this general case
except for the multiplication by eitH. used in the final part; note that
i H2 = i (H1 + A) is still the generator of a quasi-bounded group (see
Theorem IX-2.1) but the group may not be bounded. In particular we
note that (5.15), (5.16) are valid for a non-symmetric A.

4. The I' operations on degenerate operators
In this paragraph we consider a selfadjoint operator H with the

spectral family {E (A.)} and the operators I' = I. We first ask under
what conditions an operator

(5.17) T= ( g) f

of rank one belongs to 9 (f+), where f, g are assumed to be absolutely
continuous with respect to H.

For any u E H we have [for the notation r see (5.14)]
a

(5.18) (I'a T) u = i (2;r)1/2 f 0., g (t) ei t H / d t
0

where
00

(5.19) 0u,g(t)= (2n)-1/2 (e-itH u, g) = (27v)-1/2 f e-itAeu,g(A)dA
-00

with

(5.20) a, (E (1) u, g) E L1(- co, co)

note that (E (A) u, g) is absolutely continuous if g is (see Theorem 1.7).
Using the spectral formula eitH = f eitA dE (d), we have from (5.18)

(5.21) (I', T) u = i (27v)1/2 f (f ou, g (t) eitx dl) dE (2) f = i o'a
-00

where
a

(5.22) Qau,g(A)= (2 v)1/2 f cu,g(t)eitxdt.

0

(2r)-1 tsau,g may be regarded as the inverse Fourier transform of
Xa (t) 0., g (t), Xa (t) being the characteristic function of the interval (0, a).

Suppose now that (we write Cog for eg, g)

(5.23) IIIglI12= IIPgll00= supd(E(A)g,g)/d)<ool.

Then cu, g E L2(-00,00) with 110u, gll 5 1VIgIUU Iull (see Lemma 4.5). Thus
xa 0u, g -' X+ 0u, g in L2 as a-* + oo, where x+ is the characteristic function

1 Here and in what follows we write simply sup where we should write ess sup.
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of (0, oo). Going over to the Fourier transforms, we see that as ..,gi ou,g
in L2, where a,+,,/2 n is the inverse Fourier transform of x+ 0u, g :

00

(5.24) (2n)'/2l.i.m. f 0.,, (t) ell' dt,
0

so that
(5.25) Il au g1l S 2nII ).,ell S 2n lull 111 llI

Now it follows from (5.21) that (F,,+ T) u tends as a- - + oo to

(5.26) (r+ T) u = i au g (H) /

provided III/III < oo too. In fact lla++u,g(H) f - au g(H) /112 = f
a,, ,g (A) l2 (d/d 1) (E (2) f, f) d2 < Il oa u,g - au,gII2111/1112 -; 0. This shows

that r+ T exists and justifies the notation (r+ T) u used in (5.26). At the
same time we have II (F+ T) ull S ll a,+ti,gll 1l1/1I1 s 2n lull III/III IIIglII Hence

(5.27) I I r + T I I S 2a 111/111 I I IgI l l

As was seen above, the Fourier transform of a+, 9/2n is x+ times the
Fourier transform of o., g. If we set

(5.28) oru, g = 2 n G+ Pu, g ,

G+ is an orthogonal projection in L2, being the Fourier transform of the
multiplication operator by X+(t). G+ is associated with the so-called
Hilbert transform.

A convenient expression for G+ is given by

(5.29) G+ = s-lim G8 , G8 P (2) _
ey0

00

1

2n i , fL - R- .du.
-00

To prove this, we note that the multiplication operator by X+ (t) is the
strong limit as e \ 0 of the multiplication operator by e-e t x+ (t). Going
over to the Fourier transform, the latter operator becomes

00 00

G6 Lo(A) = (2;r)-If esta e-8t dt f e-ctr. P (,u) d,u
0 -00

which is equal to (5.29).
r- T can be dealt with quite in the same way. In the final result,

it is only necessary to replace G+ by G- defined by replacing a by - e
in (5.29). In this way we have proved

Lemma 5.10. Let T = ( , g) / be an operator of rank one, where /, g
are absolutely continuous with respect to the sel f adjoint operator H. 1/ 111/111
and IIIgIII are finite, PI: T exist and (I'1 T) u = i au g (H) f for any u E H.
Here au g = 2n G1 e.,g and Qu, g (R) = d (E (.I) u, g)I d 2 E Ll n L2. We
have 111" Tll s 2n 111/111 IIlgill.
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We now consider an operator of finite rank

(5.30) T gk) fk
k=1

where all the f k, g, are absolutely continuous with respect to H. Since T
is the sum of operators of rank one, application of Lemma 5.10 shows
that l'tA exist if the IIIfkIII, IIIgkIII are finite and IIP All S 2n' IIIfkIII IIIgkIII
But we shall deduce a somewhat sharper estimate.

Lemma 5.11. Let T be as above. Then I'} T exist and II 1':L- T II
m m

5 2 n IX f where IX2 = sup fk (A) and f2 = sup f Pg, (A). Here
k=1 k=1

Pf(A) = Pf,f(2) = d(E(A) f, f)/dA.
Proof. By Lemma 5.10 we have (I't T) u = i f vug, (H) /,. Hence

k=1
m

II (l't T) ull 2 = f ((1g, (H) I, , Qug, (H) fk) _
i,k=1

_ I f 1u g, (A.) o d (E (A) fs, fk) 5
i,k

f E laug, (2) I lau g, (A) I ef, (A)112 ef, (A)1/2 d A S [by (1.9)]
9, k

f [,f Iorug,(A)I Pf,(A)1/2]2d2
k

5 f (E ICug,(A)I2)(.' Pf,(A))dA

X2, IIQu g,112 S (2n IX)2, Ileu,g,ll2 -
k k

_ (2n IX) 2f f I d
(E (A) u, gk)I2dA

5 (2 n IX) 2 f ess (A) (' 0,, (A)) d d 5

5 (2nIXf)2f ou(d)dA= (2nat ,)2Ilull2.

[by (1.9)]

5. Solution of the integral equation for rank A = 1
We shall now solve the "integral equations" (5.5). For simplicity we

assume in the remainder of this section that H1 is spectrally absolutely
continuous so that P1= 1, and we shall write H for H1. Introducing for
convenience a numerical parameter x, we thus consider the equation

(5.31) W= 1+xF(AW);
here T and W stand for either of 1'1 and Wt, respectively.

A natural idea for solving (5.31) is to use a successive approximation:
M

(5.32) W = W (M) = E Mn W (n) , W (o) = 1 ,
n=o

W(n+1) = I'(A W(n)) , n = 0, 1, 2, ... .
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But it is not at all clear whether all the W(n) can be constructed, for I'
is not defined everywhere on M(H).

We shall show, however, that this method works if A is of rank one :

(5.33) A= (,g) l
and if /, g are restricted properly. We shall later extend the results to
more general cases. We do not assume A to be symmetric; it is an interesting
fact that (5.31) can be solved for a non-symmetric A.

Suppose 111/111, IIIgIII are finite [see (5.23)]. Then Lemma 5.10 shows
that W M = FA exists and II W (1)lI s 2n III/III IIIgIll To construct W(2)
= I'(A W(1)), we want to apply Lemma 5.10 with T = A W(1) g(1)) f,
where
(5.34) 9(1)= W(1)*g= (I'A)*g= -(I'A*)g= -iae,1(H)g

by Lemmas 5.6 and 5.10 [note that A* _ (, f) g also satisfies the as-
sumptions of Lemma 5.10]. Hence (d/d A) (E (A) g('), g(1)) = I ae,1(A)12

(d/d2.) (E(2) g, g), so that 1119(1)111 5 MIIIg1II < oo if we assume that'

(5.35) II ag,1II 00 = sup l ag, f (2) I = M<-.

It turns out that we can construct the W(n) for n = 3, 4, ... without
introducing any further assumptions. In fact we can apply Lemma 5.10
to construct W(n+1) from W(n), where A W(n) g(n)) / is of rank one
with
(5.36) g(n) = W(n)* g = (- i)n ag,, (H)n g'

which implies as above

(5.37) IIIg(n)III s Mn IIlgfII <

(5.36) can be proved by induction; we have g(n+1) = W(n+1) * g
_ (T A W (n)) * g = - [I' (A W (n)) *] g = - i ag,1(H) g(n) since (A W())*

, /) 9(" ).
It follows also that

(5.38) II W(n+1)11= III'(A W(n))II s 2n Ilig(n)III III/III s 21c Mn 111/1111119111

Thus the series (5.32) converges in norm if I ml < 1/M. It is easy to see
that the sum W satisfies the equation (5.31) : it suffices to show that
P(A W) can be calculated term by term by substituting for W the
series (5.32). This can be done by noting that II I'a (A W) 11 s 2 n Mn I l lfl l l

III9lII and that I'a (A W (n)) g I' (A W(')) as a -+ oo for each n.

1 C,,1 is bounded since leg,,(A)12 S pg(A) ef(A), but it does not imply that
ag,1 = 2n G Qg.1(G = G±) is bounded. It is known that ag, j(A) is bounded (and
Holder continuous) if eg,/ (%) is Holder continuous and goes to zero as I A I -+ oo not
too slowly. In the problem under consideration, it is convenient to assume (5.35).
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Thus we have proved
Lemma 5.12. I/ A = (,g) / where 1111111, 111gI11 are finite and ore s'' 0 = M<oo,

(5.31) has a solution W = W (m) which is holomorphic in x for ImI < 1/M.
For further study of W (m), it is convenient to consider an associated

equation
(5.39) Z= 1 - x r(ZA) ,
which is dual to (5.31) in a certain sense. (5.39) can be solved quite in the
same way as above under the same conditions. We have namely

00

(5.40) Z = Z (x) _ f xn Z(n) , Z(°) = 1 Z(n+1) f (Z(n) A)
n=0

Z(n) A = ( , g) 1(n) , /(n) = Z(n) / _ (- i)n or, g (H)n 1

Since a,., s are, f ii ), we obtain
Lemma 5.13. Under the same assumptions as in Lemma 5.12, (5.39)

has a solution Z = Z(x) holomorphic for Ixj < 1/M.
There is a simple relationship between the solutions of (5.31) and

(5.39). We have namely
Lemma 5.14. For each fixed x with 1xj < 1/M, the solutions of (5.31) and

(5.39) are unique. These solutions are related to each other by Z(x)
= W(x)-1, W(x) = Z(x) -1.

Proof. Let W and Z be any solutions of these equations. Multiplying
the two equations, we have

ZW = 1 -)- x T(AW) - x F(ZA) - x2 F(ZA) .P(AW) .

Using (5.9) and the equations (5.31), (5.39) once more, we obtain

(5.41) ZW= 1+x.F[AW -ZA - xF(ZA) A W -xZA F(AW)]
= 1 + x.F [ZA W - ZA W] = 1.

This implies that Z has range H ; in other words Z is semi-Fredholm
with def Z = 0 (see IV-§ 5.1). In particular it is true of the Z(x) of
Lemma 5.13 for all x. But since Z (x) is holomorphic in x, it follows from
the stability theorem for the index (see Theorem IV-5.17) that nul Z (x)
is constant. Since Z (0) = 1, this constant must be 0. Thus Z (x) maps H
onto itself one to one, and Z(x)-1 has the same property.

Now (5.41) gives Z(x) W = 1, hence W = Z(x)-1. Since this is true
of any solution W of (5.31), the solution of (5.31) is unique. Similarly,
using this W = Z (x)-' in (5.41), we have ZZ (x)-1 = 1 or Z = Z (x). Since
this is true of any solution Z of (5.39), the solution of (5.39) is unique'.

1 One can argue without using the index theorem. We have Z (x) W (x) = 1 by
(5.41). Since W (x) and Z (x) are holomorphic in x with W (0) = Z (0) = 1, W (x) -1
exists for sufficiently small 1x1 and Z (x) = W (m)-1, hence W (x)Z (x) = 1. But since
W(x)Z(x) is holomorphic for (x1 <1/M, we have W(x)Z(x) = 1 for 1x1 < 1/M.
Thus Z(x) = W(x)-1 for 1x1 < 1/M. The uniqueness then follows from (5.41). For
example, any W must satisfy Z (x) W = 1, hence W = Z (x)-1 = W (x).
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Summing up the above lemmas, we have
Theorem 5.15. Let H be self adjoint and spectrally absolutely continuous,

let A = ( , g) / where III/III < co, IIIgIII < oo and IIori gII. = M < oo. Then
(5.31) and (5.39) have unique solutions W+ (x) and Z+ (m), respectively,
for r= I'H and l or I ml < 1/M. These solutions are holomorphic in x and are
inverse to each other. Similar results hold with F = F . H (x) = H + x A
is similar to H : H (x) = W+ (x) H W+ (x) -1. If f = g and x is real, then
H (x) is self adjoint, the Wt (x) are unitary and coincide with the wave
operators Wt (H (x), H), and H (x) is unitarily equivalent to H. The spectral
family E,(A, x) for H (x) is holomorphic in x (for real x) for each fixed A 1.

The similarity of H (x) to H follows from Remark 5.9 and the identity
of the W± (x) with the wave operators follows from Theorem 5.8. Note
that II o ,II = II Qj,t II so that both W± (x) exist if g = f . The assertion
on E (A, x) follows from E (2, x) = W+ (x) E (A) W+ (x) -1.

6. Solution of the integral equation for a degenerate A
The results of the preceding paragraph can be generalized to the case

in which A is degenerate (of finite rank m)

(5.42) A gk)fk, f,,gkEH
k=1

in a straightforward fashion. (We keep the assumption that H is spectrally
absolutely continuous.) We can use the successive approximation (5.32)
to solve (5.31). In fact, it is easy to see as before that, at least formally,

m

(5.43) A W (n) = v (, g$ )) /A
k=1

M
(5.44) g")= WOO gk= -i ak,s(H)g}n-1)

i=1
where we have written ik, j = ig,,, f, for brevity. It is easy to see as before
that these results are valid if the IIIfaIIj, IIIgkIII and IIO'k,,II. are all finite.

To estimate II W (n)II , we first observe that Op (/,%)1/2 = [d (E (A) f , f) fd A]1/2

satisfies the triangle inequality in / for each fixed d; Nr+ g (d)1/2 5 Pf (x)1/2 +
+ Qg(A)1/2, as is easily seen from (1.9). We apply this inequality to the
sum (5.44) ; on writing &) (A) for Pe (A) with g = & for brevity, we obtain

m

(5.45) Pk") (x)1/2 S IQk, 7 (A) I
n -1) (A)1/2

i=1

[note that f = a (H) g implies e, (d) = Io' (A) I2 Pg (A) ]

1 In the time-dependent theory we did not prove any theorem which asserts
the continuity in norm of W} (H + x A, H) in x (to say nothing of analyticity).
Thus Theorem 5.15 supplements earlier results.
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Let M (A) be the norm of the linear operator defined by the matrix
(A) 1) acting in the m-dimensional unitary space Cm. Then (5.45)

gives

(2))1/2 C M (A) (E Pk" -1)

Successive application of this formula gives

(5.46) (E ek) (A))1,2 5 M (A)n (E e7' (A))1/2

Set M = supM (A) ; M is finite since we assumed that all the IIa;, 7,1I

are finite. Applying Lemma 5.11 to T = A W (n) [see (5.43) ], we thus
obtain
(5.47) II W (n+1)II = II P(A W(n)) II s 2n (sup E ek") (2))112 (Sup L ef. (A))111:<

2nMnllLeg.11121IL'ef.Illm"

It follows, as in the preceding paragraph, that the series for W(x)
converges for Ixl < 1/M and gives a solution of (5.31). All further results
of Theorem 5.15 can now be deduced exactly as before. Thus we have
proved

Theorem 5.16. In Theorem 5.15 replace A by A gk) fk where
k=1

IIIfk1II < oc, IIIgkIII < oo and < oo, j, k = 1, ..., m. Then the asser-
tions remain valid if M = sup M (A), where M (A) is the norm of the

- <A<CO
m x m matrix (I e., f (A)) as an operator in the m-dimensional unitary
space. (In the last statement o l Theorem 5.15 replace f = g by fk = ± gk,
where ± can be chosen at random for each k.)

Remark 5.17. Let M' be the norm of the m x m matrix
then M _< M'. This is due to the simple fact that the norm of a matrix
with nonnegative elements is not decreased when some of the elements are
increased.

Remark 5.18. These results can be further generalized to the case in
which A is no longer degenerate and the series in (5.42) is infinite.
Looking at (5.47), we can expect the successive approximation to
converge if

(5.48) ll' ef.ll. < oo , lIE eejlo, < oo and IxI < 1/M ,

k k

where M = sup M (A) and M (A) is now the norm of the operator, acting
in C' = 12, defined by the infinite matrix (log,, f; (A) I). It should be
remarked, however, that some supplementary assumption such as

(5.49) EIlfkll llgkll < 00

would be required in order that A E 9(H), for we have defined 1'X
only for bounded X. But (5.49) is not essential and can be replaced by a
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weaker assumption. Incidentally, (5.49) implies that A E 9, (H) (trace
class).

Remark 5.19. We can further extend the above results to the case of a
continuous analogue of (5.42). Suppose that

(5.50) A= f ( ,gk) fkdk

where f k and gk depend on a continuous parameter k. It is natural to
expect that the technique of successive approximation can be applied
in the same way as above if

(5.51) III et', dkll. < co , II f eeR dkll QQ
< oo and Iki < 1/M ,

where M = supM (A) and M (A) is the norm of the integral operator TA,
acting in L2, represented by the kernel

(5.52) t (k, j ; A) (A)

(5.51) is an analogue of (5.48).
We have tacitly assumed that fk, gk E H. But even this assumption

could be omitted. Of course various quantities used above would then
lack a rigorous meaning, but they admit natural interpretations in
concrete problems. Suppose, for instance, that H = L2 (0, oo) and H is
the multiplication operator by the coordinate A. Suppose further that the
fk = fk (A) are functions not necessarily belonging to L2. Then (5.50)
should be interpreted as an integral operator with kernel a (A, ,u)
= f f k (A) gk Fiz) d k, which may well be a bounded operator even if the
fk, gk do not belong to L2. Since d (E (A) /, #d A = I (A) gg if t, g E H,
we should take et,, ,,(A) = /,(A) gk7( even when the /1, gk do not belong
to L2.

Again, a supplementary condition like (5.49) would be required to
ensure that A is bounded, if we strictly observe the definition of I' as
given above.

We shall not give a detailed proof of these results. It must be remarked
that such a proof could not follow too closely the line of the "discrete"
case (5.42), since et,, gR (A) may not have a Fourier transform 1.

7. Application to differential operators
As a simple application of the foregoing results, let us consider the differential

operators
(5.53) H = - d21d x2 , 0 < x < oo,

1 A justification of these generalizations is given in T. KATO [18] using a
somewhat different method.

2 For a more complete discussion of this example and its generalizations to
higher-dimensional case, see T. KATO [18].
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with the boundary condition u (0) = 0, and the perturbed operator H (x) = H + x A
where A is the multiplication operator by a function q (x). We assume for simplicity
that q (x) is bounded.

H is selfadjoint in H = L2(0, oo) (see V-§ 3.6). It can be "diagonalized" by the
sine-transformation

(5.54) u(x) -*-R(k) = (2/n)1/2 f sinkx u(x) dx
0

in the sense that IIiII = IIuDI and

(5.55) (Hu)'(h) = k2 a (k) , 0 < h < oo .

To transform this multiplication operator k2 to the standard form, we take A = k$
as a new variable. Noting that

(5.56)

we set

0 f00

IIaII2 = f Id.(k)I2 dk = 2 J Ia(A1/2)12 A-1/2 dA ,

0 0

00

(5.57) 24 (A) = 2-1/2 A-1/4 1 (A1/2) = n-1/2 A-1/4 f sin (A1/2 x) u (x) dx .
0

u (x) -a i (A) is a unitary transformation of L2 (0, oo) to itself and H is thereby
transformed into the multiplication operator by A:

(5.58) (H u) *(2) = A U (A) .

As is easily seen, the multiplication operator q (x) in the x-representation is
transformed into an integral operator with the kernel

(5.59) aC(, A) = n-1 (p A)-1/4 f sin (,u1/2 x) sin (A1/2 x) q (x) dx.
0

Now (5.59) has the form (5.50) with k replaced by x and with

(5.60)
!a (A) = n-1/2 A-1/4 sin (A1/2 x) q, (x)

g: (A) = n-1/2 A-1/4 sin (A1/2 x) q2 (x)

where q, and q2 are such that q (x) = q1 (x) q2 (x), and 1q, (x) I = Iq2 (x) I = Iq (x)11/2.

fx and gx do not belong to L2 (0, oo), but it is not a serious difficulty' since A is a
bounded operator. In order to apply the results of Remark 5.19, we have to calculate
ex, a and M.

Since H is multiplication by A in the A-representation, we have ex (A) = 0 for
A < 0 and (formally)

21x (A) = d (E (A) fx, fx) = I fm (A) 12

=7g-IA-112Sin2(AI12X)lq(x)I=Sn-lxlq(x)I

I This apparent difficulty can easily be overcome by replacing & (A), g., (A) by
fx (A) (1 + a A)-', g. (A) (1 + e A)-' and going to the limit e 14 0.
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for A Z 0 [note that sins (A112 X) S Isin (Al/2 x) I S A1/2 x]. Hence the first inequality
of (5.51) is satisfied if

00

(5.61) f xjq(x)I dx < oo.
0

The same is true for the second inequality.
To compute M, we note that

Pex.fY (A) = g. (A) /Y (A) = n-1 A-1/2 sin (Al/2 x) sin (A1/2 y) q1 (y) q2 (x)

for A 0 and = 0 for A < 0. Hence a s, f,, = 2 n G+ C e:.fy is given by [see (5.28) ]

(5.62) oes.f,,(A) _

00

-1/2 sin /M..1/2 x) sin (,2112 y)1

q1 (Y) 42 (x) "M
1-1 1f ei A- i d

uOT 810
J
0

-
Assuming that 0 < x S y, an elementary calculation shows that the limit on the
right is equal to

- z i A-1/2 a-'YAI" sin (A1/2 x) for A> O
- n i IAI-I/2 e Y ICI"' sinh (IAI1/2 x) for A < 0 .

As is easily seen, these two expressions are bounded by n x = n min (x, y) in
absolute value. Hence we have from (5.62)

(5.63) I0rea.fy (A) I S minx, y) Iq (x) I1/2 I q (Y)11/2 ,

Now the norm M (A) of the integral operator in L2 (0, oo) with the kernel I0'e:. fY (A) I
does not exceed its Schmidt norm N(A). But (5.63) shows that

00 00

00 00

(5.64) N(A)2= f f Ios:.fY(A)I2dxdy5 f f [min (x,y)]2Iq(x)IIq(Y)I dxdy-N2.
00 00

Therefore, we have M(A) 5 N for all A and hence M = supM(A) S N. Thus we
x

conclude from Remark 5.19 that the results of Theorem 5.16 are valid if (5.61) is
satisfied and if'

(5.65) IxI < 11N.

Remark 5.20. Since [min (x, y)]2;5 x y, we have

(5.66) NS N'm f xIq(x)I dx.00

0

Hence (5.65) is satisfied if IxI < 1IN'. In other words, - d2/dx2 and - d2/dx2 + q (x)
are similar [and unitarily equivalent if q (x) is real] provided N' < 12. It is interesting
to note that this condition is the "best possible". In fact, it is known (and easily

00

verified) that for any N' > 1 there is a real q (x) such that f x I q (x) I d x = N' and yet
0

- d2/d x2 + q (x) has a negative eigenvalue so that it cannot be similar to - d2/d x2
[for example it suffices to set q (x) = - 1 /s for 1 5 x S 1 + a and q (x) = 0
otherwise, where a is to be chosen very small].

I Actually (5.61) is not necessary if N < oo; see T. KATO [18].
2 Cf. MOSER [1] where similar results are deduced under a stronger condition.

Cf. also SCHWARTZ [2].
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Supplementary notes

Chapter I

1. (§ 4.6) Suppose P, Q are orthogonal projections in a unitary space.
The fact that R = (P - Q)2 commutes with P, Q leads to a simultaneous
spectral decomposition of P and Q. Each eigenspace M (2) of the selfad-
joint operator R (0 _< R:_5 1) for the eigenvalue A reduces both P and Q.
In M (2), P and Q behave essentially like two one-dimensional pro-
jections in a two dimensional space, their ranges having the angle
0 if 2 = sin20. For details see DAVIS [2].

2. (§ 4.6) There are other invertible operators U that implement the
similarity between P and Q than the one given by (4.38). For example, a
simple one is given by U = (1 - R)-1/2 (1 - P - Q) = U-1. But this U
does not reduce to 1 when Q = P.

3. (§ 6.7) The equality IIPII = III - PII in Problem 6.31 was proved
earlier by DEL PASQUE [1].

Chapter II

1. Perturbation theory for operators in finite dimensional spaces has
been greatly extended and refined by BntMGARTEL (1), [4, 5, 6, 7].

2. (§ 1.3) The following simple but basic theorem should be added.
Theorem 1.5 a. Fix C in Theorem 1.5. Then either i) R (C, x) does not

exist for any x E Do, or ii) R (C, x) is meromorphic in x E Do (so that it exists
for all x except for isolated points).

Proof. If det (T (x) - C) = 0 identically in x, we have the case i).
Otherwise ii) follows easily from the matrix representation of R (c, X);
note that the matrix elements are polynomials in those of T (X) - C
divided by det (T (x) - C), which is holomorphic in x.

3. (§ 5.4-7) The troubles that arose in these paragraphs about the
differentiability in x of the eigenvalues and eigenvectors of T (x) are
solely due to the possibility that the number s (x) of distinct eigenvalues
may change discontinuously with x. If s (x) is assumed to be constant, all
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the difficulties disappear and eigenvalues and eigenprojections behave as
smoothly as the operator T (m) itself. For example, suppose that T (m)
depends continuously on x = (xl, ..., E Do C R' and that s (x) = s
is constant. Then the results of par. 1-2 show that the eigenvalues of
T (x) can be numbered as 2 (x), ..., 2 (x), so that each Ah (x) is continuous
in x, at least in a neighborhood of any given point in Do, which we may
assume to be x = 0. Then the eigenprojection Ph (x) associated with
2h(x) is given by the integral (1.16), in which r = Ph may be chosen as
a small fixed circle about 2h (0) as long as INI is sufficiently small. Suppose
now that T (m) is Ch (k-times continuously differentiable). Then it is easy
to see that R (C, x) is also Ch in x uniformly for C E Ph. It follows from the
integral representation that Ph (x) is also Ch. Then the formula (2.5) with
m = mh = dim Ph (x) = const shows that 2h (x) is also Ch. That the eigen-
vectors (or generalized eigenvectors) can also be chosen as Ch functions
is seen by the argument given in § 4.1. Similar results hold when T (x) is
analytic in x where x is a set of several real or complex variables
xl, ..., For another proof of differentiability of a more "real variable"
type, see NoMizu [1].

4. (§ 6.5) Add DAVIS [3], DAVIS and KAHN [1] to footnote on p. 125.

Chapter III

1. The following may be added to the general reference : DIEUDONN>
121, DUNFORD and SCHWARTZ (2), GOFFMAN and PEDRICK (1), REED
and SIMON (1).

2. (§ 2.1) For integral operators see JoRGENS 11).

3. (§ 4.2) The proof of Theorem 4.10 given in text is too long. A
simple proof is given, for example, in YOSIDA (1), p. 282.

4. (§ 4.3) We have the following theorem on det (1 + T).

Theorem. Let T be a degenerate operator in X. Then (1 + T) E 9 ( X)
exists i f and only i f det (1 + T) + 0.

Proof. Necessity. Let TR be defined as in text. If det (1 + T) = 0,
then det (1 R + TO = 0 and there is a nonzero u E R such that u + T u = 0.
Hence 1 + T is not invertible. Sufficiency. First we show that 1 + T is
invertible if det (1 + T) + 0. Suppose u + T u = 0. Then u = - T u E R
so that (1R + TO u = 0. Since det (1R + TR) + 0, it follows that u = 0.
Next we show that 1 + T is onto X. Let / E X. Then T1 E R. Since
det(1R + TR) + 0 implies that 1R + TR is onto R and has a bounded
inverse, there is v E R such that v + T v=- T j with IIvhI 5 c 11 T111 with c
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independent of /. If we write u = / + v, we have u + T u = / with
IIuII < (1 + c II TII) IIf1I. Hence 1 + T is onto X with (1 + 7)-1 E -4 A.

Chapter IV
1. (§ 1.2) Inequality (1.15) is not very sharp. The factor 2V-2 can

be replaced by 2; this follows from a general theorem for the generator
of a contraction semigroup due to KALLMAN and ROTA (1). If p = 2, it
can even be replaced by v2 (see HARDY, LITTLEWOOD, and POLYA 111,
p. 187; for an abstract result applicable to this case, see KATO [24]),

2. (§ 2.4) For further results for the gap between subspaces in a
Hilbert space, see LABROUSSE [1].

3. (§ 3). For explicit estimates for the eigenvalues of differential oper-
ators, see e. g. BAZLEY [1], BAZLEY and Fox [1], GOULD (1), STENGER [1],
WEINSTEIN [1-5].

4. (§ 4.1) The minimum gap between two subspaces in a Banach
space was studied in detail by DEL PASQUE [1, 2].

5. (§ 5.1) For more results related to nullity, deficiency, and other
notions (ascent, descent, etc.) for linear operators, see TAYLOR [1],
KAASHOEK [2, 3, 4, 5], KAASHOEK and LAY [1], CARDUS [1], NEU-
BAUER [3].

6. (§ 5.1) There is an addition theorem for the index : ind (S T) _
= ind S + ind T. Here S E ' (Y, Z) and T E W (X,Y) are assumed to be
Fredholm and densely defined. Then S T E ' (X, Z) and S T is also Fred-
holm. Moreover, S T depends continuously on S and T in the gap
topology. For the proof see NEUBAUER [3].

7. (§ 5.5) A theorem stronger than Theorem 5.31 is found in MAR-
xus [1]. For more recent results in this direction, see KAASHOEK [1, 2, 3],
OLIVER [1], RIBARI6 and VIDAV [1], BART [1], BART, KAASHOEK and
LAY [1], BART and LAY [1], FORSTER [1], GRAMSCH [1,2].

8. (§6.2) For a further generalization of Theorem 6.2, see How-
LAND [6], which also contains application of the W - A formulas to
embedded eigenvalues of a selfadjoint operator.

9. (§ 6) Analytic functions with values in the set of degenerate
operators have been studied in detail by HOWLAND [7] and some of the
authors cited in note 7 above.

Chapter V
1. The following may be added to the general reference: HALMOS (3),

HELSON (1), PUTNAM (1), REED and SIMON (2), SZ.-NAGY and FOIAq (1).
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2. (§ 3.2) The proof of Theorem 3.1 (convexity of the numerical
range) is quite simple if one notes that the problem is essentially two-
dimensional. Indeed, one wants to show that for each pair z1, z2 E 0 (T),
the segment (z1, z2) is contained in 0 (T). Choose u; such that z7 _ (T u,, uj),
11uiDD = 1, j = 1,2. It suffices to show that if u varies over the unit sphere
in the two-dimensional subspace spanned by u1, u2, then (T u, u) covers
the segment (z1, z2). Thus it suffices to prove the theorem for a two-
dimensional space H. In this case, however, it is a direct consequence of
Problem 3.5. (The answer to this problem is that the numerical range is
an ellipse with the two eigenvalues as foci. For the proof of the theorem,
the exact shape of the numerical range of a two-dimensional operator is
not necessary, but such a knowledge is useful anyway.)

3. (§ 3.11) Regarding the fractional powers of linear operators in a
Banach space [see (3.53)], we refer to a comprehensive study by KOMATSU
[1-6] and YOSHIKAWA [1].

4. (§ 4.1) Regarding Theorems 4.3-4, we want to note that it is in
general impossible to improve the limit 1 of the T-bound of A, even when
both T and A are bounded from below. This is seen from the following
example. Let T = - d2/dx2 + (3/2) x-2 in H = L2 (0, oo). If we choose
D (T) = Co (0, oo), it is known that T is essentially selfadjoint (see VII-
Example 4.15). Let A = - d2/dx2 with the same domain as T. Then a
simple calculation shows that IlA ull s ll Tull. But T + ;CA =
= (1 + x) [- d2/dx2 + (3/2) (1 + x)-1x-2] is not essentially selfadjoint if
x > I because (3/2) (1 + x)-1 < 3/4 (see loc. cit). Note that T and A are
nonnegative.

5. (§ 4.1) The problem considered in Theorems 4.3-4 can be general-
ized to the following. Suppose T E ' (X, Y) is densely defined, where X, Y
are Banach spaces. Let A be a densely defined operator from X to Y such
that A is T-bounded and A* is T*-bounded, with the relative bounds
smaller than 1. Then (T + A)* = T* + A*. For this and related pro-
blems see HESS and KATO [1].

6. (§ 4.1) Theorem 4.6 was strengthened by WvsT [1] to the case in
which the weaker inequality (4.1) [rather than (4.2)] is assumed with
b = 1. It has further been generalized by OKAZAWA [2] and CHERNOFF [2]
to the case in which T and A are accretive (or dissipative) operators in a
Banach space, under certain mild restrictions. (T is accretive if
Ilu + a T ull z Ilull for all u E D (T) and a > 0; T is dissipative if - T is
accretive.) The generalized form of Theorem 4.6 also generalizes Theorem
IX-2.7, with the limit 1/2 replaced by 1. This was first proved by GUSTAF-
SON [1, 2]. For further related results see OKAZAWA [1, 3, 4], YOSHIKAWA [3].
It was found that Theorem 4.6 is often useful for the proof of essential
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selfadjointness in various delicate problems; see KONRADY [1], SIMON [6],
GRCTTER [1].

7. (§ 4.4) Theorem 4.12 implies that if T, S are nonnegative selfad-
joint operators such that D (T) c D (S), then D (T1/2) c D (S1/2). Indeed,
the assumption implies that IISull < c 11 (T + 1) ull for u E D(T) (see IV-
Remark 1.5). Hence 11S1/2u11 < c1/211(T+ 1)1/2u1 by (4.15). Since D(T) is
a core of (T + 1)1/2 by Theorem 3.35, it follows that D (S1/2) ) D (P/2)
with the last inequality extended to all u E D (T1/2). These results are
implicitly contained in VII-§ 4.5. They are special cases of the inter-
polation theorems for the fractional powers of linear operators (see
HEINZ [1], KATO [5, 14], KOMATSU [1-6]).

8. (§ 5.2) Inequality (5.13) is true even for y = 1/2. It is a special
case of the Sobolev imbedding theorem (see e. g. NIRENBERG [1]). Note
that D (Ho) is exactly the Sobolev space H2 (R3) or W2,2 (R3) in the usual
notation.

9. (§ 5.3-4) The essential selfadjointness of the Schrodinger and Dirac
operators continue to be the object of extensive study. The following is a
partial list that may be added to the footnote to Theorem 5.4: FARIS [I),
JORGENS and WEIDMANN (1), SCHECHTER 111, CARLEMAN [1], CHER-
NOFF [3], CORDES [2], EVANS [1], FARIS [3], FARIS and LAVINE [1],
GROTTER [1], HELLWIG [2, 3], JORGENS [2, 3], KALF and WALTER [1],
KATO [21, 25, 26, 28], REJTO [8], ROHDE [2], SCHMINCKE [1, 2], SIMADER
[1], SIMON [6], STETKAER-HANSEN [1], WALTER [1, 2, 3], WEIDMANN [3],
WIENHOLTZ [2], J. WOLF [1]. Here we mention a typical result for
L = -,J + q (z) on Rm. For the minimal operator S to be essentially
selfadjoint, the following is a sufficient condition for q: q = q1 + q2, where
q1, q2 are real-valued and locally square-integrable on Rm; q, (x) Z - q* (I xJ)
where q* (r) z 0 is monotone increasing for 0 < r < oo and q* (r) = 0 (y2)
as r -> oo; the integral of 1g212 on the ball I xJ < r is at most of the order
0 (r2s) with some real number s as r -> oo; and

flvl <,Jg2(x -y)I lylm-2dy-> 0 as r--> 0 uniformly in x E Rm

(lyJm-2 should be replaced by - log lyl if m = 2 and by 1 if m = 1). (In
KATO [25] it was assumed that q* (r) = 0 (r2), but it can be replaced by
q* (r) = 0 (r2) with a slight modification of the proof, cf. KATO [28]).

10. (§ 5.3-4) For further results on the spectral properties of the
Schrodinger and Dirac operators, see ARAI [1, 2], BALSLEV [2-4],
HUNZIKER [2], JORGENS [2, 3], KATO [21], KONNO and KURODA [1],
SCHECHTER [1), [4], SIMON [2], UCHIYAMA [1-3], USHIJIMA [1, 2],
WEIDMANN [1, 2], ZISLIN [2, 3].
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Chapter VI

1. Symmetric forms that are not semibounded, and their relationship
to selfadjoint operators, are considered by Mc INTOSH [1, 2]. An extensive
study of Hamiltonian operators in quantum mechanics defined in terms
of quadratic forms is given by SIMON 111, [3].

2. (§ 1.4) Another convenient criterion for closability is given by the
following theorem, which is a generalization of Theoren 1.27 but which
does not involve an operator in its statement.

Theorem. A sectorial form t is closable if and only if ut E D (t),
It 1 5 M, n = 1,2, ..., and u -* 0 together imply that t [v, -3- 0 for
each v E D (t).

Proof. The sufficiency of the condition can be proved as in
Theorem 1.27, with obvious modifications. To prove the necessity, we
may assume without loss of generality that D (t) is dense in H. Suppose t
is closable and let T be the m-sectorial operator associated with t, the
closure oft (see Theorem 2.1). Then t [v, (T v, 0 for v = D (T).
If we introduce the Hilbert space H4 with = Re t as in par. 3, t is a
bounded form on H4 and {u,,} is a bounded sequence in H4. Since D (T)
is dense in H4 by Theorems 1.21 and 2.1, it follows that t [v, t [v,

0 for each v E D (t).

3. (§ 2.3) For the Friedrichs extension of differential operators with
a singular potential see KALF [1].

4. (§ 2.6) The question raised in Remark 2.29 was solved by McIN-
TOSH [3], who gave an example of an m-sectorial operator T for which
D (Tl/$) + D (T*1/s). In this connection it should be noted that
D (T") = D (T* ") is true for any a with 0 S a < 1/2 and any m-accretive
(not necessarily sectorial) operator T (see KATO [16], SZ.-NAGY and
FoIAq (1J).

5. (§ 4.3) This paragraph has been completely revised. The new
Theorem 4.6a is simpler but stronger than the old Theorem 4.6. The
improvement was made possible by the use of a lemma on differential
equations given in KATO [25], also cited in note 9, Chapter V. The use
of the theory of forms is effective in constructing a selfadjoint restriction
H of L, but the characterization of D (H) would require some other means.
Construction of a selfadjoint restriction of L under very general assump-
tions is given by SCHECHTER [5].
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Chapter VII
1. (§ 1.2) Sometimes R x) may be extended to some x as a pseudo-

resolvent (see VIII-§ 1.1), even when T (x) no longer makes sense. For a
related theory and its application to Dirac operators see VESELI6 [2].

2. (§ 1.3) An interesting application of analytic perturbation theory
to the study of Schrodinger operators, in particular for many-particle
systems, is contained in the theory of dilatation analytic potentials due to
COMBES and BALSLEV. See AGUILAR and COMBES [1], BALSLEV and
COMBES [1], SIMON [5].

3. (§ 1.3) Theorem 1.9 can be strengthened by adding the follow-
ing assertion: in the second alternative case, the resolvent R(1, x)
_ (T (x) - 1)-i is meromorphic in x E Do. Similarly for Theorem 1.10,
with R(0, x) = T(x)-1 instead of R(1, x). These results are direct
consequences of the following theorem.

Theorem. Let T (x) be a holomorphic family for x E Do. Let 2 be an
isolated eigenvalue of T (xo) with finite multiplicity m (this means
2 E P(T (xo)) if m = 0). Then either i) R(2, x) does not exist for any x in a
neighborhood of n , or else ii) R (A, x) is meromorphic in x in a neighborhood
of xo (so that xo is at most a pole of the meromorphic function R (2, x)).

Proof. We may assume xo = 0. In the proof of Theorem 1.7, choose F
as a small circle about 2. Let T' (x), T" (x)be the parts of T (x) in M' (x),
M" (x), respectively. Then 2 E P (T" (x)) so that (T" (x) - 2) -1 E .4 (X)
exists and is holomorphic in x near x = 0. On the other hand,

T' (x) - 2 = U (m) (T' (x) - A) U(m)-1,

where T' (x) is the part in M' (0) of T (x). Since dim M' (0) = m < oo, it
follows from Theorem 1.5a in note 2 for Chapter II that (T'(x) - A)-1

either does not exist for any small x or else is meromorphic. This leads to
the required results. (For related results see STEINBERG [1].)

4. (§ 1.4) A detailed function-theoretic study of the behavior of the
eigenvalues of the operator H = - d2/dx2 + x2 + xx4 in H = L2 (- oo, oo)
is given by SIMON [1]. It is analogous to the situation in Example 1.11
but much more complicated, since we have a singular perturbation here.

5. (§ 4.2) In (4.7) we have to assume that 4 (x) >--_ 1 for all x considered,
not only for x = 0. (But this is not an essential restriction as long as x is
confined to a compact subset of Do.)

Chapter VIII
1. The problem of determining the eigenvalues from divergent per-

turbation series is studied in SIMON [4].
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2. (§ 1.1) We add the following theorem.

Theorem. Let T,, 8 T in the generalized sense and A,, -- A in the
proper sense [so that A E . (X) ]. Then T,, + %A,, g T + xA in the
generalized sense for sufficiently small jxj. x is arbitrary if, for example, T.
and T are selfadjoint operators in a Hilbert space.

The proof is easy, depending on the Neumann series expansion for
(T,, + xA,, - a)-1, etc.

3. (§ 2.5) For approximation of semigoups, see STRANG [1].

4. (§ 3.2) Add HUET [8-16] to footnote to Theorem 3.6.

5. (§3.4) Theorem 3.13a for a monotone nondecreasing sequence of
symmetric forms is a strengthening of Theorem 3.13 of the first and
second editions. Its proof depends on Lemma 3.14a for the equivalence
of closedness and lower semicontinuity of forms. Similar results have
been given by B. Simon, Lower semicontinuity of positive quadratic
forms, Proc. Roy. Soc. Edinburgh 79, 267-273 (1977); A canonical
decomposition for quadratic forms with applications to monotone
convergence theorems, J. Functional Anal. 28, 377-385 (1978).

6. (§ 4.4) When T (x) is selfadjoint, the rate of convergence for the
resolvent, eigenvatues and eigenprojections was studied in greater detail
by GREENLEE [2, 3], based on the theory of forms and interpolation
spaces, where the rate is given in the fractional powers of x. (This does
not mean that the expansion in powers of a fractional power of x is
given.) See also YOSHIKAWA [2]:

7. (§ 5.1) Add CONLEY and REJTO [2], GREENLEE [1], VESELI6 [1]
to the footnote. Spectral concentration naturally occurs when an eigen-
value embedded in the continuous spectrum undergoes a perturbation.
Such a problem was already considered by FRIEDRICHS [3]. For a general
treatment of this problem and related problems, see HOWLAND [2, 4, 5,
8, 9], SIMON [7], THOMAS [1].

Chapter IX

1. (§ 2.3) It was shown by YOSIDA [1] that if D (A) D D (T") for some
a with 0 < a < 1, then A is T-bounded with an arbitrarily small T-bound,
so that the result of Theorem 2.7 holds. Theorem 2.7 itself was improved
by GUSTAFSON [1, 2] by replacing 1/2 by 1. For further generalizations of
this theorem, see note 6 to Chapter V. For the Trotter product formula,
see FARIS [1, 2], CHERNOFF [1, 4], KATO [29].
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2. (§ 2.6) Regarding Remark 2.21, a sufficient condition for U (t, x) u
to have an asymptotic expansion up to x" was obtained by Kai-Nan
Chueh.

3. (§ 3.4) The convergence of operators acting in different Banach
spaces is studied in greater detail by STUMMEL [2-5].

Chapter X

1. (§ 1) For some interesting problems iri perturbation theory see
KREIN [7], BAUMGARTEL [8].

2. (§ 1.1) Theorem 1.6 can be slightly strengthened by asserting that
P commutes with every operator A E,V(H) that commutes with H. The
proof is the same, since A commutes with E (S0).

3. (§ 2.1) A problem opposite to Theorem 2.1 in some sense was con-
sidered by BAUMGARTEL [2], in which the following theorem is proved.
Given any selfadjoint operator H with a pure point spectrum, with
eigenvalues all simple and dense in an interval [a, b], there exists a
selfadjoint operator V of rank one such that H + xV has pure con-
tinuous spectrum on [a, b] for all real x with sufficiently small 1xI.

4. (§ 3.2) Regarding Remark 3.6, we note that a theory with Pr
replaced by a formally different projection is proposed by WILCOX [3].

5. (§ 3.4) For further sufficient conditions for the existence of the
wave operators in potential scattering, see LUNDQVIST [1], JoRGENS and
WEIDMANN [1]. Very general (not necessarily differential) operators are
considered by VESELI6 and WEIDMANN [1, 2]. KUPSCH and SANDHAS [1]
consider scattering by highly singular potentials and show that only their
behavior at infinity matters for the existence of the wave operators. The
situation is different, however, for the completeness of the wave operators ;
see PEARSON [2].

6. (§ 3.4) For the decay rate of wave packets satisfying the Schrodin-
ger equation, see WILCOX [1], HUNZIKER [3].

7. (§ 4.3) For a generalization of the trace formula (see footnote 4 to
Theorem 4.3) to non-selfadjoint (or non-unitary) operators, see LANGER
[2].

8. The last three sections of Chapter X is concerned with scattering
theory, which is currently under rapid progress. Most of the general
theory given in the text is still useful, but there has been much improve-
ment in detail. Moreover, many new ideas, methods, and problems have
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appeared since the publication of the first edition of the book. In what
follows we shall give a brief review of the development. For a general
survey, see also NEWTON 111, DOLLARD [3], DOLPH [3], KATO [23, 27].

(a) Abstract theory of stationary methods. The text is inclined
towards the time-dependent theory of scattering, only a special kind of
stationary method being presented in § 5 (a variant of the Friedrichs
method). Recently, however, more emphasis has been laid on stationary
rather than time-dependent methods, resulting in greater generality,
refinement, and ramification. Basic contributions to the abstract theory
of stationary methods are due to REJTO [1, 2, 4-7] (gentle and partly
gentle perturbations), BIRMAN [9-13], BIRMAN and ENTINA [1, 2],
KURODA [7-12], HOWLAND [1, 3], KATO and KURODA [2, 3], SCHECHTER
[7]. In a certain sense stationary methods are the Laplace transform of
time-dependent methods. The resolvents R H.) are the basic tools in
the former in place of the unitary groups a °6Hi in the latter, and there
are many technical advantages (as well as some disadvantages) in the
use of the resolvents. In the stationary theory one constructs the wave
operators W} independently of the time-limit formulas (3.3). Then W}
are used for the proof of the existence of the time limits limei , e s H, Pl
and their identity with W.

The expression for W} in the stationary methods usually takes the
form of "spectral integrals", such as W. = f A } (A) dEl (A) Pl with
certain operator-valued functions A ± (A), but the interpretation of such
integrals require considerable work. Roughly speaking, the difference
among various stationary methods lies in the different assumptions and
different ways to interpret such integrals. Very often the integrals are
interpreted by introducing a topology, in the space of the operators
involved, which is different from the usual ones, and this is done by using
certain auxiliary subspaces X of H with a topology different from that
of H. Sometimes one can dispense with an explicit use of X by employing
the so-called factorization method (see e. g. KURODA [10], KATO [18], KATO
and KURODA [2, 3]). Other attempts have been made to interpret the
spectral integrals directly (see BAUMGARTEL [3], AMREIN, GEORGESCU
and JAUCH [1]). But it seems to the author that the freedom of the choice
of X is a great advantage in the stationary theory (see, for example, the
application of the general stationary theory to the three-body problem
by HOWLAND [11]).

(b) Trace conditions versus smooth perturbations. In most cases the
time-dependent methods were explicitly or implicitly tied to a trace
condition (which says that a certain operator is in the trace class), at least
when the completeness of the wave operators is concerned. A typical
example is the result on potential scattering given in Example 4.10. More



578 Supplementary notes

general second-order elliptic differential operator in R3 are considered by
IKEBE and TAYOSHI [1], also by using a trace condition. Some of the
stationary methods also use the trace conditions (e.g. BIRMAN, BIRMAN
and ENTINA cited in (a)). On the other hand, some stationary methods
are adapted to "smooth perturbations", in which the resolvents are con-
tinuous up to the real axis in a certain topology (e.g. HOWLAND). It is
possible, however, to construct a general theory that comprises the two
types of perturbation and possibly others (e.g. KATO and KURODA).

(c) Potential scattering. The development of the stationary theory
has made it possible to improve greatly the results on potential scattering
given in Theorem 3.9 and Example 4.10. For example, it has been shown
that W f (H2, Hl) for Hi = -A and H2 = Hl + q (x) in H = L2 (R-) exist
and are complete if q is real and

(1) Iq(x)I < c(1 + IxJ)-P, 9 > 1 ,

(see KATO [22]). Strictly speaking, (1) is not comparable with (4.31) but
practically it is weaker than the latter. More general conditions are given
by KURODA [14], REJTO [9, 10], SCHECHTER [6], and others. For related
problems see DOLLARD [2, 3], FADDEEV [4], KURODA [15].

Scattering by highly singular potentials was studied by KUPSCH and
SANDHAS [1], HUNZIKER [4], AMREIN and GEORGESCU [2], PEARSON [1, 2].
PEARSON shows, among others, that there are spherically symmetric
potentials with compact support' for which the wave operators exist but
are not complete.

Following the pioneering work of FADDEEV [1, 2], scattering theory
for many-particle systems has been developed by many authors: VAN
WINTER [1, 2], YAKUBOVSKI [1], HEPP [1], COMBES [1, 2], IORIO and
O'CARROL [1], SIGAL [1], DOLLARD [4], THOMAS [4], GINIBRE and MOULIN
[1], HOWLAND [11].

For scattering theory for the Dirac equation, see THOMPSON [1],
YAMADA [1], ECKARDT [1, 2]. For scattering for crystals, see KURODA
[13], THOMAS [2].

(d) Nonexistence of the singular continuous spectrum. The stationary
methods are not only able to prove the existence and completeness of
the wave operators, but they provide means to answer the question of
whether or not the singular continuous spectrum of H2 exists, a question
that appears to be out of reach of the time-dependent theory. Thus it can
be shown that under condition (1), H2 has no singular continuous part.
This was first proved by AGMON [1, 2] for a more general elliptic differ-
ential operator in R-, independently of the theory of wave operators.
The same result was obtained by KURODA [16, 17] in the framework of
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abstract scattering theory. For a similar result for uniformly propagative
systems [which are related to subjects (g), (h) below], see SUZUKI [1].

Potentials that (roughly) satisfy (1) are called short range Potentials.
For certain long range Potentials q [which do not satisfy (1)], the nonex-
istence of the singular continuous part of HQ was proved by LAVINE [1,
3-5], ARAI [2], IKEBE and SAITO [1]. In such cases, the wave operators
are not likely to exist [see (i) below]. But they may exist if q is rapidly
oscillating; see BUSLAEV [2], MATVEEV and SKRIGANOV [1].

(e) The invariance principle. The invariance principle, proved in
§ 4.4 under a trace condition, has been shown to be valid under more
general conditions. It was an empirical fact that whenever the existence
and completeness of both W,, were proved, the invariance principle
was found to hold (see KATO and KURODA [2, 3] ; for earlier results
see also SHENK [2]). On the other hand, it was shown by WOLLEN-
BERG [1] that the existence and completeness of W+ (H2, H1) do not
necessarily imply the existence of W+(0 (HQ), 0 (H1)). He shows, however,
that if W+ (HQ, H1) exists and is complete and if W+ (0 (H2), 0 (H1))
exists, then the invariance principle holds.

In this connection, it is interesting to note that the principle was
proved in some cases in which only the existence of W+ is known; see
DONALDSON, GIBSON, and HERSH [1]. The principle was proved also for
some non-selfadjoint problems (see GOLDSTEIN [4]) and for the generalized
wave operators to be discussed in (i) (see MATVEEV [1], SAHNOVIC [5]).

(f) Eigenfunction expansions. By the stationary methods one can
handle the eigenfunction expansions for the continuous spectrum in an
abstract setting. Here the eigenfunctions do not belong to the basic
Hilbert space, and it is necessary to interpret them as elements of some
abstract space [for example the dual space of the auxiliary space X
mentioned in (a)]. For these results, see KURODA [11, 12], HOWLAND [3],
KATO and KURODA [2, 3].

A variant of the stationary method starts with a concrete construc-
tion of eigenfunctions and use them to construct the wave operators. This
method is less abstract but gives more detailed results for differential
operators. It was first used by POVZNER [1, 2] and IKEBE [1] (cf. also
TITCHMARSH (10) and has been applied to a great variety of problems by
ALSHOLM and SCHMIDT [1], ECKARDT [2], GOLDSTEIN [1, 2], IKEBE [4-8],
MOCHIZUKI [1, 3, 4], SCHULENBERGER and WILCOX [2], SHENK [1],
SHENK and THOE [1, 2], THOMPSON [1], and others. The most complete
results are contained in a recent paper by AGMON [2]. Another variant
of this approach is to regard the second-order differential operator such
as -A + q (x) in Rm as an ordinary differential operator acting on
functions on (0, oo) with values in X = L2 (Sm-1), where Sm-1 is the unit
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sphere in R. This enables one to use techniques in ordinary differential
equations and leads to eigenfunction expansions for X-valued functions.
It was successfully applied to potential scattering; see JAGER [1],
SAITO [1].

(g) Two-Hilbert space theory. In some problems in scattering theory,
in particular those related to classical physics (wave equations, Maxwell
equations, etc.), it is necessary to consider selfadjoint operators H1, H2
acting in different Hilbert spaces H1, H2, respectively. In such a case the
wave operators are defined by

(2) W± = Wt (H21 H1; J) = s-lim e'ex, Je-'ex, PI
J- ±M

where J E 9 (H1, H2), the identification operator, is to be determined from
physical considerations. Since j is not necessarily isometric, Wt need
not be either. In many cases, however, they turn out to be isometric.
Such wave operators were implicitly considered by WILCOX [2], SCHMIDT
[1] and THOE [1]. A general theory and applications of two-space wave
operators were given by KATO [19]. See also HUNZIKER [4], BELOPOL'SKII
and BIRMAN [1], BIRMAN [13-15], SCHECHTER [7].

Scattering for wave equations and symmetric systems of partial dif-
ferential equations has been studied by abstract method as well as by
eigenfunction expansions; see IKEBE [6, 7], KAKO [1], SCHULENBERGER
and WILCOX [1, 2], SUZUKI [1], YAJIMA [1], SCHECHTER [7].

(h) Non-selfadjoint operators. Scattering theory for non-selfadjoint
operators (or non-unitary operators) has also been developed. Actually
the stationary method in § 5 of the text is of this kind, since A need not
be a symmetric operator. But it is a "small perturbation" theory since
the parameter x is assumed to be sufficiently small. The original theory
of FRIEDRICHS was even valid in Banach spaces (FRIEDRICHS [2, 3]). A
rather general theory of small and smooth perturbations in a Hilbert
space was given by KATO [18]. It was partially extended to semigroups
(rather than groups) in Banach spaces by LIN [1, 2]. Non-selfadjoint
perturbations that are not necessarily small were studied by MOCHIZUKI
[2], GOLDSTEIN [3, 4], LJANCE [1-4], and others, under various assump-
tions, which may or may not be verified easily in applications. For related
problems see also SAHANOVIC [1, 2], STANKEVIC [2]. A general (stationary)
theory of perturbation of spectral operators was given by HUIGE [1].

It should be noted that the scattering theory for non-selfadjoint
operators is closely related to the two-Hilbert space theory discussed in
(g). Indeed, (2) can be written

(3) J-1W± (H1, HZ; J) = s-lim e'eii, a- sex, p1
*--,.± 00
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if we assume that J-1 E, (H2, H1) exists and write n2 = J-'H2J. If J is
not unitary, fl2 is not necessarily selfadjoint though it is similar to a
selfadjoint operator (and hence spectral). In this sense the two-space
theory is essentially a non-selfadjoint theory, although it is a rather
special case of the latter. In this connection, it is useful to note that
different choices of J often lead to the same W± and that among the
possible J's there may be a unitary operator. Since f72 with a unitary J
is selfadjoint, we have here a means to convert a non-selfadjoint problem
into a selfadjoint one (see KATO [19]).

(i) Generalized wave operators of Dollard type. As noted in (c), there
now exists a satisfactory theory for potential scattering with a short
range potential. It was shown by DOLLARD [1], on the other hand, that
the wave operators do not exists if q(x) is a Coulomb potential c Jxl-1 in

R3. Nevertheless, he was able to show that the generalized wave operators

(4) WD, ± = WD, ± (H21 H1) = s-lim eitx, e isH, - ix,
t--*±co

exist, have properties of the proper wave operators (isometry, intertwin-
ing property, etc.) and lead to a satisfactory scattering operator. Here
Xt = cHi'12 log Itl in the Coulomb case. This result suggests that the wave
operators in the usual sense could not exist for long range potentials that
decay like JxJ-1 or more slowly (though this has not been proved
rigorously to the author's knowledge). Dollard's proof also suggests that
in a more general case Xt should be chosen as

(5)
t

Xt = f q(sp) ds , P = (P,' P21 P3) I P = i-ia/axt
0

This conjecture has been verified to be correct if the decay of q is not too
slow (roughly like ixJ-f with 1/2 < # s 1) ; see AMREIN, MARTIN, and
MISRA [1], BUSLAEV and MATVEEV [1], ALSHOLM [1], ALSHOLM and
KATO [1]. [For a more slowly decaying potential q, (5) must be replaced
by another, more complicated expression.] It appears that so far the
completeness of the generalized wave operators of Dollard type has not
been proved except in the special cases of spherically symmetric poten-
tials. (For related results see SAHANOVIC [3, 4].)

Recently a spectral representation for Schrodinger operators
H2 = - d + q (x) with certain long range potentials was constructed by
IKEBE [9]. His result implies that there exist complete wave operators
of a generalized type in the sense of the stationary theory (so that H2.ac
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is unitarily equivalent to H1 = -A). But the relationship of these wave
operators to the time-dependent theory is as yet unclear.

Other kinds of generalized wave operators than those of Dollard type
may exist for a given pair H1, H2. The operators (2) mentioned above in
the two-space theory are examples. Indeed (2) may be useful even when
H2 = H1, and some J + 1 may lead to a pair Wt (H2, H1; J) with nice
properties even when J = I fails to do so. Although the physical meaning
of (2) is vague for an arbitrary choice of J, the resulting W., will give
useful information on the structure of H2 if they do exist. MATVEEV and
SKRIGANOV [2] prove the existence and completeness of such generalized
wave operators for the radial Schrodinger operator with certain long
range potentials.

(j) Other formulations of scattering theory. There are different ways
to formulate scattering theory in quantum mechanics. The wave operators
are mathematically convenient but not indispensable for physical pur-
poses. What is essential is the existence of the limits

(6) w (A) = lim ei`H Ae ie1, p2
t ±-

for operators A in a certain subset a of -4 (H) (here P2 should be loosely
interpreted as the projection onto H2,11or H2,a(,). In the case of potential
scattering in R3, one may choose sad as the set of all A = 0 (pi, p2, p3) with
p; = i-18/8xj. It can be shown that (6) exist and equal WD, I A WD, ± if
WD, I = WD, I (H2, H1) exist and are complete (with a choice of Xt that
commutes with the p;). But (6) could exist without WD, t existing. A
"weak scattering theory" in this sense was developed by LAVINE [2] and
applied to potential scattering with a long range potential. On the other
hand, it was shown by AMREIN, MARTIN, and MISRA [1] that the existence
of (6) for sufficiently large class a implies the existence of isometric
operators S2± such that cf (A) = S2f A Q. for all A E a and, moreover,
that Q} can be expressed by time-limits of the form (4). (On the other
hand, one cannot require that a = , (H) unless H2 is a trivial operator;
see HOWLAND [10]). For other formulations of scattering theory, see
JAUCH, MISRA, and GIBSON [1], RUELLE [1], WILCOX [3], THOMAS [3],
AMREIN and GEORGESCU [1].

(k) Lax-Phillips theory. There is a comprehensive theory of scattering
due to Lax and Phillips, which has been developed independently of the
theory presented in this book. Naturally there is a close relationship
between the two-theories, but so far it has not been clarified completely.
For the Lax-Phillips theory we refer to LAX and PHILLIPS 111, [1-3],
among others.
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