Foundations of Mathematics, Lecture 7

András Kornai

BMETE91AM35 Fall 2023-24

Groups

- All groups are defined as structures $\left\langle G, \cdot{ }^{-1}, e\right\rangle$ (signature $=$ arity of operations $2,1,0$)
- G is an arbitrary set
- We also need group axioms
- . is associative $\forall a, b, c \in G:(a b) c=a(b c)$
- e behaves as unit $\forall a \in G: a e=e a=a$
- ${ }^{-1}$ behaves as inverse of $. \forall a \in G: a a^{-1}=a^{-1} a=e$
- Commutativity is not an axiom, typically $a b \neq b a$
- Commutative groups often written additively, using + instead of - for the binary operation, - instead of ${ }^{-1}$ for the unary operation, and 0 instead of e for the nullary operation (distinguished constant)

Rings

- All rings are defined as structures $\langle R,+, \cdot,-, 0,1\rangle$ (signature $=$ arity of operations $2,2,1,0,0$)
- We also need ring axioms
- $\langle R,+,-, 0\rangle$ is a commutative group
- $\langle R, \cdot, 1\rangle$ is a semigroup (no inverse, no commutativity, but assoc)
- Distributivity $a(b+c)=a b+a c ;(a+b) c=a c+b c$

THE RING Z_{3}

- Has three elements: $R=\{-1,0,1\}$
- Has addition defined by addition table

+	-1	0	1
-1	1	-1	0
0	-1	0	1
1	0	1	-1

- Mult by mult table | \cdot | -1 | 0 | 1 |
| ---: | ---: | ---: | ---: |
| | -1 | 1 | 0 |
- Need to check associativity, distributivity!

Automata

- Finite state automata
- Turing machines

Finite Automata

- $\mathcal{A}=\langle\Sigma, O, S, T, G, i\rangle$, where
- Σ is a finite alphabet called the input alphabet
- O is a finite alphabet called the output alphabet
- S is a finite set of states, with $i \in S$ initial state
- T is the transition function (possibly partial) $S \times \Sigma \rightarrow S$
- G is the output function (possibly partial) $S \rightarrow O$
- This is "Moore-style", we also have "Mealy style" and other styles

Homework

W7.1 Create a division table for Z_{3} (do not attempt to divide by 0)
W7.2 Solve the equation $x^{17}-x^{16}+x^{15}-x^{14}+\ldots-1=0$ in Z_{3}
W7.3 Count the number of non-equivalent polynomials of degree 17 $(p \equiv q$ is defined by $\forall x p(x)=q(x))$
W7.4 Write a finite automaton that accepts all and only those strings that correspond to finite decimal numbers whose (a) integer part does not begin with 0 , (b) has at most one decimal point in the string, (c) does not end with a string of 0 s

