Foundations of Mathematics, Lecture 6

András Kornai

BMETE91AM35 Fall 2023-24

PLAN OF THE CLASS

- First 30 minutes: logic
- next 60 minutes: midterm

Logic

- To define a logic we will need four things:
- A language to write formulas
- A notion of truth
- A notion of what the formulas mean 'model theory'
- A deduction procedure 'proof theory'
- We will discuss three main varieties: propositional, first order, and higher order logic
- We will begin at the middle, even though both propositional and higher-order systems are substantially simpler

Rudiments of formal Language Theory

- Given an alphabet Σ, the set of all strings formed from these is denoted Σ^{*}. There is a special element λ called the empty string.
- Length of λ is 0 , length of $a \in \Sigma$ is 1 , length of α denoted $|\alpha|$ satisfies $|\alpha \beta|=|\alpha|+|\beta|$
- The main operation on strings is concatenation (writing them is sequence). For example, if $\alpha=a b c$ and $\beta=A B$ then $\alpha \beta=a b c A B$
- Concatenation is not commutative, $\beta \alpha=A B a b c \neq \alpha \beta$
- We abbreviate $\alpha \alpha$ as α^{2}, similarly for α^{3} etc.
- A language over the alphabet Σ is a subset of Σ^{*}
- Since languages are sets, it is meaningful to speak of their union, intersection, and complement (relative to Σ^{*})
- The product of languages R and S, written $R S$, is $\{\alpha \beta \mid \alpha \in R, \beta \in S\}$
- The set $\cup_{i=0}^{\infty} R^{i}$ is written R^{*} and is called the Kleene closure of R.

