Foundations of Mathematics, Lecture 5

András Kornai

BMETE91AM35 Fall 2023-24

CARDINALITY

(1) For finete sets, we just count the elements
(2) We make some general observations in the finite case:

- A subset cannot be larger, a proper subset must be smaller
- We can make an injective mapping from smaller to larger-or-equal sets, and a surjective mapping from larger to smaller-or-equal
- We can make a bijective mapping exactly when the two sets have the same size
- We use some of these observations to define cardinality for infinite sets

Not all the above stays TRUE IN THE INFINITE CASE

- A set can have the same cardinality as a proper subset: for example there are as many numbers as there are even numbers
- Also, as many even numbers as odd numbers
- Cardinality of the natural numbers is called \aleph_{0}
- Lots of things have this cardinality: integers, rationals, algebraic numbers, computable numbers, all finite subsets of the integers,...
- But not all subsets of the integers, 2^{S} is always strictly greater than S

THE MAIN THEOREMS

- Cantor's Theorem: sets are strictly smaller than their powersets $|S|<\left|2^{S}\right|$
- Bernstein-Schröder Theorem: two injections make a bijection HW 5.1 Prove this with "closed book" (don't use wikipedia or textbooks, make your own effort)
- $|\mathbb{R}|>\aleph_{0}$
- Independence of Continuum Hypothesis (Gödel 1931 + Cohen 1963)

Existence proof By cardinality

ARGUMENT

(1) Important theorem: $\mathfrak{c}>\aleph_{0}$ Proof: by diagonalization
(2) If a set X has cardinality $>\aleph_{0}$, and a property P is enjoyed only by denumerably many members of X, it follows that there must be elements h of X for which $P(h)$ is false

- Example: let X be \mathbb{R}, and P be $\exists p, q \in \mathbb{Z}: x=p / q$ (i.e. $P(h)$ means ' h is rational').
- Using the above we can prove the existence of irrational numbers, but we cannot construct one
- We know how to construct irrationals e.g. $\sqrt{2}$ The classic proof of $\sqrt{2} \neq p / q$ is by "minimum counterexamle" see CPZ 6.4
- But often we have pure existence proofs that offer no construction
(1) HF5.2-7 = CPZ 11.20,22,24,32,46

