Foundations of Mathematics, Lecture 4

András Kornai

BMETE91AM35 Fall 2023-24

Constraction of numbers

- Last lecture: \mathbb{N} by Peano Axioms
- Addition and multiplication defined inductively. We didn't do subtraction or division! Today we construct zero and negative numbers, to create \mathbb{Z}
- Let us begin with pairs of natural numbers (a, b) and define $(a, b) \sim(c, d) \Leftrightarrow a+d=b+c$
- What kind of relation is \sim ? Equivalence!
- Integers will be the equivalence classes of this relation
- First let's prove that \sim is indeed an equivalence relation
- Then let's define operations on these classes
- We need to prove that these are well defined
- We also need to prove that these have the requisite properties:
(i) addition is commutative and associative; (ii) multiplication is commutative and associative; (iii) 0, 1 behave as they should
- We need to show that this is a conservative extension of \mathbb{N}
- Now we can define subtraction
- We need to prove that it's well-defined and behaves the way we want it to
- Same trick, but now we use $(a, b) \sim(c, d) \Leftrightarrow a d=b c$ Prove that this is an equivalence
- Define the operations on the equivalence classes
- Prove that these definitions can be used
- We also need to prove that these have the requisite properties:
(i) addition is commutative and associative; (ii) multiplication is commutative and associative; (iii) 0,1 behave as they should
- We need to show that this is a conservative extension of \mathbb{Z}
- Now we can define division
- We need to prove that it's well-defined and behaves the way we want it to
- https://www.math.wustl.edu/~ freiwald/310integers.pdf

Proof By induction

- CPZ Chapter 6
- In class: well-ordering, $\sum_{i=i}^{n} i$ and $\sum_{i=1}^{n} i^{2}$
- HW 4.1 Find, and prove, the formula for $\sum_{i=1}^{n} i^{3}$
- HW $4.2-5=$ CPZ 6.18, 6.20, 6.22, 6.24

From \mathbb{Q} то \mathbb{R}

- We need a new trick: Dedekind cuts
- Partitions (A, B) of \mathbb{Q} that satisfy $\forall a \in A \forall b \in B a<b$ are called "Dedekind cuts"
- Example: let A be the set of negative rationals, B the set of nonnegative rationals
- In general, if $q \in \mathbb{Q}$, if A_{q} is defined as those rationals less than q and B_{q} as those $\geq q$ this will be a Dedekind cut
- These will model \mathbb{Q}, but these are not all Dedekind cuts!
- Let $A=\left\{x \in \mathbb{Q} \mid x<0 \vee x^{2}<2\right\}, B=\left\{y \in \mathbb{Q} \mid y>0 \wedge y^{2}>2\right\}$
- This is also a Dedekind cut, this will be $\sqrt{2}$!
- We need to prove that we can compute with Dedekind cuts just as well as with rationals
- For $p, q \in \mathbb{Q}$ prove $D_{p}+D_{q}=D_{p+q}$ and $D_{p} \cdot D_{q}=D_{p q}$
- Altogether Dedekind cuts make up \mathbb{R}
- Creating cuts from \mathbb{R} will not add new elements, why?
- We can build \mathbb{R}^{*} that is bigger than \mathbb{R} but not this way

Archimedes

- \mathbb{N} has natural ordering $1<2<3<4$...
- This can be extended to \mathbb{Z} : ... $-4<-3<-2<-1<0<1$
- This can be further extended to \mathbb{Q} : for $p, q, r, s>0$ we have $p / q>r / s \Rightarrow p s>q r$, the rest need to be segregated by sign
- Archimedean Axiom: $\forall p, q>0 \exists n q n>p$
- Important special case: $q=1$ 'for every number there is a bigger integer'
- If we build the reals by Dedekind cuts, this is not an axiom but a theorem

Supremum

- Prove that among the rationals every set bound from above has a least upper bound (this is called the supremum of the set)
- From this it follows that between every two rationals there is an irrational and conversely, between every two irrationals there is a rational
- It also follows that there is no real number between 0 and the limit of the sequence $1 / n$
- This last statement is equivalent to the Archimedean Axiom
- The converse is not true: we can make a larger set of (hyper)reals that also contain infinitesimals

FIELD AXIOMS

- F is a field, if it has 0,1 , addition, subtraction, multiplication, and division except for 0 , and these satisfy the usual identities
- There are fields with only finitely many elements!
- The smallest infinite field is \mathbb{Q}, this can be extended many ways
- \mathbb{R} is not just a field, it is an ordered field (has $<$)
- The ordering has the usual properties, in particular trichotomy: of $a<b a>b a=b$ always exactly one is true
- Ordering is preserved under shifts: ifa $a<b$ then $a+r<b+r$ will hold for all r (and conversely)
- Recommended reading:

Pugh_RealMathematicalAnalysis1-67.pdf

Practice

- In class: CPZ-bo3I p216
- Further HW: 5.1-7 = CPZ8.30,32,34,34,36,38,40

