Foundations of Mathematics, Lecture 2

András Kornai

BMETE91AM35 Fall 2023-24

We Will BUILD

- Ordered pairs from unordered pairs
- Relations from ordered pairs
- Functions from relations
- Operations from functions
- Structures from operations
- Model structures from structures
- Semantics from model structures

Ordered pairs

- In sets, $\{1,2\}=\{2,1\}$. We need ordered pairs, where $(1,2) \neq(2,1)$
- One approach (Haussdorf 1914): number the coordinates: define (x, y) by $\{\{x, 1\},\{y, 2\}\}$. This gets trickier when x, y are numbers, and at any rate it presupposes the idea of a number
- The standard approach (Kuratowski 1921)

$$
(x, y) \stackrel{\text { def }}{=}\{\{x\},\{x, y\}\}
$$

- Variants are possible, don't bring much novelty, see https://en.wikipedia.org/wiki/Ordered_pair
- Now we can build the cartesian or direct product $A \times B$ of two sets A and B as $\{(a, b) \mid a \in A, b \in B\}$
- How do we extend this to n-tuples?

CARTESIAN PRODUCTS: THE IDEA

How to Build On this

- We actually only have half of the foundations (set theory), we will still need mathematical logic to make this airtight
- Relations A (binary) relation R from X to Y is a subset of $X \times Y$.
- The domain is often defined as $\forall a \in X \exists b \in Y:(a, b) \in R$, and the codomain (or range) similarly
- The most important relations are equality $=$; similarity \sim; and ordering $>$ or \geq
- Within set theory, we have only one primitive relation, \in (element of), = is defined by ZFC1

Relations

- Language offers many examples x causes $y ; x$ has $y ; x$ is $y \ldots$
- In fact logical syntax often treats all verbs as a relation between subject and object: x loves y is written as $x L y$ or $L(x, y)$
- More complex verbs may require ternary relations (Give (x, y, z); $\operatorname{Rent}(x, y, z, t, p))$
- Key idea: an ordered triple can be treated with left association as ((a,b),c) or with right association as (a,(b, c))
- In Kuratowski encoding:
$\{\{\{a\}\{a b\}\}\{\{\{a\}\{a b\}\}\{\{a\}\{a b\}\}\{c\}\}\}$ or $\{\{a\}\{\{a\}\{\{b\}\{b c\}\}\}\}$
- HW3.1 State the definition of what ot means for the style of encodings to be isomorpic, and prove that they are in fact isomorphic

Major properties of binary relations

- For any relation $R \subset(X \times Y)$ we can produce the reversal R^{T} and the complement R^{C} of R
- These are not the same! For equality $=^{T}$ is $=$ but $=^{C}$ is \neq
- HW3.2 Write formulas for R^{T} and R^{C} !
- A relation is reflexive iff $\forall a \in X: a R a$
- A relation is irreflexive iff $\nexists a \in X: a R a$
- A relation is symmetric iff $\forall a b: a R b \Rightarrow b R a$
- A relation is antisymmetric iff $\forall a b: a R b \wedge b R a \Rightarrow a=b$
- A relation is transitive iff $\forall a b c: a R b \wedge b R c \Rightarrow a R c$
- Relations are sets: we can do union, intersection, complementation (relative to universe $X \times Y$)
- Composition of relations can also be defined provided types match: $R \subset X \times Y, S \subset Y \times Z$. We say $a(S \circ R) c \Leftrightarrow \exists b: a R b \wedge b S c$

MAJOR TYPES OF BINARY RELATIONS

(1) Relations that enjoy the reflexive, symmetrical, and transitive properties are called equivalence relations
(3) Relations that are reflexive, antisymmetric, and transitive are called ordering relations

- Equivalence relations are covered in Chapter 9 of CPZ
(- They are closely related to partitions: every e.r. corresponds to a partition
- We discuss CPZ 9.1-3 in class
(0) HW3. 3 is CPZ9.4
(1) Divisibility (CPZ9.6). $a \mid b \Leftrightarrow b / a \in \mathbb{N}$
(3) We do this now for natural numbers $\{1,2, \ldots\}$, but it extends smoothly to integers \mathbb{Z}
- HW3.4- is CPZ9.8,10,12,14,16,18,20,22

