Foundations of Mathematics, Lecture 10

András Kornai

BMETE91AM35 Fall 2023-24

TRUTH

- There are two kinds of truth, syntactic and semantic
- We have \vdash 'yields' or 'derives' where $A \vdash B$ means B can be formally derived (proved) from A. For example, in most systems of logic $x=3 \wedge y=x \vdash y=3$, but we need a lot of machinery (called proof theory) to make this stick. This is pure syntax manipulation: you take formulas and produce new ones by mechanical operations
- We also have \models 'models' where $A \models B$ means that in any model where A is true B is also true. This is more meaningful, but requires model theory which spells out the relation between a theory (bunch of formulas) and a set with lots of structure that the formulas are about
- In well-crafted systems $A \vdash B$ implies $A \models B$

The converse is not True!

- In many well-crafted systems (e.g. the first order formulation of Peano Arithmetic) there are statements which are semantically true e.g. PA \models Goodstein's Theorem, but has no proof there
- If it has no proof, how do we know it's true? Because in a stronger system (in this case, 2nd order arithmetic) we can prove it
- That the converse is not true for systems endowed with a bit of arithmetic is the celebrated Gödel Incompleteness Theorem
- Our interest here is with the less celebrated, but just as important, Gödel Completeness Theorem
- This says that every formula that is true in all structures is provable
- Wait, how can these both be true? The answer is that PA has more models in first-order axiomatization than in second-order

Propositional logic

- Any statement that can be true or false (in either of the senses discussed above) is called a proposition. These come in two basic varieties: a has property P and the relation R holds between some elements. Examples of the first: 57 is prime, of the second: $2+3=4$
- Things that are not propositions include imperatives Go home! and questions Where is Johnny?
- Declarative statements using variables are called open propositions ' x is prime'. These can get a truth value either by substitution ' 17 is prime' and ' 18 is prime' both have a truth value or by quantification (part of FOL, but not PL)
- ZFC Axiom 3 (comprehension) creates the connection between PL and set theory: for any open sentence $\phi\left(x, w_{1}, \ldots, w_{n}\right)$ and any set A there exists a set B containing all and only those elements x of A for which $\phi\left(x, w_{1}, \ldots, w_{n}\right)$ holds. 'elements of a set satisfying some proposition can be collected in a set'

Boolean operations

- Well, what are operations? Operations are like addition, multiplication, negation. . How can we define operations?
- We don't need new machinery! Binary operations are functions with two variables. Unary operations are functions with one variable (minus, reciprocal, ...) Nullary operations are functions that don't depend on any variable, constants.
- A structure is a set S and some operations. For example groups have a nullary operation (the unit e), a unary operation $\left(^{-1}\right)$, and a binary operation (multiplication) which satisfy some identities (group axioms). On occasion, we don't insist that an operation be everywhere defined.
- One set of operations that matters in PL are the Boolean \neg, \wedge, \vee
- These are 'truth functional' - only the truth of the operands matters for establishing the truth of the result

Implication in PL

(1) We define $P \rightarrow Q$ by $\neg P \vee Q$
(2 This has interesting consequences, the most import being ex falso quidlibet 'everything follows from a false statement' or if you start with a false premiss, you can derive any conclusion from it

- We also define truth-functional equivalence $p \equiv Q$ by $P \rightarrow Q \wedge Q \rightarrow P$
- Remember sets satisfied the de Morgan identities $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$? In PL they are satisfied by $\neg(A \vee B)=\neg A \wedge \neg B$ and $\neg(A \wedge B)=\neg A \vee \neg B$

Proof theory

(1) The goal: mechanical checking of proofs
(0) We will manipulate proofs by elementary steps

- Just one example: Gentzen 'natural deduction' and 'sequent calculus'
(1) Every step fits the form $A_{1}, \ldots, A_{n} \vdash B_{1}, \ldots, B_{k}$ The sides are called sequents. WARNING: Left side interpreted conjunctively ($'$, ' means \wedge), right side interpreted disjunctively ($'$ ',' means \vee) Natural deduction is the special case when $k=1$
- Why is this a good trick? Because implication $A \rightarrow B$ means $\neg A \vee B$ so when we move stuff to the other side it changes "sign" as in arithmetic. Just one axiom $p, r \vdash q, r$
- Manipulation rules are written above and below a horizantal line e.g. $L \wedge$ rule: $\frac{\Gamma, A \wedge B \vdash \Delta}{\Gamma, A, B \vdash \Delta}$

Right:

$L \wedge$ rule: $\frac{\Gamma, A \wedge B \vdash \Delta}{\Gamma, A, B \vdash \Delta}$	$R \wedge$ rule: $\frac{\Gamma \vdash \Delta, A \wedge B}{\Gamma \vdash \Delta, A \quad \Gamma \vdash \Delta, B}$
$L \vee$ rule: $\frac{\Gamma, A \vee B \vdash \Delta}{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash \Delta}$	$R \vee$ rule: $\frac{\Gamma \vdash \Delta, A \vee B}{\Gamma \vdash \Delta, A, B}$
$L \rightarrow$ rule: $\frac{\Gamma, A \rightarrow B \vdash \Delta}{\Gamma \vdash \Delta, A \quad \Gamma, B \vdash \Delta}$	$R \rightarrow$ rule: $\frac{\Gamma \vdash \Delta, A \rightarrow B}{\Gamma, A \vdash \Delta, B}$
$L \neg$ rule: $\frac{\Gamma, \neg A \vdash \Delta}{\Gamma \vdash \Delta, A}$	$R \neg$ rule: $\frac{\Gamma \vdash \Delta, \neg A}{\Gamma, A \vdash \Delta}$

Model Theory

- We build model structures as sets endowed with the right kind of relations
- For example, a model of the natural numbers is a set M endowed with a succession relation $s \subset M \times M$ and satisfying the Peano axioms
- An interpretation is a mapping from formulas to a model
- Key notion: elementary equivalence holds between structures if they satisfy the same FOL sentences
- Lowenheim-Skolem theorem: if a theory has an infinite model, it has a countably infinite model 'downward L-S'
- If it has a countable model, it has a model at any cardinality 'upward L-S'

Homework

- HW10.1-5: CPZ 2.8; 2.26; 2.32; 2.44; 2.59
- HW10.6: Learn the tabular latex environment and build a truth table with the following columns:
$P, Q, \neg P, \neg Q, P \rightarrow Q, \neg Q \rightarrow \neg P$
- HW10.7-11: CPZ 11.3; 11.5; 11.13; 11.21; and 11.31

