
Constructing the Integers

We have seen how we can start with an algebraic system the (informal) system of
integers  and create new “algebraic systems”  whose members are actually™ ™7

equivalence classes.  We are going to use this same idea creating a new system whose
members are equivalence classes to carefully define a new, formal algebraic system . ™

We will start with  , a system that we have already carefully built from set theory.=
In constructing , we used the informal system of whole numbers as the guide for what=
we wanted to build.  Now, we will be guided by the  system of integers. We wantinformal
to carefully construct, from , a new formal system  that “behaves in exactly the same= ™
way” as the informal system of integers.

In line with our view that “everything in mathematics is a set,”   will turn out to be a™
collection of sets, and each set in this collection will be called an integer. Since
“behavior” is all that counts for mathematicians, we can then agree to call this collection
the “official” set  of integers.™

As with , verifying all the details gets tedious, so we will only check some of them= 
but enough, hopefully, to convince you that what's omitted is really just “more of the
same.”

Historically, the negative integers (and ) developed later than the natural numbers.!
They were only accepted in Europe in the 17  century.  In one sense negative integersth

seemed absurd.  This was because they were unfamiliar “new numbers” that seemed to
represent “something less than nothing.”  Of course, that point of view now seems quaint;
early schooling gets us “adjusted” to the idea of negative integers early on and gives us
very practical uses for them.  It seems perfectly natural for us to answer the question
“How much did the temperature change from 1 a.m. to 2 a.m.?” by saying  “ 3° F.”
Similarly, we attach different physical meanings to the velocities ft/s and  ft/s.$#  $#

Why did people create the negative integers?   As algebra developed,  some very simple
equations “demanded” solutions.  In , we can solve equations like but not= B  % œ &
other equations like .  People found it more satisfying aesthetically to inventB  & œ %
“new numbers” so that all equations of the form  (where  wouldB 7 œ 8 7ß8 − Ñ=
have a solution than to say that some such equations don't have a solution.  Oddly, this
aesthetic insight was valuable: these “new numbers” turned out also to be useful!

We use the informal system of integers as a motivation for our construction.  An equation
like  should have solution “ ” in the integers but there is no such numberB  & œ % %  &
in the whole number system because we can't always subtract in . We want to= =
construct an enlarged number system that contains an “answer” for “ ” and, more%  &
generally, for all such “subtraction problems” with the whole numbers.

Early mathematicians, in effect, simply said “OK, we simply declare that there are some
new numbers called  and here's how they work:   , ... ” "ß  #ß ÞÞÞ %  & œ  "



This is, in fact, exactly behavior we want.  But rather than just announcing “we declare
that the are such numbers...”, our goal is to show how to  these numbers usingdefine
things we already have (the whole numbers which, in turn, were carefully defined
earlier as sets).

The last few paragraphs above contain the seed of an idea.  For example, we want to have
a number “ .” Starting with , we could try saying that the  of%  & Ð%ß &Ñ= ordered pair
whole numbers is an integer (to be called )   It is the integer which answers the " Þ
subtraction problem “ ”.  Similarly, we could think of the ordered pair  as%  & Ð&ß %Ñ
being the integer (it is the “answer” to )." &  %

“An integer is an ordered pair of whole numbers.” This seems promising,  it's just abut
little too simple: this approach would give us “too many” integers.  Reasoning as above,
we would want the whole numbers pairs , ...   to be integersÐ%ß &Ñß Ð*ß "!Ñß Ð#"ß ##Ñ
representing the “answers” to   In other words, these different%  &ß *  "!ß #"  ##ß ÞÞÞ
ordered pairs should all be considered as being the same integer!

More generally, if   (in the informal system ), we would want  and+  , œ -  . Ð+ß ,Ñ™
Ð-ß .Ñ to represent the same integer,  we can see how to write this condition aboutand
whole numbers without ever mentioning subtraction. We want the ordered pairs Ð+ß ,Ñ
and  to represent the same integer if    We can arrange to treat themÐ-ß .Ñ +  . œ ,  -Þ
as “the same” by using an equivalence relation that puts them into the same equivalence
class.  All this motivates the following formal definition of the set of integers, .™

Definition   For  and ,  we define a relationÐ+ß ,Ñ Ð-ß .Ñ − ‚= =

     iff  Ð+ß ,Ñ ¶ Ð-ß .Ñ +  . œ ,  -Þ

(   To reiterate: the definition uses addition in .  It is informally  by looking at= motivated
subtractions in the (informal) system of integers.  For our formal definition, we can't
start with  and refer to “ ”  and “ ”  because subtraction isn't+ß ,ß -ß . − +  , -  .=
defined inside .  So instead we phrase what we want in terms of addition.= )

Theorem  ¶ ‚ is an equivalence relation on the set .= =

Proof   Suppose .Ð+ß ,Ñß Ð-ß .Ñß Ð/ß 0Ñ − ‚= =

 a)  is reflexive:    because  in .¶ Ð+ß ,Ñ ¶ Ð+ß ,Ñ +  , œ ,  + =
 (Here, and in the work that follows, all the calculations involving whole numbers
  in   are justified because of +ß ,ß ÞÞÞ = theorems that we already proved for =
 for example, the commutative, associative laws for addition and multiplication
 , the distributive law, cancellation laws for addition and multiplication  in ß †
 , ...= )
 
 b)  is symmetric:   If , then  because¶ Ð+ß ,Ñ ¶ Ð-ß .Ñ Ð-ß .Ñ ¶ Ð+ß ,Ñ
    if  , then  in .+  . œ ,  - -  , œ .  + =



 c) is transitive:   Suppose  
¶

Ð+ß ,Ñ ¶ Ð-ß .Ñ
Ð-ß .Ñ ¶ Ð/ß 0Ñœ

     that is,   (1)
   (2)œ +  . œ ,  -

-  0 œ .  /

    We need to prove that  .Ð+ß ,Ñ ¶ Ð/ß 0Ñ

    Adding  to both sides in (1) and rearranging (using/  0
the
    commutative and associative laws in )  gives=

    +  .  Ð/  0Ñ œ ,  -  Ð/  0Ñ
    Ð+  0Ñ  Ð.  /Ñ œ Ð,  /Ñ  Ð-  0Ñ

    Substituting  for  from Equation (2)  gives.  / -  0 Ð Ñ

    .Ð+  0Ñ  Ð.  /Ñ œ Ð,  /Ñ  Ð.  /Ñ

    Using the  (which we provedcancellation law for addition
    for ) to eliminate the  on both sides, we get= Ð.  /Ñ

       (*), and that is what we needed to prove.  +  0 œ ,  / ñ

What are the equivalence classes of  like?  For example¶

   ÒÐ!ß $ÑÓ œ ÖÐ!ß $Ñß Ð"ß %Ñß Ð#ß &Ñß Ð$ß 'Ñß ÞÞÞ ß Ð8ß 8  $Ñß ÞÞÞ× Ð8 − Ñ=

We could also refer to this equivalence class as  or , or ...   .ÒÐ"ß %ÑÓ ÒÐ#ß &ÑÓ
Ð!ß $Ñ is just one possible choice as a representative for this class.

Going back to the intuitive motivation, we think of this equivalence class as
“the answer” to the all the problems    .   If we think of!  $ß "  %ß #  &ß ÞÞÞ
this equivalence class as “an integer”, it corresponds to the integer  (in $
the informal system of integersÑÞ

   ÒÐ"ß !ÑÓ œ Ö Ð"ß !Ñß Ð#ß "Ñß Ð$ß #Ñß Ð%ß $Ñß ÞÞÞ ß Ð8  "ß 8Ñß ÞÞÞ× Ð8 − Ñ=

     ÒÐ!ß !ÑÓ œ Ö Ð!ß !Ñß Ð"ß "Ñß Ð#ß #Ñß Ð$ß $Ñß ÞÞÞß Ð8ß 8Ñß ÞÞÞ× Ð8 − Ñ=

If we think of these equivalence classes as integers, they correspond to the
integers  and  in the informal system of integers." !



Although it's not necessary for our work, it might also help to picture these equivalence
classes geometrically:

The members of  are the points in the 1  quadrant of the plane, , with= = ‘‚ st #

both coordinates whole numbers.    Two different points  and areÐ+ß ,Ñ Ð-ß .Ñ

equivalent iff  iff   iff  iff the straight line+  . œ ,  - ,  . œ +  - ,.
+ - œ " 

through  and  has slope .Ð+ß ,Ñ Ð-ß .Ñ "

Therefore an equivalence class of  consists of all pairs of whole number pairs¶
Ð+ß ,Ñ that happen to lie on a particular straight line of slope 1.  The  (just thedots
dots) on the part of the straight line shown below are some of the members in an
equivalence class  (the parts of the straight line between dots are included just as
a visual aid).  The particular equivalence class pictured is the one corresponding
to the integer  in the informal system of integers. #

 
Exercise:  In the picture, equivalence classes representing negative integers lie on which
straight lines?   positive integers?  the integer  ?!
                Relate the picture relate to the content of the following theorem.

Theorem  Every equivalence class  contains an ordered pair with at least one ÒÐ+ß ,ÑÓ !
coordinate. Therefore every equivalence class can be written either as  or ÒÐ!ß 5ÑÓ ÒÐ5ß !ÑÓ
for some .5 − =

Proof   ( )  If  in , then there is a for whichRecall the definition of  in .Ÿ = + Ÿ , 5 −= =
+  5 œ , œ ,  !Þ Ð+ß ,Ñ ¶ Ð!ß 5Ñ ÒÐ+ß ,ÑÓ œ ÒÐ!ß 5ÑÓÞThis means that , so 

 If  in , then there is a  for which .  Then,  + 5 − ,  5 œ + œ +  != =
Ð+ß ,Ñ ¶ Ð5ß !Ñ ÒÐ+ß ,ÑÓ œ ÒÐ5ß !ÑÓÞ ñ, so    



According to the theorem, we can list all the equivalence classes as:

   ...,    .ÒÐ!ß $ÑÓß ÒÐ!ß #ÑÓß ÒÐ!ß "ÑÓß ÒÐ!ß !ÑÓß ÒÐ"ß !ÑÓß ÒÐ#ß !ÑÓß ÒÐ$ß !ÑÓß ÞÞÞ

Officially, these equivalence classes are going to be “the integers.”   Here, finally, is the
definition. 

Definition   ™ = = ™œ Ð ‚ ÑÎ ¶ .  A member of  is called an .integer

We will now invent convenient names for these equivalence classes. (Temporarily, we
use  to distinguish  from whole numbers. )underlining integers
 
             ã

 $ œ ÒÐ!ß $ÑÓ
 # œ ÒÐ!ß #ÑÓ
 " œ ÒÐ!ß "ÑÓ

! œ ÒÐ!ß !ÑÓ

" œ ÒÐ"ß !ÑÓ
# œ ÒÐ#ß !ÑÓ
$ œ ÒÐ$ß !ÑÓ

         ã

In general, for each , the integer  will be denoted  and the integer8 − ÒÐ!ß 8ÑÓ=  8
ÒÐ8ß !ÑÓ will be denoted .8

( )Of course, we could also write    # œ ÒÐ"ß $ÑÓ œ ÒÐ#ß %ÑÓ œ ÞÞÞ Þ

Before we continue, notice that each integer is a .  This is because each integer is aset
collection of ordered pairs of whole numbers, each ordered pair is itself a set, and each
whole number is a set.  For example, what set is the integer ?#

   is the set (equivalence class)  2 ÒÐ#ß !ÑÓ œ ÖÐ#ß !Ñß Ð$ß "Ñß Ð%ß #Ñß ÞÞÞ ×

 Each member of the equivalence class is an ordered pair, and, in turn, an ordered
 pair is officially defined as a set:  So  ordered pair inÐ+ß ,Ñ œ ÖÖ+×ß Ö+ß ,××Þ each
  is itself a set.  For example,  # Ð#ß !Ñ œ ÖÖ#×ß Ö#ß !××

 But  and  are whole numbers, and each whole number is a set:# !
    and! œ g
   # œ Ögß Ög××Þ

 Therefore  ,Ð#ß !Ñ œ ÖÖ#×ß Ö#ß !×× œ Ö ÖÖgß Ög××× ß ÖÖgß Ög××ß g××



 so   # œ ÒÐ#ß !ÑÓ
     œ ÖÐ#ß !Ñß Ð$ß "Ñß Ð%ß #Ñß ÞÞÞ ×
                 œ Ö ß Ð$ß "Ñß Ð%ß #Ñß ÞÞÞ× œ ÞÞÞÖ ÖÖgß Ög××× ß ÖÖgß Ög××ß g××

    Å
       the pair  is ; and each of the otherÐ#ß !Ñ underlined
       ordered pairs can be similarly written as a set.
 
 Answering the question  “What is ?” (from the first lecture) seems to get#
 more and more complicated.

Of course, we don't want to constantly think about integers as sets; but remember that
integers were built on the foundation of set theory.



Arithmetic in ™

We want to define addition and multiplication in .   When we defined new addition and™
multiplication operations in , we used special symbols for them:  and . Strictly™7 Š 
speaking, we should do something similar now to avoid confusing the “new addition
and multiplication” (to be defined in ) with the “old addition and multiplication”™
operations (already defined in ).=

However, by this time, we are probably sophisticated enough to avoid using that
notational crutch.  So we will simply write  and for the new addition and †
multiplication in .  The context  (whether    and    stand between two integers or™  †
between two whole numbers) determines whether they represent operations in  or in .™ =

Definition  Suppose  and .  DefineÒÐ+ß ,ÑÓ − ÒÐ-ß .ÑÓ −™ ™

1)   Addition in ™ À ÒÐ+ß ,ÑÓ  ÒÐ-ß .ÑÓ œ ÒÐ+  -ß ,  .ÑÓÞ

The “ ”  between the  on the left is the new addition being integers
defined in ;  the “ 's” between the   on the™  +ß -ß ,ß .whole numbers
right refer to addition as defined already in .=

2)  Multiplication in ™ À ÒÐ+ß ,ÑÓ † ÒÐ-ß .ÑÓ œ ÒÐ+-  ,.ß ,-  +.ÑÓ

Here is the motivation for the definition.  We are thinking of the integers
ÒÐ+ß ,ÑÓ ÒÐ-ß . Ó and )  as providing “answers” for the subtraction problems
Ð+  ,Ñ Ð-  .Ñand in the informal system of integers.  In that informal
system,  .  So the product shouldÐ+  ,ÑÐ-  .Ñ œ Ð+-  ,.Ñ  Ð,-  +.Ñ
be the integer that “answers” the subtraction problem
Ð+-  ,.Ñ  Ð,-  +.Ñ.

We pointed out earlier (when defining addition and multiplication in  that ™7Ñ when
operations are defined in terms of representatives of equivalence classes  (such as
+ß ,ß -ß . ), we must check that the operations are  (independent of thewell-defined
representatives chosen from each equivalence class).

For example, in the present setting,  and  .  Does theÒÐ"ß $ÑÓ œ ÒÐ#ß %ÑÓ ÒÐ$ß &ÑÓ œ ÒÐ'ß )ÑÓ
definition of integer multiplication   give the same answer as it does forÒÐ"ß $ÑÓ † ÒÐ$ß &ÑÓ
ÒÐ#ß %ÑÓ † ÒÐ'ß )ÑÓ  † ?    We hope so and that's what it means to say that “  is well-defined
in .”™



Theorem  Addition and multiplication in  are well-defined.™

Proof   Assume that       that is,        and  (1)
(2)œ œÒÐ+ß ,ÑÓ œ ÒÐ-ß .ÑÓ +  . œ ,  -

ÒÐ/ß 0ÑÓ œ ÒÐ1ß 2ÑÓ /  2 œ 0  1

1) :  We need to show thatAddition

  ,  or equivalently, thatÒÐ+ß ,ÑÓ  ÒÐ/ß 0ÑÓ œ ÒÐ-ß .ÑÓ  ÒÐ1ß 2ÑÓ
     (*)ÒÐ+  /ß ,  0ÑÓ œ ÒÐ-  1ß .  2ÑÓ

Adding equations (1) and (2) and rearranging the terms (using the commutativity
and associativity of addition   ) givesin =

 .Ð+  /Ñ  Ð.  2Ñ œ Ð,  0Ñ  Ð-  1Ñ

which says that (*) is true.

2) :  ( )Multiplication Here, the details are a little messier, but not hard.

We need to show that

  ,  that isÒÐ+ß ,ÑÓ † ÒÐ/ß 0ÑÓ œ ÒÐ-ß .ÑÓ † ÒÐ1ß 2ÑÓ
 , that isÒÐ+/  ,0ß ,/  +0ÑÓ œ ÒÐ-1  .2ß .1  -2ÑÓ
       (*)Ð+/  ,0Ñ  Ð.1  -2Ñ œ Ð,/  +0Ñ  Ð-1  .2Ñ

Since  and , we see that +  . œ ,  - /  2 œ 0  1

      /Ð+  .Ñ  0Ð-  ,Ñ  -Ð/  2Ñ  .Ð1  0Ñ
œ /Ð,  -Ñ  0Ð+  .Ñ  -Ð0  1Ñ  .Ð/  2Ñ

Multiplying out both sides of this equation and using commutativity and
associativity in  to rearrange gives=

 Ð+/  ,0  .1  -2Ñ  Ð./  -0  -/  .0Ñ
œ Ð,/  +0  -1  .2Ñ  Ð./  -0  -/  .0Ñ 

 
Using the cancellation law for addition in  gives=

    +/  ,0  .1  -2 œ ,/  +0  -1  .2 Ð‡Ñ

which is just what we needed to prove    Þ ñ



Example  Using these definitions, we can calculate and prove theorems about .™

  " $ % œ ÒÐ"ß !ÑÓ  ÒÐ$ß !ÑÓ œ ÒÐ%ß !ÑÓ œ
  $ " % œ ÒÐ$ß !ÑÓ  ÒÐ"ß !ÑÓ œ ÒÐ%ß !ÑÓ œ
  Illustrating commutativity of addition in ™

  # % )† œ ÒÐ#ß !ÑÓ † ÒÐ%ß !ÑÓ œ ÒÐ# † %  ! † !ß ! † %  ! † #ÑÓ œ ÒÐ)ß !ÑÓ œ
      % # )† œ ÒÐ%ß !ÑÓ † ÒÐ#ß !ÑÓ œ ÒÐ% † #  ! † !ß ! † #  % † !ÑÓ œ ÒÐ)ß !ÑÓ œ
 Illustrating commutativity of multiplication in ™

  
 Ð  Ñ  œ ÐÒÐ!ß "ÑÓ  ÒÐ#ß !ÑÓÑ  ÒÐ$ß !ÑÓ œ ÒÐ#ß "ÑÓ  ÒÐ$ß !ÑÓ " # $
  œ ÒÐ"ß !ÑÓ  ÒÐ$ß !ÑÓ
   œ ÒÐ%ß !ÑÓ
   œ %

  " # $ Ð  Ñ œ ÒÐ!ß "ÑÓ  ÐÒÐ#ß !ÑÓ  ÒÐ$ß !ÑÓÑ œ ÒÐ!ß "ÑÓ  ÒÐ&ß !ÑÓ
   œ ÒÐ&ß "ÑÓ œ ÒÐ%ß !ÑÓ œ %
 Illustrating that addition is associative in .™

 Do similar calculations to illustrate that multiplication in  is associative™
 and that the distributive law holds in .™

  For 7ß8 − À=

  8 ! 8 œ ÒÐ8ß !ÑÓ  ÒÐ!ß !ÑÓ œ ÒÐ8  !ß !  !ÑÓ œ ÒÐ8ß !ÑÓ œ
  8 " 8† œ ÒÐ8ß !ÑÓ † ÒÐ"ß !ÑÓ œ ÒÐ8 † "  ! † !ß ! † "  8 † !ÑÓ œ ÒÐ8ß !ÑÓ œ
  Showing that  and  are the neutral “identity elements” for addition! "
  and multiplication in .™

  ,  and similarly8  8 ! œ ÒÐ8ß !ÑÓ  ÒÐ!ß 8ÑÓ œ ÒÐ8ß 8ÑÓ œ ÒÐ!ß !ÑÓ œ
   8 8 ! œ
  An earlier theorem told us that  integer  can be written eitherevery ÒÐ+ß ,ÑÓ
  as  or as   Therefore this calculation shows8  8œ ÒÐ8ß !ÑÓ œ ÒÐ!ß 8ÑÓÞ
  that : an integer which adds to theevery integer has an additive inverse
  given integer to produce   The additive inverse of  is ;   the!Þ 8 8
  additive inverse of   is  . 8 n

  It's easy to show that the additive inverse of an integer is unique.  (Look at
  the proof in class we did to show that the additive inverse of an element in
  a field is unique.  The same proof works in .™ )
   
The preceding examples either prove or illustrate that each of the field axioms except 'w
is true in .  In the case of the illustrations, filling in the actual proofs is as easy as doing™
the illustrations.  Here is a theorem of one fact merely illustrated above. .



Theorem  Addition in  is commutative™ Þ

Proof  For any  and  in ,ÒÐ+ß ,ÑÓ ÒÐ-ß .ÑÓ ™

 ÒÐ+ß ,ÑÓ  ÒÐ-ß .ÑÓ œ ÒÐ+  -ß ,  .ÑÓ
   œ ÒÐ-  +ß .  ,ÑÓ
   œ ÒÐ-ß .ÑÓ  ÒÐ+ß ,ÑÓÞ ñ

Notice that we can prove that addition  is commutative  we already provedin because™
that addition  is commutative:  , etc.in = +  - œ -  +

You should write down any additional proofs needed to show that the other field axioms
(except ) are true in .'w ™

Here are  proofs of a few other arithmetic facts about ™Þ

Theorem  For any , D ! !− D † œ Þ™

Proof   Suppose Then D œ ÒÐ+ß ,ÑÓÞ D † œ ÒÐ+ß ,ÑÓ † ÒÐ!ß !ÑÓ œ ÒÐ+ † !  , † !ß!
, † !  + † !ÑÓ œ ÒÐ!ß !Ó œ ñ!Þ
        Å
  (because , and )+ † ! œ ! , † ! œ ! !  ! œ ! in =

Theorem   (Cancellation Rule for Multiplication in )™   Suppose ? @ Dß ß − Þ™
If  and , then .D? D@ D ! ? @œ Á œ

Proof   We know that either  or  for some , and since ,D D D !œ ÒÐ5ß !ÑÓ œ ÒÐ!ß 5ÑÓ 5 − Á=
we also know that    (5 Á !Þ Note:  Picking a representative for the equivalence class D
that has a  coordinate is not necessary, but doing so makes the algebra easier at the! 
cost of making us consider two cases. ) Suppose  and ? @œ ÒÐ-ß .ÑÓ œ ÒÐ/ß 0ÑÓ

Case 1: , where   ThenD œ ÒÐ5ß !ÑÓ ! Á 5 − Þ=

   that isD? D@œ ß
     soÒÐ5ß !ÑÓ † ÒÐ-ß .ÑÓ œ ÒÐ5ß !ÑÓ † ÒÐ/ß 0ÑÓ
      soÒÐ5-  !.ß !-  5.ÑÓ œ ÒÐ5/  !0ß !/  50ÑÓ
       soÒÐ5-ß 5.ÑÓ œ ÒÐ5/ß 50ÑÓ
          soÐ5-ß 5.Ñ ¶ Ð5/ß 50Ñ
      so5-  50 œ 5.  5/
       Since using the cancellation law for5Ð-  0Ñ œ 5Ð.  /Ñ 5 Á !ß
      multiplication  givesin =
       that is,-  0 œ .  /



                     soÐ-ß .Ñ œ Ð/ß 0Ñ
       soÒÐ-ß .ÑÓ œ ÒÐ/ß 0ÑÓ
  ? @œ

Case 2:  , where .  ThenD œ ÒÐ!ß 5ÑÓ ! Á 5 − =

   that isD? D@œ ß
     soÒÐ!ß 5ÑÓ † ÒÐ-ß .ÑÓ œ ÒÐ!ß 5ÑÓ † ÒÐ/ß 0ÑÓ
      soÒÐ!-  5.ß 5-  !.ÑÓ œ ÒÐ!/  50ß 5/  !0ÑÓ
         soÒÐ5.ß 5-ÑÓ œ ÒÐ50ß 5/ÑÓ
          soÐ5.ß 5-Ñ ¶ Ð50ß 5/Ñ
      so5.  5/ œ 5-  50
       Since , using the cancellation law for5Ð.  /Ñ œ 5Ð-  0Ñ 5 Á !
        multiplication  givesin =
      that is,.  / œ -  0
                     soÐ-ß .Ñ œ Ð/ß 0Ñ
          soÒÐ-ß .ÑÓ œ ÒÐ/ß 0ÑÓ
    ? @œ ñ

At the beginning, as in the proofs for preceding theorems, we usually need to go all the
way back to basics about  to do a proof an integer is an equivalence class .™ À ÒÐ+ß ,ÑÓ
But as more results about  are proved,  we can then use them to prove new theorems™
without needing to go all the way down to the equivalence class definition of an
integer as, for example, in proving the following corollary to the Cancellation Rule
Theorem.

Corollary  If  and , then  or ? @ ? @ ! ? ! @ !ß − † œ œ œ Þ™

Proof    We are given that .  By a previous theorem,  ? @ ! ? ! !† œ † œ
? @ ? ! ? @ !† œ † Þ Á ! œ ñIf , then  by the Cancellation Theorem.   

Example “Sign Rules” for Multiplication in  Ð ™Ñ

  Ð Ñ † $ œ ÒÐ!ß $ÑÓ † ÒÐ$ß !ÑÓ $
   œ ÒÐ! † $  $ † !ß $ † $  ! † !ÑÓ
   œ ÒÐ!ß *ÑÓ œ  *

 Ð Ñ † Ð Ñ œ ÒÐ!ß $ÑÓ † ÒÐ!ß $ÑÓ $  $
   œ ÒÐ! † !  $ † $ß ! † $  $ † !ÑÓ
   œ ÒÐ*ß !ÑÓ œ *

 



 More generally,

  8 7† œ ÒÐ8ß !ÑÓ † ÒÐ!ß7ÑÓ
  œ ÒÐ8 † !  ! † 7ß ! † !  8 † 7ÑÓ œ ÒÐ!ß 8 † 7ÑÓ œ  Ð8 † 7Ñ

   8 7† œ ÒÐ!ß 8ÑÓ † ÒÐ!ß7ÑÓ œ ÒÐ! † !  8 † 7ß 8 † !  ! † 7ÑÓ
   œ ÒÐ8 † 7ß !ÑÓ œ 8 † 7
 



Subtraction in ™

The fact that we can't subtract in  is the problem we were trying to fix by enlarging the=
number system.  Have we succeeded?  Can we define subtraction in  ?™

We noted earlier that every integer can be written in the form  or , where ÒÐ8ß !ÑÓ ÒÐ!ß 8ÑÓ 8
− Þ= We created the notation  and for these integers, and we checked that8  8
8  8  8 8 ! Ð Ñ œ Ð Ñ  œ Þ

Integers are  (of each other) if their sum is .  Thus, each integer  additive inverses has! D
an additive inverse .  ( ) D This is  true in .not =

Definition  Let We define the ? @ ? @ ?  @ß − Þ  œ  Ð ÑÞ™ difference

Thus, we define subtraction in terms of addition:  “subtract ”  “add the additive@ means
inverse ” @Þ

Example

 8 8 8  8 ! œ  Ð Ñ œ

 $ # $  # " œ  Ð Ñ œ ÒÐ$ß !ÑÓ  ÒÐ!ß #ÑÓ œ ÒÐ$ß #ÑÓ œ ÒÐ"ß !ÑÓ œ

 # $ #  $  " œ  Ð Ñ œ ÒÐ#ß !ÑÓ  ÒÐ!ß $ÑÓ œ ÒÐ#ß $ÑÓ œ ÒÐ!ß "ÑÓ œ

 $  # $ Ð Ñ œ  Ðadditive inverse of  #Ñ
  œ  œ$ # &

Example   In , solve the equation  ™ B $ # œ Þ

Solution: Subtract  from both sides$ Ðand use associativity, commutativity, etc., as
               needed)

            B $ $ # $  "  œ  œ
  
All the usual arithmetic facts about addition, subtraction and multiplication in  can be™
proved using what we have developed so far.  None of the proofs are much different from
what you've seen above.  We assume, now, that all this has been done and that we can use
all these results freely.

Order in ™



The only additional thing we need in  is to define an order relation, .™ Ÿ

Definition   For each integer , we writeD − ™

          iff  
iff  œ D ! D

D D
Ÿ œ ÒÐ!ß 5ÑÓ
Ÿ œ ÒÐ5ß !ÑÓ0

( )Of course, we agree that  and mean the same thing.D ! ! DŸ    

By definition then:  if because 
because 8 − ß

Ÿ œ ÒÐ8ß !ÑÓ
 Ÿ œ ÒÐ!ß 8ÑÓ

= œ ! 8 8
8 !  8

Clearly,  and iff .D ! D !Ÿ   œ ÒÐ!ß !ÑÓ œz 0

Definition  For , we write  iff   We write @ A @ A A @ ! @ Aß − Ÿ    Þ ™
if   and .@ A @ AŸ Á

   
With these definitions, we can prove all the usual rules for inequalities and how they
interact with addition, subtraction and multiplication in .  A couple of example follow.™

Theorem  Suppose .  If   and , than @ A @ ! A ! @ A !ß −     †   Þ™

Proof  Since   and ,  and  for some @ ! A ! @ A    œ ÒÐ5ß !ÑÓ œ ÒÐ6ß !ÑÓ 5ß 6 − Þ=
Then  @ A !† œ ÒÐ5ß !ÑÓ † ÒÐ6ß !ÑÓ œ ÒÐ56  ! † !ß ! † 6  5 † !ÑÓ œ ÒÐ56ß !ÑÓ   Þ ñ

Corollary  Suppose ,   If   and then ? @ A @ A ? ! ?@ ?Aß − Þ     ß   Þ™

Proof  and .  By the preceding theorem , thatA @ ! ? ! ? A @ !     † Ð  Ñ   
is , so ?A @A ! ?A @A     Þ ñ

With these definitions, all the usual rules about inequalities in  (and how the interacts™
with  and ) can be proved.  We now assume that has been done and use those results †
in  freely.™



Concluding Comments

At this point we have given precise, formal definitions for  (the whole number system)=
and  (the system of integers:™

     = À !ß "ß #ß $ß ÞÞÞ
  ™ À ß ß ß ß ß ß ß ÞÞÞ $  #  " ! " # $

The way we constructed things, r     :the whole numbe is not the same as the integer# #

    # Á #

However, it's easy to check that the nonnegative integers   form a Peano! " # $ß ß ß ß ÞÞÞ
system just as the whole numbers   do.  Since “all Peano systems look the!ß "ß #ß $ÞÞÞ
same”,   the systems
     andÖ ß ß ß ß ÞÞÞ×! " # $
     Ö !ß "ß #ß $ß ÞÞÞ ×

behave exactly alike.   We can think of   as simply being a “photocopy”Ö ß ß ß ß ÞÞÞ×! " # $
of    inside .  Therefore for ordinary mathematical purposes (that is, forÖ !ß "ß #ß $ÞÞÞ × ™
work not concerned directly with the foundations of mathematics) we can treat the
original   and the copy  as being identical.  If we do that,Ö !ß "ß #ß $ÞÞÞ × Ö ß ß ß ß ÞÞÞ×! " # $
then we can think of  as a subset of  = ™

    Ö !ß "ß #ß $ß ÞÞÞ×
     Æ Æ Æ Æ

  ÖÞÞÞ ß ß ß ß ß ß ß ÞÞÞ× $  #  " ! " # $ß

In fact, to help us ignore the difference,  we now throw away the notational crutch:  for
integers  and ,  we drop the underlinings and just write  and .   Notationally#  # #  #
you can no longer tell whether  means “the whole number ” or “the integer ” but,# # #
unless we're back dealing with the foundations of the number system, the difference
between them doesn't matter.

This new formal number system  still has some serious deficiencies:  for example, a™
simple equation like  has no solution in .  We will briefly address that issue later#B œ " ™
by enlarging the system again to give a careful, formal construction of the set of rational
numbers, .  It will turn out that each rational number is an equivalence class of pairs of
integers.

We could move ahead and do this right now.  But just to change the pace for a bit, we'll
postpone the construction of .


