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Abstract
Large language models with a huge number of parameters, when trained on near

internet-sized number of tokens, have been empirically shown to obey neural scaling
laws: specifically, their performance behaves predictably as a power law in either
parameters or dataset size until bottlenecked by the other resource. To understand
this better, we first identify the necessary properties allowing such scaling laws to
arise and then propose a statistical model – a joint generative data model and random
feature model – that captures this neural scaling phenomenology. By solving this
model in the dual limit of large training set size and large number of parameters,
we gain insight into (i) the statistical structure of datasets and tasks that lead to
scaling laws, (ii) the way nonlinear feature maps, such as those provided by neural
networks, enable scaling laws when trained on these datasets, (iii) the optimality of
the equiparameterization scaling of training sets and parameters, and (iv) whether
such scaling laws can break down and how they behave when they do. Key findings
are the manner in which the power laws that occur in the statistics of natural datasets
are extended by nonlinear random feature maps and then translated into power-law
scalings of the test loss and how the finite extent of the data’s spectral power law
causes the model’s performance to plateau.

? Equal contribution.
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1 Introduction

Large language models (LLMs) such as GPT-3 [1], LaMDA [2], and Palm [3] have made
fantastic advances in the generation of language, so much so that they can convincingly
write text that fools humans into thinking it’s written by other humans. Built from the
transformer architecture [4], these and similar dense LLMs [5–8] are “large” as in size,
with Palm topping out at 540 billion parameters, and also “large” as in (big) data, with
Chinchilla [8] trained on 1.4 trillion tokens. These regime that these models operate in –
jointly large parameter and large data – differs from both the regime covered by classical
statistical approaches to machine learning (see, e.g., [9]) – typically an underparameterized
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setting of large datasets and a fixed number of parameters and characterized by a bias-
variance tradeoff – and the regime typically studied by modern theoretical approaches to
deep learning [10–16] – an overparameterized setting of fixed datasets and a large number
of parameters and characterized by interpolation [17] in which models memorize their
training sets.

Inspired by the performance gains of the successive scaling up of LLMs, Ref. [18]
comprehensively studied the test loss of such autoregressive transformer models trained
on language model tasks across a large variety of model and dataset sizes. Impressively,
they found that the overall performance can behave as a power law in any of parameters,
dataset size, and compute, so long as the model isn’t bottlenecked by any of the other
two. (See, e.g., Fig. 1.) Moreover, by mapping the bottleneck and then jointly scaling
parameters, data, and compute, practitioners can learn how to most efficiently apply their
finite resources towards engineering bigger models, gathering more data, or burning their
FLOPS. Thus, given the breadth of this empirical investigation over a number of orders
of magnitude, the existence of these neural scaling laws, as they’ve been dubbed, have led
many to believe a scaling hypothesis [19]: performance on language modeling tasks can
be made predictably good simply by taking current transformer models and continuing to
scale up parameters, data, and compute.

After such a study, a number of follow ups appeared showing even more general appli-
cability and more detailed understanding [20–23] – and even improved performance scaling
with data size from a power law to an exponential falloff with clever pruning [24].1 At
the same time, autoregressive generative modeling with transformers has continued to be
applied to broader AI tasks such as coding [27], quantitative reasoning [28], and even on
the suite of computer vision tasks, with the advent of the Vision Transformer (ViT) [29]
family of models.

Given the ever growing breadth of tasks that these models can accomplish [30] and
given their continuing gains in performance as we engineer ever bigger models and scrape
ever bigger datasets, it is increasingly important to understand the origin of these neural
scaling laws. The set of important questions include:

• What are the properties of datasets and tasks that lead to scaling laws?

• Which classes of models support scaling laws when trained on these datasets?

• How do scaling laws arise, or what mechanism leads to such predictive behavior?

• Can this predictive behavior break down, and what happens in such regimes?

Addressing these questions can not only help us improve our AI systems practically, but
also help us better understand the structure of AI tasks – such as language modeling –

1Earlier works with similar ideas include [25], which predicts the test loss for different deep learning
scenarios and identifies a power law scaling with training set size, and [26], which models the scaling of
performance with both data and model size.
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that seem to require gigantic amounts of data to reach (approximate) human-level perfor-
mance.2

In this paper, we will provide some initial answers to these questions by jointly study-
ing a generative data model and random feature model that together exhibit neural scaling
laws analogous to those found in [18]. This provides a theoretical framework for deriving
the observed phenomenology in a class of large-parameter and big-data models, just like
the “microscopic” framework of statistical mechanics can be used to derive the “macro-
scopic” laws of thermodynamics in physics. We will explain how our model captures the
essential statistical aspects of natural datasets and of the feature representation of non-
linear networks, and then we will systematically solve this joint model to compute its test
loss as a function of both dataset size and number of parameters.3 We will thus show how
our model matches the empirically observed behavior of LLMs, and then we will use this
setting to better understand how scaling laws arise and break down.

One of our main results is a lack of universality of scaling laws across differently struc-
tured data generation processes: datasets that lead to scaling laws have a particular power-
law structure in their spectral statistics, which ultimately leads to a power-law scaling of
the test loss when there are no resource bottlenecks present. Moreover, we find that an
essential role of nonlinear feature maps is extending the power law in the spectrum of the
representation as a function of the number of features. This ability to extend the power
law differentiates the performance of different deep neural network (DNN) models and,
although we don’t investigate it here, is presumably an important reason why – from the
perspective of this analysis – transformers enable neural scaling law phenomenology. Fi-
nally, for generalized linear models – i.e., linear regressions of potentially nonlinear feature
maps – we learn that exact equiparameterization – scaling the number of features iden-
tically with the size of the training set – is optimal when some kind of regularization is
applied.4 Intuitively, for the sort of data that leads to scaling laws, each additional sample
can be used to learn about an additional feature in the latent feature space, and the model
should have an additional parameter in order to represent the information from this new
latent feature.

An important insight that emerges from our analysis is the role of a new scale that
determines when the empirical behavior found by [18] breaks down. This scale can be
understood as the size of the latent space from which the data is generated and must be
much larger than both the size of the training set and the number of parameters of the

2How do we understand the contrast between Chinchilla [8], trained on 1.4 trillion tokens, and a human,
for which the size of the training set is perhaps only of order 10 million words [31, 32]? By another estimate,
LLMs may receive 1000x the linguistic data that a typical ten-year-old child might have received [33].

3As our analysis makes use of an exact optimization solution, it’s effectively in the regime of “infinite”
compute: thus, our framework can only teach us about tradeoffs between data and parameter resources.

4This is consistent with the finding of [8], though is slightly counter to the initial empirical results
in [18]. However, both of those references concern empirical investigations of LLMs, while our analysis
concerns generalized linear models and may not apply in the same way for nonlinear models that learn
representations. (See §5 under the subheading Representation Learning? for further discussion.)
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model in order to observe the power-law scaling and bottleneck behavior of Ref. [18].5 If
either of these two resource scales exceed the size of the latent space, our analysis shows a
new regime of different behaviors for the test loss that has not yet been seen in the LLM
experiments. Since we have a generative model of the data we control this scale directly
in our analysis, but it would be extremely interesting to understand this scale in natural
data, such as images or text.

As the main set of tools we use to solve our joint data and feature model is random
matrix theory (RMT), one of the technical contributions in this paper is the development
of a diagrammatic approach – borrowed from theoretical physics – for computing random
matrix expectations in machine learning. Our techniques are particularly well suited to the
regime of jointly large dataset and number of parameters, in which a restriction to diagrams
with a planar topology captures the dominant contributions to RMT expectations. While
such techniques will be familiar to physicists, we were able to apply them here to vastly
simplify a number of previous RMT derivations in machine learning; for example, we avoid
the lengthy concentration-of-measure proofs of [34], and we also sidestep the need to use
replica methods as in [35, 36].

While most of the previous work on scaling laws has been empirical, there have been
a few papers that have sought theoretical explanations or models of neural scaling laws
[37–40], and a few others that have found a power-law scaling of the test loss with dataset
size [41, 35]. The most directly relevant of these, [38], considers a student-teacher model
with the right phenomenology though studies it only in certain limits: in particular, the
authors assume a power law of infinite extent for the data and then import a result from
[36] to find a power-law scaling of the test loss; our work leaves the relative ratios of the
size of the latent space, the size of the training set, and the number of features all finite.
Additionally, the calculation of [36] gives the averaged test loss of a non-generalized linear
regression without any random feature map to extend the power law. Our work is more
closely related to [34], which was not focused on scaling laws but finds a general expression
for the test loss averaged over nonlinear random feature maps with fixed training data and
labels; we extend this further to student-teacher models, finding a very simple expression
for the test error and then are able to average it over our random data model as well. In
the process, we also find much simpler derivations of the central results in [34] and [36]
using our diagrammatic techniques.

����

The plan of this paper is as follows:
In §2, we provide a non-technical overview of the data and feature map settings that

lead to neural scaling laws: to begin, we review the phenomenology of the joint parameter
and dataset test loss behavior discovered by [18]; then, in §2.1 and §2.2, we use examples
from natural datasets to explain the specific spectral properties of the input data and

5This is perhaps surprising given a general expectation that natural data should live on manifold of
smaller intrinsic dimension than its embedding dimension; see §4.3 for further discussion.

4



nonlinear feature maps, respectively, needed to have both power law scaling and bottleneck
behavior.

In §3, we present (§3.1) and then solve (§3.2) our statistical model of neural scaling laws,
consisting jointly of a generative model for the data and random feature map, deriving a
formula for the test loss as a function of the size of the dataset and number of features of
the model and then showing that it precisely matches experiment. We also outline (§3.3)
how we could use our same RMT tools to model spectral power-law extension in nonlinear
feature maps and comment (§3.4) on the relationship of our work to other RMT results in
the machine learning literature.

In §4, we interpret our calculations from the previous section and expand on our results.
Most importantly, in §4.1, we characterize the breakdown of neural scaling law behavior in
our model by considering our result from §3 in the limit where the size of the latent space
becomes smaller than either the size of the training set or the number of features in the
model. We also confirm the validity of our calculation in this limit by comparing against
numerical simulations in the same regime. Then, in §4.2 we explain the optimality of
the equiparameterizated regime for neural scaling, contrasting with the overparameterized
regime and discussing the double descent phenomenon, while in §4.3 we further consider
our new scale that controls the size of the latent space and the breakdown of scaling laws
in the context of traditional notions of dimensionality reduction. We close in §4.4 by
discussing some limitations of our minimal power-law spectral data model that could be
improved in future analyses.

Finally, in §5 we conclude and give an outlook towards a future research direction. In
particular, we provide a guide on how one could use the tools from [16] to move beyond
our random-feature linear regression and incorporate the type of representation learning
present in nonlinear models, such as those used in realistic deep learning scenarios.

To make the paper tractable, a few additional analyses and technical details have
been consigned to appendices. In Appendix A, we present and solve a progression of
simpler data and feature models with increasing complexity: first, (§A.1) we show that
the simplest possible model, a linear model where the input data has independent and
identically distributed Gaussian components – i.e. data with Marchenko-Pastur spectral
statistics – does not have scaling laws; then, (§A.2) we explain why linear regression on
data sampled from a more realistic data model – but without any feature mapping –
also does not exhibit the right behavior. Finally, in Appendix B we explain how to find
analytical formulae for the trace of the resolvent with the covariance matrix, the quantity
that controls the test loss of our model.

2 Prerequisites for Neural Scaling

An exciting empirical observation of [18] was that the test loss for large-scale transformer
models [4] can be predicted by fitting by a phenomenological model of an extremely
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simple form:

L(N, T ) =

[(
Nc

N

)αN
αT

+
Tc
T

]αT
. (1)

Here, N is the number of (non-embedding) parameters characterizing the size of the model,
T is the number of datapoints in the training set characterizing how many examples the
model can learn from, and Nc, Tc, αN , and αT are all fit constants. A cartoon plot of (1)
as a function of the training set size, T , and for a variety of different model sizes, N , is
shown in Fig. 1.

Test Loss vs. Training Set Size (Log-Log Scale)

power lawplateau

Figure 1: Cartoon plot of the empirical scaling laws discovered by Ref. [18] demonstrating
that the test loss of LLMs trained with early stopping are predictably described by a simple
phenomenological model, (1), plotted as a function of dataset size, T , for different model
sizes, N = {N0, N

2
0 , N

3
0 , N

4
0}: if the model isn’t bottlenecked by the number of parameters

(N →∞), the test loss behaves as a power law in the training set size, L(N, T ) ∼ T−αT ;
otherwise, if the number of parameters is too small for a given training set, then the test loss
stalls at a plateau at a value that depends predictably on the parameters, L(N, T ) ∼ N−αN .
Similar statements hold reversing the role of the training set and parameter resources, and
scaling both training set and parameters jointly with relative ratio N ∼ TαT /αN ensures
the overall best performance.

This formula is quite interesting for a number of reasons:

(i) On the one hand, taking the training set, T , or the model size, N , to be large the
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model improves as a power law in the scaled parameter:

L(N) ≡ L(N,∞) ∼ N−αN , (2)

L(T ) ≡ L(∞, T ) ∼ T−αT , (3)

where we now see that αN is the scaling exponent characterizing the behavior of
the loss as the number of parameters is increased, and αT is the scaling exponent
characterizing the its behavior as the size of the training set is increased. The first
scaling law, (2), is particularly interesting in practice as often LLMs are effectively
trained in infinite data regime; in this case, we achieve predictable and continuing
performance gains for increases in the size of our models.6 If there is truly infinite
data, this means that for tasks and models that have scaling law (2), we can become
arbitrarily good at those tasks simply by engineering bigger and bigger models. More
realistically, we get a scaling law like (2) so long as the size of the model is much
smaller than training set size, N � T , and we get a scaling law like (3) so long as
the size of the training set is much smaller than the size of the model, T � N .7

(ii) On the other hand, once the scaled parameter exceeds the fixed parameter, the test
loss asymptotes to a plateau that depends on the fixed parameter. For instance,
studying the test loss as a function of the parameters for N � T just gives a constant,

Lplateau(N) ≡ lim
N�T

L(N, T ) =

(
Tc
T

)αT
, (4)

while analogously studying the loss as a function of the training set size for T � N
gives a similar constant,

Lplateau(T ) ≡ lim
T�N

L(N, T ) =

(
Nc

N

)αN
. (5)

This means that the model performance can be inhibited by a bottleneck when
either the size of the training set or the size of the model is limited. This has practical
consequences as well: when the performance is bottlenecked by the training data, no
matter how good our engineering talent is in training larger and larger models, the
loss will not be able to improve further. Of course, in this case, if instead of building
a larger model we collect more training data and reinterpret (4) as a function of the
training set size, e.g. as (3), the loss will again improve as a power law, though it
will be in the training set size, T .

6The Chinchilla model and related investigation [8] suggest that if we train long enough, data might
actually be a bottleneck, or soon will be in the future.

7More precisely, the relative scaling to get a power law (2) should be stated as N � TαT /αN , while the
relative scaling for power law (3) should be stated as T � NαN/αT ; analogously, we should more precisely
have the reverse of these relations for accessing the plateau regimes in (4) and (5).
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(iii) On our other other hand, we can instead interpret the test loss scaling with either
resource as a power law when not bottlenecked by the other in the following way:
if we jointly scale both the number of parameters and the size of the training set
in a particular way, then we can always achieve power-law gains in our performance
and avoid the plateau behavior. For instance, if we parameterize the size of our
model in terms of the amount of training data we collected and make a power law
ansatz, N(T ) ∼ T p, we can then make both terms inside the square brackets of (1)
contribute equally, ensuring the loss overall decreases as a power law, by scaling our
model size as

N(T ) = Nc

(
T

Tc

) αT
αN

, (6)

where the power p ≡ αT/αN controls how the size of the model scales as we grow
the training set.

In principle this phenomenological model of the test loss, (1), predicts that these LLMs –
and any related models that can be fit by this equation – can become arbitrarily proficient
at their underlying tasks so long as we continue to jointly scale both training data and
model size as (6).

Given that (1) is an empirical observation over some range of training set sizes and
models sizes, and for a particular set of AI tasks and deep learning architectures, it’s
natural to wonder how general it actually is, and whether the behavior will continue for
especially large scales N and T . In fact, there are a number of details leading to the
behavior (1) that are so far implicit in this discussion and should be made explicit. For
instance, the fit of the exponents, and the relative scaling, (6), can depend on the details of
the learning algorithm;8 and to find the fit (1), the authors of [18] needed to regularize their
models, e.g., by using early stopping. Most importantly, in [18] the authors trained on a
specific natural dataset: an extended WebText dataset built from human language [42].
Thus, by identifying the mechanism that leads to such scaling laws, we will see that they
arise for far more general dataset–model combinations.

In the rest of this section we will discover the properties of the data (§2.1) and model
(§2.2) that must go into a minimal modeling scenario that contains a version of (1),
including both the scaling law limit and the plateau limit. In particular, we’ll explain
how the data distribution must have special statistical properties, which we’ll identify
in natural datasets, and how a machine learning model must transform those statistical
properties in a special manner, which we’ll see is generically present in nonlinear DNNs.

8In the original scaling laws paper, [18], the power-law exponents for the training set and parameters
were measured to be different, with their ratio positive, αT /αN > 1; in contrast, Ref. [8] found equal
exponents, αT = αN , by training their models longer and on more training data.
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2.1 Data Properties

AI tasks in different domains have very different underlying data – the input token features
of textual data used to train LLMs for natural language processing (NLP) is a priori
very different than the input pixel features of image data used for computer vision (CV)
applications – yet, as we will see, both domains can exhibit the full neural scaling law
phenomenology of (1). However, purely random data without any structure does not.9

Thus, to understand such behavior, we should try to identify the structure universal to
these natural datasets that exhibit scaling-law behavior.

Consider a generic raw data point, xα, in a dataset of T samples, for α = {1, . . . , T}.
For our data model, we will think of each xα as being sampled independently from some
distribution p(x) and refer to a particular one as a sample. We will denote the individual
components of a sample as

xi;α , with i = 1, . . . , Nin , (7)

where i indexes the Nin different input features, and which is supposed to represent,
e.g., a particular pixel or token.10 Accordingly, the statistics of the dataset endow the
data with the structure that allows for the power law and plateau in the test loss.

Intuitively, the correlations between the different input features, xi;α, should character-
ize the dataset. For instance, if the xi;α are pixels of an image, we may expect that different
pixels will vary similarly across images that are similar. In contrast, the mean value of
an input feature is uninformative, and so we will assume our data is centered in a prepro-
cessing stage. Thus, a object of interest for us will be the empirical feature-feature
covariance matrix of the dataset:

1

T

T∑
α=1

xi;αxj;α . (8)

As this covariance matrix will typically contain nonzero off-diagonal components, instead
it will be simpler to consider its eigenvalues. Let us denote a particular eigenvalue as λi,
and we’ll refer to all of the eigenvalues collectively as the spectrum of the data. Note that
since the covariance, (8), is a Nin-by-Nin-dimensional matrix, there are Nin eigenvalues in
the spectrum. Moreover, if the size of the dataset is smaller than the number of input
features, T < Nin, then the rank of the covariance is at most T , and at least Nin − T of
those eigenvalues will be zero.

The spectrum is a simple summary quantity that we can use to characterize a dataset.
To see why, let’s look at some spectra from real natural datasets in different domains: in
Fig. 2 we plot example spectra for different dataset sizes, T , from a computer vision image

9See Appendix A.1 where we analyze data with Marchenko-Pastur statistics.

10Technically for NLP, we want to first pass our input tokens through a fixed embedding so that xi
represents a component of the embedded token.
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dataset (left panel) and a tokenized and embedded natural language dataset (right panel).
Right away, we see that both these representative natural datasets have interesting and in
fact, very special structure to their spectra:

(1) For a few orders of magnitude beginning from around i ≈ 10, the spectra are well fit
by a power law,

λi ∼
1

i1+α
, (9)

where here we’ve decomposed the exponent of decay as 1 + α with some foresight.11

(2) For each fixed size T , the power law terminates in very rapid decline in the value
of the eigenvalues, λi → 0, as the index approaches the size of the dataset, i → T ,
for datasets smaller than the number of input features, T < Nin, or as the index
approaches the number of input features, i→ Nin, for larger datasets, T > Nin. This
characterizes the tail of the spectrum.12

(3) Varying the number of samples, T , we also vary the extent of the power-law fit, (9).

As we will explain, these properties will translate to the power law scaling and plateau
features of the test loss (1).13

To give more intuition for the spectral property (1), let’s compare this situation to
what we might have naively expected. A familiar data analysis setting in which we analyze
spectra is principal component analysis (PCA) [48]: PCA is a dimensionality-reduction tool
in which the covariance matrix of a dataset is diagonalized to find linear combinations of
the input features, xi, that account for the majority of the variance of the data. Typically
when PCA is useful the spectrum has a gap, an index, i = M , for M � Nin, such that
these few M large eigenvalues account for the majority of the total variance. In that case,
projecting the data onto the subspace spanned by the top M eigenvectors is a way of
reducing the naive Nin-dimensional input feature space to a much smaller M -dimensional
latent feature space. When this works, we might think of the bulk of the spectrum,
λM+1, . . . , λNin

, as uninformative noise, and that the true generative process describing
the distribution p(x) lives on this smaller dimensional latent feature space. However, the
spectra of our natural datasets in Fig. 2 essentially have a continuous spectra without any
gap: this implies that the data was generated from a space without any natural cutoff for

11This point was also emphasized by [38]. Note that when the test loss has scaling law phenomenology,
the exponent α should be a positive real number, 0 < α <∞.

12To see the tail for larger datasets, T > Nin, see Fig. 3.

13Moreover, whether the underlying process that generates the spectrum actually comes from a power
law distribution – versus, e.g., a log-normal distribution – doesn’t matter; we actually only need for the
spectrum to be approximately described by a power law, as in (1), (2), (3), in order for the scaling law
phenomenology of the test loss to arise. (For further discussion of processes that give power law vs.
log-normal distributions, see [43], and to learn more about the difficulty of identifying true power laws in
nature, see [44].)
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Figure 2: Log-log plot of example spectra for different dataset sizes, T , from different
data domains. Increasing the dataset size, T , increases the extent of the approximate
power-law fit (dashed line) so long as T < Nin. Left: CIFAR-10 [45], a CV dataset of
32× 32-pixel natural color images. The 3 color channels bring the total number of input
features per image is Nin = 3 × 32 × 32 = 3072. Right: WikiText, an NLP dataset
taken from the verified Good and Featured articles on Wikipedia [46]. The input data was
tokenized and then embedded using Hugging Face’s implementation [47] of GPT-2 [42],
and the embedding we use has dimension Nin = 768.

separating uninformative and informative features.14 As such, especially in the portion of
the spectrum that can be modeled by a power law, you can always do fractionally better
at capturing the variance of the data by including more eigen-features.15

Considering item (2) above, while the eigenvalues in the part of the spectrum modeled
by a power law are important in capturing the variance, the tail of the spectrum – in
which the eigenvalues rapidly approach zero – is not. As per item (3), if we increase the
size of the dataset up to the number of input features, T → Nin, we can increase the
useful portion of the spectrum that participates in the power law. This suggests a related
question: if we instead fixed a dataset size T , and subsampled the input features, Nin, do
we still get a power law and is it now limited by Nin? To answer this question, in Fig. 3 we
plot example spectra from the same datasets as before, but this time for a fixed dataset
size, T , and with the input features subsampled from the total number Nin; we see that
increasing the number of subsampled input features does extend (and slightly rescale) the
power law, preserving this structure in the spectrum.

Thus, we see that the inclusion of either additional samples or additional input features
can be used to extend the spectral power law, which we expect might be useful given
our discussion of continuous spectra and PCA above. Unfortunately, the extent of the

14See [49] for a renormalization group perspective on this lack of cutoff for continuous spectra.

15This point, along with an extended discussion of latent space dimensionality, is explored more in §4.3.
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Figure 3: Example spectra from different data domains for a fixed dataset size and sub-
sampled input features. (For a more detailed description of the datasets, see the caption of
Fig. 2.) Increasing the number of input features in the subsample extends the length of the
approximate power-law fit for the bulk (dashed line). Left: CIFAR-10, with pixels sub-
sampled from the total 3072 input features and a dataset size of T = 3072. Right: Wiki-
Text, with the components of the embedding subsampled from the total 768-dimensional
embedding vector for each token and a dataset size of T = 768.

power law ultimately seems to be limited by the number of input features Nin. However,
presumably if we increased the number of input features, for instance if we acquired high-
resolution versions of our images, we’d find an even longer power law? Relatedly, CIFAR-10
contains 50,000 images in its training set despite having only 3072 input features: are those
extra samples beyond the first 3072 informative?

2.2 Feature Map Properties

To answer these questions, let’s try mapping the input data to a feature space, N , that’s
larger than the input space, Nin. We define a collection of feature functions as

ϕj(x) , with j = 1, . . . , N , (10)

where j indexes the N different features of the representation of the input x. At this
point, the ϕj(x) could be the features of a deep neural network or they could be a simpler
random feature model. We are interested in studying the spectrum of this representation,
which we can find by forming the empirical feature-feature covariance matrix of features,

1

T

T∑
α=1

ϕi;αϕj;α , (11)
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and then computing its eigenvalues, λj. In particular, we would like to understand how
the spectrum of the feature representation compares to the spectrum of the input repre-
sentation for different types of feature maps.

As a naive first feature map, let’s pass our input dataset through a linear transforma-
tion:

ϕj;α ≡
Nin∑
k=1

ujkxk;α , (12)

where ujk is a N -by-Nin-dimensional weight matrix, which we assume to be full rank.
Concretely, we can assume each component of the weight matrix is sampled independently
from a zero-mean Gaussian distribution with variance given by unity over fan-in, 1/Nin.
In the left panel of Fig. 4 we’ve plotted the spectrum of this linear feature map applied to
a fixed-sized image dataset. After inspecting this figure, we remember a basic fact about
linear algebra that our linear map to the larger space can only create linearly-dependent
columns, and thus can only add zero eigenvalues to our spectrum. Thus, to meaningfully
extend our spectrum, we will need to do something nonlinear.

As a simple example of a nonlinear feature map, let’s apply a nonlinear activation
function after the linear transformation (12):

ϕj;α ≡ σ

(
Nin∑
k=1

ujkxk;α

)
, (13)

where σ is a scalar function that acts on each individual component xk of an input data
point. We can think of this nonlinear feature map, (13), as representing the activations
of a single hidden-layer neural network. As a concrete example, let’s set the activation as
the ReLU,

σ(z) =

{
z , z > 0 ,

0 , z ≤ 0 ,
(14)

and again we will take each element of the weight matrix, ujk, to be independent and
initialized identically according to a zero-mean Gaussian with variance 2/Nin. With these
choices, (13) is a type of nonlinear random feature model. In the right panel of Fig. 4
we’ve plotted the spectrum of this nonlinear feature map applied to the same fixed-sized
image dataset as before. Importantly, compared to the spectrum of the bare input data
(blue stars), we see that increasing the number features in the feature map extends the
portion of the spectrum that’s approximately fit by a power law. In this way, we see that
by applying a nonlinear transformation to our data we can build additional useful features
when we have more samples than input features, T > Nin.

Together, this means that both the size of the model, N , and the size of the dataset,
T , control the length of the power law in the spectrum of features: on the one hand, when
the model is feature limited (N < T ) we can increase the power-law bulk by increasing
the size of the model; on the other hand, when the model is data limited (T < N) the
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Figure 4: Spectra of the feature representation from CIFAR-10 (Nin = 3072) of a fixed
dataset (T = 15000), with an approximate power-law fit for the bulk (dashed line). Left: A
linear map, (12), does not extend the length of the approximate power-law fit. Right: For
a nonlinear map, a ReLU activation applied after a linear map, (13), increasing the number
of features, N , increases the extent of the approximate power-law fit. This extension is
limited by the dataset size, T .

feature-feature covariance matrix, (11), is rank limited by the size of the dataset, and so
the extra capacity is unnecessary as the extent of the power law is similarly limited by
T . Thus, so long as they are greater than the number of input features, N, T > Nin, the
minimum of these two resource scales will control how many useful features there are.16 In
the next section, we will construct a joint statistical model of datasets and feature maps
that has this precise property, and by solving this model we will see how this is translated
into the power-law scaling and performance plateau in the test loss of a trained model.

Aside: Random Feature Maps vs. DNNs

Before moving on to discuss our solvable model, let’s just discuss more general nonlinear
feature maps, namely deep neural networks. Even though they are both nonlinear models,
a single-hidden-layer ReLU network is a very different model than the 540 billion parameter
Palm based on the transformer architecture: in particular, DNNs have specially designed
components, such as the multi-headed self-attention mechanism that powers transformers;
moreover, they are not random feature models – at least at finite width, see, e.g., [16] –
learning nonrandom representations of inputs; and finally, the scaling laws of [18] concern
the number of parameters, but here we instead focused on the number of features. Let’s
address these concerns one by one in reverse order.

16Note that this extension effect is special for natural datasets with the properties enumerated in §2.1
and will not be true in general.
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Firstly, there is often some ambiguity in the feature map of a DNN; e.g. with LLMs
like BERT [50], practitioners sometimes use the activations of the last few layers of the
model as features for a downstream task. However, the distinction between parameters is
sharp even for our single-layer ReLU random feature map (13): as we are using it, this
model has N × Nin parameters, but only N features. The resolution is that the proper
way to think about the features of a network is in terms of the NTK [13, 14]: the NTK is
a type of data-data covariance matrix of features,

Ĥα1α2 ≡
N∑
j=1

ϕj;α1ϕj;α2 , (15)

and it’s easy to see that this will have the same spectral properties as the feature-feature
covariance matrix that we’ve been considering in (11) up to an overall rescaling. For
network architectures that have an infinite-width limit [10–12], DNNs trained by gradient
descent are generalized linear models with the NTK identified as the kernel. Moreover, if
z(xα; θ) is the (scalar) output of the network when evaluated on a sample xα, and θj is
an N dimensional vector that indexes all the parameters, then the definition of the NTK
[13, 14] tells us to identify the feature map with the derivative of the network output:

ϕj;α ≡
dz(xα; θ)

dθj
. (16)

Thus, where this correspondence between DNN and linear models holds, then there’s
precise correspondence giving a feature for every parameter, and increasing the number of
parameters increases the effective number of features accessible to the linear model.17 To
this end, if we were to plot the spectrum of the features derived from the NTK, we would
see a similar phenomenology to what we observed in §2.2 for our simple nonlinear feature
map (13).

Away from the infinite-width limit, at least perturbatively [16], the model output still
depends on the NTK with a parameter -number of features, but rather than a random
feature model, the features of a finite-width network learn nontrivial representations of
inputs from the data. The fact that our model in the next section exhibits the neural
scaling phenomenology of power law and plateau suggests that probably feature learning
isn’t an essential part of scaling laws; we will address more concrete means of understanding
this relationship between representation learning and scaling laws in the last part of §5.

Finally, what of the broader and essential differences between a one-hidden-layer ReLU
network to an LLM? A standard principle of computer science is GIGO: garbage in, garbage
out. Perhaps the biggest takeaway lesson in our setting is PIPO: power-law in, power-law
out. To that end, we conjecture that better DNN architectures are better able to preserve
power law structure when transforming the spectra of input datasets and leave it to future

17For a more detailed discussion of this point and the correspondence, see §10.4 of [16].
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work to understand how to translate these performance of better models into statements
about the spectra of features.18

3 A Statistical Model

We want to construct a generative data model and random feature model that captures the
broad empirical properties of real datasets composed with nonlinear feature maps such that
the resulting statistical model’s test loss exhibits the scaling law phenomenology illustrated
in Fig. 1. Recall from the previous section, our key observation is an approximate power
law in the spectrum of the feature representation, with the extent of the power-law portion
controlled by the minimum of the number of features, N , and the size of the training set,
T . After finding features with these properties in a simplified model, we can then use
them in a generalized linear regression problem such that the test loss exhibits our desired
behavior.

Our goal will be to compute that averaged test loss analytically. We will accomplish
this using tools from random matrix theory, using some simple diagrammatic techniques
that can quickly and easily extract the properties of these models when N and T are
sufficiently large. We will begin our journey in §3.1 by setting up and defining our model
as well as verifying its properties with numerical simulations. The bulk of the section will
be spent in §3.2, where we will explain how to average over our generative data model and
random features in order to derive a formula for the model’s test loss. Then, in §3.3 we
outline how we could use our RMT tools to model spectral extension in nonlinear feature
maps such as neural networks. Finally, in §3.4 we compare our methods and results to
other related RMT machine-learning calculation.

3.1 Setup and Verifying

Return here often as you explore the other subsections in this section.

Generative Data Model

We will start by defining a generative model for the dataset.

18For instance, a more careful investigation of the raw input (blue stars) in the right panel of Fig. 4
would show that the exponent α that characterizes the spectrum in (9) actually decreases slightly after
the ReLU layer. As we will explain in the next section, α ultimately will become the exponent in the
power-law portion of the test loss of our model; thus, even though the power-law gets extended to give the
scaling law, the slight decrease in its value ultimately leads to worse performance than if it were otherwise
preserved.

A second issue worth considering when comparing a single ReLU layer to an LLM is that we haven’t
modeled the eigenvectors, which may need to be considered in a more detailed model. (For a discussion
of scaling laws that does consider eigenvectors, see [40].)
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Rather than generating data in the raw input space, we will generate data in a latent
space. Consider a latent data point, x, whose components are denoted

xI , with I = 1, . . . ,M , (17)

where I indexes the M different latent features. To distinguish latent features from the
features following a random feature map, we will use capital roman indices from the middle
of the alphabet (I, J,K, . . . ) for the former and lower-cased roman indices (i, j, k, . . . ) for
the latter. Importantly, to get the right behavior we will need the dimension of the latent
space to be larger than any other scales in the problem:

M � N, T . (18)

For each data point, we will sample components from a zero-mean Gaussian distribution
with a covariance matrix Λ:

〈xI〉 = 0 , 〈xIxJ〉 = ΛIJ , (19)

where we denote expectations over random variables with the notation

〈f(u)〉 ≡
∫
du p(u) f(u) , (20)

where u includes all random variables in the expression f(u). If we instead want to take
expectations over only some of the random variables, we will use a subscript notation on
the bracket as

〈f(u, v)〉u ≡
∫
du p(u|v) f(u, v). (21)

When possible we will keep our derivation generic and not make assumptions about the
covariance Λ, other than that it is full rank.

However, for the goal of understanding scaling laws we will be motivated to consider a
class of models where the covariance spectrum has the form of a power law. In particular,
we will assume the eigenvalues of Λ are well-approximated by a smooth number density of
eigenvalues,

n(λ) dλ = M(β − 1)λβ−1
− λ−βθ(λ− λ−) dλ , (22)

where λ− is the minimum eigenvalue, β is an exponent that characterizes the tail of the
distribution, θ(λ) is the Heaviside step function, and the constants are chosen such that
the density integrates to M . Alternatively, we can write the spectrum as a function of
index I as

λI = λ+

(
1

I

)1+α

. (23)

In this form it is convenient to (hyper-)parameterize the spectrum in terms of a maximal
eigenvalue,

λ+ ≡ λ−M
1+α . (24)
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The exponent α in (23) is related to the exponent β appearing in (22) by

α ≡ 2− β
β − 1

, (25)

as can be checked by integrating the density of states (23). Since α will ultimately be
power-law exponent of the test loss, we must have 0 < α < ∞, which in turn implies
1 < β < 2.19 This is actually a rather compact range and implies that natural datasets
have surprisingly heavy tails. Finally, for large M it generally does not matter whether
the eigenvalues are drawn at random from a distribution of the form (22) or taken from
a fixed spectrum of the form (23), and we will generally be agnostic about this choice in
our theory.20

In Fig. 5, we numerically sample some datasets from our generative data model, (19)
and (23), for different (hyper)-parameters T , M , and α to check that we have a good
model of the natural datasets discussed in §2.1. We see that for T < M the extent of
the power law increases with the size of the dataset, and for T ≥ M increasing the size
of the dataset sharpens the rapid decline towards zero but leaves the extent of the power
law fixed. This confirms that we have captured the broad spectral properties of the inputs
from the natural datasets we have analyzed.

Finally, for every latent datapoint xI , we will also generate a C-dimensional label

yi =
M∑
I=1

wiIxI , with i = 1, . . . , C , (26)

using a C-by-M -dimensional weight matrix, w ≡ wiI , whose elements we will take to be
independent and drawn from a zero-mean Gaussian distribution, so that

〈wiI〉 = 0 , 〈wi1I1wi2I2〉 =
σ2
w

M
δi1i2δI1I2 . (27)

It is important that each label is allowed to depend on all M latent features of an input to
ensure that the difficulty of the problem scales with M . Such a scaling is needed in order
to approximate the self-supervised generative modeling tasks that LLMs perform.

Random Feature Model

Now let’s define a random feature model that we will use to map our latent data to a
feature representation. Our goal is to find a representation where the spectrum contains
an approximate power-law fit that is controlled by the number of feature functions, N , in
the model.

19For power-law probability distributions of the form (22), the distribution is normalizable only for
β > 1 and has finite mean only for β > 2. However, if instead we fix a maximal eigenvalue λ+, then the
mean (and higher moments) will exist, but the distribution will no longer be normalizable.

20In our simulations, we find it convenient to use (23) and characterize the spectrum by M , λ+, and α.
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Figure 5: Spectrum λI from numerical simulations (stars) of our latent data generative
model, (19) and (23), with the maximum eigenvalue fixed (λ+ = 1). Left: The size of the
dataset, T , is varied while the size of the latent space and the power-law exponent are fixed
(M = 1000, α = 1). These spectra follow a pattern similar to the ones displayed in Fig. 2
for natural data: for dataset size smaller than the size of the latent space (T < M , blue
and orange) the spectrum has a bulk power law portion that terminates in a very rapid
decline (λI → 0) as the index approaches the size of the dataset (I → T ), and the extent
of the power law increases with increasing dataset; for dataset size equal to and greater
than the size of the latent space (T ≥M , green and red), the power law terminates at the
size of the latent space, but the rapid decline becomes sharper and sharper as the size of
the dataset increases, forming a kink in the limit of infinite data (T → ∞, dashed black
line). Right: The power-law exponent, α, is varied as the sizes of the dataset and latent
space are held fixed (T = 1000, M = 2000), and the spectrum for infinite data is plotted
for comparison (dashed lines). As all three simulations have the same size datasets, their
power laws all terminate at the same point (T = 1000).

The main advantage of generating our data in a large latent space (M > N) rather
than a smaller input space (Nin < N) is that we can use a simpler linear map from the
larger latent space to the smaller feature space rather than having to analyze a nonlinear
map from the smaller input space to the larger feature space. We will define our collection
of feature functions by

ϕj(x) ≡
M∑
I=1

ujIxI , (28)

where j indexes the N different features of the representation of the latent input x, and
u ≡ ujI is a N ×M matrix of random feature weights drawn from a zero-mean Gaussian:

〈ujI〉 = 0 , 〈uj1I1uj2I2〉 =
σ2
u

M
δj1j2δI1I2 . (29)

In Fig. 6, we take datasets sampled from our generative data model, (19) and (23),
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and map them through our random feature model, (28), for a fixed set of features weights,
u, in order to verify that their spectra has the properties discussed in §2.2. We see that
the power-law portion of each spectrum is controlled by the minimum of the number of
features, N , and the size of the dataset, T . These are precisely the properties we sought
to find in our simplified joint data and feature model.
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Figure 6: Spectrum, λi, from numerical simulations of our random feature model, (28),
mapping sampled data from our generative data model, with the size of the latent space,
the maximum eigenvalue, and power-law exponent fixed (M = 5000, λ+ = 1, α = 1).
These spectra show that the random features of our joint model follow closely to what
we observed for CIFAR-10 in Fig. 4: the approximate power-law fit is controlled by the
minimum of the number of features and the size of the dataset, min(N, T ). The latent
feature spectrum is also plotted for comparison (blue) as is the power-law fit (dashed line).
Left: The size of the dataset, T , is varied while the number of random features is held
fixed (N = 4000). Right: The number of random features, N , is varied while the size of
the dataset is held fixed (T = 4000).

(Generalized) Linear Regression

Now that we have features, we will “train” a (generalized) linear model to reproduce
the labels, yi, generated from the underlying latent features, (26), by learning a linear
transformation of the random features ϕj(x):

zi(x; θ) ≡
N∑
j=1

θijϕj(x) , (30)

where θ ≡ θij is a set of learnable parameters.
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To fix these parameters, we will use our generative data model (19) to draw a collection
of T pairs of samples {xI , yi} to form our training set A:

{x, y} ⇐⇒ {xI;α, yi;α} . (31)

We will typically denote our training set of latent data and labels using the matrix notation
(left-hand side), although when clarity dictates we may also use the index notation (right-
hand side), with α = {1, . . . , T} used to index particular samples in A. Accordingly, we
can use our feature functions, (28), to construct a corresponding matrix of random features
derived from the training set:

ϕ ≡ ϕ(x) ⇐⇒ ϕj;α ≡ ϕj(xα) . (32)

We can then use the training set to fit the parameters by optimizing a standard MSE
loss function with a ridge regression term:

LA(θ) ≡ 1

2

C∑
i=1

T∑
α=1

(zi;α − yi;α − εi;α)2 +
γ

2

C∑
i=1

N∑
j=1

θ2
ij (33)

=
1

2
||θϕ− y − ε||2 +

γ

2
||θ||2 ,

where γ is the ridge parameter. Here, we’ve also introduced the ability to corrupt our
labels with a matrix of random noise, ε, which has a separate entry for each training
sample and label component, and each of which entry is drawn from another zero-mean
Gaussian with statistics

〈εi;α〉 = 0 , 〈εi1;α1εi2;α2〉 = σ2
ε δi1i2δα1α2 . (34)

(Note that there is no normalization factor in the variance as there was in our other
variances, e.g., (27) and (29).)

Finally, optimizing the loss (33) with respect to θ has a well-known solution:

θ?ij ≡
N∑
k=1

T∑
α2=1

(
γδjk +

T∑
α1=1

ϕj;α1ϕk;α1

)−1

ϕk;α2(yi;α2 + εi;α2)

= (y + ε)ϕT q , (35)

where on the second line we switched to matrix notation and also introduced the feature-
feature resolvent matrix

q(γ) ≡ 1

γIN + ϕϕT
⇐⇒ qjk(γ) ≡

(
γδjk +

T∑
α=1

ϕj;αϕk;α

)−1

, (36)

where IN ≡ δij represents the identity matrix on feature space.
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Computing Performance

To evaluate our model, we will again use our generative model (19) to draw a collection

of T̂ pairs of samples to form our training set B:

{x̂, ŷ} ⇐⇒ {x̂I;β, ŷi;β} , (37)

where we will generally use a hat to emphasize test-set quantities, and when using indices
we will use β = {1, . . . , T̂} to index particular samples in B. Accordingly, we can use our
feature functions, (28), to construct a matrix of random features derived from the test set,

ϕ̂ ≡ ϕ(x̂) ⇐⇒ ϕ̂j;β ≡ ϕj(x̂β) , (38)

and then use our solution, (35), for inference on these test examples:

ẑ? ≡ θ?ϕ̂ ⇐⇒ ẑ?i;β =
N∑
j=1

θ?ijϕ̂j;β . (39)

The model’s performance may then be measured by a test loss

LB(θ?) ≡ 1

2T̂
||ẑ? − ŷ||2 (40)

=
1

2T̂

∣∣∣∣(y + ε)ϕT qϕ̂− ŷ
∣∣∣∣2

=
1

2T̂

∣∣∣∣(wx+ ε)ϕT qϕ̂− wx̂
∣∣∣∣2 ,

where on the second line we substituted in for the test predictions, ẑ?, using (39), and
then the optimal parameters, θ?, using (35), and on the final line we substituted in for the
labels using (26). Note that this MSE loss has a different normalization than the training
loss, (33), so that it represents a per sample loss if averaged and has a nice large-test-
set limit. Furthermore, note that by using this analytical form of the linear regression
solution, we are effectively in the limit of infinite training, in which the model has been
allowed to converge. This means that (a) we will not have to worry about the way that
the performance can depend on the details of the learning algorithm (see, e.g. [8]), but
also that (b) our statistical model will not capture capture the compute-limited scaling
laws studied by Ref. [18].

One advantage of a joint model of data and features is that we are able to numerically
simulate it for different (hyper)-parameters to confirm that it has the right behavior. In
Fig. 7, we plot the test loss (40) for a variety of model sizes, N , as a function of the training
set size, T : first, we generate latent training and test sets by sampling from our generative
data model, (19) and (23); then, we map both sets through random feature models of
different sizes, (28); next, we use the linear regression solution (35) to compute test-set
predictions using (39) for different values of the ridge parameter, γ, and evaluate the test
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loss (40) as a function of γ; finally, we optimize the ridge parameter (γ = γ?) and plot the
test loss that gives the best performance.21 The figure illustrates the way our statistical
model exhibits the same power-scaling law and plateau regions as the early-stopped LLMs
studied in Ref. [18], cf. Fig. 1: in particular, our numerical simulations are predicted by a
phenomenological model of an extremely simple form,

L(N, T ) = L0

(
1

N
+

1

T

)α
, (41)

where α is the power-law exponent that parameterizes the spectrum defined in (25), and
L0 is a constant that we will compute explicitly in the following subsection but for now
can be thought of as a constant to be fit. This equation, (41), follows from the original
phenomenological model of the test loss, (1), by setting

α ≡ αN = αT , L0 ≡ Nα
0 = Tα0 , (42)

and seems to be the appropriate simplification for an optimally-regularized random feature
model used for linear regression.

Average Goals

Having confirmed that our statistical model has the right properties, our goal now is to an-
alytically compute the expected value of the test loss, 〈LB(θ?)〉, averaged according to the
statistics of our generative data model and random feature maps, in order to understand
the full phenomenology of neural scaling laws. This will involve: averaging over different
realizations of the latent training inputs, x, and latent test inputs, x̂; averaging over dif-
ferent label weights, w, used to compute training labels, y, and test labels, ŷ; averaging
over realizations of the noise, ε, added to the training labels; and averaging over different
feature weights u, that determine the training features, ϕ, and the test features, ϕ̂, given
the latent inputs, x and x̂, respectively. Since these random variables are all matrices, the
computation of the expected test loss is a problem in random matrix theory.

Some of these averages are very easy to perform and can be evaluated immediately:

• The test loss, (40), is quadratic in the random label noise, ε. Expanding in ε and
using its statistics, (34), we find:

〈LB(θ?)〉ε =
1

2T̂

∣∣∣∣w(xϕT qϕ̂− x̂)
∣∣∣∣2 +

Cσ2
ε

2T̂

∣∣∣∣ϕT qϕ̂∣∣∣∣2 . (43)

The first term is independent of the noise, and the second term is independent of
the labels but depends on the random features ϕ, ϕ̂. Therefore, we will refer to these
two terms as the label term and the noise term, respectively.

21For the most stable results, we use the form (35) of the linear regression solution when the model is
underparameterized (N < T ), and we use (58) when the model is overparameterized (N > T ).
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Figure 7: Test loss from numerical simulations (stars) of our optimally regularized (γ = γ?)
joint statistical model (σ2

u = 1, λ+ = 1, σ2
w = 1, σ2

ε = 0) as a function of training set size
demonstrating the same rich behavior as LLMs and a simple fit (solid lines) given by (41):
analogous to Fig. 1, if the model isn’t bottlenecked by the number of parameters, N →∞,
the test loss behaves as a power law in the training set size, L(N, T ) ∼ T−α; otherwise, if
the number of parameters is too small for a given training set, then the test loss stalls at
a plateau at a value that depends predictably on the parameters, L(N, T ) ∼ N−α. Similar
statements would hold if we plotted the test loss as a function of the number of features.
(For smaller values of T , the variance of any particular realization is large, and so we’ve
plotted multiple simulations for T . 10.) Left: The size of the training set, T , is varied
for a few different sized models, N , while the size of the latent space and the power-law
exponent is held fixed (M = 6000, α = 1.0). Right: The size of the training set, T , is
varied for a few different power-law exponents, α, while the size of the latent space and
the size of the model is held fixed (M = 6000, N = 1000).

• The label term now involves a simple square of the label weights, w, which can be
averaged over using its statistics, (27), to find:

〈LB(θ?)〉ε,w =
Cσ2

w

2T̂M

∣∣∣∣xϕT qϕ̂− x̂∣∣∣∣2 +
Cσ2

ε

2T̂

∣∣∣∣ϕT qϕ̂∣∣∣∣2 . (44)

Since the output dimension C just gives an overall scaling of the test loss, we will simply
set C = 1 for the rest of the paper without loss of generality.

Two of the three remaining averages, over the latent input training set, x, and over the
random feature weights, u, will be more challenging to compute.22 They will be carried
out in the remainder of the section, with some of the less conceptual and more mechanical

22The average over the latent test inputs, x̂, is relatively easy but we will find it convenient to defer this
computation until later.
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details relegated to Appendix B. Before moving on to the details, let us meditate on the
mechanics of these averages.

The feature functions are defined as the product of two zero-mean Gaussian variables, x
and u, cf. (28). Holding either x or u fixed and averaging over the other is straightforward
given their statistics, (19) and (29). From this it follows that the features are centered,

〈ϕj;α〉 = 0 , 〈ϕ̂j;β〉 = 0 , (45)

but their covariances are non-trivial.
It will be convenient to decompose these covariances in terms of matrices that have

either sample indices or feature indices, but not both. For instance, when averaging over
the random features, using (29) we find

〈ϕj1;α1ϕj2;α2〉u = Σα1α2 δj1j2 , 〈ϕj1;αϕ̂j2;β〉u = Σ̃αβ δj1j2 , 〈ϕ̂j1;β1ϕ̂j2;β2〉u = Σ̂β1β2 δj1j2 ,
(46)

where we have defined the matrices

Σ ≡ σ2
u

M
xTx , Σ̃ ≡ σ2

u

M
xT x̂ , Σ̂ ≡ σ2

u

M
x̂T x̂ , (47)

which have sample indices only. Note that, as they depend on x and x̂, these matrices are
themselves random variables. Relatedly, when averaging either over the training inputs or
over the test inputs, using (19) we find

〈ϕj1;α1ϕj2;α2〉x = Ωj1j2δα1α2 , 〈ϕ̂j1;β1ϕ̂j2;α2〉x̂ = Ωj1j2δβ1β2 , (48)

where we have defined the random matrix

Ω ≡ uΛuT ⇐⇒ Ωj1j2 ≡
M∑

I1,I2=1

uj1I1uj2I2ΛI1I2 , (49)

which has random feature indices only and is essentially a projection of the latent-space
covariance matrix, Λ, onto our model’s random feature space. Lastly, again using (19) to
average over training inputs or test inputs, there’s a nontrivial cross-correlation between
the latent inputs and the training or test features,

〈xI;α1ϕj;α2〉x = Ω̃Ij δα1α2 , 〈x̂I;β1ϕ̂j;β2〉x̂ = Ω̃Ij δβ1β2 , (50)

where we have defined a final random matrix,

Ω̃ ≡ ΛuT ⇐⇒ Ω̃Ij ≡
M∑
J=1

ujJΛIJ . (51)

Note that this matrix has a feature index and a latent index but does not depend on
samples, and, as a partial projection, the relation

Ω = uΩ̃ (52)
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follows from the above definitions.
Finally, we note that the following training-set-averaged covariances vanish,

〈xI;αϕ̂j;β〉x = 〈x̂I;βϕj;α〉x = 〈ϕj1;αϕ̂j2;β〉x = 0 , (53)

and the analogous set of test-set-averaged covariances vanish,

〈xI;αϕ̂j;β〉x̂ = 〈x̂I;βϕj;α〉x̂ = 〈ϕj1;αϕ̂j2;β〉x̂ = 0 , (54)

together indicating no cross-correlation between train and test latent or random features;
this is as expected, since each sample is drawn independently. We also note that any
mixed covariance between random features and latent will vanish when averaged over the
random feature weights,

〈xI;α1ϕj;α2〉u = 〈xI;αϕ̂j;β〉u = 〈x̂I;βϕj;α〉u = 〈x̂I;β1ϕ̂j;β2〉u = 0 , (55)

since these expressions are linear u.

Final Definitions

The main difficulty of our analysis is that the resolvent, q(γ), involves inverses of the feature
functions, (36). Roughly speaking, our approach to compute the averaged loss involves
expanding it around γ → ∞, thus the expanding factors of q(γ) it contains, and then
using the data-averaged covariances, (48) and (50), to evaluate the resulting infinite sum
of Gaussian expectations. This leads to an implicit equation for a quantity that ultimately
determines the test loss, which can be solved in certain limits as well as averaged over the
random features.23

One wrinkle is that the above only works well in the underparameterized regime with
N < T . To analyze the overparameterized regime, N > T , it will be useful to rewrite the
linear regression solution, (35), in terms of a data-data resolvent matrix, defined as

Q(γ) ≡ 1

γIT + ϕTϕ
⇐⇒ Qα1α2(γ) ≡

(
γδα1α2 +

N∑
j=1

ϕj;α1ϕj;α2

)−1

, (56)

where here IT ≡ δα1α2 represents the identity matrix on sample space. To see how to

23This is an important difference from Ref. [38], where the authors performed averages over random
training data only using the results of a replica calculation from Refs. [35, 36]. In Appendix A, we discuss
such (non-generalized) linear models using the simpler techniques of this paper. In particular, in §A.2 we
explain how models with the right generative data model, but without any random feature maps, behave
qualitatively differently than the LLMs observed in Ref. [18].
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rewrite the linear regression solution, note that

qϕ =

[
∞∑
s=0

1

γ

(
−ϕϕ

T

γ

)s]
ϕ (57)

=
ϕ

γ

[
IT −

ϕTϕ

γ
+

(
ϕTϕ

γ

)2

+ . . .

]
= ϕQ ,

where on the first line we used the definition of q, (36), to expand the resolvent around
γ →∞, on the second line we pulled out a ϕ from the sum to the left and put the ϕ from
the right into the sum, and on the third line we resummed the geometric series and used
the definition (56). Using the transpose of this commutation relation, ϕT q = QϕT , we can
rewrite the linear regression solution, (35), as

θ? = (y + ε)QϕT . (58)

Now, let us state two simple identities that we can use to drastically simplify our
calculations. First, from the definitions of the two resolvents, (36) and (56) note that

q(γ)2 = − ∂

∂γ
q(γ) , Q(γ)2 = − ∂

∂γ
Q(γ) . (59)

With these, we can simplify the averaging by eliminating powers of q and Q from various
expressions. Second, we also see from these definitions that

(γIN + ϕϕT )q = IN , (γIT + ϕTϕ)Q = IT , (60)

which will similarly be used to eliminate factors of ϕϕT and ϕTϕ.
Finally, we will find it convenient to adopt the following notation:

q ≡ 〈q〉x Q ≡ 〈Q〉x , (61)

where the overline notation represents a training set average of the resolvent.

3.2 Data and Feature Averaging

We now begin with the more challenging part of the calculation, the dataset and random
feature averages. As we will explain, the expectation of the test loss cannot be computed
for all values of M,T,N : instead we will have to settle for expressions that are valid in the
limit where M,T,N � 1, though their ratios, M/T , M/N , and T/N , may still take any
value. This is not a problem: the neural scaling laws that LLMs exhibit in practice arise
for very large data and models sizes, where our solutions are extremely accurate.24 And,
although we will not need to do so, the techniques that we describe below can be used
to systematically compute the subleading corrections to the loss, which are suppressed by
inverse powers of M , T , and N .

24From our numerics, cf. Fig. 8, we will see that subleading corrections are only important for very
small training set sizes and numbers of features, T,N . 10.
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3.2.1 The Noise Term

We begin with the noise term in (44). As the calculation that we perform here can be
repurposed and significantly generalized when we analyze the label term, this section will
also serve as a gentle introduction to our techniques.

Considering the noise term in the partially-averaged test loss, (44), and taking expec-
tations over both datasets, x, x̂, and the random feature weights, u, we get:

σ2
ε

2T̂

〈∣∣∣∣ϕT qϕ̂∣∣∣∣2〉
x̂,x,u

=
σ2
ε

2T̂

〈
tr
{
ϕϕT qϕ̂ϕ̂T q

}〉
x̂,x,u

.

=
σ2
ε

2

〈
tr
{
ϕϕT qΩq

}〉
x,u

=
σ2
ε

2

〈(
1 + γ

∂

∂γ

)
tr{Ωq}

〉
u

, (62)

Here, in the first line we expanded the square and expressed it as a trace, and in the second
line we used our expression for the test-set covariance, (48), to perform the average over
the test set. Finally, in the third line, we first used our first identity, (60), to eliminate the
ϕϕT ; we second used our second identity, (59), to exchange the q2 term for a derivative;
and we third used the definition, (61), to replace q with q. In this way, we’ve reduced the
computation to three steps: (i) compute the quantity

∆F ≡ tr{Ωq} , (63)

which involves evaluating the training-set average of the resolvent, q, and then (ii) apply
the differential operator, and finally (iii) evaluate its random feature average.

The only nontrivial step will be (i), which we will now describe: we need to compute
the training-set-averaged resolvent, (36),

q ≡ 〈q〉x , q ≡ 1

γIN + ϕϕT
, (64)

using the fact that, for fixed u, the training-set average of ϕ is given by

〈ϕj;α〉x = 0 , 〈ϕj1;α1ϕj2;α2〉x = Ωj1j2δα1α2 , Ω ≡ uΛuT , (65)

cf. (45) and (48). To evaluate q, we will take the limit of large training set and large
number of random features, T,N → ∞, with their ratio fixed.25 This computation is a
classic result of random matrix theory that goes back to the original work of Marchenko
and Pastur [51] and was further studied in later works (see e.g. [52]).26 Here we give a

25We are also implicitly taking the size of the latent space to be large, M → ∞, though it may also
have fixed ratios with T and N .

26In particular, the quantity tr{q(γ)} is the Stieltjes transform of the eigenvalue distribution of the
matrix ϕϕT : tr{q(γ)} is a meromorphic function with poles given by the (negative of the) eigenvalues of
ϕϕT ; after averaging over x to get tr{q(γ)} these poles condense to a branch cut, and so the discontinuity
across this branch cut determines the eigenvalue density. In the case where Ω is proportional to the
identity, this reproduces the famous Marchenko-Pastur distribution.
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simple derivation using Feynman diagram techniques that can be easily generalized to the
other averages we will consider later.27

To begin, note from its definition, (64), that we can expand the resolvent in a power
series in the ridge parameter:

q(γ) = γ−1

∞∑
s=0

(−γ)−s
(
ϕϕT

)s
. (66)

Each term in this expansion is a power of the elements of the matrix ϕ. For fixed u,
the elements of the matrix ϕ are Gaussian random variables with statistics (65). The
higher-order moments of a zero-mean Gaussian distribution are determined entirely by
the covariance matrix, Ωj1j2δα1α2 , and can be determined by a repeated application of
(65). Let us enumerate the first few terms, which will make our overall strategy clear:

• The s = 0 term is trivial and simply given by γ−1.

• The s = 1 term is also trivial and can be evaluated directly using the middle equation
in (65), giving

− γ−2
〈
ϕϕT

〉
x

= −γ−2TΩ , (67)

where the factor of T comes from the sum over the training set.

• The s = 2 term involves the average of the quartic matrix ϕϕTϕϕT . Generally, the
expectation value of a product of four arbitrary ϕ components is a sum of the three
different ways that these features can be “paired up” together, with each pairing
weighted by the appropriate covariance:28

〈ϕj1;α1ϕj2;α2ϕj3;α3ϕj4;α4〉x = 〈ϕj1;α1ϕj2;α2〉x 〈ϕj3;α3ϕj4;α4〉x + (68)

〈ϕj1;α1ϕj3;α3〉x 〈ϕj2;α2ϕj4;α4〉x +

〈ϕj1;α1ϕj4;α4〉x 〈ϕj2;α2ϕj3;α3〉x ,

which can be evaluated using (65) to give

Ωj1j2Ωj3j4δα1α2δα3α4 + Ωj1j3Ωj2j4δα1α3δα2α4 + Ωj1j4Ωj2j3δα1α4δα2α3 . (69)

We can use this to evaluate
〈
ϕϕTϕϕT

〉
x

by setting α1 = α2, α3 = α4, j2 = j3 and
summing, which altogether gives for the s = 2 term:

γ−3
〈(
ϕϕT

)2
〉
x

= γ−3
(
T 2Ω2 + TΩ2 + TΩ tr{Ω}

)
. (70)

The three terms in this expression correspond directly to the three terms in (68).

27A similar diagrammatic derivation of q can be found in [53]. For other applications of Feynman
diagrams in machine learning, see also [54].

28This an example of a general fact about Gaussian distributions: the expectation value of a product
of Gaussian random variables is always a sum over the different ways that the variables can be paired up.
This is known as Isserlis’ theorem in probability theory and Wick’s theorem in the physics literature. Note
that if the statistics of ϕ were non-Gaussian, there could be an additional contribution to the right-hand
side of (68) related to the fourth cumulant of the distribution.
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In principle, it is straightforward – though tedious – to proceed order-by-order in this way,
evaluating the average of each term. The main challenge is that the super-exponential
proliferation of pairings that arise for larger s makes it difficult to keep track of how the
indices in the resulting expressions are summed over: as is already evident in (70), many
different types of terms can arise, with different powers of T , Ω, and tr{Ω}.

The method of Feynman diagrams is simply a diagrammatic technique that we can
use to keep track of these various terms. For example, we represent the expectation value of
the power series for the averaged resolvent, (66), as the following diagrammatic expression:

q ≡ q (71)

= γ−1

− γ−2

+ γ−3 + γ−3 + γ−3

+ . . .

In this expression, each diagram on the right-hand side represents a term in the expansion
and can be interpreted using the following rules:

• Each single horizontal solid line represents a random-feature j-type index as

δj1j2 ≡ j1 j2 . (72)

• Each single horizontal dashed line represents a training-sample α-type index as

δα1α2 ≡ α1 α2 . (73)

• Then, we can represent ϕ ≡ ϕj;α as the vertex of a horizontal solid line and a
horizontal dashed line as

ϕj;α ≡ j α , (74)

with ϕT drawn as the mirror image, with the dashed line preceding the solid line.

• Each set of curved double lines represents the random-feature covariance matrix as

Ωj1j2δα1α2 ≡ j1;α1 j2;α2 . (75)

Note that it doesn’t matter whether the dashed line is above or below the solid line,
and in some diagrams they may even twist around each other.

30



• If two lines are connected, the corresponding indices are set equal and summed over.

• If a closed loop appears, the corresponding index is summed over.

Note also that for each of the diagrams in the expansion, we have written explicitly the
factors of γ which accompany each of the terms in the sum. Please convince yourself that
with these rules the second, third, and fourth lines in the diagrammatic expression (71)
correspond to the s = 0, s = 1, and s = 2 terms, respectively, in the expansion computed
above.

For example, consider the s = 1 term in the third line: first, we write Ωj1j2δα1α2 for
the curved double lines; then, we set α1 = α2 for the horizontal dashed line connecting
to the curved dashed line; lastly, we sum over its index to give a factor of T . Including
the correct factors of the ridge parameter and the overall sign, we find −γ−2TΩ, matching
the s = 1 term, (67). Similarly, one can check that the three diagrams on the final line
correspond to each of the three terms in the s = 2 contribution, (70).29

This Feynman diagram representation of the expansion is useful because it helps us
select the terms that dominate in the large-T and large-N limit. Each closed loop in a
Feynman diagram represents a trace: a loop of a dashed line will give a factor of T coming
from the trace of the identity matrix IT , while a loop of a solid line will give a factor of
tr{Ωp} for some integer p, which will overall scale linearly with N in the large-N limit.30

With these rules, it turns out that a simple way to evaluate the overall scaling of
a diagram is to consider its topology : the diagrams that dominate at large T and N are
planar, i.e. can be drawn on the plane without any lines crossing one another. For example,
inspecting (71), the only non-planar diagram is the middle diagram on the final line; this
reflects the fact that the middle term in (70) scales only linearly with T , while the first
and last terms scale quadratically, as T 2 and T tr{Ω} ∼ TN , respectively. Indeed, when
we take the limit of large T and N with the fixed ratio T/N , then there is a simple way to
organize our calculation as an expansion in 1/N : diagrams that can only be drawn on a
surface of a more complicated topology are suppressed relative to the leading contributions
by powers of N .31 As we are only interested in the leading contribution, we will only need

29Note that you can also read off the form of the term before any averaging by considering the horizontal
straight lines along the bottom of a diagram: the matrix ϕ ≡ ϕj;α is represented by a solid line followed by

a dashed line, and its transpose, ϕT ≡ (ϕj;α)
T

, is represented a dashed line followed by a solid line. The
curved lines emerging from these vertices then determine the different pairings that result when averaging
over x.

30This latter statement depends on the assumption that the elements Ωj1j2 remain of order one as N is
increased. This is explicitly true for the data models considered in our paper.

31In physics, this is known as the ’t Hooft large-N expansion [55], and the limit of large T and N is
often referred to as the planar limit. In mathematics, this observation is the starting point for the study
of free probability (see, e.g., [56]): in free probability theory, we replace the usual cumulants, which are
sums over partitions, by sums only over non-crossing partitions. The non-crossing criterion is, in the
language of Feynman diagrams, just the statement that we include only planar diagrams. For example,
in free probability we would label the three terms in (68) by the three possible partitions of the index
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to consider planar diagrams in our calculation. By focusing on the leading contribution,
we can thus make a significant reduction in the number of terms that we have to consider.

Even so, there are still an infinite number of diagrams that contribute q. To simplify
things further, we will organize the expansion of the resolvent, (66), in a slightly different
way. First, let us write the averaged resolvent as

q(γ) ≡ 1

γIN + SF (γ)
, (76)

which we take as the definition of some N × N matrix, SF . Note importantly that SF

is independent of x, as x has already been averaged over in this formula. Comparing the
original definition q, (64), with the definition of q, (76), we see that the entire effect of
averaging has been packaged into a substitution of the random matrix ϕϕT for the fixed
matrix SF .32 Next, expanding the definition (76) for large γ, we can express q(γ) as series,

q(γ) = γ−1

∞∑
s=0

(−γ)−s
(
SF
)s
, (77)

and use our Feynman rules to represent the terms in that series diagrammatically as

q = γ−1 − γ−2
SF + γ−3

SF SF − . . . ,

(78)
where the circle labeled with “SF” represents an insertion of the matrix SF ≡ SFj1j2 . Of
course, this is only a reorganization of our original expansion (71): all that we’ve done is
assumed that q can be resummed in a particular way and then repackaged our ignorance
into the as-yet unknown matrix SF .

To make this useful, let’s develop a Feynman diagram expansion for SF . This expansion
must have the property that when inserted into the q expansion, (78), it reproduces our
original expansion, (71). In the planar limit, it turns out that the correct expansion is:

SF ≡ − q + q q − . . . .

(79)

set {1, 2, 3, 4} into pairs, as {1, 2} ∪ {3, 4}, {1, 3} ∪ {2, 4} and {1, 4} ∪ {2, 3}. The first and third are
non-crossing partitions, while the second “crossing” partition is excluded in free probability. Comparing
to (71), this is just the planar limit.

32In the physics literature, quantities like SF that appear in the denominators of averaged resolvents or
propagators of interacting systems are often referred to as self-energies. As an N -by-N -dimensional matrix
that in principle depends on the random feature weights, u, one might therefore call SF the self-energy of
the features. We only mention this name as an explanation for our choice of symbol, SF .
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Note that (a), that rather than using solid horizontal lines instead we use subdiagrams
labeled with “q”, which represents an insertion of the averaged q matrix, and (b) that the
signs alternate between diagrams.33

To see why this is the correct expansion, note that diagrams in this expansion have the
property that they cannot be split into two parts by cutting a single or double line in one
particular place.34 Contrast that with the first diagram on the fourth line in (71): there, if
we cut the middle solid line connecting the two rising suns, then the diagram will be split
into two separate pieces. This underscores the reason why organizing the computation
in terms of SF is helpful and suggests the strategy for its computation: first, write down
an expansion for all the diagrams that have the property that they cannot be split by
cutting a solid line according to our conditions (a)–(b); then, by packaging them back into
the expansion (78), we will generate all the needed diagrams, including those that fall
into two disconnected pieces when a line is cut. To check that this claim is correct, you
can insert this definition, (79), for SF into the expansion (78); this will give exactly the
same expansion as our original one, (71), provided that every time either q or SF appears
you also recursively insert expansions (78) or (79), respectively. The utility of this is that
drawing all planar irreducible-by-cutting diagrams is much simpler than trying to draw
all diagrams overall, and so by restricting to this set of diagrams – or equivalently, the
terms in the expansion represented by these diagrams – we can make the computation of
q not only tractable, but simple. Note that for this to work, the large-N limit restriction
to planar diagrams was absolutely crucial: at finite N , simple recursive representations
like this do not exist, although in many cases it is possible to systematically compute
subleading 1/N corrections.

All that remains is to actually evaluate SF . Evaluating the diagrams in the expansion
(79) according to our rules for Feynman diagrams, we see that the pattern is

SF = TΩ− TΩ tr{Ωq}+ TΩ tr{Ωq}2 + · · ·+ TΩ (−tr{Ωq})s + . . . . (80)

Recognizing yet another geometric series, we can sum it up to get

SF (γ) =
TΩ

1 + ∆F (γ)
, (81)

where we’ve recalled our earlier definition, (63).35 Together (76) and (81) form a system
of two coupled matrix equations that can be solved to determine the x-averaged resolvent
q, and the quantity that we ultimately need, ∆F .36

33In the physics literature, q is sometimes referred to as a dressed propagator, while, by contrast, the
matrix corresponding to the solid horizontal line, IN , is known as a bare propagator.

34In the physics literature, such diagrams are known as one-particle irreducible (1PI).

35Analogous to SF , you might call ∆F the Delta of the features.

36In the physics literature, (78) and (79) are sometimes known as Schwinger-Dyson equations [57, 58].
Note also that there is no simple closed form solution of these equations, except in certain special cases.

33



To finally finish item (i) in our three-step plan for calculating the noise term, let us
rewrite our system of equations as an implicit equation for ∆F as a function of Ω:

∆F (γ) = tr

{
Ω

γIN + TΩ
1+∆F (γ)

}
. (82)

Here, we have used (81) to eliminate SF from (76), multiplied q by Ω, and then took the
trace of both sides. This equation can be solved numerically as a function of Ω, T , and γ,
or can be analyzed analytically in the ridgeless limit (γ → 0). In this paper, our analysis
will mostly be concerned with the ridgeless limit. Now, let’s continue with our plan with

step (ii), applying the differential operator,
(

1 + γ ∂
∂γ

)
, and step (iii), averaging over the

random features, u.
To apply step (ii) in the ridgeless limit, we should expand ∆F near γ → 0:37

∆F (γ) ≡
∆F
−1

γ
+ ∆F

0 + ∆F
1 γ + . . . . (83)

Applying our differential operator to this expansion eliminates the leading term as

lim
γ→0

(
1 + γ

∂

∂γ

)
∆F (γ) = ∆F

0 , (84)

which means that in this limit the noise term, (62), has a very simple expression:

σ2
ε

2T̂

〈∣∣∣∣ϕT qϕ̂∣∣∣∣2〉
x̂,x,u

=
σ2
ε

2

〈
∆F

0

〉
u
, (85)

where ∆F
0 is understood to be determined by solving the self-consistent equation (82).

It turn out the solution for ∆F
0 depends on whether the model is underparameterized

(T > N) or overparameterized (T < N) and also on whether the model is in the regime
valid for neural scaling behavior (N < M) or in a regime where that behavior breaks
down (M > N). The computation of ∆F

0 in these four cases is somewhat technical and
not particularly illuminating, so is relegated to Appendix B.2 (under the final subheading
labeled ∆0 for the Truncated Power-Law Spectrum).

Finally, for step (iii) we note that the solution for ∆F
0 given in (267) does not explicitly

depend on the fixed random feature weights, u. Thus, the average over u is trivial, and,

One scenario in which it is possible to jointly solve these equations is when the covariance proportional to
the identity matrix: Ω = σ2IN . In this case, it’s easy to check that the system, (78) and (79), reduces to
a simple quadratic equation for tr{q}. We discuss this case explicitly in §A.1 of the appendix.

37The justification for such an expansion is provided in Appendix B, but intuitively note the possibility
of a 1/γ divergence as γ → 0 by considering the self-consistent equation (82) as ∆F becomes large.
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substituting (267) for ∆F
0 in (85), we find a final answer for the noise term:

Lε ≡
σ2
ε

2T̂

〈∣∣∣∣ϕT qϕ̂∣∣∣∣2〉
x̂,x,u

=
σ2
ε

2


α + 1

N/T−1
, T < N , N < M ,

1
T/N−1

, T > N , N < M ,

α + 1
M/T−1

, T < M , N > M ,
1

T/M−1
, T > M , N > M .

(86)

3.2.2 The Label Term

We now move on to the more complicated label term in (44). Starting from the partially-
averaged expression and taking expectations over both datasets, x, x̂, and the random
feature weights, u, we expand the square to express the term as a sum of traces:

Lw ≡
σ2
w

2T̂M

〈∣∣∣∣xϕT qϕ̂− x̂∣∣∣∣2〉
x̂,x,u

(87)

=
σ2
w

2T̂M

〈(
tr
{
x̂x̂T

}
− 2tr

{
x̂ϕ̂T qϕxT

}
+ tr

{
ϕ̂ϕ̂T qϕxTxϕT q

})〉
x̂,x,u

=
σ2
w

2M

(
tr{Λ} − 2

〈
tr
{

Ω̃qϕxT
}〉

x,u
+
〈

tr
{

ΩqϕxTxϕT q
}〉

x,u

)
.

In the final line, we used the random feature covariance, (48), and the mixed latent-
feature-random-feature covariance, (50), to perform the averages over x̂. Thus, we have
two expectations to evaluate.

To calculate these x and u expectations, we will need to separately consider the cases of
underparameterization (N < T ) and overparameterization (N > T ). These computations
are somewhat technical and follow very similar techniques to those discussed in the previous
subsection; if you feel you’ve already got the hang of these techniques and are now ready
for the final result please feel free to skip ahead to §3.2.3.

The Underparameterized Regime

We start with the case of N < T , proceeding in two steps: (i) first, we’ll compute the
average over the training set, x, and (ii) then, we’ll perform the average over the random
feature weights, u.

(i) Training Set Average

To perform the training set average, we will apply the same Feynman diagram tech-
niques considered earlier to more involved expectations. The essential difference is that
we now must consider both the random and latent features, ϕ and x, as Gaussian random
matrices, with covariances given by

〈xI1;α1xI2;α2〉x = ΛI1I2δα1α2 , 〈ϕj1;α1ϕj2;α2〉x = Ωj1j2δα1α2 , 〈xI;α1ϕj;α2〉x = Ω̃Ijδα1α2 ,
(88)
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cf. (19), (48), and (50) . To account for these statistics, we will have to augment our
Feynman rules from before:

• In addition to the horizontal solid line, which carried a random-feature j-type index,
(72), and the horizontal dashed line, which carried a training sample α-type index,
(73), we will need to introduce the horizontal wavy line, which will carry a latent-
feature I-type index as

δI1I2 ≡ I1 I2 . (89)

• Then, we can represent x ≡ xI;α as the vertex of a horizontal wavy line and a
horizontal dashed line as

xI;α ≡ I α . (90)

xT is drawn as the mirror image, with the dashed line preceding the wavy line.

• Similarly, in addition to the curved dashed-and-solid double lines in (75), which
represents the covariance 〈ϕj1;α1ϕj2;α2〉x, we must introduce two additional double
lines which represent the other covariances in (88). The curved dashed-and-wavy
double line will represent the covariance of the latent features, 〈xI1;α1xI2;α2〉x, as

ΛI1I2δα1α2 ≡ I1;α1 I2;α2 , (91)

and the curved dashed-and-solid-turns-into-wavy double lines represents the mixed
covariance of random and latent features, 〈ϕj;α1xI;α2〉x , as

Ω̃Ijδα1α2 ≡ I;α1 j;α2 . (92)

Here, the dot on the solid-and-wavy-line reminds us that Ω̃ ≡ Ω̃Ij transforms a latent
feature index, I, into a random feature index, j.

As before, we will work in the limit where all the scales in the problem are all large
(M,N, T → ∞) but with fixed ratios. Thus, we can continue to restrict our attention to
only planar diagrams.

With these rules defined, let’s now look at the expectations appearing in (87). Consider
the first, 〈

tr
{

Ω̃ qϕxT
}〉

x,u
=
〈

tr
{

Ω̃
〈
qϕxT

〉
x

}〉
u
. (93)

Here we have used the fact that Ω̃ is independent of the training set to move it outside
the x average. The evaluation of

〈
qϕxT

〉
x

is similar to that of 〈q〉x, except that now the
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factors of (ϕϕT )s appearing in the expansion of q, (66), can have correlations with ϕ and
x, cf. (88).

To proceed, we expand q order-by-order in γ as in (66). Representing the terms in the
expansion of

〈
qϕxT

〉
x

using our Feynman rules, we find:

〈
qϕxT

〉
x

= γ−1

− γ−2 − γ−2

+ . . . , (94)

Since this is more involved than our previous expansions, it is worth summarizing what
each of these diagrams represents. Each line represents a different order in the expansion
(66) of q:

• The first line represents
〈
γ−1ϕxT

〉
x
, the term resulting from the s = 0 part of

the expansion of q(γ). To interpret the diagram, we first read along the bottom
horizontal lines: the feature ϕ is represented by the vertex that connects a solid line
and a dashed line, and then the latent feature xT is represented by the the vertex
that connects a dashed line and a wavy line. The average of these two matrices is
given by (88), 〈

ϕxT
〉
x

= T Ω̃T ; (95)

the double curved lines represent this covariance as per our rule (92). Note that our
rules also tell us to include the factor of T due to the closed dashed-line loop.

• The second line represents
〈
−γ−2ϕϕTϕxT

〉
x
, which arises from the s = 1 part of the

expansion of q(γ). Reading along the bottom of either diagram, we see a pattern of
solid, dashed, and wavy lines that represents the quantity to be averaged, ϕϕTϕxT .
There are three ways to pair up these four matrices, but one of these would result
in a non-planar diagram that is subleading. The two planar diagrams are depicted
in the second line, and represent the pairings〈

ϕϕT
〉
x

〈
ϕxT

〉
x

= T 2ΩΩ̃T ,
〈
ϕxT

〉
x

〈
ϕTϕ

〉
x

= T Ω̃T tr{Ω} , (96)

respectively. These diagrams both contribute at the same order in our large-(N, T )
counting, since the first diagram scales like T 2 and the second diagram scales like
T tr{Ω} ∼ TN .

We could continue on expanding in this manner, but there is a better way. In fact, this far
is enough to let us notice a pattern that allows us to immediately write down the answer
in terms of quantities we’ve already computed.
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To explain this, we will need to define one more object. Consider the data-data resol-
vent, Q(γ), defined in (56). We can compute its data average, Q ≡ 〈Q〉x, via a diagram-
matic expansion just as we did for q:

Q ≡ Q (97)

= γ−1 − γ−2

+ γ−3 + γ−3 − . . .

= γ−1 − γ−1 q + γ−1 q q − . . . .

Here, to reach the final line, we recognized a pattern: the diagrams appearing in Q contain
as subdiagrams the same diagrams that appeared in the expansion for q.38 Note also that
all but one of the factors of γ−1 that appear in the expansion of Q are accounted for by
the factors of q appearing in the final line. Evaluating these diagrams on the final line, we
can sum the resulting geometric series:

Q = γ−1IT − γ−1tr{Ωq} IT + γ−1 (tr{Ωq})2 IT − . . . (98)

=
IT

γ(1 + ∆F )
,

where to get the resulting expression we used the definition ∆F ≡ tr{Ωq}. As a sanity
check, note that Q must be proportional to the identity because none of our covariance
matrices have nontrivial training-set indices after averaging over the data, cf. (88).

Returning now to (94), we can similarly see a pattern in the expansion:

〈
qϕxT

〉
x

= γ Qq , (99)

which can be easily checked by recursively substituting in the diagrams for q and Q. Note
that there is an explicit factor of γ in this expression to account for the factors of γ−1 that

38It is easiest to see this by using the (78) form of the q expansion and plugging in for SF with
its diagrams, (79). One could also define a self-energy matrix like SF as an intermediate step in the
computation of Q; the diagrammatic expansion for that object makes the result (98) almost immediately
apparent. In fact, from (98), we see that the analog of SF for Q is just the matrix γ∆F IT .
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are included in both q and Q. Using our rules to evaluate this diagram, we find the first x
expectation in the label term, (93) is:〈

tr
{

Ω̃ qϕxT
}〉

x,
=

(
T

1 + ∆F

)
tr
{

Ω̃T Ω̃ q
}
, (100)

where, to get this expression, we used here the cyclicity of the trace and substituted for
the trace of (98),

γ tr
{
Q
}

=
T

1 + ∆F
. (101)

Now let’s consider the final expectation in the label term (87):〈
tr
{

ΩqϕxTxϕT q
}〉

x,u
=
〈

tr
{

Ω
〈
qϕxTxϕT q

〉
x

}〉
u

(102)

where we’ve used the fact that Ω is independent of the training set to take it outside the
x average. This will be the most complicated expectation to evaluate, since terms like
(ϕϕT )s resulting from the expansion of either q in the expression can pair with any of the
other four matrices: ϕ, xT , x, ϕT .

To proceed, we will use a similar diagrammatic strategy as before: we will consider the
various diagrams that result from the dual expansion of the resolvents in

〈
qϕxTxϕT q

〉
x

and try to recognize patterns in the subdiagrams. Before we begin, in this case note that
the different terms arising in the expectation must be determined by the different ways
in which the x and xT are paired. In particular, there are four different possibilities to
consider: (1) the x and xT are paired together; (2) the x is paired with a ϕT , and the xT

is paired with a ϕ to their left; (3) the x is paired with a ϕT , and the xT is paired with
a ϕ to their right; and (4) the xT is paired with a ϕ to the left and the xT is paired with
a ϕT to the right. As you can check, any other pairings will involve crossings, leading to
non-planar diagrams, and therefore subleading contributions in the large-N limit.

Next, when expanding both q’s and making these pairings, you’ll notice that for the
first three pairings, (1)–(3), the expectation will factorize into a part with a common
factor, while for the fourth pairing, (4), there will be two terms, one that factorizes the
same way and one that does not. Altogether, the structure will be〈

qϕxTxϕT q
〉
x

=
〈
qϕ
(
P̃ (1) + P̃ (2) + P̃ (3) + P̃ (4)

)
ϕT q

〉
x

+ P̃ (4,c) , (103)

where the various P̃ (a) ≡ P̃
(a)
α1α2 are (T × T )-dimensional x-independent matrices that

represent the four factorized contributions from the four different pairings, and P̃ (4,c) ≡
P̃

(4,c)
j1j2

is an (N×N)-dimensional x-independent matrix representing the so-called connected
contribution that does not factorize the same way as the other. This decomposition, (103),
can be shown by expanding in both q’s and recognizing that the resulting diagrammatic
expansion can be reorganized into sets of disconnected diagrams and connected diagrams.
Importantly, in doing so you will see that the overall factor for the disconnected diagrams
is the same for each pairing.
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Moreover, as we already explained above after (98) when evaluating Q, the only matrix
with training-data indices that can appear after x-averaging is the identity matrix IT .
Thus, each of these factorized pairings can be written as P̃ (a) ≡ P (a)IT , for scalar P (a),
which lets us further simplify (103) as〈

qϕxTxϕT q
〉
x

=
〈
qϕϕT q

〉
x

(
P (1) + P (2) + P (3) + P (4)

)
+ P̃ (4,c) . (104)

Finally, the factor,
〈
qϕϕT q

〉
x
, can be expressed in terms of already known quantities as

〈
qϕϕT q

〉
x

=

(
1 + γ

∂

∂γ

)
q , (105)

where we’ve used our identities, (60) and then (59), and finally our definition q ≡ 〈q〉x.
Now, let’s re-enumerate the four possible pairings of x and xT to evaluate the four P̃ (a)

and P̃ (4,c):

(1) The simplest case is when x and xT are paired together:

P̃ (1) ≡
〈
xTx

〉
x

= = tr{Λ} IT . (106)

This is trivial, but it’s still nice to practice our drawing.

(2) The next contribution is when both x and xT pair with a ϕT and a ϕ to their left:

P̃ (2) ≡ −
〈
ϕT
〈
qϕxT

〉
x
x
〉
x

= − γ Qq . (107)

Here we have written this term as a set of nested expectation values such that xT

and x can both be contracted to the left without any crossings. To understand
why the diagram is the correct way to represent these nested expectations, note
that the inner expectation,

〈
qϕxT

〉
x
, was already analyzed in (99) and appears as a

subdiagram here, while the outer expectation is evaluated using our Feynman rule
(92). To understand why the overall factor of −γ appears, let’s go back to how this
term would naturally arise in our resolvent expansion: to find this term, we would
expand the first q in

〈
qϕxTxϕT q

〉
x

as q = γ−1
∑

s(−γ)−s
(
ϕϕT

)s
and then rewrite it

in terms of two sums for a pair of resolvents q and Q; the point of this reorganization
would be to extract a factor of ϕ to pair up with the xT and a factor of ϕT to pair
up with the x. Since each factor of ϕϕT in the expansion comes with a factor of
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−γ−1, when we pull out only a factor ϕϕT in this way, we must also multiply by an
explicit factor of −γ to compensate. Evaluating the diagram, we get:

P (2) = −γ tr
{
Q
}

tr
{

Ω̃T Ω̃q
}

= −
(

T

1 + ∆F

)
tr
{

Ω̃T Ω̃q
}
, (108)

where in the last expression we used (101) to substitute for γ tr
{
Q
}

.

(3) Similarly, both x and xT can pair with a ϕT and ϕ to their right:

P̃ (3) ≡ −
〈
xT
〈
xϕT q

〉
x
ϕ
〉
x

(109)

As this is just the transpose of P̃ (2), the scalar trace is identical:

P (3) = P (2) = −
(

T

1 + ∆F

)
tr
{

Ω̃T Ω̃q
}
. (110)

(The diagram representing this would be the mirror image of (107).)

(4) Finally, xT can pair with a ϕ to the left, and x can pair with a ϕT to the right:

P̃ (4) ≡
〈
ϕT
〈
qϕxT

〉
x

〈
xϕT q

〉
x
ϕ
〉
x

= γ2
Qq Q q ,

(111)
To see why the pairing given by the middle expression is correct, note that this is the
appropriate and only way to contract the x and xT in different directions without
any crossings. Similar to before, we can see why this is the correct diagram to
represent these nested expectations by using our Feynman rule, (75), for the outer
part, and then by using (99) and its mirror as subdiagrams to represent the two
middle expectations.39 Evaluating this diagram, we get:

P (4) =
(
γ tr
{
Q
})2

tr
{
qΩ̃T Ω̃qΩ

}
=

(
T

1 + ∆F

)2

tr
{
qΩ̃T Ω̃qΩ

}
, (112)

where, as is our recent M.O., we used (101) to substitute for γ tr
{
Q
}

.

39The factor of γ2 appears because in this case we’ve extracted two factors of ϕϕT when reorganizing our
expansion, one from each of the q’s in

〈
qϕxTxϕT q

〉
x
, and so we must multiply by (−γ)2 to compensate.
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(4, c) Finally prime, again xT can pair with a ϕ to the left, and x can pair with a ϕT to
the right:

P̃ (4,c) ≡
〈
qϕxT

〉
x

〈
xϕT q

〉
x

= γ2
Qq Q q ,

(113)
and we can use (99) and (101) to evaluate this as

P̃ (4,c) =

(
T

1 + ∆F

)2

qΩ̃T Ω̃q . (114)

Assembling all five terms back into (103), and then substituting into (102), we find〈
tr
{

ΩqϕxTxϕT q
}〉

x
=

(
T

1 + ∆F

)2

tr
{

ΩqΩ̃T Ω̃q
}

+

[(
1 + γ

∂

∂γ

)
∆F

]
× (115)[

tr{Λ} − 2

(
T

1 + ∆F

)
tr
{

Ω̃T Ω̃q
}

+

(
T

1 + ∆F

)2

tr
{
qΩ̃T Ω̃qΩ

}]
,

where the first term on the first line is the connected contribution, P̃ (4,c), (114), and
where the second term gives the four factorized contributions (1)–(4), for which we used
∆F ≡ tr{Ωq}, with the q coming from the factor in (105).

Finally, we can now collect the contribution to the x average of the label term in the
underparameterized regime. Starting from our expression (87) and substituting in both
evaluated expectations, (100) and (115), we get

Lw =
σ2
w

2M

〈[
1 +

(
1 + γ

∂

∂γ

)
∆F

]
× (116)[

tr{Λ} − 2

(
T

1 + ∆F

)
tr
{

Ω̃T Ω̃q
}

+

(
T

1 + ∆F

)2

tr
{
qΩ̃T Ω̃qΩ

}]〉
u

,

where all the other terms just conspired to give “1” inside the first square brackets. (Note
that the terms in the second square brackets could be written as a square, if desired.)
Lastly, note that from combining the Schwinger-Dyson equations, (76) and (81), we can
write (

T

1 + ∆F

)
Ωq = IN − γq , (117)

where to get this we first inverted (76) to get an expression for SF , and then we it equal
to the right-hand side of (81) and multiplied both sides by q. Using this new identity,
(117), and remembering that Ω and q commute and that the trace is cyclic, we can finally
rewrite Lw compactly as

Lw =
σ2
w

2M

〈[
1 +

(
1 + γ

∂

∂γ

)
∆F

](
tr{Λ} −

(
T

1 + ∆F

)
tr
{

(IN + γq)qΩ̃T Ω̃
})〉

u

.

(118)
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(ii) Random Feature Average

We now turn to the average over the random features, u. This will be simpler than the
x averages we just performed: our strategy will be to massage Lw into a form where we
can apply the same (simpler) machinery that was used in §3.2.1 for the noise term.

We begin by noting that the latent feature covariance matrix, Λ, is symmetric and
positive semi-definite, by definition. This implies that it is possible to find a symmetric,
positive semi-definite matrix, v, that is the “square root” of Λ, such that40

Λ ≡ vvT , v = vT . (119)

Recalling definitions (49) and (51), we can express our other two covariances as

Ω̃ = vvTuT , Ω = uvvTuT , (120)

and, using (76) and (81), express our x-averaged resolvent as

q(γ) =
1

γIN +
(

T
1+∆F

)
uvvTuT

. (121)

As we will soon see, the utility of this is that as our expression for Lw had various products
of q and Ω̃, with our new notation we can now rewrite these using

quv = uvQ , (122)

where we have defined the latent-feature resolvent :

Q(γ) ≡ 1

γIM +
(

T
1+∆F

)
vTuTuv

. (123)

This is an (M ×M) matrix Q ≡ QI1I2 that operates on our latent space.41 Contrasting
carefully this new definition with the one for our (random) feature-feature resolvent q, (36),
and the data-data resolvent Q, (56), we note that those resolvents are defined in terms of
the matrix ϕ, which depend on both the random training set x and random feature weights
u, while here Q depends only on the random feature weights u.

Much like our other resolvents, Q satisfies identities

Q2(γ) = − ∂

∂γ
Q(γ) ,

[
γIM +

(
T

1 + ∆F

)
vTuTuv

]
Q = IM . (124)

40Since v is symmetric we could equally well have written this equation as Λ ≡ v2. We prefer to use the
form (119) because it makes manifest that Λ is symmetric.

41To derive (122) we can follow the same manipulations we used to derive the commutation relation
(57), with the substitutions q → q and ϕ→ uv.
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Multiplying the second identity by Λ, taking the trace, and rearranging, we find

tr{Λ} −
(

T

1 + ∆F

)
tr
{
qΩ̃T Ω̃

}
= γtr{ΛQ} , (125)

where in the second term on the left-hand side we used (120), (122), and the fact that
v = vT . Taking −γ ∂

∂γ
of this equation gives

− γ
(

T

1 + ∆F

)
tr
{
q2Ω̃T Ω̃

}
= −γtr{QΛ} − γ2 ∂

∂γ
tr{ΛQ} , (126)

where we used the identity (59) to rewrite the derivative of q in terms of its square. We
now note that the sum of the left hand sides of (125) and (126) is exactly the combination
that appears in Lw, allowing us to rewrite (118) as

Lw =
σ2
w

2M

〈[
1 +

(
1 + γ

∂

∂γ

)
∆F

](
−γ2 ∂

∂γ
tr{ΛQ}

)〉
u

. (127)

This is progress, since we have written Lw entirely in terms of the expectation value of the
new resolvent, Q.

To proceed let’s consider the ridgeless limit γ → 0, where this expression simplifies
considerably. In §B.2, we explain that in the underparameterized regime (N < T ), we
have an expansion that begins with the constant term,42

∆F = ∆F
0 + ∆F

1 γ + . . . , (128)

and thus in the ridgeless limit we have:

lim
γ→0

∆F = ∆F
0 . (129)

Similarly, the leading term in the square brackets has the limit

lim
γ→0

(
1 + γ

∂

∂γ

)
∆F (γ) = ∆F

0 . (130)

Moreover, as we discussed at the conclusion of §3.2.1 and in more detail in §B.2 under
the final subheading labeled ∆0 for the Truncated Power-Law Spectrum, ∆F

0 does not
explicitly depend on the fixed random feature weights, u, and is given by (86). In the
underparameterized regime for N < M , this is simply

∆F
0 =

1

T/N − 1
. (131)

42To see this from our discussion in §B.2 under the subheading µ > M , make the substitutions µ→ T
and M → N . This expansion holds regardless of the form of the covariance.
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We are thus left with evaluating the term in round brackets in (127):

lim
γ→0

〈
−γ2 ∂

∂γ
tr{ΛQ}

〉
u

= lim
γ→0

(
−γ2 ∂

∂γ
tr{Λ 〈Q〉u}

)
. (132)

The quantity tr{Λ 〈Q〉u} is quite similar to the quantity ∆F ≡ tr{Λq} that was computed
back in §3.2.1. To proceed, we define a new random variable

ω ≡
(
M

σ2
u

)1/2

vTuT ⇐⇒ ωIj ≡
(
M

σ2
u

)1/2 M∑
J=1

ujJvJI , (133)

which, since v is a fixed matrix, has the statistics of zero-mean Gaussian when averaged
over u:

〈ωIj〉u = 0 , 〈ωI1j1ωI2j2〉u = ΛI1I2δj1j2 , (134)

where to evaluate the covariance in (134) we used statistics (29) and the definition (119).
In terms of this variable ω, Q takes the form

Q(γ) =
1

γIM + ζ ωωT
. (135)

where we have defined

ζ ≡ σ2
u

M

(
T

1 + ∆F

)
. (136)

Naively it would be a problem that the factor of ∆F appearing in ζ itself depends on u,
which would make it rather difficult to compute 〈Q〉u in general.43 However, as we noted
above in (129), ∆F is independent of u in the ridgeless limit. So as long as we are working
in this limit we may treat ζ as a constant which is independent of u.

At this point u-averaging (135) would be form-identical to the x-averaging of q we
already performed, but for the constant ζ. It’s not to hard to see that if we were to follow
the same method we used to solve for q in §3.2.1 – i.e. by rescaling Λ – we’d find

〈Q〉u =
1

γIM + ζNΛ
1+∆L

, (137)

where ∆L ≡ tr{ΛQ} solves the self-consistent equation44

∆L = tr

{
ζΛ

γIM + ζNΛ
1+∆L

}
. (138)

As per our discussion at the beginning of §B.1, for N < M we have an expansion in the
γ → 0 limit as

∆L = ∆L
−1γ

−1 + ∆L
0 + . . . , (139)

43While ∆F
0 is independent of u, is not necessarily true that ∆F is similarly independent.

44The “L” in ∆L stands for latent features.
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and plugging this expansion back into the self-consistent equation (138) tells us that ∆L
−1

solves the non-linear equation

1 = tr

{
ζΛ

∆L
−1IM + ζNΛ

}
, (140)

while plugging the expansion into the averaged resolvent (137) gives

〈Q〉u =
∆L
−1IM

∆L
−1IM + ζNΛ

γ−1 + . . . . (141)

In fact, although it is not immediately obvious from (141), it turns out that the leading
part of 〈Q〉u as γ → 0 written in this formula is actually independent of ζ. To see this, we
can take the derivative of (140) with respect to ζ to obtain

0 = tr

{
Λ

(∆L
−1IM + ζNΛ)2

}(
∆L
−1 − ζ

∂∆L
−1

∂ζ

)
=⇒ ∆L

−1 − ζ
∂∆L
−1

∂ζ
= 0 . (142)

We can then use this to evaluate the derivative with respect to ζ of the coefficient of γ−1

term in the 〈Q〉u expansion in (141):

d

dζ

(
∆L
−1IM

∆L
−1IM + ζNΛ

)
=

NΛ

(∆L
−1IM + ζNΛ)2

(
ζ
∂∆L
−1

∂ζ
−∆L

−1

)
= 0 . (143)

We thus conclude that this term is independent of ζ.
This implies that, as long so we are concerned only with the γ → 0 limit, we may set

ζ = 1 in our computation of 〈Q〉u, a computation which is now manifestly the same as
the one we already performed. In other words, using limits (130) and (132), substituting
for the constant (131), we obtain our our final result for the label term, (127), in the
under-parameterized regime (N < T ), and (N < M):

Lw =
σ2
w

2M

(
∆L
−1

1−N/T

)
, (144)

where ∆L
−1 is now determined by solving the ζ-independent non-linear equation

1 = tr

{
Λ

∆L
−1IM +NΛ

}
. (145)

Curiously, this ζ-independence means that the variance of the random feature weights, σ2
u,

drops out of the solution (144) as well.
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The Over-Parameterized Regime

We can now consider the over-parameterized regime where N > T . In this regime, we will
need to average over the random features u first, and then analyze the resulting expression
in ridgeless limit to determine the x average. Don’t despair: luckily, there is a clever trick
that we can use to find the answer with nearly no additional work.

Starting from pre-x̂-averaged form of the label term – the middle line in (87) – let us
rewrite this term as

Lw =

〈
σ2
w

2σ2
uT̂

(
tr
{

Σ̂
}
− 2tr

{
Σ̃TQϕT ϕ̂

}
+ tr

{
ΣQϕT ϕ̂ϕ̂TϕQ

})〉
x̂,x,u

(146)

To get this expression, we’ve used the definitions of the matrices Σ̂, Σ̃ and Σ, cf. (47),
used the commutation relation qϕ = ϕQ, cf. (57), and used, on the middle term, the fact
that the trace is invariant under transpose. Now, note that this form of the pre-averaged
label term, (146), is in a very similar form to the post-x̂-averaged form of the label term
– the final line in (87) – with the matrix substitutions:

Σ̂→ Λ , Σ̃T → Ω̃ , Σ→ Ω , Q→ q , ϕT → ϕ , ϕ̂→ xT , (147)

and the overall rescaling
σ2
uT̂ →M . (148)

Moreover, considering the definition of the training set features ϕ, cf. (28) and (32),

ϕ ≡ ux ⇐⇒ ϕj;α ≡
M∑
I=1

ujIxI;α , (149)

we see that transformation ϕT → ϕ actually is enacting a training-data–random-feature
duality :

xT → u , uT → x , (150)

which also implies
T → N , N → T . (151)

What this means is that the u average of the label term in the form (146) is really the
same calculation as the x average we performed in the underparameterized regime so long
as we make the transformations (147) and (150).45 Ultimately this means that we will find
the same final answer (144) so long as we exchange N → T and T → N .

Let us see how this works in slightly more detail. If you are already happy with the
application of the duality, you may skip to the end of the section. To proceed carefully, let

45This remarkable simplification is due to a very general duality transformation for certain linear models.
Such a duality is not completely new and has been noted before in some settings [38].
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us apply the inverse of these transformations (147) and (151) to rewrite our computation
of the x-averaged label term, (118):

Lw =
σ2
w

2σ2
uT̂

〈[
1 +

(
1 + γ

∂

∂γ

)
∆F ′

]
× (152)(

tr
{

Σ̂
}
−
(

N

1 + ∆F ′

)
tr
{

(IT + γ 〈Q〉u) 〈Q〉u Σ̃Σ̃T
})〉

x,x̂

.

Here, the u-average of Q is given by

〈Q〉u =
1

γIT +
(

N
1+∆F ′

)
Σ
, (153)

where we’ve define ∆F ′ , the dual of ∆F , as this quantity satisfied by another self-consistent
equation:

∆F ′(γ) ≡ tr

{
Σ

γIT + NΣ
1+∆F ′ (γ)

}
. (154)

Now, to compute the data averages over x and x̂, we follow similar steps as before: define

q(γ) ≡ 1

γIM +
(

N
1+∆F ′

)
σ2
u

M
xxT

, (155)

which satisfies 〈Q〉u xT = xTq, and where we have used the definition of Σ, (47). The
same manipulations as before, cf. (127), gives

Lw =
σ2
w

2σ2
uT̂

〈[
1 +

(
1 + γ

∂

∂γ

)
∆F ′

](
−γ2 ∂

∂γ
tr
{

Σ̂q
})〉

x,x̂

. (156)

Now, note that the only test-set dependence is in Σ̂, since ∆F ′ is independent of x̂. This
means we can easily perform the average over the test data x̂:

Lw =
σ2
w

2M

〈[
1 +

(
1 + γ

∂

∂γ

)
∆F ′

](
−γ2 ∂

∂γ
tr{Λq}

)〉
x

, (157)

where to get this we used definition (47) and the latent data statistics (19).
Finally, the x average proceeds now the same as the u average did before. Starting

from (157) and taking the ridgeless limit:

• The factor in the first square brackets simplifies as before using

lim
γ→0

(
1 + γ

∂

∂γ

)
∆F ′(γ) = ∆F ′

0 ; (158)
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this is quantity independent of x and in the overparameterized regime is given by

∆F ′

0 =
1

N/T − 1
, (159)

cf. (131) and then exchange N ↔ T .

• The factor in the round brackets gives

lim
γ→0

(
−γ2 ∂

∂γ

)
∆L′ = ∆L′

−1 , (160)

where ∆L′
−1 is defined by the solution to the non-linear equation

1 ≡ tr

{
Λ

∆L′
−1IM + TΛ

}
. (161)

Thus, the final answer for the label term takes a very similar form to the underparame-
terized regime, with the number of random features exchanged with the training set size
(N ↔ T ):

Lw =
σ2
w

2M

(
∆L′
−1

1− T/N

)
. (162)

3.2.3 The Result

Assembling our results from the different regimes together, (144)and (162), we find for the
label term:

L(N, T ;M) ≡ Lw =
σ2
w

2M

{
(1−N/T )−1 ∆−1(N,M) , N < T ,

(1− T/N)−1 ∆−1(T,M) , N > T ,
(163)

where ∆−1(µ,M), for µ = {N, T}, is the solution of the non-linear equation

1 = tr

{
Λ

∆−1(µ,M) IM + µΛ

}
. (164)

This quantity, L(N, T ;M), represents the test loss in the noiseless limit (σ2
ε → 0) and is

symmetric under the interchange of T ↔ N , a natural manifestation of the aforementioned
training-data–random-feature duality. Moreover, this formula holds for a random feature
linear regression trained on latent data with completely general covariance matrices Λ; at
no point did we assume anything about the latent feature covariance, Λ, to derive this
result. Finally, note that (163) is only valid in the regime of N, T < M ; we will give
a formula for the case of a small latent space when we discuss the breakdown of neural
scaling laws in §4.1.
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Importantly, the factors of ∆−1(µ,M) appearing in (163) have an intuitive explanation.
In §3.2.2, we saw that ∆−1(N,M) arose when we studied a resolvent Q, whose average
encodes the statistical properties of the matrix (uv)Tuv. This is an M ×M matrix that
lives in the latent space and essentially describes the “lift” of our empirical covariance
Ω = uvvTuT , cf. (120), from the N -dimensional feature space to M -dimensional latent
space. Since M > N this lifted matrix is not full rank and (typically) has a null space of
dimension M − N ; this null space describes the latent features which our model cannot
access. Indeed, the matrix given by the ridgeless limit of 〈Q〉u, (141), can be interpreted as
the projector onto this null space. The result is that ∆−1(N,M) ≡ tr{Λ limγ→0 (γ 〈Q〉u)}
is the projection of the latent-space covariance matrix onto the null space. In other words:
∆−1(N,M) measures how much of the latent covariance matrix is missed because we have
too few features. Similarly, ∆−1(T,M) measures how much of the latent covariance matrix
is missed because we have too few samples. Both effects – poor performance due to too
few samples and poor performance due to too few features – can occur in our model, but
which one dominates in the ridgeless limit depends on whether N < T or N > T .

Interestingly, even when the label noise is turned off, the factors (1−N/T )−1 and
(1− T/N)−1 indicate a spectrum-independent universal noise-like divergence at the point
of equiparameterization: N ≈ T . This divergence occurs because our random features are
still noisy samples of the underlying latent features, and our model drastically overfits to
this kind of random noise at N = T . However, as we will discuss in a few paragraphs and
in more detail in §4.2, this divergence is a relic of the ridgeless limit and disappears when
the model is optimally regularized.

Now, in order to learn about neural scaling phenomenology, let’s specialize to the case
where the latent features have a power-law spectrum, (23). In this case, the self-consistent
equations for ∆−1 can be easily solved numerically or approximated analytically, the details
of which are given in §B.1, starting from (233). The result is (252):

∆−1(µ,M) =

{
λ+
Mα

{
k
[(

M
µ

)α
− 1
]

+ [2 + α(1− k)]
(
1− µ

M

)}
, µ < M ,

0 , µ > M ,
(165)

with the α-dependent constant k defined as

k ≡

[
π

1+α

sin
(

π
1+α

)]1+α

. (166)

In Fig. 8, we plot numerical simulations of the test loss, (40) in a variety of ways to
demonstrate the fit of our RMT result, (163) with the power-law spectral solution (165).
The simulations were performed analogously to those shown in Fig 7: we generate latent
training and test sets by sampling from our generative data model, (19) and (23); then,
we map both sets through random feature models of different sizes, (28); finally, we use
the linear regression solution (35) to compute test-set predictions using (39). The top left,
top right, and bottom left panels of the figure demonstrate the close fit of our RMT result,
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(163), in the limit of no regularization (γ = 0), and the top panels illustrate that the test
loss of this statistical model is symmetric under the exchange T ↔ N , as we expected
from our discussion of the duality (147).46

From the top two panels of the figure, we can see that our model captures the phe-
nomenological behavior of the LLM test loss, e.g., Fig. 1. On the one hand, taking either
T or N (and M) large in (165) and plugging into (163), we find a power law scaling law,
cf. (2) and (3):

L(N) ≡ lim
T,M→∞

L(N, T ;M) ∼ N−α , (167)

L(T ) ≡ lim
N,M→∞

L(N, T ;M) ∼ T−α . (168)

On the other hand, once the scaled resource parameter exceeds the large-but-fixed pa-
rameter, we see that the test loss asymptotes to a plateau that depends on that fixed
parameter, cf. (4) and (5):

Lplateau(N) ≡ lim
N�T

L(N, T ;M) =
σ2
w

2M
∆−1(T,M) , (169)

Lplateau(T ) ≡ lim
T�N

L(N, T ;M) =
σ2
w

2M
∆−1(N,M) . (170)

Finally, the bottom right panel of Fig. 8 simulates a model that is optimized over
different values of the ridge parameter (γ = γ?), similar to the regularization used in
Ref. [18] that led to the phenomenological model (1) and the test loss curves in Fig. 1.
In this panel, we compare the version of this model appropriate to our setup (αT = αN ,
Nα

0 = Tα0 ), cf. (41),

Lreg(N, T ) = L0

(
1

N
+

1

T

)α
, (171)

with an improved model that incorporates the size of the latent space,

Lreg(N, T ;M) = L0

[(
1

N
+

1

T

)α
−
(

1

M

)α]
, (172)

with the constant L0 extracted from our γ = 0 result as

L0 ≡
λ+σ

2
wk

2M
, (173)

and k defined above in (166). We see that as the number of features approaches the size of
the latent space (N → M), the initial fit, (171), ignores the finiteness of the latent space
and begins to diverge from the simulations, while the improved fit, (172), continues to fit
the experiments closely. This breakdown of the empirical model from Ref. [18] suggests
that for LLMs observed in practice, we still haven’t seen effects resulting from finite M .
As LLMs become even bigger, it would be interesting to try to fit (172) and measure the
value of M for natural language data.

46However, this exact duality is broken in the presence of noise, as per our result for the noise term of
the loss, (86).
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Figure 8: Test loss from numerical simulations (stars) of our joint statistical model (σ2
u = 1,

λ+ = 1, σ2
w = 1, σ2

ε = 0) compared to the very close fit (solid lines, top and bottom left
panels) of the result from our RMT calculation, (163). For the top and bottom left panels,
no regularization is used (γ = 0), while for the bottom right panel the ridge parameter
is optimized (γ = γ?). The top panels illustrate the symmetry of the test loss under the
exchange T ↔ N . (As before, for smaller values of T,N , the variance of any particular
realization is large, and so we’ve plotted multiple simulations for T,N . 10.) Top Left:
The size of the training set, T , is varied for a few different sized models, N , while the
size of the latent space and the power-law exponent is held fixed (M = 6000, α = 1.0).
Top Right: The number of features, N , is varied for a few different training set sizes, T ,
while the size of the latent space and the power-law exponent is held fixed (M = 6000,
α = 1.0). Bottom Left: The size of the training set, T , is varied for a few different
power-law exponents, α, while the size of the latent space and the size of the model is held
fixed (M = 6000, N = 1000). Bottom Right: When the ridge parameter is optimized
(γ = γ?), the original phenomenological model, (171) is a poor fit (dashed lines) as the
number of features approaches the size of the latent space (N → M), but our improved
model that incorporates the size of the latent space, (172), is a much better fit (solid lines).
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3.3 (Towards) Modeling Spectral Extension

In our statistical model, the fact that our N random features were linearly-related to the
M latent features made it possible to understand how the scaling laws worked analytically.
However, our minimal statistical model is really an approximation of a more complicated
phenomenon: rather than having a large latent space (M > N) with a linear transforma-
tion, in a more realistic model the random features are instead nonlinear functions of the
smaller Nin-dimensional input space (Nin < N).

In §2.2, we explained that the essential property of such nonlinear feature maps –
which include one-hidden-layer ReLU networks, (13), or the transformer networks that
power LLMs – is the way they extend the portion of the spectrum that’s approximately
fit by a power law. From this we observed that the minimum of the data set size, T ,
and the number of features N , controlled the extent of the power law; the fact that the
statistical model we described in §3.1 also had a power law controlled by the minimum of
these two resource scales is what enabled it to capture the behavior we wanted to model.
In a more realistic model, we can view the large number of useful features that we access
from increasing T and N as being decoded from a non-linear transformation of the input
features.

Thus, we would like to better understand how a nonlinear map for generating random
features can extent the power law in the spectrum of input data. To be more concrete,
let’s consider a simple one-hidden-layer network with a nonlinear activation as in (13):

ϕj;α ≡ σ

(
Nin∑
k=1

ujkxk;α

)
, (174)

with σ a scalar activation function that acts on each individual component of the input
data xk, and u ≡ ujk is a N×Nin matrix of random feature weights drawn from a zero-mean
Gaussian:

〈ujk〉 = 0 , 〈uj1k1uj2k2〉 =
σ2
u

Nin

δj1j2δk1k2 . (175)

As long as the input dimension is sufficiently large, these random features will be approxi-
mately Gaussian,47 and due to that Gaussianity this nonlinear model is fully-described by
the same random matrix techniques described in the preceding section.48 In particular,

47By adding an additional layer or by considering preactivations instead of activations we can remove
the requirement of a large input dimension.

48The fact that one can use RMT tools to to study nonlinear random feature maps was a key point in
Ref. [34]. Note also that these techniques go beyond other approaches in the literature, such as Ref. [59]:
while the RMT techniques used here are “linear” in so far as they treat the features as Gaussian, they
still use the full nonlinear kernel, Σ. If you further linearized the calculation of Σ in terms of the inputs,
as was done in [59], you would not see the power-law extension we are interested in finding; this further
approximation is excellent at studying the largest eigenvalues, but fails to adequately capture the spectral
density for small eigenvalues.
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the spectrum of a fixed dataset can be computed from the u-averaged resolvent:49

〈Q(γ)〉u =
1

γIT + NΣ
1+∆F ′

, (176)

with the quantity ∆F ′ the solution to the self-consistent equation,

∆F ′(γ) ≡ tr

{
Σ

γIT + NΣ
1+∆F ′ (γ)

}
, (177)

cf. (153) and (154), and Σ the data-data covariance matrix of the random features,

Σ ≡ 1

N

〈
ϕTϕ

〉
u
⇐⇒ Σα1α2 ≡

1

N

N∑
j=1

〈ϕj;α1ϕj;α2〉u . (178)

Importantly, when the features are Gaussian this means that the spectrum is solely deter-
mined from knowledge of Σ.50

As noted in [34] and in many other places in the literature, the kernel of a single-hidden-
layer network, Σ, is explicitly calculable and well-known for many choices of activation
function as a function of the input data. As an explicit example, for the ReLU activation
(14), one has that

Σα1α2 =
σ2
u

2π
‖xα1‖‖xα2‖

(
∠(α1, α2) acos

(
− ∠(α1, α2)

)
+
√

1− ∠(α1, α2)2
)
, (179)

where the norms and inner products are defined as

||xα||2 ≡
Nin∑
k=1

x2
k;α , ∠(α1, α2) ≡ 1

||xα1|| ||xα2||

Nin∑
k=1

xk;α1xk;α2 . (180)

If we could find the spectrum of this infinite-random-feature kernel, (179), for a given
data model or natural dataset, we could use that in conjunction with the resolvent, (176),
to learn about the spectral extension for the finite-random-feature kernel evaluated on
power-law data. Such a rigorous analytical derivation would be interesting to work out
and perhaps give insights into in the interaction between datasets and activation functions.

49This was explained in footnote 26: the eigenvalue density can be determined in terms of the discon-
tinuity across the branch cut along the real axis.

50In the context of the theoretical literature [10–16], this matrix is often known as the kernel. Sometimes
it’s helpful to think of this as arising from a random feature model with infinite features (N →∞).
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3.4 Comparing to Other Methods

In this section, we compare our results to other RMT derivations in the machine learning
literature, in particular to Refs. [34] and [35, 36]. In particular, we discuss the uses and
limitations of our Feynman diagrammatic methods and contrast with other methods.

First, random matrix theory techniques used in this paper have many similarities with
the approach taken in [34], which was an influential starting point for the present work. Our
intermediate result, (152), is essentially the same result that appears as the random feature-
averaged test loss in Conjecture 1 of their paper, up to combining some terms with the
use of our averaging over the random teacher weights. While our diagrammatic derivation
may then appear less general than [34] because of the random teacher assumption for the
labels, our derivation nevertheless can be used in either setting.

In particular, in following our derivation in §3, one can see that the covariance matrices
appearing at the beginning of each term in (146) could be substituted for arbitrary matrices
without changing the structure of the following calculation. The formula from Ref. [34],
without the random teacher averaging, then follows (up to trivial constants) by replacing

Σ̂→ ŷT ŷ , Σ̃→ yT ŷ , Σ→ yTy , (181)

at the beginning of each term and following these substitutions through the calculation
of the random feature u average. The resulting expression is then consistent with what
appears in [34].

Nevertheless, there’s also some notable differences between our methods and results.
First, our expression is somewhat simpler than the one that appears in [34] due to the
fact that we rewrote the prefactor in terms of a differential operator. Second, we also
believe our diagrammatic techniques give a more transparent and extensible methodology
for computing similar averaged expressions. Finally, our work generalizes the result in
[34], both by deriving a dual expression for averaging over training samples instead of
random features, (118), and by calculating the test loss when both random feature and
data averages are taken at the same time, (163). This final double average is entirely novel
to our work and does not otherwise appear in the literature.

Relatedly, our work also concerns similar types of averages to Refs. [35, 36]. In these
papers, the authors used replica methods to compute the expected test loss of a kernel
regression. One way to interpret their work is in terms of a single average over the data x.
We find similar results using our methods in Appendix A where we study (non-generalized)
linear models and compute a single x average over the model’s features, xj, since, in these
models, there are no random features to average over. Although they are in different forms,
our computation, (216), matches the main result of Ref. [36], cf. their Eq. 4.

One reason we were able to simplify the calculation of their very nice result is, by
rewriting the loss in terms of differential operators, we immediately see that the test
loss is determined entirely by the averaged quantity ∆ ≡ tr{Λq}. The computation of this
quantity for a general spectrum Λ is a classic result of random matrix theory that goes back
to the original work of Marchenko and Pastur [51] and has been studied or rediscovered
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many times since. In particular, this quantity ∆, or equivalently, the x averaged resolvent,
q, can be computed by many means, e.g., by the Feynman diagrammatic approach of §3.2.1
and, of course, also by the replica methods in Refs. [35, 36].

On the one hand, we think that the computation using Feynman diagrams has a few
advantages over replica techniques: in addition to being more straightforward, one also
does not need to prove that there is a unique analytic continuation in the replica index.
Moreover, although we have no need for it here, the Feynman diagrammatic techniques
can be easily adapted to compute subleading 1/N corrections to averages, if desired.

On the other hand, even for Gaussian distributions, some quantities cannot be readily
computed using Feynman diagrams. This generally occurs when one computes the expec-
tation value of a non-analytic function, such as the logarithm of a function of ϕ.51 In such
a case, one can use replica methods.52

On our third and final hand, other more advanced techniques to study matrix integrals
at large N include the use of loop equations and the method of orthogonal polynomials.
These techniques are often necessary to treat more complicated (non-Gaussian) probability
distributions.53 These methods allow one to effectively sum up infinite classes of Feynman
diagrams but are typically overkill for Gaussian matrix expectations. To our knowledge,
these techniques have not yet been used in a machine learning context.

4 Discussion of Results

Now that we have a statistical model of scaling laws that we understand for jointly large-
but-finite model size N , training set size T , and latent space size M , in this section we
have a discussion of what we can learn from our statistical model of scaling laws.

In §4.1, we interpret our results from §3 in the limit that the model size or training
set size approaches the size of the latent space, N, T ∼ M , and the neural scaling law
phenomenology of §1 breaks down.

In §4.2, we discuss how the regime of scaling laws, of large training set size and large
model size, pushes resource efficient and properly regularized models towards the equipa-
rameterization regime, and how the phenomenon of double descent is not really relevant
for such models.

In §4.3, we try to reconcile the large latent space, M , required for datasets that allow
for neural scaling laws with the traditional idea that input datasets are embedded in
high-dimensional spaces, Nin, and can be compressed to a latent space with much smaller

51This occurs in the information theory context in the study of von Neumann entropies and in the
physics context in the study of quenched disorder.

52This requires one to instead consider n copies of the original random variable and compute the
expectation value of a logarithm by analytically continuing in n using log z = limn→0 (zn − 1) /n. This
method only works for certain classes of probability distributions (and quantities being averaged) such
that they are so strongly constrained that there is a unique analytic continuation in n.

53For a useful review of these methods, see [60].
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intrinsic dimension, din. We note that there are a number of notions of dimensionality,
and the particular power-law structure of the datasets that give rise to scaling laws makes
different notions meaningful for different questions.

Finally, in §4.4, we identify some limitations of our generative data model that could
be improved in future analyses.

4.1 The Breakdown of Neural Scaling Laws

In this subsection, we would like to understand whether the empirically-derived phe-
nomenological model of the test loss, (1), can break down.54 In particular, we would
like to know (a) when is such a formula no longer predictive of performance and (b) what
is the behavior in the new regime?

To give insight into the answer of these questions, we can use our statistical model from
§3. One hint towards an answer is that model (1) only depends on two of the scales in the
problem, N and T , while the formula we derived, (163), also depends on size of the latent
space of the data distribution, M . In particular, in our regularized (γ > 0) simulations of
the test loss of our model (Fig. 7), to fit (1) it was important that the size of the latent
space be the largest scale in the problem, N, T �M . Here we will explore what happens
when this condition is violated.

To proceed, it is convenient to organize our discussion around both whether or not
there’s noise added to the training labels and whether or not there’s a nonzero ridge
parameter regularizing the regression.

No noise

First, let’s consider the case without noise. In the left panel of Fig. 9 we plot a simulation
of our statistical model with no regularization (γ = 0) and also plot our RMT calculation
of the test loss, (163), for models for which the number of features is much larger than the
size of the latent space and the number of samples in the training set (N > T,M); in the
right panel, we use optimal regularization (γ = γ?) in the simulation and also plot a new
fit that we will discuss below. In both panels, we learn that “breakdown” of scaling laws
– without noise – is a lot like a singularity : all of the sudden at T = M the test loss drops
very rapidly to zero!

To understand these results, let’s turn to our calculation: if we consider a model in the
large-latent-space regime, T,M � N →∞, from (163) and (165) we see that the test loss

54In some parts of the literature, e.g. in [37], “breakdown of scaling laws” is used to mean the transition
from the power law to the plateau in the test loss; as should be clear, this is not what we mean here.
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Figure 9: Simulation (stars) and fit (solid) of the scaling-law model from §3 with exponent
α = 1, latent-space size M = 1000, and the following entirely inconsequential choices:
λ+ = σ2

w = σ2
u = 1. The orange and green curves represent models in different large-

latent-space regimes (T,M < N) that demonstrate novel behavior, while the blue curves
represent models in the usual regime (T,N < M), including both power law and plateau
behavior, and is included for purposes of comparison. As the size of the training set is
increased to the size of the latent space, the test loss very rapidly approaches zero. Left:
No regularization is used (γ = 0), and the fit is the result of our RMT calculation (163).
Right: The ridge parameter is optimized (γ = γ?), which is intended to model the early
stopping regularization used in Ref. [18], and the semi-heuristic fit is given by (185).

of our model simplifies as

lim
N→∞

L(N, T ;M) =
σ2
w

2M
∆−1(T,M) (182)

=

{
σ2
wλ+

2Mα+1

{
k
[(

M
T

)α − 1
]

+ [2 + α(1− k)]
(
1− T

M

)}
, T < M ,

0 , T > M .

Recalling our analysis in §B.1, we see that the scaling regime controls the test loss when
the training set is smaller than the size of the latent space, T �M , and we find the same
power law scaling law as before:

lim
T�M

lim
N→∞

L(N, T ;M) ∼ T−α . (183)

However, when the size of the training set approaches the size of the latent space, T →M ,
the test loss is instead controlled by coincident regime, and we have

lim
T↗M

lim
N→∞

L(N, T ;M) =
2 + α

2

(
σ2
wλ+

Mα+1

)(
1− T

M

)
, (184)

which vanishes as T approach M from below.
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Adding and optimizing the ridge parameter doesn’t really change this as regularization
only really matters around the point of equiparameterization (T ≈ N), and here we’re
interested in the limit of N → ∞. For this reason, it’s easy to construct the fit to the
simulated in the right panel of Fig. 9. The blue curve is included for comparison and
shows a similar regime as in the experiments plotted in bottom right panel of Fig. (8)
(N < M), for which we are using the improved fit (172). For the new large-latent-space
regime (orange and green curves) with N > M , we can simply use the unregularized large
feature formula, (182). Altogether, we can write our no-noise optimal regularization fit to
the simulations in this plot as

Lreg(N, T ;M) =
σ2
wλ+

2M


k
[(

1
N

+ 1
T

)α − 1
Mα

]
T,N ≤M ,

k
(

1
Tα
− 1

Mα

)
+ 1

Mα [2 + α(1− k)]
(
1− T

M

)
, T ≤M < N ,

0 , T,N > M .

(185)

In other words, in the right panel of Fig. 9, we use the top line for the blue curve, cf. (172),
and the middle and bottom lines for the green and orange curves.

Finally, given the duality that exchanges the training set size and number of features,
N ↔ T , similar formulas will hold in a regime where we have a super-sized training set,
T > M : in the unregularized case as we increase the model size we will see behavior
described by (182) but with the swapping of number of features with the size of the
training set, N ↔ T , and an analogous statement will hold in the case of regularization
and (185).

Noise

Now, let’s turn on the label noise (σ2
ε > 0). In addition to the label term that made up the

loss immediately above, we now also must include the contribution from the noise term,
(86), when N > M :

Lε =
σ2
ε

2

{
α + 1

M/T−1
, T < M , N > M ,

1
T/M−1

, T > M , N > M .
(186)

In the left panel of Fig. 10, we see that the inclusion of this term gives an excellent fit to
noisy numerical simulations.

Although we are still unable to analytically optimize over the ridge parameter, γ, we
can again write a phenomenological formula for the regularization of the noise term by
finding a simple solution that interpolates between the asymptotics of the above formula.
Such a formula could be

σ2
ε

2

[
1

M/(T + αM) + T/M

]
. (187)
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Figure 10: Simulation (stars) and fit (solid) of the scaling-law model from §3 with expo-
nent α = 2.33, latent-space size M = 1000, σ2

ε = 10−8, and the following choices that are
made so that there’s good signal to noise in the data: λ+ = σ2

w = σ2
u = 1. The orange

curves represent models in different large-latent-space regimes (M < N) that demonstrate
novel behavior, while the blue curves represent models in the usual regime (N < M), in-
cluding both power law and plateau behavior, and is included for purposes of comparison.
Left: No regularization is used (γ = 0) and the fit is our RMT calculation L(N, T ;M)+Lε,
cf. (182) and (186). Right: Optimal regularization (γ = γ?) and the fit is to our phe-
nomenological formula Lreg(N, T ;M) + Lε,reg, cf. (185) and (188), shows the transition
from the power-law regime with L ∼ T−α scaling to the noise-dominated L ∼ T−1 scaling
(orange) and to resource-bottlenecked plateau (blue) for the large-latent-space regime and
the usual regime, respectively.

However, we can do slightly better when both terms in the denominator are of comparable
size by normalizing with a factor of 1/2 using a bump function:

Lε,reg =
σ2
ε

2

[
1

M/(T + αM) + T/M

] [
1

1 + e−(M/T+T/M)/c

]
, (188)

for some constant c that we can choose to fit the experiment. We see in the right panel
of Fig. 10 that this formula, in conjunction with the label term (185), gives an excellent
fit to the simulations, although we emphasize that the exact functional form near equipa-
rameterization is chosen in a rather ad hoc way and should not be understood to be the
definitive functional form of the optimized solution.

Most notably, for large T we see that both the unregularized case, (186), and the
regularized case, (188), there’s a universal ∼ 1/T falloff of the test loss when the model
size and training set size jointly exceed the size of the latent space (N, T > M). If such
a transition in powers appears in a model at an otherwise undefined scale, it could be
suggestive of a breakdown associated with having reached the size of the latent space.55

55However, note that this universal ∼ 1/T behavior depends on the label noise not being correlated
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Interestingly, the consequences of this for the practitioner now depend on the size of the
power-law exponent α: for α > 1, this transition would limit the model’s performance
gains with increasing resources N and T , while for exponents α < 1, it would enhance
such gains.

4.2 The Battle of the Parameterizations

Despite common wisdom coming from classical statistical intuition, it’s been long observed
in the modern deep learning setting that very large models trained to near zero training
error can generalize well without overfitting, even with minimal to no regularization [17, 61–
66].56 This behavior is a feature of the overparameterized regime, in which the number
of parameters of the model is greater than the size of the training set, N > T . In this
regime, inference is said to succeed by interpolating between the learned training points,
and the performance of such fully-trained models will continue to improve as model sizes
increase for a fixed training set.

In contrast, in the underparameterized regime in which the size of the training set
exceeds the model size, T > N , the bias-variance tradeoff of classical statistics dictates
performance of under-regularized models (see, e.g., [9]). For a fixed training set, a model
may underfit if it’s too small, exhibiting a bias as it’s not expressive enough to learn the
target function; it may overfit if it’s too big and unhelpfully learns the noisy fluctuations
in the training set due to the variance between different realizations of the data: thus,
there’s an extremal size balancing the bias and variance at which performance peaks.

Typically, this point is only a local minimum of the test error, and – for a fixed training
set size – increasing the model size into the overparameterized regime can eventually lead to
models that outperform the optimal underparameterized model. This overall description
of the test error as a function of parameters has been dubbed double descent [17] and a
large amount of effort has been spent on understanding the setting for and the mechanism
of this behavior.57

In Fig. 11 we exhibit this phenomenon (solid blue curve) based on (163), the now-
familiar result of our RMT calculation of the test loss of our statistical model presented
in §3.58 The plot depicts the performance of our model for a fixed training set size (T =
T0) in the ridgeless limit (γ = 0): in the underparameterized region to the left of the
equiparameterization peak at N = T , the test loss has a local minimum (N = N?), which

from sample to sample, as in our noise model (34); it’s not obvious to us whether this is an appropriate
assumption for self-supervised generative modeling tasks.

56Such regularization includes both explicit regularization, such as a nonzero ridge parameter γ, or
implicit regularization, such as early stopping the gradient-based optimization of an objective function.

57See, e.g., [66] and additional references therein.

58Technically, we should distinguish between the test loss and the generalization error (the difference
between the test loss and training loss) in the underparameterization regime since the model can underfit.
However, this difference is not important for the qualitative point we want to make here.
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optimally trades off the bias of too small a model with the variance of too large a model;
in the overparameterized region to the right of the peak, the test loss continues to improve
past the local minimum at N = N? after overcoming the non-analytic peak, though this
improvement is slow and asymptotic.59

Optimality of Equiparameterization (Log-Log Scale) 

underparameterized overparameterized

equiparameterized

Figure 11: Sketch of test losses of our statistical model from §3 on a log-log scale for differ-
ent fixed training set sizes for both unregularized or ridgeless (solid) and optimally regular-
ized (dashed) models. The solid blue curve exhibits the double descent phenomenon, with
a local minimum of performance in the underparameterized region (black star, N = N?)
and with performance further improving asymptotically in the overparameterized region.
The two blue curves illustrate how the double-descent peak is an artifact of the ridgeless
limit (γ = 0), with performance monotonically improving through the point of equiparam-
eterization (vertical dotted lines) when the models are properly regularized. Comparison
of the dashed blue (T = T0) and orange (T = 8T0) curves illustrates the optimality
of near-equiparameterization when using regularization properly: the best performance
boost results from scaling the model jointly with the size of the training set (N ∼ T ).

However, from the LLM scaling law phenomenology of [18] and the explicit realization
of the test loss (1) by our statistical model, we know that the classical “U” shape of
the underparameterization region can be modified with proper regularization such that
the test loss can be made analytic, monotonically decreasing as models become larger.60

The dashed curves in Fig. 11 – generated from (172) – depict this behavior, showing that

59Of course, from our discussion in §4.1, we know that there eventually will be a qualitative change to
this behavior when the model size and the training set size exceed the size of the latent space, N,T > M .

60The observation that double descent can be mitigated by optimal regularization was first made by [67].
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optimally regularized models exhibit monotonically decreasing test loss with model size
and do not have any special behavior around the point of equiparameterization (vertical
dotted lines). Further, with this regularization it’s apparent that the slow asymptotic
improvement for very large models at fixed training set size is simply the plateau region
of (1). Furthermore, comparison of the unregularized and regularized models – from
our numerical simulations and exhibited in the figure by the blue solid and blue dashed
curves, respectively – we see that regularization only seems to be important around the
equiparameterization peak.61 From this perspective, the double descent phenomenon is an
artifact of not using regularization in a small region around N ∼ T .

Thus, when using proper regularization, we can achieve the best test loss by jointly
scaling the sizes of the model and the size of the training set. Comparison of the two
regularized (dashed) curves in Fig. 11 illustrates the way that increasing model size alone
eventually encounters a plateau, while increasing the size of the training set extends the
power-law portion of the performance gains. As originally pointed out by [18], the reason
for the optimality of this joint scaling is avoiding resource bottlenecks: each additional
sample in the training set is informative about one additional eigen-feature in the power-
law portion of the spectrum of data’s latent spectrum (23), and we need an additional
feature in our model to represent that eigen-feature.62

As such, given finite resources and an ability to both scale models as well as gather
training points, an optimal allocation involves a kind of joint near-equiparameterization
scaling: for generalized linear models such as our statistical model, there is only a single
exponent, α, that controls the test loss power-law behavior in both the number of features
and size of the training set, and for this model scaling the number of features of the model
to equal the size of the training set, N(T ) = T , will avoid the plateau region; for other
models such as the LLMs discussed in [18], we may have a more general scaling relation,
N(T ) ∼ T p, as in (6).63 Even in this more general case, jointly scaling both training data
and model size pushes the performance away from the tails of the test loss curves and
back towards the termination of the power-law region – back towards the non-analytic
peak of the unregularized model – which is the region of large-data and large-parameter
equiparameterization. Altogether, we conclude that this regime with proper regularization
– and not the overparameterization regime – is the practical setting of interest for deep
learning.64

61A related point: early stopping, which can implicitly play the same role of a ridge parameter [68, 69],
only helps models in the regime of near-equiparameterization [66].

62Cf. our discussion of PCA in §2.1: if the latent data had a gap instead of a continuous spectrum
without a natural cutoff, then the performance would not continue to improve substantially by jointly
increasing model and training-set sizes.

63However, recall that [8] gives evidence that the scaling for LLMs should actually be linear, N(T ) ∼ T ,
if trained sufficiently. Note also that this doesn’t necessarily mean that the number of parameters must
equal the size of the training set, but only the relative ratio should always remain constant.

64Interestingly, a curated dataset of machine learning systems taken from highly-cited and highly-
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4.3 The Battle of the Dimensions

Typically, we expect that natural data lives on a data manifold of smaller intrinsic di-
mension, din, than its embedding dimension, Nin. The representation that lives on the
latent data manifold is supposed to be a type of encoded representation of the input, and
we imagine there exists a transformation that decompresses the latent representation into
the higher-dimensional embedding or input space, where, for example, the pixels of an
image would live. Usually we are interested in the inverse of such a transformation, which
can be used as a dimensionality-reduction technique for data.65

However, this seems to be in tension with the equiparameterization picture for natural
data discussed in the last subsection: the power-law scaling of the test loss arises from
a model learning increasingly more eigen-features from the latent-space representation of
the data. For this to work, the latent-space dimension, M , must be the largest scale
in the problem: Nin, N, T � M . In this picture, rather than decompressing data, the
transformation from the latent representation to the input representation is a type of
projection, and many samples are needed to reconstruct the true underlying description.

If we accept both of these pictures, then it must be the case that the intrinsic dimension,
din, is a different quantity than the size of the latent space, M .

Defining and Measuring Intrinsic Dimension

There are multiple sensible ways to estimate the intrinsic dimension, din, of a dataset
[72]. A nice method considers the typical (Euclidean) distance between neighboring points
[73, 74]: if we define x′(xα) to be the nearest neighbor (NN) of a sample, xα, then the
NN-distance, δα, is defined by

δ2
α ≡

N∑
i=1

[x′i(xα)− xi;α]
2
, (189)

and the typical distance 〈δ〉 in a dataset of T points is given by the sample average,

〈δ〉 ≡ 1

T

T∑
α=1

δα . (190)

So, if we increase the density of points, we expect the average NN-distance to decrease:

T

V
∼ 〈δ〉−din , (191)

influential papers from 1952 to 2021 [70] gives strong evidence that skilled practitioners have always
been implicitly working in this jointly large-training-set-and-large-model-size equiparameterized regime:
plotting the parameter counts vs. training set sizes of the models in this dataset on a log-log scale gives
a linear fit with a slope extremely close to unity (see, [71]). We thank Ben Adlam for bringing this point
to our attention.

65A very simple example of such a technique is PCA.
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where V is the volume of the space. We will use this equation to define the intrinsic
dimension din: intuitively, the power that relates the linear-dimensional NN-distance, 〈δ〉,
to the density of points T/V , is operationally what we mean by the dimension of a space.66

Moreover, this definition, (191), gives a simple way to measure din: plot the scaling of the
average NN-distance versus the size of the dataset and look at its slope on a log-log plot.67

Natural (Power-Law) Data

Now, let’s apply this definition to the types of natural datasets we’ve considered in this
paper. Recall that such datasets have power-law spectra (§2.1), and we expect that models
trained on such data will have power-law scalings for their test losses when not otherwise
bottlenecked by the number of parameters. Recalling this power law, (168), and rearrang-
ing our definition (191), we note curiously that both the test loss and the NN-distance are
power laws in the size of the training set:

〈δ〉 ∼ T−1/din , L(T ) ∼ T−α . (192)

Naively, there’s no reason to relate these two quantities. However, Ref. [37] argued that
the test loss should be monotonically related to 〈δ〉, the typical linear size of a subregion
occupied by a training point: the smaller the typical region, the greater that any test point
will fall near a training point and inference can succeed via interpolation, the smaller the
test loss.68 With this proposal, we relate the two equations in (192) and identify

din =
#

α
, (193)

where the order-one numerical factor # can depend on the details of the manifold [37].69

To verify this relationship, we can use the scaling of the NN-distance with the dataset
size, (191), to measure din for our generative data model and see how it varies with the
(hyper-)parameters of the distribution: α and M . In Fig. 12, we numerically simulate
latent datasets of different sizes according to (19) and (23), varying the power-law exponent
α (left panel), and the size of the latent space M (right panel). These experiments support
the relationship (193) between din and α and further suggest that din is entirely unrelated
to M . Thus, it must be the case that, while both dimensions din and M characterize the
latent data manifold, they represent very different intrinsic properties.

66For instance, if we place points uniformly on a Euclidean lattice, 〈δ〉 would be the fixed lattice size,
din would be the usual Euclidean dimension of the lattice, and the density of points would be exactly
T/V = 〈δ〉−din .

67There are much more sophisticated ways of measuring din, see, e.g., [73, 74, 37], but (191) is sufficient
for the qualitative point we wish to make here.

68The connection between dataset size, the intrinsic dimension, and scaling laws was also made by [41].

69The numerical factor suggests that L(T ) = 〈δ〉p, for some power p.
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Figure 12: Typical NN-distance from numerical simulations (stars) of our latent data
generative model, with the maximum eigenvalue fixed (λ+ = 1), fit (dashed lines) by
a simple power law, 〈δ〉 ∼ T−α/12. These experiments support the identification of the
intrinsic dimension with the inverse of the power-law exponent: din = #/α. Left: The
size of the dataset, T , is varied for a few different power-law exponents, α, while the
dimension of the latent space is held fixed (M = 3000). Right: The size of the dataset,
T , is varied for a few different latent-space dimensions, while power-law exponent is held
fixed (α = 1.0). These experiments suggest that din does not vary with M .

To understand this better, recall our discussion of PCA in §2.1: when the spectrum
of the data has a gap, the few principal components above the gap are taken to span
the intrinsic data manifold, the other components are thought to be random noise, and
the number of principal components gives an estimate of din.70 However, for continuous
spectra arising from natural data and modeled by our latent data generative model, there’s
no natural cutoff for separating informative and uninformative features. Instead, the
exponent characterizing the spectrum, α, provides a way of estimating din: intuitively, if
the exponent is large, α� 1, then the spectrum very rapidly decreases to zero, and much
of the variance of the data is captured by the first few principal components. Thus, we
might expect that there’s a way to compress such data onto a manifold with small intrinsic
dimension din ∼ 1/α.71

To conclude, on the one hand, for power-law data there’s no natural cutoff in the
spectrum, and you can always do fractionally better by modeling additional eigen-features:
this is why there are neural scaling laws. On the other hand, although such data has M

70Note, PCA can overestimate the intrinsic dimension of manifolds with large curvature [72, 37].

71Note that in our work, α and M are independent (hyper-)parameters of our latent data model: α
can be any positive real number, and so we can create datasets with any din. In contrast, the scaling
exponents in LLMs [18] and images [26, 41] are small, α < 1, but large enough such that the intrinsic
dimension is smaller than the input dimension (din < Nin). It’s unclear what the interpretation would be
of a natural dataset if α is so small such that din > Nin.
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independent components, the power-law structure is a type of constraint: the data manifold
is not very typical among M -dimensional manifolds, and the intrinsic dimension, din, is
determined by α, not M .

Latent Features vs. Trained Features

The argument of Ref. [37] that led to the identification (193) implicitly relied on not just the
input data, but also the labels: in principle, only the features relevant for the underlying
task will be useful for reducing the test loss. To account for that, the authors actually
considered the intrinsic dimension of the final-layer activations of a trained network.

In general, we should expect our estimate of din to depend on whether we consider
trained features or raw input data (or the latent features of our statistic model): if the
task is designed so that the label depends on only a few of the input features, then the
trained network will learn to ignore the rest of the features, and we might expect the
trained features to have a much smaller intrinsic dimension. For example, consider input
features that represent the Nin pixels of a black and white image: if the label is simply
whether the first pixel is on or off, then we should expect a much smaller intrinsic for the
trained features than if the label had depended on correlations among the Nin pixels of
the input, as in a typical image classification task; in the former case, we might expect
din ∼ 1, while in the latter case, if there’s C � Nin classification categories, we might
instead expect din ∼ C.

In our statistical model, there are two reasons that make this distinction between latent
features and trained features unimportant: (1) our labels, y, depend on all latent features
of an input, x, cf. (26); and (2) our model uses random features – not trained features –
and those random features cannot depend on any label information.72 This first point is
necessary to see the full set of observed neural scaling law phenomenology – the power-law
and plateau regions – and so this suggests it’s an important property of self-supervised
generative modeling tasks, such as those that LLMs perform. As to the second point, it
would be interesting to find a statistical model for which the features can learn nontrivial
representations of the inputs based on the tasks. We discuss some ideas towards this end
at the end of §5.

4.4 The Breakdown of our Data Model

The main goal of this paper has been to show how a simple generative data model combined
with a simple random feature linear regression model could capture the rich neural scaling
phenomenology observed in a broad class of real world large-scale models. An essential
part of our data model was that the spectrum of the input data’s covariance matrix
had many decades of power-law eigenvalues: when we jointly increased the number of

72Additionally, we expect that the N random features would have a similar intrinsic dimension as the
M latent features, given experiment in the right panel of Fig. 12. showing that the size of the latent space
doesn’t affect the intrinsic dimension.
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random features or training samples, we were able to see a larger and larger fraction of the
underlying latent eigenvalues in the empirical covariance matrix; this ultimately led to a
power-law scaling of the test loss when neither features nor training data were constrained.
If the data model were any simpler – e.g., that purely Gaussian data with an isotropic
spectrum that we study in §A.1 – we would not find power-law scaling of the test loss.
However, there are certain limitations to the simplicity of the data model, which we will
discuss in the rest of this subsection.

In particular, one might wonder whether we can use our random feature and generative
data model from §3 as a model for input data:

• If we take a dataset sampled from this random feature model (28) and interpret the
size of the random feature space as the data’s input dimension (N → Nin), and if
we then act on the dataset with a nonlinear random feature map, e.g. (174), with
dimension NReLU > N , will the power law of the feature spectrum extend?

• If the spectrum does extend, will it also extend the power law in the test loss?

To answer these questions, we can numerically study our data model with a single-hidden-
layer ReLU network and compare against a natural dataset.

In Fig. 13 we answer this first question. In these plots we show the spectrum of random
features for our data model (left panel) with the input features given by an explicit power
law and for a common computer vision (CV) dataset (right panel). To generate these
plots, we used the explicit form of the single-layer-ReLU-network kernel, (179) and then
explicitly diagonalized the kernel matrix. Recalling that such a kernel can be thought of
as an infinite-dimensional feature model (NReLU → ∞), we can thus study a fixed set of
input features Nin = 784 and see how the spectrum extends as we vary the size of the
dataset, T . As we see from the figure, the answer to our first bulleted point above is yes :
our data model behaves identically to the natural CV dataset. In particular, since the
number of features is implicitly infinite and not a bottleneck, we see that the extent of
the power law is determined by the size of the limiting resource T . This property is quite
universal, and we have observed it across a wide range of natural datasets and activation
functions.

In both panels of this figure, we also see another interesting effect, one that was already
pointed out in footnote 18 and present in the right panel of Fig. 4: when data with a
power-law spectrum passes through the ReLU layer – for both our data model and natural
datasets – the exponent α seems to decrease slightly. Since this exponent also characterizes
the power-law behavior of the model’s test loss, this decrease ultimately leads to worse
performance for a given set of resources than if it were otherwise preserved. It would be
interesting to use our RMT tools, e.g. as discussed in §3.3, to try to understand the origin
of this effect.

Next, in Fig. 14, we answer the second bulleted question above. To generate plots,
we map the Nin input features through a single-hidden-layer ReLU network with a much
larger number of random features (NReLU > Nin), and then we train a linear regression
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Figure 13: Spectra of the activations of a single-hidden-layer random ReLU network ob-
tained by diagonalizing the data-data covariance matrices, Σ, defined in (179), which can
be thought of as an infinite-dimensional feature model (NReLU →∞). In both panels, we
see that the power-law portion of the spectrum extends beyond Nin as we increase the
dataset size, T ; we also see in both cases that passing the data through the ReLU feature
map decreases the exponent α of the power law fit. (Note also that the spectra have been
rescaled by their largest eigenvalue so that the curves lie on top of one another.) Left:
The input dataset is obtained by sampling latent data points, xI;α, with statistics (19)
and power-law eigenvalues (23) (M = 20000, α = 1, λ+ = 1) and then subsampling these
latent features with the linear map (28) (σ2

u = 1) to obtain input features with Nin = 784.
Right: The input dataset is obtained from samples of MNIST dataset [75], a CV dataset
of natural black and white images with input dimension Nin = 784.

model on these random features and plot the test loss. In the left panel, we see the results
for our random-feature-and-label model from §3.1. Note that the performance plateaus
as soon as the number of training samples, T , surpasses the size of the input dimension,
Nin, rather than at the much larger random-feature dimension, NReLU: in other words, our
random feature model interpreted as a data model does not itself give a power-law scaling
of the test loss when the spectral extension is due to a nonlinear network. This means that
the answer to our second bulleted point above is no: despite the fact that the spectrum
extends when passed through the ReLU (cf. Fig. 13), this extension is simply not enough
to translate to extending the power law scaling of the test loss.

For the sake of comparison, in the right panel of Fig. 14 we compare to the natural CV
dataset trained on a simplified classification problem. We can see clearly that, while our
model has a plateau at Nin, the natural dataset extends the power-law scaling of the test
loss past Nin, indicating that the spectral extension was translated to the test loss.73

73N.B. in this plot, the particular maximum value of T was chosen because there are only 12,214 images
in the training set of MNIST for the “7” and “9” digits; we expect that the power-law (orange curve)
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Figure 14: Model performance for our data model, with a comparison to MNIST, when
the random features are the activations of a single-hidden-layer ReLU network of width
NReLU > Nin. Left: Test loss from numerical simulations of our data model with M =
10000, α = 1.5, and λ+ = 1 as a function of training set size T : first, we generate latent
data samples, xI;α, with statistics (19) and power-law eigenvalues (23) and subsample them
with the linear map (28), with σ2

u = 1, to obtain input features with different Nin; then,
we pass the inputs through a single-layer random ReLU network of width NReLU = 5000;
finally, we compute the test loss via (40) with our generated labels (26). We see that the
power-law scaling ends and the loss plateaus after the size of the training set, T , reaches
the number of input features, Nin, rather than the number of ReLU features, NReLU.
Right: We compare our data model (blue) with M = 20000, α = 0.4, λ+ = 1, σ2

u = 1,
and input features of size Nin = 784, against a simplified MNIST classification problem
(orange), where we only include 7s and 9s. In both cases, we pass the data through a
single-hidden-layer ReLU network of width N = 20000 and compute the test loss via (40).
We see that while our data model plateaus for training set sizes T greater than Nin, the
MNIST performance continues to follow a power-law falloff up to higher scales. (Note: the
MNIST loss is rescaled to lay on top of the power-law data’s loss, and the exponent of our
data model was chosen to match that of MNIST in order to facilitate the comparison.)
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A heuristic explanation for this discrepancy is clear: when we down-sample the latent
space to generate the random features in (28), we are throwing away many of the latent
eigenvalues and eigenvectors present in the latent data xI necessary to predicting the label
yI , cf. (26). While the nonlinear feature map (174) does extend the power-law eigenvalues
(cf. Fig. 13), there is no reason to expect these nonlinear features to be aligned with the
latent eigenvectors as they were determined at random. In other words, this information
was fundamentally lost when our down-sampling projected out these directions. Hence,
the Nin inputs do not generate any more useful features when passed through a ReLU
network.

However, unlike our generative data model, natural datasets do seem to contain suffi-
cient information in their limited input features to determine the outputs: seemingly, very
little has been thrown away! Thus, it would be interesting to extend our minimal model
to understand further how the nonlinear activation functions are able to decode relevant
eigenvectors and extend the power-law regime in the test loss.74

5 Conclusion and Featured Directions

In this paper we presented a solvable model of neural scaling laws. After exploring natural
datasets and their behavior under nonlinear feature maps (§2), we constructed a minimal
statistical model that contains the full set of neural scaling behavior exhibited by large
language models in practice (§3). We also explained why our model is minimal by showing
that even simpler data or feature models (§A) do not have the right behavior. By solving
our statistical model using techniques from random matrix theory (§3.2), we were able to
better understand the mechanism driving these practically relevant neural scaling laws.

With our solution, we were then able to explore a regime of our model (M < N,T ) that
goes beyond the regimes explored experimentally for LLMs (§4.1). This is a nice benefit
of theoretical analyses such as ours; in addition to trying to understand experimentally
observed phenomena in contexts that we’ve accessed experimentally, we can also use our
models to probe new contexts. Relatedly, now we can ask the experimentalists, can we
measure the scale M for LLMs? Perhaps we can use the fact that the prediction of the test
loss fit is better when you include M , as per our analysis, cf. (172)? Knowledge of the size
of the latent space for language would have practical benefit by elucidating, in some sense,
how much better LLMs can get using power-law performance gains before transitioning
into a noise-dominated regime.

Finally, we hope that the large-N diagrammatic approach to RMT calculations (§3.2)
and the differential operator approach to simplifying expressions (§A) will be useful theo-
retical tools for simplifying machine learning calculations.

����

would continue further if more training samples were available.

74Note that Ref. [40] has a toy model of scaling laws that incorporates an eigenvector dependence.
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We close by featuring a future direction.

Representation Learning?

In the paper, we have studied generalized linear regression models with random feature
maps, and we have seen that the ability of such maps to extend the power law present in
the spectrum of input data is the mechanism that leads to the power law scaling of the
test loss as the number of random features increases. A natural extension of this analysis
is to move beyond linear regression with random feature maps and consider models that
learn representations of their inputs. A natural setting for this is the quadratic models
framework of [16], as they are minimal models of representation learning.75

A quadratic model extends the generalized linear model, (30), in the following way:

z(x; θ) ≡
N∑
j=1

θjϕj(x) +
ε

2

N∑
j1,j2=1

θj1θj2ψj1j2(x) , (194)

where each ψj1j2(x) is a meta feature function, which is a (potentially) nonlinear trans-
formation of an input x that is distinct from the feature functions ϕj(x), ε is an adjustable
hyperparameter that controls the importance of the quadratic deformation of the linear
model, and, for convenience, we assume that the model outputs a scalar z. Due to the
constraint tying the parameters in the linear term, θj, to the product of parameters in the
quadratic term, θj1θj2 , the quadratic model cannot be written in the form of a generalized
linear model (30); it is this nonlinear-in-the-parameters property that enables it to learn
nontrivial representations of inputs x over the course of training.76

Following §11.4 of [16], if we optimize the MSE loss, (33), with the quadratic model,
(194), we can find a solution in perturbative expansion in the deformation parameter ε:

θ? ≡ θL + ε θNL , (195)

where the linear part, θL, is the linear regression solution with ε = 0, (35), and the
nonlinear part is given in terms of the linear solution to leading order as

θNL
j = −1

2

N∑
j1,j2,j3=0

θL
j1
θL
j2

[
T∑
α=1

ψj1j2(xα)ϕj3;α

]
qj3j +O(ε) , (196)

and would have a more complicated expression were we to substitute in θL. With this
solution, test predictions can similarly be decomposed as

ẑ? ≡ ẑL + ε ẑNL , (197)

75As we discussed in our Aside: Random Feature Maps vs. DNNs in §2.1, certain DNNs in the infinite-
width limit correspond to linear regression models. In contrast, nonlinear models, of which quadratic
models are the simplest example, can instead correspond to more realistic finite-width networks [16].

76See §11.4 of [16] for the details of how this works.
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with ẑL the standard linear regression inference, (39), and ẑNL the correction coming from
the nonlinear quadratic term.

Now to the point: if we substitute these predictions into the test loss,

LB(θ?) =
1

2T̂
||ẑ? − ŷ||2 , (198)

we can try to evaluate the performance of the quadratic model given a particular data
model. In particular, we can evaluate if the nonlinear contribution – and therefore if
nontrivial representation learning – improves the model’s performance by computing

dLB(θ?)

dε
=

1

T̂

T̂∑
β=1

ẑNL
β

(
ẑL
β − ŷβ

)
+O(ε) . (199)

This quantity captures the linear shift in the model’s performance due to the nonlinear
deformation; here we see that it depends on how nonlinear part of the test prediction, ẑNL

β ,

aligns with the linear part of the prediction error,
(
ẑL − ŷ

)
, when averaged over the test

set. If these quantities are anti-aligned for a given data model,

dLB(θ?)

dε
< 0 , (200)

then we can conclude that the quadratic model improves the performance on that data,
at least for small enough values of ε.77 The qualification “for a given data model” is
important, as it’s easy to construct simple datasets that give either sign for dLB(θ?)/dε!

To assess a realistic setting of interest, we can use our generative data model from §3,
modeling the data with a power law covariance spectrum. Then, we can use our RMT
tools to find the average of (199) over the data and random features.78 Altogether this
may lead to a more complex, if not even more realistic, model of neural scaling laws: the
form of the quadratic model, (194), breaks the data-parameter duality in the average test
loss; perhaps because of this we may find a much richer phenomenology for test loss, e.g.
unequal scaling exponents αN , αT as was originally observed in [18].
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A Linear Models

In §3, we studied a joint generative data model and random feature model that minimally
captured the rich neural scaling phenomenology present in the test loss of LLMs. In this
appendix, we will study some even simpler models that capture some, but not all, of
that behavior. These models are instructive in explaining the origin of different parts
of the test-loss curve by highlighting the different properties of a statistical model that
lead to their absence or presence. Although these models have been described in detail in
literature, here we will attempt to give slightly different derivations in order to connect to
the methods used the main body of this paper as well as to illustrate the simplicity of our
approach.

In particular, in this appendix we will study (non-generalized) linear models for differ-
ent generative data models. This means that we will learn a model of the form

zi(x; θ) ≡
N∑
j=1

θijxj , (201)

where θ ≡ θij is a set of learnable parameters, and the input data x lives in an N -
dimensional feature space with statistics

〈xj〉 = 0 , 〈xj1xj1〉 = Λj1j2 . (202)

Our analysis will proceed with general covariance matrices Λ, and we will later evaluate
our solution for different data models. Analogously, our labels are defined as

yi =
N∑
j=1

wijxj, with i = 1, . . . , C , (203)

where w ≡ wij is an C-by-N -dimensional weight matrix whose elements we will take to be
independent and drawn from a zero-mean Gaussian distribution:

〈wij〉 = 0 , 〈wi1j1wi2j2〉 =
σ2
w

N
δi1i2δj1j2 . (204)

Comparing (201) and the rest of this setup with the generalized linear model, (30), in
the main text, the main difference here is that there’s no separate latent feature space,
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M → N , and no random feature model, ϕ(x) → x. Importantly, unlike the labels in
the main text, (26), here the complexity of the label, (203), increases as we increase the
number of features in the linear model: this means that we have no way to increase the
capacity of our model without also making the task harder. On the plus side, the analysis
will be much simpler since we will no longer have to average over random features, and
the only nontrivial average will be over the training set x.

Using the same linear regression setup and same notational conventions discussed in
§3.1, we can write down a training loss with a ridge parameter,

LA(θ) ≡ 1

2
||θx− y − ε||2 +

γ

2
||θ||2 ,

where the random noise is defined the same as before (34),

〈εi;α〉 = 0 , 〈εi1;α1εi2;α2〉 = σ2
ε δi1i2δα1α2 , (205)

and straight away use the well-known linear-regression solution for the parameters (35):

θ? ≡ (y + ε)xT q , (206)

with the feature-feature resolvent now defined as

q ≡ 1

γIN + xxT
. (207)

Finally, using this solution for inference on our test set x̂ as

ẑ? ≡ θ?x̂, (208)

we define the test loss,

LB(θ?) ≡ 1

2T̂
||ẑ? − ŷ||2 =

1

2T̂

∣∣∣∣(wx+ ε)xT qx̂− wx̂
∣∣∣∣2 , (209)

where on the final expression we’ve substituted in the test predictions, (208), the optimal
parameters (206), and the labels, (203). Our goal now is to average LB(θ?) over the
training inputs x, the test inputs x̂, the label weights, w, and the random noise ε. This
calculation is analogous to the one studied in Refs. [35, 36] via replica methods.

The first part of the calculation proceeds identically to the first steps in §3.1 under the
subheading Average Goals : since they are both quadratic, the average over the random
noise, cf. (43), and the subsequent average over the label weights, cf. (44), can be per-
formed trivially. Thus, our nontrivial point of departure is the noise-and-label-averaged
test loss expression:

〈LB(θ?)〉ε,w =
Cσ2

w

2T̂N

∣∣∣∣xxT qx̂− x̂∣∣∣∣2 +
Cσ2

ε

2T̂

∣∣∣∣xT qx̂∣∣∣∣2 , (210)
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which we again will refer to as the label term and noise term, respectively. As in the main
text, from this point forward we will set C = 1 as it’s just a trivial rescaling.

Now, we will need to recall our simple identities, (59) and (60), which we will reprint
here for convenience:

(γIN + xxT )q = IN , q(γ)2 = − ∂

∂γ
q(γ) . (211)

Rearranging the first identity, note that we can rewrite the label term as∣∣∣∣xxT qx̂− x̂∣∣∣∣2 = γ2 ||qx̂||2 , (212)

which eliminates the explicit dependence on x. Next, using (202), let’s perform the average
over the test set. Since both terms are quadratic in x̂, and remembering the test set and
training set don’t correlate since each sample is drawn independently, we find

〈LB(θ?)〉ε,w,x̂ =
σ2
wγ

2

2N
tr
{

Λq2
}

+
σ2
ε

2

(
tr{Λq} − γtr

{
Λq2
})

, (213)

where to simplify the noise term we again made use of a rearrangement of the first identity
in (211) to eliminate xxT . While in principle the training set average of tr{q2Λ} would be
complicated given the q2, luckily we have our second identity in (211) which lets us write
the test loss as

〈LB(θ?)〉ε,w,x̂ =
1

2

[
−σ

2
w

N
γ2 ∂

∂γ
+ σ2

ε

(
1 + γ

∂

∂γ

)]
tr{Λq} . (214)

This is determined entirely by the training set average of a single quantity: tr{Λq}.
Now, since this expression is linear in q, we can “take” the trainset average by making

the replacement q → q. Doing so, we immediately recognize the resulting quantity,

tr{Λq} ≡ ∆(T,N) = tr

{
Λ

γIN + TΛ
1+∆(T,N)

}
, (215)

as the nontrivial object that appears in the coupled set of equations that determine q.
Here, as the right-most expression, we’ve written the self-consistent equation satisfied by
∆, cf. (82).79 This means that we can express our final answer as a differential operator
acting on this quantity:

〈LB(θ?)〉ε,w,x̂,x =
1

2

[
−σ

2
w

N
γ2 ∂

∂γ
+ σ2

ε

(
1 + γ

∂

∂γ

)]
∆ . (216)

79The calculation that gives the self-consistent equation for ∆(T,N) follows identically to the calculation
in §3.2.1, with the following substitutions: ϕ → x and Ω → Λ. These reflect the fact that this resolvent
is built from xxT , cf. (207), and has statistics (202), respectively.
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Finally, in the ridgeless limit, γ → 0, we can expand ∆ as

∆(T,N) ≡ ∆−1

γ
+ ∆0 + ∆1γ + . . . , (217)

cf. (232) in Appendix B, and associate these differentials to specific terms in the expansion:

lim
γ→0

(
−γ2 ∂

∂γ

)
∆(T,N) = ∆−1 , lim

γ→0

(
1 +

∂

∂γ

)
∆(T,N) = ∆0 . (218)

Using these identities, the test loss takes an extremely simple form

〈LB(θ?)〉ε,w,x̂,x =
1

2

[
σ2
w

N
∆−1 + σ2

ε∆0

]
, (219)

and ∆−1 and ∆0 can be very simply determined given an underlying data spectrum.
On the one hand, this solution for the linear model in the ridgeless limit is similar to

the random feature model in the main text: in that case, the noise term was proportional
to ∆F

0 ≡ ∆F
0 (T,N), cf. (85), and the label term was proportional to ∆−1(N,M) or

∆−1(T,M) depending on whether the model was under- or overparameterized, cf. (163).
On the other hand, a key difference is the lack of separation of scales between the number
of random features, N , and the number of latent features, M : this means that there’s
no duality in the exchange of training set size and number of features, N ↔ T , no phase
transition that exchanges ∆−1(N,M) with ∆−1(T,M) as the model crosses T = N , and,
consequently, the test loss is not symmetric under N ↔ T . Instead, the linear model has
a different phase transition solely in the function ∆−1(T,N) at the point of N = T ; this
phase transition is analogous only to the other phase transition in the random feature
model that occurs when T or N crosses M , cf., e.g., (182), and leads to different overall
behavior.

To probe these properties of the linear model further, let’s explicitly evaluate the
ridgeless test loss, (219), for two different data models: first we’ll consider completely
structureless data with Marchenko-Pastur statistics (§A.1), and then we’ll make a direct
comparison to the main text by considering power-law data (§A.2).

A.1 Marchenko-Pastur Data

As the simplest possible data model, let’s take the covariance of the input features to be
isotropic,

Λ = σ2
xIN , (220)

which means that each component of the input is independent and identically distributed.
The distribution of empirical covariance matrices of a finite-sized dataset is the Marchenko-
Pastur (MP) distribution [51]. The test loss of linear models with MP data have been
studied extensively in the literature.
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For MP data, the calculation of ∆−1 and ∆0 are both trivial because the sum over
eigenvalues doesn’t depend on their index. Starting with ∆−1, plugging the expansion (217)
into the self-consistent equation (215), converting the sum into a trace, and substituting
in the spectrum (220), we have find a simple equation that determines ∆−1:

∆−1 =
N∑
i=1

∆−1

T + ∆−1σ−2
x

=
N∆−1

T + ∆−1σ−2
x

. (221)

Solving this trivial equation gives two solutions, one valid for when the model when the
model is under(over)-parameterized:

∆−1(T,N) =

{
(N − T )σ2

x , T < N ,

0 , T > N .
(222)

The reason for this assignment is as follows: for T < N , the empirical covariance has zeros,
which means that the resolvent, q, and its average, q, must blow up as γ−1 as γ → 0, cf.
(207), and thus ∆−1(T,N) 6= 0; for T > N , the empirical covariance is full rank, there’s
no pole in q as γ → 0, and thus ∆−1(T,N) = 0.

For calculation of ∆0, we have to consider T < N and T > N separately. For T < N ,
starting with the O(γ0) term in the power-series equation of the self-consistent equation
(215),

∆0 = (1 + ∆0)
M∑
I=1

µλ2
I

(µλI + ∆−1)2 , (223)

plugging in ∆−1 = (N − T )σ2
x and Λ = σ2

xIN , and performing the trivial sum, we find

∆0 = (1 + ∆0)
T

N
=⇒ ∆0(T,N) =

1

N/T − 1
. (224)

For N < T , our ansatz (217) instead should begin at O(γ0): plugging that expansion into
the self-consistent equation (215), we find

∆0 =
N∑
i=1

1 + ∆0

T
= (1 + ∆0)

N

T
=⇒ ∆0(T,N) =

1

T/N − 1
. (225)

Altogether, we have

∆0(T,N) =

{
1

N/T−1
, T < N ,

1
T/N−1

, T > N ,
(226)

independent of the scale of the size of the “signal” σ2
x.

80

80It’s interesting to compare this expression, (226), with our formula for ∆0 with power-law data, which
is computed in the next appendix, (262): as the first argument of ∆0 approaches the second, these formula
agree completely; however, the MP formula, (226), is exact, while the coincident regime of the power-law
formula, (262), is only the leading part of the ε expansion. The reason for this agreement is that as two
scales become equal, the tail of the spectrum of the empirical covariance is universally determined by MP
statistics for any underlying Λ.
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Since we’ve evaluated ∆−1 and ∆0 exactly, we can write an exact formula for the test
loss in the ridgeless limit (γ → 0): trivially substituting (222) and (226) into (219), we get

LMP(N, T ) ≡ 〈LB(θ?)〉ε,w,x̂,x =
1

2

{
σ2
wσ

2
x

(
1− T

N

)
+ σ2

ε

N/T−1
, T < N ,

σ2
ε

T/N−1
, T > N .

(227)

In Fig. 15, we plot some example test loss curves using numerical simulations of MP data for
different signal strengths σ2

x and compare with our analytical formula (227): considering
both fixed number of features while varying the training set size (left panel) and fixed
training set size while varying the number of features (right panel), we see an excellent fit
to the experimental data.
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Figure 15: Test loss from numerical simulations (stars) and our analytical expression (solid
lines) of a linear model trained on MP data (σ2

w = 1, σ2
ε = 0.25). As the two panels show,

the test loss of this model is not symmetric under the exchange T ↔ N . Left: The size
of the training set, T , is varied for a few different sized signals, σ2

x, while the number of
features is held fixed (N = 2000); note that the linear decrease of the test loss (1− T/N)
with increasing T is not easily perceptible on a log-log scale. Right: The number of
features, N , is varied for a few different sized signals, σ2

x, while the size of the training set
is held fixed (T = 1000).

Overall, we can characterize the performance of the model according to its different
regimes:

• When the model is overparameterized, T < N , the test loss decreases linearly towards
zero as (1−T/N) with increasing T ; each new training point gives the model access
to an additional eigenvalue of the covariance matrix, each of which is equal size.

• At the point of equiparameterization, T = N , the performance formally diverges a
universal way, overfitting to the nonzero noise. (In the noiseless limit, ε → 0, the
test loss would be identically zero.)
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• When the model is underparameterized, T > N , the only contribution to the test
loss comes from the noise; this eventually falls off with increasing T as the noise is
distributed independently for each training sample and ultimately averages away as
T →∞.

This phenomenology is quite different than the random feature model from the main
text, (163):

(i) The random feature model has a regime that exhibits power-law scaling law of the
test loss. This cannot happen for MP data since there’s no power-law in the spectrum
to translate into the test loss; essentially, MP data is itself structureless noise that
cannot capture the rich behavior of the LLMs.

(ii) (For small noise, σ2
ε ) the test loss of the random feature model in the main text was

symmetric under the exchange of the training set size and the number of features
(T ↔ N), while the MP-data linear model is not. (This is clear from inspection
of the analytical solution, (227), and illustrated by the two panels of Fig. 15.) The
problem with the linearly model is that as we increase the number of features, N ,
we simultaneously increase the number of features used to determine the label, cf.
(203). In other words, the learning problem of training a small number of features on
a large training set is fundamentally easier than training many features on a small
training set.

To fix the first problem, we need a more realistic generative data model (§A.2). To fix the
second problem, we need to decouple the size of the model used in the regression from the
complexity of the learning problem (§3).

A.2 Power-Law Data

To address that first problem, let’s now use the same underlying data model as in §3: we’ll
assume the spectrum of Λ has a number density that’s well-approximated by

n(λ)dλ = N(β − 1)λβ−1
− λ−βθ(λ− λ−)dλ , (228)

where here λ− is the minimum eigenvalue, β is an exponent that characterizes the tail of
the distribution, and the constants are chosen such that the density integrates to N . Recall
from our earlier discussion that we can instead characterize the spectrum by a maximum
eigenvalue, λ+ ,and exponent, α, which are related to λ− and β by, cf. (24) and (25),

λ+ ≡ λ−M
1+α , α ≡ 2− β

β − 1
, (229)

with the range 1 < β < 2 translated to 0 < α <∞.
For power-law data, the calculations of ∆−1(T,N) and ∆0(T,N) are performed in

Appendix B. Importing the results of those calculations, (252) and (262), and substituting
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into our expression for the test loss, (219), we can write a formula for the test loss of the
linear model:

LPL(N, T ) ≡ 〈LB(θ?)〉ε,w,x̂,x (230)

=
1

2


λ+σ2

w

Nα+1

{
k
[(

N
T

)α − 1
]

+ [2 + α(1− k)]
(
1− T

N

)}
+ σ2

ε

(
α + 1

N/T−1

)
, T < N ,

σ2
ε

T/N−1
, T > N .

Comparison with the MP formula (227) highlights the way that near the coincident regime,
T → N , the loss behaves as if the data were structureless MP data. In Fig. 16, we plot
some example test loss curves using numerical simulations of power-law data and compare
with our analytical formula (230). This shows an excellent fit of this formula to experiment.

On the one hand, from the expression of the test loss, (230), and the figure, we can
see that with power-law data there is a scaling regime, T � N , where the test loss has
power-law behavior, LPL(N, T ) ∼ T−α, analogous to the random feature model in the
main text. On the other hand, as discussed in the previous subsection, there cannot be a
dual regime where the model behaves as a power-law in the number of features. In other
words, from the perspective of increasing T , there’s no plateau behavior as exhibited by
(1); instead, for T > N , we only get the universal noise contribution.

Thus, we conclude that a simple linear model does not have the same rich phenomenol-
ogy exhibited by the LLMs of [18]. To make a sufficient minimal model of neural scaling
phenomenology, we need to distinguish the latent features of the data from the model’s
features. We do this in the main body of the paper using the random feature model
presented in §3.

B Explicit Solutions for ∆

We would like to self-consistently solve the equation

∆(µ,M) = tr

{
Λ

γIM + µΛ
1+∆(µ,M)

}
, (231)

in the limit where the ridge parameter is vanishing, γ → 0. Here, µ is a generic scale that
can either represent the number of features, N , or the size of the training set, T . We will
proceed to solve this equation order-by-order.

B.1 Explicit Solution for ∆−1

First, let us consider the parameter regime where µ < M . Then, consideration of the
above expression as ∆(µ,M) becomes large suggests that it should diverge as 1/γ as
γ → 0. Thus, to find the leading behavior, we can insert an ansatz expansion

∆(µ,M) ≡ ∆−1

γ
+ ∆0 + ∆1γ + . . . , (232)
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Figure 16: Test loss from numerical simulations (stars) and our analytical expression
(solid lines) of a linear model trained on power-law data (λ+ = 1, σ2

w = 1). The top panels
illustrate that the test loss of this model is not symmetric under the exchange T ↔ N . Top
Left: The size of the training set, T , is varied for a few different power-law exponents, α,
while the number of features and the noise variance are held fixed (N = 2000, σ2

ε = 10−6);
for T � N , the test loss behaves as a power law in the training set size, LPL(N, T ) ∼ T−α,
but for T > N there’s no plateau behavior. Top Right: The number of features, N , is
varied for a few different power-law exponents, α, while the size of the training set and
the noise variance are held fixed (T = 1000, σ2

ε = 10−6); for N � T , the test loss actually
grows with increasing features as LPL(N, T ) ∼ N . Bottom: The number of features, N is
varied for several different values of the noise variance, σ2

ε , while the power-law exponent
and training set size are held fixed (α = 1.0, N = 2000).
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and rearrange to find:

1 = tr

{
Λ

∆−1 IM + µΛ

}
+O(γ) . (233)

Covering the trace into a sum over eigenvalues, we get

1 =
M∑
I=1

1

µ+ ∆−1λ
−1
I

+O(γ) , (234)

where λI is the spectrum of Λ. Our goal is to find an explicit expression for ∆−1(µ,M). We
will proceed by considering two asymptotic regimes and then by constructing a solution
that naturally interpolates between them.

The first regime concerns the limit where the scale, µ, approaches the size of the latent
space, M . It’s easy to see that in the exact limit of µ→M , the equation (234) is satisfied
by ∆−1 = 0. This suggests that in this coincident regime, we might find a solution in
terms of an expansion

∆−1(ε) ≡ aε+ a′ε2 + . . . , (235)

with the closeness parameter defined as

ε ≡ 1− µ

M
. (236)

Inverting this definition, (236), for µ and substituting both that and the expansion (235)
into the summation equation, (234), we find:

1 =
1

M

M∑
I=1

[
1 +

(
1− a

MλI

)
ε+O

(
ε2
)]

. (237)

From this, we see that zeroth order term is satisfied by construction and that the constant
a must satisfy

a =
M2∑M
I=1 λ

−1
I

. (238)

If desired, this can be systematically continued to find the higher-order coefficients in the
expansion (235), but for our needs the first order term is sufficient.

Up to this point this expression, (238), is completely universal given a spectrum λI .
To simplify further, let us insert our latent space power law (23):

λI = λ+

(
1

I

)1+α

, (239)

where recall λ+ represents the largest eigenvalue, and α > 0 controls the exponent of the
power-law limit of the scaling law.81 Inserting this spectrum into (238), then approximating

81Alternatively, we could instead average over a smooth density of eigenvalues, (22): regardless, at large
M the smooth density will behave similarly to the fixed spectrum.
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the sum as an integral and taking the large-latent-space limit, M →∞, we find:

a =
(2 + α)λ+

Mα
+O

(
M−1−α) . (240)

The second regime is a scaling regime: to find another solution we essentially reverse
the order of limits we just took; for the coincident regime we first expanded around µ→M
and then took M →∞, but in the scaling regime we will first take M →∞ and then look
for a power-law scaling solution in µ as µ→∞. In this limit, we can safely approximate
the sum as an integral from the start,

M∑
I=1

1

µ+ ∆−1λ
−1
I

→
∫ ∞

1

dI

µ+ ∆−1I1+α/λ+

, (241)

where importantly we have taken the limit of the integral to infinity as M → ∞, and we
have also substituted in for the power-law spectrum (239).82 While this integral can be
evaluated directly in terms of a hypergeometric function (as was done in [38]) instead let’s
instead substitute in a scaling ansatz:

∆−1(µ) ≡ λ+k

µα
, (242)

with a constant k assumed to be independent of µ, and with the function ∆−1(µ) inde-
pendent of M since we’ve taken M → ∞. In addition to that substitution, changing
integration variables as

I =
sµ

k1/(1+α)
, (243)

and setting the integral equal to unity as per (234), we can find an integral expression for
the constant k:

k =

[∫ ∞
k1/(1+α)µ−1

ds

1 + s1+α

]1+α

. (244)

Since in our scaling limit, µ→∞, the constant k in our scaling ansatz, (242), is assumed
to be independent of µ, we can now safely take the second limit of µ → ∞ and evaluate
the dimensionless integral in the square brackets in terms of some gamma functions:∫ ∞

0

ds

1 + s1+α
= Γ

(
α

1 + α

)
Γ

(
2 + α

1 + α

)
. (245)

This is just some number, and using a gamma function identity, we can rewrite this number
to give an expression for k:

k =

[
π

1+α

sin
(

π
1+α

)]1+α

. (246)

82N.B. while the coincident limit has the universal form, (238), being determined by a simple function
of the underlying spectrum, the scaling limit is specific to the power law spectrum.
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Lastly, having solved (234) in two non-commuting limits, as a final step we need to
find a solution that interpolates between these two regimes. Consider a final ansatz

∆−1(µ,M) ≡ λ+k
(
µ−α −M−α)+ bε , (247)

for some constant b that we assume to be independent of µ. To make sure that we match
the correct behavior in the coincident regime, we expand (247) as µ→M ,

∆−1(µ,M) = (b+ αλ+k) ε+O
(
ε2
)
, (248)

and set it equal to (235), giving

b = [2 + α(1− k)]
λ+

Mα
. (249)

Then, substituting this back in our ansatz (247), we see that in the scaling regime we will
match onto our solution (242) as we take M →∞:

∆−1(µ,∞)→ ∆−1(µ) =
λ+k

µα
. (250)

Overall, we can write our explicit interpolating solution as

∆−1(µ,M) =
λ+

Mα

{
k

[(
M

µ

)α
− 1

]
+ [2 + α(1− k)]

(
1− µ

M

)}
, (251)

with the dimensionless constant k defined in (246). To test our solution, we can also solve
for ∆−1(µ,M) numerically using (234). In Fig. 17 we plot our numerical solution against
our analytical solution (251) as a function of µ, for different α and M . Overall we see
excellent match everywhere except for small µ . 10, where our scaling solution would
receive corrections and where we expect our random matrix theory analysis of §3 also to
be subject to corrections.

Finally, let us note that for µ > M the empirical covariance is full rank, so there’s no
pole in the resolvent as γ → 0: this means that there’s no γ → 0 pole in ∆ either. Thus,
overall we have:

∆−1(µ,M) =

{
λ+
Mα

{
k
[(

M
µ

)α
− 1
]

+ [2 + α(1− k)]
(
1− µ

M

)}
, µ < M ,

0 , µ > M .
(252)

B.2 Explicit Solution for ∆0

We will need to divide the analysis into the cases of µ < M and µ > M .
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Figure 17: Comparison analytical and numerical solutions for ∆−1(µ,M) for different
exponents α and fixed µ: the numerical solution of (234) (dots) closely matches our
analytical solution (251) (solid lines) except for small small µ . 10, where we also expect
the random matrix theory analysis of the paper to deviate.

µ < M

Let’s continue with our expansion of ∆ in the parameter regime where µ > M to find the
NLO contribution ∆0. The O(γ0) term in our power series expansion of (231) gives

∆0 = (1 + ∆0)
M∑
I=1

µλ2
I

(µλI + ∆−1)2 , (253)

which can be solved for ∆0 in terms of ∆−1. To begin, first note that we can rewrite (253)
as

κ =
M∑
I=1

µ(
µ+ ∆−1λ

−1
I

)2 , ∆0 =
κ

1− κ
. (254)

Given our solution for ∆−1, we can evaluate the sum in the left expression in terms of
known quantities and then easily find ∆0. As before, let us consider two asymptotic
regimes for the sum and then construct an interpolating solution.

In the coincident regime (µ→M), substituting in ∆−1 = aε+O(ε2) and µ = M(1−ε),
and using (238), we can evaluate the sum to linear order an find

κ = 1− ε+O(ε2) , (255)

which gives

∆0 =
1

M/µ− 1
+ . . . . (256)
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Interestingly, this leading order answer is completely independent of the spectrum. As
mentioned before, we can systematically continue this ε expansion to find more terms if
needed.

In the scaling regime, we can follow the same procedure as in the previous subsection:
first, we substitute in ∆−1 = λ+kµ

−α and λI = λ+I
−1−α for the leading order scaling

solution and spectrum, respectively; next, we approximate the sum in (254) as an integral;
then, we change variables in (243). Finally, we safely take the µ→∞ limit to get

κ =
1

k1/(1+α)

∫ ∞
0

ds

(1 + s1+α)2 =
α

1 + α
=⇒ ∆0 = α (257)

in the scaling regime. Putting (256) and (257) together, it’s easy to see that

∆0(µ,M) = α +
1

M/µ− 1
(258)

behaves as a simple interpolating solution between these two regimes.

µ > M

As we discussed in previously, when we assume M < µ, then ∆ no longer diverges as 1/γ
as γ → 0, but instead approaches a constant. Thus, to find the new leading behavior, we
should use a different ansatz,

∆(µ,M) ≡ ∆0 + ∆1γ + . . . , (259)

for which we will only need to evaluate the first term. Inserting this expansion into the
self-consistent equation, we find

∆0 =
M∑
I=1

1 + ∆0

µ
. (260)

This can be simply summed and rearranged to give

∆0 =
1

µ/M − 1
, (261)

another universal answer independent of the spectrum.
Thus, altogether we have:

∆0 =

{
α + 1

M/µ−1
, µ < M ,

1
µ/M−1

, µ > M .
(262)

To verify this, in Fig. 18 we plot a comparison of this analytical approximation against a
numerical evaluation of ∆0. As before, we see deviations for very small µ . 10, where our
scaling solution would receive corrections. Additionally, we also note that for µ < M , the
fit in the crossover between the scaling and coincident regions has some very small error:
this could be reduced by solving the self-consistent equations for ∆−1 and ∆0 to order ε2

in the coincident region.
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Figure 18: Comparison analytical and numerical solutions for ∆0(µ,M) for different expo-
nents α and fixed µ: the numerical solution (dots) closely matches our analytical solution
(258) (solid lines) except for small µ . 10 where we also expect the random matrix theory
analysis of the paper to deviate.

∆0 for the Truncated Power-Law Spectrum

In §3.2.1, we needed to calculate ∆F
0 , which is determined by the self-consistent equa-

tion (82):

∆F (T,N) = tr

{
Ω

γIN + TΩ
1+∆F (T,N)

}
. (263)

This is similar to the self-consistent equation (231) that we just solved, with trivial sub-
stitutions µ → T and N → M , and, less trivially, with the covariance Λ, and its strict
power-law spectrum (239), replaced by a random projection of that spectrum, Ω = uΛuT .

Let’s first consider the typical case where our number of features is less than the
dimension of the latent space, N < M . Then, for a fixed u, the spectrum of Ω will have a
power-law bulk and then terminate in a non-power-law tail with a rapid decline to zero.

When our model is also underparameterized, N < T , or overparameterized but near the
coincident region, N & T , we know from our analysis in the previous subsection that the
answer is universal, independent of the spectrum: thus, automatically our calculation from
before almost carries over to this setting. On the other hand, we might expect a deviation
when T � N , since ∆0 was not universal in the scaling region, cf. (257). However, in
this limit there are only significant deviations from a strict power-law spectrum at at very
small eigenvalues; since these small eigenvalues will make a negligible contribution to the
integrals determining ∆F

−1 and ∆F
0 , we expect this non-power-law tail to have negligible

effect on the calculation of ∆F
0 . (We also expect the eigenvalues to shift by a multiplicative
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factor, but this scaling does not appear in ∆F
0 and won’t contribute.)

Thus, as analogous to the answer in previous subsection (262), even in this projected-
spectrum case we expect

∆F
0 (T,N) =

{
α + 1

N/T−1
, T < N , N < M ,

1
T/N−1

, T > N , N < M .
(264)

In Fig. 19, we confirm this analysis in the overparameterized setting by comparing to a
numerical evaluation of ∆F

0 . In this case, we find a reasonably good fit: we see the expected
deviations for very small T . 10, and we also see some more deviations in the crossover
region for larger α as compared to our fit in Fig. 18; in this region, we expect that the
higher-order spectrum-dependent terms are less negligible. Nevertheless, these deviations
are overall insignificant as the precise crossover behavior is not particularly important and
could always be improved by analyzing additional terms in the ε expansion.
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Figure 19: Comparison of analytical and numerical solutions for ∆F
0 (T,N), determined

by a truncated power-law spectrum (λ+ = 2, σ2
u = 1), for different exponents α and fixed

number of latent and random features (M = 4000, N = 2000): the numerical solution
(dots) matches our analytical solution (264) (solid lines) except for small T . 10, where
we also expect the random matrix theory analysis of the paper to deviate. For larger α,
we also see some non-negligible deviations in the crossover from the scaling regime to the
coincident regime; this could be improved by analyzing the next term in the ε expansion.

We can also consider the somewhat less typical case of N > M , which is of interest in
§4.1 where we considered the breakdown of neural scaling phenomenology. In this situation,
for a typical fixed u, the spectrum of Ω will have the complete power-law of Λ plus the
addition of (N −M) zero eigenvalues to fill out the rest of the spectrum. Considering the
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self-consistent equation for ∆F , (263), it’s clear that a similar analysis follows except that
the sum now truncates at M :

∆F (T,N) =
N∑
i=1

λi

γ + Tλi
1+∆F (T,N)

=
M∑
i=1

λi

γ + Tλi
1+∆F (T,N)

. (265)

This means that in this regime we have

∆F (T,N)→ ∆(T,M) , (266)

and the complete table of values for ∆F is given by

∆F
0 (T,N) =


α + 1

N/T−1
, T < N , N < M ,

1
T/N−1

, T > N , N < M ,

α + 1
M/T−1

, T < M , N > M ,
1

T/M−1
, T > M , N > M .

(267)

Interestingly, though the self-consistent equation, (263), depends explicitly on u through
Ω = uΛuT , we see here that ∆F

0 (T,N) is actually independent of the particular u, instead
only caring about its size, N .
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