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Nonlinear dynamical systems

● The System: the object of the 
investigation 
○ Eq.: a patient, a computer, 

stockmarket
● Variables: 

○ Bood pressure, temperature, 
position, velocity, bits, stock prices

● State: 
○ A set of  variables in a moment 

that determines the temporal 
evolution of the system

● State space
○ All the possible states

● Evolution
○ Update rules  ...

http://www.flickr.com/photos/thewalkingirony/3051500551/ |
Author=Katrina.Tuliao 



Contiuous-time dynamics

● Rössler system

Discrete-time dynamics

● Logistic map

Wofl, Creative Commons Attribution-Share Alike 2.5 Generic
https://en.wikipedia.org/wiki/File:Roessler_attractor.png

Jordan Pierce, Creative Commons CC0 1.0 Universal Public Domain Dedication
https://en.wikipedia.org/wiki/File:Logistic_Bifurcation_map_High_Resolution.png

Nonlinear dynamical systems

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/2.5/deed.en
https://commons.wikimedia.org/wiki/User:Efecretion
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Theory of dynamical systems:
Takens’ embedding theorem 

Let us observe a timeseries of a scalar variable: x(t)
That is a two times continouosly derivable function of the state variables. Lets 
generate a vector from the time delayed vaues of x:

[x(t), x(t-t), x(t-2t), … x(t-nt)]  is an embedding,  if n>2d+1 

The pseudo-attractor of the system in this reconstructed state space is 
topologically equivalent with the system’s real d dimensional attractor in its real 
state space.



Example: ECG from a patient with Wolff–Parkinson–White 
(WPW) syndrome:

What to do with the reconstructed attractors?

3D Embedding

Theory of dynamical systems:
Takens’ embedding theorem 



Phase space reconstruction

What to do with the reconstructed attractors?

It is not easy to determine the type (topology) of the attractor, based on 
the noisy measurements.

Dimension is a topological invariant, so it is possible to measure its 
dimension.

It is possible to measure the average Ljapunov-exponent, meaning the 
average instability of the trajectories.

What else? 



Supervised 

Anomaly detection approaches

Let’s detect anomalies!



New type of anomalies:
Unique events

● Not necessarily very 
different

● But unique!

● How to define uniqueness 
in continuous variables?

How to find a unicorn?



Unique and non-unique 
points points on 
continuous data series

The nearest neighbors of the 
state     are the states    . They are 
evenly distributed in time, thus the 
system returned to this state time-
to-time. 

The nearest neighbors of the 
state    are the states     . All of 
them are neighbours of state    in 
time as well. Thus the system 
never returned to this state: it is a 
unique state. 



Tests on simulations



Tests on simulations



What is already known: GW 170817 
Gravitational waves of the merger neutron stars

Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Woudt, P. A. (2017). Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal, 848(2), 
L12. https://doi.org/10.3847/2041-8213/aa91c9
Gautama, T., Mandic, D. P., & Hulle, M. M. Van. (2003). A differential entropy based method for determining the optimal embedding parameters of a signal. 2003 IEEE International Conference on 
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03)., 6, VI–29.



Signs of sleep anpoe 
on ECG data series

Interestingly the t-waves were 
unique, which are known to be 
useless in ECG diagnostics.



London interbank offered rate (LIBOR)

Between 2005 and 2008 there 
were serious manipulations by 
some of the most significant 
banks.

In 2012 the calculation system 
has been reorganized.



Time step (t)

x

Chaos  and Noise

Chaotic time series – generated by a 
deterministic  map: x(t+1) = r x(t)(1-x(t))

Stochastic (noise) time series – 
resulted by a random permutation of 
the chaotic time series
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Time step (t)

x(t)

x(
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1)

Anomaly

Points belong to the chaotic anomaly

State space reconstruction – time delay embedding

Detected unicorn

Chaotic anomalies in stochastic data series

Discord detection



x

Time step (t)

x(t)

x(
t+

1)

Anomaly

Noise anomalies in chaotic dataseries

Points belong to the noise anomaly

State space reconstruction – time delay embedding

Detected unicorn

Discord detection



Noise in chaos and chaos in noise

The same algorithm was able 
to detect 

● chaotic anomalies on 
stochastic background

● Noise anomalies on 
chaotic background
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 Determination of causal relationships 
between time series and applications to 

neural data



  

Is there any possibility to identify directed 
causal relationships from two observed data 
series, without experimental intervention?

We surely can measure correlation, but 
correlation and causality are different things. 
Moreover correlation is an asymmetrical 
relation while causality can be unidirectional. 

Is there a way to distinguish directional and 
bidirectional (circular) causality or to reveal
hidden common cause?

Determination of causal effects in time series

X Y

X Y

X Y

Z

X Y

X Y



  

Is there a (multiple) Seizure Onset Zone (SOZ) 
or rather an epileptic network?

The SOZ is causal source during the seizure?

What about during interictal periods?

Personalized medicine:
Causality analysis in epilepsy

Seizure onset zone

Epileptic network
Sabesan, S., Good, L.B., Tsakalis, K.S., Spanias, A., Treiman, 
D.M., Iasemidis, L.D.: Information flow and application to 
epileptogenic focus localization from intracranial EEG. IEEE 
Trans Neural Syst Rehabil Eng 17(3), 244–253 (2009)

Epstein, C.M., Adhikari, B.M., Gross, R., Willie, J., Dhamala, 
M.: Application of high-frequency Granger causality to 
analysis of epileptic seizures and surgical decision making. 
Epilepsia 55(12), 2038–2047 (2014)



Judea Pearl

With interventions: Bayesian networks, graphical 
models, Conditional independence

The theory allows to reveal the direction of the dependencies 
only in specific cases or the direction of the relationships 
assumed a priory!

http://en.wikipedia.org/wiki/Bayesian_networks


Bayesian networks with just observations

Observed 
dependencies

X Y

Z

Truth

Forks

Chains

Combined

X Y

Z

Collider

Can not infer direction
for only two variables! 



Judea Pearl

With interventions: Bayesian networks, graphical 
models, Conditional independence

In this specific case, the true relation structure can be 
determined, by using conditional independence tests only! 

http://en.wikipedia.org/wiki/Bayesian_networks


  

Times series: predictive causality

The original idea of 
predictive causality 
came from Norbert 
Wiener 

x → y, if the inclusion 
of past x values 
improves the 
prediction quality on y

X Y

Clive Granger implemented
it via autoregressive linear 
models in 1969

Nobel price in 
Economic Sciences 2003

Assuming time delay 
via the concept of 
prediction helps to 
reveal direction!



  

It is sensitive to the model used for the prediction. The limitations of 

linear autoregressive models can be ameliorated by using nonlinear 

extensions, kernel solutions or model free transfer entropy method.

Granger- causality

X Y

Linear autoregression:

FX→Y=

var (ϵ1)−var (ϵ3)

m
var (ϵ3)

T−2m−1

Evaluation F test:



The model-free predictive causality: Transfer Entropy

The framework of Judea Pearl 
(Bayesian nets) can not handle 
circular causal relationships.

Neither the Bayesian nets nor the 
predictive causality principle can 
not reveal the existence of 
unobserved hidden common causes 
between two variables

X Y

X Y

Z



  

Cross Convergence Map:
A new framework for causality analysis

A new model-free approach, 
promising:

● Detection of circular causality
● Detection of nonlinear coupling

It utilizes the Taken's time 
delay embedding theorem:

The trajectory reconstructed 
in the state space is 
topologically equivalent
With the trajectory of the 
system's original trajectory in 
its real space. 

Science 338, 496 (2012)



  

Cross Convergence Map:
A new framework for causality analysis

● Sugihara’s method is based on 
that the consequence is an 
observation of the cause, thus 
the cause can be reconstructed 
from the consequence.

● Points that are neighbors in the 
state-space of the consequence 
should be neighbors in the state 
space of the cause as well.

● This topology preserving 
property can be tested by the 
cross mapping method.    

Science 338, 496 (2012)



In 2021, the work carried out in the field of 
causal relationships determined on the basis of 
observations again deserved the Nobel Prize in 
Economics:
By studying accidental or one-time spontaneous 
phenomena, called as "natural experiments", 
the awardees defined social relationships that 
were previously only general beliefs in the 
absence of experimental data:
●Correlation between years spent studying and 

later earnings
●The minimum wage and unemployment
●Between immigration and changes in 

earnings.
   
 

Nobel prize in Ecomomy 2021



  

Revealing hidden common cause

Neither Granger’s nor Sugihara’s method is able to detect 

the existence of a hidden common cause or distinguish it 

from the direct interaction.

We have developed a new method which can!

It is based on the joint dimension measure:

X Y

Z

xt
Time series

Xt

yt Yt

Xt

Yt

Time delay
embedding

Joint state-space

Dj
Joint dimension

Time series

Dx

Dy

András Telcs

Ádám Zlatniczky

Zsigmond Benkő

Marcell Stippinger



  

The consequence The cause and the consequence 
together in the joint space

The consequence formed a 2D manifold both in its own and the together with the 
cause in the joint state space. The lack of dimensionality increase in the joint 
dimension is the sign of the existing causal link (x depends on y).

yn+1=ryyn(1-yn)xn+1=rxxn((1-xn)+byxyn)

Key point: the cause does not increases the dimension of the consequence 
in the joint space, the information is already there! 

[xn;xn+1;xn+2] [xn;xn+1;yn]

Revealing hidden common cause



  

yn+1=ryyn(1-yn)

[yn;yn+1;xn][yn;yn+1;yn+2]

The cause formed a 1D manifold in its own, but a 2D manifold together 
with the consequence in the joint state space. The dimensionality 
increase in the joint state space is the sign of the independence (x 
contains different information compared to y, thus x does not cause y).

xn+1=rxxn((1-xn)+byxyn)

Revealing hidden common cause

The cause and the consequence 
together in the joint space

The cause



  

How to measure the dimension of the manifold?

Let’s take two radii and count the number of points within 

the spheres: the exponent of the increase with respect to 

the radius gives us the dimension.

N(r) = N0·rD



  

Revealing hidden common cause

Causal cases and the relations between the single and the joint dimensions:

X Y

Z

Unidirectional causality:

Circular causality:

Common  cause:

Dj = Dx+ Dy

Dj = Dy< Dx+ Dy

Independence: xt⊥ yt

xt→ yt

xt↔ yt Dj = Dx= Dy

Max( Dx ,Dy )< Dj < Dx+ Dyxt yt

The type of the causal connection can be revealed by measuring the 

relations between the joint and the individual dimensions.  



  

Bayesian model: a simplified version
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Bayesian inference: a simplified version

Causal cases
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The workflow

1, Time delay embedding
2, Joint state space
3, Joint shuffled state space
4, Dimension measurements
5, Likelihood calculations
6, Probability calculations

Logmap Logmap
X Y

Example:

General:



  

Test I.
Coupled logistic 

maps 

Logistic maps
coupled in all 
possible cases.
Here nonlinear 
couplings were 
used and the 
performance of 
four previous 
methods were 
compared. 



  

Test I.
Coupled logistic 

maps 

Logistic maps
coupled in all 
possible cases.
Here additive 
couplings were 
used and the 
performance of 
four previous 
methods were 
compared. 



  

Test II.  Coupled Lorentz systems

• 3 Lorenz systems: X, Y, C
• Each subsystem has 3 coordinates
• They are related through the

first coordinates by a coupling

ẋ1=σ(x2−x1)+m y→x(x2− y1)+mz→x(x2−z1)

ẋ2=x1(ρ−x3)−x2

ẋ3=x1 x2−β x3

ẏ1=σ( y2− y1)+mx→ y( y2−x1)+mz→ y ( y2−z1)

ẏ2= y1(ρ− y3)− y2

ẏ3= y1 y2−β y3

ċ1=σ(c2−c1)

ċ2=c1(ρ−c3)−c2

ċ3=c1 c2−β c3

The system is defined by the following
differential equations:

Causal relation probabilities



  

Test III: Hindmarsh-Rose model   



Local Field Potential (LFP) vs
Intrinsic Optical Signal (IOS)

During the long (1 hour) recording, epileptiform bursts appeared with 
increasing frequency. Parallel, the optical reflectance (and the transmittance) 
of the tissue changes for visible light, without any additional dying. The 
process is clearly activity dependent, but slow.

Epileptiform activity was evoked by 
low Mg+ environment in vivo slice 
preparation. The local field potential 
was recorded together with the 
intrinsic optical signal (IOS), which 
is possibly a result of swelling of 
cells during over excitation.

Ildikó Világi

Sándor Borbély

Kinga Moldován

Eötvös Loránd 
University
Department of
Physiology and 
Neurobiology 



LFP vs IOS

The sampling 
frequency of the IOS 
was only 2Hz, much 
lower than the 1kHz of 
the LFP!!!

In order to make the 
causality analysis 
applicable:  

The faster and slow component 
of the IOS were divided by 
subtracting a moving window 
average,to get stationary time 
series.

The LFP has been 
downsampled by summing up 
the V2 for every 500 ms 
 



LFP-IOS cross correlation

The instantaneous correlation is nearly zero, the cross correlation 
function has two significant peaks: a higher negative one at -2s (LFP 
leads) and a smaller positive one at +2.5s (IOS leads). This could be 
the sign of a well delayed interaction.

LFP leads?

IOS leads?



  

Application of Dimensional Causality to evoked
 seizure-like activity in vitro 



Reverse engineering 

The IOS time series was 
reconstructed, based on 
the LFP recording with 

high precision during the 
1h long session.

dIOSh
dt

=W (t )∗LFP2
−
IOSh(t )

τ1

Where:

W (t)=W 0∗e
−t
τ2



Reverse engineering 

The same model, 
with different 
parameters 

describes the 4AP 
activity as well. 

dIOSh
dt

=W (t )∗LFP2
−
IOSh(t )

τ1

Where:

W (t)=W 0∗e
−t
τ2

4AP case



  

Intra- and inter hippocampal 
connectivity during seizure  

Péter Halász

Dániel Fabó

Boglárka Hajnal

In order to find out the 
lateralization of the 
seizure onset, two 
near-hippocampal 
electrodes inserted 
through the foramen 
ovale into the lateral 
ventricles.  

Loránd Eröss

László Entz

Emilia Tóth

National Institute of 
Clinical Neurosiences Virág BokodiMárta Virág



  

Interictal Seizure

Application: localization the origin of the epilepsy

The 20-year-old patient suffered 
from a drug resistant epilepsy with 
frequent seizures.
 
The finding of a cortical dysplasia 
(at GrF4 electrode site) raised the 
possibility of the surgical treatment

GrB6 and GrF4 were only slightly involved (red ellipses). Based on the 
pronounced seizure activity, and the sensitive position of GrB6, only the frontal 
and orbitobasal parts were cut (purple signs).
 



  

Application: 
localization 
the origin of 
the epilepsy



  

Interictal periods



  

 Multiple seizures



  

Reconstruction of the hidden common cause



Coupled dynamical systems and shared dynamics 

Unidirectional coupling Common cause

Causal effect leaves a mark on the dynamics

A common cause means shared dynamics in the 
effects

Possibility of decomposition!

Stark(‘99), Sauer(2004), Wiskott(2003), Sugihara(2012), Benko et al(2018)



Goal: Reconstruct Z!

Coupled dynamical systems and shared dynamics 



Example system: Coupled Logistic maps

Observed

Unobserved Goal: Reconstruct Z!



Mapping from Embedding-space to state-space



Approximate the mapping with a Neural Network 

Prediction task

Reconstruction
The mapper-coach 
architecture



Revealing the latent dynamics by ANNs

Benkő, Z., & Somogyvári, Z. (2021). Reconstructing common latent input from time series with the mapper-coach network and error 
backpropagation. 3, 1–7. http://arxiv.org/abs/2105.02322

Hidden unit vs. latent dynamics:
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Dimensional Causality equivalence classes

Dimensional
Causality

X Y

Truth
by considering 
only weak 
direct 
connections

X Y

Z

X Y X YX Y X Y

X YX Y

Z

X Y

Z

X Y

X Y

Z

X YX Y

X Y

Z

X Y

X Y

Z



Dimensional Causality equivalence classes

Dimensional
Causality

X Y

Truth

X Y

Z

X Y X YX Y X Y

X YX Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z
X Y

Z

X Y

Z

X Y

Z

Allowing
strong 
connections
causing 
generalized
synchrony:

X Y

Z
X Y

Z

Considering 
indirect 
connections:

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z



Recent publications on these topics

● Zsigmond Benkő, Tamás Bábel, Zoltán Somogyvári: Model-free detection of unique events in 
time series. Scientific Reports 12:227 (2022) doi:10.1038/s41598-021-03526-y.

● Zsigmond Benkő, Marcell Stippinger, Roberta Rehus, Attila Bencze, Dániel Fabó, Boglárka 
Hajnal, Loránd Erőss, András Telcs, Zoltán Somogyvári: Manifold-adaptive dimension 
estimation revisited, PeerJ Computer Science (2022): 8:e790 
https://doi.org/10.7717/peerj-cs.790.

● Ádám Zlatniczki, Marcell Stippinger, Zsigmond Benkő, Zoltán Somogyvári, András Telcs: 
Relaxation of Some Confusions about Confounders Entropy 23 (11), 1450, 2021

● Zsigmond Benkő, Zoltán Somogyvári: Reconstructing common latent input from time series 
with the mapper-coach network and error backpropagation, arXiv:2105.02322 (2021).

● Zsigmond Benkő, Kinga Moldován, Katalin Szádeczky-Kardoss, László Zalányi, Sándor 
Borbély, Ildikó Világi, Zoltán Somogyvári: Causal relationship between local field potential 
and intrinsic optical signal in epileptiform activity in vitro Scientific Reports 9 Article 
number: 5171 (2019)

● Zsigmond Benkő, Ádám Zlatniczki, Marcell Stippinger, Dániel Fabó, András Sólyom, Loránd 
Erőss, András Telcs, Zoltán Somogyvári: Complete Inference of Causal Relations between 
Dynamical Systems, arxiv:/1808.10806 .

https://doi.org/10.7717/peerj-cs.790
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