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Linear Decision Functions, with Application to
Pattern Recognition®

W. H. HIGHLEYMAN{, MEMBER IRE

Summary—Many pattern recognition machines may be con-
sidered to consist of two principal parts, a receptor and a categorizer.
The receptor makes certain measurements on the unknown pattern
to be recognized; the categorizer determines from these measure-
ments the particular allowable pattern class to which the unknown
pattern belongs. This paper is concerned with the study of a particu-
lar class of categorizers, the linear decision function. The optimum
linear decision function is the best linear approximation to the opti-
mum decision function in the following sense:

1) “Optimum” is taken to mean minimum loss (which includes
minimum error systems).

2) “Linear” is taken to mean that each pair of pattern classes is
separated by one and only one hyperplane in the measure-
ment space.

This class of categorizers is of practical interest for two reasons:

1) It can be empirically designed without making any assump-
tions whatsoever about either the distribution of the receptor
measurements or the a priori probabilities of occurrence of
the pattern classes, providing an appropriate pattern source is
available.

2) Its implementation is quite simple and inexpensive.

Various properties of linear decision functions are discussed. One
such property is that a linear decision function is guaranteed to per-
form at least as well as a minimum distance categorizer. Procedures
are then developed for the estimation (or design) of the optimum
linear decision function based upon an appropriate sampling from
the pattern classes to be categorized. Finally, the concepts and pro-
cedures thus developed are applied for illustrative purposes to the
recognition of hand-printed numbers.

INTRODUCTION

HIS PAPER! is concerned with the practical de-
sign of a class of pattern recognition machines
which is of interest for two reasons:

1) There is no need to make assumptions about the
probability distributions of the various measure-
ments made by the recognition machine.

2) This class of machines is amenable to an economic
implementation.

Marill and Green [16] have described the general
pattern recognition system in a very clear manner.
They note that it consists of two principal parts, a re-
ceptor and a categorizer:
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1) “The receptor has as its input a physical sample to
be recognized, and as its output a set . . . of quan-
tities which characterize the physical sample.
These quantities will be called measurements of the
sample . . . ”

2) “The output . . . of the receptor constitutes the
input to the categorizer. The categorizer is a de-
vice which assigns each of its . . . inputs to one of
a finite number . . . of categories . ..”

The measurements which a receptor makes on the
input sample may be either continuous or discrete, and
a given receptor may be required to make measure-
ments of both types. For instance, a character recogni-
tion machine might have a receptor which makes the
following measurements on an unknown character: the
number of closures, cusps and straight lines (discrete),
and the length and direction of the straight lines (con-
tinuous).

The categorizer must apply some sort of decision cri-
terion to the receptor output to decide to which of the
allowable pattern classes, if any, the input pattern be-
longs. Or the categorizer may reject the pattern as be-
ing unrecognizable if the recognition decision is unreli-
able in some sense. If the machine attempts a recogni-
tion and is wrong, then it is said that the machine has
made an error. Note that a rejection will not be con-
sidered as an error.

The Decision Theory Model of Pattern
Recognition (5], [19]

Let the p allowable pattern classes be denoted s;,
1<:<p, each having a prior: probability of occurrence
w;, where

P
Ew,»= 1.

i=1

When an unknown pattern is presented to the recep-
tor, the receptor makes certain measurements, # in num-
ber, upon it. The receptor output for a particular input
pattern is the set of numbers (m,, ms, - - -, m,) =m.
This set defines the coordinates of the point represent-
ing the input pattern in an n-dimensional measurement
space M.

We assume the existence of a probability function (or
density) over M, B(MIS). Thus B(mlsi) is the condi-
tional probability that a certain measurement » will be
made, given a pattern from class 7 at the receptor.
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Let there also exist a probability function (or density)
8(D| M), so that 8(d;|m) is the probability that the
categorizer will make the decision d;, 0 <j<p, given the
measurement . (j=0 corresponds to rejection; 1 <j<p
corresponds to classification into one of the p pattern
classes.) 5(D’ M) is referred to as the decision function or
decision criterton. Note that the categorizer is nothing
more than the implemeniation of the function 6(D| M).

Let a loss (or cost) function C(S, D) now be defined
such that C(s;, d;) =c;; is the loss (cost) associated with
making the decision d; when the actual input state was
si. The desired decision is d; when the input state is s;;
therefore, the usual case requires that

Cij > Cin > Ciyy

where ¢, is the loss associated with rejection when the
input state is s;.

The probability of making a decision d; when the
input state is s; is

pd;]s) = f B(m | 5)8(s; | m)dm.

The loss when s; is the input state (called the condi-
tional loss) and when the decision function 5(D| M) is
used is then

C(si, 8) = t C,‘jf Bm | 5:)6(d; | m)dm. (1)
M

=0

Since the distribution of states is given by w;,
1<i<p, the expected loss for the pattern recognition
system is

» »

CO) = 2> cijwiBim| s)8(d;| m)dm.

i=1 j=0

(2)

The optimum categorizer is defined as the implementa-
tion of that decision function & which minimizes the
expected loss C(8) under the appropriate a prior: dis-
tribution w;, 1<7<p, (Bayes strategy).

The general solution to this problem has been given
by Chow [6]. He shows that (2) is minimized by using a
certain nonrandomized decision criterion (z.e., 6(Di m) s
unity for one decision d;, and zero for all others).

It has also been shown [10] that il all losses due to
misrecognition are of value ¢, all losses due to rejection
are of value ¢y, and all losses due to correct recognition
are zero, where

c > ¢y > 0;

then minimizing the loss is equivalent to minimizing the
error rate for a given rejection rate.

Reference to Chow will show that the optimum de-
cision function depends, aside from the loss function,
only upon the quantities

wB(m|s), 1<i<p.
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Unfortunately, these probability functions, particu-
larly B(471S), are usually unknown to the designer, and
therefore categorizers based on the optimum decision
function are not, in general, practically realizable.
There are at least two wavs around this difficulty:

1) Assume a certain form for the probability func-
tion B(M|S). A common assumption is that of
normality and independence: Given a certain pat-
tern class, assume that the measurements made
by the receptor are normally distributed, and that
cach measurement is independent of the others.

2) Make no assumptions about the particular distri-
butions involved, but rather make certain restric-
tions on the structure of the categorizer. Then
search through all possible structures of this type
to find the categorizer which is optimum with
respect to a sampling of patterns from the real
world.

Clearly, neither of these approaches will yield a truly
optimum categorizer, the first because of questionable
assumptions, the second because of structural limita-
tions. However, the use of either approach now makes
the problem manageable, and optimum is reinterpreted
to mean minimum loss within the framework ol the ap-
proach.

Linear Decision Functions

There is another practical advantage that is realized
by the second approach, namely one of economic feasi-
bility. Even if the optimum decision function were
known, its implementation would require, in general,
the use of a digital computer or other complex equip-
ment. The cost of such equipment may, in many cases,
outweigh the advantages of mechanized categorization.
However, il the designer can limit his search to those
structures which are economically feasible, and if the
optimum structure in this class works well enough for
the given purpose, then a technically feasible as well as
an economically feasible solution has been found.

This paper is concerned with the study of just such a
class of categorizers. To describe this class, consider a
rephrasing of the optimum decision criterion. Note that
every point in the measurement space M is preassigned
to a particular pattern class or to the rejection class by
the decision criterion, since it is nonrandomized. Thus,
there is a subset A7; of A corresponding to each possible
decision d;, 0<j<p. Further, these subsets are non-
overlapping since the decision function is nonrandom-
ized. The division of A7 into these subsets then uniquely
identifies a certain decision function. We could equally
well consider the decision [unction to be represented by
the boundaries between the subsets. (Some liberty is
taken here, since it will be assumed that a continuous
boundary can be passed through a discrete space.) For
instance, in Fig. 1 is shown a two-dimensional measure-
ment space (the receptor makes only two measurements
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Fig. 1—Domains of three pattern classes in measurement space, as
defined by optimum and optimum linear decision functions.

on an input pattern) in which are shown the boundaries
(the solid lines) between three different pattern classes,
A, B, and C. (For simplicity, rejection regions are not
included.) A boundary will, in general, be some sort of
curved surface. In fact, the domain of a particular pat-
tern class may not even be singly connected.

The class of categorizers to be discussed herein may
be loosely described as the optimum linear approxima-
tion to the true boundaries, under the further constraint
of only one boundary per pair of pattern classes (such
as those shown dotted in Fig. 1). Optimum, as previ-
ously mentioned, is taken to mean minimum loss under
the above constraints. Because of the linear properties
of this decision criterion, a categorizer of this class will
be said to implement a linear decision function. Although
the primary purpose of the development is to study the
synthesis of such a categorizer when the probability dis-
tributions are unknown, the problem of finding the opti-
mum linear decision function when these distributions
are known will also be discussed.

Implementation of a Linear Decision Function

Of particular interest is the economical realization of
a categorizer based upon a linear decision function. In
an n-dimensional measurement space, a linear decision
function will comprise a set of n-dimensional hyper-
planes. An #n-dimensional hyperplane is represented by
that set of all points (x1, - - -, x,) in M which satisfy a
linear relation of the form

aX; + s + - 0 -+ antn + a0 =0

for a given set of a;'s. The fact that the actual bound-
aries are only portions of hyperplanes, i.e., each hyper-
plane usually terminates on other hyperplanes (Fig. 1),
is of little consequence. As will be shown in the next sec-
tion, the representation of each boundary by a full hy-
perplane is equivalent.

It will be shown later that, in order to classify a
point m in M, it is only necessary to determine on which
side of each hyperplane this point lies. This is deter-
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Fig. 2—Implementation of a hyperplane.

mined by the sign of the quantity?

Z am; + ao. (3)

=1
Consequently, in order to classify a point m (that is,
recognize an input pattern), it is only necessary to
evaluate a set of quantities like (3). But such a calcu-
lation can be done with several varieties of very inex-
pensive networks, such as the resistive adder shown in
Fig. 2 (in which the voltages corresponding to the
measurement values are inverted for negative «;). This
supports the statement of economy.

SoME PROPERTIES OF LINEAR DEcIsION FUNCTIONS
The Classifying Procedure

Before discussing some of the properties of linear de-
cision functions, the classification procedure will first be
discussed. Fig. 3 illustrates a measurement space in
which the domains of three pattern classes are shown,
as determined by a linear decision function. The
boundaries, which are really truncated hyperplanes, will
be represented by the complete hyperplanes as indicated
by the dotted lines. It will be seen that the truncation is
automatically taken into account by the classifying pro-
cedure. Since there is one and only one boundary per
pair of pattern classes, Fig. 3 shows three boundaries
separating the three classes. The boundary separating
the 7th and jth classes will be denoted B;;. Further, in
schematic representation as in Fig. 3, each hyperplane
B;; will be identified by the pair of numbers, 7, j, placed
in such a way as to show which side of B;; corresponds
to class 7, and which to class j.

In order to classify a certain measurement, we note
which side of each boundary it is on. If it is on the 7th
side of all boundaries By, 1<k <p, k54, then this pat-
tern belongs to pattern class ¢. Using this criterion, point
A in Fig. 3 is clearly identified as a member of pattern
class 2.

Note that the point designated B cannot belong to

2 Note that this linear form equated to zero defines a structure
which is commonly found in the automata field. It goes by various
names, such as artificial neuron [14], associative unit [21], [22], and
Adaline [26], [27]. In this paper, it will simply be called by its already
well-established name of “hyperplane.”
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Fig. 3—Geometric representation of a linear decision function.

any of the three classes, and is hence rejected. This is
not the normal sort of rejection due to an unreliable de-
cision; rather it is a type of rejection inherent in a linear
decision function.

One further comment is appropriate concerning the
determination of which side of a hyperplane a point lies.
Consider a hyperplane B represented by the set of
points {x} satisfying

Z X + oy = 0, (4)
i=1
where
Z (X,‘2 = 1 (5)
7=1

The distance s from the hyperplane of a point with co-
ordinates m;, 1<71<#, is

§ = Z oam; + ay. (6)
i=1

Hence, the distance of a point to the hyperplane (4) is
simply given by substituting the coordinates of the
point into the expression for the hyperplane (as in
(6)), providing the expression is in a normalized form,
that is, that (5) holds. The point is on one side of the
hyperplane if (6) is positive, and on the other if (6) is
negative. Which side of the hyperplane is to be positive
or negative is completely arbitrary, since multiplica-
tion of (4) by —1 changes the sign of (6), but does not
change the hyperplane.

Some Theorems Pertaining to Linear Deciston Functions

One may rightly ask just why he should consider a
linear decision function. Is there any guarantee that it
will work? In general, this question can only be an-
swered by designing the categorizer, and then deciding
whether the resulting system is good enough. However,
some confidence in linear decision functions may be ob-
tained from the following theorem.

Theorem 1: For any categorizer based upon minimiz-
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Fig. 4—The relation of a minimum distance categorizer to a linear
decision function. (a) Minimum distance categorizer. (b) Linear
decision function equivalent.

ing a Euclidean distance® to a set of reference points,
there exists a categorizer based on a linear decision
function which is at least as good. This includes cate-
gorizers which maximize a normalized cross-correlation
function, and those which minimize a Hamming dis-
tance.

Proof: Fig. 4(a) illustrates a minimum distance cate-
gorizer. A measurement . is identified with the class
represented by that reference point to which it is closest
in a Euclidean sense. Consider reference points 1 and 2
(RP1 and RP2) and the hyperplane Bj» which is the
perpendicular bisector of the line segment joining RP1
and RP2 [Fig. 4(b)]. Then the statement that a point 4
is closer to RP1 than to RP2 is equivalent to the state-
ment that the point lies on the 1 side of Bi.. By con-
structing such a hyperplane for every pair of reference
points, a linear decision function equivalent to the
minimum distance decision function is obtained. There-
fore, minimum Euclidean distance decision functions
are a subclass of linear decision functions. (Sebestyen
[23], [24] has considered non-Euclidean minimum dis-
tance decision functions, which are not a subclass of
linear decision functions.)

It is well known that maximizing an appropriately
normalized cross-correlation function or minimizing a
Hamming distance is equivalent to minimizing a Eu-
clidean distance.

The upper bound on the number of hyperplanes re-
quired for a linear decision function is determined by
noting that, for every pattern class, there will be one
hyperplane separating it from every other pattern

3 If x and y are two points with co-ordinates x;, ¥:, 1 <i<#, then
the Euclidean distance s between x and y is
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class. If there are » pattern classes, there will then be
n(n—1) such hyperplanes. But this has counted each
hyperplane twice. Therefore,

Theorem 2: For n pattern classes, a linear decision
function comprises #(n—1)/2 hyperplanes.

It is shown in Highleyman [12] that not all the hyper-
planes are always needed. Consequently, we will have
occasion to refer to complete linear decision functions, in
which all of the n(n—1)/2 hyperplanes are present, and
incomplete linear decision functions in which some hy-
perplanes are not included.

Theorem 3: (Uniqueness) A complete linear decision
function will classify any measurement into no more
than one allowable pattern class.

Proof: Assume that a complete linear decision func-
tion has classified a measurement into both classes 7z and
j- But because of the completeness criterion, this linear
decision function contains a hyperplane B;; which will
indicate either that the point cannot belong to class ¢
or that it cannot belong to class j (assuming that a
point lying on a boundary is categorized according to
some convention), thus contradicting the assumption.
It has already been demonstrated that some measure-
ments may not be classified into any of the allowable
pattern classes by a linear decision function, complete or
otherwise; these are the patterns which are rejected (see
Fig. 3).

Theorem 4: The points in a measurement space which
are identified with a particular class by a linear decision
function form a convex set.*

Proof: This is proven in the theory of linear al-
gebra {9].

The suggestion is sometimes made that perhaps a
linear transformation on the measurement space may
group like patterns closer together and separate unlike
patterns, so that a linear decision function may perform
better under the transformation than otherwise. That
this is an invalid suggestion is demonstrated by the next
theorem which is not proven here; its proof may be
found in Highleyman [12].

Theorem 5: The categorization defined by a linear
decision function is invariant under a nonsingular affine
transformation® on the measurement space.

THE SEQUENTIAL SYNTHESIS OF A
LiNearR DEecisioNn FuNcrioN

Justification of Sequential Synthesis

The complete and accurate determination of a linear
decision function requires the simultaneous determina-
tion of the several hyperplanes defining it. To see this
more clearly, consider Fig. 5 in which a linear decision
function categorizing three classes in a measurement

4 A convex set is one in which a line segment joining any two
points belonging to the set is contained within the set.

5 A nonsingular affine transformation is a nonsingular linear trans-
formation followed by a translation.
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space is illustrated. Let the closed curves shown in this
figure represent, for purposes of discussion, the domains
in measurement space of classes 1 and 2. In general, the
losses associated with the various possibilities for mis-
recognition or rejection are different. Therefore, the
boundary Bj., for instance, must be chosen so as to mini-
mize the loss, given by (2), associated with various fac-
tors, such as:

1) The misclassification of members of class 1 into
class 2 (the horizontally hatched area);

2) the misclassification of members of class 2 into
class 1 (the vertically hatched area);

3) the misclassification of members of other classes
into class 1;

4) the misclassification of members of other classes
into class 2;

5) the rejection of members of various classes (the
dotted area).

<
NG

CLASS |

12

Fig. 5—Illustrating the requirement of simultaneous synthesis.

Note that the members of classes 1 and 2 which are
already misclassified into other classes (in this case, into
class 3 as illustrated by the cross-hatched area in Fig.
5) are not to be considered in the determination of the
optimum Bj,; these are members which are going to be
misclassified anyway, regardless of the position of Bj..
Therefore, in order to optimize Bi,, the other bound-
aries, Bz and B, in this case, must be known. But their
determination also depends on Bys, by the same argu-
ment. Therefore, all of the boundaries comprising an
optimum linear decision function must be determined
simultaneously (simultaneous synthesis).

However, for a moderate number of allowable pattern
classes # the number of hyperplanes #(n—1) /2 compris-
ing a complete linear decision function becomes large,
and the problem might easily become unmanageable. It
would certainly be a more palatable procedure if each
hyperplane could be determined independently of the
others (sequential synthesis). In particular, consider a
subotpimum linear decision function defined by a set of
hyperplanes, one for each pair of the allowable pattern
classes, in which each hyperplane is determined by
minimizing the loss associated with the total confusion
between the two particular classes which it separates.
That this is usually a good approximation to the opti-
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mum linear decision function is shown in Highley-
man (12).

Even if it were deemed that this approximation is
not good enough, the concept of sequential determina-
tion is still valid, for the approximation may be made
better by an iterative process. First determine the hy-
perplanes independently, giving an initial linear deci-
sion function L,. Then, only those members of each
class which are correctly recognized by L; are used to
recompute independently the hyperplanes, giving
another linear decision function L,. This process can be
repeated until no significant improvement in perform-
ance is observed. Thus, to a better and better approxi-
mation, only those members of a particular pair of
classes not misrecognized as belonging to some other
class are used to determine the appropriate hyperplane.
According to the previous argument, this then ap-
proaches the condition of simultaneous synthesis.

Upper Bound on the Expected System Loss, as
Determined from the Constitiuent Hyperplanes

When one has determined a hyperplane B;; one can
associate with it an expected loss C;;(B;;), depending
upon its performance in separating the two classes 7z and
7, upon the loss coefficients ¢;; and ¢;, associated re-
spectively with confusing the zth class with the jth class
and vice versa, and upon the a prior: probabilities w;
and w; of occurrence of the classes ¢ and j:

Cii(Bi) = wicfjf B(m | s;)dm

H;(Bjj)

+ chjif ﬂ(ml sj)dm,
Hi(Bij)

where

f e dm
H;(Bij)

indicates integration over the half space which includes
all points identified as class 7 by B;;. It is of interest to
relate the expected loss for the hyperplanes to the ex-
pected loss for the system; this relation is given by
Theorem 6.

Theorem 6: The expected loss associated with a linear
decision function is not greater than the sum of the ex-
pected losses associated with its constituent hyper-
planes.

The proof to this theorem is given in Highleyman
[12] and is burdensome and not particularly enlighten-
ing. In the hope that the theorem is easily accepted, the
proof will not be repeated here.

A useful corollary follows:

Corollary: 1f the expected loss for each of the con-
stituent hyperplanes of a linear decision function L is
zero, then the expected loss for L is also zero.
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Some Special Cases of Optimum Hyperplanes

[t is shown in Highleyman [12] that, for the follow-
ing two class problems, the optimum decision function
is a linear decision function:

1) The two classes are equally probable a priori, have
equal losses associated with misrecognition, and
have probability distributions over the measure-
ment space which are unimodal, spherically sym-
metrical, and identical except for a displacement
of modes.

2) The two classes are equally probable a priori, have
equal losses associated with misrecognition, and
have probability distributions over the measure-
ment space which are Gaussian and which have
equal covariance matrices.

3) The convex hulls of the points in measurement
space contained in each pattern class are noninter-
secting.

The following theorem will be important later in the
design and testing of practical machines.

Let us say that a set of ¢ points in a space of # dimen-
sions, where ¢ <n+1, is nondegenerate if the points can-
not be contained in a linear subspace of ¢—1 dimensions.
In Fig. 6 are shown three nondegenerate points in two
dimensions, and four nondegenerate points in three di-
mensions. Note that, in each case, the points can be
separated into any two categories desired by an n-di-
mensional hyperplane. This is generalized in the next
theorem, which is proven in Highleyman [12], but
which should be intuitively acceptable from the above
example.

(a)

'\r
(b

Fig. 6—Linear separability of nondegenerate points.
(a) Two dimensions. (b) Three dimensions.

T'heorem 7: Let S be a set of ¢ nondegenerate points
in an n-dimensional space, ¢<n+1. Let S, consist of
any k of these points, and S, consist of the remaining
g—Fk points. Then S; and S; are linearly separable.

This theorem and the two following corollaries will
be important later in the discussion of the practical in-
terpretation and use of linear decision functions.

Corollary 1: Let S be a set of ¢ points in an zn-dimen-
sional space such that any subset of S containing
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no more than n-+1 points is nondegenerate. Let
m<g<n+m—1. Then S can be separated into » non-
empty sets by a linear decision function.

Proof: By the corollary to Theorem 6, it is only neces-
sary to show that each of the m sets is linearly separable.
Let S be separated into the sets Sy, - - -, Sn. Con-
sider the case in which g=n+m—1, and the sets
Sy, -+ -, Sm_1 each contain one point from .S, leaving
n points from S to comprise Sn. Then S, and S,
1<k<m—1, are linearly separable by Theorem 7, since
their union contains #-+1 points. In any other possible
case, the number of points contained in the union of any
two sets .S; and S; will be less than #z+1, thus proving
the corollary.

Corollary 2: Let S be a set of ¢ points in an n-dimen-
sional space such that any subset of .S containing no
more than #+41 points is nondegenerate. Let

mn
¢ < —> n even
2
m(n+ 1
S—(—z——)) odd.

Then S can be separated into m subsets each of size no
greater than (n+1)/2 by a linear decision function.

Proof: The union of any two subsets will contain at
most # nondegenerate points if # is even, #+1 nonde-
generate points if # is odd. Therefore, each pair of
subsets is linearly separable by Theorem 7, and the
corollary is then proved by invoking the corollary to
Theorem 6.

DETERMINATION OF THE OPTIMUM LINEAR
BOUNDARY SEPARATING Two CLASSES

This section will deal with the problem of determin-
ing the optimum (minimum loss) hyperplane which
separates a pair of classes. In the general case, which is
treated here, the loss associated with misrecognition of
a member from one class is not necessarily the same as
that loss for the other class. Recall, however, that when
the losses are equal, then minimum loss corresponds to
minimum error.

Three cases will be discussed. In the first, it is as-
sumed that the pertinent conditional probability func-
tions over the measurement space B(mlsi) are contin-
uous, and that these probabilities and the e priors proba-
bilities of occurrence w; are known. In the second case,
it is assumed that nothing is known about the proba-
bilities ﬂ(mls,-), and that the a priors probabilities w;
may or may not be known. The determination of the
optimum hyperplane is then based upon an appropriate
sampling from the pattern classes. The third case is simi-
lar to the second case, but is applicable only when many
independent measurements are made on the input pat-
tern. Although it is a slightly more restrictive case, it
leads to a better estimate of the hyperplane. The second
and third cases are the cases of practical interest.

Highleyman: Linear Decision Functions
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The Optimum Hyperplane for the Case of
Known Distributions

Let B(mls,-) be the probability density function of
class 7 over the measurement space, w; be the a prior:
probability of occurrence of class 7, and c;; be the loss
associated with misidentifying a member of class 7 with
class j. Denote a hyperplane which separates the classes
zand j by B;j, and let it be defined in the coordinate sys-
tem (x1, - - -, xa) by the equation

X = Z ¥ + oo, (7

k=2

Let u(m|s,-, B;;) be the conditional probability density
function of class ¢ over the boundary B;;:

vim| s;, B;) = Bm| 5)

Bom' | s.)am'

B;j

J5;; - - - dm’ denotes integration over the boundary Bi;.
Define the weighted conditional probability density
function of class 7z over the boundary B;; by

-r(ml siy Bij) = Cs;w«;”(ml iy Bij).

Theorem 8: The optimum linear boundary B,;, sepa-
rating two classes ¢ and j which have weighted condi-
tional proability density functions over B;; given by

T; = T(ml Siy .B;j)

T(ml Sis Bij)’

Tj

must satisfy the following conditions:

1) The integrals of 7; and 7; over B;; must be equal.
2) The means of 7; and 7; must be equal.

Proof: Let B;; be oriented such that the half-space
identified as class 7 corresponds to

21 < ), i + ao.
k=2
The expected loss is then

C(B,'j) = c,-,-wif dx,. LR f dxzf"

Y axttao

k=2

B(m| s;)dx,

n
Y awxrtao

+ Eﬁw"f dx, - - - f dxzf - /S(m‘ s;)dx. (8)

We wish to find the coefficients of the hyperplane B;;
which correspond to extreme points of (8). First differ-
entiate (8) with respect to a,:

o)

aao

T,’dm +

i Bij

T,'dm = 0,
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which is condition 1 of the theorem. Next, differentiate
(8) with respect to ax, 2<k<n:

dC(Biy) _ __f

60{/_-
A similar expression may be obtained for £ =1 by rewrit-
ing (7) and thus (8) in terms of some other coordinate.
This set of conditions, z.e., for 1 <k <n, corresponds to
condition 2 of the theorem.

In general, there will be several hyperplanes satis-
fying the conditions of Theorem §. Some of these will
correspond to maxima of C(B;;), others to minima.
These must then be searched to determine which cor-
responds to the absolute minimum of C(B;;).

apridm + f xridm = (),
i,

u

2<k<L .

The Optimum Estimate for the Hyperplane for the Case
of Unknown Distributions

We will now assume that the designer has no knowl-
edge concerning the form of the probability function
B(ms s;), but he may or may not know the a priori
probabilities w;. We will assume the existence of all such
probabilities and probability functions, whether known
or not.

If a hyperplane B;; is passed through M such as to di-
vide classes 7 and j in some fashion, then a certain por-
tion of the members of classes 7 and j will be misidenti-
fied by B;. Let p: be the probability of misidentification
of a member from class 7, given B;; and a member of
class 7 (p; is the integral of B(mlsi) over the half-space
on the j side of B;;). Then the conditional loss associ-
ated with B,; (see (1)) i

w

6(81]) = Ci.iwilpf + Cja‘wj’P/

Cijé; + Cji€j,

where

w; w;
’/ —_— K
W, : wj

w,--‘f—w,

w; + w;
and e;=w;p; is the probability of misrecognition, given
B;, of a member from class 7 when patterns are chosen
randomly from classes 7 and j according to w," and w,’.

Theorem 9: Construct a hyperplane B;; in the meas-
urement space M which divides M into two half spaces,
all the points in one being identified as class 7, the points
in the other being identified as class j. Consider two
sampling procedures designed to estimate the condi-
tional cost C(B.,;):

1) The a priori probabilities w, are unknown. Let it
be assumed that there exists a pattern source
which will generate patterns from classes ¢ and j
randomly according to w; and w;/. Draw a pat-
tern from this source, identify it, and then deter-
mine the identification according to B;;. This lat-
ter identification will either be in error or will be
correct. Repeat this experiment m times. Let ¢, be
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the number of samples from class 2 which are mis-
identified by B;; as class j, and likewise for e;.

2) The a prior: probabilities w; are known. Take m;
samples [rom class ¢ and m; samples (rom class j
such that

m; = (4)1’"1

m; = w;m. 9)

(It will be assumed that w,” and w;" are such that
(9) can be met exactly.) Identify each of these m
samples according to B,,. Let ¢; be the number of
samples from class 7 misidentified by B;; as class 7.
and likewise for e;.

Then the maximum likelihood estimate in either case for
the conditional loss, C(B;)), is

cijei + cje;

CB,y) = (10)

m

The proof is based on the fact that m; and m; are bi-
nomially distributed. Since the theorem is intuitively ac-
ceptable, the proof is not given here, but may be found
in Highleyman [12].

If we take samples from a pair of classes according to
either sampling procedure, there will be a set of hyper-
planes (infinite in number) which will minimize the
maximum likelihood estimate of the conditional loss
(10). It is quite reasonable, then, to choose one of the
hyperplanes from this set as the estimate of the opti-
mum hyperplane separating the two classes. That is, it
is clear from (10) that we will search for a hyperplane
which will minimize the loss associated with the sample
points. This is also intuitively quite reasonable.

Note that Theorem 9 and the resulting procedure is
independent of the probability functions over the
measurement space. Hence, one need make no assump-
tions concerning the form of these functions, nor need
one concern himself with the dependencies between the
various measurements.

A Computation Algorithm for the Case of
Unknown Distributions

In this section will be outlined an iteration algorithm
which will be useful for determining that boundary
which minimizes the maximum likelihood estimate of
the conditional loss for the boundary. The detailed
iteration equations are given in Highleyman [12]. There
has been some work by others concerning similar bound-
aries when the measurement space is a binary space
[17], [18], [26], [27], or when the classes are Gaussian
distributed in measurement space (discriminant func-
tions [2], [7], [25] vield a good approximation for this
case).

Fig. 7(a) illustrates this problem for two classes, & and
/. Samples from class & are shown by crosses, from class
I bv circles. A boundary By, is indicated. Let us number
these samples from 1 to m, there being a total of m
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samples, and define a weight T for the jth sample
point 1 <j<m such that

T/ =0 if the point is on the correct side of By;;

T/ =cw if the point represents a sample from class &
on the / side of By;

Ty =cy if the point represents a sample from class /
on the k side of By,.

It is clear, then, that minimizing the estimate of the
conditional loss (10) is equivalent to minimizing
T'(ai) = Z le (11)
j=1
where the a,, 0<7<#, are the coefficients of the hyper-
plane By; defined by (4).

T’(as) is an (n+1)-dimensional function for a system
with #» measurements. A convenient way to determine a
minimum point of this function would be to use a
gradient method, such as the method of steepest de-
scent [1], [4], [20]. However, T"(a;) is a discontin-
uous function of the «;, and thus has no meaningful
gradient.

However, it is possible to approximate 7';/ by some
function T'(sj, N) which is continuous everywhere, and
which has the property

lim T,‘(Sj, A) = le

r—o o
where 7 is written as a function of the distance of the
jth point from the hyperplane to emphasize this continu-
ous dependence. Such a function is shown in Fig. 7(b),
in which s; is the distance of the jth point from the
boundary By, and will be considered to be positive if
the point j is on the correct side of the boundary. The
quantity ¢; in Fig. 7(b) is equal to ¢ if the jth point rep-

Sj

(b)

Fig. 7—Illustrating the iterative algorithm.
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resents a member from class k; c;=cy, otherwise. If the
function

T(aiy \) = 25 Tilsi, ) (12)
j=1

were to be minimized for some finite A with respect to
the a;, and then X increased and (12) minimized again,
and this process repeated, one would expect the hyper-
plane to converge to one of the set of hyperplanes mini-
mizing (11). This minimization process can now make
use of the method of steepest descent.

There are many functions which would be suitable
for T;(N\). One convenient one is the cumulative Gaus-
sian distribution with zero mean and standard devia-
tion 1/4/2X; it will be denoted G(\s;). Thus

Ti(si, \) = ¢[1 — G(rsy)], (13)

where

alGOs)] A

—_ 6~()‘ei)2.
6Sj \/7!'

The algorithm then consists of determining the direc-
tion of the gradient of (12), using some suitable function
for T'(sj, N\) such as (13). Some reasonable initial guess
for the hyperplane and some value for N afe used as a
starting point. The approximate minimum of (12) is de-
termined by the method of steepest descent, and the
process is then repeated with a larger value of \. When
the desired accuracy is achieved, the iteration is termi-
nated.

A Computational Algorithm for the Case of Many
Independent Measurements with Unknown Distributions

We next consider the case of a large number of inde-
pendent measurements whose distributions are other-
wise unknown. The distances of members of pattern
class 7 from a given hyperplane may be said to be dis-
tributed according to a probability density function
7i(s). ni(s) is in general unknown. However, in many
cases, one may estimate it quite accurately by the fol-
lowing argument.

Recall that the distance of a point m from a hyper-
plane is given by

n
s = Z o;m; + g,

i=1
where m; is the sth coordinate of the point (the sth
measurement), and the «; are the normalized coeffi-
cients of the hyperplane. But m; is a random variable,
and hence, if # is large, s is a weighted sum of a large
number of random variables. If the dependencies be-
tween the random variables are weak, one may then
reasonably expect from the Central Limit Theorem [8]
that the distribution of s is approximated by a normal
distribution. Of course, if the measurements m; are in-
dependent and normally distributed, then the normal-
ity of s follows immediately for any 7.
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Consequently, 7:(s) is, to a good approximation in
many cases, a normal density function. Its mean and
variance can be easilv estimated from the samples
which are to be used to design the linear decision func-
tion. Using this normality concept, one can develop an
algorithm for estimating the optimum hyperplane sepa-
rating the two classes. We are interested in choosing
that hyperplane that minimizes the estimate of the ex-
pected error, or confusion, between the two classes.
However, it is possible to estimate the error associated
with a hyperplane by estimating the normal distribu-
tion of the distance of the members of each class from
the hyperplane, and determining the area under the
tails of these two distributions falling on the wrong side
of the hyperplane. This might be expected to be a bet-
ter estimate of the error than the proportion of points
misrecognized, since more information is used in the
estimate, providing the assumption of normally dis-
tributed distances is valid.

Consequently, it would be quite reasonable to choose,
as an estimate of the optimum linear boundary, that
hyperplane which minimizes the normal estimate of
error rather than the estimate based on the proportion
of misclassified samples, providing again that the as-
sumption of normality holds. A computational al-
gorithm based on minimizing this normal estimate of
error, using the method of steepest descent, is developed
in Highleyman [12], where confidence intervals for this
and the preceding estimate are also developed. These
confidence intervals illustrate that this latter estimate is
indeed the better of the two. Note that the resulting
hyperplane for each local minimum is unique, in con-
trast to the previous algorithm in which the hyperplane
could be any one chosen from, in general, an infinite set.

An Example of Categorization

To show the relation between these various ap-
proaches to the problem of categorization (the opti-
mum decision function, the optimum linear decision
function based on knowledge of the distributions, and
the optimum linear decision function based on sam-
pling), the following two-class problem was solved using
each technique.

Problem: There are two pattern classes, 1 and 2, upon
which two measurements, x and y, are made. The meas-
urements are independent and normally distributed
with the following parameters:

Class 1: o1, =1 mir = 1
o, = 05 pyy =1
Class 2: 09, = 0.1 o, = 2
oy = 2 pey =0

The a priori probabilities of occurrence and the mis-
recognition losses are the same for each class. Deter-
mine the boundaries between the classes in the meas-
urement space x, .

In Fig. 8 are shown the 18 contours of the classes 1
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and 2. Also shown are the boundaries based on the
previously mentioned approaches:

1) The optimum decision function for the two-class
Gaussian case is well known [2], [16]. The result
is the hyperbolic boundary shown, given by the
equation

— 99x? + 3.75y* + 398x — 8y — 393 = 0.

The region identified as class 2 is that between the
two curves of the hyperbola.

2) The optimum linear decision function, given com-
plete knowledge of the distributions, is worked out
for this case in Highleyman [12], and is based on

the use of Theorem 8. The result is
v = 1.04xr — 1.32. (14)

This is shown as the “theoretical” linear boundary
in Fig. 8.

OPTIMUM
y BOUNDARY
\ CLASS 2 I
2+ \ !
\
i
CLASS 1 \\ | //
I 7 ,
| L7 -
| A
13 | | /
v/
A7
1A
1 |
okt |
2,7 I
/ ! 1 N
° v T2 ]! 3 X
7 ’ t
‘{\V// ] \
4 ! \
&7 ] \
Y ! \
A I \
1 \
Yo ] \
/ \\
1
-ZL / \
/ \

Fig. 8—An example of some of the approaches to categorization.

3) The optimum linear decision function based on
sampling was determined using the first iteration
algorithm (normally distributed distances were
not assumed, although in this case they are
normally distributed). A random number gen-
erator was programmed for the IBM 7090 digital
computer which generated numbers according to
the above distributions.

One hundred sample points were taken from each
class, and various initial boundaries were tried:

x=1

x =235
y=ux—1
v=42x — 6.8.
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Each of the final boundaries were slightly different, but
the important point is that each one categorized the
points in exactly the same manner. (Thirty-nine points
were always misclassified.) An example of one of the
final boundaries is

y = 0.816x — 1.11 (15)

which is plotted in Fig. 8 as the linear boundary marked
“experimental.” Compare (14) to (15); the difference
illustrates the sampling error.

EXPERIMENTAL APPLICATION—THE RECOGNITION
oF HAND-PRINTED NUMBERS

The recognition of hand-printed numbers was at-
tempted with a linear decision function. The set of
measurements which was used involved quantizing the
number into a 12X 12 binary matrix. A matrix ele-
ment was given a weight of one if it contained a mark
and a weight of zero if it contained no mark. The quan-
tized number was then positioned in the matrix by
aligning its center of gravity with the center of the
matrix. Hence, a 144-dimensional binary measurement
space was used. This set of measurements is a rather un-
sophisticated set in that the measures are not at all in-
variant within a particular class; thus, one would not
be too surprised if a linear decision function did not per-
form very well.® However, the attempt is still interest-
ing since it will allow the testing of the preceding ideas in
some detail.

Estimating the Linear Decision Function

The data used to estimate the optimum linear deci-
sion function was gathered in the following manner. A
subject was asked to print neatly the ten numbers on a
piece of quadruled paper at a size approximating the
ruled boxes. Fifty different people were asked, result-
ing in a sample size of 50 for each of the ten pattern
classes. These data were then automatically reduced to
a 12X12 matrix (encoded on IBM punched cards) by
an optical matrix scanner constructed by the author.”

In Fig. 9 is shown an example of some of this design
data, illustrating approximately the range of size and
neatness obtained. In Fig. 10 are shown examples of
some of the quantized numbers.

Forty-five hyperplanes are required in the complete
linear decision function categorizing the ten numbers.
It was assumed that all losses due to misrecognition are
equal (minimum error), and that all a prior: probabili-
ties are equal. Each hyperplane was determined by first
finding a hyperplane which correctly categorized the
maximum number of sample points (according to the

8 A very effective set of measurements has been proposed by Ka-
mentsky [15] for the recognition of hand-printed numbers. This in-
volves using a “flying-polar” scan which is capable of determining
the number of closures and cusps (partial closures) and the orienta-
tion of cusps in a character.

7 These are the same data used in the Bledsoe-Browning compari-
son, reported in Bledsoe [3], and Highleyman and Kamentsky [11].
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Fig. 9—Some examples of the hand-printing design data.

000 0 000 oo
000 0 000 00
000 o 000 00
000 0 000 00
000 o 000 00
000 ) 000 00
000 0 000 00
000 0 000 00
00Q 0 000 00
0o o 000 00
00 0 000 00
00 o 000 00
2 3
0000 oo 000 [
0000 00 000 0
0000 00 000 0
0000 00 000 0
0000 oo 000 0
0000 00 000 o
0000 oo 000 0
0000 00 0oo0o 0
0000 00 000 o
0000 0o 000 0
0000 00 000 0
0000 00 000 0
6 8

Fig. 10—Examples of quantized forms of
the hand-printed numbers

first computational algorithm), and then by “trimming
up” that hyperplane so that the normal estimate of
error was minimized (according to the second compu-
tational algorithm). About 35 seconds, on the average,
was required to determine a hyperplane, given an ini-
tial position.

For each pair of pattern classes, four initial hyper-
planes were tried. One of these was that hyperplane
which was the perpendicular bisector of the line seg-
ment joining the means of the two classes. The other
three initial hyperplanes were parallel to this one (z.e.,
the direction cosines were the same) and corresponded
to an a9 of 0, —5 and +5. Each of these initial condi-
tions led to a hyperplane better than any of the other
initial conditions in at least one of the 45 cases, thus
illustrating the importance of trying several initial hy-
perplanes.

In Fig. 11 is shown the estimated optimum hyper-
plane Bs; which separates the numbers 2 and 1. The
coefficients «; 1<7<nm, are shown arranged in a
matrix corresponding to the receptor matrix. The posi-
tive side of Bs; corresponds to the number 2. One
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would then expect that those coefhcients which cor-
responded to matrix elements in which a mark from a

-.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 . .
two was likely to occur and a mark from a one was not
.00 .00 likely to occur would be weighted positively, and vice
versa for those elements in which a mark from a one is
.00 .00 more likely to occur. Contours are drawn around re-
gions of large positive and negative weight in Fig. 11,
.00 .00 and the negative regions are shaded. One sees that the
above intuitive observation does indeed hold.
.00 .00 The resulting linear decision function miscategorized
five patterns (1.0 per cent) and rejected one pattern
.00 .00 (0.2 per cent) of the total design sample of 500, as
) shown in the confusion matrix of Table I (the R column
-00 .00 indicates the input patterns rejected by the inherent
rejection of the linear decision function). Also shown in
.00 .01 : .
the table are the values of the error-rate estimates based
.00 .00 on the normality assumption. However, one cannot con-
clude that these percentages are any sort of valid esti-
.00 .02 go mate for the performance of the system, since they are
",’Q 0' based on the samples used to design the system. In
.00 ,‘v\‘?“’a QY fact, since only 100 points are being separated in 144 di-
S04 2 mensions by each hyperplane, one might expect {rom
.00 .00 .00 .00 .01 .00 .01 .00 .00 .00 .00 .00 Theorem 7 that the linear decision function ought to do
well on the design data. The saving grace here is the
09 fact that the measurement space is binary, and there-
bd . . . .
fore the sample points are highly degenerate in the
Fig. 11—The hyperplane By sense of Theorem 7. It is therefore not to be expected
TABLE 1
Recognized As
0 9 8 7 6 5 4 3 2 I R
0 50 ‘ ‘ f | " ‘ |
— .004 .000 0.014 0.021 0.005 '\ 0.010 ! 0.009 | 0.005 | 0.000 ! —
9 48 1 1 i ; | !
.004 — .030 1.118 0.003 0.001 | 1.686 } 0.001 | 0.044 0.000 |
|
| 5 T
8 50 i : | ! i
.000 .184 — 0.005 0.038 | 0.033 | 0.133 0.296 | 0.034 | 0.007 | -
. 50 | f , ! f
.026 .236 I .001 — 0.000 0.000 1 0.003 10.022 | 0.111 ‘ 0.061
P : 50 5 é
Input .024 .005 .052 0.000 — 0.018 0.024 | 0.029  0.136 0.000
Class T 50 ! A uf
5 .002 .002 ! .033 0.000 0.067 — 0.011 50.068 0.002 §0.000 —
. | ' 50 ]
.004 L7171 | .039 0.011 0.013 0.009 — 1 0.002 0.032 1 0.000 -
3 -2 Coar 1 '
.003 .001 .694 0.042 0.026 0.152 0.001 ! — 0.894 |0.010
2 | 49 1
.017 .041 .034 0.037 0.157 0.003 0.027 1 1.9%0 | — 0.002 | — |
| i I | !
1 ‘ ; 50 | |
.000 .000 .002 0.001 0.000 0.000 | 0.000 | 0.003 | 0.003 ‘ — ‘
Correct 494 (98.89%)
Error 5 (1.0%)
Reject 1 (0.2%)

Confusion matrix for the design sample: Upper numbers give the categorization of the design data; lower numbers give the normal esti-

mates of error, in per cent.
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that any set of points, no greater in number than n+1
(145 in this case), will be linearly separable in general
in this measurement space.

Testing the Linear Decision Function

The resulting system was tested with 120 additional
samples (12 samples of each number) gathered in the
same manner as the design data. Fig. 12 shows this test
sample. The confusion matrix of Table 11 represents the
categorization of these samples.

The resulting estimate of the system error rate, re-
jection rate, and correct recognition rate, from the re-
sults shown in Table II, are 19.2 per cent (23 points),
19.2 per cent (23 points) and 61.6 per cent (74 points),
respectively. From confidence intervals given in High-
leyman [12] covering this sort of test, one can then
state that, with probability 0.95, the intervals 0.13-
0.28, 0.13-0.28, and 0.52-0.70 include the system error
probability, rejection probability, and correct recogni-
tion probability, respectively.

It is not surprising to find the estimated performance
of this linear decision function to be so poor. This can
be blamed on two factors: 1) a poor choice of measure-
ments, inthat the measurements used were very depend-
ent upon the distortions and various noise effects
(smudging, etc.) which might occur, and 2) a design
sample size which is too small, leading to a poor esti-
mate of the optimum hyperplanes. This latter point is
emphasized by the difference in the results obtained
with the design sample and with the test sample (98.8
per cent recognition vs 61.8 per cent). If the design
sample were sufficiently large, one would expect the
results based on the two samples to be comparable;
hence, one might expect that, for a large design sample
size, the performance of the resulting machine would be
somewhere between the two results obtained herein.
However, this is not so important, since this experi-
ment was not meant to result in the design of a prac-
tical character recognition machine, but was rather
meant to test certain aspects of the theory previously
developed.

CONCLUSION

This paper has discussed the properties and design
of a particular class of categorizer, the linear decision
function, which is of practical interest for two reasons:

1) It can be empirically designed without making any
assumptions whatsoever about either the distri-
bution of the receptor measurements or the a
priors probabilities of occurrence of the pattern
classes, providing an appropriate pattern source is
available.

2) Its hardware realization is quite economic.

It is not guaranteed that a linear decision function will
always perform well, although it is guaranteed that it
will perform better than (or at least as well as) the mini-
mum distance categorizer which is popular in the pres-
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Fig. 12—The test sample.
TABLE 11
Recognized As
0 98 7 6 5 4 3 3 1 R
0|9 3
9 6 1 1 4
8 |1 5 2 113
7 1 8 2 1
Input 6 811 3
Class —
511 8 2 1
4 3 2 4 3
3 2 9 1
2 201 6 3
1 1|1
Correct 74 (61.69%,)
Error 23 (19.2%)
Reject 23 (19.2%)

Confusion matrix for the test sample.

ent-day art. Nor is it a simple matter to predict in ad-
vance whether a linear decision function has a chance of
working (this problem is discussed in Highleyman [13]).

Consequently, if one is interested in a linear decision
function type of categorizer, his best approach is ac-
tually to design the categorizer and estimate its per-
formance. If the estimated performance is good enough,
then the designer has succeeded in designing an eco-
nomic categorizer. If the performance is not good
enough, the designer has two choices:
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1) Search for a better set of measurements, a set
which is more invariant to the natural perturba-
tions of patterns contained within a class (the
results of the experiment on hand-printing illus-
trate the importance of invariant measurements);
or

2) go to a different type (usually a more complicated
type) of categorizer.

One area which has not been discussed in this paper
is the problem of minimizing a linear decision function.
It often happens that not all of the hyperplanes are
needed, 7.e., some may fall outside of the convex regions
determined by the others. The linear decision function
may also be used to detect redundancy in the measure-
ments. This problem is discussed further in Highleyman
[12], where it is experimentally shown that the linear
decision function for the hand-printing case discussed
herein may be reduced from 144 measurements and 45
boundaries to 110 measurements and 39 boundaries.
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