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Series Foreword

We are witnessing the creation o f new sciences o f complexity, sciences that may 
well occupy the center o f intellectual life in the twenty-first century. The Santa Fe 
Institute was founded to assist at the birth o f these new sciences. Those involved 
in this activity are proceeding under the conviction that there is a common set o f 
principles shared by the disparate complex systems under study, that the time is 
ripe to understand those principles, and that it is essential to develop them and the 
associated tools for dealing in a systematic way with complex systems.

Complex systems typically do not fit within the confines of one of the tradi
tional disciplines, but require for their successful study knowledge and techniques 
from several disciplines. Thus one task of the Institute has been to find new ways to 
encourage cooperative research among scholars from different fields. The Studies in 
the Sciences o f Complexity is one means that the Institute has adopted for acceler
ating the development o f the sciences of complexity. These volumes make available 
to the scholarly community the results o f conferences and workshops sponsored by 
the Institute, lectures presented in the Complex Systems Summer School, other 
lecture notes, and monographs by active researchers.

The sciences of complexity are emerging in part as a synthesis o f some o f the 
traditional sciences, including biology, computer science, physics, and mathematics. 
In part they are emerging as a result of new ideas, new questions, and new tech
niques only recently developed. Among these latter are the emergence of heretofore 
undreamed o f computer power on the scientist’s desktop and the not unrelated 
progress in nonlinear dynamics, computer graphics, and adaptive programs. These 
newly emerging tools and techniques also offer the prospect of new collaboration 
between the traditional sciences and the social sciences, a collaboration that will



extend modeling techniques to incorporate realistic detailed models of human be
havior. Thus, this Series is intended to range broadly across many fields o f intel
lectual endeavor incorporating work in all the areas listed above. The apparently 
disparate topics, however, share common themes that relate them to the emergent 
sciences o f complexity.

The Santa Fe Institute, and hence this Series, would not exist without the sup
port o f farsighted individuals in government funding agencies and private founda
tions who have recognized the promise o f the new approaches to complex systems 
research being fostered here. It is a pleasure to acknowledge the broad research 
grants received by the Institute from the Department of Energy, the John D. and 
Catherine T. Mac Arthur Foundation, and the National Science Foundation that, 
together with numerous other grants, have made possible the work of the Institute.

XiV Introduction to the Theory of Neural Computation

L. M. Simmons, Jr.

Santa Fe, New Mexico 
October 1, 1990



Foreword

The past decade has seen an explosive growth in studies o f neural networks. In part 
this was the result o f technological advances in personal and main-frame computing, 
enabling neural network investigators to simulate and test ideas in ways not readily 
available before 1980. Another major impulse was provided by Hopfield’s work on 
neural networks with symmetric connections. Such networks had previously been 
dismissed as not brain-like and therefore not worth studying. I myself fell into this 
trap some twenty-five years ago when I formulated what are now termed the stan
dard equations for studying neural networks, those using the so-called squashing 
or logistic function. It was to Hopfield’s credit that he “stepped back from biolog
ical reality” as Toulouse has put it, and uncovered an interesting set o f properties 
and uses for symmetric networks. What followed is an interesting episode in the 
sociology o f science. Hopfield’s papers triggered an explosion, particularly in the 
statistical physics community, leading to a whole series o f dramatic advances in the 
understanding o f symmetric networks and their properties, especially in respect of 
their utility as distributed memory stores, and as solvers of constrained optimization 
problems, e.g., small versions o f the famous Traveling Salesman Problem.

At more-or-less the same time, other developments in neural networks, possi- 
blely even more important, were taking place, culminating in the publication by 
Rumelhart, Hinton, and Williams of the now well-known “Back-Propagation Algo
rithm” for solving the fundamental problem of training neural networks to compute 
desired functions, a problem first formulated by Rosenblatt in the late 1950’s in his 
now classical work on Perceptrons. Again this paper triggered a massive explosion 
o f work on trainable neural networks which continues to this day.

The authors o f this book, Palmer, Krogh, and Hertz, are statistical physicists 
who have experienced these developments. They have sought to provide an intro
duction to the theory behind all the hoopla, and to summarize the current state

XV



of the subject. They have, wisely, eschewed neurobiology from their coverage, and 
have concentrated on what they know best, statistical mechanics, and how it is 
applied to neural networks. In my opinion they have succeeded admirably in pro
viding a clear and readable account o f the statistical mechanical ideas underlying 
neural networks, including some account o f the analogy between neural networks 
and spinglasses, and the famous Replica Method for analyzing such materials. They 
have also done justice to Back-Propagation in providing an up-to-date treatment 
o f Recurrent Back-Propagation in its various manifestations. Readers who take the 
trouble to follow the mathematics outlined in this book will be rewarded with valu
able insights into how neural networks really work. One cannot ask for much more 
in any scientific publication.

XVi Introduction to the Theory of Neural Computation

Jack Cowan

Mathematics Department 
The University o f Chicago 
September 24> 1990



Foreword

It is quite clear, as convincingly illustrated in this textbook, that the theory under
lying learning and computing in networks of linear threshold units has developed 
into a mature subfield existing somewhere between physics, computer science, and 
neurobiology. We have not only a growing number o f examples where learning tech
niques are successfully applied to practical problems such as recognizing handwrit
ten postal mail codes or protein structures or cases where theories o f unsupervised 
Hebbian learning mimicking certain aspects of neuronal development but now pos
sess a solid understanding of why these algorithms perform so well on certain types 
o f processing or why they fail, why certain features— such as hidden units— are 
necessary and how these approaches to learning relate to more traditional methods 
used in statistics to estimate a pootly sampled or unknown function in the presence 
o f noise. Thus, it appears that neural networks are here to stay after three consecu
tive cycles o f enthusiasm and skepticism, first peaking in the 1940’s with McCulloch 
and Pitt’s seminar work, then again in the 1960’s with Rosenblatt’s perceptron con
vergence theorem and its denouement by Minsky and Papert, and finally for a third 
time in the 1980’s with Hopfield’s energy approach and the modern era of multilay
ered networks ushered in by the backpropagation learning technique. The influence 
o f the neural network learning paradigm on Artificial Intelligence will be profound, 
so much so that we will need to modify our basic notion of the Turing test as an op
erational definition o f intelligence to encompass at least some rudimentary learning 
abilities. At this point in time, it is still too early to describe the long-term effect 
o f neural networks on neurobiology and experimental neuroscience. While neural 
network analysis has been one o f the key impulses behind “computational neuro
science,” we have yet to develop specific instances where such an analysis has been 
used to successfully analyze and understand some real neurobiological circuits.

xvii



xviii Introduction to the Theory of Neural Computation

This monograph succinctly captures these trends and summarizes the current 
state o f the art by way o f highlighting the analogies to statistical mechanics and 
electric circuit theory as well as by discussing various practical applications. It is 
done without overdue emphasis on a formal mathematical treatment, appealing 
rather to the intuition o f the reader. Throughout the book, the emphasis is on 
those features o f neural networks relevant to information processing, storage and 
recall, that is to computation and function, linking physics to computing machines.

The Computation and Neural Systems Series— Over the past 600 million years, 
biology has solved the problem of processing massive amounts o f noisy and highly 
redundant information in a constantly changing environment by evolving networks 
o f billions o f highly interconnected nerve cells. It is the task o f scientists— be they 
mathematicians, physicists, biologists, psychologists, or computer scientists— to un
derstand the principles underlying information processing in these complex struc
tures. At the same time, researchers in machine vision, pattern recognition, speech 
understanding, robotics, and other areas o f artificial intelligence can profit from 
understanding features o f existing nervous systems. Thus, a new field is emerg
ing: the study of how computations can be carried out in extensive networks of 
heavily interconnected processing elements, whether these networks are carbon- 
or silicon-based. Addison-Wesley’s new “Computation and Neural Systems” series 
will reflect the diversity o f this field with textbooks, course materials, and mono
graphs on topics ranging from the biophysical modeling o f dendrites and neurons, 
to computational theories o f vision and motor control, to the implementation of 
neural networks using VLSI or optics technology, to the study o f highly parallel 
computational architectures.

Christof Koch

Pasadena, California 
September 21, 1990



Preface

We generally like our titles shorter than an Introduction to the Theory o f  Neural 
Computation, but all those words are important in understanding our purpose:

Neural Computation

Our subject matter is computation by artificial neural networks. The adjective 
“neural” is used because much o f the inspiration for such networks comes from 
neuroscience, not because we are concerned with networks o f real neurons. Brain 
modelling is a different field and, though we sometimes describe biological analogies, 
our prime concern is with what the artificial networks can do, and why. It is arguable 
that “neural” should be purged from the vocabulary o f this field— perhaps Network 
Computation would have been more accurate in our title— but at present it is 
firmly ensconced. We do however avoid most other biological terms in non-biological 
contexts, including “neuron” (unit) and “synapse” ( connection).

Theory

We emphasize the theoretical aspects o f neural computation. Thus we provide little 
or no coverage o f applications in engineering or computer science; implementations 
in hardware or software; or implications for cognitive science or artificial intelligence. 
There are recent books on all these topics and we prefer to complement rather than 
to compete. On the other hand, we feel that even those whose interest in the subject 
is completely practical may benefit from a broad theoretical perspective. We are no 
doubt biased by the fact that we are theorists by trade, but in our own experience 
we found this background to be essential in using neural networks for practical 
applications (not described in this book).
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Introduction

Our book is intended as an introduction. This has implications at both extremes: 
where we start from, and how far we go. We try to start from the beginning, and 
assume little o f the reader beyond some mathematical training. We do not assume 
any prior knowledge o f neural networks, or o f physics, engineering, or computer 
science. There are local exceptions to this ideal, but nothing that is central.

On the other hand we do not go to the end. The theory built up around neural 
networks is huge, and we cannot hope to cover it all. We do discuss most of the 
major architectures and theoretical concepts, but at varying depth. We stop short 
o f very intricate or technical analysis, and of most directions that we consider dead 
ends. We aim not at mathematical rigor, but at conveying understanding through 
mathematics. Understanding should, we feel, consist not only o f “knowing what,” 
but also o f “knowing how” ; especially knowing how to go on [Wittgenstein, 1958]. 
With that in mind we are usually not satisfied with simply stating or deducing 
a given result, but instead try to show the reader how to think about it, how to 
handle and hold it.

Bibliography and Coverage

At the same time we try to provide access to the research literature for further 
reading. We selected the bibliography with the primary aim of assisting the reader, 
and only with the secondary aim of attributing credit. When there was a choice we 
picked the more readable source, especially in references to the associated areas of 
mathematics, computer science, and physics.

It may be tempting to consider this book as a comprehensive survey o f what 
has been done in the theory o f neural computation. It does have that character 
in some sections, particularly those near the forefront, where we try to describe 
just who has done what recently. But that is not our overall aim and we have 
not tried to be complete. Omissions may be for reasons o f ignorance, complexity, 
irrelevance, obscurity, pedagogy, space, or many other reasons. We apologize only 
for our ignorance.

Approach

Our selection and treatment o f material reflects our background as physicists. This 
background has helped us to understand how these complex systems function, often 
in terms of physical analogies. Others might find easier paths into the subject area 
from computer science, statistics, or psychology, and there could be written equally 
good or better books along these lines. We tell the story the way that we are best 
able to understand it, and hope that our readers find the perspective enlightening.

We often view the analysis o f artificial neural networks as a statistical mechanics 
problem. Like many systems in condensed matter physics, these networks are large 
collections o f interacting entities with emergent properties, and it should not be
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surprising that related mathematical tools are useful. Nevertheless, this is a new 
feature in the engineering world, where one normally expects every minute aspect o f 
the operation o f machinery (or software) to follow an explicit plan or program. But 
systems are becoming so complex that this kind o f detailed engineering is neither 
possible nor desirable. Some o f the networks described in this book illustrate how 
systems can design themselves with relatively little external guidance. The user will 
never know all the internal details, but will need methods like those we describe to 
analyze how the whole thing works.

In our experience some people, even among those working on neural networks, 
appear to be frightened by the prospect o f having to learn statistical mechanics. 
They also question its necessity. Often, however, their equations turn out to be 
exactly the same ones that we would have written. Anyone trying to analyze the 
typical behavior o f a many-component system is doing statistical mechanics whether 
it is called that or not. We hope that the doubters will not be put off by a few 
partition functions here and there, but will benefit by seeing many problems put in 
a more unified perspective.

This is not to say that we employ only a statistical mechanics or “physics” 
approach, or that one has to be a physicist to read this book. Far from it. Explicit 
statistical mechanics is used only rarely, and is explained where it arises (and in the 
Appendix). It often underlies and motivates our approach, but is not often visible 
at the surface. And one certainly does not need to be a physicist; we have tried 
hard not to assume anything (besides mathematics) o f the reader, and to avoid or 
explain words and ideas specific to physics.

Prerequisites

There are no prerequisites besides mathematics. The mathematical level varies 
somewhat, with more required for the starred (*) sections and for Chapter 10 than 
for the rest. These sections may be omitted however without loss o f continuity. On 
the whole we expect our readers to know something about multi-variate calculus, 
ordinary differential equations, basic probability and statistics, and linear algebra. 
But in most of these areas a general familiarity should be enough. The exception 
for some readers may be linear algebra, where we use vectors and matrices, in
ner products, matrix inversion, eigenvalues and eigenvectors, and diagonalization 
o f quadratic forms. However, eigenvalues and eigenvectors are not used in any es
sential way until Chapter 8, and diagonalization appears only in starred sections. 
Kohonen [1989] provides an introduction to the linear algebra needed for neural 
network theory.

Acknowledgments

This book began as lecture notes for a half-semester course given at Duke University 
(and broadcast on the North Carolina teleclassroom network) in the spring o f 1988. 
The audience for these lectures was very broad, including people from neurosciences
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and cognitive sciences as well as computer science, engineering, and physics. Later 
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[Palmer, 1989], and for a one-semester course for physics and computer science 
students at the University of Copenhagen in the fall o f 1989. We thank all o f the 
students in all o f these courses for constructive feedback that led to successive 
improvements.

We owe a debt o f gratitude to many of our colleagues in Durham, Copenhagen, 
and Santa Fe who encouraged, supported and helped us in this work. These include 
Ajay, Alan, Benny, Corinna, Dave, Ingi, David, Frank, Gevene, Jack, John, Jun, 
Kurt, Lars, Marjorie, Mike, Per, Ronda, Spren, Stu, Tamas, and Xiang. Two of us 
(JH and AK) also thank the Physics Department at Duke for their hospitality in 
the spring of 1988, when this whole enterprise got started. AK thanks the Carlsberg 
Foundation for generous financial support.

Finally, we reserve our deepest appreciation for our wives and families. It is a 
hackneyed theme to thank loved ones for patience and understanding while a book 
was being written; but now we know why, and do give heartfelt thanks.

Richard Palmer 
Anders Krogh 

John Hertz
Durham and Copenhagen, August 1990

Electronic mail addresses for the authors: palm er@phy. duke . edu
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Introduction
ONE

Anyone can see that the human brain is superior to a digital computer at many 
tasks. A good example is the processing o f visual information: a one-year-old baby
is much better and faster at recognizing objects, faces, and so on than even the
most advanced A l system running on the fastest supercomputer.

The brain has many other features that would be desirable in artificial systems.
■ It is robust and fault tolerant. Nerve cells in the brain die every day without 

affecting its performance significantly.
■ It is flexible. It can easily adjust to a new environment by “learning” — it does 

not have to be programmed in Pascal, Fortran or C.
■ It can deal with information that is fuzzy, probabilistic, noisy, or inconsistent.
■ It is highly parallel.
■ It is small, compact, and dissipates very little power.

Only in tasks based primarily on simple arithmetic does the computer outper
form the brain!

This is the real motivation for studying neural computation. It is an alterna
tive computational paradigm to the usual one (based on a programmed instruction 
sequence), which was introduced by von Neumann and has been used as the basis 
o f almost all machine computation to date. It is inspired by knowledge from neu
roscience, though it does not try to be biologically realistic in detail. It draws its 
methods in large degree from statistical physics, and that is why the lectures on 
which this book is based originally formed part o f a physics course. Its potential 
applications lie o f course mainly in computer science and engineering. In addition 
it may be o f value as a modelling paradigm in neuroscience and in sensory and 
cognitive psychology.

1



2 ONE Introduction

FIGURE 1.1 Schematic drawing o f a typical neuron.

The field is also known as neural networks, neurocomputation, associative net
works, collective computation, connectionism, and probably many other things. We 
will use all these terms freely.

1.1 Inspiration from Neuroscience
Today’s research in neural computation is largely motivated by the possibility o f 
making artificial computing networks. Yet, as the term “neural network” implies, it 
was originally aimed more towards modelling networks o f real neurons in the brain. 
The models are extremely simplified when seen from a neurophysiological point 
o f view, though we believe that they are still valuable for gaining insight into the 
principles of biological “computation.” Just as most of the details o f the separate 
parts o f a large ship are unimportant in understanding the behavior o f the ship 
(e.g., that it floats, or transports cargo), so many details o f single nerve cells may 
be unimportant in understanding the collective behavior o f a network o f cells.

Neurons

The brain is composed of about 1011 neurons (nerve cells) o f many different types. 
Figure 1.1 is a schematic drawing o f a single neuron. Tree-like networks o f nerve 
fiber called den d rites  are connected to the cell b o d y  or som a, where the cell 
nucleus is located. Extending from the cell body is a single long fiber called the 
a xon , which eventually branches or a rborizes  into strands and substrands. At the 
ends o f these are the transmitting ends o f the syn ap tic  ju n ction s , or synapses, 
to other neurons. The receiving ends o f these junctions on other cells can be found
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FIGURE 1.2 Schematic diagram 
of a McCulloch-Pitts neuron. The 
unit fires if the weighted sum 

WijUj o f the inputs reaches or 
exceeds the threshold

both on the dendrites and on the cell bodies themselves. The axon o f a typical 
neuron makes a few thousand synapses with other neurons.

The transmission o f a signal from one cell to another at a synapse is a complex 
chemical process in which specific transmitter substances are released from the 
sending side o f the junction. The effect is to raise or lower the electrical potential 
inside the body o f the receiving cell. If this potential reaches a threshold, a pulse or 
a ction  p o ten tia l o f fixed strength and duration is sent down the axon. We then say 
that the cell has “fired” . The pulse branches out through the axonal arborization to 
synaptic junctions to other cells. After firing, the cell has to wait for a time called 
the re fra cto ry  p e r io d  before it can fire again.

McCulloch and Pitts [1943] proposed a simple model of a neuron as a binary 
threshold unit. Specifically, the model neuron computes a weighted sum of its inputs 
from other units, and outputs a one or a zero according to whether this sum is above 
or below a certain threshold:

n,(< +  1) =  © Q T  WijTijit) - fj,i) .  (1.1)
j

See Fig. 1.2. Here n,- is either 1 or 0, and represents the state o f neuron i as firing 
or not firing respectively. Time t is taken as discrete, with one time unit elapsing 
per processing step. 0 (x )  is the unit step  fu n ction , or Heaviside function:

if a: >  0 ; / 1 2 x
0 otherwise.

The weight Wij represents the strength o f the synapse connecting neuron j  to neuron 
i. It can be positive or negative corresponding to an e x c ita to ry  or in h ib itory  
synapse respectively. It is zero if there is no synapse between i and j .  The cell- 
specific parameter is the threshold value for unit i\ the weighted sum of inputs 
must reach or exceed the threshold for the neuron to fire.

Though simple, a McCulloch-Pitts neuron is computationally a powerful device. 
McCulloch and Pitts proved that a synchronous assembly o f such neurons is capable 
in principle o f un iversal co m p u ta tio n  for suitably chosen weights Wij. This means 
that it can perform any computation that an ordinary digital computer can, though 
not necessarily so rapidly or conveniently.

Real neurons involve many complications omitted from this simple description. 
The most significant ones include:
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■ Real neurons are often not even approximately threshold devices as described 
above. Instead they respond to their input in a continuous way. This is some
times referred to as a g rad ed  respon se . But the nonlinear relationship be
tween the input and the output o f a cell is a universal feature. Our working 
hypothesis is that it is the nonlinearity that is essential, not its specific form. 
In any case, continuous-valued units can be modelled too, and are sometimes 
more convenient to deal with than threshold units.

■ Many real cells also perform a nonlinear summation of their inputs, which 
takes us a bit further from the McCulloch-Pitts picture. There can even be 
significant logical processing (e.g., AND, OR, NOT) within the dendritic tree. 
This can in principle be taken care o f by using several formal McCulloch- 
Pitts neurons to represent a single real one, though there has been little work 
along these lines so far. We will generally ignore this complication, since the 
simple McCulloch-Pitts picture is already very rich and interesting to study.

■ A real neuron produces a sequence o f pulses, not a simple output level. Rep
resenting the firing rate by a single number like n,-, even if continuous, ig
nores much information— such as pulse phase— that might be carried by such 
a pulse sequence. The majority o f experts do not think that phase plays a 
significant role in most neuronal circuits, but agreement is incomplete.

■ Neurons do not all have the same fixed delay (t —* t +  1). Nor are they up
dated synchronously by a central clock. We will in fact use asynchronous up
dating in much o f this book.

■ The amount o f transmitter substance released at a synapse may vary unpre- 
dictably. This sort o f effect can be modelled, at least crudely, by a stochastic 
generalization o f the McCulloch-Pitts dynamics.
A simple generalization o f the McCulloch-Pitts equation (1.1) which includes 

some o f these features is
:=  9 v>ij n j - m ) .  (1.3)

3

The number n,- is now continuous-valued and is called the state or a ctiva tion  of 
unit i. The threshold function 0 (x )  o f (1.1) has been replaced by a more general 
nonlinear function g(x)  called the a ctiva tion  fu n ction , gain  fu n ction , tran sfer 
fu n ction , or squashing fu n ction . Rather than writing the time t or t+ 1  explicitly 
as we did in (1.1), we now simply give a rule for updating n,* whenever that occurs.1 
Units are often updated asynchronously: in random order at random times.

Nowhere in this book do we attempt a detailed description o f networks o f real 
neurons, or o f other neurobiological structures or phenomena. Kandel and Schwartz 
[1985] give an excellent introduction. We do sometimes appeal to biological realism, 
and do describe a few models o f cortical organization in Chapters 8 and 9, but the 
emphasis is generally on the computational abilities o f network models, not on their

1Note that we use the symbol to emphasize that the right-hand side is assigned to the
left-hand side upon update; the equality is not continuously true.
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direct applicability to brain modelling. Nevertheless, despite the intimidating detail 
and complexity o f real brains, we do believe that the kind o f theory discussed in 
this book is relevant to neuroscience. But the connection is not so much at the level 
o f detailed modelling as at the level of algorithms and representation [Marr, 1982]. 
That is, this kind o f approach can help in formulating and testing what sort of 
computational algorithms the brain is using in different tasks. While the biological 
and artificial implementations o f the algorithms are very different, there can be 
many features in common at the algorithmic level.

When discussing artificial neural networks it remains commonplace to talk o f 
“neurons” and “synapses” , even though the network components are far simpler 
than their biological counterparts. We prefer to use the terms “units” and “connec
tions” (or “weights” ) except when discussing networks that are intended as direct 
models o f brain structures. Other terms in use for the units include “processing 
elements” and “neurodes” .

Parallel Processing

In computer science terms, we can describe the brain as a parallel system o f about 
1011 processors. Using the simplified model (1.3) above, each processor has a very 
simple program: it computes a weighted sum of the input data from other processors 
and then outputs a single number, a nonlinear function o f this weighted sum. This 
output is then sent to other processors, which are continually doing the same kind of 
calculation. They are using different weights and possibly different gain functions; 
the coefficients Wij are in general different for different i, and we could also make 
g(x) be site-dependent. These weights and gain functions can be thought of as local 
data stored by the processors.

The high connectivity of the network (i.e., the fact that there are many terms in 
the sum in (1.3)), means that errors in a few terms will probably be inconsequential. 
This tells us that such a system can be expected to be robust and its performance 
will degrade gracefully in the presence o f noise or errors. In the brain itself cells 
die all the time without affecting the function, and this robustness o f the biological 
neural networks has probably been essential to the evolution o f intelligence.

The contrast between this kind o f processing and the conventional von Neu
mann kind could not be stronger. Here we have very many processors, each execut
ing a very simple program, instead of the conventional situation where one or at 
most a few processors execute very complicated programs. And in contrast to the 
robustness o f a neural network, an ordinary sequential computation may easily be 
ruined by a single bit error.

It is worth remarking that the typical cycle time of neurons is a few milliseconds, 
which is about a million times slower than their silicon counterparts, semiconductor 
gates. Nevertheless, the brain can do very fast processing for tasks like vision, motor 
control, and decisions on the basis o f incomplete and noisy data, tasks that are 
far beyond the capacity of a Cray supercomputer. This is obviously possible only 
because billions o f neurons operate simultaneously. Imagine the capabilities o f a
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Output

FIGURE 1.3 A  two-layer 
Input perceptron.

system which could operate in parallel like this but with switching times o f current 
semiconductor devices!

1.2 History
The history o f these sorts o f ideas in psychology originates with Aristotle. Yet as 
a basis for computational or neural modelling we can trace them to the paper of 
McCulloch and Pitts [1943], which introduced the model described above.

During the next fifteen years there was considerable work on the detailed logic o f 
threshold networks. They were realized to be capable o f universal computation and 
were analyzed as finite-state machines; see Minsky [1967]. The problem of making 
a reliable network with unreliable parts was solved by the use of redundancy [von 
Neumann, 1956], leading later to distributed redundant representations [Winograd 
and Cowan, 1963].

At the opposite extreme to detailed logic, continuum theories were also de
veloped. Known as n eu rod y n am ics  or neural field  th eory , this approach used 
differential equations to describe activity patterns in bulk neural matter [Rashevsky, 
1938; Wiener, 1948; Beurle, 1956; Wilson and Cowan, 1973; Amari, 1977].

Around 1960 there was a wave o f activity centered around the group o f Frank 
Rosenblatt, focusing on the problem o f how to find appropriate weights Wij for par
ticular computational tasks. They concentrated on networks called p ercep tron s , in 
which the units were organized into layers with feed-forward connections between 
one layer and the next. An example is shown in Fig. 1.3. Very similar networks 
called adalines were invented around the same time by Widrow and Hoff [1960; 
Widrow, 1962].

For the simplest class o f perceptrons without any intermediate layers, Rosen
blatt [1962] was able to prove the convergence of a learn ing a lgorithm , a way to 
change the weights iteratively so that a desired computation was performed. Many



1.2 History 7

people expressed a great deal o f enthusiasm and hope that such machines could be 
a basis for artificial intelligence.

There was however a catch to the learning theorem, forcefully pointed out 
by Minsky and Papert [1969] in their book Perceptrons: the theorem obviously 
applies only to those problems which the structure is capable o f computing. Minsky 
and Papert showed that some rather elementary computations could not be done 
by Rosenblatt’s one-layer2 perceptron. The simplest example is the exclu sive  o r  
(XO R) problem: a single output unit is required to turn on (n =  + 1 ) if one or the 
other o f two input lines is on, but not when neither or both inputs are on.

Rosenblatt had also studied structures with more layers of units and believed 
that they could overcome the limitations of the simple perceptrons. However, there 
was no learning algorithm known which could determine the weights necessary to 
implement a given calculation. Minsky and Papert doubted that one could be found 
and thought it more profitable to explore other approaches to artificial intelligence. 
With this most of the computer science community left the neural network paradigm 
for almost 20 years.

Still, there were a number of people who continued to develop neural net
work theory in the 1970’s. A major theme was associative  con ten t-a dd ressab le  
m em ory , in which different input patterns become associated with one another 
(i.e., trigger the same response) if sufficiently similar. These had actually been 
proposed much earlier [Taylor, 1956; Steinbuch, 1961], and were later revived or 
rediscovered by Anderson [1968, 1970; Anderson and Mozer, 1981], Willshaw et al. 
[1969], Marr [1969, 1971] and Kohonen [1974-1989]. Grossberg [1967-1987] made a 
comprehensive reformulation o f the general problem o f learning in networks. Marr 
[1969, 1970, 1971] developed network theories o f the cerebellum, cerebral neocortex, 
and hippocampus, assigning specific functions to each type o f neuron. A number 
o f people, including Marr [1982], von der Malsburg [1973], and Cooper [1973; Nass 
and Cooper, 1975], studied the development and functioning o f the visual system.

Another thread o f development can be traced to Cragg and Temperley [1954, 
1955]. They reformulated the McCulloch-Pitts network as a spin (magnetic) system 
o f the sort familiar in physics. Memory was believed to reside in the hysteresis o f the 
domain patterns expected for such a system. Caianiello [1961] then constructed a 
statistical theory, using ideas from statistical mechanics, and incorporated learning 
in a way which drew on the ideas o f Hebb [1949] about learning in the brain. The 
same theme was taken up in the 1970’s by Little [1974; Little and Shaw, 1975, 
1978] and again in 1981 by Hopfield [1982]. Hopfield was able to add some helpful 
physical insight by introducing an en erg y  fu n ction , and by emphasizing the notion 
o f memories as dynamically stable attractors. Hinton and Sejnowski [1983, 1986] 
and Peretto [1984] constructed formulations using stoch a stic  units which follow 
the dynamics (1.1) or (1.3) only approximately, making “mistakes” with a certain 
probability analogous to temperature in statistical mechanics. The real power o f

2We never count input lines as units in numbering layers. Figure 1.3 is thus a two-layer network. 
Until recently it would often have been called a three-layer network, but the convention is changing.
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statistical mechanics was then brought to bear on the stochastic network problem 
by Amit et al. [1985a, b; Amit, 1989], using methods developed in the theory o f 
random magnetic systems called spin  glasses.

Perhaps the most influential development in this decade, however, takes up 
the old thread o f Rosenblatt’s perceptrons where it was cut 20 years ago. Various 
people have developed an algorithm which works quite well for adjusting the weights 
connecting units in successive layers o f multi-layer perceptrons. Known as back- 
p rop a g a tion , it appears to have been found first by Werbos [1974] in the mid- 
70’s, and then independently rediscovered around 1985 by Rumelhart, Hinton, and 
Williams [1986a, b], and by Parker [1985]. Le Cun [1985] also proposed a related 
algorithm. Though not yet the holy grail o f a completely general algorithm able to 
teach an arbitrary computational task to a network, it can solve many problems 
(such as XO R) which the simple one-layer perceptrons could not. Much current 
activity is centered on back-propagation and its extensions.

Many o f the important early papers have been collected in Anderson and Rosen- 
feld [1988], including many o f those mentioned here. This is an excellent collection 
for those interested in the history o f neural networks. We also recommend the review 
article by Cowan and Sharp [1988a, b], which we drew on for this section.

1.3 The Issues
Massive parallelism in computational networks is extremely attractive in principle.
But in practice there are many issues to be decided before a successful implemen
tation can be achieved for a given problem:
■ What is the best architecture? Should the units be divided into layers, or 

not? How many connections should be made between units, and how should 
they be organized? What sort o f activation functions g(x) should be used? 
What type of updating should be used: synchronous or asynchronous, deter
ministic or stochastic? How many units are needed for a given task?

■ How can a network be programmed? Can it learn a task or must it be pre
designed? If it can learn a task, how many examples are needed for good per
formance? How many times must it go through the examples? Does it need 
the right answers during training, or can it learn from correct/incorrect rein
forcement? Can it learn in real-time while functioning, or must the training 
phase be separated from the performance phase?

■ What can the various types of network do? How many different tasks can 
they learn? How well? How fast? How robust are they to missing information, 
incorrect data, and unit removal or malfunction? Can they generalize from 
known tasks or examples to unknown ones? What classes o f input-to-output 
functions can they represent?
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■ How can a network be built in hardware? What are the advantages and dis
advantages o f different hardware implementations, and how do they compare 
to simulation in software?

These questions are obviously coupled and cannot be answered independently. The 
architecture, for instance, strongly influences what the network can do, and what 
hardware options are available.

Much o f this book will be concerned with refining and answering the above 
questions. However we will generally approach them from a theoretical point o f view, 
rather than from a design one. That is, we will attempt to understand the behavior 
o f networks as a function o f their architecture, and only rarely raise the question of 
designing networks to fulfill particular goals. But o f course the two viewpoints are 
not independent, and a strong understanding o f principles is invaluable for good 
design.

Three o f the issues raised above deserve a little more comment here, as general 
background before we become involved in details.

Hardware

Almost everything in the field o f neural computation has been done by simulating 
the networks on serial computers, or by theoretical analysis. Neural network VLSI 
chips are far behind the models, as is natural at this point. The main problem 
with making neural network chips is that one needs a lot of connections, often 
some fraction o f the square o f the number o f units. The space taken up by the 
connections is usually the limiting factor for the size o f a network. The neural chips 
made so far contain o f the order o f 100 units, which is too few for most practical 
applications.

Potential alternatives to integrated circuit chips include optical computers. The 
field is very young, but electro-optical and optical associative memories have already 
been proposed or built.

Efficient hardware is crucially important in the long term if we are going to take 
full advantage of the capabilities o f neural networks, and there is growing activity 
in this area. However, it is largely beyond the scope o f this book; we return to 
hardware issues only briefly in Section 3.4.

Generalization

The reason for much o f the excitement about neural networks is their ability to 
generalize to new situations. After being trained on a number o f examples o f a 
relationship, they can often induce a complete relationship that interpolates and 
extrapolates from the examples in a sensible way. But what is meant by sensible 
generalization is often not clear. In many problems there are almost infinitely many 
possible generalizations. How does a neural network— or a human for that matter—  
choose the “right” one? As an example one could train a neural network on three o f 
the four X O R  relations mentioned earlier, and it would be very unlikely that any of
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the known types o f networks would actually generalize to the full XOR. Nevertheless 
neural networks commonly make very useful generalizations that would be judged 
sensible in human terms.

Programming

Like most o f the work done in neural networks, much o f this book is concerned with 
the problem o f programming or learning: how do we choose the connection weights 
so the network can do a specific task?

We will encounter some examples where we can choose the weights a priori if we 
are a little clever. This em b ed s  some information into the network by design. But 
such problems are the exception rather than the rule. In other cases we can often 
“teach” the network to perform the desired computation by iterative adjustments 
o f the Wij strengths. This may be done in two main ways:
■ S u p erv ised  learning. Here the learning is done on the basis o f direct com

parison o f the output o f the network with known correct answers. This is 
sometimes called learn in g  w ith  a teacher. It includes the special case o f 
re in forcem en t learning, where the only feedback is whether each output is 
correct or incorrect, not what the correct answer is.

■ U n su p erv ised  learning. Sometimes the learning goal is not defined at all 
in terms o f specific correct examples. The only available information is in the 
correlations o f the input data or signals. The network is expected to create 
categories from these correlations, and to produce output signals correspond
ing to the input category.
There are many exciting implications o f the possibility o f training a network 

to do a computation. Instead of having to specify every detail o f a calculation, we 
simply have to compile a training set o f representative examples. This means that 
we can hope to treat problems where appropriate rules are very hard to know in 
advance, as in expert systems and robotics. It may also spare us a lot o f tedious 
(and expensive) software design and programming even when we do have explicit 
rules. John Denker has remarked that “neural networks are the second best way 
of doing just about anything.” The best way is to find and use the right rules or 
the optimum algorithm for each particular problem, but this can be inordinately 
expensive and time consuming. There is plenty o f scope for a second best approach 
based on learning by example.
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2.1 The Associative Memory Problem
Associative memory is the “fruit fly” or “Bohr atom” problem o f this field. It illus
trates in about the simplest possible manner the way that collective computation 
can work. The basic problem is this:

Store a set of p patterns £? in such a way that when presented with a new 
pattern £*, the network responds by producing whichever one o f the stored 
patterns most closely resembles Q.

The patterns are labelled by p  =  1, 2, . . . ,  p, while the units in the network are 
labelled by i =  1 ,2 ,  . . . ,  N. Both the stored patterns and the test patterns £,• 
can be taken to be either 0 or 1 on each site i, though we will adopt a different 
convention shortly.

We could of course do this serially in a conventional computer simply by storing 
a list of the patterns writing a program which computed the Hamming distance1

E [ { f ( i - o )  +  ( i - ^ i  (2 .i)
i

between the test pattern and each o f the stored patterns, finding which o f them 
was smallest, and printing the corresponding stored pattern out.

Here we want to see how to get a McCulloch-Pitts network to do it. That is, if 
we start in the configuration n,- =  £,*, we want to know what (if any) set o f Wij’s

1The Hamming distance between two binary numbers means the number of bits that are different 
in the two numbers.

11



12 TWO The Hopfield Model

FIGURE 2.1 Example of how an 
associative memory can recon
struct images. These are binary 
images with 130 x 180 pixels. The 
images on the right were recalled 
by the memory after presentation 
of the corrupted images shown 
on the left. The middle column 
shows some intermediate states.
A sparsely connected Hopfield 
network with seven stored images 
was used.

will make the network go to the state with rzt* =  where it is pattern number 
Ho that is the smallest distance (2.1) from £,*. Thus we want the memory to be 
con ten t-a dd ressab le  and insensitive to small errors in the input pattern.

A content-addressable memory can be quite powerful. Suppose, for example, 
we store coded information about many famous scientists in a network. Then the 
starting pattern “evolution” should be sufficient to recall everything about Darwin, 
and “E  =  me3” should recall Einstein, despite the error in the input pattern. 
Note that some pattern will always be retrieved for any clue (unless we invent 
a “don’t know” pattern); the network will never retrieve a linear combination of, 
say, Darwin and Wallace in response to “evolution” but will pick the best match 
according to what has been stored. This depends on the nonlinearity o f the network, 
and obviously has advantages for many practical applications.

Other common examples o f applications for an associative memory are recog
nition and reconstruction of images (see Fig. 2.1), and retrieval o f bibliographic 
information from partial references (such as from an incomplete title of a paper).

Figure 2.2 shows schematically the function o f the dynamic associative (or 
content-addressable) memories that we construct in this chapter. The space o f all 
possible states o f the network— the con figu ra tion  space— is represented by the 
region drawn. Within that space the stored patterns £? are a ttractors . The dy
namics o f the system carries starting points into one o f the attractors, as shown 
by the trajectories sketched. The whole configuration space is thus divided up into
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FIGURE 2.2 Schematic configuration space o f a model with three attractors.

basins o f  a ttra ction  of the different attractors. This picture is very idealized, and 
in particular the space should really be a discrete set o f points (on a hypercube), 
not a continuous region. But it is nevertheless a very useful image to keep in mind.

In the next section we treat the basic Hopfield [1982] model of associative mem
ory. In Section 2.3 we turn to statistical mechanics, studying some magnetic sys
tems that are analogous to our networks. Then in Section 2.4 we define a stochastic 
version o f the original model, and analyze it using statistical mechanics methods. 
Finally, Section 2.5 presents a heuristic derivation o f the famous 0.138V capacity o f 
the Hopfield model. Various embellishments and generalizations of the basic model 
are discussed in the next chapter.

For mathematical convenience we now transform to a formulation where the acti
vation values o f the units are +1  (firing) and —1 (not firing) instead of 1 and 0. 
We denote2 them by Si rather than nt*. Conversion to and from the n,* =  0 or 1 
notation is easy via 5,- =  2n,- — 1. The dynamics o f the network corresponding to 
(1.1) or (1.3) now reads

2.2 The Model

(2 .2)

where we take the sign function sgn(a?) (illustrated in Fig. 2.3) to be

(2.3)

We reserve the symbol Si for ±1 units throughout this book.2
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sgn(x)

1

0
-2 -1 0 1 2

-1 FIGURE 2.3 The function
sgn(x).

and the threshold 0t- is related to the m  in (1.1) by 0,- =  2//* — In the rest
o f this chapter we drop these threshold terms, taking 0,* =  0, because they are not 
useful with the random patterns that we will consider. Thus we use

There are at least two ways in which we might carry out the updating specified 
by (2.4). We could do it synchronously, updating all units simultaneously at each 
time step. Or we could do it asynchronously) updating them one at a time. Both 
kinds o f models are interesting, but the asynchronous choice is more natural for

or pacemaker, and is potentially sensitive to timing errors. In the asynchronous 
case, which we adopt henceforth, we can proceed in either o f two ways:
■ At each time step, select at random a unit i to be updated, and apply the 

rule (2.4).
■ Let each unit independently choose to update itself according to (2.4), with 

some constant probability per unit time.

These choices are equivalent (except for the distribution o f update intervals) 
because the second gives a random sequence; there is vanishingly small probability 
o f two units choosing to update at exactly the same moment. The first choice is 
appropriate for simulation, with central control, while the second is appropriate for 
autonomous hardware units.

We also have to specify for how long (for how many updatings) we will allow 
the network to evolve before demanding that its units’ values give the desired stored 
pattern. One possibility in the case o f synchronous updating is to require that the 
network go to the correct memorized pattern right away on the first iteration. In 
the present discussion (using asynchronous updating) we demand only that the 
network settle eventually into a stable configuration— one for which no Si changes 
any more.

Rather than study a specific problem such as memorizing a particular set o f 
pictures, we examine the more generic problem of a random set o f patterns drawn 
from a distribution. For convenience we will usually take the patterns to be made

(2.4)
J

both brains and artificial networks. The synchronous choice requires a central clock
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up of independent bits which can each take on the values +1 and —1 with equal 
probability. More general situations are discussed in Section 3.2.

Our procedure for testing whether a proposed form o f Wij is acceptable is first 
to see whether the patterns to be memorized are themselves stable, and then to 
check whether small deviations from these patterns are corrected as the network 
evolves.

One Pattern

To motivate our choice for the connection weights, we consider first the simple case 
where there is just one pattern £,• that we want to memorize. The condition for this 
pattern to be stable is just

sgn ( £ > « < , - )  =  6  (for ali i)  (2.5)
j

because then the rule (2.4) produces no changes. It is easy to see that this is true 
if we take

Wij OC t it j  (2.6)

since £? =  1. For later convenience we take the constant o f proportionality to 
be 1/iV, where AT is the number o f units in the network, giving

Wij =  j j t i t j  ■ (2.7)

Furthermore, it is also obvious that even if a number (fewer than half) o f 
the bits of the starting pattern Si are wrong (i.e., not equal to &), they will be 
overwhelmed in the sum for the net input

h{ =  ^   ̂ Sj (2-8)
j

by the majority that are right, and sgn{hi) will still give An initial configuration 
near (in Hamming distance) to & will therefore quickly relax to This means that 
the network will correct errors as desired, and we can say that the pattern & is an 
a ttra ctor .

Actually there are two attractors in this simple case; the other one is at — &.
This is called a reversed  state. All starting configurations with more than half
the bits different from the original pattern will end up in the reversed state. The 
configuration space is symmetrically divided into two basins o f attraction, as shown 
in Fig. 2.4.
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V  » • *
FIGURE 2.4 Schematic con
figuration space for the one 
pattern case, including the re
versed state.

Many Patterns

This is fine for one pattern, but how do we get the system to recall the most similar 
o f many patterns? The simplest answer is just to make a superposition o f terms 
like (2.7), one for each pattern:

Here p is the total number o f stored patterns labelled by p.
This is usually called the “Hebb rule” or the “generalized Hebb rule” because 

of the similarity between (2.9) and a hypothesis made by Hebb [1949] about the 
way in which synaptic strengths in the brain change in response to experience:

during a tra in in g  phase, and adjust the w ĵ strengths according to such pre/post 
correlations, we arrive directly at (2.9). Technically, however, (2.9) goes beyond

of the units is firing (£f =  £J =  — 1). This is probably not physiologically reasonable. 
Equation (2.9) can even cause a particular connection to change from excitatory 
to inhibitory or vice versa as more patterns are added, which is never believed to 
occur at real synapses. It is possible to modify the equation in various ways to 
remedy these defects [Toulouse et al., 1986], but here we use the simple form (2.9) 
unchanged.

An associative memory model using the Hebb rule (2.9) for all possible pairs i j ,  
with binary units and asynchronous updating, is usually called a H op fie ld  m od el. 
The term is also applied to various generalizations discussed in the next chapter. 
Although most o f the ingredients o f the model were known earlier, Hopfield’s influ
ential paper [Hopfield, 1982] brought them together, introduced an energy function, 
and emphasized the idea o f stored memories as dynamical attractors. Earlier related 
models, often also using the Hebb rule, are reviewed by Cowan and Sharp [1988a, 
b]. Particularly important is the Little model [Little, 1974; Little and Shaw, 1975, 
1978], which is based however on synchronous updating.

(2.9)

Hebb suggested changes proportional to the correlation between the firing o f the 
pre- and post-synaptic neurons. If we apply our set of patterns to the network

Hebb’s original hypothesis because it changes the weights positively when neither
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Let us examine the stability o f a particular pattern £{'. The stability condition
(2.5) generalizes to

sgn(hj') =  ( j  (for all i) (2.10)

where the net input hf to unit i in pattern v is

* f  s  £ » « « /  =  j E E W -  <2 1 1 >
j j P

We now separate the sum on \i into the special term p =  v and all the rest:

+  (2 -12)
j

If the second term were zero, we could immediately conclude that pattern number v 
was stable according to (2.10). This is still true if the second term is small enough: 
if its magnitude is smaller than 1 it cannot change the sign o f h\, and (2.10) will 
still be satisfied.

It turns out that the second term, which we call the crossta lk  term , is less 
than 1 in many cases o f interest if p (the number of patterns) is small enough. We 
will discuss the details shortly; let us assume for now that the crosstalk term is 
small enough for all i and v. Then the stored patterns are all stable— if we start 
the system from one o f them it will stay there. Furthermore, a small fraction o f bits 
different from a stored pattern will be corrected in the same way as in the single
pattern case; they are overwhelmed in the sum ^  WijSj by the vast majority o f 
correct bits. A configuration near (in Hamming distance) to £? thus relaxes to 
This shows that the chosen patterns are truly attractors o f the system, as already 
anticipated in Fig. 2.2. The system works as expected as a content-addressable 
memory.

Storage Capacity

Consider the quantity

(2-13)
j v

This is just — times the crosstalk term in (2.12). If C\ is negative the crosstalk 
term has the same sign as the desired £? term, and thus does no harm. But if C f  
is positive and larger than 1, it changes the sign of h% and makes bit (or unit) i o f 
pattern v  unstable; if we start the system in the desired memory state it will 
not stay there.

The C f ys just depend on the patterns that we attempt to store. For now 
we consider purely random patterns, with equal probability for =  -f 1 and for
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FIGURE 2.5 The distri
bution o f values for the 
crosstalk C\ given by 
(2.13). For p random pat
terns and N  units this is 
a Gaussian with variance 
<72 =  p/N. The shaded area 
is -Perron the probability of 
error per bit.

e r r o r )
-1 0 1

=  —1, independently for each j  and p. Then we can estimate the probability 
P e r r o r  that any chosen bit is unstable:

Clearly P e r ro r  increases as we increase the number p o f patterns that we try to store. 
Choosing a criterion for acceptable performance (e.g., P e r r o r  <  0.01) lets us find the 
storage ca p a city  pmax of the network: the maximum number o f patterns that can 
be stored without unacceptable errors. As we will see, there are actually several 
different expressions for pmBX, depending on the type of criterion we use for P err o r -

Let us first calculate P e rr o r -  It depends on the number of units N  and the 
number o f patterns p. We assume that both N  and p are large compared to 1, 
because this is typically the case and because it makes the mathematics easier. 
Now C\ is 1/N times the sum of about Np independent random numbers,3 each 
o f which is +1 or —1. From the theory o f random coin tosses [Feller, 1968] it has 
therefore a b in om ia l d is tr ib u tion  with mean zero and variance a 2 =  p/N. But 
since Np is assumed large this can be approximated by a Gaussian distribution with 
the same mean and variance, as shown in Fig. 2.5.

The probability P erro r  that C\ exceeds 1 is just the shaded area in Fig. 2.5.

P e r r o r  =  Prob{C\ >  1) .er ro r (2.14)

Thus

Pee r r o r

=  i [ l - e r f ( l / V ^ 2 ) ]  =  ^ [l — erf ( a/  N/2p)] (2.15)

3There are actually N (p  — 1) terms if we include the i =  j  terms, or (N  — l)(p  — 1) terms if we 
don’t, but these are both approximately Np for large N  and p.
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TABLE 2.1 Capacities

p1 error Pmax/N

0.001 0.105
0.0036 0.138
0.01 0.185
0.05 0.37
0.1 0.61

where the error  fu n ctio n  erf(x) is defined by

erf(x) =  -^= /  exp( - u 2)d u . (2.16)
V 7r Jo

Table 2.1 shows the values o f p/N required to obtain various values o f Perror* Thus 
if we choose the criterion P e rro r  < 0 . 0 1  for example, we arrive at pmax =  0.157V.

This calculation only tells us about the initial stability o f the patterns. If we 
choose p <  0.185TVfor example, it tells us that no more than 1% of the pattern bits 
will be unstable initially. But if we start the system in a particular pattern £? and 
about 1% o f the bits flip, what happens next? It may be that the first few flips will 
cause more bits to flip. In the worst case there could be an avalanche phenomenon 
in which more and more bits flip until the final state bears little or no resemblance 
to the original pattern. So our estimates for pmax are upper bounds; smaller values 
may be required to keep the final attractors close to the desired patterns. The more 
sophisticated calculation given in Section 2.5 deals with this problem, and shows 
that an avalanche occurs if p >  0.138AT, making the whole memory useless. Thus 
pmax =  0.1387V if we are willing to accept the errors that occur up to that point. 
At p =  0.1387V table 2.1 shows that only 0.37% of the bits will be unstable initially, 
though it turns out that about 1.6% o f them flip before a stable attractor is reached.

An alternative definition o f the capacity insists that most of the memories be 
recalled perfectly. Since each pattern contains TV bits, we need P e rro r  <  0.01/7Vto 
get all TV bits right with 99% probability.4 This clearly implies p/N —► 0 as TV —► oo, 
so we can use the asymptotic expansion o f the error function

1 — erf(x) —*■ e~x2/y/Orx (as x —► oo) (2-17)

to obtain
log ( P e r r o r )  «  -  log 2 -  N/2p -  \ log 7T -  \ \og{N/Ip) . (2.18)

This turns the condition P e rro r  <  0.01/TV into

-  log 2 -  N/2p -  | log 7r -  | log(7V/2p) <  log 0.01 -  log TV (2.19)

4Strictly speaking we should write (1 — Perror)^ > 0.99 here, but Perror < 0.01/TV is a good 
approximation from the binomial expansion.
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or, taking only the leading terms for large AT,

N/2p >  log N  (2.20)

giving the capacity pmax =  AT/2 log AT for this case.
Even more stringently, we could ask that all the patterns be recalled perfectly. 

This requires us to get Np bits right with, say, 99% probability, and so needs 
terror <  0.01/pN. It is easy to see that this changes (2.20) to

N/2p >  log(ATp) (2.21)

which gives pmax =  AT/4 log N  because log(ATp) ~  log AT2 =  2 log AT in leading order.
Note that we have assumed in the perfect recall cases that the s are indepen

dent o f one another. Closer examination shows that this is justified. More detailed 
derivations o f the N/ log N  results are available in Weisbuch and Fogelman-Soulie 
[1985] and McEliece et al. [1987].

In summary, the capacity pmax is proportional to N  (but never higher than 
0.138A) if we are willing to accept a small percentage o f errors in each pattern, 
but is proportional to N/ log N  if we insist that most or all patterns be recalled 
perfectly.

Realistic patterns will not in general be random, though some precoding can 
make them more so. The Hopfield model is usually studied with random patterns 
for mathematical convenience, though the effect o f correlated patterns has also 
been examined (see Section 3.2). At the other extreme, if the different patterns are 
strictly orthogonal, i.e.,

0 for a l l / / ^ i /  (2.22)
3

then there is no crosstalk at all; C f  =  0 for all i and v.
In this orthogonal case the memory capacity pmax is apparently N  patterns, 

because at most AT mutually orthogonal bit strings of length AT can be constructed. 
But the useful capacity is somewhat smaller. Trying to embed AT orthogonal patterns 
with the Hebb rule actually makes all states stable; the system stays wherever it 
starts, and is useless as a memory. This occurs because the orthogonality conditions 
(2.22) lead necessarily to5

Wij =  { \  =  (2.23)1 0 otherwise.

so each unit is connected only to itself. To define a useful measure of capacity for 
such a case it is clearly necessary to insist on a finite basin o f attraction around 
each desired pattern. This leads to a useful capacity slightly less than N.

5 Consider the matrix X with components X ,̂- =  Equation (2.22) implies XXT =  ATI, where 1 is 
the unit matrix, while the Hebb rule (2.9) may be written w =  (l/AT)XTX. Using (AB)T =  BTAT 
leads immediately to w =  1.



2.2 The Model 21

FIGURE 2.6 It is often useful 
(but sometimes dangerous) to 
think of the energy as some
thing like this landscape. The 
z-axis is the energy and the 
2 n  corners o f the hypercube 
(the possible states of the sys
tem) are formally represented 
by the x -y  plane.

The Energy Function
One of the most important contributions of the Hopfield [1982] paper was to intro
duce the idea o f an energy function into neural network theory. For the networks 
we are considering, the energy function H  is

H =  ~ \  Y l wHSiSi -  (2-24)
ij

The double sum is over all i and all j .  The i =  j  terms are o f no consequence 
because Sf =  1; they just contribute a constant to H , and in any case we could 
choose wa =  0. The energy function is a function of the configuration { 5 , }  o f the 
system, where { 5 , }  means the set o f all the S i’s. We can thus imagine an en ergy  
lan d scap e  “above” the configuration space of Fig. 2.2. Typically this surface is 
quite hilly. Figure 2.6 illustrates the idea.

The central property o f an energy function is that it always decreases (or re
mains constant) as the system evolves according to its dynamical rule. We will show 
this in a moment for (2.24). Thus the attractors (memorized patterns) in Fig. 2.2 
are at local minima o f the energy surface. The dynamics can be thought o f as sim
ilar to the motion o f a particle on the energy surface under the influence o f gravity 
(pulling it down) and friction (so that it does not overshoot). From any starting 
point the particle (representing the whole state {S »} o f the system) slides downhill 
until it comes to rest at one o f these local minima— at one o f the attractors. The 
basins o f attraction correspond to the valleys or catchment areas around each min
imum. Starting the system in a particular valley leads to the lowest point of that 
valley.

The term en ergy  fu n ction  comes from a physical analogy to magnetic sys
tems that we will discuss in the next section. But the concept is o f much wider 
applicability; in many fields there is a state function that always decreases during 
dynamical evolution, or that must be minimized to find a stable or optimum state.
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In some fields the convention is reversed; the function increases or must be maxi
mized. The most general name, from the theory o f dynamical systems, is Lyapunov 
fu n ctio n  [Cohen and Grossberg, 1983]. Other terms are H am ilton ian  in statisti
cal mechanics, cost fu n ctio n  or o b je c t iv e  fu n ction  in optimization theory, and 
fitness fu n ctio n  in evolutionary biology.

For neural networks in general an energy function exists if the connection 
strengths are symmetric, i.e., Wij =  wji. In real networks o f neurons this is an 
unreasonable assumption, but it is useful to study the symmetric case because o f 
the extra insight that the existence o f an energy function affords us. The Hebb 
prescription (2.9) which we are now studying automatically yields symmetric Wij’s , 
Gerard Toulouse has called Hopfield’s use o f symmetric connections a “clever step 
backwards from biological realism.” The cleverness arises from the existence o f an 
energy function.

For symmetric connections we can write (2.24) in the alternative form

H  =  C - J 2  wijS>Sj (2.25)
to)

where ( ij)  means all the distinct pairs i j, countingTor example 12 as the same pair 
as 21. We exclude the ii terms from ( ij) ; they give the constant C.

It now is easy to show that the dynamital rule (2.4) can only decrease the 
energy. Let S,' be the new value o f Si given by (2.4) for some particular unit i:

S'i =  sgn(^^  W {jS j) . (2.26)
j

Obviously if S{ =  Si the energy is unchanged. In the other case S.[ =  —Si so, picking 
out the terms that involve S',-,

H ' - H  =  - J 2  wtjS'Sj +  £ WijSiSj 

— 25,* ^   ̂ Sj

=  2Si W{j Sj -  2 wu . (2.27)
j

Now the first term is negative from (2.26), and the second term is negative because 
the Hebb rule (2.9) gives wu =  p/N  for all i. Thus the energy decreases every time 
an Si changes, as claimed.

The se lf-cou p lin g  term s wu may actually be omitted altogether, both from 
the Hebb rule (where we can simply define wu =  0) and from the energy function. It 
is straightforward to check that they make no appreciable difference to the stability 
o f the patterns in the large N  limit. But they do affect the dynamics and the
number o f spurious states, and it turns out to be better to omit them [Kanter and
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Sompolinsky, 1987]. We can see why simply by separating the self-coupling term 
out o f the dynamical rule (2.4):

Si :=  sgn (wuSi +  ^  . (2.28)
i#*

If wu were larger than ^Zj^W ijS j in some state, then Si =  +1 and Si =  — 1 
could both be stable.6 This can produce additional stable spurious states in the 
neighborhood of a desired attractor, reducing the size of the basin o f attraction. If 
wa =  0, then this problem does not arise; for a given configuration o f the other 
spins Si will always pick one o f its states over the other.

Starting from an Energy Function

The idea o f the energy function as something to be minimized in the stable states 
gives us an alternate way to derive the Hebb prescription (2.9). Let us start again 
with the single-pattern case. We want the energy to be minimized when the overlap 
between the network configuration and the stored pattern £,• is largest. So we choose

H =  ~ i ] ? ( £ « • ' ) 2 <2-29>
i

where the factor 1 /2iV is the product o f inspired hindsight. For the many-pattern 
case, we can try to make each of the £? into local minima o f H  just by summing 
(2.29) over all the patterns:

=  <2-3°)
fi= 1 i

Multiplying this out gives

H  =  - 2 ^ E ( E « . ■ ) £ % ■ )  =  <2 '3 1>
/i = 1 * j ij *1=1

which is exactly the same as our original energy function (2.24) if is given by 
the Hebb rule (2.9).

This approach to finding appropriate ’s is generally useful. If we can write 
down an energy function whose minimum satisfies a problem of interest, then we 
can multiply it out and identify the appropriate connection strength from the 
coefficient o f SiSj. We will encounter several applications in Chapter 4. O f course 
we may find other terms, not o f the SiSj form. Constants are no problem, and 
terms linear in a single Si can be represented by thresholds or by a connection to 
a clamped So unit. But terms like SiSjSk take us outside the present framework of 
pairwise connections.

6 We assume that wa is positive or zero. The energy is no longer a Lyapunov function if negative 
self-couplings are allowed.
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Spurious States

We have shown that the Hebb prescription (2.9) gives us (for small enough p) a 
dynamical system that has attractors— local minima o f the energy function— at the 
desired points These are sometimes called the retrieva l states. But we have 
not shown that these are the only attractors. And indeed there are others.

First o f all, the reversed states — are minima and have the same energy as 
the original patterns. The dynamics and the energy function both have a perfect 
symmetry, 5,- <-*■ —Si for all i. This is not too troublesome for the retrieved patterns; 
we could agree to reverse all the remaining bits when a particular “sign bit” is —1 
for example.

Second, there are stable m ix tu re  states which are not equal to any 
single pattern, but instead correspond to linear combinations o f an odd number o f 
patterns [Amit et al., 1985a]. The simplest o f these are symmetric combinations o f 
three stored patterns:

C ix =  sgn (±  t f 1 ±  t f 3 ±  » ) .  (2.32)

All eight sign combinations are possible, but we consider for definiteness the case 
where all the signs are chosen as + ’s. The other cases are similar. Observe that on 
average £™1X has the same sign as 1 three times out o f four; only if 2 and 3 
both have the opposite sign can the overall sign be reversed. So £™1X is Hamming 
distance N / 4 from and o f course from 2 and 3 too; the mixture states lie at 
points equidistant from their components. This also implies that =  ^ /2
on average. Now to check the stability o f (2.32), still with all +  signs, we can repeat 
the calculation o f (2.11) and (2.12), but this time pick out the three special p ’s:

h ? lx =  =  5 # 1 +  3 +  cross-terms. (2.33)

Thus the stability condition (2.10) is indeed satisfied for the mixture state (2.32). 
Similarly 5, 7, . . .  patterns may be combined. The system does not choose an even 
number of patterns because they can add up to zero on some sites, whereas the 
units have to be ±1 .

Third, for large p there are local minima that are not correlated with any 
finite number o f the original patterns £? [Amit et al., 1985b]. These are sometimes 
called spin  glass states because o f a close correspondence to spin glass models in 
statistical mechanics. We will meet them again in Section 2.5.

So the memory does not work perfectly; there are all these additional minima 
in addition to the ones we want. The second and third classes are generally called 
spurious m in im a. O f course we only fall into one o f them if we start close to it, 
and they tend to have rather small basins o f attraction compared to the retrieval 
states. There are also various tricks that we will consider later, including finite 
temperature and biased patterns, that can reduce or remove the spurious minima.
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FIGURE 2.7 A very simplified picture 
of a magnetic material described by an 
Ising model.

2.3 Statistical Mechanics of Magnetic Systems
There is a close analogy between Hopfield networks and some simple models of 
m a gn etic  m aterials in statistical physics. The analogy becomes particularly use
ful when we generalize the networks to use stoch a stic  units, which brings the idea 
o f tem p era tu re  into network theory. We will explore this development in the next 
section, after providing here the necessary background in the statistical mechanics 
o f magnetic systems. The Appendix goes further into statistical mechanics.

A simple description o f a magnetic material consists o f a set of atomic magnets 
arranged on a regular lattice that represents the crystal structure o f the material 
(metals are crystals in this sense). We will use the term spins for these atomic 
magnets. The name comes from the quantum mechanical origin o f the magnetic 
moments. The spins can each point in various directions, the number o f possibilities 
depending on the type o f atom considered. Particularly simple is the case o f “spin 
1 /2” atoms, in which only two distinct directions are possible. This is represented 
in an Ising m o d e l by a variable Si for each lattice site i, with allowed values ±1 . 
The spin is oriented “up” if Si =  - f l  and “down” if S',- =  — 1. Figure 2.7 illustrates 
a possible configuration with spins shown by arrows pointing up or down.

The analogy o f the Ising model spins to the activation o f units in a neural 
network is obvious, and indeed we have used the same symbol Si for both. An 
active unit (firing cell) in the network corresponds to “spin up” in the magnet and 
an inactive one to “spin down”. Ising models are in fact used widely [e.g., Ma, 1985; 
Huang, 1987], not only for spin 1/2 magnetic materials, but also for many physical 
systems which can be described by binary (i.e., two-valued) variables. In many 
cases the description is very idealized. One might for instance simplify a continuous 
variable to an Ising one (as we are doing with our McCulloch-Pitts assumption), 
or one might describe a gas by specifying an Ising variable (for filled or empty ) in 
each of a fine grid of cells covering the system. There is a great deal o f accumulated 
knowledge about Ising models, some of which can be applied to neural networks.

An Ising model is not fully specified until the interactions and dynamics of 
the spins are given. In a magnetic material each o f the spins is influenced by the 
m a gn etic  fie ld  h at its location. This magnetic field consists o f any extern a l 
fie ld  ftext applied by the experimenter, plus an internal field  produced by the 
other spins. The contribution of each atom to the internal field at a given location

i t U  I H  I 
? ? i ± ± i ?
J H H H J
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is proportional to its own spin. Thus, adding up the contributions from all the 
neighboring atoms, we have a magnetic field

influencing Si. The coefficients measure the strength of the influence of spin Sj 
on the field at Si, and are called exch an ge in tera ction  strengths. In a magnet 
these interactions are necessarily symmetric; it is always true that =  wji. De
pending on the microscopic details and on the relative location o f sites i and j , the 

’s can be either positive or negative, and may vary considerably in strength. 
The magnetic field hi at spin Si controls the dynamics of Si. At low temperature, 

a spin tends to line up parallel to the local field hi acting on it, so as to make 
Si =  sgn(ftt). This can be taken to happen asynchronously in random order. We 
will discuss higher temperature in a moment.

Another way of specifying the interactions is to specify a potential energy cor
responding to the interaction. The appropriate energy corresponding to (2.34) is

The Appendix discusses further the importance o f the energy function in statistical 
mechanics.

The match with the Hopfield model is thus complete. The connection strengths 
in the network correspond to the exchange interaction strengths o f the magnet. The 
net input to a unit corresponds to the field acting on a spin, with the external field 
(if any) representing a threshold. The energy function for the network is just the 
energy o f the magnet (with hext =  0), whence the name. The dynamics o f the spins 
aligning with their local fields is equivalent to the McCulloch-Pitts rule (2.4).

Finite Temperature Dynamics

If the temperature is not very low, there is a complication in the magnetic problem. 
T h erm al flu ctu ation s tend to flip the spins, from down to up or from up to down, 
and thus upset the tendency of each spin to align with its field. The two influences—  
field and thermal fluctuations— are always present, one trying to align the spins, the 
other disrupting the alignment. Their relative strength depends on the temperature, 
with thermal fluctuations becoming decreasingly important at low temperature 
and vanishing altogether at the absolute zero of temperature (—273°C). At high 
temperature the thermal fluctuations dominate and a spin is nearly as often opposite 
to its field as aligned with it.

There is no direct equivalent o f thermal fluctuations in the original Hopfield 
model, though we will introduce the idea in the next section. Here, however, we focus

(2.34)

(2.35)
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FIGURE 2.8 The sigmoid 
function f  13(h) given by 
(2.37) for several values of 

This is sometimes called 
the logistic function.

on the magnetic problem and postpone drawing analogies in the finite7 temperature 
case.

The conventional way to describe mathematically the effect of thermal fluctu
ations in an Ising model is with G lau b er d yn am ics  [Glauber, 1963]. We replace 
the previous deterministic dynamics by a stochastic rule:

q f +1 with probability g(hi) ;
1 \ — 1 with probability 1 — g(hi) .

This is taken to be applied whenever spin Si is updated. The function g(h) de
pends on the temperature. There are several choices possible, as discussed in the
Appendix. We adopt the usual “Glauber” choice of the sigmoid-shaped function

’ <'•> =  ' » “ > 3  l  +  e*p‘( - 2 W  <2 '37>

illustrated in Fig. 2.8. The parameter /? is related to the absolute temperature8 T
by

0  =  -j—j ;  (2-38)

where ks  is B o ltzm a n n ’ s con stan t, with value 1.38 x 10-1 6 erg/K . Note that

1 - M h )  =  f p(~ h )  (2.39)

so we can write the dynamical rule in the symmetrical form9

Prob(S; =  ± 1 ) =  f p (± h i)  =  . (2.40)

j
We use “finite” here (and frequently elsewhere) in the sense of non-zero, as opposed to the 

mathematical usage meaning non-infinite.
sAbsolute temperature in Kelvin (K) is measured on the Celsius scale but from absolute zero 
upwards, so absolute zero is T  =  OK and 0°C  is 273 K.

9 An equation like this applies either with all the upper signs or with all the lower signs.
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FIGURE 2.9 The function tanh(x) 
defined by equation (2.43).

The temperature controls the steepness o f the sigmoid near h =  0. As we see 
in Fig. 2.8, at high temperature (small f3) fp (h ) goes very smoothly from 0 to 1 as 
h goes from —oo to +oo . At low temperature (large /?) it makes a rather sudden 
rise from near 0 to near 1 over a narrow range o f h o f width proportional to ksT. 
In the limit T  —> 0 or /? —► oo, fp (h )  just reduces to a step function Q(h), so (2.36) 
or (2.40) reduces to the deterministic rule 5,* :=  sgn(/it). In the other limit, T  —► oo 
or (3 =  0, every decision about the next value of an Si is completely random.

A Single Spin in Equilibrium

We now apply this dynamical rule to the simplest problem in statistical mechanics, 
that of a single spin in a fixed external magnetic field. With only one spin we can 
drop the i subscripts and use 5  =  ±1  for the spin and h =  hext for the field. 
Then using (2.40) we can calculate the average o f 5 , usually called the average 
m a gn etiza tion , which we denote by (S):

(S) =  P r o b ( + l ) . ( + l )  +  Prob(—1) • (—1) (2.41)
1 1 _  ePh___________ e~f*h

1 g-2 (3h 1 e 2(3h e (3h _|_

=  tanh/?/i (2.42)

where the h y p e rb o lic  tangent fu n ction  tanh(z) is defined by

tanh(* ) =  +  e -»  ' (2 43)

The tanh(ar) function has the same kind o f shape as fp (h )  except that it goes from 
— 1 to +1  instead o f 0 to +1; see Fig. 2.9. In fact tanh(/3h) =  2 fp {h ) — 1. So as one 
sweeps the field from —oo to + oo , the average magnetization goes from —1 to +1, 
with most o f the increase happening for h within about o f zero. The sharp 
threshold behavior which the unit exhibited at zero temperature is thus smoothed 
out into a continuous transition in (S ). But one must remember that at a given 
time, S itself is still either +1 or —1. It flips back and forth randomly between these 
two values, taking on one o f them more frequently according to fp (h ).
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>

FIGURE 2.10 Mean field theory. All the spins but one are replaced by their aver
age values.

It is worth remarking that our result (2.42) also applies to a whole collection 
o f N  spins if they all experience the same external field and have no influence on 
one another. Such a system is called a param agnet. The famous Curie law for 
paramagnets, dM/dh oc 1 /T  at h =  0, follows immediately upon identifying the 
total magnetization M  with N(S).

Mean Field Theory

In a problem of many interacting spins the problem is not so easily solved. The 
evolution of spin 5* depends on a local field hi =  ]T̂ . WijSj -f hext which involves 
variables Sj that themselves fluctuate back and forth. There is in general no way 
to solve the many-spin problem exactly, but there is an approximation which is 
sometimes quite good. It will turn out to be very useful for the analysis o f neural 
networks. Known as m ean  fie ld  th eory , it consists o f replacing the true fluctuating 
hi by its average value

<M  =  E ^ < S i )  +  /iext. (2-44)
j

We can then compute the average (Si) just as in (2.42) for the single-unit problem:

(Si) =  tanh(/?(/i,)) =  tanh ( / 3 W j j (Sj) +  /?/iext)  . (2.45)
j

These are still N  nonlinear equations in N  unknowns, but at least they no longer 
involve stochastic variables.

Figure 2.10 shows the essential idea. We focus on a single spin and replace all 
the other spins by an average background field. No fluctuations o f the other spins 
are taken into account, not even in response to changing the state of the chosen 
spin.

This mean field approximation often becomes exact in the limit of in fin ite 
range in teraction s, where each spin interacts with all the others. Crudely speak
ing, this is because hi is then the sum of very many terms, and a central limit
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FIGURE 2.11 An Ising ferromagnet well below the 
critical temperature Tc. Almost all o f the spins 
point in the same direction.

theorem can be applied. Even for short range interactions, for which ^  0 if 
spins i and j  are more than a few lattice sites apart, mean field theory can often 
give a good qualitative description o f the phenomena.

The Ferromagnet

In a ferrom ag n et, all the s are positive. Thus the interactions tend to make 
all the spins line up with each other, while thermal fluctuations tend to disrupt 
this ordering. It turns out that (in the absence o f an external field) the thermal 
fluctuations win above a certain critica l tem p era tu re  Tc, making (S) =  0, while 
the interactions win below Tc, making (S ) ^  0, the same on all sites. The system 
thus exhibits a phase tran sition  at Tc. This actually happens in materials like 
iron, for example, for which Tc is 770°C. Above this temperature (which is still 
well below the melting point o f 1538°C) iron loses all its magnetization. Below Tc 
a majority o f the spins are lined up in one direction, as shown in Fig. 2.11.

The simplest model o f a ferromagnet is one in which all the wy are the same. 
We take

W ij  =  ~  (for all i j)  (2.46)

for N spins where J is a constant. The 1/Ndependence is needed to make the scaling 
with AT sensible. These infinite range interactions are unrealistic but mathematically 
convenient.

Note that at zero temperature this infinite range ferromagnet corresponds pre
cisely (for J =  1) to the one-pattern Hopfield model defined in (2.7) for a pattern 
with £* =  1 for all i. A mathematical transformation also makes it equivalent to a 
one-pattern memory with any other pattern £,*; one defines new variables Si =  Si£i 
and observes that the model is ferromagnetic in the new variables [Mattis, 1976]. 
The stability o f the stored pattern in the one-pattern memory is equivalent to the 
stability o f the fully magnetized state Si =  1 for all i in the ferromagnet. This also 
gives us a concrete physical way to think about the dynamics o f the recall process; 
it is just like the way the spins in a ferromagnet line up with the net field from 
their neighbors until they all point in the same direction. When we go to the many- 
pattern memory, the generalization is direct; the network is now like a magnetic 
system which has a number of locally stable magnetization patterns. For sufficiently

^  ^
^  ^  ^  ^

? ? f ? i ?
^  ^  ^  ^  ^
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FIGURE 2.12 Solutions 
to equation (2,47) are 
intersections between the 
straight line (S) =  x/(3J 
and the sigmoid curve 
(S) =  tanh(ir). When 
(3J <  1 (dotted line) 
there is only one solution, 
at (S) =  0, whereas for 
(3J >  1 (dashed line) there 
are three solutions.

FIGURE 2.13 The positive 
solution o f equation (2.47) 
as a function o f tempera
ture.

small p/N, the relaxation toward any one o f them is just like the relaxation of a 
ferromagnet to a uniformly magnetized state.

At finite temperature we use mean field theory. Using (2.46) in (2.45) and 
putting in what we know characterizes the ferromagnetic state, i.e., that its mag
netization is uniform, (Si) =  (S'), we obtain a single equation to be solved for 
(S):

(S) =  tan h (/?J (5» . (2.47)

Here we have set hext =  0 for convenience, although the generalization is obvious.
Equation (2.47) is easily solved graphically for (S) as a function of T, as shown 

in Fig, 2.12, The kinds o f solutions depend on whether (3J is smaller or larger 
than one. This corresponds to the different behavior above and below the critical 
temperature Tc, so we can deduce that Tc =  J / k When T  >  Tc (or /?J <  1), 
there is only the trivial solution (S) =  0; the spin on each site points up and down 
equally often. But for T  <  Tc, there are two other solutions with (S) ^  0, one the 
negative o f the other. It turns out that the new solutions are stable against small 
disturbances in (S'), while in this temperature range the trivial (S) =  0 solution 
is unstable. This says that the ferromagnet can be found with its spins either 
predominantly up or predominantly down. If it is in one o f these phases, it will 
not flip over to the other (in the limit o f an infinite system). The magnitude of the 
average spon tan eou s m a gn etiza tion  (S) rises sharply (continuously, but with 
infinite derivative at T  =  Tc) as one goes below Tc; see Fig. 2.13. As T  approaches 
0, (S) approaches ± 1 ; all spins point in the same direction.
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Thus this simple mean field theory approximation does give the right behavior 
for a ferromagnet. It is actually exact for the infinite range case defined by (2.46), 
but is qualitatively correct for any ferromagnet.

2.4 Stochastic Networks
We now apply much o f the preceding section to neural networks, making the units 
stochastic and introducing the analogue o f temperature. This will enable us to 
use mean field theory and hence ultimately to compute the storage capacity o f 
the network. Taking the zero-temperature limit will always reduce our system to 
a deterministic Hopfield network, but the finite temperature extension will prove 
very useful for analysis.

We make our units behave stochastically exactly as for the spins in an Ising 
model [Hinton and Sejnowski, 1983; Peretto, 1984]. That is, we use (2.40),

P ,o b (£  =  ± 1 ) =  M ±K ,)  =  1 +  exp; T2ffl||) • (2.48)

for unit 5,- whenever it is selected for updating, and select units in a random order 
as before. The function fp (h ) is given by (2.37) and illustrated in Fig. 2.8. It is often 
called the log istic  fu n ction  in this context. We could actually make other choices 
for the activation function g(h) in (2.36), but the choice g(h) =  fp (h ) allows the 
application o f statistical mechanics. We can also reinterpret (2.48) as describing an 
ordinary deterministic threshold unit with a ra n dom  th resh old  0 drawn from a 
probability density fp (6 ).

What is the meaning o f this stochastic behavior? In real neural networks, neu
rons fire with variable strength, and there are delays in synapses, random fluctua
tions from the release o f transmitters in discrete vesicles, and so on. These are effects 
that we can loosely think o f as noise, and crudely represent by thermal fluctuations 
as we have done in writing (2.48). O f course, the parameter /? is not directly related 
to the physical temperature; it is simply a parameter controlling the noise level, or
the likelihood that the deterministic rule (2.4) is violated. Nevertheless, it is useful
to define a p seu d o -tem p era tu re  T  for the network by

0  =  ^  (2-49)

T  is emphatically not the real temperature o f a piece o f brain, or that of a network 
o f circuits. Note that we did not need to put a constant k s  into (2.49), since T  is 
not a physical temperature. In effect we set ks =  1 in applications o f statistical 
mechanics formulae. Henceforth we use (2.49) constantly and without comment, 
converting freely between /? and T  as convenient. Moreover we generally refer to T  as 
the “temperature” even though “pseudo-temperature” would be more appropriate.
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As we noted for the magnetic system, and illustrated in Fig. 2.8, the tem
perature T  controls the steepness o f the sigmoid fp {h ) near h =  0. At very low 
temperature the sigmoid becomes a step function and (2.48) reduces to the de
terministic McCulloch-Pitts rule (2.4) for the original Hopfield network. As T  is 
increased this sharp threshold is softened up in a stochastic way.

The use o f stochastic units is not merely for mathematical convenience, nor 
simply to represent noise in our hardware or neural circuits. It is actually useful 
in many situations because it makes it possible to kick the system out o f spurious 
local minima o f the energy function. Generally the spurious minima will be less 
stable (higher in energy) than the desired retrieval patterns, and will not trap a 
stochastic system permanently.

The network will in general evolve differently every time it is run. Meaningful 
quantities to calculate are therefore averages over all possible evolutions, weighted 
by the probabilities o f each particular history. This is just the type of calculation for 
which statistical mechanics is ideal. There is however an additional requirement for 
the use o f most o f statistical mechanics: we need to know that our network comes 
to equilibrium. This means that average quantities, such as the average value (Si) of 
a particular 5,*, eventually become time-independent. Luckily it can be proved that 
networks with an energy function— in the present context, networks with symmetric 
connections Wij— do indeed come to equilibrium. So even though we can no longer 
talk about absolute stability o f particular configurations { 5 , }  o f the network, we 
can still study stable eq u ilib riu m  states {(«?»)} in which the average values do 
not change in time.

Mean Field Theory

We now apply the mean field approximation to the stochastic model we have just 
defined, with the Hebb rule (2.9) for the connection strengths w^. We restrict 
ourselves at present to the case o f a relatively small number of patterns, p <C N. 
The higher p case is much harder and will be treated in the next section. Technically 
the analysis here is valid for any fixed p in the N  oo limit. The approach is due 
to Amit et al. [1985a]. A more formal derivation will be given in Chapter 10.

By direct analogy with (2.45), the mean field equations are

( S , ) = t a n h ( | £ ( f { » ( S j ) ) .  (2.50)

These are not obviously soluble, since they consist of N  nonlinear equations. But 
we can follow the example o f the ferromagnet and make an ansatz (hypothesis), 
taking (Si) proportional to one o f the stored patterns:

(Si) =  mg? . (2.51)

We have already seen that states like this are stable in the deterministic limit T  =  0 
(with m =  1), so it is natural to look for similar average states in the stochastic 
case.
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FIGURE 2.14 (JVe0rrect) from
(2.56) as a function o f tem
perature T.

Using this ansatz in (2.50) produces

m tf  =  tanh ( £  m£J)  . (2.52)

Just as in the corresponding problem (2.11) for the deterministic network, the 
argument of the tanh can be split up into a term proportional to £? itself, plus 
a crosstalk term involving the overlap between and the other stored patterns. 
Again, in the limit where the number o f stored patterns p is much smaller than A, 
the crosstalk term is negligible, so we find

ra£f =  tanh (/?m £f) (2.53)

or, since tanh(—x) =  — tanh(x),

m =  tanh(/?m ). (2.54)

This is just the same as (2.47) that we found for the spontaneous magnetization o f 
the ferromagnet, and can be solved in the same way (Fig. 2.12). So we now know 
that the memory states will be stable for temperatures less than 1. Thus the critical 
temperature10 Tc is 1 for the stochastic network with p <C N*

Figure 2.13 immediately gives us m as a function o f temperature T. Adapting 
(2.41), the number m may be written

m =  (Si)/£i == Prob(bit i is correct) — Prob(bit i is incorrect) (2.55)

(which is the same for all i in the mean field approximation), and thus the average 
number o f correct bits in the retrieved pattern is

(•^correct) =  ^ ( 1  +  m) . (2.56)

This is shown in Fig. 2.14 as a function o f T. Note that above the critical temperature

10The value of the critical temperature depends of course on the choice of the particular coefficient 
l/N'm the expression (2.7) for the connection strengths; multiplying all w {j ’s by a constant factor 
will multiply the critical temperature by the same factor.
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FIGURE 2.15 Schematic illustration o f energy landscapes for p <  N. (a) One 
can think of the mixture states as small dips between the desired pattern valleys, 
(b) At high enough temperature there are no mixture states.

(JVcorrect) is N/2, which is just the number o f correct bits expected in a random 
pattern, whereas ( A correct) goes to N  (all correct) at low temperature.

The fact that there is a sharp change in behavior at a particular noise level 
is another example o f a phase transition . One might have assumed naively that 
the behavior would change smoothly as T  was varied, but in a large system this is 
often not the case. It is in finding this kind o f feature that the statistical mechan
ics approach makes an important contribution to the understanding o f complex 
problems. In the present context it says that a large network abruptly ceases to 
function at all if a certain noise level is exceeded; this is obviously o f great practical 
importance when it comes to designing devices.

Although we have shown that states with (5 ,) proportional to a single pattern 
are stable at low temperatures, the system is not a perfect device. There are still 
the spurious states discussed earlier. The spin glass states are not relevant for 
p < J V ,  but the reversed states and mixture states are both present. However each 
type of mixture state has its own critical temperature, above which it is no longer 
stable. Figure 2.15 illustrates the idea schematically. The highest o f these critical 
temperatures is 0.46, for the combinations o f three patterns given by (2.32). So for
0.46 <  T  <  1 there are no mixture states, and only the desired patterns (and their 
reversals) are stable. This shows how noise (i.e., T  >  0.46) can actually be useful 
for improving the performance o f a network.

2.5 Capacity of the Stochastic Network
The preceding analysis was valid for p < J V .  A mean field analysis for p o f the order 
o f N  is considerably harder and was first performed in a tour de force by Amit, 
Gutfreund, and Sompolinsky [1985b, 1987b; Amit, 1989]. Here we give a heuristic 
derivation due to Geszti [1990, chapter 4] (see also Peretto [1988]). The more formal 
derivation is provided in Chapter 10.
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It is useful to define the loa d  p aram eter

-  =  £  (257)

i.e., the number of patterns we try to store expressed as a fraction o f the number o f 
units in the network. We now consider a  o f order unity, whereas previously a  ~  1/N 
since we considered p fixed and N  large.11 We will freely use the large AT limit to 
drop lower order terms; we will, for instance, ignore any distinction between p and
p -  1.

The starting point is the same mean field equation (2.50) that we used above 
for the small p  case, but now the crosstalk term in (2.52) can no longer be ignored. 
That is, we now have to pay attention to the overlaps between the state (Si) and 
the patterns

=  (2.58)
i

for all the patterns, not just for the one being retrieved. We suppose that it is 
pattern number 1 whose retrieval we are studying. Then mi is of order unity,
while each o f the mv for v ^  1 is small, o f order 1/y/N for our random patterns.
Nevertheless the quantity

r =  m l ,  (2.59)

which is the mean square overlap o f the system configuration with the nonretrieved 
patterns, is of order unity. The factor 1 /a  =  N/p in (2.59) makes r a true average 
over the p (or p — 1) squared overlaps and cancels the expected 1 /y/N dependence 
o f the ra^5s.

Capacity Calculation *

Treatment o f the network at finite a  requires a self-consistent calculation o f r and 
rai. To do this, we use (2.58) to write the mean field equations (2.50) in the form

m „ =  ^ 2  £■ tanh (j3 ^  m ^  (2.60)
* V

and, for v ^  1, separate out explicitly the terms with p =  1 and with p  =  v\

mv =  tanh[/?(m i ^  . (2.61)

Here we have taken advantage o f the freedom to move factors like in and out o f 
the tanh, because they are ±1  and ta n h (-x ) =  — tanh(x).

11 Actually the previous results are valid up to p ~  log AT o r a ~  (log N)/N.
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The first term in the argument o f the tanh is large (order 1) by hypothesis, 
because it is pattern 1 that we are retrieving, and the last term is large because 
there are about p terms in it. But the second term is small, order 1/y/N, so we can 
expand:

m „ =  tanh [ / ? ( » » ! +  £<” **»)]
i

+ ■§ E f 1 “ tanh2 [/?(mi + E  m'i)] }m" (2-62)

using tanh(x) =  1 —tanh2(x). We now assume that the small overlaps m^, p ^  1, 
are independent random variables with mean zero and variance a r /p , as suggested 
by (2.59). In the second line o f (2.62), is random and independent o f m^, so 
by the central limit theorem the site average AT” 1 is effectively an average over 
a Gaussian “noise” m/* variance ar. Thus (2.62) reduces to

m v =  tanh J/? (m i +  +  /?m„ -  (3qm„ (2.63)
f 1,1/

or

where

N  1 E i  tanh[/?(m1 +  £  , n

 ------------------------------- i - o a - « ) --------------------------------  ( 2 ' 6 4 )

q =  [ L= e " ^ 2 tanh2[/?(mi -|- >/ar2)] • (2.65)
J V27T

Now we can calculate r. We just square (2.64)

i 2
2 _  Trip — xtanh [ / ?(m x +  E  

x tanh m i +  E  # *> /•)] (2-66)

and average the result over patterns. Since pattern v does not occur inside the 
tanh’s, the pattern factors outside the tanh’s can be averaged separately,
and only the i =  j  term survives. Then the remaining average o f the tanh’s just 
gives a factor o f q as in (2.62). The result is independent o f v, so from (2.59):

r =  [i -  /?(i -  ?)]2 • (2-67)

We also need an equation for m i. Using the same approach, starting again from 
(2.60) with v  =  1, it is easy to obtain

/ dz i 2
- ^ =  e~ tanh[/?(mi +  y/arz) ] . (2.68)
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The three equations (2.65), (2.67), and (2.68) can now be solved simultaneously 
for rri!, g, and r. In general this must be done numerically. We examine in detail 
only the T  —► 0 (or /? —► oo) limit. In this limit it is clear from (2.65) that q —* 1, 
but the quantity C  =  /3(1 — q) remains finite. The T  —» 0 limit lets us evaluate the 
integrals in (2.65) and (2.68), using the identities

/ - ~ =  e *2/ 2( l  — tanh2 (3[az +  b]) 
V 2 tt

e ^2/2 Itanh2 (3[az+b\—Q * j dz (1 -  tanh2 P[az +  6])

=  e~b t 2* 2 - z f d z - ^ -  tanh /3[az -f b]
V 2tt a/3 J dz

and

/ ~^L= e~z212 tanh (3[az +  6]
V27T

T —*-0

/ ^ e ' ' ’ / i s g n l a z + 6 1

■  2fJ — b/a,
dz

e 'V 2 _  i

“  " r ( ^ )  < 2 ' 7 0 )

where the error function erf (a?) was defined in (2,16). Our three equations thus 
become:

(2 ji>

- = ( i r e ?  <«*>

ro = erf(v £ ? ) (2-73)

where we have written m for m\. We can find the capacity o f the network by solving 
these three equations. Setting y =  m/y/2 a r , we obtain the equation

y ( y 2^  +  =  erf(y) (2-74)

which is easily solved graphically as shown in Fig. 2.16.
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FIGURE 2.16 Graphical solution o f equation (2.74). The solid lines show the left- 
hand side for several values o f a , while the dotted line shows the right-hand side, 
erf(y). Nontrivial solutions with m >  0 are given by intersections away from the 
origin.

0.00 0.05 0.10 0.15

FIGURE 2.17 The phase diagram 
obtained by Amit et al.. The 
desired memory states are only 
stable in the shaded region.

The Phase Diagram of the Hopfield Model

By solving (2.74) we can see that there is a critical value a c o f a  where the nontrivial 
solutions (m j^ O ) disappear. A numerical evaluation gives

a c «  0.138. (2.75)

The jump in m at this point is considerable: from m «  0.97 to zero. Recalling
(2.56), this tells us that (at T  ~  0) we go discontinuously from a very good working 
memory with only a few bits in error for a <  a c to a useless one for a  >  a c.

Figure 2.17 shows the whole phase d iagram  for the Hopfield model, delineat-
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FIGURE 2.18 An attempt to visualize the energy landscape in different parts of 
the phase diagram. The dots show the desired memory states, while the small 
ripples represent spurious states. The four cases correspond to the four regions 
A-D of the phase diagram (figure 2.17).

ing different regimes o f behavior in the T - ol plane. There is a roughly triangular 
region where the network is a good memory device, as indicated by the shaded 
region of the figure. The result (2.75) corresponds to the upper limit on the a  axis, 
while the critical temperature Tc =  1 derived previously (see Fig. 2.14) for the 
p <C N  case sets the limit on the T  axis. Between these limits there is a critical 
temperature Tc(a ), or equivalently a critical load a c(T ), as shown. As T  —► 1, a c(T) 
goes to zero like (1 — T )2.

Outside the shaded region the device is not useful as a memory device; m is 0. 
At the boundary m always jumps discontinuously down to 0, except on the T  axis 
where the transition is continuous, as seen in Fig. 2.14. In the terminology o f phase 
transitions this means that the transition is first order except at the point a  =  0 , 
T  =  1 where it is second order.

In region C the network still turns out to have many stable states, called spin  
glass states, but these are not correlated with any o f the patterns However, if 
T  is raised to a sufficiently high value, into region D, these spin glass states also 
melt, and the only solution o f the mean field equations is (Si) = 0 .

Regions A and B both have the desired retrieval states, besides some percentage 
o f wrong bits, but also have spin glass states. The spin glass states are the most 
stable states in region B, lower in energy12 than the desired states, whereas in 
region A the desired states are the global minima. For small enough a  and T  there 
are also mixture states which are correlated with an odd number of the patterns 
as discussed earlier. These always have higher free energy than the desired states. 
Each type o f  mixture state is stable in a triangular region like AB, but with smaller

12Or, more correctly, free energy; see the Appendix.
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intercepts on both axes. The most stable mixture states, given by (2.32), extend to 
0.46 on the T  axis and 0.03 on the a  axis.

Figure 2.18 shows some highly idealized sketches o f the form o f the free energy 
landscape in regions A, B, C, and D o f the phase diagram. Only in regions A and 
B are the desired retrieval states at (or near) energy minima, and only in region A 
are they the global minima.
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___________________ THREE
Extensions of the Hopfield Model

The previous chapter dealt with the basic Hopfield model, including the finite- 
temperature stochastic version. Here we examine various extensions and general
izations o f that model. In the first two sections we consider straightforward varia
tions, including the modifications needed to cope with correlated patterns. Then, in 
Section 3.3, we treat networks o f continuous-valued units with dynamics described 
by differential equations. A couple o f hardware implementations o f Hopfield-like 
networks are sketched in Section 3.4, one electrical and one optical. Finally in Sec
tion 3.5 we discuss models that recall sequences o f states, so that the usual point 
attractors are replaced by limit cycles or by more complicated dynamical trajecto
ries.

3.1 Variations on the Hopfield Model
In this section we discuss how the associative memory properties o f the basic Hop
field model carry over to various more complicated situations. In many cases the 
results are qualitatively similar to the simple case, but changes occur in quantitative 
values such as the capacity a c =  pma,x/N.

Connection Strength Inaccuracy and Clipping

We first consider the perturbation o f the connection strengths away from those 
given by the Hebb prescription (2.9). This may be o f practical importance when 
trying to build a network (in silicon, say) with connections o f limited precision or 
range.

43
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FIGURE 3.1 Examples o f (a) discretization and (b) clipping. The raw connection 
weight calculated from the Hebb rule is transformed to the actual Wij by 
the function shown.

The addition o f a small random number to each has only a qualitative 
effect, reducing a c [Sompolinsky, 1987]. Similarly with d iscretiz in g  or c lipp in g  
the allowed values. Discretizing— allowing only a discrete set of values— may be 
useful when building circuits using a fixed number o f standard resistors. Clipping 
means restricting all connections to some fixed range, say \wij\ <  A , and is 
clearly also useful (if not essential) in practical implementations. Figure 3.1 shows 
examples o f both processes.

In the most extreme case o f discretization and clipping we allow only two values 
for sometimes referred to as b in arizin g  the connections:

Wij =  s g n « w) =  S g n ( £ ^ )  . (3.1)
/ i = l

This model can be solved exactly [van Hemmen and Kuhn, 1986]; the result is 
that a c is reduced from 0.138 to about 0.1. This represents a rather efficient use o f 
the single bit o f information retained per connection, compared to the log2 p bits 
necessary to specify one o f the p possible values o f each Wij with the full Hebb rule.

Clipping may also be viewed in the context o f successively learning new pat
terns. We can imagine using the Hebb rule incrementally to continue adding new 
terms to each Wij, so that

w ? r  =  < d +  r t f t ?  (3.2)

to add pattern p. Here r] is an acqu isition  rate. Applying clipping to this means 
restricting wf?™ to a range [—A, A] at all times; values outside these limits are 
immediately replaced by the appropriate limit value. This is called learning w ith in  
b ou n d s  [Parisi, 1986; Nadal et al., 1986]. The most recently added memory patterns 
are then always recalled well, while older ones gradually decay away. The number 
o f patterns that can be remembered depends on the value o f rj compared to A\ if rj 
is very large only the most recent pattern can be recalled, while for very small rj the
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system can become overloaded (a  >  a c) before the bounds are reached, and then 
not work at all. In between there is an optimum value for rj. Then there is no sharp 
threshold a c; adding more memories simply erases earlier ones, so the memory 
is termed a p a lim p sest .1 This observation has been related to the limitations of 
short-term memory [Nadal et al., 1986] and to interpretations o f dream sleep [Geszti 
and Pazmandi, 1987].

Synchronous Dynamics

As mentioned early in the discussion, we could choose to update all the units 
simultaneously instead of one at a time [Little, 1974; Amit et al., 1985a]. How 
does this affect the results we have found? Again, there is no significant change. 
In particular, the memory states (those with (Si) oc £? for some //) for p <C N  are 
exactly the same as in the asynchronously updated network, because the mean field 
equations for time-independent states are the same in the two dynamics.

Weak Dilution

Another complication which can be easily dealt with is dilution o f the connections. 
We start with w eak d ilu tion , where a finite fraction o f the connections is removed 
randomly. Thus we set

_  f Hebb value with probability c ; fq q\
Wu ~  \ 0 with probability 1 — c . * ' '

We can either enforce the Wij =  wji symmetry or treat W{j and Wji independently. 
c is equal to the relative concentration of bonds remaining after dilution, and is 
taken to be independent o f N.

Again, the effect is only quantitative in general, as is simple to see in the limit 
o f small p/N. Let Cij =  1 if there is a non-zero connection from unit j  to unit i, 
and Cij =  0 otherwise. Then

Wij =  C ijw ffhh (3.4)

where tu)jebb is the Hebb connection strength (2.9), and the net input to unit i is

^  . (3.5)

As long as it is only a fixed fraction o f the connections that are removed, there is 
still an infinite number of terms in the sum as N  —► oo. So we can apply mean field

1A writing material (as a parchment or tablet) used one or more times after earlier writing has 
been erased [Webster, 1988],
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theory as before, replacing /j; by

=  (3-6)
i

Thus the previous mean field results apply (for p/N small), with a simple scaling 
of the temperature by a factor of c.

At larger p/N  the situation is more complicated, but the qualitative feature o f 
a capacity pmax o f order N  persists for the case o f symmetric dilution Cij =  Cji 
[Sompolinsky, 1987; Canning and Gardner, 1988].

Strong Dilution

There is another limit o f the dilution problem which can be solved exactly and 
rather simply. This is the case o f stron g  d ilu tion , where only, an infinitesimal 
fraction of the original number of connections remain. Defining K  as the average 
number o f connections to and from each unit, the precise condition is that K  not 
exceed something proportional to log N  as N  goes to infinity. The exact solution 
also requires another twist: the dilution must be performed independently on w ĵ 
and w ji, so that the factors Cij and Cji in (3.4) are independent random variables. 
The matrix is then no longer symmetric.

This model, first studied by Derrida, Gardner, and Zippelius [1987], can then 
be solved. We use

^  =  (3.7)

for the connection strengths, with l/ K  rather than 1/TV for the normalization so 
as to give sensible values o f order unity. For any state {S } }  o f the network, we now
break up the field hi in (3.5) into a term coming from a particular pattern v and a
remaining crosstalk term:

hi =  ^ 2 wijSj =  ^7 Y .  Cij Y .  
j j »

=  (3-8)
j

where

=  (3-9)
j

Note that the crosstalk term rj\ depends on the state {S j} .
If we set Si =  €" in (3.8) and (3.9) we can see that £” is stable for small 

enough p. The first term on the right-hand side of (3.8) gives just £? on average, 
since Cij) =  K . Meanwhile the second term 7/f ,  given by (3.9), becomes l/ K
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times a sum o f about K p  independent random ± l ’s. In the limit where K p  >> 1 it 
therefore has a Gaussian distribution

just as for C% in Fig. 2.5. Apart from the replacement o f iVby K  we are thus back 
in the same situation as the undiluted case; the memory works well if the Gaussian 
is narrow enough.

The capacity pmax is clearly o f order K  rather than order N. Just as we found 
the parameter oc =  p/N useful in the fully connected network, here the important 
parameter is oc! =  p/K. The maximum capacity pmdLX is always proportional to the 
average number o f other units that a given unit is connected to, corresponding to 
a particular value o f o ',  not oc.

In the very dilute case we can easily go further and calculate pmax (or aj.) 
exactly. Instead o f testing the stability o f one o f the original patterns we focus 
on an actual stable configuration Si =  sgn(hi) o f the network and ask how close it 
is to We therefore examine the overlap

These two definitions o f mv are equivalent for large K  (with any i in the last term). 
Using Si =  sgn(ftt) and (3.8) we can now write a self-consistent equation for m u\

of %/ and ryf, so that the symmetry P(rj) =  P (—rj) could be used. Moreover we are 
assuming that r/f has the distribution P(rj) given by (3.10), even though that was 
strictly valid only for Si =  It can be shown that these assumptions are valid

where erf(ar) is defined by (2.16). Equation (3.13) is essentially the same as (2.47),

tanh(x) function, but with a slope o f 2/y/n instead of 1 at the origin. Thus (3.13) 
can be solved graphically as in Fig. 2.12.

(3.10)

(3.11)
J

(3.12)

To replace the sum by the integral we had to assume the statistical independence

if (a) dilution is independent for i j  and j i , and (b) we are in the strongly diluted 
regime K  <C N

Using (3.10) we can reduce (3.12) to

(3.13)

except that the erf (a?) replaces the tanh(x), and the control parameter is a 1 rather 
than the temperature. As shown in Fig. 3.2, the erf (a?) function is very similar to a
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FIGURE 3.2 The function 
erf(x). The dotted line 
shows tanh(:c) for compari
son.

There is a critical value a ' =  2/w of a! beyond which the only solution is 
mv =  0, but below which there are solutions with mv ^  0. Thus the crosstalk acts 
in a way similar to thermal noise. Note however that m v goes continuously to zero 
as a f approaches a fc, in contrast to what happened in the fully connected case as a  
approached a c, where the jump down to zero was discontinuous. The origin o f this 
difference can be understood by comparing (3.13) with the corresponding equation 
(2.73) for the fully connected case. The latter had an extra factor o f l/y/r in the 
argument o f the erf, and r (and q) had to be determined self-consistently with m.

We can generalize the treatment to finite temperature simply by replacing the 
sgn(a?) in (3.12) by a tanh(x):

m v =  J drj P(rj) tan h^ ra ,, +  rj) ] . (3.14)

As in the full connectivity case, the effect o f finite temperature is to reduce the 
capacity from its zero-temperature value.

The model can be solved for both synchronous and asynchronous updating 
(with the same result for the capacity), but is apparently not so easy to solve if the 
connection matrix is constrained to be symmetric.

Random Asymmetric Connections

The densely connected model may also be studied when the connections are allowed 
to be asymmetric, /  Wji. If the asymmetry is systematic, or very strong, it can 
produce limit cycles or chaotic behavior, as we will study later. But if it is random 
and not too strong it mainly plays the role o f noise. Random asymmetry can be 
introduced by random dilution or by adding a random number to each connection, 
independently for i j  and j i  in both cases.

For p C  N  there seems to be no difference from the symmetric case. As in the 
case o f weak dilution, the argument relies on the fact that there are still o f order N
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terms in the weighted input sum hi, which can therefore be replaced by its average 
value without approximation in the large N  limit.

At finite a , the asymmetric fully connected model differs from the symmetric 
one in that it does not have any of the spurious spin glass states at any T  >  0 
[Hertz et al., 1986, 1987; Crisanti and Sompolinsky, 1987]. But retrieval o f the 
stored patterns is not qualitatively different from that in the symmetric model. 
Thus random asymmetry may improve performance by removing the spin glass
states. On the other hand, the asymmetry introduces some fluctuations and slows
down the approach to an attractor [Parisi, 1986].

Unipolar Connections
For some applications it is inconvenient to require both positive and negative con
nection weights This is particularly true when implementing a network in 
electronic or optical hardware, as discussed in Section 3.4. It is however easy to 
modify the design so that all the weights are positive; i.e., we can replace bipolar 
connections by unipolar ones [Denker, 1986].

The trick is simply to add a constant k to every connection ,

wij =  «  (3.15)

and compensate for this with an extra term — k Y j  Sj in the input hi at every unit.
Then the total input hf{ is given by

h{ — ^  A w*j d~ K)Sj — k ^  ] Sj =  ^   ̂ Sj — hi (3.16)
j j j

exactly as before. Thus there is no overall effect on the network’s behavior.
We choose k large enough to make w^ positive (or perhaps zero) for all ij.

For the usual Hebb rule (2.9) the value k =  1 suffices. The compensating term 
—x Y j  •Sj ls same for all units, and may be calculated by one extra unit. It is 
sometimes referred to as an a da ptive  th resh old  because in effect it changes the 
threshold o f every unit by an amount depending on the total activity Y j  S j .

3.2 Correlated Patterns 

The Pseudo-Inverse

The crosstalk term in hi which sets the fundamental limit on the network capacity 
comes from the overlap between random patterns. This overlap is much more o f a 
problem when the different patterns are correlated. Then a standard network may 
not even recall patterns reliably in the limit p N. There is however a general
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solution to this problem called the p seu do-in verse  approach. It works for any set 
o f p <  N  linearly independent patterns [Kanter and Sompolinsky, 1987; Personnaz 
et al., 1985, 1986; Kohonen, 1974, 1989].

It is simplest just to write the prescription down and then show that it works. 
If we define the p x p overlap matrix Q by

i

then (if Q is non-singular) the appropriate connection matrix is

pv

To verify that this will recall any pattern f  * correctly we just calculate2 hi when

j jV”

=  £ t f ( Q - V Q , A
Atv

=

=  t f - (3.19)

Thus (just as for the Hebb prescription applied to orthogonal patterns), the appli
cation o f this modified prescription for correlated patterns gives a net input to each 
unit equal to its output. Therefore all the patterns are stable.

Another way to picture how this prescription works is obtained by defining a 
set o f patterns

=  D Q" V t f  (3-20)
V

which have the property that

^ I > r < r = v -  (3-2i)
X

This is where the name pseudo-inverse arises; if we regard £% and rĵ  as N  x p 
matrices, then (3.21) says that r]T£ =  N 1, and N ~ lr)T is called the pseudo-inverse
o f £. More generally for any m x n matrix M with m >  n the pseudo-inverse (or

2The Kronecker delta symbol Srs is defined to be 1 if r =  s and 0 otherwise, so S^x means the
identity matrix.
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generalized inverse, or Moore-Penrose inverse) can be defined as (MTM) *MT 
whenever MT M is non-singular. It obeys M+M =  1 but not normally MM-f =  1 . 
See Rao and Mitra [1971] for details.

In terms o f p? the connection matrix can be written

P'22'p

Thinking now o f the r/f and the as components o f vectors and £**, these 
equations tell us that each rj*1 is orthogonal to all ^ ’s (for v ^  //), and that the 
matrix w is a sum of outer products of £** and 77  ̂ vectors:

w =  ^ £ W ) T - (3-23)
P

It therefore naturally takes every £** into itself:

w £** =  £** for all p . (3.24)

We can also regard (3.24) as a set o f equations to be solved for the TV x N  
weight matrix w, given the p pattern vectors £**. If p <  N  there are many different
solutions to these equations, including the obvious TV x TV identity matrix. The
solution chosen by the pseudo-inverse prescription (3.23) is the unique one where, 
for any vector y orthogonal to all the pattern vectors, we have

wy =  0 . (3.25)

From (3.24) and (3.25) it follows that w projects onto the p-dimensional subspace 
spanned by the pattern vectors. This is why this method is also called the p ro 
je c t io n  m eth od . Note that any vector in this pattern subspace is stable in the 
sense that (3.24) is satisfied, though of course not all such vectors have purely ±1  
components.

It is easy to see that the overlap matrix Q cannot be inverted if there are 
any linear dependencies among the patterns. But then a suitable w matrix can be 
found by restricting attention in (3.17) and (3.18) to a linearly independent subset o f 
pattern vectors that spans the pattern subspace. If, however, the patterns span the 
whole TV-dimensional space the recipe makes all patterns stable, and the memory is 
useless; w becomes an identity matrix. The same problem was encountered in (2.23) 
for the Hebb rule with TVorthogonal patterns. So up to TV — 1 linearly independent 
patterns can be usefully stored by this method. That is the capacity pmax in most 
practical situations.3

3
In principle more linearly dependent patterns can be usefully stored if the size of any linearly in

dependent subset is iV —1 or less. But for random ±1  patterns the probability of linear dependency 
is small (becoming 0 as TV —̂ 00) for p <  TV, and 1 for p > TV.
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For all this linear algebra to hold, one has to retain the self-coupling terms— the 
diagonal terms wa o f w. But it can be shown that they can usually be set equal to 
zero without problems [Kanter and Sompolinsky, 1987]. Indeed, making them zero 
usually improves the performance, as for the Hebb rule in (2.28).

The original Hebb rule had a biological appeal, in that such connections could 
develop in response to correlations o f firings between only the pre- and post-synaptic 
cells. W ith (3.18) no such interpretation is possible; the pseudo-inverse prescription 
is n on loca l, because computation o f tu,j requires knowledge of ££ for all k. There 
is however an iterative scheme which converges to the same set of Wij’s using only 
local information (including h*); see Diederich and Opper [1987] for details. We 
will encounter similar schemes for layered networks in Chapter 5.

Special Cases

There are many special cases o f correlated patterns which can be treated with the 
general prescription (3.18) or by direct analysis. An important one is patterns which 
have a certain “average pattern” in common [Amit et al., 1987b]. The simplest case 
is of b iased  pattern s, in which the probabilities for ({* = 4 - 1  and =  —1 are 
unequal (like a biased coin), but still independent for all i and //. A generalization 
o f this is a hierarchical correlation of patterns, where they can be grouped into 
families, families within families, and so on, on the basis o f their mutual overlaps 
[Cortes et al., 1987; Krogh and Hertz, 1988; Parga and Virasoro, 1986; Gutfreund, 
1988]. In both o f these cases the result o f the prescription (3.18) is a fairly simple 
generalization of the Hebb rule. One simply has to imprint both the average features 
(e.g., the mean value for biased patterns) and the deviations from them in a Hebb- 
like fashion, with suitable relative weights which can be calculated from (3.18).

Another interesting case is that o f sparse pattern s, in which almost all the 
are the same. This would be the case, for example, in patterns which are mostly 

“off” , such as a small fraction o f black pixels on a predominantly white screen. In 
this limit it is convenient to go over to units n,* and patterns which both take 
values 0 or 1 instead of ±1 . For random biased patterns with a fraction a o f ones, 
the appropriate distribution is

w i . f l  with probability a ;
* ~  \ 0 with probability 1 — a ;

and we consider the case a <C 1. In this limit a very simple Hebb-like rule

=  (3-27)

together with an optimized choice o f threshold (the same for all units), will store 
a very large number o f patterns. The capacity is approximately [Tsodyks and 
FeigePman, 1988]

“ • - t o  ( 3 - 2 8 )
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which is in fact o f the same order as the maximum possible capacity that could 
be achieved by any choice o f s, as we will see in Chapter l(h Thus the simple 
Hebb-like guess (3.27) is a very good choice for the connection weights in this limit.

An even simpler rule for the sparse 0/1 case is the W illsh aw  m o d e l [Willshaw 
et al., 1969] in which one takes

Wij =  f  J i f e r = ^  =  l f o r a n y / z; ( 3 .2 9 )
J ( 0  otherwise;

and again uses an optimized threshold. This rule is extremely simple, and easy to 
implement in hardware [Thakoor et al., 1987], though its capacity (which does not 
scale with N) is not nearly as good as (3.28). The addition o f a uniform inhibition 
between all pairs o f units gives rise to an interesting model which has only partia l 
ord er in g  [Golomb et al., 1990]; the attractors are dynamic, with some units frozen 
in the 0 state and some fluctuating between 0 and 1. Only the time average (n,*) 
gives the correct stored pattern. The average activity (n,) can be quite low even on 
the fluctuating units, which brings the model closer to biological realism.

3.3 Continuous-Valued Units
In this section we discuss a different way to generalize the original McCulloch-Pitts 
model, by making the output o f a unit a continuous variable instead of a binary 
0/1 or ±1 . This is more realistic for real neurons, is sometimes more convenient for 
analog hardware implementation, and in some contexts makes analysis easier.

We consider only the case where the output Vi o f unit i is (in equilibrium, as 
discussed below) a continuous function o f its net input u,-:

Vi =  g(ui) =  g j f e v H j V j )  . (3.30)
i

Vi and Ui correspond directly to the Si and hi used in the case o f binary units, but 
the new notation is convenient; in particular we never use Si for anything but a ±1  
unit, in agreement with the convention in statistical mechanics.

The activation function g(u) is usually nonlinear. In most cases we want it to 
have a sa tu ration  n on lin earity  so that g(u ) levels off and approaches fixed limits 
for large negative and positive u. Then Vi will always remain between those limits. 
g{u) is often called a squashing fu n ction  in this context. Commonly used func
tions include tanh(f3u) for a [—1,+1] range (Fig. 2.9, Eq. (2.43)) and the sigmoid 
fuflctioxi fp (u ) for a [0,1] range (Fi^. 2.8, Eq. (2.37)).

There are several possible choices for updating the units:
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FIGURE 3.3 Motion towards attractors in a 
two-unit network. There are two attractors 
shown by dots. The center point is a saddle 
point o f the energy, not an attractor. The 
system moves in the direction of the arrows 
to one of the attractors; which one depends 
on the starting point.

■ A sy n ch ron ou s  u p d a tin g . One unit at a time is selected to have its output 
set according to (3.30).

■ S yn ch ron ou s u p d a tin g . At each time step all units have their outputs set 
according to (3.30).

■ C on tin u ou s u p d a tin g . All units continuously and simultaneously change 
their outputs towards the values given by (3.30). The u,-’s change continu
ously too, according to U{ =  W(j Vj.

The third possibility is the new one [Cohen and Grossberg, 1983; Hopfield, 
1984], and is o f particular interest for the circuit implementations discussed in 
Section 3.4. It can be represented by the set o f differential equations

r<̂  = ~ Vi + g^  = + <3'31)
j

where r* are suitable time constants.
If g{u ) has a saturation nonlinearity and the Wij’s are symmetric, the solution 

Vi(t) to these equations always settles down to a stable equilibrium solution, as 
we will prove in the next subsection. At an equilibrium Vi(t) ceases to change, 
so dVi/dt =  0 for all i. Then the right-hand side o f (3.31) shows that (3.30) is 
obeyed on all units. Thus the desired state satisfying (3.30) is an a ttra cto r  o f the 
dynamical rule (3.31).

Figure 3.3 shows a simple example for a system with two units. A state o f the 
system corresponds to a point in the V1-V 2 plane illustrated. At any such point, the 
equations (3.31) (one for i =  1, one for i — 2) give a velocity vector dV/dt, shown 
in the figure by an arrow. The state of the system moves from its initial point in 
the direction o f the arrows, faster for larger arrows. Thus it ends up at one of the 
two attractors shown, where dV/dt =  0.

A very similar dynamical rule with the same end result arises from letting the 
inputs Ui continuously approach their correct values with V( =  g(u{)
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always true:

r ~  =  -U i +  ^ W i jV j  =  -U i +  Y ^ W ijg iu j). (3.32)
J

This equation has the same equilibrium solution (3.30) as (3.31). Indeed the whole 
attractor structure o f the two equations is identical if the matrix w is invertible 
[Pineda, 1988].

If the (3 parameter in g(u) =  tanh(/?u) is made large, then most of the outputs 
Vi will come close to the limiting values dhl. This applies with either dynamical 
equation, and a similar result holds for the 0 /1  case. Thus we can obtain binary 
yes/no “answers” from a network that uses continuous-valued units with continuous 
differential updating. Even without /? large we could take any positive Vi as a 
yes and any negative V* as a no. In other cases we may actually be interested in 
continuous-valued answers; examples will appear in Chapter 4.

Alternatively we can note that the equations (3.30) are just like (2.45) for the 
average values (Si) in the stochastic model. Indeed, if we use g(u) =  tanh(/?w), then 
the equations are exactly the same; ut- here plays the role of the average internal 
field (hi) and Vi is equivalent to the average unit value (Si). Thus we can use a 
continuous-valued network to solve the mean field problem for a stochastic network 
at finite temperature.

Continuous-valued units obeying (3.31) or (3.32) are normally implemented as 
electrical circuits, as discussed in Section 3.4. The equations may alternatively be 
integrated numerically by computer, in which case an adaptive step-size technique is 
well worth trying. The Bulirsch-Stoer method [Press et al., 1986] should be suitable.

We have so far assumed that the connections are symmetric; this guarantees 
the existence o f attractors. If on the other hand the connections are not symmetric, 
then an oscillatory or chaotic Vi(t) is possible. In the extreme case of purely random 
connections, with mean 0 and variance cr2, there is a transition from stable to chaotic 
behavior as a 2 is increased [Sompolinsky et al., 1988].

The Energy Function

Just as for the binary units discussed in Chapter 2 we can define an energy function 
that always decreases during the dynamical evolution (3.31) or (3.32). The equilib
rium solutions are then energy minima, and we can view the dynamics as sliding 
downhill on the energy surface and coming to rest at a minimum.

We consider only version (3.32) o f the dynamics. The appropriate energy func
tion is then [Hopfield, 1984]:

(3.33)



56 THREE Extensions of the Hopfield Model

where Vi is always equal to g(u{). To show that H  decreases, we differentiate (3.33) 
with respect to time, which enters implicitly through Vi:

ij ij i

= - E f  ( S > ^ - * )
i j

E dVi dui
dt dti

=  <  0- (3-34)
i

Here we used the =  wji symmetry in obtaining the second line, and used (3.32) 
for the third line. The result is negative or zero because r* is positive, g(u) is 
monotonic, and dui/dt appears squared. It is only zero if we are at an equilibrium 
point, where dui/dt =  0 for all i.

Equation (3.34) shows that the dynamical equation (3.32) continuously de
creases the energy function until it reaches its lower bound of 0 at an equilibrium 
point. This proves that the equilibrium points are attractors o f the system, and 
that they are the only attractors. Limit cycles, for example, are not possible; the 
energy cannot decrease continuously around a closed curve.

We can imagine an energy landscape given by (3.33) “above” a velocity field 
such as that shown in Fig. 3.3. The attractors are at energy minima, and the 
motion is always downhill. The velocity du/dt is not strictly in the negative gradient 
direction —V UH  (in fact Tidui/dt =  —dH/dVi) but always has a positive projection 
onto it.

Terminal Attractors *

The dynamical system described by (3.31) or (3.32) approaches its attractors in an 
exponential way, as is readily seen by linearizing about an attractor. Taking (3.32) 
for example, if we assume that u\ is an attractor (i.e., satisfies (3.30)) and expand 
about it,

Ui =  u\ +  Si, (3.35)

we obtain

Ti~̂ t =  ~ £i ~  U* +  ?  Wii g(u*i + £ J') ”  ~ £i +  wij9 '(uj ) £j (3-36)
j j

to order £,*, since uJ =  W ijg{uj) by hypothesis. Equation (3.36) is linear, and 
has the general solution

e,.(i) =  £ ajfee« e - A(k)t (3.37)
k
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1 f  u(t)

FIGURE 3.4 Approach to at
tractors. The upper curve is 
for an ordinary attractor, 
given by (3.39). The lower 
curve is for a terminal at- 

t tractor, given by (3.41). Pa-
*—> rameter values are u(0) =  1 ,
4 u* =  0, r = l .

where and are the eigenvalues and eigenvectors o f the matrix T “ 1(l — wG) 
and ajc are coefficients chosen to satisfy the initial conditions. Here T and G are 
diagonal matrices constructed respectively from r,- and gf(u j). All the eigenvalues 
\(k) must be positive if u* is an attractor (they are necessarily real if w is symmet
ric). So, if we start close enough to the attractor uJ for the linearization to be 
valid, the displacement a  from the attractor decays away exponentially.

This exponential approach to the attractor in principle takes forever. Although 
this may not be o f importance in practice, it is interesting that the dynamical
equations may be modified so that the attractor is reached after a finite time [Zak,
1988, 1989]. It is easiest to examine this first for a simple one-dimensional problem. 

An ordinary attractor at u* would be governed by the equation

(3.38) 

with the solution
u(t) =  ic*-+ [u(0) — u*]e” */T (3 .39)

that shows the usual exponential approach to the attractor. But now suppose that 
we replace the right-hand side o f (3.38) by a singular term:

Tl f i  ~  ~ ( w ~ u*)1/3- (3.40)

This has the solution 

«(<) =

where
<* =  §r [u (0 )-u *]2 /s . (3.42)

Thus the attractor u* is reached at time t*. Such an attractor is called a term in a l 
a ttra ctor , u =  u* is a singular solution o f the dynamical system, and is infinitely 
stable (the eigenvalues found upon linearization are infinite). Figure 3.4 compares 
the approach to an ordinary attractor and to a terminal attractor.

u * +  [(u(0) — u* ) 2/ 3 — 2t/3r] 3/2 if t <  t* 
if t >  t* (3.41)

du < *\ r  =  - < « - « )
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The same effect is achieved if we add the singular term —(u — u* ) 1/ 3 to the 
right-hand side o f the original equation (3.38) instead o f simply replacing the linear 
term, because near the attractor the singular term dominates the behavior. The 
choice o f 1/3 for the exponent is also not essential; l/k with k odd would also work.

To apply the same idea to the coupled equations (3.32) we add a singular term 
proportional to [tq — for each of the attractors u\. So that these additions
do not interfere with each other we also need to suppress them away from their 
attractors with an additional exponential factor. Thus overall we can use

Ti~^t =  ~ Ui +  5  ~  01 “  ui ]l / 3e- 1 '[u<-u‘ 13 (3.43)
j  *

where a  and 7  are suitable constants. The value o f 7  (which can be allowed to 
depend on i and k) must be large enough to make 7 (uf — u\)2 >> 1 for every pair 
o f distinct attractors u\ and u\.

A neural network circuit implemented using (3.43) would certainly approach its 
attractors more rapidly than with (3.32). Barhen et al. [1989] found a remarkable 
speedup in learning time in an application to inverse kinematics for robot manipula
tors. More control over spurious attractors and basin sizes also seems to be possible. 
In applications to networks with hidden units (discussed in Chapter 7) it can be 
shown that terminal attractors never become repellers, as can happen in some cases 
with normal attractors. Note however that the locations o f the attractors must be 
known in advance, which, while still appropriate for content-addressable memory, 
limits the applicability to many other problems in neural computation.

3.4 Hardware Implementations
In this section we briefly discuss two hardware implementations o f Hopfield models. 
One is an analog electrical circuit using continuous-valued units. The other is an 
optical implementation using binary units and clipped connections. This is the only 
place in the book where hardware is discussed, and even here we cover only some 
basic principles.

Electrical Circuit Implementation

Figure 3.5(a) shows an electrical circuit constructed to implement a unit obeying 
(3.32) [Hopfield, 1984; Hopfield and Tank, 1986]. A network o f four such circuits 
is shown in Fig. 3.5(b), making it clear that the resistors Rij play the role o f the 
connections . Such circuits have actually been made in analog VLSI.

Each unit i is composed of the circuit shown in Fig. 3.5(a). it,- is the input 
voltage, Vi is the output voltage, and the operational amplifier has the transfer 
function Vi =  g(ui). The input of each unit is connected to ground with a resistor
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FIGURE 3.5 (a) The circuit described in the text, (b) A network of such circuits.

p in parallel with a capacitor C , and the output o f unit j  is connected to the input 
o f unit i with a resistor R ij . In terms o f modelling a real neuron, we can regard p 
and C  as the transmembrane resistance and input capacitance respectively.

The circuit equations are

or, equivalently,

where

with

and

^dui Ui
dt p j Rij

-  ~ ui +  E wH3(uj)dt

RiC

1 1 1 

S ’ =  ~0 + ^ W jR,

Wij — R if Rij •

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

Equation (3.45) is identical to (3.32). From any starting state the circuit there
fore settles down to a steady state in which (3.30) is obeyed.

The circuit implementation o f an abstract network involves choosing resistances 
Rij to satisfy (3.48). If we choose p small enough we can make 7Z,- »  p for all i and
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thus simplify (3.48) to
W ij  »  p / R i j  . (3.49)

Then the conductance 1 /R^ o f each connection is chosen to be proportional to the 
desired Wij.

This works only for positive Wij’s. To deal with negative connection strengths 
we can add inverters to the circuit so that — V* is available as well as Vi at each 
unit. If a desired is negative, the term WijVj is simply replaced by K K - V ; ) ;  
a positive connection \w{j\ is made to the inverted output —V}. Alternatively, we 
can transform to unipolar connections, as described on page 49; this requires one 
extra unit to compute V .  V}, which is then fed to all other units.

It is possible to avoid the need for small p , and yet obtain oc I/Rij (and 
Ti independent o f i), by modifying the circuit slightly [Denker, 1986]. As shown in 
Fig. 3.6, we simply connect the resistor p and the capacitor C  between the input 
and the inverted output, instead o f between the input and ground. Then if we use 
a high gain amplifier the negative feedback loop keeps the input close to ground 
potential, giving rise to the name v irtu a l grou n d  unit. In the high gain limit it 
is easy to show that the circuit equations reduce to

where r  =  pC  and =  p/R ij. The result is linear even if the operational amplifier 
is nonlinear. To regain a saturation property for Vi one can replace the resistor p 
by a nonlinear element such as a reversed pair o f parallel diodes [Denker, 1986].

The hardest problem in creating networks o f these circuits in VLSI is fabricating 
the connection resistors R ij . We need 2N 2 resistors for N  fully connected units 
(using inverters), and the resistance values must be large to limit power dissipation. 
High resistance paths are difficult to make in conventional CMOS technology, and 
especially difficult to make small. Nevertheless Graf et al. [1986] were able to make 
custom chips with N  =  256 fully connected units, using 2N 2 «  130,000 resistor 
sites. Each resistor had to be added to the otherwise finished CMOS chip using 
electron-beam lithography, and all had approximately the same resistance. Resistors 
could not be changed once made.

j
(3.50)
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Others have employed active elements (transistors) for the connections instead 
o f passive resistive paths [Sivilotti et al., 1987; Alspector et al., 1988; Mead, 1989]. 
Typically the connection strengths have a discrete set of gray levels (e.g., 1 /Rij =  
0, 1 , . . . ,  16). Most importantly, they can be programmed after fabrication, allowing 
general purpose chips and the possibility o f learning. In most applications it is 
important to make the connection strengths non-volatile, so that they retain their 
values even when the device is turned off.

Optical Implementation

In silicon technology it is easy to construct the units but hard to make the many 
connections needed. Optical technology has the reverse problem; because of the 
inherent linearity o f most optical media, it is relatively easy to make the connections 
but harder to construct the units. Different rays can cross or be superposed without 
interfering with one another, so many optical connections can be made by a set of 
crossing light rays. But this typical linearity makes it hard to construct units with 
appropriate nonlinearity such as threshold behavior. Many o f the earlier optical 
implementations o f neural networks were therefore hybrid o p to e le c tro n ic  systems, 
in which the nonlinearity was placed in the electronic part. But now there is more 
effort going into fully optical systems, using nonlinear optical media and devices.

We first describe a very simple optoelectronic system due to Farhat et al. 
[1985]. There were 32 units, each represented by a separate electronic circuit shown 
schematically in Fig. 3.7(a). Each unit had an LED (Light Emitting Diode) as its 
output and a pair o f photodiodes (PDs) as its input, one for excitatory and one for 
inhibitory signals. The LED was on when the unit was firing, and not otherwise. 
The desired connections were binarized so that Wij =  —1 or 1 for each i j  (and zero 
on the diagonal). Thus the optical problem was simply to make the light from the 
LED for unit j  shine on unit Vs excitatory photodiode, or inhibitory photodiode, 
or neither, according to the value o f w^. The weight matrix was photographically 
coded onto a two-dimensional mask with two pixels for each o f the 32 x 32 connec
tions. The two pixels were opaque and transparent as required for the desired 
(black-white, white-black, or black-black corresponding to 1 , —1 , or 0).

Figure 3.7(b) shows how the optical interconnections were made. The trans
parency encoding the weights was placed in front o f an array o f 64 long photodiodes 
such that each column o f the transparency exactly covered one diode.4 Each o f the 
LED’s in the vertical output array illuminated one row o f the transparency. This 
was done by vertically focusing the light and horizontally smearing it with a pair o f 
lenses so that the light from one unit became a horizontal line on the appropriate 
row o f the transparency. The input to each unit was accumulated in the corre
sponding pair o f vertical photodiodes (inhibition in one, excitation in the other).

4Actually the transparency was cut into two halves, each covering 32 photodiodes, for technical 
convenience.
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FIGURE 3.7 Optoelectronic Hopfield network o f Farhat et al. [1985]. (a) Single 
unit. The signals from the excitatory and inhibitory photodiodes (PDs) are am
plified and thresholded before driving the light emitting diode (LED), (b) Optical 
arrangement for the interconnections. Lenses are not shown, and the number o f 
units has been scaled down by a factor o f four.

Incoherent light was used, so the total intensity on each photodiode automatically 
gave the appropriate summation of total input.

The electronic circuitry allowed the designers to selectively turn units on and 
off, and then release them. When three or fewer random patterns were stored in 
the memory mask it was found that any could be recalled by starting the system 
close enough to it. Indeed the successes and failures corresponded almost exactly 
to those for the same Hopfield network simulated by computer.

In later versions o f this scheme the need for excitatory and inhibitory inputs was 
eliminated by using unipolar connections, as described on page 49. The adaptive 
threshold term . Sj was easily computed by focusing light from all the LEDs onto 
a single photodiode.

Most recent work has employed a hologram rather than a mask for the connec
tion matrix [Cohen, 1986; Abu-Mostafa and Psaltis, 1987; Hsu et al., 1988; Peterson 
et al., 1990]. Using coherent light, a hologram can direct a light wave from any in
coming direction independently to any outgoing direction, and thus connect many 
pairs o f directions. A plane hologram on photographic film can implement about 
108 such connections per square inch, so 104 sources can easily be fully connected to 
the same number o f sensors. Volume holograms made from photorefractive crystals 
have an even greater potential; in principle they can hold more than 10 12 con
nections per cm3, corresponding to a million fully connected units. However, the
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readout from a volume hologram is partially destructive, so the stored patterns 
decay slowly unless refreshed.

O f course one does not want to calculate the appropriate hologram for a partic
ular set o f memories; one wants to produce it optically from, e.g., a set o f pictures. 
The details o f this are beyond the scope o f this book, but it is worth distinguishing 
angular and spatial multiplexing o f different stored patterns. In the angular case 
the patterns are stored at different input angles, or at different lateral locations 
on the hologram, while spatial multiplexing involves assigning them to different 
layers o f a volume hologram. Spatial multiplexing appears capable of storing more 
patterns [Peterson et al., 1990].

Many optical implementations are all-optical rather than optoelectronic. This 
means that a nonlinear medium or device must be found to perform the threshold
ing function for the units. Various approaches have been tried, including the use 
o f strongly pumped phase-conjugate mirrors [Softer et al., 1986; Anderson, 1986], 
etalon arrays [Wagner and Psaltis, 1987], and two-dimensional spatial light modu
lators [Abu-Mostafa and Psaltis, 1987; Hsu et al., 1988]. The last o f these seems to 
have the greatest potential.

Some recent optical work has gone beyond Hopfield networks with the construc
tion o f adaptive optical neural networks that are able to learn. Simple perceptrons, 
multilayer networks with back-propagation, and deterministic Boltzmann machines 
have all been implemented [Wagner and Psaltis, 1987; Hsu et al., 1988; Peterson et 
al., 1990].

3.5 Temporal Sequences of Patterns
We have so far been concerned with networks that evolve to a stable attractor 
and then stay there. They can thus act as content addressable memories for a set 
o f static patterns. It is also interesting to investigate the possibility o f storing, 
recalling, generating, and learning sequences o f patterns. These obviously occur 
widely in biological systems.

In this section we mainly examine how to generate a sequence of patterns. 
Instead of settling down to an attractor we want the network to go through a 
predetermined sequence, usually in a closed lim it cycle . The sequences will be 
embedded in the choice o f connections, as elsewhere in Chapters 2 and 3. Networks 
that can recognize sequences, or learn sequences incrementally by example, are 
considered separately in Section 7.3.

Simple sequences can be generated by a set o f units that are synchronously 
updated by connecting together a chain o f units Si with excitatory connections 
tu*+if* from each unit to its successor, and then turning the first unit on. A closed 
cycle can be made by joining the ends o f the chain, as shown in Fig. 3.8. However 
this sort of scheme is very limited. It can only produce sequences o f patterns related 
by shifting or permutation. It is far from robust; one lost bit and the whole scheme
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FIGURE 3.8 A very simple sequence generator. This 
relies on synchronous updating by a central clock, and 
must be initialized by turning on unit 1. Then it gen
erates the cyclic sequence 1 -2 -3 -4 -5 -6 .

disintegrates. It needs a central pacemaker to control the synchronous updating, 
and is thus no good as an independent clock or oscillator.

Asymmetric Connections

How can we generate more arbitrary sequences o f patterns, using only asynchronous 
updating? Suppose we have an associative network of units 5,* (i =  1, 2, . . . ,  N ) 
and a sequence o f patterns £? (// =  1 , 2 , . . . ,  p) that we want it to produce in 
order, with pattern 1 following pattern p cyclically. Hopfield [1982] suggested that 
asymmetric connections,

might be able to achieve this. Here A is a constant that governs the relative strength 
of symmetric and asymmetric terms. We take £?+1 to mean £/. If such a system is 
in the state Si =  then the input h\ to unit i is

The cross-terms are small if the patterns are uncorrelated and there are not too 
many o f them, as we have seen earlier. For A <  1 the original pattern £? is stable 
because sgn(£f +  A ^ +1) =  sgn (ff). But for A >  1 the second term dominates and 
tends to move the system to the next pattern,

For correlated patterns the Hebb rule (3.51) may be replaced by a pseudo
inverse rule [Personnaz et al., 1986] generalizing (3.18):

(3.51)

+  A£^+1 +  cross-terms. (3.52)

(3.53)

where the matrix Q is given by (3.17) as before.
Unfortunately these schemes do not work very well in practice. The asyn

chronous updating tends to dephase the system so that one obtains states that
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overlap several consecutive patterns, and the sequence is soon lost. Only if the 
length o f the sequence is very small (p <C N) can limit cycles be embedded success
fully [Nishimori et al., 1990].

Buhmann and Schulten [1987, 1988] suggested a number o f modifications that 
made stable sequence generation possible. They used sparse patterns (cf. (3.26)) 
with a stochastic network at T  >  0, and added terms to (3.51) to inhibit transitions 
to pattern states that were not next in sequence. The parameter values were chosen 
so that the system tended to remain in a particular pattern state for some time 
before being driven to the next one by the thermal noise (T  >  0); in effect A in
(3.51) was a little less than one. No transitions were made at all if the temperature 
T  was too low. The time between transitions was rather unpredictable, but became 
sharper and sharper as the system size N  was increased.

Fast and Slow Connections

Sompolinsky and Kanter [1986], Kleinfeld [1986], and Peretto and Niez [1986] found 
ways o f controlling how long each state in the sequence stabilizes before moving on 
to the next. In effect the parameter A is small when each new state is entered, 
and then grows steadily until it provokes the next transition. Peretto and Niez 
proposed doing this directly with connection strengths that changed dynamically. 
However, this is expensive to implement in hardware or software because there are 
so many connections. The same effect can be achieved with the dynamics located 
only in the units if we use two types o f connections [Sompolinsky and Kanter, 1986; 
Kleinfeld, 1986]. Between units i and j  we have the usual symmetric sh ort-tim e  
con n ection s ,

>4 = ' £ ( ! ( !  <3M >
n

that stabilize each pattern, and asymmetric lon g -tim e  con n ection s,

wii =  (3-55)

that tend to cause transitions in the sequence. The long-time connections represent 
slow synapses that have delayed or sluggish responses. Explicitly, the input h,(t) to 
unit i at time t is now given by

hi(t) =  £  [w fjSjit) +  (3.56)
i

where the delayed response S j(t) is a weighted moving average (sometimes called 
a memory trace) over the past values o f S j :
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FIGURE 3.9 Illustration of 
(3.61). The solid curve shows 
Sj(t) for some unit j .  The 
other curves show Sj(t)  us
ing equations (3.58) [dotted], 
(3.59) [dashed], and (3.60) 
[dot-dashed].

Various forms can be used for the kernel G(t), such as a delta function ,5

G (t) =  S(t -  t) (3.58)

a step function,
G (t) =  Q (r  -  t ) f r  (3.59)

or an exponential decay,
G (t) =  exp(—t/r)/r  . (3.60)

The last o f these is easily implemented using decay units, as discussed in Section 7.3 
(page 181). In all cases / 0°° G (t) dt =  1.

If the network has been in pattern f  j' ” 1 for a time long compared to r  and then 
changes to £? at time <o> we obtain

for (3 61)
for t — to >> r .

This is illustrated in Fig. 3.9. Thus

h f ( l  +  A) ^  f o r * - * 0 < r ;
* *  U f  +  A f f * 1 f o r  f - l o > r  ( 3 -6 2 )

(besides cross-terms), which causes the next transition after a time o f order r  if 
A >  1 .

5The Dirac delta function 6(27) is defined to be zero for x  ^  0, with an infinite peak of area 1 
at x  =  0. Thus J  f(x )8 (x )  dx =  / ( 0) for any continuous function f (x )  if the range of integration 
includes x  =  0. 6(x) can also be regarded as the derivative of the step function 0 (x). The delta
function is not strictly speaking a function, but can be defined as the limit of a sequence of
functions.
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Time

FIGURE 3.10 Example o f sequence generation. The curves show the overlap o f the 
state Si at time t with each o f the embedded patterns £ /, , £f. The overlaps
were calculated using The parameters used were N  =  100, p — 4, A =  2,
r  =  8 using the step function kernel (3.59).

An intuitive picture o f this process consists o f an energy surface that has minima 
at each but which also tilts steadily while the system is in a particular state, 
so that a downhill move from £” to £^+1 occurs eventually. But this picture is a 
little deceptive, because the dynamics cannot be represented simply as descent on 
an energy landscape unless the connections are symmetric.

In general the scheme works well and is quite robust. Figure 3.10 shows an 
example using the step function kernel (3.59). The parameters A and r  must be 
chosen carefully however; in a detailed analysis Riedel et al. [1988] showed that 
some choices using (3.60) with large A can lead to chaotic behavior instead o f the 
desired sequence.

The essential idea can also be generalized in most o f the ways considered in Sec
tion 3.1. For example Gutfreund and Mezard [1988] demonstrated the applicability 
to the strong dilution model o f Derrida, Gardner, and Zippelius [1987] discussed on 
page 46.

Central Pattern Generators

Kleinfeld and Sompolinsky [1989] have applied the model just described to the cen 
tral p a ttern  gen era tor for swimming in the mollusk Tritonia diomedea. Central 
pattern generators are groups o f neurons, typically in the spinal cord, that collec
tively produce a cyclic sequence without either feedback from the controlled system 
or continuous control from the brain. There is no single pacemaker neuron. In some 
cases multiple patterns can be generated by the same set o f neurons. Patterns can 
be started, stopped, and modulated in period by external control inputs. In the 
case o f Tritonia, there are four neural groups that fire in a well-defined sequence. 
Modelling these groups by one unit each, Kleinfeld and Sompolinsky calculated the
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FIGURE 3.11 Architecture for counting 
pulses. The connections between the 
units (heavy lines) have fast and slow 
components, and are asymmetrical. The 
input is connected to all units with ran
dom dtl connections.

required connections from (3.54) and (3.55), and then verified that the network 
generated the appropriate sequence. Particularly impressive was the comparison 
o f their computed connection strengths with those measured experimentally— in 
Tritonia one can measure individual synapse strengths and identify delayed and 
non-delayed components. In every case where a synapse was found experimentally 
its sign was the same as that in the computed set.

Counting

Amit [1988] suggested a modification o f the same sequence generation scheme to 
count input pulses in a network. For counting we want each transition v —► v +  1 
to occur only when an input pulse is received. This can be achieved with the same 
architecture— using fast and slow connections— if we use A <  1. Then no transitions 
occur in the absence o f input (at T  =  0). The input pulse is arranged to apply an 
additional input to each unit. Here <j>i =  ±1 , uncorrelated with any o f the 
sequence patterns f f ,  and l +  A > / i > l  — A. Figure 3.11 shows the architecture.

If the system has been in state £? for a time long compared to r, the total input 
to unit i is given by

ii  +  A ff+1 without input pulse; . .
(V +  A£l' +1 +  nfc  with input pulse.

Without an input pulse the current state is stable because A <  1. With an input
pulse, there are two cases. If and £f? +1 have the same sign then they determine the 
sign o f hi. If they have the opposite sign, then fc  determines the sign of h*, favoring 

and equally. So the input pulse moves the state to a point approximately 
equidistant from £? and £*+1, but in the subsequent dynamical motion the delayed 
connections break the tie and carry the state forward to f  j '* 1, as desired.

Delayed Synapses

In the case G (t) =  6 (t — r) the long time connections simply correspond to delayed  
synapses that pass a given signal after a delay r. Equation (3.62) makes it clear
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that r  is also the time between transitions, so the rule (3.55) for the delayed synapse 
strengths may be written

wii =  ] j  E  w + * ) * # )  (3-64)
t=0,r,2r,...

if we regard the desired sequence as a time-varying pattern &(<). Equation (3.64) is 
now o f the Hebb form; the synapse strength depends on the product of presynaptic 
potential £j(t) and postsynaptic potential & (/ +  r) with the correct synapse delay. 
In general we would write

T
=  W  +  n r f jM d t  (3.65)

allowing also for different delays for different connections. Then we can compute 
the connection strengths by imposing the required sequence £i(t) on the network 
and letting the individual synapses “learn” according to (3.65). This is a more 
reasonable procedure for real neural circuits than is the abstract formulation (3.55).

The Hebbian form (3.64) or (3.65) rests on the assumption that the sequence 
transition time is the same as the synaptic delay time. But in fact more general 
sequences £»(£) that do not necessarily change at regular intervals may be learned 
using (3.65) [Coolen and Gielen, 1988; Herz et al., 1989; Kerszberg and Zippelius, 
1990]. There must be a range o f delay times in the network, with a broad 
distribution that covers the relevant time scales o f the sequence £*(£). Separate 
short-time connections wfj are not needed. The connections that become strong 
are those with delays that approximately match the time course o f the sequence 
itself. This can be seen as learning b y  selection , or reson an ce between the 
patterns to be learned and the natural modes inherent in the network [Toulouse et 
al., 1986; Dehaene et al., 1987].
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Optimization Problems
FOUR

We have viewed the Hopfield associative memory model as performing a recognition 
or retrieval task. But it can also be seen as solving an optimization problem— the 
network is expected to find a configuration which minimizes an energy function. 
There are many other such problems which arise in general optimization theory, 
with applications to technological and economic systems. What we usually call the 
energy would in those cases be called the cost fu n ction  or o b je c t iv e  fu n ction . 
The problems which have been most intensively studied are, like our associative 
memory of random uncorrelated patterns, extreme idealizations of the real situa
tions one wants to model, but one hopes to learn generic things from simple models 
amenable to mathematical analysis. Neural computational methods have recently 
been applied to some o f these problems, and in this chapter we will examine a few 
of them. As in the preceding chapters, the idea will not be to solve specific problems 
explicitly, but just to exhibit how to formulate them in terms of neural networks.

Before we start we should emphasize that when we formulate these problems 
“in terms o f neural networks” we are really constructing a particular kind o f par
allel algorithm for their solution. These algorithms lend themselves to a direct 
implementation in terms of the networks we have been studying, including the cir
cuits discussed in Section 3.4. Even without actually building a circuit, however, 
the algorithms can be used as a basis for computing solutions on a conventional 
computer. The analogy between these algorithms and circuits (or other physical 
systems) helps to give insight into how to tune their parameters so that they work 
optimally, whether in hardware or software.

This chapter deals mainly with discrete systems where there is a large but finite 
set of possible solutions to the optimization problem. Typically if the problem is o f 
“size” iV, then there are order eN or N\ possible solutions, o f which we want the 
one that minimizes the cost function. This kind o f problem is often referred to as a 
com b in a tor ia l op tim iza tion  p rob lem .

71
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FIGURE 4.1 The class o f NP problems assum
ing that P^NP. Under this assumption it can 
be shown that there are NP problems that 
are neither NP-complete nor in P.

Optimization problems can be divided into classes according to the time it takes 
to solve them. If there exists an algorithm that solves the problem in a time that 
grows only polynomially (or slower) with the size N  o f the problem, then it is said 
to be polynomial and to belong to class P. P is a subclass o f another class called 
NP (non-deterministic polynomial). NP problems are those for which one can test 
in polynomial time whether any “guess” of the solution is right.1 An important 
subclass o f NP is that o f the NP-complete problems. They are the hardest NP- 
problems and are loosely characterized as follows: if one could find a deterministic 
algorithm that solves one NP-complete problem in polynomial time, then all other 
NP problems could be solved in polynomial time. In that case P, NP, and NP- 
complete would all be the same class, but it is most likely (though not proven) that 
P^NP. The probable situation is sketched in Fig. 4.1. Empirically the time it takes 
to solve an NP-complete problem tends to scale exponentially with the size N.

A more extensive introduction to combinatorial optimization problems and 
NP-completeness at a mathematically higher level can be found in the books o f 
Papadimitriou and Steiglitz [1982], Garey and Johnson [1979], and Mezard et al. 
[1987, pages 307-335].

4.1 The Weighted Matching Problem
We first examine the w eigh ted  m atch in g  p rob lem . One has a set o f N  points 
with a known “distance” dij between each i j  pair. The points may be taken as ran
domly located in some space, in which case dij can be the real [Euclidean] distance, 
or the points may represent abstract entities and their relations. For theoretical 
analysis one often takes the dij as independent random variables with some distri
bution P (d ij). The problem is to link the points together in pairs, with each point 
linked to exactly one other point, so as to minimize the total length o f the links. 
Figure 4.2 shows an example. Practical examples might include matching pairs o f

1 Strictly speaking, these definitions only hold for decision problems where the aim is a “yes” or 
“no” answer. But it is easy to generalize to optimization problems by posing decision problems of 
the form “is there a solution with cost less than CTJ.
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(a) ^
FIGURE 4.2 Illustration o f 
the weighted matching prob
lem, showing a good (a) and a 
bad (b) solution to the same 
problem.

electronic components (e.g., loudspeakers for stereo), optimal scheduling o f jobs for 
two equivalent processors, and matching students to schools.2

Weighted matching is not actually a very hard problem computationally; it is 
not NP-complete, and fast polynomial algorithms are known for its solution [e.g., 
Lawler, 1976]. Special cases o f the problem may also be solved analytically [Orland, 
1985; Mezard and Parisi, 1985, 1988]. Nevertheless it serves as a simple example to 
demonstrate the neural network approach.

We formulate the problem in terms o f a stochastic McCulloch-Pitts network 
like the one used for the associative memory problem in Section 2.4, except that 
we use 0/1 rather than ±1  units. We assign a unit n ,j, i <  j ,  to each pair o f 
sites in the problem, making N (N  — l ) /2  units in all. Each candidate solution of 
the problem corresponds to a state o f the network with =  1 if there is a link 
connecting point i and point j  and riij =  0 if there is not. Our problem is to find 
a way o f specifying the values o f the connection strengths Wij^i between the units. 
In a symmetric network there are N (N  — 1)[N (N  — 1) — 2]/8 such connections.

In the associative memory problem it was quite simple to choose an energy 
function (2.30), and thereby the appropriate connection weights (2.9). The situation 
here is one step more involved because we have to deal explicitly with constraints. 
We have to minimize the total length o f the links

This constraint says that each point should be connected to exactly one other point; 
we define ntj =  when j  <  z, and take na =  0 .

is instead to add a p en a lty  term  to the energy which is minimized when the

(4.1)
i<j

subject to the constraint that
for all i . (4.2)

J

It is difficult to enforce the constraint rigidly from the beginning. Our strategy

2In the last case, there are clearly two types of points, students and schools. Links d{j (representing 
compatibility or preference) are possible only between one type and the other; the underlying 
graph is called bipartite. It is easy to see how to modify the neural network implementation for 
the bipartite case.
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FIGURE 4.3 Stochastic network to solve a four- 
point weighted matching problem. There is one 
unit for each pair o f points. The connections 
shown are all inhibitory with strength —7 . The 
distance information is in the thresholds (not 
shown); unit ij  has threshold d^ — 7 .

constraint is satisfied. Thus we write down a total effective energy or cost function

+  2  ~~ 5 - '  Uij)  *
i<j i j

We can now build or simulate a network with this energy function. If we multi
ply out the summations in (4.3) we obtain constant terms, linear terms proportional 
to one njj, and quadratic terms with two n^-’s. The quadratic terms can be rep
resented by connections wij^i between the units, while the linear terms can be 
accounted for with thresholds.

To get the details correct in this 0 /1 case, it is easiest to go back to the stochastic 
evolution rule, given by (2.48) for the ±1  case. We reformulate this rule in terms 
o f the flip  p ro b a b ility  that the state changes at a given step:

P r o b K  - » ; , ) =  1 +  etp^ g tf) (4.4)

where
A  Hii =  H {n ,i j ) - H { n ii) .  (4.5)

Here =  0 and n -  =  1 or vice versa, but the reformulation is also valid for the 
dbl case. It is easy to show that it is exactly equivalent to (2.48). Equation (4.4) 
makes clear that changes that decrease the energy are more likely than those that 
increase it. In the deterministic limit (3 —► oo, only changes with A H{j <  0 are 
accepted.

For the present problem (4.3) may be used to derive

A H (j =  (d {j - i  +  j Y l n i k + 'r 1 2 A n »'i (4 -6)
k^j k^i

where A =  n^ — riij. If the coefficient o f A n tj is positive, then flips from ntj =  1 
to =  0 are more likely than vice versa, while if the coefficient is negative the 
reverse is true. Thus the coefficient o f A nij plays the same role here (except for 
sign) that hi did in the memory network. In the deterministic limit j3 —+ oo, unit ij  
will turn on if the coefficient is negative, and off if it is positive. Comparing with
( 1 .1 ) we see that d(j — 7  is the threshold for unit i j , and the remaining terms in 
(4.6) say that it receives input o f strength —7  (note the sign) from all other units
that represent links to or from points i or j .  In general Wij^i =  —7  whenever ij
has an index in common with kl\ otherwise Wij^i =  0. Figure 4.3 shows a simple
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example for N  =  4.
We have thus found the necessary thresholds and connection strengths in the 

network. The values of these are rather easy to understand: the contribution dij to 
the threshold o f unit i j  just reflects the fact that without the constraint (4.2) the 
total length o f links would be minimized by not having any links at all. The other 
contribution to the threshold, which has the opposite sign, counteracts this so that 
some positive number o f links is allowed. Finally, the mutual inhibition represented 
by the discourages configurations with more than one link coming in to any
one point.

The magnetic analogy is interesting: the dij-dependent threshold term is like 
a random external field —dij, and the mutual inhibition terms are like antiferro
m a gn etic  in teraction s between all pairs o f spins.3

To find a solution o f the weighted matching problem, one has to run this net
work, following its stochastic dynamics and measuring the resulting average outputs 
(riij). This is a form of M o n te  C arlo  sim ulation  [Metropolis et al., 1953; Binder 
and Heerman, 1988]. Alternatively one could run a version of the network with 
continuous-valued units, as discussed in Section 3.3, and simply use the steady 
state value o f n,j (between 0 and 1 ) in place of (riij). In either case, if (riij) is near 
1, it means the solution has a link between point i and point j .  If it is near zero, 
there is no link. At low temperatures, the system will have (n ,j) ’s predominantly 
near 1 or 0 .

There is the question o f how big 7  should be. A reasonable approach is to choose 
it about the same size as typical d ,j ’s. Then there will be about the same priority 
on satisfying the constraint as on having short links. If it is chosen much smaller, we 
will tend to get solutions with very few links, violating the constraint (4.2), while 
in the opposite limit we will find configurations which satisfy the constraint but 
probably are not composed o f especially short links. It might be useful to adjust 
7  while running the network, perhaps relaxing the constraint initially and then 
gradually enforcing it.

The system may take a long time to come to equilibrium if it is started out 
at the temperature at which we want to measure the average outputs. If we start, 
say, with an allowed configuration (i.e., one that satisfies the constraint), then any 
single change we make in the output state o f a unit will take us to a configuration 
which violates the constraint. This tends to increase H  (if 7  is large enough), so 
the change will be unlikely at low T. Thus the system will tend to get stuck in 
any configuration which satisfies the constraint, even though there may be better 
configurations elsewhere.

A useful strategy may be to start the network at a relatively high temperature 
and gradually cool it down. When this is done in a simulation o f the network, it 
is called s im u lated  annealing [Kirkpatrick et al., 1983], by analogy to the real 
annealing an experimental physicist or metallurgist does in the laboratory: cooling

3  *Remember that in the ferromagnet (page 30) all the interactions wij were positive. Negative 
Wij’s are called antiferromagnetic interactions.
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(a) (b)
FIGURE 4.4 The travelling 
salesman problem, showing a 
good (a) and a bad (b) solu
tion to the same problem.

the sample slowly so that it finds the true stable phase at low temperature where 
measurements are to be made. Simulated annealing may also be applied to many 
optimization problems without first constructing a network formulation; for recent 
reviews see Johnson et al. [1989], Romeo [1989], and the forthcoming special issue 
o f Algorithmica on simulated annealing [1990 or 1991].

Another related approach is m ean  fie ld  annealing [Soukoulis et al., 1983; 
Peterson and Anderson, 1987; Bilbro et al., 1989] where we iteratively solve the cou
pled mean field equations for the averages (riij). This can be done by a continuous
valued network, as noted on page 55. It has proved to be better than simulated 
annealing in several optimization problems [Van den Bout and Miller, 1988, 1989; 
Cortes and Hertz, 1989; Bilbro and Snyder, 1989]. We discuss it further in Sec
tion 7.1 on page 171.

4.2 The Travelling Salesman Problem
The travelling salesman problem is similar to the weighted matching problem, but is 
much harder to solve by computer; it is an NP-complete problem. Again we have N  
points or cities in a space with distances dij between them. The task is to find the 
minimum-length closed tour that visits each city once and returns to its starting 
point. Figure 4.4 shows an example. Practical applications include scheduling o f 
truck deliveries, o f airline crews, and o f the movements o f an automatic drill-press 
or robot arm. In many applications the “distances” dij are abstract quantities not 
related to a Euclidean distance between points in a real space; they may not even 
satisfy the triangle inequality dij <  d,* +  dkj.

There is an enormous amount o f literature about the travelling salesman prob
lem, which has become a standard test-bed for methods of combinatorial optimiza
tion; see e.g., [Lawler et al., 1985]. A neural network approach was first suggested 
by Hopfield and Tank [1985, 1986]. Initial optimism was somewhat quenched by 
a paper o f Wilson and Pawley [1988] showing that the original formulation didn’t 
work very well. But then many were inspired to find improved formulations, and 
several effective approaches are now known. Similar approaches have been applied 
to many other combinatorial optimization problems [e.g., Tank and Hopfield, 1986; 
Ramanujam and Sadayappan, 1988; see also recent conference proceedings].
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FIGURE 4.5 Network to solve a four- 
city travelling salesman problem. Solid 
and open circles denote units that are 
on and off respectively when the net
work is representing the tour 3 -2 -4 -1 . 
The connections are shown only for 
unit ri22\ solid lines are inhibitory con
nections o f strength — , and dotted 
lines are uniform inhibitory connections 
of strength —7 . All connections are 
symmetric. Thresholds are not shown.

We again choose stochastic binary units nla to represent possible solutions: 
riia =  1 if and only if city i is the ath stop on the tour. There are N 2 units in all. 
The total length o f the tour is

L — ^   ̂ (4*7)
ij,a

and there are two constraints:
^  riia =  1 (for every city i) (4.8)

a

and
y ;  riia =  1 (for every stop a) . (4.9)

i

The first constraint says that each city appears only once on the tour, while the 
second says that each stop on the tour is at just one city.

Now we can construct the cost function by adding to the length L two penalty 
terms which are minimized when the constraints are satisfied:

H ~  % Y l dii nia(ni ’a+ 1 +  ni>a- 1')
ij,a

+ 1 [e ( i - e »'.)2+ e ( ‘ - e ^ ) 1 <4 i°)a i i a

As in the weighted matching problem, calculating the A H  resulting from a change 
in an nta now allows us to identify the connection parameters of the network. A 
network implementation is possible because multiplying (4.10) out yields terms no
higher than quadratic in the nia’s. We leave the details for the reader, and simply
summarize the result, illustrated in Fig. 4.5. Suppose we arrange our units into a

O

Stop 
2 3

• 0  o  
o 
o
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square array in which each row represents a city and each column a stop (first, 
second, etc.) in the tour. We employ p e r io d ic  b o u n d a ry  con d ition s , so that 
the top and bottom  elements in a column are regarded as neighbors, as are the 
leftmost and rightmost elements in a row. Then from the first term of (4.10) we 
get connections o f strength —dij between all units in one column and all units in 
the columns to the left and right o f it. The constraint terms proportional to 7  give 
inhibitory connections between all pairs of units within a column and between all 
pairs o f units within a row. They also provide an overall compensating positive 
input (or negative threshold), without which all units would simply turn off. Note 
that order N 3 connections are needed for an N  city problem.

A solution for a given set o f cities and distances can thus be found in the same 
way as in the weighted matching problem, either by running a physical network or 
by simulation. Using binary threshold units does not work well; we rapidly become 
stuck in a local minimum with a poor tour length. So we must use either stochastic 
units with simulated annealing, or continuous-valued units. The former generates 
better tours but is more time consuming. Hopfield and Tank [1985] used the electri
cal circuit implementation o f continuous-valued units (Fig. 3.5 on page 58), simulat
ing the equations o f motion on a computer. This demonstrated nicely that parallel 
circuits of simple units could solve hard combinatorial optimization problems.

Note that there are 2N  equivalent formal solutions for each optimal tour, since 
we don’t care where we start the tour or which direction we go around it. However, 
the network represents these possibilities by different configurations. One or two 
cities can be clamped (e.g., so city 1 is always at stop 1 ) to break this degeneracy 
if desired, with little effect on the algorithm’s overall performance.

The original formulation o f Hopfield and Tank represented the constraints dif
ferently, using three independent parameters A, £ ,  and C  for the penalty functions 
instead o f our single 7 . It turned out that the success o f the network was crucially de
pendent on the correct choice o f these parameters; only in a small low-dimensional 
region o f the A -B -C  space does the method give valid tours satisfying the con
straints [Hegde et al., 1988]. Thus most choices gave poor results, particularly as 
the network size is scaled up towards realistic problems [Wilson and Pawley, 1988]. 
Our formulation is more robust [Brandt et al., 1988]— in effect any reasonable choice 
o f 7  is equivalent to a compatible set of coefficients A, B, and C — but the tours 
produced are not quite so good. Various other modifications o f the Hopfield-Tank 
architecture have also been explored; see e.g., Kahng [1989].

It is not even essential to use penalty functions to enforce the constraints. Van 
den Bout and Miller [1988, 1989] have suggested a modification o f the dynamics 
for continuous units that keeps the TV-city constraint (4.8) continuously satisfied. 
This idea has been developed further by Peterson and Soderberg [1989], and both 
groups get encouraging results.

Even with these improvements the solutions found by these networks are gen
erally not as good as those found by the best conventional algorithms; the system 
still gets stuck in a local minimum. It is likely that the root o f the problem lies in 
the underlying dynamics o f the network. We discuss this for the stochastic network, 
but the point also applies to the continuous-valued network.
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A good conventional algorithm [Lin and Kernighan, 1973] never makes the 
kind of moves between constraint-satisfying configurations and constraint-violating 
ones that we have in our stochastic dynamics. It operates strictly within the set o f 
constraint-satisfying configurations and can get from one to another without going 
through others which have high energy values. It should be possible to formulate 
a better dynamical rule in which the elementary transitions do not involve just 
one unit at a time, but rather several units changing together in such a way as to 
describe, for example, interchanging the positions o f two successive cities on the 
tour schedule. It is apparently this feature o f such algorithms which is most crucial 
for good performance [Baum, 1986]. There is some recent work on neural network 
implementations in this direction [Lister, 1990].

Another algorithm called the elastic net a lgorith m  for the travelling salesman 
problem has been developed by Durbin and Willshaw [1987]. It seems to work well 
at least for problems with cities in a low-dimensional Euclidean space. We discuss 
it further in Chapter 9.

Besides computer algorithms, there have been attempts to solve the travelling 
salesman problem analytically for particular distributions o f the dij [Mezard and 
Parisi, 1986; Krauth and Mezard, 1989]; see Palmer [1988] for an overview. These 
approaches are based on a statistical mechanics formulation o f the problem, using an 
energy function like (4.10). There are solutions which appear to give good agreement 
with the numerical simulations [Kirkpatrick and Toulouse, 1985], but it is not yet 
known whether they are exact.

4.3 Graph Bipartitioning
Our third example o f a combinatorial optimization problem and its formulation 
in terms of a network is g rap h  b ip artit ion in g  [Fu and Anderson, 1986]. As an 
example o f the problem from chip design, consider A  circuit elements that we want 
to put onto integrated circuit chips. If they do not all fit onto one chip we would like 
to have half on one chip and the rest on another, in such a way that the number o f 
wires between the two chips is as small as possible. Choosing which circuit elements 
to put on which chip is then an optimization problem with the number o f wires as 
the cost function.

We begin with a general graph , a set of N  points or vertices  and a set of 
edges which connect pairs o f the vertices. AT is taken to be even. A simple example 
o f a graph would be a set of points on a regular lattice with edges connecting only 
nearest-neighbor vertices. Here we will focus instead on ra n d om  graphs in which 
there is a fixed probability p o f a given vertex being connected to any other. The 
average number pN  o f other vertices to which a given one is connected is called the 
va len cy  o f the graph. We can consider both extensive valency (valency o f order AT, 
or p o f order unity) and intensive valency (valency o f order unity, p oc l/N). We 
will be mostly concerned with the extensive case. Given such a graph, the task is
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FIGURE 4.6 Example o f a graph 
bipartitioning problem. The 
dashed lines show two different 
partitions, one with cost 6 and 
one with cost 5. An even better 
solution is possible.

to divide the vertices into two sets o f equal size in such a way as to minimize the 
number o f edges going between the sets. Fig. 4.6 shows an example.

Let us define Cij =  1 if vertices i and j  are connected and Cij =  0 if they are 
not. At each vertex define a variable Si which is +1 if the site is in one set and —1 
if it is in the other. Then we want to minimize

L = - ^ Q j S i S j  (4.11)
W)

(where (ij)  means a sum that counts each distinct pair once), subject to the con
straint

£ >  =  0 . (4.12)
I

In magnetic terms this is a randomly diluted ferromagnet with a constraint o f zero 
total magnetization.

A way to enforce the constraint softly (in analogy to (4.3) and (4.10)) is to add 
to the effective energy a term that penalizes total magnetizations different from 
zero. Thus we use a cost function

H  =  -  £ CijSiSj + / / ( £ > ) 2 . ( 4 - 1 3 )

(0) *

If we multiply out the last term, we obtain simply

H =  N h ~ Y ,  WijSiSj (4.14)
W)

where
Wij — Cij — 2/ i . (4.15)
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This is exactly o f the Hopfield form  (2.24) (apart from the unimportant constant 
N fi), and is thus easily minimized by a network.

Note that a choice o f fi between 0 and 1/2 makes some of the connection 
strengths excitatory and some inhibitory. Viewed as a magnetic system, this pro
duces a situation with random interactions o f both signs between “spins” S%, making 
the system into a spin  glass. This kind o f problem has been studied extensively in 
statistical mechanics; see, for example, Binder and Young [1986] and Fischer and 
Hertz [1990]. In the extensive-valency case, the interactions are effectively o f infinite 
range ( does not depend on the distance between vertices i and j ) ) which turns 
the problem into the much studied S h errin g ton -K irk p atrick  m o d e l [Sherrington 
and Kirkpatrick, 1975; Mezard et al., 1987]. This model has been found to have 
many novel and interesting features such as ultrametricity and replica symmetry 
breaking, the details o f which are beyond the compass of this book.

4.4 Optimization Problems in Image Processing
The previous three examples were o f combinatorial optimization problems, where 
there are very many possible configurations arising from different combinations 
o f the basic ingredients. The total number o f possible configurations is typically 
exponentially large in the problem size N  and a direct search is impractical for 
reasonable values o f N. We now discuss a class o f problems that do not all have the 
combinatorial aspect, but are nevertheless hard optimization problems amenable 
to solution by parallel networks. There are many aspects in common with the 
preceding problems. There may also be connections to parallel processing in real 
nervous systems (the visual cortex), though we do not discuss this in detail.

The general kind o f problem is the recon stru ction  o f an image from noisy or 
blurred data. The data are given as a set o f values dj for each o f a 2-dimensional 
array o f p ixels  (picture cells— small elements o f an image). The actual values d,- 
might represent brightness, or a first or second spatial derivative o f brightness, or 
a time derivative o f brightness, or binocular disparity (the small displacement of 
an image point between two eyes), or some other spatially varying quantity. The 
data might be binary (e.g., bright/dark), or continuous-valued, say in the range 0 

to 1. We take the continuous case, which is usually called gray -level data  in this 
context.

We want to design a network that takes the noisy data d,- as inputs and pro
duces outputs Vi that represent a possible reconstructed image. Figure 4.7 shows an 
example in one dimension. The problem is to find the architecture and parameters 
(connection strengths, thresholds, etc.) o f that network to make the output give 
the best reconstruction.

We should emphasize that reconstruction always involves assumptions or a pri
ori knowledge about the image, such as that it has smooth surfaces, straight edges, 
or whatever. The interesting problems occur when we do have reasons for such prej
udices. If we have no such knowledge or expectation, then we can of course do no
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FIGURE 4.7 Fitting a smooth curve to noisy 
data. The data values d{ are given at a dis
crete set o f locations . The aim is to fit 
them with a smooth curve as shown, with 
value Vi at point X{.

better than the dirty data themselves. Problems where there is insufficient informa
tion in the data are often called ill-p osed  prob lem s. Techniques for transforming
them into well-posed problems by introducing constraints (such as a smoothness
requirement) are the subject o f regu larization  th eory  [Poggio et al., 1985].

In the paper of Koch, Marroquin, and Yuille [1986], on which our presentation 
here is based, the specific problem arose in stereo vision. The data are binocular 
disparity values for elements o f the image, given point by point over the field of view. 
The ultimate task is to reconstruct a depth map o f the image. Here it should be 
reasonable to assume that surfaces in the image are fairly smooth except at edges, 
and that the edges themselves are straight or smoothly curved. We will make these 
assumptions below, although different assumptions might be necessary in another 
kind o f task.

We could formulate this problem with either stochastic binary units (Sec
tion 2.4) or continuous-valued units (Section 3.3). Because o f the continuous nature 
o f the output we choose the latter possibility in most o f the discussion here. If we 
were to do it with binary stochastic units, we would have to read off the solution as 
average values o f the unit outputs. The temperature parameter would also have to 
be set fairly high in order not to get these averages concentrated near ± 1 . Similarly, 
if we use analog units we have to choose the function g(u) so that the units are not 
operating near saturation.

Reconstructing a Smooth Surface

Things are relatively simple if we know that our image is o f a smooth surface without 
edges. The computation can be done by a network o f linear elements, g(u) =  u. We 
treat the one-dimensional case here, but (for the smooth surface problem, anyway) 
the generalization to higher dimensions is trivial. We approach the problem by 
finding a cost function whose minimum gives the best reconstruction. This allows 
us to identify the appropriate parameters for the neural network implementation.

Two considerations govern our choice o f cost function: smoothness and fidelity 
to the data. We therefore write an H  with two terms reflecting these priorities:

A

1 - 1  I I I - 1  I I I l I y 
Xi

H  =  \k -  Vi+1f  +  IA Y^(Vi ~  di) 2

i i
(4.16)
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where Vi is the activation of unit i. The relative weights placed on the two aspects
will be reflected in the choice o f the relative magnitudes o f k and A. For a given
choice o f these parameters, the optimal solution is the one which minimizes H . 
Since it is just a quadratic form H  has only one minimum, so here we do not have 
to worry about spurious stable states.

We want our network to have a dynamics which allows it to relax into the state 
with the minimum H . Picturing H (V i, V2 , -.-Viv) as a surface in the AT-dimensional 
F-space, we want to slide downhill until we settle into this valley. For now we do 
this in the simplest way, using sufficient frictional drag that we do not overshoot 
and go up the other side o f the hill. This can be described by a grad ien t descen t

rUfe: ^  9H a m
* TW  =  ~ d v , -  (417)

That is, we slide downhill with a speed proportional to the slope o f the hill.
In the present problem, (4.17) gives

K T ^ -  =  K(Vi+ 1  +  v ;_ i -  W i) +  A{di -  V i). (4.18)

The first term is just a discrete lattice version o f a second derivative. So if there were 
no priority on the data at all (i.e., A =  0), then (4.18) would just be a d iffusion  
eq u a tion  and the Vi would slowly smooth out until they all had the same value. 
With nonzero A, this tendency is mitigated by the second term, which tends to pull 
the local value of Vi back toward the data value di. Thus we tend to get a locally 
smooth surface (or curve in one dimension) which runs as close as it can to the 
data points without becoming too rough.

Equation (4.18) is the same kind o f equation as (3.31) or (3.32) that we used 
for associative memory, but with linear elements g(u) =  u and extra terms Ad,- 
proportional to the data. We can construct an electrical circuit to solve the problem, 
as in Fig. 3.5. Comparing with (3.44), we identify kt with C , k with the conductance 
l /i2 i fi+i between neighboring elements, A with p” 1, and Ad,- with an external current 
injected at node i. Thus this computation can be implemented on a simple linear 
network (Fig. 4.8) that will relax to its equilibrium configuration in a time of order 
r.

We can also imagine a simple mechanical network (Fig. 4.9) which will do the 
same computation. The Vi are represented by masses connected by springs with 
spring constant A to the data points dj and by springs o f spring constant k to 
their neighboring masses. To get our equations o f motion in exactly the form we 
wrote above, we then have to immerse the whole system in a viscous medium so 
that it moves in the ov e r -d a m p e d  lim it, with velocity proportional to the applied 
force. The exact form is not important. In the opposite limit o f weak friction the 
masses will wiggle back and forth many times before settling into their equilibrium 
positions, but the final positions will be the same. To get the fastest convergence 
possible, we could set the friction just strong enough so that the masses almost, 
but not quite, overshoot their final positions. This is called cr itica l dam pin g , and
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FIGURE 4.8 Electrical implementation o f the network with cost function (4.16). 
The raw data d,- are represented by external currents Ad,- injected at the nodes, 
while the smoothed outputs are given by the node voltages Vi. The capacitance C  
is /cr, the resistance p is 1 /A .

FIGURE 4.9 Mechanical implementation o f the network with cost function (4.16). 
The raw data d,- are represented by springs with spring constant A attached to 
anchors at locations d,-, while the smoothed outputs are given by the final posi
tions Vi o f the balls. An offset iL must be subtracted from both d,- and V*, where 
L is the natural length of each spring (o f spring constant k) in the main chain. 
The data springs A are shown displaced on alternate sides o f the main chain for 
clarity. Damping is essential, but not shown.

avoids the very slow approach at the “bottom  o f the valley” that occurs in the 
over-damped limit (4.17): since the slope gets very small in the valley bottom, so 
does the velocity.

Critical damping can be achieved in the electrical circuit too, but requires 
inductive elements or additional amplifiers. Inductors are big and expensive, and 
are therefore rarely used. In a software implementation, it does help to add this 
kind o f refinement. We will meet examples where people have added “inertia” in 
this fashion in later chapters.

Discontinuities in the Image

The foregoing network would not work very well for an image with discontinuities,
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FIGURE 4.10 Fitting a piece- 
wise smooth curve to noisy 
data. Like Fig. 4.7 but with 
discontinuity units that allow 
a break in the fitted curve.

which it would try to fit with a smooth curve. The solution lies in adding to the 
system another kind of unit that marks the discontinuities. Then the network can 
find piecewise-smooth solutions, as shown in Fig. 4.10. Because o f the all-or-nothing 
character o f discontinuities, it is appropriate that the units marking them be binary
valued. We also make them stochastic, for reasons to be seen below. In the image- 
processing literature the discontinuities are called line processes.

Again in one dimension, we put one discontinuity-marking unit between every 
pair o f adjacent F-units. We use 5,- for the one lying between V* and V*+i. The 
value Si =  + 1  represents the hypothesis that there is a discontinuity in the fitted 
curve between points i and i - f  1, whereas Si =  — 1 means there is none. We modify 
our energy function in two ways:
■ The energy cost for a change l — Vi between adjacent pixels is removed if 

the Si between the pixels is + 1 .
■ In order to prevent the network from putting in discontinuities everywhere 

(and thereby minimizing the data term in (4.16) absolutely), we assign a high 
enough cost for each Si which is + 1  so that there aren’t too many o f them.

These changes lead to

h  =  hK £  K 1 -  -  ^ o 3 +  E w  -  d«)2 + # * £ $ .  (4 -19)
i i i

In an electrical network implementation, the link l / i ^ + i  between a neighbor
ing pair of V'-units must be cut when the binary 5 -unit between them is on ( + 1 ). 
Each binary unit Si receives in turn an input hi (the coefficient o f 5* in (4.19)) 
which is a sum of two terms: a positive one proportional to the square o f the differ
ence between the neighboring F ’s, and a fixed negative one — fi. If the first exceeds 
the second, the unit will tend to fire (5,- =  4-1). The first is simply proportional to 
the power dissipated in the resistor Rij when uncut.

We anticipate that there may be parts o f the image which look initially as 
though they have a discontinuity, but eventually turn out not to need one, or vice 
versa. It is therefore useful to have the 5-units spontaneously trying out hypotheses 
about the presence or absence o f discontinuities, which is why we chose stochastic 
units. We might also want to tune the parameters /c, A, and \i as the network relaxes.
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For example we might strongly penalize discontinuities initially, and later become 
more tolerant.

It is obviously most natural in this problem that the F-units be analog and the 
5-units be binary. We can, however implement the network solely with stochastic 
binary units if we choose the parameters carefully. The temperature must be large 
compared to k and A so that the average values o f these units respond more or less 
linearly to their inputs, while it must be small compared to fi so that the 5 -units 
are not indecisive. Alternatively one can perform the computation with all analog 
units if the 5-units are gradually turned up into the large-gain (large /?) regime 
[Cortes and Hertz, 1989].

Two Dimensions

We can generalize our treatment to two dimensions, and here another interesting 
complication shows up. We start with the obvious generalization

H = h* E K1 - sv ) w ~vi)2+Ew -d*)2+̂ E % (4-2°)
(O') * (0 )

where (ij)  means a pair of sites which are nearest n eigh bors  in the pixel lattice. 
Figure 4.11(a) shows the location o f the units.

But in the presence of noise this can lead to isolated discontinuities, as in 
Fig. 4.11(a), whereas we expect that the image should break up into continuous 
regions bounded by discontinuity contours. The contours themselves should usually 
join up into continuous closed curves as in Fig. 4.11(b). This can be encouraged by 
adding a term [Hertz, 1989]

#iooP =  —7  X /  SijSjkSuSu (4.21)
(ijkl)

to the above energy. The notation (ijk l)  means that the sites Vi,Vj,Vjfc,V/ are 
successive nearest neighbors, forming a square cell (or p laqu ette ) in the pixel 
array. Figures 4.11(b) and (c) show by example that # i0op contributes — 7  for every 
cell except one in which a discontinuity contour terminates, where it gives + 7 . Thus 
it puts a price on having too many such terminations (Geman and Geman [1984] 
suggest another way o f doing this). Physicists may recognize H\oop as a gauge field 
energy, or as a penalty for frustrated plaquettes.

Notice that the network now has units which do more than compute a weighted 
linear combination o f their inputs. The 5*j units, for example, must compute sums 
of products o f two V*’s and o f products of three other 5 ’s. So they are a little more 
complicated than the simple elements we used previously. On the other hand, this 
problem is simpler to implement than some others were, because the connections 
are all local— each unit only has input from nearby ones.

The approach to depth reconstruction discussed here can be applied to a num
ber o f other tasks in image processing. Problems such as surface interpolation,
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FIGURE 4.11 Two-dimensional image processing with discontinuity units, (a) The 
numbered dots are the pixel locations where the Vi units are situated. Between 
each neighboring pair o f Vi units lies an Sij unit, depicted by a horizontal or ver
tical line segment. When on (Sij =  +1 ), shown by a long line, it marks a dis
continuity between those pixels. Only 56,io is shown on. (b) Now 10 Sij units are 
shown on, forming a discontinuity contour that separates one image region from 
another. Note that every square cell (such as A, B, or C) has an even number of 
positive V s  around it, because the discontinuity contour leaves each cell that 
it enters. Thus (4.21) gives — 7  for all cells, (c) Like (b) but with an open con
tour. The cells A and B at the ends o f the contour have an odd number o f posi
tive Sij ’s, and therefore contribute + 7  to the energy.

edge detection, shape from shading, velocity field estimation, color determination, 
and structure from motion should all be amenable to such a neural network ap
proach [Koch, Marroquin, and Yuille, 1986]. The computations can easily be done 
in parallel, and can be put onto VLSI chips [Koch et al., 1988]. A “silicon retina,” 
incorporating both photoreceptors and network smoothing circuits (like Fig. 4.8) 
has also been fabricated in VLSI [Sivilotti et al., 1987; Mead, 1989].
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Simple Perceptrons
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In all the problems we have studied so far, it has been possible with a modicum 
o f cleverness to figure out a priori how to choose appropriate connection strengths 
for a network. This may not always be practical however, because it may involve a 
large optimization problem or a large matrix inversion. It is often easier to adopt an 
iterative approach, in which appropriate it^ ’s are found by successive improvement 
from an arbitrary starting point. We can then say that the network is learning the 
task.

This chapter and the next two are devoted to su perv ised  learning. Recall 
from Chapter 1 that there are two general learning paradigms, supervised and un
supervised learning. In supervised learning the network has its output compared 
with known correct answers, and receives feedback about any errors. This is some
times called learn ing w ith  a teach er; the teacher tells the network what the right 
answers are, or at least (in reinforcement learning) whether or not its own answers 
are correct. In unsupervised learning there is no teacher and no right and wrong 
answers; the network must discover for itself interesting categories or features in 
the input data. Unsupervised learning is discussed in Chapters 8 and 9.

We usually consider networks with separate inputs and outputs, and assume 
that we have a list or tra in in g  set o f correct input-output pairs as examples. 
When we apply one of the training inputs to the network we can compare the 
network output to the correct output, and then change the connection strengths

to minimize the difference. This is typically done incrementally, making small 
adjustments in response to each training pair, so that the u^j’s converge— if it 
works— to a solution in which the training set is “known” with high fidelity. It is 
then interesting to try input patterns not in the training set, to see whether the 
network can successfully gen eralize  what it has learned.

89
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FIGURE 5.1 Perceptrons. (a) A simple perceptron which (by definition) has only 
one layer, (b) A two-layer perceptron. Inputs, shown as solid circles, perform no 
computation and are not included the count of layers.

5.1 Feed-Forward Networks
In this chapter and the next we study supervised learning in the context of a 
particular architecture: layered  feed -forw a rd  netw orks. It is particularly simple 
to understand the learning process in this case. Note also that real neural structures 
in the brain are generally layered, and often largely (but not totally) feed-forward. 
We will turn to learning in more general networks in Chapter 7. Networks that are 
not strictly feed-forward, but include direct or indirect loops o f connections, are 
often called recu rren t netw orks. This includes the networks o f Chapters 2 and 3 
as well as those considered in Chapter 7.

Layered feed-forward networks were called p ercep tron s  when first studied in 
detail by Rosenblatt and his coworkers 30 years ago [Rosenblatt, 1962]. Figure 5.1 
shows two examples o f perceptrons. There is a set o f input terminals whose only 
role is to feed input patterns into the rest o f the network. After this can come one or 
more intermediate layers o f units, followed by a final output layer where the result 
o f the computation is read off. In the restricted class o f feed-forward networks under 
discussion, there are no connections leading from a unit to units in previous layers, 
nor to other units in the same layer, nor to units more than one layer ahead. Every 
unit (or input) feeds only the units in the next layer. The units in intermediate 
layers are often called h id d en  units because they have no direct connection to the 
outside world, neither input nor output.

There are two conventions in use for counting the number o f layers in the 
network; some authors count the input terminals as a layer, some do not. We 
choose not to count them; we say for example that a network with one hidden layer 
is a two-layer network. This convention is becoming more frequently adopted, and 
seems more logical since the input “units” play no significant role. Note that an 
iV-layer network has N  layers o f connections and N — 1 hidden layers.
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Feed-forward networks have by definition asymmetric connection matrices ; 
all connections are unidirectional.1 In general this means that there is no energy 
function; only with symmetric connections can the existence of an energy function 
be guaranteed. Thus we cannot employ equilibrium statistical mechanical methods 
here, for those rely on an energy function. We can however do some simple statistical 
calculations if we use stochastic units.

In this chapter we restrict ourselves further to one-layer feed-forward networks. 
These are often known as s im ple p ercep tron s . There is a set o f N  inputs, and an 
output layer, but no hidden layers. Figure 5.1(a) shows an example and defines our 
notation; the inputs and outputs are called £* and O, respectively. Its computation 
is simply described by

Oi =  g(hi) =  flrQT)u/i*&) (5.1)
k

where g(h ) is the activation function computed by the units. g{h) is usually taken 
to be nonlinear; we can use a threshold function, a continuous sigmoid, or a stochas
tically determined ±1 . Particular cases will be discussed later.

Note that the output is an explicit function of the input. This is true for all 
feed-forward networks; the input is propagated through the network and produces 
the output right away. In contrast, recurrent networks always need some kind of 
relaxation to reach an attractor.

We have omitted any thresholds from our description because they can always 
be treated as connections to an input terminal that is permanently clamped at —1 . 
Specifically we can fix £o =  “ 1 and choose connections strengths =  0( to obtain

N N
Oi =  g ( ^ 2 w iktk )  =  0.-) (5.2)

k= 0 k= 1

with thresholds Oi?
The general association task can always be cast in the form o f asking for a 

particular output pattern £ f in response to an input pattern £ f . That is, we want 
the actual output pattern O f to be equal to the target p a ttern  £ f

@i =  Ct (desired) (5.3)

for each i and p. For the simple perceptron the actual output O f is given by (5.1) 
when the input £* is clamped to the pattern £ f :

o r  =  g(h?) =  < /(£ > ,• * £ £ ). (5.4)
k

1 Feed-forward networks are in general characterized by the possibility of numbering the units so 
that the weights form a triangular matrix, in which all entries above (or below) the diagonal 
are zero.

^If g(h) is a continuous function “threshold” is not a very good term for 0. Often —6 is called a 
bias instead.
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We define p as the number o f input-output pairs in the training set, so p =  1, 2,
. . . ,  p.

The inputs, outputs, and targets may be boolean (e.g., ± 1 ) or continuous
valued. For the outputs this depends o f course on the nature o f the activation func
tion g(h). Sometimes we will use continuous-valued output units but have boolean 
targets, in which case we can only expect the outputs O f to come within some 
margin o f the tarjgets.

The general association task (5.3) includes our old associative memory problem 
as a special case; there we wanted the memory patterns £ f to reproduce themselves 
when used as inputs. That is sometimes called a u to -a ssocia tion , in contrast to 
the h e tero -a ssocia tion  task in which the output patterns £ f are distinct from 
the input patterns £ f . In feed-forward networks we will focus on hetero-association 
and hardly ever consider auto-association (see pages 132 and 136). For hetero
association the number o f output units may be larger or smaller than the number o f 
input units. Hetero-association includes classification  p rob lem s where the inputs 
must be divided into particular output categories— normally only one output is on 
for each input— though these usually require more than a simple perceptron.

For simple perceptrons we will see that if there is a set o f weights u;,*. which 
achieves a particular computation, then these weights can be found by a simple 
learning rule. The learning rule starts from a general first guess at the weight 
values and then makes successive improvements. It actually reaches an appropriate 
answer in a finite number o f steps.

There are, however, some rather simple and conceptually important computa
tions which a one-layer network cannot do. We will examine in this chapter just 
what a one-layer network can and cannot do. In the next chapter we will see that 
multi-layer networks can solve many problems that are impossible within the one- 
layer architecture.

5.2 Threshold Units
We start with the simplest case o f deterministic threshold units, g(h) =  sgn(/i), 
and assume that the targets £ f also take ±1  values. Then all that matters is the 
sign o f the net input /if to output unit i; we want this sign to be the same as that 
o f Cf for each i and p.

The output units are independent so it is often convenient to consider only one 
at a time and drop the i subscripts. Then the weights w become a w eight v e c to r  
w  =  (u q , 11̂ 2?. . .  , w n ) with one component for each input. Each input pattern £ f 
can also be considered as a p a ttern  v e c to r  £** in this same TV-dimensional space.
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FIGURE 5.2 Geometrical illustration of the conditions (5.5) and (5.8). There are 
two continuous-valued inputs £1 and £2? and eight patterns (/i =  1 . . .  8) labelled 
A -H . Only one output is considered. The solid circles represent input patterns 
with =  +1 , whereas open circles mean £** =  —1. In (a) the axes are £1 and 
£2 themselves, while in (b) they are x\ and x̂ \ pattern \i has x^ =  The
condition for correct output is that the plane perpendicular to the weight vector 
w  divides the points in (a), and lies on one side o f all points in (b), as shown.

Then the condition (5.3) becomes3

sgn(w • £^) =  £** (desired) (5.5)

for every //. This says that the weight vector w  must be chosen so that the projection 
o f pattern £^ onto it has the same sign as (J*. But the boundary between positive and 
negative projections onto w  is the plane4 w  •£ =  0 through the origin perpendicular 
to w. So the condition for correct operation is that this plane should divide the 
inputs that have positive and negative targets, as illustrated in Fig. 5.2(a).

It is often convenient to use an alternate representation. By defining

<  =  (5 .6 )

or
x "  =  £ "£" (5.7)

we transform the condition (5 .5 ) into

w  • x^ >  0 (desired) (5 .8)

3The scalar product A*B or B*A of two vectors A  and B means It is equal to
|A||B| cos (f>, where <f> is the angle between A  and B, and can be thought of as |B| times the 
projection of A  onto B, or vice versa. It is also known as the dot product or inner product.

4Or hyperplane. We often use the word plane generically; it means a line in two dimensions, an 
ordinary plane in three dimensions, and a hyperplane in four or more dimensions.
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TABLE 5.1 AND function

6 £2 c

0 0 - 1
0 1 - 1
1 0 - 1
1 1 + 1

for every /i. This says that the x  vectors (each o f which depends on one input-output 
pair from the training set) must all lie on the same side o f the plane perpendicular 
to w , as illustrated in Fig. 5.2(b).

Linear Separability

What happens if there is no such plane? Then the problem cannot be solved— the 
network cannot perform the task no matter how it is trained. So the condition for 
solvability of a problem by a simple perceptron with threshold units is whether or 
not that problem is linearly  separable. A linearly separable problem i^ one in 
which a plane can be found in the £ space separating the £** =  + 1  patterns from 
the =  — 1 ones. If there are several output units we must be able to find one 
such plane for each output.

If we have no threshold (or represent it implicitly by input £o) the separating 
plane must go through the origin, as we have seen above. But it is interesting to 
reinstate an explicit threshold for a while. That turns the computation performed 
by the network into

Oi =  s g n ( ^  Wiktk ~  m o j  (5.9)
*>o

or, for one unit in vector notation,

O =  sgn(w • £ -  wo) . (5.10)

Thus the regions in the JV-dimensional input space (£1 ,^2 , • • • >6 v) with different 
decisions (± 1 )  for O are separated by an (N  — l)-dimensional plane

w  • £ =  w0 (5.11)

in this space, distance wo from the origin. So the effect of adding an explicit thresh
old is simply to allow the separating plane not to go through the origin. Again there 
is one such plane for each output unit.

Some examples are appropriate. We consider first a simple example that is 
linearly separable: the Boolean A N D  fu n ction . It is a function o f two binary 0 /1 
variables, so a perceptron with two input units £1 and £2 is needed. Because we are 
using the sgn(h) function the output is ± 1  (instead o f 0/ 1 ), and we want to get a 1
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(b)
O,

FIGURE 5.3 (a) The AND function is linearly separable, (b) A perceptron that 
implements AND.

FIGURE 5.4 The AND problem 
with the threshold wq in an ex
tra dimension £o- Note that all 
the patterns have £o =  — 1 as 
in (5.2). The separating plane 
shown is perpendicular to the 
weight vector w  =  (1.5,1,1).

output only if both inputs are on. Table 5.1 lists the input-output pairs, or tru th  
table , and Fig. 5.3(a) shows them in (£1 ,^2) space. It is easy to draw a line (a 
one-dimensional plane) to separate the “yes” -corner from the rest, so the problem 
is linearly separable and a simple perceptron can solve it. A suitable perceptron is 
shown in Fig. 5.3(b).

It is also interesting to consider the same problem with the threshold repre
sented implicitly by weight wq to input £0 =  —1. Then the separating plane must 
go through the origin, but we have one extra dimension for £0. Figure 5.4 shows the 
situation, with a separating plane drawn to correspond to the network o f Fig. 5.3(b).
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FIGURE 5.5 Problems that are not linearly separable, (a) The XO R  problem, 
(b) Points that are not in “general position.”

TABLE 5.2 XOR function

*1 c

0 0 - 1
0 1 + 1
1 0 + 1
1 1 - 1

Now let us consider some examples that are not linearly separable. We return 
to representing thresholds explicitly, so separating planes need not be through the 
origin. Figure 5.5 shows two types o f difficulties that can occur. In Fig. 5.5(a) there 
is clearly no plane (line) that can separate the two types o f points. The same is 
true in (b), but only because the three points lie exactly in a straight line; if any 
o f them were moved infinitesimally off the line a solution would be possible.

We discuss each case in a little more detail. The first, in Fig. 5.5(a), is the 
Boolean exclusive-OR or X O R  fu n ction , with the truth table shown in table 5.2. 
The desired computation is a “yes” when one or the other o f the inputs is on and 
a “no” when they are both off or both on. This is also the simplest case o f the 
AT-input p arity  fu n ctio n  studied in detail by Minsky and Papert [1969].

The figure makes it clear that we cannot represent this function with a simple 
perceptron, but it is interesting to see the same thing algebraically. We just write 
out the equations (5 .9) for the four patterns (suppressing the i index):
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W 1 + W 2  <  Wo

— W i  — W2 <  WQ 

W\ — W2 >  Wo

— W\ +  W2 >  Wo

(5.12)
(5.13)
(5.14)
(5.15)

Combining (5.12) and (5.15) we obtain wi <  0, while combining (5.13) and (5.14) 
we get the opposite, wi >  0. These cannot both be satisfied. Similarly, one finds 
impossible constraints on the other w ^ s. Thus the network cannot do the compu
tation.

Our other example, in Fig. 5.5(b), is very special. If, for example, we were 
choosing patterns from some continuous random distribution, there would be zero 
probability for three points to lie exactly on a line. Points are said to be in general 
p o s itio n  when this sort o f special case does not occur. In an iV-dimensional space 
a set o f points is in general position if no more than d +  1 o f them lie on any d- 
dimensional hyperplane, for any d <  N. Without an explicit threshold the condition 
becomes that no more than d o f them lie on any d-dimensional hyperplane through 
the origin, for any d <  N; in two dimensions we’d need two points on a line through 
the origin to get into trouble. The no threshold condition is also equivalent to saying 
that all subsets o f N or fewer points must be linearly  in d ep en d en t.

We will show later that the first type o f failure o f linear separability, like XOR, 
can only occur when there are more patterns than inputs, p >  N. On the other 
hand the second type can occur for any p.

A Simple Learning Algorithm

We now consider only linearly separable problems— so there is a solution— and ask 
how to find appropriate weights using a learning procedure. A simple procedure is 
to go through the input patterns one by one, and for each pattern go through the 
output units one by one, asking whether the output is the desired one (O f =  Cf )• 
If so, we leave the connections feeding into that unit alone. If not, then in the spirit 
o f Hebb we add to each connection something proportional to the product of the 
input and the desired output. Specifically, we take

(5.16)

where

(5.17)

or
A w ik =  rj(\ -  c ? o n < ? e k (5.18)

or
A  wik =  r , ( C t - O n ^ . (5-1?)
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The parameter rj is called the learning rate. In (5.19) one can think of the two 
terms as learning the desired association and “unlearning” the erroneous one.

Instead o f just asking that the sign o f the input hf  to the output units is correct 
(i.e., equal to ), it is sometimes a good idea also to require that its size be larger 
than some margin:

=  ( i ^ 2 wik€k >  N k (desired). (5.20)
k

The sum on k scales with AT, so to keep the m argin  size k fixed for any number 
o f input units we include an N  on the right-hand side. We can implement this new 
criterion by changing (5.18) to

An** =  t i e ( N K - C ? h f ) C ? $  (5.21)

where 0  is the unit step function ( 1 .2)— we add the weight increment whenever 
(5.20) is not satisfied. The simpler learning rule (5.18) is just the special case with 
k =  0 (apart from a factor o f 2 in rj).

Equation (5.21) is called the p e rce p tro n  learn ing ru le [Rosenblatt, 1962]. It 
can be proved [Block, 1962; Minsky and Papert, 1969] to converge to weights which 
accomplish the desired association (5.20) in a finite number o f steps (provided of 
course that the solution exists). We provide a proof in the next section.

For a single output unit introducing /c just changes (5.8) into

W ' X f i > N K  (desired). (5.22)

This says geometrically that all points in x-space must be further than N k/|w| from 
the plane perpendicular to w . In Fig. 5.2, for example, we can see that pattern F 
would fail to satisfy the condition unless k were very small or |w| were very large.

We can also give a geometrical picture o f the learning process. In our single
output vector notation, (5 .2 1 ) becomes

A w  =  t]Q (N k — w -x /x)x Ai (5.23)

which says that the weight vector w  is changed a little in the direction o f x^ if 
its projection w-x^ onto x^ is less than AT/c/|w|. This is done over and over again 
until all projections are large enough. An example for k =  0 is sketched in Fig. 5.6. 
Observe that a final solution was found after three steps w  —► w ' —* w "  —► w '" ; 
there are no patterns left in the bad region o f w '"  so no further updates will occur.

Whatever the value o f /c, a direction for w  in which all the projections are 
positive will give a solution if scaled up to a large enough magnitude |w|. Depending 
on the pattern vectors x M, there may be a wide range o f such directions, or only a 
narrow cone, or (if no solution exists) none at all (Fig. 5.7 shows two examples). We 
can use this observation to quantify how easy or hard a problem is. The quantity

D (w )  =  -j— r min w-x^ 
|w| n

(5.24)
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fe.

FIGURE 5.6 How the weight 
vector evolves during train
ing for ac =  0, tj =  1. Suc
cessive values of the weight 
vector are shown by w , w', 
w", and w //x. The darker and 
darker shading shows the 
“bad” region where w -x  <  0 
for the successive w  vectors. 
Each w  is found from the 
previous one (e.g., w ' from 
w ) by adding an from 
the current bad region.

(a)
/

o (b)
o  •

W O

FIGURE 5.7 (a) An easy problem: any weight vector in the 135° angle shown will 
have positive pattern projections, (b) A harder problem where the weight vector 
must lie in a narrow cone.

depends on the worst o f the projections. It is just the distance o f the worst x^ to the 
plane perpendicular to w , positive for the “good” side and negative for the “bad” 
side (see Fig. 5.8). The l/|w| factor makes it a function only o f the direction o f w . 
If D (w ) is positive then all pattern points lie on the good side, and so a solution 
can be found for large enough |w|.

If we maximize D (w ) over all possible weights we obtain the best direction for 
w , along which a solution will be found for smallest |w|. This solution is called 
the o p tim a l p ercep tron . It can also be defined, equivalently, as the solution with 
largest margin size k for fixed |w|. The value

A n  ax =  m axD (w ) (5.25)
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FIGURE 5.8 Definitions o f D (w ) and D max. 
Pattern A is nearest to the plane perpendic
ular to weight vector w , so the distance to A 
gives D (w ). Maximizing D (w ) with respect 
to w  gives w', with D (w ') =  D max. Note 
that both B and C are distance D max from 
the plane.

o f .D(w) in this direction tells us how easy the problem is: the larger D max, the 
easier the problem. If D max <  0, it cannot be solved. For example, D max is l /\ /l7  
for the AND problem (from Fig. 5.4) and — l/y/3 for XOR.

5.3 Proof of Convergence of the Perceptron Learning Rule *
We assume that there is a solution to the problem and prove that the perceptron 
learning rule (5.21) reaches it in a finite number of steps. All we need to assume 
is that we can choose a weight vector w* in a “good” direction; one in which 
D (w *) >  0. Our proof is related most closely to that given by Arbib [1987]; see 
also Rosenblatt [1962], Block [1962], Minsky and Papert [1969], and Diederich and 
Opper [1987].

At each step in the learning process a pattern is chosen and the weights are 
updated only if the condition (5.20) is not satisfied. Let M ** denote the number 
o f times that pattern fi has been used to update the weights at some point in the 
learning process. Then at that time

w  =  7?5 ] M ' V ‘ (5.26)

if we assume that the initial weights are all zero.
The essence o f the proof is to compute bounds on |w| and on the overlap w-w* 

with our chosen “good” vector w*. These let us show that w -w */|w | would get 
arbitrarily large if the total number o f updates M  =  ^  M ** kept on increasing. But 
this is impossible (since w * is fixed), so the updating must cease at some finite M . 

Consider w -w * first. Using (5.26) and (5.24) we obtain

w -w * =  77^  A P x^-w * >  t}M m inx^-w* =  r)MD(w*)\w*\. (5.27)
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Thus w w *  grows like M. Now for an upper bound on |w|, consider the change in 
length o f w  at a single update by pattern a:

A |w |2 =  (w  +  rjxa)2 —  w 2 

=  772 (x a ) 2 -f 2r)w-xa

<  tj2N  +  2t}N k

=  Nr)(rj +  2k )  . (5.28)

The inequality comes directly from the condition N k >  w  x a for performing an 
update with pattern a. Note that we also used x % =  ±1 , so that (x a ) 2 =  N , but the 
proof is easily generalized to other types o f patterns. By summing the increments 
to |w |2 for M  steps we obtain the desired bound

|w|2 <  MNrj(r} +  2K ) .  (5.29)

Thus |w| grows no faster than \/M , and therefore from (5.27) the ratio w -w */|w | 
grows at least as fast as V M . But this cannot continue, so M  must stop growing. 

More precisely, we can bound the normalized scalar product

_  (w -w * )2
^ |w |2|w*|2 (5 -30)

which is the squared cosine o f the angle between w  and w*. Because it is the squared 
cosine it is obviously less than or equal to 1 (as also follows from the Cauchy-Schwarz 
inequality). But with (5.27) and (5.29) we find

\><f>> M  (5.31)
-  -  N(r} +  2k) v '

which gives us an upper bound on the number of weight updates (using the best 
possible w *):

M  <  N 1 +  2k/>? . (5.32)
U rr\\'m a x

This bound is proportional to the number o f input units, but interestingly enough 
it does not depend on the number o f patterns p. O f course the real convergence 
time does depend on p because one typically has to continue checking all p patterns 
to find the ones for which a weight update is needed; the number o f such checks 
increases with p even if the number o f actual updates does not. Additionally, D max 
typically decreases with increasing p, resulting in a growing M.  Note also that the 
bound on M  grows linearly with « , because for larger k  the learning must reach a 
larger |w| along any given good direction.
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5.4 Linear Units
So far in our study of simple perceptrons we have considered only threshold units, 
with g(h) =  sgn(/i). We turn now to continuous-valued units, with g(h) a continuous 
and differentiable function o f u. The great advantage of such units is that they allow 
us to construct a cost function £*[w] which measures the system’s performance 
error as a differentiable function o f the weights w =  {w ,*}. We can then use an 
optimization technique, such as gradient descent, to minimize this error measure.

We start in this section with linear units, for which g(h ) =  h. These are not 
as useful practically as the nonlinear networks considered next, but are simpler and 
allow more detailed analysis. The output of a linear simple perceptron subjected to 
an input pattern £ f is given by

=  (5 -33) 
k

and the desired association is O f =  £ f as usual, or

Cf =  XI Wik k̂ (desired). (5.34)
k

Note that the O f ’s are continuous-valued quantities now, although we could still 
restrict the desired values £ f to ± 1 .

Explicit Solution

For a linear network we can actually compute a suitable set o f weights explicitly 
using the p seu d o-in verse  method. We saw on page 50 how to find the weights to 
satisfy (5.34) for the special case o f auto-association, £ f =  £f. The generalization 
to hetero-association is just

=  Q_1) ^  <5-35) 
fits

where

=  <5 - 3 6 >
k

is the overlap matrix of the input patterns. It is straightforward to check that (5.35) 
solves (5.34), as in (3.19).

Observe that (5.35) only applies if Q_1 exists, and that this condition only 
depends on the input patterns. It requires the input patterns to be linearly  in d e
pen d en t. If on the contrary there exists a linear relationship

ai€k +  a2€k "h  1" ap€k — 0 (f°r all (5.37)
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between them, then the outputs O f cannot be independently chosen and the prob
lem is normally insoluble.

Linear independence is the general condition for solvability in the linear net
work. It is actually a sufficient, but not a necessary, condition; even with linearly 
dependent input patterns it might happen that the targets were such that a solu
tion could be found, though not by the present method. But a very special choice 
would be needed.

A set of p input patterns can only be linearly independent if p <  N, so we can 
store at most AT arbitrary associations in a linear network. But a set o f AT or fewer 
patterns is not necessarily linearly independent. If a dependency exists, then the 
input pattern vectors , . . . ,  fjj! only span a p a ttern  su bspace o f the input
space, and the solution (5.35) is not unique. If Wik is one solution, and ££ is any 
vector orthogonal to the subspace o f the input patterns, so J2k€k€t =  ® f° r 
then the weights w[k given by

w ik =  w ik +  CLiH ( 5 -38)

for any provide another solution.
The linear independence condition for linear (and nonlinear) units is quite 

distinct from the linear separability condition found for threshold units. Linear 
independence does imply linear separability, but the reverse is not true. In fact 
most o f the problems o f interest in threshold networks do not satisfy the linear 
independence condition, because they typically have p >  N. This includes AND 
and XOR, and indeed all the other threshold network examples used or illustrated 
in this chapter.

Gradient Descent Learning

We could use (5.35) and (5.36) to compute a set o f weights tu**. that produce exactly 
the desired outputs from each input pattern. But we are more interested here in 
finding a learning rule that allows us to find such a set o f weights by successive 
improvement from an arbitrary starting point.

We define an error measure or cost fu n ction  by

=  j E w - o f t ’  =  j E ( < ' - E « « ) 2 ' <5 39>
in k

This is smaller the better our w ^ s  are; E  is normally positive, but goes to zero 
as we approach a solution satisfying (5.34). Note that this cost function depends 
only on the weights Wik and the problem patterns. In contrast, the energy functions 
considered in Chapters 2 to 4 depended on the current state o f the network, which 
evolved so as to minimize the energy. Here the evolution is o f the weights (learning), 
not o f the activations of the units themselves.
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Given our error measure j£[w], we can improve on a set o f Wik s by sliding 
downhill on the surface it defines in w space. Specifically, the usual grad ient de-

If we make these changes individually for each input pattern £ f in turn, we have 
simply

This result— (5.41), or (5.42) plus (5.43)— is commonly referred to as the delta  
rule, or the adaline rule, or the W id ro w -H o ff  rule, or the L M S  (least mean 
square) ru le  [Rumelhart, McClelland, et al., 1986; Widrow and Hoff, I960]. It

network. Note however that (5.19) originated in an empirical Hebb assumption, 
but now we have derived it from gradient descent. As we will see, the new approach 
is easily generalized to more layers, whereas the Hebb rule is not. The new approach 
obviously requires continuous-valued units with differentiable activation functions.

or ± 2 , whereas here it can take any value. As a result the final weight values are not 
the same in the two cases. Nor are the conditions for existence o f a solution (linear 
separability versus linear independence). And in the threshold case the learning rule 
stops after a finite number o f steps, while here it continues in principle for ever, 
converging only asymptotically to the solution.

The cost function (5.39) is just a quadratic form in the weights. In the subspace 
spanned by the patterns the surface is a parabolic bowl with a single minimum. 
Assuming that the pattern vectors are linearly independent, so that there is a 
solution to (5.34), the minimum is at E  =  0. In the directions (if any) of w-space 
orthogonal to all the pattern vectors the error is constant, as may be seen by 
inserting (5.38) into (5 .39 ); the ££ term makes no difference because “  0 -

scent a lgorith m  suggests changing each Wik by an amount Aw,* proportional to 
the gradient o f E  at the present location:

(5.40)

(5.41)

A w ik =  T) Sffg (5.42)

if we define the errors (or deltas) 6? by

(5.43)

is also nearly identical to the Rescorla-Wagner model of classical conditioning in 
behavioral psychology [Rescorla and Wagner, 1972].

Equation (5.41) is identical to our simple rule (5.19) for the threshold unit

Actually the equivalence o f (5.41) and (5.19) is a little deceptive because O f is 
a different function o f the inputs. In the threshold case the term £ f — O f is either 0
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Error

Orthogonal Subspace

FIGURE 5.9 The “rain gut
ter” shape of the error sur
face for linear units. The 
error takes its minimum 
value o f 0 along level val
leys if the patterns do 
not span the whole of £- 
space.

In other words, the error surface in weight space is like a rain  gu tter, as pictured 
in Fig. 5.9, with infinite level valleys in the directions orthogonal to the pattern 
vectors.

The gradient descent rule (5.40) or (5.41) produces changes in the weight vec
tors w 2- =  (w n , . . . ,  Wijsi) only in the directions o f the pattern vectors . Thus 
any component of the weights orthogonal to the patterns is left unchanged by the 
learning, leaving an inconsequential uncertainty of exactly the form (5.38) in the 
final solution. Within the pattern subspace the gradient descent rule necessarily 
decreases the error if rj is small enough, because it takes us in the downhill gradient 
direction. Thus with enough iterations we approach the bottom  of the valley arbi
trarily closely, from any starting point. And any point at the bottom of the valley 
solves the original problem (5.34) exactly.

Convergence of Gradient Descent *

The argument just given for convergence to the bottom  of the valley is intuitively 
reasonable but bears a little further analysis. The first step is to diagonalize the 
quadratic form (5.39). As long as the pattern vectors are linearly independent, this 
allows us to write JE'fw] in the form

M

e  =  J 2 ° ^ - w° ) 2 - (5-44)
A = 1

Here M  is the total number o f weights, equal to A  times the number of output units, 
and the w\’s are linear combinations o f the Wik’s. The a\’s and u;°’s are constants 
depending only on the pattern vectors. The eigenvalues a\ are necessarily positive 
or zero because o f the sum-of-squares form of (5 .3 9 ); the quadratic form is positive 
semi-definite.

Notice first that if some of the a* ’s are zero then E  is independent of the 
corresponding w\’s. This is equivalent to the rain gutters already described; the
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FIGURE 5.10 Gradient descent on a simple quadratic surface (the left and right 
parts are copies o f the same surface). Four trajectories are shown, each for 20 
steps from the open circle. The minimum is at the +  and the ellipse shows a con
stant error contour. The only significant difference between the trajectories is the 
value o f r7, which was 0.02, 0.0476, 0.049, and 0.0505 from left to right.

corresponding eigenvector directions in w space are orthogonal to all the pattern 
vectors.

Now let us perform gradient descent on (5.44). Because the transformation from 
Wik to w\ is linear, this is entirely equivalent to gradient descent in the original 
basis. But the diagonal basis makes it much easier:

BE
A w x =  - T ? ^ -  =  - 2  t i a x ( w x - w ° ) .  (5.45)

Thus the distance 6w\ =  w\ — from the optimum in the A-direction is trans
formed according to

6< ew =  6w$ld +  A w x =  ( 1 - 2  t)ax )6 w fd . (5.46)

In the directions for which a\ >  0 we therefore get closer to the optimum as long 
as |1 — 2f]a\\ <  1. The approach is first order; each distance 6w\ gets multiplied by 
a fixed factor at each iteration. The value o f 77 is limited by the largest eigenvalue 
a™ax, corresponding to the steepest curvature direction o f the error surface; we must 
have rj <  l/a™ ax or we will end up jumping too far, further up the other side o f the 
valley than we are at present. But the rate o f approach to the optimum is usually 
limited by the smallest non-zero eigenvalue a™m, corresponding to the shallowest 
curvature direction. If is large progress along the shallow directions can
be excruciatingly slow.

Figure 5.10 illustrates these points in a simple case. We show gradient descent 
on the surface E  =  a?2+  20y 2 for 20 iterations at different values of 77. This quadratic 
form is already diagonal, with a\ =  1 and a2 =  20. Notice the distance o f the last 
point from the minimum. At 77 =  0.02 we reach y «  0 fairly quickly, but then make
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only slow progress in x. At the other extreme, if 17 >  1/20 =  0.05 the algorithm 
produces a divergent oscillation in y. The fastest approach is approximately when 
the x  and y  multipliers |1 — 2r)\ and |1 — 407/| are equal, giving rj =  1/21 =  0.476 
(second illustration).

O f course this analysis assumes that we actually take steps along the gradient. 
Progress will normally be somewhat slower if instead we change one component 
at a time, as in (5.41), though the incremental algorithm is often more convenient 
in practice. Another alternative sometimes used is to take steps of constant size 
(usually decreasing with time) in the gradient direction; this can help to speed up 
convergence when a™ax/a™m is large, but requires careful control.

We have also assumed of course that a perfect solution exists, which requires 
linear independence o f the patterns. It is however interesting to ask what happens 
if the patterns are not linearly independent. Then we can only diagonalize (5.39) 
in the form M

E =  E 0 +  ^ a \ ( w \  -  iu° ) 2 (5.47)
A=1

with E0 >  0. There is still a single minimum (or gutter), but E =  Eq >  0 there, 
showing that the desired association has not been found. Trying gradient descent 
on the X O R  problem, for example, produces a single minimum with E  =  2 at 
wq =  wi =  W2 =  0, which makes the output always 0. The XO R problem is 
obviously not linearly independent, since p >  N.

5.5 Nonlinear Units
It is straightforward to generalize gradient descent learning from the linear g(h) =  h 
discussed in the previous section to networks with any differentiable g(h). The sum- 
of-squares cost function becomes

- ° n 2 = - f f ( E ^ ) ] 2- (5-48>
in in k

We then find

9E  (5-49)dwik

so the gradient descent correction —rjdE/dwik to it;,-* after presentation with pat
tern number p is o f the same form as (5.42):

=  r ,6?$  . (5.50)

But now the quantity
(5.51)
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has acquired an extra factor gf( h f ) o f the derivative o f the activation function g(h).  
With a sigmoid form for <7 (ft), such as g(h) =  tanh(/i), this derivative is largest when 
|ftf | is small. Thus the changes are made most strongly on connections feeding into 
units with small \hf£|’s, those which are “in doubt” about their output.

We remark that a hyperbolic tangent function g(h) =  tanh(j3h) is particularly 
convenient because its derivative is given by g'(h) =  (3(1—g2). Thus one doesn’t have 
to recompute the derivative of g in (5.51) once one has found O f =  <j(ftf) itself. 
The same applies o f course to the corresponding choice of the sigmoid function 
g(h) =  fp(h) =  [1 +  exp(—2 /?ft)]” 1 for units with outputs between 0 and 1 , for 
which g'(h) =  2(3 g (l  -  g).

The conditions for the existence o f a solution are exactly the same as for the 
linear case: linear independence o f the patterns. This is because the solution to 
our present problem is equivalent to the linear one with the targets Cf replaced by 
5f” 1(Cf )-5 But the question o f whether gradient descent finds the solution, assuming 
it exists, is not the same as for the linear case. If the targets lie outside the range 
of g(h) (e.g., ± 1  targets with g(h) =  tanh ft), it is possible in the nonlinear case 
for the cost function to have lo ca l m in im a besides the global minimum at E  =  0. 
The gradient descent algorithm can then become stuck in such a local minimum.

Nonlinear units do not allow a perfect solution o f problems that are not linearly 
independent, but they may help by offering alternate partia l solu tions. If, for 
example, we try the XO R problem with a tanh(/3h) activation function, we find five 
possible minima, each with E  =  2. There is the one at wq =  Wi =  W2 =  0 (which 
makes the output always 0) that the linear network found. But now there are four 
more at |u;0| =  =  |tx̂2I —̂ co with 1 or 3 negative signs; these each produce the
correct output for three out o f the four input patterns, but get the wrong sign on 
the fourth. It is arguable that three out of four is better than four “don’t know’s” . 
However the convergence is very slow for large (3 because most o f the landscape is 
rather flat.

In simple perceptrons the main advantage o f nonlinear activation functions is 
that they can keep the output between fixed bounds, such as ± 1  for a tanh(ft) 
function. They are much more important in multi-layer networks where they make 
possible the solution of problems that are not possible with linear units. A multi
layer linear feed-forward network is exactly equivalent to a one-layer one in the 
computation it performs (since a linear transformation o f a linear transformation is 
a linear transformation), so such a network has the same limitations as a one-layer 
one. In particular it can only work if the input patterns are linearly independent. 
But this restriction is not present for a multi-layer nonlinear feed-forward network.

Other Cost Functions

The quadratic cost function (5.48) is not the only possibility. Any differentiable

 ̂We normally consider only monotonic activation functions, which are always invertible except at 
the endpoints.
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function o f C?  and O f that is minimized by O f =  Cf could be used. The gradient 
descent rule A o c  —dE/dw^  gives a prescription analogous to (5.50) for each 
such choice.

The choice

^ = £  [ft1 + < n  i°s +i(i - o  i°s yzo ?
ifi L * *

(5.52)

has received particular attention [Baum and Wilczek, 1988; Hopfield, 1987; Solla 
et al., 1988]. It has a natural interpretation in terms o f learning the correct prob
abilities o f a set o f hypotheses represented by the output units, using |(1 +  O f)  
for the probability that the hypothesis represented by unit i is true: O f =  — 1 
means definitely false, and O f =  +1 means definitely true. Similarly | ( 1  +  Cf) is 
interpreted as a target set o f probabilities. Then information theory suggests the 
re la tive  en trop y  (5.52) o f these probability distributions as a natural measure o f 
the difference between them [Kullback, 1959].

Like (5.48), (5.52) is always positive except when O f =  Cf f° r ^  ® and Ab 
where E  =  0. Its advantage is, qualitatively, that it diverges if the output of one 
unit saturates at the wrong extreme. The quadratic measure (5.48) just approaches 
a constant in that case, and therefore the learning can float around on a relatively 
flat plateau o f E  for a long time. The use o f the entropy measure has been shown 
[Wittner and Denker, 1988] to solve some learning problems that cannot be solved 
using the quadratic E. It is also appropriate if the training set data are actually 
probabilistic or fuzzy as, for instance, in the association o f symptoms with causes 
in medical diagnosis.

Differentiating (5.52) and taking g to be a tanh gives the same change o f weights 
as (5.50) but with

%  =  ~  O H  • (5.53)

The only difference (besides a factor o f /?) from (5.51) is that the g'(hf )  factor 
is missing. The result is essentially identical to the delta rules found in the linear 
network (5.43) and in the threshold network (5.19).

Gradient descent learning is sometimes used for b in ary  d ecision  p rob lem s 
where the network is trained with, say, dhl targets, but then used with any positive 
output Oi >  0 being taken as a “yes” and any negative output Oi <  0 as a “no” . 
This can sometimes produce satisfactory results on problems which are linearly 
separable but not linearly independent. However gradient descent with the usual 
quadratic cost function does not necessarily find a viable solution in such cases, 
even though the perceptron learning rule would work. But Wittner and Denker
[1988] have shown that a class of alternative w e ll-form ed  cost functions do work 
in such situations, so that gradient descent always finds a solution if there is one. 
They define a well-formed cost function so that the magnitude of its gradient is 
always larger than a constant, not simply greater than zero, whenever an output 
has the wrong sign. The entropic measure (5.52) is well formed in this sense.
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5.6 Stochastic Units
Another generalization is from our deterministic units to s toch a stic  un its Si gov
erned by (2.48):

Plob(S- = ±1) = T?i5S2M?) <5M)
with

hi = ^ 2  wi*tk (5-55)
k

as before. This leads to
<Sn =  t a n h ( / ? 5 > < * # )  (5.56)

k

just as in (2.42). In the context o f a simulation we can use (5.56) to calculate (Sj1), 
whereas in a real stochastic network we would find it by averaging Si for a while, 
updating randomly chosen units according to (5.54). Either way, we then use (Sj1) 
as the basis o f a weight change

Ati*t =  r t f?#  (5.57)

where
=  < f - ( S f > .  (5-58)

This is just the average over outcomes o f the changes we would have made on the
basis o f individual outcomes using the ordinary delta rule (5.43). We will find it
particularly important when we discuss reinforcement learning in Section 7.4.

It is interesting to prove that this rule always decreases the average error given 
by the usual quadratic measure

£  =  <5-59>
S/1

Since we are assuming output units and patterns which are ±1 , this is just twice 
the total number o f bits in error, and can also be written

E =  (5-60)

Thus the average error in the stochastic network is 

(E)  =
ifi

=  tanh( ^ H u,< ^ * )]  • (5-61)
in k
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The change in (E ) in one cycle o f  weight updatings is thus

tk

=  “  53 ^ ~ k tanh(/?/if)
ink

=  — 5 3  ^[1 — tanh(/?hf)]/?sech2(/?h f) (5.62)
ink

using6 dtanh(z)/cte =  sech2x. The result (5.62) is clearly always negative (recall 
tanh(x) <  1 ), so the procedure always improves the average performance.

5.7 Capacity of the Simple Perceptron *
In the case o f the associative network in Chapter 2 we were able to find the ca p acity  
pmax o f a network o f N  units; for random patterns we found pmax =  0.138iVfor large 
N  if we used the standard Hebb rule. If we tried to store p patterns with p >  pmax 
the performance became terrible.

Similar questions can be asked for simple perceptrons:
■ How many random input-output pairs can we expect to store reliably in a 

network o f given size?
■ How many o f these can we expect to learn using a particular learning rule?
The answer to the second question may well be smaller than the first (e.g., for 
nonlinear units), but is presently unknown in general. The first question, which 
this section deals with, gives the maximum capacity that any learning algorithm 
can hope to achieve.

For continuous-valued units (linear or nonlinear) we already know the answer, 
because the condition is simply linear independence. If we choose p random pat
terns, then they will be linearly independent if p <  N  (except for cases with very 
small probability). So the capacity is pmax =  N.

The case o f threshold units depends on linear separability, which is harder to 
deal with. The answer for random continuous-valued inputs was derived by Cover 
[1965] (see also Mitchison and Durbin [1989]) and is remarkably simple:

Pmax =  2JV. (5.63)

As usual N  is the number of input units, and is presumed large. The number o f 
output units must be small and fixed (independent o f TV). Equation (5.63) is strictly 
true in the N  —► oo limit.

6The function sech2a? =  1 — tanh2 a; is a bell-shaped curve with peak at x  =  0.
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FIGURE 5.11 The function C(p, N)/2P given by (5.67) plotted versus p/N for N  =  
5, 20, and 100.

The rest o f this section is concerned with proving (5.63), and may be omitted 
on first reading. We follow the approach o f Cover [1965]. A more general (but much 
more difficult) method for answering this sort o f question was given by Gardner 
[1987] and is discussed in Chapter 10.

We consider a perceptron with IV continuous-valued inputs and one ± 1  output 
unit, using the deterministic threshold limit. The extension to several output units 
is trivial since output units and their connections are independent— the result (5.63) 
applies separately to each. For convenience we take the thresholds to be zero, but 
they could be reinserted at the expense o f one extra input unit, as in (5.2).

In (5.11) we showed that the perceptron divides the ^-dimensional input space 
into two regions separated by an (N  — l)-dimensional hyperplane. For the case o f 
zero threshold this plane goes through the origin. All the points on one side give an 
output o f +1 and all those on the other side give —1. Let us think of these as red 
( - f l )  and black (—1) points respectively. Then the question we need to answer is: 
how many points can we expect to put randomly in an N-dimensional space, some 
red and some black, and then find a hyperplane through the origin that divides the 
red points from the black points?

Let us consider a slightly different question. For a given set o f p randomly 
placed points in an A^dimensional space, for how many out o f the 2P possible red 
and black colorings o f the points can we find a hyperplane dividing red from black? 
Call the answer C(p, N ).  For p small we expect C(p, N )  =  2P, because we should 
be able to find a suitable hyperplane for any possible coloring; consider N =  p =  2 
for example. For p large we expect C(p, N )  to drop well below 2P, so an arbitrarily 
chosen coloring will not possess a dividing hyperplane. The transition between these 
regimes turns out to be sharp for large N , and gives us pmQX.

We will calculate C(p, N )  shortly, but let us first examine the result. Figure 5.11 
shows a graph o f C(p, N)/2P against p/N for N  =  5, 20, and 100. Our expectations 
for small and large p are fulfilled, and we see that the transition occurs quite rapidly 
in the neighborhood of p =  2TV, in agreement with (5.63). As N  is made larger and



5.7 Capacity of the Simple Perceptron 113

FIGURE 5.12 Finding sep
arating hyperplanes con
strained to go through 
a point P as well as the 
origin O is equivalent to 
projecting onto one lower 
dimension.

larger the transition becomes more and more sharp. Thus (5.63) is justified if we 
can demonstrate that Fig. 5.11 is correct.

The random placement o f points is not actually necessary.7 All that we need 
is that the points be in general p osition . As discussed on page 97, this means 
(for the no threshold case) that all subsets o f N  (or fewer) points must be linearly 
independent. As an example consider N  =  2: a set o f p points in a two-dimensional 
plane is in general position if no two lie on the same line through the origin. A set 
o f points chosen from a continuous random distribution will obviously be in general 
position except for coincidences that have zero probability.

We can now calculate C(p, N )  by induction. Let us call a coloring that can be 
divided by a hyperplane a d ich otom y . Suppose we start with p points and add a 
new point P. Then the C(p, N )  old dichotomies fall into two classes:
■ For those previous dichotomies where the dividing hyperplane could have 

been drawn through point P , there’ll be two new dichotomies, one with P  red 
and one with it black. This is because when the points are in general position 
any hyperplane through P  can be shifted infinitesimally to go either side of 
it, without changing the side o f any o f the other p points.

■ For the remainder o f the previous dichotomies only one color o f point P  will 
fit, so there’ll be one new dichotomy for each old one.

Thus
C(p  +  1 , N )  =  C(p, N ) +  D  (5.64)

where D  is the number o f the previous C(p, N )  dichotomies that could have had 
the dividing hyperplane drawn through P  as well as the origin O. But this number 
is simply C (p ,N  — 1 ), because constraining the hyperplanes to go through a par
ticular point P  makes the problem effectively (N  — l)-dimensional; as illustrated 
in Fig. 5.12, we can project the whole problem onto an (N  — l)-dimensional plane

Nor is it well defined unless a distribution function is specified.7
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perpendicular to O P , since any displacement o f a point along the O P  direction 
cannot affect which side it is o f any hyperplane containing OP.

We thereby obtain the recu rs ion  re la tion

C { p + l , N )  =  C (p ,N )  +  C ( p , N - l ) .  (5.65)

Iterating this equation for p, p  — 1, p — 2, . . . ,  1 yields

C(p, N ) =  ( V ) C ( l ,  N)  +  ( Y ) C (  1, N -  1) +  . . .  +  (£ :} )C (1 , N  -  p +  1 ) .  (5.66)

For p <  N  this is easy to handle, because 0 (1 , N )  =  2 for all N ; one point can be 
colored red or black. For p  >  iVthe second argument o f C  becomes 0 or negative in 
some terms, but these terms can be eliminated by taking C(p, N)  =  0 for N  <  0. It 
is easy to check that this choice is consistent with the recursion relation (5.65), and 
with C(p, 1 ) =  2 (in one dimension the only “hyperplane” is a point at the origin, 
allowing two dichotomies). Thus (5.66) makes sense for all values of p and N  and 
can be written as

C(p,JV) =  2 f ;  ^ T 1)  (5.67)
t=0 v 1 J

if we use the standard convention that (^ ) =  0 for m >  n. Equation (5.67) was 
used to plot Fig. 5.11, thus completing the demonstration.

It is actually easy to show from the symmetry (nlnm) =  (n+nm) of  binomial 
coefficients that

C (2 N ,N )  =  2p- x (5.68)

so the curve goes through 1/2 at p — 2N. To show analytically that the transition 
sharpens up for increasing N, one can appeal to the large N  Gaussian limit of the 
binomial coefficients, which leads to

C(p,N)/2P » ‘ [l +  e , f ( y f ( ^ - l ) ) ]  (5.60)

for large N.
It is worth noting that C(p, N )  =  2P if p <  N  (this is shown on page 155). So 

any coloring o f up to N  points is linearly separable, provided only that the points 
are in general position. For AT or fewer points general position is equivalent to linear 
independence, so the sufficient conditions for a solution are exactly the same in 
the threshold and continuous-valued networks. But this is not true, o f course, for 
p >  N.
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six

The limitations of a simple perceptron do not apply to feed-forward networks with 
intermediate or “hidden” layers between the input and output layer. In fact, as 
we will see later, a network with just one hidden layer can represent any Boolean 
function (including for example XO R). Although the greater power o f multi-layer 
networks was realized long ago, it was only recently shown how to make them learn 
a particular function, using “back-propagation” or other methods. This absence of 
a learning rule— together with the demonstration by Minsky and Papert [1969] that 
only linearly separable functions could be represented by simple perceptrons— led 
to a waning of interest in layered networks until recently.

Throughout this chapter, like the previous one, we consider only feed-forward 
networks. More general networks are discussed in the next chapter.

6.1 Back-Propagation
The back-propagation algorithm is central to much current work on learning in 
neural networks. It was invented independently several times, by Bryson and Ho 
[1969], Werbos [1974], Parker [1985] and Rumelhart, Hinton, and Williams [1986a, 
b]. A closely related approach was proposed by Le Cun [1985]. The algorithm gives 
a prescription for changing the weights wpq in any feed-forward network to learn a 
training set of input-output pairs }• The basis is simply gradient descent, as
described in Sections 5.4 (linear) and 5.5 (nonlinear) for a simple perceptron.

We consider first a two-layer network such as that illustrated by Fig. 6.1. Our 
notational conventions are shown in the figure; output units are denoted by O*, 
hidden units by Vj, and input terminals by There are connections Wjj~ from the

115
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O i O 2
Oi

Wii

Vi

FIGURE 6.1 A two layer feed
forward network, showing 
the notation for units and 
weights.

inputs to the hidden units, and Wij from the hidden units to the output units. Note 
that the index i always refers to an output unit, j  to a hidden one, and k to an 
input terminal.

The inputs are always clamped to particular values. As in previous chapters, 
we label different patterns by a superscript p, so input k is set to ££ when pattern 
p is being presented. The ££’s can be binary (0 /1 , or ± 1 ) or continuous-valued. 
We use iVfor the number o f input units and p, as before, for the number o f input 
patterns (p =  1 , 2 , . . . ,  p).

Given pattern p, hidden unit j  receives a net input

(6 .1)

and produces output

Vj* — g (h j)  — g • (6 .2)

Output unit i thus receives

ht =  Y , W' i V?  = (6.3)

and produces for the final output

O f =  g{h?)  =  g f c W i j V ? )  = (6.4)

As in the previous chapter we have omitted the thresholds; they can be taken care 
o f as usual by an extra input unit clamped to — 1 and connected to all units in the 
network.
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E [ =  (6-5)
fti

now becomes

- » ( E ^ ( E ^ ) ) ] 2- (6-6)
j k

This is clearly a continuous differentiable function o f every weight, so we can use 
a gradient descent algorithm to learn appropriate weights. In one sense this is all 
there is to back-propagation, but there is great practical importance in the form o f 
the resulting update rules.

For the hidden-to-output connections the gradient descent rule gives

» E K f  - w w w r

r i J 2 6i Vf  (6 -7)

where we have defined
= (6 -8)

The result is o f course identical to that obtained earlier (equations (5.50) and (5.51)) 
for a single layer perceptron, with the output V?  o f the hidden units now playing 
the role o f the perceptron input.

For the input-to-hidden connections A Wjk we must differentiate with respect 
to the wjk s, which are more deeply embedded in (6 .6). Using the chain rule, we 
obtain

^  dE d V f'<Z-.av' a<„,t
■ ? £ [ C - W W W W f

H%

Ait

■ > £ « ; « :  (6.9)

Our usual error measure or cost function

A  Wjk =  -r j
dE

dwjk

A  Wu
dE

~dW7j

with

i
(6.10)
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FIGURE 6.2 Back-propagation in a 
three-layer network. The solid lines
show the forward propagation o f sig
nals and the dashed lines show the 
backward propagation o f errors (<$’s)

Note that (6.9) has the same form as (6.7), but with a different definition o f the 
6’s. In general, with an arbitrary number of layers, the back-propagation update 
rule always has the form

where output and input refer to the two ends p and q o f the connection concerned, 
and V  stands for the appropriate input-end activation from a hidden unit or a 
real input. The meaning o f 8 depends on the layer concerned; for the last layer o f 
connections it is given by (6 .8), while for all other layers it is given by an equation 
like (6.10). It is easy to derive this generalized multi-layer result (6.11), simply by 
further application o f the chain rule.

Equation (6.10) allows us to determine the 8 for a given hidden unit Vj in terms 
of the 6's of the units Oi that it feeds. The coefficients are just the usual “forward” 
W i/s , but here they are propagating errors (<$’s) backwards instead of signals for
wards: hence the name error  b ack -p rop ag a tion  or just back -p rop aga tion . We 
can therefore use the same network— or rather a bidirectional version o f it— to 
compute both the output values and the <S’s. Figure 6.2 illustrates this idea for a 
three-layer network.

Although we have written the update rules (6.7) and (6.9) as sums over all 
patterns //, they are usually used incrementally: a pattern p is presented at the input 
and then all weights are updated before the next pattern is considered. This clearly 
decreases the cost function (for small enough 77) at each step, and lets successive 
steps adapt to the local gradient. If the patterns are chosen in random order it also

(6 .11)
patterns
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makes the path through weight-space stochastic, allowing wider exploration o f the 
cost surface. The alternative b a tch  m o d e — taking (6.7) and (6.9) literally and only 
updating after all patterns have been presented— requires additional local storage 
for each connection. The relative effectiveness o f the two approaches depends on 
the problem, but the incremental approach seems superior in most cases, especially 
for very regular or redundant training sets.

The fact that the appropriate cost function derivatives can be calculated by 
back-propagating errors is clearly attractive. But it also has two important conse
quences:
■ The update rule (6.11) is local To compute the weight change for a given 

connection we only need quantities available (after back-propagation o f the 
6 ’s) at the two ends o f that connection. This makes the back-propagation rule 
appropriate for parallel computation. It may even have some indirect rele
vance for neurobiology.1

■ The computational complexity is less than might have been expected. If we 
have n connections in all, computation o f the cost function (6 .6 ) takes o f or
der n operations, so calculating n derivatives directly would take order n2 
operations. In contrast the back-propagation scheme lets us calculate all the 
derivatives in order n operations.
It is normal to use a sigmoid function for the activation function g(h). The 

function clearly must be differentiable, and we normally want it to saturate at both 
extremes. Either a 0 /1 or a ±1  range can be used, with

»<'■> ■ «*> = l+.xp(-2W l612)
and

g(h) =  tanh /?h (6.13)

respectively for the activation function. The steepness parameter (3 is often set to 
1, or 1/2 for (6.12). As we noted in Chapter 5, the derivatives o f these functions 
are readily expressed in terms o f the functions themselves as gf(h) =  2/?y( 1 — g) 
for (6.12) and gf(h) =  (3(1 — g2) for (6.13). Thus one often sees (6 .8), for example, 
written as

6? =  O f (1 -  O f -  O f)  (6.14)

for 0/1 units with (3 =  1/2.
Because back-propagation is so important, we summarize the result in terms of 

a step-by-step procedure, taking one pattern // at a time (i.e., incremental updates). 
We consider a network with M  layers m =  1 , 2, . . . ,  M  and use V™ for the output

lo c a lity  is necessary for biological implementation, but not sufficient. Bidirectional bifunctional 
connections are not biologically reasonable [Grossberg, 1987b], but can be avoided, allowing hypo
thetical neurophysiological implementations [Hecht-Nielsen, 1989]. Nevertheless back-propagation 
seems rather far-fetched as a biological learning mechanism [Crick, 1989].
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o f the ith unit in the rath layer. V*° will be a synonym for &, the ith input. Note 
that superscript ra’s label layers, not patterns. We let wW mean the connection 
from V™~1 to V™. Then the back-propagation procedure is:

1. Initialize the weights to small random values.
2. Choose a pattern ££ and apply it to the input layer (ra =  0) so that

V £ = £ £  for a flt . (6.15)

3. Propagate the signal forwards through the network using

V T =  9 { h f )  =  g f e w n v p - 1)  (6.16)
i

for each i and ra until the final outputs V(M have all been calculated.
4. Compute the deltas for the output layer

6 ?  =  g'(hf ')[</* -  V{M} (6.17)

by comparing the actual outputs with the desired ones for the pattern
// being considered.

5. Compute the deltas for the preceding layers by propagating the errors back
wards

(6-18)
j

for ra =  M , M  — 1, . . . ,  2 until a delta has been calculated for every unit.
6 . Use

Aw?} =  r)6™Vjn~ 1 (6.19)

to update all connections according to =  tt;£!d +  A  Wij.

7. Go back to step 2 and repeat for the next pattern.

It is straightforward to generalize back-propagation to other kinds o f networks 
where connections jump over one or more layers, such as the direct input-to-output 
connections in Fig. 6.5(b). This produces the same kind o f error propagation scheme 
as long as the network is feed-forward, without any backward or lateral connections.

6.2 Variations on Back-Propagation
Back-propagation has been much studied in the past few years, and many exten
sions and modifications have been considered. The basic algorithm given above is 
exceedingly slow to converge in a multi-layer network, and many variations have
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been suggested to make it faster. Other goals have included avoidance o f local min
ima, and improvement of generalization ability. Here we discuss mainly the issue o f 
speed.

It is worth mentioning that speed comparisons between different techniques are 
not always clear-cut. Different authors have used different problems, different stop
ping criteria, different measures o f computational speed, and different approaches 
to averaging. As one example o f the difficulties, consider what to do with unsuc
cessful trials. Usually a problem is solved many times (e.g., from random starting 
weights, and with random update sequences), and in some cases a trial becomes 
stuck in a local minimum or on a very flat plateau. After some maximum time T  
the experimenter must give up on that trial, but how should it be reported in the 
average time (t) per trial? Some of the different solutions that have been used are:

■ Count it like a successful trial, with time T.
■ Discard it, reporting unsuccessful trials separately.
■ Don’t count it as a valid trial, but add the time T  onto the time for the next 

trial, so the times averaged are the total times between successful outcomes.
■ Average 1 f t  instead of t , taking 1/t =  0 for unsuccessful trials.
Fahlman [1989] discusses these and other benchmarking issues at greater length.

There are many parameters one can consider varying within the general back- 
propagation framework, including the architecture (number o f layers, number o f 
units per layer), the size and nature o f the training set, and the update rule. In this 
section we focus mainly on the update rule, keeping a fixed feed-forward architec
ture. Other issues and other architectures are discussed later.

Alternative Cost Functions

The quadratic cost function (6.5) is not the only possible choice. We can replace the 
(Cf — O f ) 2 factor by any other differentiable function F (C f, O f ) that is minimized 
when its arguments are equal, and derive a corresponding update rule. Direct dif
ferentiation shows that only the expression (6 .8) for 6f  in the output layer changes; 
all the other equations o f back-propagation remain unchanged.

A particularly good choice for the cost function seems to be the entropic mea
sure (5.52) that we discussed in Chapter 5 on page 109 [Solla et al., 1988]. This is 
for a ± 1  output range and, using g(h) =  tanhh, reduces (6 .8) to

(6.20)

— the g' factor disappears (for the output layer only). Since g'(h) becomes very small 
when |A| becomes large, leaving it out accelerates progress in large |ft| regions, where 
the cost surface is relatively flat. On the other hand it gives no acceleration— which 
could lead to overshoot and oscillation— when h is equivocating around 0 and the 
cost surface is more sharply curved.
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In one study [Fahlman, 1989] it was found that the compromise

«r = w)+o.i](cr-on (6.21)
worked better than either (6 .8) or (6.20). This form restores some o f the effect o f 
the g ' term, but eliminates the flat spots by keeping 6f  non-zero even when |ftf | 
becomes large.

Another approach is to change the Cf — O f term instead of (or as well as) the 
gf one, increasing £f when |Cf — O f | becomes large. For example

<5f =  arctanh |(Cf -  O f)  (6 .22 )

(where x =  arctanh y is the inverse function o f y =  tanhx) goes to ± 0 0  when
O f —► —Cf (with a ± 1  range) [Fahlman, 1989]. This rule could be obtained by
differentiating a suitable cost function, but in fact we may just as well start with 
the derivative.

Finally, we could add parameters to the cost function so as to adjust its steep
ness or roughness during training. It should be possible to smooth out the surface 
initially, to avoid local minima at the expense o f loss o f detail, and then gradually 
add back the detail once the network has reached the right general region o f weight 
space. Simulated annealing employs stochastic units to achieve a similar goal. One 
example was suggested by Makram-Ebeid et al. [1989], who used

F  -  W 7 ( C f - 0 ? ) 2 ifsgn C f = s g n O ?  \
* 1  W  -  Of ) 2 ifsgnCf =  -s g n  O f /  ^

with 7  gradually increasing from 0 to 1. This has the effect o f focusing initially just 
on getting the sign o f Cf right, and only later paying attention to the magnitude.

A different approach to training a layered network is based on optimizing the 
internal rep resen ta tion s o f the input patterns by the hidden layers. The idea 
is very simple: although the input patterns may not be linearly separable, the 
result o f transforming them by one or more layers o f processing may be. Taking 
the case o f a single hidden layer for simplicity, if these transformed patters were 
known then both the input-to-hidden and the hidden-to-output weights could be 
found as for a simple perceptron. So this transforms the essential problem to one o f 
determining an appropriate set o f internal representations, which are therefore made 
explicit arguments o f a cost function. This new cost function must be minimized 
with respect to the choice o f internal representations as well the weights. Several 
different implementations o f this idea have been explored [Grossman et al., 1989; 
Grossman, 1990; Krogh et al., 1990; Rohwer, 1990; Saad and Marom, 1990a, b]. In 
some limits these approaches become equivalent to ordinary back-propagation, but 
in other parts o f their parameter spaces they can give faster learning.
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FIGURE 6.3 Gradient descent on the 
simple quadratic surface of Fig. 5.10.
Both trajectories are for 12 steps with 
rj =  0.0476, the best value in the absence 
of momentum. On the left there is no mo
mentum (a  =  0), while a  =  0.5 on the 
right.

Momentum
We saw in Chapter 5 that gradient descent can be very slow if r] is small, and can
oscillate widely if rj is too large; see Fig. 5.10 on page 106. The problem essentially
comes from cost-surface valleys with steep sides but a shallow slope along the 
valley floor. There are a number o f ways o f dealing with this problem, including the 
replacement o f gradient descent by more sophisticated minimization algorithms, as 
discussed below. However, a much simpler approach, the addition o f a m om en tu m  
term  [Plaut et al., 1986], is often effective and is very commonly used.

The idea is to give each connection2 wpq some inertia or momentum, so that it 
tends to change in the direction of the average downhill “force” that it feels, instead 
o f oscillating wildly with every little kick. Then the effective learning rate can be 
made larger without divergent oscillations occurring. This scheme is implemented 
by giving a contribution from the previous time step to each weight change:

dE
A  wpq(t +  1) =  - r j -  h a A  wpq( t ) . (6.24)

u W pq

The m om en tu m  p aram eter a  must be between 0 and 1; a value of 0.9 is often 
chosen.

If we are marching through a plateau region o f the cost surface, then dE/dwpq 
will be about the same at each time-step and (6.24) will converge to

Awpq m ^ - (6.25)
1 -  a dwpq

with an effective learning rate o f 77/(1 — a). On the other hand, in an oscillatory 
situation, A wpq responds only with coefficient 77 to instantaneous fluctuations o f 
dE/dwpq. The overall effect is to accelerate the long term trend by a factor o f 
1/(1 — a ), without magnifying the oscillations. Figure 6.3 shows a simple example.

A  momentum term is useful with either pattern-by-pattern or batch mode 
updating. It was first proposed for the pattern-by-pattern case, where it has the 
effect o f partial averaging over the patterns. The averaging is not as complete as 
in batch mode however, and can thus leave some beneficial fluctuations in the 
trajectory.

2
In this and subsequent discussions wpq stands for any weight in the network, not just one between 

the input and the hidden layer.
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Adaptive Parameters

It is not easy to choose appropriate values of the parameters 77 and a  for a particular 
problem. Moreover the best values at the beginning of training may not be so good 
later on. Thus many authors have suggested adjusting the parameters automatically 
as learning progresses [e.g., Cater, 1987; Franzini, 1987; Vogl et al., 1988; Jacobs, 
1988].
} The usual approach is to check whether a particular weight update did actually 
decrease the cost function. If it didn’t, then the process overshot, and 77 should be 
reduced. On the other hand if several steps in a row have decreased the cost, then 
perhaps we are being too conservative, and could try increasing 77. It appears best 
to increase 77 by a constant, but decrease it geometrically to allow rapid decay when 
necessary. This gives the overall scheme

{-fa if A  E  <  0 consistently;
- 6 7 7  if A E  >  0 ; (6.26)

0  otherwise

where A E  is the cost function change, and a and h are appropriate constants. The 
meaning of consistently can be based on the last K  steps, or on a weighted moving
average of the observed A £ ”s. When a bad step decreases 77, it is also worthwhile
“undoing” the step and setting a  =  0  until a good step is taken.

This kind of adaptive scheme can be made more effective by having several 
different learning rates. Cater [1987] suggested having parameters 77 ,̂ one for each 
pattern //, and Jacobs [1988] suggested an r)pq for each connection pq. Even without 
an adaptive rule it may be appropriate to have different 77’s to suit the architecture; 
the choice

rjpq oc l/(fan-in of site i) (6.27)

is often used [Plaut et al., 1986], though an even stronger dependence on fan-in 
may be better [Tesauro and Janssens, 1988].

Other Minimization Procedures *

Gradient descent is one of the simplest optimization techniques, but not a very
good one. There are many more powerful techniques available, though most are
not well suited to a network implementation. They are nevertheless worth consid
ering, perhaps for off-line training on an ordinary (or parallel) computer for later 
implementation as a physical network with predetermined weights.

To simplify notation let us use the vector x for the weight space we are search
ing; specifying x corresponds to specifying all the weights. Then expanding the cost 
function E (x )  about the current point xo we obtain3

E (x )  =  E 0 +  (x -  x 0) • V.E'(xo) +  |(x -  x0) • H • (x -  x0) H--- (6.28)

3The gradient V E  means simply the vector with components dE/dxi.
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where H is the second derivative H essian  m a trix

H» ■ s S j  ( 6 ' 2 9 )

evaluated at xo. Differentiating (6.28) gives a similar expansion

V E (x ) =  V E (x 0) +  H • (x  -  x 0) H  (6.30)

for the gradient.
We want to find the minimum of E (x ), where o f course V E (x ) =  0. One 

approach is to set (6.30) to zero, ignoring the higher-order terms, to yield

V E (x o ) +  H • (x  -  x 0) =  0 (6.31)

or
X  =  x 0 -  H_ 1 V E (x 0) (6.32)

as an estimate for the location o f the minimum. We can use this equation iteratively, 
repeatedly using the previous estimate x  as the new xo. This is N e w to n ’ s m eth od ; 
in one dimension it becomes the familiar rule

■ « . - U S  (6-33)

for finding a root o f E \ x)  =  0.
Newton’s method is very expensive computationally, because for n weights we 

must invert an n x n matrix H at each iteration, taking order n3 steps every time. 
It also requires computation o f the second derivatives, which does not fit into the 
back-propagation framework. And it is numerically unstable unless we start close 
enough to the minimum, which is unlikely in a practical <£ase. So in all it is not a 
practical technique in many dimensions. Nevertheless it serves as a useful reference 
point for other approaches.

Most .practical minimization methods use only first derivative information, com
bined with line searches along selected directions. In a line search starting from
Xo in direction d we stay on the line

x  =  x 0 +  Ad (6.34)

and choose A to minimize E (x ). There are many ways o f performing this one
dimensional minimization, which often need not be done very accurately at first 
[Luenberger, 1986]. One simple approach is simply to repeat a fixed 7/ step until E  
no longer decreases [Hush and Salas, 1^88].

The simplest approach using line search is the steepest descent m eth od , 
in which we choose d  =  — V E (xq). Thus we minimize along a line in the gradient 
direction, and then re-evaluate the gradient and repeat the process. The left-hand
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FIGURE 6.4 Line minimization on the simple quadratic surface o f Figs. 5.10 and 
6.3. Steepest descent was used on the left, Polak-Ribiere conjugate gradient de
scent on the right.

side o f Fig. 6.4 shows a simple example for the quadratic surface o f Figs. 5.10 and 
6.3. Although it seems to converge in fewer steps than any method yet discussed, 
note that each step involves a line minimization, which may itself take many func
tion evaluations. But in fact steepest descent is usually considerably faster than 
ordinary back-propagation, though it sometimes fails to converge at all [Watrous, 
1987; Kramer and Sangiovanni-Vincentelli, 1989].

Successive steps are necessarily perpendicular in steepest descent, because

0 =  - ^ E ( x o +  Adold) =  dold • V £ new (6.35)

implies that the new gradient direction V E neyf is perpendicular to the old direction 
d old after the line minimization. Thus the approach to the minimum is a zigzag path, 
as we see in the figure. A better approach is to use as the new search direction a 
compromise between the gradient direction and the previous search direction:

d new =  - V £ new +  /?dold (6.36)

for some appropriate (3. This is the basis o f con ju g a te  gradient m eth od s, which 
choose /? so that each new search direction spoils as little as possible the mini
mization achieved by the previous one. This means that the new search direction 
d new should be such that it does not change (to first order) the component of the 
gradient along the previous direction, which was just made zero by (6.35). Thus we 
need (to first order in A)

d old • V £ (x o  +  Adnew) =  0 (6.37)

or, using (6.30) and (6.35),
d old • H • d new =  0 . (6.38)

The vectors d old and d new are then said to be conjugate.
To complete the specification o f a practical procedure we need to know how to 

choose (3 in (6.36) so as to satisfy (6.38). The P o la k -R ib iere  ru le4

(V£"ew  -  V £ 0,d) • V £ new
P =  ( v E a a p   (6 '39)

4 The term V2£old • V E neyf is zero if the line minimization is done exactly, but helps when it is 
done only approximately.
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achieves this goal, and in fact keeps the last n directions all mutually conjugate. 
The result is remarkable because no explicit knowledge o f the Hessian H is needed. 
We omit the proof; see Press et al. [1986] for details.

In summary the conjugate gradient method (in the Polak-Ribiere variant) con
sists o f a succession o f line minimizations along directions given by (6.36) and 
(6.39). On a strictly quadratic surface in n dimensions it reaches the minimum in 
exactly n steps, as shown for n =  2 on the right-hand side o f Fig. 6.4. It has been 
applied in a neural network context by Kramer and Sangiovanni-Vincentelli [1989] 
and by Makram-Ebeid et al. [1989], with advantages in speed and convergence over 
back-propagation or steepest descent. A parallel implementation is possible.

Another technique, also using successive line minimizations, is the quasi- 
N ew ton  or variab le  m etr ic  m eth od . This also reaches the bottom  of a strictly 
quadratic valley in n steps, but by a different approach. The idea is to use the 
Newton rule (6.32) but with an approximation to the inverse Hessian H” 1. This is 
achieved through an iterative scheme

x new =  x old _  AGold . V £ .old (g  4Q)

Gnew _  Gold +  F(Gold,x new- x oId,V £ ,new- V £ ; old) (6.41)

where G is the approximation to H- 1  and the matrix F is a rather complicated 
function o f its three arguments; see Press et al. [1986] or Luenberger [1986] for 
the details. Equation (6.40) is just the Newton rule with the approximate inverse 
Hessian G and an extra factor A which we choose by line minimization. Equa
tion (6.41) creates successive approximations (starting from a unit matrix) to the 
actual Hessian, without ever evaluating a second derivative.

The quasi-Newton techniques usually produce comparable results to the con
jugate gradient techniques, with similar speed. They do however require more stor
age (for the matrix G), which may be a disadvantage in a parallel implementation. 
Watrous [1987] has studied their use in neural networks, finding an order o f mag
nitude speed increase over back-propagation.

All these line search methods— steepest descent, conjugate gradient, and quasi- 
Newton— use only first derivative information. In a neural network problem the 
derivatives can therefore be calculated efficiently by back-propagation o f the 6’s, 
just as for the full back-propagation rule; we replace only the gradient descent rule 
A =  —rjdE/dwij, not the gradient calculation.

Several authors have suggested using second derivatives too, approximating 
the full Newton rule (6.32) so that a matrix inversion is not required [Parker, 
1987; Scalettar and Zee, 1988; Ricotti et al., 1988; Becker and Le Cun, 1989]. The 
simplest approach is to ignore the off-diagonal elements o f the Hessian, yielding the 
p se u d o -N e w to n  rule

<•*>
which is equivalent to performing Newton’s rule separately for each weight. In a 
two-layer network the diagonal second derivatives can actually be calculated by
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propagating two types o f 6 ’s back through the network, but for more than two 
layers or for off-diagonal elements the scheme breaks down and non-local quantities 
are required [Ricotti et al., 1988]. Alternatively the second derivatives could be 
calculated by finite-differencing— finding the change o f dE/dwij produced by a 
small change o f Wij.

As it stands, (6.42) is dangerous, because the denominator could be negative or 
close to zero, possibly leading to a giant step in the wrong direction. These problems 
can be largely cured by using

OE / (  8 2E  \
A w “  =  - d ^ / \ a ^  + l1 )  (643>

with a small positive constant //. Nevertheless this whole approach can fail to con
verge, and seems to give only a modest speed increase over simple back-propagation. 

Owens and Filkin [1989] have suggested replacing the discrete gradient descent
rule

dE
A =  —77-T----- for all i j  (6.44)

dwij

by the continuous differential equations

=  —rijr—  for all i j . (6.45)
dt dw^

When we write out the right-hand side o f (6.45) as an explicit function o f the 
weights we obtain a set o f coupled nonlinear ordinary differential equations (O D E ’s). 
The conventional gradient descent rule (6.44) can be viewed as a simple fixed- 
step “forward-Euler” integrator for these equations. But in fact there are much 
better ways o f integrating such equations numerically, particularly if the equations 
are mathematically stiff, which is equivalent to there being shallow steep-sided 
valleys in the cost function .5 Most neural network problems do seem to be stiff, 
so specialized stiff ODE solvers are appropriate, and are |ound to give very large 
speed increases over ordinary back-propagation.

A very different approach uses a gen etic  a lgorith m  to search the weight space 
without use o f any gradient information [Whitley and Hanson, 1989; Montana and 
Davis, 1989]. See Goldberg [1989] for an introduction. A complete set o f weights is 
coded in a binary string (or chromosome), which has an associated “fitness” that 
depends on its effectiveness. For exafhple the fitness could be given by — E  where 
E  is the value o f the cost function Tor that set of weights. Starting with a random 
population o f such strings, successive generations are constructed using gen etic  
op era tors  such as mutation and crossover to construct new strings out o f old ones, 
with some form of survival o f the fittest; fitter strings are more likely to survive and 
to participate in mating (crossover) operations. The crossover operation combines

5 Technically, stiffness depends on the ratio of the largest and smallest eigenvalues of the underlying 
Hessian, just as found in Chapter 5 for the maximum convergence rate of gradient descent.
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part o f one string with part o f another, and can in principle bring together good 
building blocks— such as hidden units that compute particular logical functions—  
found by chance in different members of the population. The way in which the 
weights are coded into strings and the details o f the genetic operators are both 
crucial in making this effective.

Genetic algorithms perform a global search and are thus not easily fooled by 
local minima. The fitness function does not need to be differentiable, so we can start 
with threshold units in Boolean problems, instead of having to use sigmoids that are 
later trained to saturation. On the other hand there is a high computational penalty 
for not using gradient information, particularly when it is so readily available by 
back-propagating errors. An initial genetic search followed by a gradient method 
might be an appropriate compromise. Or a gradient descent step can be included as 
one o f the genetic operators [Montana and Davis, 1989], There are also large costs 
in speed and storage for working with a whole population o f networks, perhaps 
making genetic algorithms impractical for large network design.

There has not yet been sufficient comparative study to determine which o f the 
techniques discussed here is best overall. Conventional back-propagation is slow 
compared to almost any o f the improved techniques, but o f course speed is not 
the only issue. We should also consider storage requirements, locality o f quantities 
required (for a parallel or network implementation), reliability o f convergence, and 
the problem o f local minima. Probably there is no single best approach, and an 
optimal choice must depend on the problem and on the design criteria.

Local Minima

Gradient descent, and all o f the other optimization techniques discussed above, can 
become stuck in lo ca l m in im a  o f the cost function. Actually local minima have 
not, in fact, been much o f a problem in most cases studied empirically, though it is 
not really understood why this should be so. There certainly are local minima in 
some problems [Mclnerny et al., 1989], though apparent local minima sometimes 
turn out to be the bottoms of very shallow steep-sided valleys.

The size o f the initial random weights is important. If they are too large the 
sigmoids will saturate from the beginning, and the system will become stuck in a 
local minimum (or very flat plateau) near the starting point. A sensible strategy 
is to choose the random weights so that the magnitude o f the typical net input hi 
to unit i is less than— but not too much less than— unity. This can be achieved by 
taking the weights to be o f the order o f l/y/ki where k{ is the number o f j ’s 
which feed forward to i (the fan-in o f unit i) .

A common type o f local minimum is one in which two or more errors com
pensate each other. These minima are not very deep so just a little noise (random 
fluctuation) is needed to get out. As we mentioned earlier, a simple and very effi
cient approach is to use incremental updating (one pattern at a time), choosing the 
patterns in a random order from the training set. Then the average over patterns is 
avoided and the random order generates noise. If, on the other hand, the training
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set is cycled through in the same sequence all the time it is possible to get stuck 
because a series of weight changes cancel.

Another way of introducing noise is to let upward steps in E  be allowed occa
sionally, as in the stochastic networks discussed earlier, with a temperature T  con
trolling the probabilities. Annealing— a gradual lowering of T— is then performed. 
However, this approach tends to make learning very slow.

Alternatively it is possible to add noise explicitly by randomly changing the 
w 's slightly [von Lehman et al., 1988] or by adding noise to the training set inputs 
££, independently at each presentation [Sietsma and Dow, 1988]. In each case there 
seems to be an optimum amount of noise; a little helps, but too much hurts and 
slows down the learning process considerably.

6.3 Examples and Applications
Although our main focus in this book is on the theoretical aspects o f neural com
putation, it is helpful at this stage to survey some examples. Back-propagation and 
its variants have been applied to a wide variety of problems, from which we select 
a few.

Our first three examples are “toy problems” which are often used for testing 
and benchmarking a network. Typically the training set contains all possible input 
patterns, so there is no question of generalization. In the later examples the training 
set is only a part of the problem domain, but the networks are able to generalize 
to previously unseen cases.

Most o f the examples employ straightforward back-propagation learning by 
gradient descent in two-layer networks with full connectivity between layers. Some 
of them illustrate that one can solve some nontrivial real-world problems without 
special tricks or refinements of this standard, off-the-shelf network. A few examples, 
on the other hand, require a little more thinking about the problem and consequent 
modification of the algorithm for a satisfactory solution.

XOR

The XO R problem was described on page 96, where we saw that it could not be 
solved by a single layer network because it is not linearly separable. However, there 
are several solutions using one hidden layer [Rumelhart, Hinton, and Williams, 
1986b], two o f which are shown in Fig. 6.5 for threshold units with 0/1 inputs and 
outputs. In solution (a) the two hidden units compute the logical OR (left) and AND 
(right) o f the two inputs, and the output fires only when the OR unit is on and the 
AND unit is off. Solution (b) is not a conventional feed-for ward architecture, but 
is interesting because it needs only two units; the hidden unit computes a logical 
AND to inhibit the output unit when both inputs are on.
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FIGURE 6.5 Two networks 
that can solve the XO R 
problem using 0 /1  thresh
old units. Each unit is 
shown with its threshold.

FIGURE 6.6 A network to solve the N  =  4 
parity problem with 0 /1  threshold units.

Solutions like (a) are readily found using back-propagation with continuous
valued units. However, the weight values found become much larger than those 
shown in the figure, so as to drive the sigmoid units to saturation. The training 
time from random starting weights is surprisingly long; hundreds o f ep o ch s— passes 
through the training set— are required to get good results.

Parity

The parity problem is essentially a generalization of the XO R problem to N  inputs 
[Minsky and Papert, 1969]. The single output unit is required to be on if an odd 
number o f inputs are on, and off otherwise. One hidden layer o f A  units suffices to 
solve the problem, as shown in Fig. 6 .6 . Hidden unit j  is on when at least j  input 
units are on, and either excites or inhibits the output unit depending on whether j  
is odd or even. Again back-propagation finds this solution using continuous-valued 
units, except that the weights become scaled up by a large factor.

The parity problem (or XOR, its AT =  2 version) is often used for testing or 
evaluating network designs. It should be realized, however, that it is a very hard 
problem, because the output must change whenever any single input changes. This 
is untypical o f most real-world classification problems, which usually have much 
more regularity and allow generalization within classes o f similar input patterns 
[Fahlman, 1989].
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FIGURE 6.7 A 5 -3 -5  encoder net
work.

Encoder

The general encoding problem involves finding an efficient set o f hidden unit pat
terns to encode a large number of input/output patterns. The number o f hidden 
units is intentionally made small to enforce an efficient encoding [Ackley, Hinton, 
and Sejnowski, 1985].

The specific problem usually considered involves a u to -associa tion , using iden
tical unary input and output patterns. We take a two-layer network o f N  inputs, 
N  output units, and M  hidden units, with M  <  N. This is often referred to as 
an N - M - N  encoder; Fig. 6.7 shows the architecture o f a 5 -3 -5  encoder. There are 
exactly N  members o f the training set (p =  N), each having one input and the 
corresponding target on, and the rest off: ( ? = ( ?  =  V  A permutation o f the 
outputs could also be used— it makes no difference to the network.

One solution to the problem is to use binary coding on the hidden layer, so 
that the activation pattern o f the hidden units gives the binary representation of 
p, the pattern number. This can be achieved with connection strengths patterned 
after the binary numbers. Clearly we need M  >  log2 N  for such a scheme. But 
back-propagation tends to find alternative schemes, often using intermediate (non
saturated) values for the hidden units, and can sometimes solve the problem even 
when M  <  log2 N.

Encoder problems have been widely used for benchmarking networks. One ad
vantage is that they can be scaled up to any desired size, and another is that their 
difficulty can be varied by changing the ratio M/ log2 N. They also have practical 
applications for image compression, as discussed later on page 136.

NETtalk

In the preceding examples the training set normally includes all possible input 
patterns, so no generalization issue arises. But from here onwards the training set 
is only a part o f the problem domain, and the networks are able to generalize to
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T h i n p u t

FIGURE 6.8 The NETtalk architecture.

previously unseen cases. In some cases the emergence o f significant internal repre
sentations is also observed; some of the hidden units discover meaningful features 
in the data (meaningful to humans) and come to signify their presence or absence.

The NETtalk project aimed at training a network to pronounce English text 
[Sejnowski and Rosenberg, 1987]. As shown in Fig. 6 .8 , the input to the network 
consisted of 7 consecutive characters from some written text, presented in a moving 
window that gradually scanned the text. The desired output was a phoneme code 
which could be directed to a speech generator, giving the pronunciation of the letter 
at the center o f the input window. The architecture employed 7 x 29 inputs encoding 
7 characters (including punctuation), 80 hidden units, and 26 output units encoding 
phonemes.

The network was trained on 1024 words from a side-by-side English/phoneme 
source, obtaining intelligible speech after 10 training epochs and 95% accuracy after 
50 epochs. It first learned gross features such as the division points between words 
and then gradually refined its discrimination, sounding rather like a child learning 
to talk. Some internal units were found to be representing meaningful properties of 
the input, such as the distinction between vowels and consonants. After training, the 
network was tested on a continuation of the side-by-side source, and achieved 78% 
accuracy on this generalization task, producing quite intelligible speech. Damaging 
the network by adding random noise to the connection strengths, or by removing 
some units, was found to degrade performance continuously (not catastrophically 
as expected for a digital computer), with rather rapid recovery upon retraining.

It is interesting to compare NETtalk with the commercially available DEC-talk, 
which is based on hand-coded linguistic rules. There is no doubt that DEC-talk 
performs better than NETtalk, but this should be seen in the context o f the effort 
involved in creating each system. Whereas NETtalk simply learned from examples, 
the rules embodied in DEC-talk are the result o f about a decade of analysis by many 
linguists. This exemplifies the utility of neural networks; they are easy to construct 
and can be used even when a problem is not fully understood. However, rule- 
based algorithms usually out-perform neural networks wdien enough understanding 
is available.
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Protein Secondary Structure

The primary structure o f a protein consists of a linear sequence o f amino acid 
residues chosen from 20 possibilities, like text with an alphabet o f 20 letters. The 
secondary structure involves the local configuration o f this linear strand, most com
monly as an ct-helix or a /?-sheet. This secondary structure is then folded into the 
tertiary structure. In an obvious parallel to NETtalk, Qian and Sejnowski [1988a] 
constructed a network which took as input a moving window of 13 amino acids 
and produced as output a prediction of a-helix, (3-sheet, or other for the central 
part o f the sequence. After training on extensive protein folding data it achieved an 
accuracy o f 62% on previously unseen sequences, compared to about 5 3% for the 
best available alternative (the Robson method). This scheme was invented indepen
dently by Bohr et al. [1988] and developed further. A neural network approach is 
thus currently the method of choice in this problem. The accuracy obtained may in 
fact be very close to the best possible achievable from a local window; interactions 
from residues far along the primary sequence (but spatially nearby in the tertiary 
structure) may be needed to do any better.

Hyphenation Algorithms

Here the problem is to determine the points at which a word may be hyphenated. 
This depends on whole syllables, not isolated letter-pairs, as shown by the examples 
prop aga  tion, pro pagan da, and propane. Reasonably good deterministic algo
rithms (with exception dictionaries) exist for English [Liang, 1983], but there is a 
current lack o f good methods for languages such as Danish and German. A neural 
network is likely to be the quickest way to produce a working solution, again with 
an architecture like that o f NETtalk, and is currently under study [Brunak and 
Lautrup, 1989, 1990].

Sonar target recognition

In another interesting example, Gorman and Sejnowski [1988a, b] trained the same 
kind o f standard two-layer perceptron to distinguish between the reflected sonar 
signals from two kinds o f objects lying at the bottom  o f Chesapeake Bay: rocks 
and metal cylinders. The network inputs were not taken directly from the raw 
signal x t (where t is time), but were based on the frequency spectrum (Fourier 
transform) o f that signal. This preprocessing was approximately linear

Zk = Y l aktXt (6-46)
t

(for discrete time and suitable coefficients ctjbt), and so should not be necessary in 
principle; a network should be able to learn an appropriate linear transformation 
if one is needed. However, going to the frequency domain made it possible to use a 
much smaller number o f input units than with raw time domain data.
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FIGURE 6.9 Learning 
curves for sonar target 
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smoothed). The notation 
60-12-2 means 60 inputs,
12 hidden units, and 2 
output units.

The network had 60 input units and two output units, one for rock and one for 
cylinder. The number o f hidden units was varied from none (one-layer only) to 24. 
Figure 6.9 shows the learn ing cu rves— the percentage o f correct classifications as 
a function o f the number o f presentations o f the training data set— for 0, 3, and 
12 hidden units. Without any hidden units the network rapidly reached about 80% 
correct performance, but then improved only very slowly. With 12 hidden units 
the performance came close to 100% accuracy, on every trial. No improvement was 
visible in the results on increasing the number of hidden units from 12 to 24.

After training, the network was tested on new data not in the training set. 
About 85% correct classification was achieved with 12 hidden units, showing rea
sonable generalization ability. This was improved to about 90% when the training 
set was more carefully selected to contain examples o f more of the possible signal 
patterns.

Navigation of a Car

Pomerleau has constructed a neural network controller for driving a car on a winding 
road [Pomerleau, 1989; Touretzky and Pomerleau, 1989]. The inputs to the network 
consist o f a 30 x 32 pixel image from a video camera mounted on the roof of the 
car, and an 8 x 32 image from a range finder coding distances in a gray scale. These 
inputs are fed to a hidden layer o f 29 units and from there to an output layer of 45 
units arranged in a line. The output unit in the center represents “drive straight 
ahead” while gradually sharper left and right turns are represented by the units to 
the left and right.

The network was trained on 1200 simulated road images using back-propagation. 
After training on each image about 40 times the network performed well, and the 
car could drive with a speed o f about 5 km/hr (3 mph) on a road through a wooded 
area near the Carnegie-Mellon campus. The speed is limited by the time taken by
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the small Sun-3 computer in the car to do a forward pass through the large net
work, and could obviously be increased by using some dedicated parallel hardware. 
Nevertheless the speed was about twice as fast as that obtained using any o f the 
other (non-network) algorithms which were tried.

Image Compression

In high-definition television, the channel capacity is too small to allow transmission 
o f all the information (intensity and color) characterizing every pixel on the screen. 
Practical transmission schemes must therefore exploit the redundancy that natu
rally exists in most images, encoding the picture in a much smaller number o f bits 
than the total required to describe it exactly. The encoded or “compressed” image 
must then be decoded at the receiver into a full-sized picture. Ideally the encoding 
and decoding should be done in a way that optimizes the quality o f the decoded 
picture. A great many ad hoc schemes have been tried on this problem.

We can formulate this as a supervised learning problem by making the tar
gets equal to the inputs (auto-association), and taking the compressed signal from 
the hidden layer. Then we just have a scaled-up version of the encoder task dis
cussed earlier (page 132 and Fig. 6.7), sometimes called self-su perv ised  back- 
p rop a g a tion  in this context. The input-to-hidden connections perform the encod
ing and the hidden-to-output connections do the decoding.

This approach was tried by Cottrell et al. [1987]. The network they studied most 
took input from 8 x 8-pixel regions o f the image (64 input units, each specified to 8- 
bit precision) and had 16 hidden units. It was trained by standard back-propagation 
on randomly selected patches o f a particular image for typically 150,000 training 
steps. Then it was tested on the entire image patch by patch, using a complete set 
o f nonoverlapping patches. Cottrell et al. obtained near state-of-the-art results from 
this simple procedure. As one might expect, the performance was somewhat worse 
when the network was tested on very different pictures, but it was still respectable. 
The fact that one can do so well with the simplest kind of architecture imaginable 
suggests that more complex networks could do even better.

An interesting aspect of this problem is that nonlinearity in the hidden units 
is theoretically o f no help [Bourland and Kamp, 1988], and indeed Cottrell et al. 
found that nonlinearity conferred no advantage in their simulations. Using linear 
units allows a detailed theoretical analysis [Baldi and Hornik, 1989], which shows 
that the network projects the input onto the subspace spanned by the first M  p rin 
cipa l co m p on en ts  o f the input, where M  is the number o f hidden units. Principal 
components are discussed in detail in Section 8.3. A projection onto principal com
ponents discards as little information as possible, by retaining those components o f 
the input vector which vary the most.

Backgammon

In the game o f backgammon each player in turn rolls two dice and then typically
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has a choice o f around 20 possible moves consistent with the dice. Look-ahead is 
difficult because o f the number o f possible rolls and the number o f possible moves 
for each roll. A network was trained to score, on a scale o f —100 (terrible move) to 
+ 1 0 0  (best move), triples {current position, dice values, possible move}  using a set 
o f 3000 examples hand-scored by an expert player [Tesauro and Sejnowski, 1988]. 
The input to the network consisted o f the triple itself, suitably coded, plus some 
precomputed features such as p ip  cou n t and d egree  o f  trapp in g , with 459 units 
in all. There were two hidden layers of 24 units each, and a single continuous-valued 
output unit for the score. Noise was added to the training data by including some 
positions with a randomly chosen score. During development notable errors made 
by the network were corrected by adding hand-crafted examples to the training set.

Playing against Sun Microsystems’ gammontool program, the final network 
won about 59% o f the time. Note that generalization is almost always necessary; 
after the first few moves o f a game it would be rare to encounter an example from 
the training set. The network exhibited a great deal o f “common sense,” almost 
invariably choosing the best move in situations that were transparent or intuitively 
clear to a human player. The success rate dropped to 41% without the precomputed 
features, showing their importance. Without the training set noise (but with the 
precomputed features) it was 45%, indicating that noise actually helps the system.

A later version o f “Neurogammon” won the gold medal at the computer olym
piad in London, 1989. It defeated all other programs (five commercial and two 
non-commercial), but lost the game to a human expert by a score o f 2-7 [Tesauro, 
1990].

Signal Prediction and Forecasting

The problem o f signal prediction can be treated in a purely empirical fashion, 
but the theoretical foundations o f the problem are also o f fundamental conceptual 
importance. Since our emphasis in this book is on theory, we digress for a few 
paragraphs to summarize the important ideas before taking up the operational 
problem and its neural network implementation.

In many situations in science and technology we want to predict the future 
evolution o f a system from past measurements on it. This is in fact the central 
procedure o f classical physics: we make a mathematical model o f a system by writ
ing equations o f motion and try to integrate them forward in time to predict the 
future state. Everyone who has taken an elementary physics course is familiar with 
this paradigm in systems with a small number o f degrees o f freedom. Mathemat
ically, we would say that we describe the state o f the system by a point x  in a 
multi-dimensional space T (with one dimension for each degree o f freedom), and 
the dynamics can be characterized as the motion of x  in T.

This procedure runs into trouble, however, in nonlinear systems with many de
grees o f freedom, like a turbulent fluid, the weather, or the economy. It is not practi
cal to try to solve the equations o f fluid dynamics explicitly except for rather simple 
special situations; we just cannot keep track o f motion in such a high-dimensional
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space. But all is not lost. Studies o f the dynamics o f apparently chaotic systems 
with many degrees o f freedom reveal that dissipation (e.g., viscosity) can reduce the 
number o f effectively relevant degrees o f freedom to a small number. That is, the 
motion o f the system, which in principle occurs in a very high-dimensional space 
T, becomes confined after some time to a subspace Ta o f low dimensionality called 
an a ttra ctor . The attractor Fa is often a rather strange fra cta l object, with a 
dimensionality d that is not even an integer [Mandelbrot, 1982].

If we can somehow identify the coordinates which characterize the attractor 
Ta , then our problem becomes like one in simple physics, with only a few degrees o f 
freedom. This sounds at first difficult or impossible: when there are so many degrees 
o f freedom in the original description, how can we possibly know— without already 
having solved the problem— which combinations are the few relevant variables? But 
in fact this is not a difficulty at all. It is not at all crucial how we choose the new 
variables as long as there are enough o f them, and a set o f previous values o f the 
quantity to be predicted is in fact a completely adequate choice.

The physical argument [Packard et al., 1980] for expecting a result like this 
is that most measurements will probe some combination o f the relevant variables 
(since the motion o f the system lies on the attractor), and measurements at different 
times will in general probe different combinations. Thus a sequence o f m such 
measurements should contain enough information to predict the motion on the 
attractor, provided m is sufficiently large compared to the attractor dimensionality 
d. Packard et al. tested this idea in numerical experiments and found support for 
it.

There is also a rigorous theorem, proved by Takens [1981], which says that 
there exists a smooth function o f at most 2d +  1 past measurements that correctly 
predicts the future value o f the variable in question. The prediction is just as good 
as the one we would have made as if we had been able to solve the complete 
system with its millions o f degrees o f freedom. Furthermore, if the measured values 
are known with infinite precision, then the result is insensitive to both the time 
interval between the past measurements and to how far ahead we want to predict 
the future measurement. But in practice noise and imprecision in the measurements 
limit how freely these quantities can be chosen.

Thus we know that we can in principle reduce the prediction problem for a 
complex dynamical system whose motion lies on a low-dimensional attractor to 
something like an elementary physics problem. What Takens’ theorem does not give 
us is the explicit form o f the function which accomplishes the desired extrapolation. 
It is here that neural networks come into the picture. The idea is to train a feed
forward network using the set o f variables

x ( t ), x(t  -  A ), x(t  -  2A), . . .  , x(t  -  (m -  1)A ) (6.47)

as the input pattern, and the (known) value x ( t + T )  as target, for many past values 
o f t . In this way one is approximating the true extrapolation mapping by a function 
like (6.4), parameterized by the weights and thresholds of the network. Once the 
network has been trained, it can be used for prediction a time T  into the future.
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Lapedes and Farber [1988] tested this idea using a signal x(t)  produced by 
the numerical solution o f the Mackey-Glass differential-delay equation [Mackey and 
Glass, 1977]

dx  ̂ 0 .2x(t — t )  Aa\- =-0Mt)+1 + ,\ t : ’Ty (6 -48)

Because o f the delay r, this is an infinite-dimensional system— one has to know the 
initial value o f the function on a continuous interval, r  controls how chaotic the 
motion is. The larger r, the larger the dimensionality o f the attractor. For r  =  17, 
one finds d «  2.1 and for r  =  30 one gets d «  3.5.

The Lapedes-Farber network had two hidden layers, because o f arguments dis
cussed later about how many layers it takes to approximate an arbitrary function 
efficiently. Furthermore, the single output unit was taken to be linear (flf(x) =  x) 
because the target takes on a continuous range o f real values; there is no need for 
the saturation given by the usual sigmoidal nonlinearity.

Training this network by ordinary back-propagation is very slow because o f 
the numerical accuracy desired and the presence o f two hidden layers. Lapedes 
and Farber were able to speed up the convergence by using a conjugate gradient 
technique. Still, they had to use a Cray supercomputer to achieve a prediction 
accuracy comparable to that achieved by another new method due to Farmer and 
Sidorowich [1987, 1988]. In the Farmer and Sidorowich approach one keeps a file 
o f thousands o f previous input vectors (6.47), stored in a way that makes it easy 
to find those vectors close to any chosen point in the m-dimensional space. When 
a new input vector is presented as the basis for a prediction o f x(t  +  T ), the 
program looks up the closest vectors in the file and notes where they evolved to 
after a time T. Then it does a linear interpolation from those examples, creating a 
linear fit to the t —► t -f T  mapping in the neighborhood of x(t), and uses that to 
predict x(t  +  T ).

Both methods predict deterministic chaotic time series much better than tra
ditional methods. The best results can often be achieved with a hybrid o f the 
local-map and neural network schemes; this is discussed at the end o f Chapter 9 , 
since it involves unsupervised as well as supervised learning.

Recognizing Hand-Written ZIP Codes

A back-propagation network has been designed to recognize handwritten ZIP codes 
(numerical postal codes) from the U.S. mail [Le Cun et al., 1989]. The network 
employs many interesting ideas, some o f which we will return to in the next section. 
Almost 10,000 digits recorded from the mail were used in training and testing the 
system. These digits was located on the envelopes and segmented into digits by 
another system, which in itself had to solve a very difficult task.

The network input was a 16 x 16 array that received a pixel image o f a particular 
handwritten digit, scaled to a standard size. As sketched in Fig. 6.10, this fed 
forward through three hidden layers to the 10 output units, each of which signified 
one o f the digits 0-9.



140 SIX Multi-Layer Networks

10 output units

30 units

12 feature 
detectors 
(4 by 4)

12 feature 
detectors 
(8 by 8)

16 by 16 input
FIGURE 6 .10  Architecture 
o f the ZIP-code reading 
network.

The first two hidden layers consisted of trainable feature detectors. The first 
hidden layer had 12 groups of units with 64 units per group. Each unit in a group 
had connections to a 5 x 5 square in the input array, with the location o f the square 
shifting by two input pixels between neighbors in the hidden layer. All 64 units in 
a group had the same 25 weight values, so they all detected the same feature in 
different places on the retina. This w eight sharing, and the 5 x 5  receptive fields, 
reduced the number of free parameters for the first hidden layer from almost 200,000 

for fully connected layers to only (25 +  64) x 12 =  1068 (including independent 
thresholds for every unit).

The second hidden layer was a very similar set o f trainable feature detectors 
consisting o f 12 groups of 16 units, again using 5 x 5  receptive fields, a 50% scale 
reduction, and weight sharing. Inputs to different units were taken from different 
combinations o f 8 o f the 12 groups in the first hidden layer, making 8 x 25 shared 
weights per second-layer group. The third hidden layer consisted o f 30 units fully 
connected to all units in the previous layer, and the 10 output units were in turn 
fully connected to the all third-layer units. In all there were 1256 units and 9760 
independent parameters.

The network was trained by back-propagation, accelerated with the pseudo- 
Newton rule (6.43). It was trained on 7300 digits and tested on 2000, giving an 
error rate o f about 1% on the training set and 5% on the test set. The error on the
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test set could be reduced to about 1 % by rejecting marginal cases with insufficient 
difference between the strongest and next strongest outputs. This procedure led to 
a rejection rate of about 12%.

To obtain good generalization it is important to limit the number o f free param
eters o f the network, as discussed later in this chapter. The weight sharing already 
reduces this number greatly, but the group has also been experimenting with what 
they call “optimal brain damage” to remove further weights from the network [Le 
Cun, Denker, and Solla, 1990]. Using information theoretic ideas a method was 
developed to make an optimal selection o f unnecessary weights. These were then 
removed and the network was retrained. The resulting network had only around 
1/ 4  as many free parameters as that described above, and worked even better: the 
rejection rate necessary to achieve 99% correct classification o f the test set was 
reduced to about 9% [Le Cun, Boser, et al., 1990].

Speech Recognition

Speech recognition is one o f the most studied tasks in artificial intelligence and 
neural networks. Speech is difficult to recognize for several reasons:

■ Speech is continuous; often there is no pause between words.
■ The speed o f speech is varying.
■ The meaning and pronunciation o f a word is highly dependent on context.
■ Pronunciation, speed, and syntax are speaker dependent.

Current methods generally perform poorly on speaker-independent continuous 
speech recognition. Many groups have attempted to train various networks to per
form this task. Because o f the temporal structure o f speech it is natural to consider 
using recurrent networks, as we describe in Section 7.3. Feed-forward networks 
have also been applied to some speech recognition problems, such as distinguishing 
among a set o f words. The scheme is simple: input some representation o f a spoken 
word and train the perceptron to recognize it. But in practice this only works on 
tasks limited to a small vocabulary and separate words. Lippmann [1989] gives a 
good review o f the status o f speech recognition by neural networks.

6.4 Performance of Multi-Layer Feed-Forward Networks
There are many theoretical questions concerning what multi-layer feed-forward net- 
works can and cannot do, and what they can and cannot learn to do. How many 
layers are needed for a given task? How many units per layer? To what extent does 
the representation matter? When can we expect a network to generalize? What do 
we really mean by generalization? How do answers to these questions depend on 
the details o f learning rate, momentum terms, decay terms, etc.?
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Some o f these questions, and similar problems, can be answered definitively, 
often with solid theorems. Answers to others are not yet in, but are under intensive 
study. The following discussion draws strongly on papers by Lapedes and Farber 
[1987, 1988] and Denker et al. [1987]. See also Lippmann [1987].

The Necessary Number of Hidden Units

First consider layered networks of continuous-valued units, with activation function 
g(u) =  1 / ( 1  -f e“ u) for hidden units and g(u) =  u for output units. Overall such
a network implements a set o f functions yi =  from input variables Xk to
output variables where {x k }  means x2, • • •, «jv- Explicitly, a network with 
no hidden layers computes

Vi = 2 2  w'kXk ~  O' (6.49)
i

and one with one hidden layer computes

Vi =  2 2  W{j3 ( 2 2  w*kXk ~  t j )  ~  6i (6-50)
j  k

and so on. We have included explicit thresholds 0t- and (f>j for convenience.
Suppose we want to approximate a particular set of functions F ,{x *.} to a 

given accuracy; how many hidden layers and how many units per layer do we need? 
The answer is at most two hidden layers, with arbitrary accuracy being obtainable 
given enough units per layer [Cybenko, 1988]. It has also been proved that only one 
hidden layer is enough to approximate any continuous function [Cybenko, 1989; 
Hornik et al., 1989]. The utility o f these results depends, o f course, on how many 
hidden units are necessary, and this is not known in general. In many cases it may 
grow exponentially with the number o f input units, as occurs in the case of the 
general Boolean functions discussed later.

Here we give a non-rigorous proof due to Lapedes and Farber [1988] that two 
hidden layers are enough. The essential points are that

1 . any “reasonable” function Fi{xjc} can be represented by a linear combina
tion o f localized b u m ps that are each non-zero only in a small region o f the 
domain { x* } ;  and

2 . such bumps can be constructed with two hidden layers.
With one variable x the function g(x)  -  g(x  -  c) obviously gives a peak at x  =  c /2  
and is zero far from there. A sharp peak anywhere can be produced with g(ax  +  
b) — g(ax +  c). In two or more dimensions we can add together one such function for 
each dimension, producing a highest peak wherever desired, but also some secondary 
peaks and valleys. All but the highest peak can be suppressed, however, by another 
application of g(u) with a suitable threshold. In two dimensions, for example, the 
function

g(A[g(ax +  b) -  g(ax +  c) +  g(ay +  d) -  g(ay  +  e)] -  B)  (6.51)
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can be used to produce a localized bump at any desired (x ,y ) .  This is of course 
exactly the type o f function that we can calculate with two hidden layers. Following 
the same scheme in N  dimensions, we need 2N  units in the first hidden layer and 
one in the second hidden layer for each bump. The output layer then sums the 
bumps to produce the desired function(s), in a manner similar to Fourier analysis 
or Green’s function representation.

The bump approach may not be the best one for any particular problem, but 
it is only intended as an existence proof. More than two hidden layers may well 
permit a solution with fewer units in all, or may speed up learning. In fact the 
construction says nothing about learning (or generalization), and it is possible that 
some functions are representable but not learnable with two hidden layers, perhaps 
because of local minima.

It is possible to construct units that themselves have a localized bump-like 
response, each becoming activated only for inputs in some small region o f the input 
space. Not surprisingly, only one hidden layer o f such units is needed to represent 
any reasonable function [Hartman et al., 1990]. These radial basis function units 
are discussed further in Section 9.7.

Now let us consider Boolean functions, using x * =  ±1 , (k =  1, 2, . . . ,  N) 
for inputs, g(u) =  sgn(u) on the single output unit, and g(u) =  tanh(u) for the 
hidden units. How many layers and units/layer do we need to represent any Boolean 
function? We have already seen (page 94) that only linearly separable functions can 
be represented with no hidden layers. But just one hidden layer suffices to represent 
any Boolean function! A one sentence proof for computer scientists consists o f the 
observation that such a network in the deterministic threshold limit contains a 
programmable logic array (PLA) as a special case, a PLA contains a read-only 
memory (ROM ) as a special case, and a ROM with AT-bit addressing can obviously 
implement any Boolean function on N  bits.

For the rest o f us, the proof is by construction. Use 2N units in the hidden layer, 
=  0 , 1 , . . . ,  2n  — 1 , and set Wj* =  + 6  if the kth digit in the binary representation 

o f j  is a 1 or Wjk =  —b if it is a zero. Use a threshold o f N(b  — 1) at each hidden 
unit. Then one o f the hidden units (the one coded in binary by the input) receives 
a net input o f hj =  + 6, while all others have hj <  —6. Making b large enough thus 
turns one hidden unit on (~  + 1 ) and the rest off (~  — 1 ) for each input pattern. 
The hidden units are said to act as m atch  filters or g ra n d m oth er  ce lls .6 The 
second stage consists o f a link =  + c  to the output unit i from grandmother 
cells representing inputs for which the answer is to be + 1 , and links =  —c from 
the rest. The threshold on the output unit is set to Wij, giving hi =  ± 2 c for the 
two answers.

O f course this solution is not likely to be practical in the real world. The 
number o f hidden units, and all fan-ins and fan-outs, grow exponentially with the 
number o f input bits N. It is therefore useful to define efficient network solutions

6The term comes from discussion as to whether your brain might contain cells that fire only 
when you encounter your maternal grandmother, or whether such higher level concepts are more 
distributed.
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as those which use a total number o f units that grows only polynomially in N. 
This immediately raises the question o f what Boolean functions can be represented 
by such networks. Denker et al. [1987] call such functions NERFs, for Network 
Efficiently Representable Functions, and compare them to low order polynomials 
in curve fitting. Little is yet known as to what this class includes and excludes. 
It is actually rather hard to find useful Boolean functions that are definitely not 
NERFs.

Input Representation

Another issue is the importance o f input representations. Do they really matter, or 
can we expect a network to be able to learn a task from any representation? The 
answer is that they certainly do matter. Consider first two predicates concerned 
with integers n:

1 . n is odd.
2 . n has an odd number o f prime factors.

If n is presented to a network in binary then predicate 1 is easy; you just look 
at the lowest order bit. Indeed a simple perceptron is guaranteed to learn such 
a task from a small number o f examples. On the other hand 2 is hard; factoring 
a number is a very hard problem in computer science and there is no reason to 
expect a network to learn it from a small training set. But suppose we change the 
representation? In base 3 rather than base 2, predicate 1 becomes hard too; every 
bit counts. If however we represented numbers by specifying their prime factors, 
then predicate 2 would become easy.

Representation is thus crucial. Indeed, we can prove a silly theorem: learning 
will always succeed, given the right preprocessor. The proof makes clear why it is 
silly: let the preprocessor compute the answer and attach it as additional bits to the 
raw input; then a simple perceptron (or any generalization thereof) is guaranteed 
to learn to copy the answer bits and ignore the rest.

It is also important to ask whether the information apparently represented 
in the input is actually available to the network. With fully connected layers, for 
example, the network has no inherent sense o f the order o f the inputs; a permutation 
o f the input bits is a symmetry of the network. A problem that might appear easy 
for us, given a particular ordering o f the input bits, might be much harder for such 
a network. An example studied by Denker et al. [1987] is the two-or-m ore-clumps 
predicate, in which the result is to be + 1  if there are two or more consecutive 
sequences o f + l ’s in the (ordered) input. Permutation makes the predicate quite 
obscure, as seen in table 6.1 for the permutation (0123456789) —► (3120459786). 
Actually a fully connected network learns this 10-input predicate fairly quickly, but 
it gets rapidly harder as the number o f inputs nodes is made larger [Solla, 1989].

If ordering or another geometrical or topological property o f the input is impor
tant, then the network should be told about it in some way. For example some input 
bits may be known to be related or “near” to each other, in the sense that their
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TABLE 6.1 The iwo-or-more-clumps predicate 

Original input Result Permuted input

— +++------ -1 +-----++-------
— ++_+— + 1 +-----+-+-----
—h++++++++ -1 +++-++++++
+++---++---+ + 1 -+++-+++---

-1

correlation is likely to affect the output, whereas others may be “far” from each 
other, each having a more-or-less independent influence on the output. This occurs 
for instance when the input bits are representing pixel illuminations in a spatial 
array. In such cases one may limit the spatial range o f the input-to-hidden connec
tions. Solla et al. [1988] found for the iwo-or-more-clumps predicate that this can 
improve both learning and generalization, and this kind of limited receptive field 
also proved useful in the ZIP-code reading network described earlier. Another idea 
is to add a penalty term to the cost function,

E  =  E 0 +  A \wik\2I<(j, k) (6.52)
i*

where K ( j ,  k) is a suitable kernel that increases as the distance between j  (in 
the hidden layer) and k (in the input layer) increases, thus penalizing “distant” 
connections more strongly.

There may be internal symmetries o f the architecture too. Permutation o f the 
units within a layer is an obvious example. One can also invert any given unit, 
changing the sign o f all its input and output connections and its threshold. These 
are discrete symmetries, but there are often continuous symmetries as well, at least 
approximately. In any situation where the input connections and the threshold scale 
with some parameter 6, the precise value o f b is immaterial as long as it is large 
enough to give saturation. Moreover, b can be different on different units, so we 
have a multi-dimensional continuous symmetry. The various symmetries give the 
cost-function landscape i£[w] periodicities, multiple minima, (almost) flat valleys, 
and (almost) flat plateaus. The last are the most troublesome, because the system 
can get stuck on such a plateau during training and take an immense time to find 
its way down.

Generalization

We gave some examples o f generalization in the previous section. Some seemed quite 
impressive; the networks generalized in very “sensible” ways. But it is important 
to be clear just what it is we are expecting a network to do when we look for 
generalization. Given the various symmetries in the network and in the problem,
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FIGURE 6.12 Generalization (af
ter Denker et al. [1987]).

and perhaps the lack o f relevant geometric information, it should not surprise us 
if a network finds a non-human solution that does not appear to generalize in the 
way we wish. It may in fact generalize in another way, perhaps equally valid.

Suppose first that we want a network to extract a rule from some examples. 
Figure 6.11 from Denker et al. [1987] defines the situation. There is a universe U o f 
possible input-output pairs, some o f which are consistent with a rule R. We select 
some examples o f these in a training or memorization set T  and try to teach them 
to the network. Then we test its generalization performance on a disjoint subset X  
o f an extraction set. Performance on X  measures generalization; performance on 
T  measures only memorization. The sets T  and X  should both be representative 
o f i?, probably randomly chosen.

The network only knows about T, not X  or R. So it is perfectly valid for it 
to make any generalization that is consistent with T, as shown in Fig. 6.12, also 
from Denker et al. [1987]. Here G l, G2, and G3 are all valid generalizations o f the 
memorization set T. It is worth asking how many possible such generalizations there 
are. If we have TV input bits and one output bit there are 2N input patterns, each 
o f which might have either output value, so there are 22 possible rules. If we train 
the network with p distinct examples we fix p out o f 2N rows o f the truth table and 
thus leave 22 rules consistent with T. All o f these are valid generalizations. The 
numbers TV =  30, p =  1000 are realistic and give over 210 generalizations!
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FIGURE 6.13 (a) A good fit to noisy data, (b) Overfitting o f the same data: the 
fit is perfect on the “training set” (x ’s), but is likely to be poor on a “test set” 
represented by the circle.

With these numbers one must wonder why networks ever find the generalization 
we prefer. The answer o f course must lie in the very special nature of the rules that 
we normally consider. The information needed to specify an arbitrary rule on N  
bits is clearly 2N bits, but “reasonable” rules are specified by no more than N k 
bits, for some small k. Similarly the network itself cannot possibly represent most 
arbitrary rules unless it has an exponentially large number o f hidden units. Again 
we should consider NERFs (page 144), not general Boolean functions.

Another important lesson about generalization can be learned from statistics 
and curve-fitting; too many free parameters results in overfittin g . As illustrated 
in Fig. 6.13, a curve fitted with too many parameters follows all the small details 
or noise but is very poor for interpolation and extrapolation. The same is true for 
neural networks: too many weights in a network give poor generalization.

6.5 A Theoretical Framework for Generalization *
The preceding discussion suggests the possibility o f quantitative estimates of what 
networks can and cannot do as a function o f their architecture and the nature and 
size o f their training set. There are actually several ways to quantify generalization; 
we will consider measures o f

1 . the average number o f alternative generalizations o f a training set;
2 . the probability that the trained network generates the right output for a ran

domly chosen input, on average; and
3. the same as (2), but in the worst case.

In case (2) we average over possible networks that are consistent with the training 
set T, but possibly different on other inputs. In case (3) we take the worst network 
(among those consistent with T ), so as to obtain a bound on the probability o f
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FIGURE 6.14 Weight space. 
The whole space is parti
tioned into regions cor
responding to different 
input-output functions. The 
shaded areas show how the 
allowed volume is succes
sively reduced by training 
on examples o f / .

error. In each case we can, at least in principle, use the generalization measure to 
estimate how large a training set is needed for “good” generalization, defining good 
by a requirement that the probable error is smaller than some convenient number.

All the material in this section is also applicable to other deterministic networks, 
not just feed-forward ones.

The Average Generalization Ability

We discuss first a theoretical framework constructed by Schwartz et al. [1990]. The 
principal result is surprising; one can calculate the average probability of correct 
generalization for any training set size p if one knows a certain function that can 
(in principle) be calculated before training begins. However, the averaging is over 
all possible networks consistent with the training set, and does not necessarily 
represent the typical situation encountered in a specific training scheme.

Suppose that we have a class of networks with a certain fixed architecture, 
specified by the number o f layers, numbers of units in each layer, and so on. Each 
particular case has some specific set o f connection weights and thresholds, which 
we denote collectively by w . We think of a specific w  as a point in an abstract 
space o f all possible w ’s, which we call w eight space. Our averages over possible 
networks will actually be averages over weight space, with some a priori density 
factor p(w ); we might for example have the same density for any weights that lie 
between —10 and +10, and zero density otherwise. The total available “volume” Vo 
o f weight space is just

Every vector w  in weight space represents a network implementing a function 
/w ( 0  that gives the network output for each input vector Note that different 
w ’s might produce the same function, but different functions cannot have the same 
w. Thus the whole of weight space is partitioned into a set of disjoint regions, 
one for each function / ( £ )  that the class o f networks can implement, as sketched in 
Fig. 6.14. This diagram assumes that w  can vary within some region and still imple
ment the same input-output mapping / ( £ ) ,  ^  expected for binary output units, but

(6.53)
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the idea can be extended to continuous-valued outputs: instead of saying whether 
a set o f weights implements a given function we need a measure o f the accuracy. We 
can also have several output units— this makes /w (£ ) a vector function, but causes 
no other complication.

The volume of the region o f weight space that implements a particular function
/ i s

V0( f )  =  j rfw/?(w)0 / (w)  (6.54)

where the in d ica tor  fu n ctio n  0 / ( w )  restricts the nonzero contribution to regions 
o f w  where / w =  / :

0 / (w ) =  (  1 lf =  f t ®  for a11 * ’ (6.55)
L 0 otherwise.

Note that Vo and V b(/) mean different things. Indeed their ratio

M f )  =  ^  (6-56)

is the fraction o f weight space that implements a given function / ,  or the probability 
o f getting that function if we choose random weights with density p(w ).

Summing over all functions, we can define an information-theoretic entropy

So =  - J 2 M f ) l o g 2 R o (f )  (6.57)
/

which measures the fu n ction a l d iversity  o f the architecture; the larger So the 
more information is required to specify a particular function. If there were K  pos
sible functions with equal volume Vo(f)  we would have R o (f)  =  l/ K  for those 
functions (and R o ( f )  =  0 for any other), giving So =  log2 K  or 25° =  K .  Even 
when the volumes are not equal, 25° is a good measure o f the effective number 
o f functions, weighted according to their occurrence probability. We can estimate 
an upper bound for So by counting how many bits of information are required to 
specify a set o f weights and thresholds.

Under supervised learning, examples o f input-output pairs X*1) satisfying 
a particular function /  are presented to the network; £** =  /(£**). Assuming that 
learning is successful, the weight vector w  eventually lies within the region o f weight 
space that is compatible with the presented examples. If p examples are learned, 
then the volume o f this remaining region is

where

V p =  f  dw p(w )  / ( / w , ^ )  (6.58)
J A*=l
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Vp includes the region belonging to the desired function / ,  plus regions correspond
ing to other functions that agree with /  on the training set. As we increase p we 
expect fewer such alternate functions, and we can think of learning as a continual 
reduction o f the volume o f allowed weight space, Vo >  V\ >  V2 >  . . .  >  Vp\ see 
Fig. 6.14.

The fraction of the remaining weight space belonging to a particular function 
/  is modified after learning p examples from R o (f )  to

R p (f )  =  ^  (6-60)vp

where Vp( f )  is the volume of weight space consistent with both /  and the training 
examples:

p
dw p (w )0 / ( w )  n H f w , n  (6 .6 i)

fi=l

=  (6.62)
P=1

Note that we took the / ( / ,  factors outside o f the integral— which then reduced 
Vo( / ) — because the 0 ^(w)  factor makes / w equal to /  in all non-vanishing 

cases. The result (6.62) shows that Vp( f )  is either equal to V o(/) or is 0 , according 
to whether or not /  agrees with the training examples.

The corresponding entropy

Sp — — ^  R p (f )  log2 R p(f)  (6.63)
f

is a measure of how many implementable functions are compatible with the training 
set. As training proceeds it decreases steadily, and would go to zero if we ever 
reached the stage where only the desired function /  was possible. Since Sp is actually 
a measure of the information required to specify a particular function, the difference 
Sp - 1 — Sp tells us how much information (in bits) is gained by training on the pth 
example. This cannot be more than the information required to specify the output 

which is one bit for a single binary output, so we would expect Sp =  Sq — p if 
training were perfectly efficient. We can use this idea, along with an initial estimate 
of So, in a couple o f ways: to bound the number of training examples needed to 
learn a function / ,  or to estimate the actual efficiency of training [Denker et al., 
1987].

In this discussion we have discriminated sharply between weights which are 
consistent and inconsistent with particular examples, using the / ( / ,  £M) factors in 
(6.61) and (6.62). For continuous-valued outputs we would have to relax this as
sumption, replacing the sharp / ( / ,  £^) by a smooth function exp(—f3ep) o f the error 
Sp in the pth  example. This function falls off gradually from 1 if there is no error

w >  =  /
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to 0 for large error, with a rate governed by the parameter /?. Introducing such 
exponential factors makes (6.61) and (6.62) look exactly like partition function cal
culations, and indeed they can be treated by statistical mechanics methods [Tishby 
et al., 1989]. However, we restrict ourselves in this book to the sharp yes/no case.

So far we have said nothing about the training sequence £*, £2, . . . ,  £p. Let 
us now assume that each each input pattern is chosen randomly from some 
distribution P (£ ) o f possible inputs, without any dependence on previous choices 
or on success rate. Then each factor /(/,£**) in (6.62) is independent o f the others, 
and we can average over possible training sequences to obtain

< W ) >  =  M / ) ( n / ( / , n )  =  V o (f )g ( f )p . (6.64)

Here the averages are over £* to £p, with the appropriate weights /*(£**), and

9 ( f )  =  </ ( / , € )> =  P rob(/(C ) =  / ( 0 )  (6.65)

is the probability that a particular function /  agrees with /  for an input £ randomly 
chosen from P(£).

The quantity g ( f )  is usually called the gen era liza tion  ab ility  o f / ;  it tells us 
how well /  conforms to / .  Note that it is between 0 and 1, and is independent o f 
the training examples. For example, suppose that /  and /  are Boolean functions o f 
N  inputs, and that all 2N input patterns are equally likely. The functions can be 
each defined by the 2N bits in their truth tables. Then g ( f )  is the fraction o f those 
bits where the two truth tables agree.

Now we consider the probability Pp( f )  that a particular function /  can be 
implemented after training on p examples of / .  Our basic approach is to take 
such probabilities as proportional to weight-space volume, so Pp( f ) is equal to the 
average fraction o f the remaining weight space that /  occupies:

The approximation is based on the assumption that Vp will not vary much with the 
particular training sequence, so «  (Vp) for each probable sequence; we say that 
Vp is self-averaging. This assumption is expected to be good as long as p is small 
compared to the total number o f possible inputs.

We can use (6 .6 6) to compute something more useful; the distribution o f gen
eralization ability g ( f )  across all possible / ’s:

Pp(g) =  £ > , ( / ) % -< K /) )  <* ' E ( V P( f ) ) S ( g - g ( f ) )  
f  /

= 9pl%2Vo(f)6(g-g(f))
S

«  9pPo(g) ■ (6.67)
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Here we used (6.64) and (6 .6 6), and omitted ^-independent factors like (Vp) because 
it is easier to normalize at the end, giving

Pp(9) =  7 1  gP/>0^ -------- . (6 .68)
Jo (9')pPo{g') dg'

This remarkable result shows that we can calculate the distribution pp(g) o f gener
alization ability after p training examples if we know it before learning begins. The 
initial distribution

Po(9) =  Vo'1 £  V0(f)S (g  -  g ( f ) )  (6.69)
/

depends only on the architecture and the a priori constraints incorporated in p(w ). 
Just knowing po(g) we can find essentially all we want to know about the learning 
process.

Particularly useful is the average generalization ability

m =  =  (6 ™)Jo J0 gpPo(g) dg

This gives us the entire learn ing cu rve— the average expected success rate as a 
function o f p\ see Fig. 6.9 for an example. We can use G(p) to predict how many 
examples will be necessary to train the network to a given average performance.

The form of (6 .68) shows that the distribution pp{g) tends to get concentrated 
at higher and higher values o f g as more and more examples are learned. Thus the 
shrinking o f the allowed volume o f weight (or function) space under learning is such 
as to leave remaining regions where the generalization ability is large.

The asymptotic (large p) behavior of pp(g), and hence o f G(p), is determined 
by the form o f the initial distribution po(g) near <7 =  1. There are two cases:

■ If there is a finite gap e between g =  1 and the next highest g for which po(g) 
is nonzero, then G(p) approaches 1 exponentially:

1 -  G(p) oc . (6.71)

■ If, on the other hand, there is no such gap in po(g), then G(p) approaches 1 

algebraically:
1 — G(p) oc l/ p . (6.72)

It is easy to verify both these results with simple examples, taking for example 
p0(g) =  ^8{g — 1 ) +  \&(g — 1 +  £) for the first case, and po(g) =  1 for the second.

The difficulty with applying this theoretical framework is that it requires knowl
edge o f the a priori distribution po(g), which we can calculate analytically only for 
some very simple problems. One approach is to compute it by exhaustive enu
meration for small networks. Schwartz et al. did this for the iwo-or-more-clumps 
problem (page 144) with 9 to 11 input units. They used the resulting po(g) in (6.70)
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and compared the result with that from direct calculation o f G(p). Although there 
were quantitative differences due to an accumulation o f numerical errors in the es
timated po(g), the qualitative shape o f the learning curves was the same, including 
the exponential approach (6.71) to saturation.

Bounding the Probability of Poor Generalization

The preceding calculation focuses on the average generalization ability, averaging 
over the region of weight space consistent with the training set. But it is not really 
clear that this average is appropriate, because the learning rule might favor some 
regions over others. After all, a particular training run consists o f a path through 
weight space as we gradually adjust the weights, not a random selection of a new 
set o f weights constrained by the training set. The initial density p (w ) can perhaps 
incorporate some o f this effect, but probably not all. It is therefore worthwhile 
considering another approach that tells us about the generalization ability in the 
worst case, rather than the average case.

The following theory applies not only to neural networks, but to any approx
imation scheme. We draw heavily on a short pedagogical paper by Abu-Mostafa
[1989] that explains the basics. The more detailed treatment can be found in Vapnik 
and Chervonenkis [1971], Vapnik [1982], and Blumer et al. [1986].

We consider only Boolean functions, appropriate for a network with a single 
binary output. Again we focus on a particular function / ( £ )  o f interest, with value 
±1  (say) for each £. The generalization ability g ( f )  o f any other function / ( £ )  is 
defined by (6.65); g ( f )  is the probability that / ( £ )  =  / ( £ )  on a randomly chosen 
example £ drawn from some distribution P(£)-  Note that g ( f )  measures how well 
/  approximates /  and is independent o f any particular set o f examples. We would 
like to know g ( f )  for the functions that our network implements, because it tells us 
how well we are doing— we could use a stopping criterion based on g { f )  exceeding 
some value like 0.95.

Let us assume that we have a training set o f p input-output pairs (£M, (^ ) with 
p =  1, 2, . . . ,  p, where =  !(€**)• We evaluate a particular network (or other 
approximation scheme) by how well it performs on this training set; let gp( f w) be 
the fraction o f the training set correctly classified by the function / w implemented 
by the network. Our training rule typically adjusts the weights to maximize <7P( / W), 
usually achieving <7P( / W) =  1 if this is possible.

Now compare g ( f )  and gp( f ). These both measure how well /  approximates 
/ ,  but g ( f )  is the average over all inputs whereas gp( f )  is the average over a 
specific sample o f p inputs, the training set. We might think o f using gp( f )  as 
an estimate o f # ( / ) ,  and we would certainly expect gp( f )  —► g ( f )  as p —► oo. 
But unfortunately the sample is biased for the functions / w that our learning rule 
produces, since those functions have been chosen with reference to the sample. So 
in fact we expect <7P( / W) >  <7( /w ) for the functions chosen by the learning rule, and 
cannot immediately use </p( / w) as an unbiased estimate o f g{fiN). Indeed it might 
be possible to find a function without errors on the training set, gp( f w) =  1 , but
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far from right on most other inputs, g ( f )  «  0 , as in the curve fitting example in 
Fig. 6.13.

However, the sample value gp( f )  is not biased if we consider an arbitrary func
tion /  among all those that the network can implement, instead o f a specific one 
/ w associated with the training set. This allows the application of some powerful 
statistical ideas to tell us how bad the estimate could be in the worst case. And the 
worst-case result applies to any implementable function / ,  so it also bounds the 
error for our specific function / w. The key result is a bound

Prob(max|<7p( / )  -  g(f)\ >  e) <  4m(2p)e“ e2p/8 (6.73)

proved by Vapnik and Chervonenkis [1971]. The left-hand side is the probability 
that the worst case estimation error exceeds some small number £, for any possible 
function /  implementable by the network. So if we could make the right-hand side 
small, less than 0.01 say, then would know with 99% probability that gp( f )  and 
g ( f )  are within e o f each other for any implementable function / .  In particular, we 
would know (with 99% certainty) that

9 ( f w) > l - e  (6.74)

if we obtained a perfect result <7P( / W) =  1 on the training set.
The right-hand side o f (6.73) involves the grow th  fu n ction  m(p), which is 

defined to be the maximum number o f different binary functions that could be 
implemented by the network on any set o f p examples There are a total o f 2P 
different binary functions on p points (consider the different red/black colorings 
o f the points), so m(p) <  2P. But it is not necessarily the case that a particular 
architecture can implement all 2P cases as we vary the weights, no matter how the 
p points are chosen. For example a simple perceptron can only implement linearly 
separable functions, and for large enough p there are less than 2P o f those. In some 
cases the total number o f possible functions is limited by the architecture, giving an 
upper bound for ra(p). Consider for instance the effect o f limiting each connection 
weight to one of k values; clearly m(p) <  kw  where W  is the total number o f 
weights.

If m(p ) grows less rapidly than exponential in p, then the right-hand o f (6.73) 
can be made arbitrarily small by choosing p large enough. This lets us make the 
generalization error as small as desired. On the other hand, the bound (6.73) is not 
very useful if ra(p) grows exponentially for ever.

Vapnik and Chervonenkis proved that the growth function ra(p) always looks 
as shown in Fig. 6.15. It is equal to 2P up to some point, p =  d y e > where the 
growth starts to slow down, dye  is called the Vapnik-Chervonenkis dimension, or 
just the VC dimension. It can be infinite, in which case m(p) =  2P for all p and the 
network will never generalize. But if dye  is finite it can be shown that ra(p) obeys 
the inequality

m(p) <  Pdvc +  1 (6-75)
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and so does not continue growing exponentially. Then (6.73) becomes useful in 
bounding the generalization error.

Let us consider some examples. A straightforward case is the simple perceptron 
with A  inputs, for which

N—1 /
m(p) =  C (p ,N )  =  2 J 2  ( P 7  (6 76)

«=o v 1 '

from (5.67); the number m(p) o f implementable Boolean functions on p points is 
just the same as the number C(p, N )  o f dichotomies on p points, because every set 
o f weights corresponds to a dichotomy.

The binomial formula leads to the identity

2-  =  ( 1 + 1 ) -  =  £  ( " ) r i “ - m =  £  ( " )  ( « " )
m=0 '  '  m =0

so for p <  N  we obtain, recalling (^ ) =  0 for m >  n,

N—l / p—l j _

C (p ,N ) =  2 ^ 2 { P ~  ) =  2 ^ 2 ( P ~  ) =  2 • 2P_1 =  2 p . (6.78) 
,=o V 1 /  ,=o '  * '

But for p >  N, C (p f N ) is less than 2P, because some terms in the sum (6.77) are 
missing. Thus the VC dimension is AT for the simple perceptron.

By inserting C (p ,N )  into (6.73) one can calculate numerically the number of 
examples needed (in the worst case) to obtain good generalization with a simple 
perceptron. We can get an upper bound on this number using (6.73) and (6.75):

FIGURE 6.15 The growth function al
ways starts out equal to 2P and then 
bends over at dye  (unless dye  is ^ fi
nite).

Prob(max|gP( f ) - g ( f ) \ > £ )  <  4[(2p)N +  l ] e - £2p/8 «  4e^iog(2P) - £2P/8 (6 79)
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For this bound to be smaller than some small number 6 we must have

In the limit o f large N  and p this gives approximately

p >  8N log(N )/ e2 . (6.81)

Thus the number o f training examples needed to train an N-input perceptron and 
obtain good generalization in the worst case scales up as N logN . This doesn’t 
seem too bad— considering the fact that there are 2N possible examples— but the 
prefactor 8/e2 dampens any enthusiasm for small e.

As a second example consider a general feed-forward network with M  threshold 
nodes and W  weights (including thresholds). Baum and Haussler [1989] calculated 
an upper bound for the VC dimension of any such network, obtaining

dVC < 2 W \ o g 2(eM )  (6.82)

where e is the base o f the natural logarithm, e =  exp (l). From this they derived an 
upper bound on the size p o f the training set needed to get a good generalization 
probability. If the error on the training set is less than e/2 they showed that at 
most o f the order o f log examples are needed to obtain a generalization error 
less than e.

For a network with N  inputs and one fully connected hidden layer o f H  units 
they also derived a lower bound

dVC >  2\_H/2\N ~  W  (for large H ) (6.83)

where [x\ means the largest integer not greater than x. They used this to show 
that one needs (loosely speaking) of the order of W/e training examples to expect 
a generalization error less than e.

(6.80)

6.6 Optimal Network Architectures
We have seen that the network architecture is very important, and each applica
tion requires its own architecture. To obtain good generalization ability one has 
to build into the network as much knowledge about the problem as possible (e.g., 
the topology o f the input space) and limit the number of connections appropri
ately. It is therefore desirable to find algorithms that not only optimize the weights 
for a given architecture, but also optimize the architecture itself. This means in 
particular optimizing the number o f layers and the number o f units per layer.

O f course there are various different criteria for optimal, including generalization 
ability, learning time, number o f units, and so on. In fact, given various hardware

e2p — 81og(4/6) 
8 log(2p)
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restrictions, there may be quite a complicated cost function for the architecture 
itself. We focus mainly on using as few units as possible; this should not only 
reduce computational costs and perhaps training time, but should also improve 
generalization.

It is o f course possible to mount a search in the space of possible architectures. 
We have to train each architecture separately by (say) back-propagation, and then 
evaluate it with an appropriate cost function that incorporates both performance 
and number o f units. Such a search can be carried out by a gen etic  a lgorithm , 
so that good building blocks found in one trial architecture are likely to survive 
and be combined with good building blocks from other trials [Harp et al., 1990; 
Miller et al., 1989]. However, this kind of search seems unlikely to be practical for 
applications requiring large networks, where training just one architecture often 
requires massive CPU power.

More promising are approaches in which we construct or modify an architecture 
to suit a particular task, proceeding incrementally. There are two such ways to reach 
as few units as possible: start with too many and take some away; or start with 
too few and add some more. We consider examples of each approach.

Pruning and Weight Decay

We have already briefly described one way o f optimizing the architecture in the ZIP- 
code reading network on page 139. There the network was trimmed by removing 
unimportant connections. It is also possible to prune unimportant units [Sietsma 
and Dow, 1988]. In either case it is necessary to retrain the network after the “brain 
damage” , though this retraining is usually rather fast.

Another approach is to have the network itself remove non-useful connections 
during training. This can be achieved by giving each connection a tendency 
to decay to zero, so that connections disappear unless reinforced [Hinton, 1986; 
Scalettar and Zee, 1988; Kramer and Sangiovanni-Vincentelli, 1989]. The simplest 
method is to use

after each update o f w ij, for some small parameter e. This is equivalent to adding 
a penalty term wfj to the original cost function Eq

and performing gradient descent A  Wij =  —r\dEjdwij on the resulting total E. The 
e parameter is then just 777.

While (6.85) clearly penalizes use of more Wijys than necessary, it overly dis
courages use of large weights; one large weight costs much more than many small 
ones. This can be cured by using a different penalty term, such as

(6.84)

(6.85)
to)

(6 .86)
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which is equivalent to making s in (6.84) dependent on

_  7*7

"  (i + 4 ) 2
(6.87)

so that small Wij's decay more rapidly than large ones.
These decay rules perform well in removing unnecessary connections, but often 

we want to remove whole units. Then we can start with an excess of hidden units 
and later discard those not needed. It is easy to encourage this by making the 
weight decay rates larger for units that have small outputs, or that already have 
small incoming weights [Hanson and Pratt, 1989; Chauvin, 1989]. For example we 
could replace (6.87) by

£i =  / u r  2 V* (6 '88)

and use this same £,• for all connections feeding unit i.

Network Construction Algorithms

Rather than starting with too large a network and performing some pruning, it 
is more appealing to start with a small network and gradually grow one of the 
appropriate size. There have been several attempts in this direction; we outline 
three of them and discuss one (the tiling algorithm) in more detail.

Figure 6.16 shows the way that three different algorithms construct networks. 
In each case the aim is to construct a network that correctly evaluates a Boolean 
function from N  binary inputs to a single binary output, given by a training set 
of p input-output pairs. We assume that the training set has no internal conflicts 
(different outputs for the same input). Extensions to multiple outputs are possible, 
but not discussed here. Threshold units are used in all layers. Each algorithm tries to 
construct a network using as few units as possible within a particular construction 
scheme.

Marchand et al. [1990] propose an algorithm than constructs a solution using 
a single hidden layer, as shown in Fig. 6.16(a). Hidden units are added one-by-one, 
each separating out one or more o f the p patterns, which are then removed from 
consideration for the following hidden units. Specifically, each hidden unit is chosen 
so that it has the same output (say + 1 ) for all remaining patterns with one target 
(say + 1 ), and the opposite output (—1 ) for at least one o f the remaining patterns 
with the opposite target (—1); this can always be done. The latter one or more 
patterns are then removed from consideration for the following hidden units. This 
process terminates when all remaining patterns have the same target.

The resulting patterns, or in ternal represen tation s, on the hidden layer each 
have a unique target ±1 . Moreover, the hetero-association problem from these in
ternal representations to their targets can be shown to be linearly separable. It can 
therefore be performed with just one more layer, using the perceptron learning rule.
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FIGURE 6.16 Network construction algorithms. The black dots are inputs, while 
the numbered circles are threshold units, numbered in order o f their creation. 
Shaded arrows represent connections from all the units or inputs at the arrow’s 
tail, (a) Marchand et al. [1990]. (b) Frean [1990]. (c) Mezard and Nadal [1989].

Figure 6.16(b) shows the kind o f architecture generated by the u pstart a lgo 
rith m  o f Frean [1990]. It is specifically for off/on 0/1 units. First we do the best 
we can with a single output unit 1, directly connected to the input. Then we note 
all the cases in which the output is wrong, and create two more units 2 (if needed), 
one to correct the wrongly on cases and one to correct the wrongly off ones. The 
subsidiary units 2 are connected to the output units with large positive or negative 
weights, so that they override the previous output when activated. The subsidiary 
units 2 are directly connected to the input, and are trained to do the best they can 
on their own problem o f correcting the wrongly on or wrongly off patterns, without 
upsetting the correct patterns. If necessary we create further units 3 to correct their 
mistakes, and so on. Each additional unit created reduces the number o f incorrectly 
classified patterns by at least one, so the process must eventually cease.

The upstart algorithm generates an unusual hierarchical architecture, but in 
fact this can be converted into an equivalent two-layer network. All the units o f the 
hierarchical arrangement are placed in the hidden layer, removing the connections 
between them. Then a new output unit is created and fully connected to the hidden 
layer; appropriate connections can be found to regenerate the desired targets.
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Sirat and Nadal [1990] independently proposed exactly the same way of divid
ing up the input space. In their approach the “daughter” units are not actually 
connected to their “parent” unit to correct it, but are used as nodes in a binary 
decision tree. Note that if the output o f a unit in the upstart network is 1 only 
the daughter unit that corrects wrongly on can change this output, and similarly 
if the output is 0 only the wrongly-off daughter can affect it. Therefore, if the 
units are updated in opposite order— starting from the output unit and working 
backwards— it is only necessary to update one unit at each level. Updating stops 
when there is no daughter o f the right type to correct a unit, and then the last unit 
that was updated determines the class o f the input. This procedure corresponds to 
traversing a binary tree, called a neura l tree  by Sirat and Nadal. Binary decision 
trees are frequently used for classification, and this one is characterized by having 
a simple one-layer perceptron at each branching point.

Another interesting algorithm by Fahlman and Lebiere [1990] also builds a 
hierarchy of hidden units similar to the one in the upstart algorithm. It is called 
the ca sca d e -corre la tion  a lgorithm , and seems to be very efficient.

Mezard and Nadal [1989] proposed a tiling a lgorith m  that creates multi
layer architectures such as that shown in Fig. 6.16(c), starting from the bottom  
and working upwards. Each successive layer has fewer units than the previous one, 
so the process eventually terminates with a single output unit.

For any such architecture to be successful it is clear that the patterns (internal 
representations) on every layer must be fa ith fu l represen tation s o f the input 
patterns. That is, if two input patterns have different targets at the output layer, 
then their internal representations must be different on every hidden layer. The 
idea o f the tiling algorithm is to start each layer with a m aster un it that does as 
well as possible on the target task, and then add further ancillary  units until the 
representation on that layer is faithful. The next layer is constructed in just the 
same way, using the output o f the previous layer as its input. Eventually a master 
unit itself classifies all patterns correctly, and is therefore the desired output unit.

The master unit in each layer is trained so as to produce the correct target 
output (± 1 ) on as many o f its input patterns as possible. This can be done by a 
variant o f the usual perceptron learning rule (5.19) called the p ock et a lgorith m  
[Gallant, 1986]. The unmodified perceptron learning rule wanders through weight 
space when the problem is not linearly separable, spending most time in regions 
giving the fewest errors, but not staying there. So the pocket algorithm modification 
consists simply in storing (or “putting in your pocket” ) the set of weights which 
has had the longest unmodified run of successes so far. The algorithm is stopped 
after some chosen time *, which is the only free parameter in the tiling algorithm.

The ancillary units in each layer are also trained using the pocket algorithm, 
but only on subsets of the patterns. Whenever the representation on the latest layer 
is not faithful, then that layer has at least one activation pattern without a unique 
target; the subset of input patterns that produces the ambiguous pattern includes 
both targets. So we train a new ancillary unit on this subset, trying to separate it 
as far as possible. Then we look again for ambiguous patterns, and repeat as often
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FIGURE 6.17 Tiling the input 
space. The master unit (heavy 
line) does the best possible sep
aration o f the points. The ancil
lary units (thinner lines) make 
sure that the wrongly classified 
points are separated into classes 
with the same target.

Layer

L+1

FIGURE 6.18 Notation for con
vergence proof of the tiling al
gorithm. V\ and 0\ are master 
units, and Vo is a bias unit.

as necessary until the representation is faithful. Fig. 6.17 shows how this divides up 
the input space.

To prove that the whole process converges we construct a set o f weights that lets 
the master unit in layer L -f-1 classify at least one more pattern correctly than the 
master unit in layer L. O f course the pocket algorithm will probably not choose our 
specific weights, but it will certainly do no worse in the number o f misclassifications. 
Thus each master unit correctly classifies more patterns than the last, and so the 
network construction process eventually terminates.

We use the notation shown in Fig. 6.18; units (or inputs) Vj in layer L are 
connected to the master unit 0 \ in layer L -f  1 by weights w\j. It is essential to 
include an explicit bias or threshold, which we do by fixing Vo =  1. We assume 
that the layer L master unit V\ classifies q input patterns correctly (V f  =  C )̂* 
with q <  p. Now consider a pattern v that is not classified correctly by Vi, so that 
Vi =  — C". Choose the weights

with

f l  if i  =  1 ;
Wl* \^CuVjU otherwise

1 1— < e < —— -  
N  N - 2

(6.89)

(6.90)

where N  is the number of units in layer L besides the bias unit Vq. This makes Oi
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classify pattern v correctly

O vi =  =  sg n (-< "  + e t vN ) =  C  (6.91)
j

since N e  >  1. But it also leaves intact the q correct classifications by Vi, for which 
we find

Ox =  sgn Q T  wxj V f )  =  sgn ^  +  e C  ^2 Vt  V7 ) • (6‘92)
i

Because (N  — 2)£ <  1, the second term in the sign function could only change the 
correct sign o f the first term if \X\ =  N  where

x  =  Y ^ v? vj -  (6-93)

But X  cannot be —N  because V£ =  Vq =  1, and it cannot be + N  because V? 
and Vj are not identical if the level L representation is faithful. So the q originally 
correct patterns are not upset, and the new unit O* classifies at least q-f- 1 patterns 
correctly, as claimed.

It is not yet clear which o f the three methods described is best for a given 
problem. All o f them have given encouraging results on simple test problems, both 
in terms of generalization and in terms of finding efficient architectures. In one 
comparative test the upstart algorithm used fewer units than the tiling algorithm 
[Frean, 1990], but more wide-ranging studies are needed. It is also likely that further 
construction algorithms will be proposed in the future.



Recurrent Networks
SEVEN

The preceding chapter was concerned strictly with supervised learning in feed
forward networks. We now turn to supervised learning in more general networks, 
with connections allowed both ways between a pair of units, and even from a unit 
to itself. These are usually called recu rren t netw orks. They do not necessarily 
settle down to a stable state even with constant input. Symmetric connections 
( =  Wji) ensure a stable state o f course (as seen in the Hopfield networks), 
and the Boltzmann machines discussed first are limited to the symmetric case. In 
the second section we consider networks without the symmetry constraint, but only 
treat those that do reach a stable state. Then we examine networks that can learn to 
recognize or reproduce time sequences; some o f these produce cyclic output rather 
than a steady state. We conclude with a discussion of reinforcement learning in 
recurrent and non-recurrent networks.

7.1 Boltzmann Machines
Hinton and Sejnowski [Hinton and Sejnowski, 1983, 1986; Ackley, Hinton and Se- 
jnowski, 1985] introduced a general learning rule applicable to any stochastic net
work with symmetric connections, Wij =  wji. They called this type o f network a 
B o ltzm a n n  m ach ine because the probability o f the states of the system is given 
by the Boltzmann distribution of statistical mechanics. Boltzmann machines may 
be seen as an extension o f Hopfield networks to include hidden units. Just as in 
feed-forward networks with hidden units, the problem is to find the right connec
tions to the hidden units without knowing from the training patterns what the 
hidden units should represent.
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Output

•  hidden unit 
O  visible unit Input

FIGURE 7.1 (a) A Boltzmann machine has the units divided into visible and hid
den ones, (b) The visible units can be divided into input and output units.

In its original form, the Boltzmann learning algorithm is very slow because o f 
the need for extensive averaging over stochastic variables. There have been therefore 
few applications compared to back-propagation. But a deterministic “mean field” 
version o f the Boltzmann machine speeds up the learning considerably and may 
lead to more applications.

Note that stochastic networks are sometimes called Boltzmann machines even 
if the weights are chosen a priori and there is no learning involved. We avoid this 
usage, and discuss stochastic networks along with their deterministic counterparts 
in most chapters o f this book.

Stochastic Units

The units Si are divided into v isib le  and h id d en  units as shown in Fig. 7.1(a). The 
visible units can, but need not, be further divided into separate input and output 
units as in Fig. 7.1(b). The hidden units have no connection to the outside world. 
The connections between units may be complete— every pair— or structured in 
some convenient way. For example, one might have everything except direct input- 
output connections. But whatever the choice, all connections must be symmetric,
Wi j  -  W j i .

The units are stochastic, taking output value Sj =  +1 with probability g ( h i )  

and value S* =  — 1 with probability 1 — g ( h i ), where

(7-1)
j

and

9^  ~  1 +  exp(—2ph)
(7.2)



7.1 Boltzmann Machines 165

just as in (2.48). Here /? =  l/T  as usual, and we omit thresholds for convenience. 
Because o f the symmetric connections (cf. Chapter 2) there is an energy function

H {S i} =  - \ j 2 w ijSiSj (7.3)

which has minima whenever there is a stable state characterized by S{ =  sgn(ht).
The Boltzmann-Gibbs distribution from statistical mechanics,

P {S i}  =  (7.4)

gives, at least in principle, the probability o f finding the system in a particular state 
{«?,} after equilibrium is reached. The denominator Z, called the partition function, 
is the appropriate normalization factor

z  =  Y , e ~pH{St} - (7-5)
{SJ

A more detailed discussion o f the Boltzmann-Gibbs distribution is provided in the 
Appendix. We can use (7.4) to compute the average (X ) o f any quantity X { 5 , }  
that depends just on the state { 5 , }  o f the system:

(X )  =  £  P {S i }X {S i }  . (7.6)
{ S i }

In Boltzmann learning we attempt to adjust the connections to give the 
states o f the visible units a particular desired probability distribution. We might, 
for example, want only a few of the possible states to have appreciable probability 
o f occurring, and want those few to have equal probability. At low temperature we 
can use such a scheme for p a ttern  com p letion , in which missing bits o f a partial 
pattern are filled in by the system. Or we might divide the visible units into input
and output units and do ordinary association. Our information as to the “correct”
output for each input pattern might itself be probabilistic (or fuzzy), as for example 
in medical diagnosis o f diseases from patterns o f symptoms [Hopfield, 1987]. Asking 
for an approximation to a probability distribution is a general goal covering these 
and other cases.

The task is similar to that given an auto-associative (Hopfield) network, but 
the architecture o f the Boltzmann machine differs in having hidden units. Without 
hidden units we can do no more than specify all (5<)’s and all (S iS j)’s; higher- 
order correlations cannot be chosen independently. Thus, for example, a three-unit 
network without hidden units could not learn to produce the four patterns + -+ ,
- + + , ------ , + + -  with probability -■ each, and the remaining four patterns not at all,
because the first- and second-order correlations here are (Si) =  (SiSj) =  0 for all 
i and j , exactly as in the set of-all 8 states. With hidden units this task (which is 
actually our old friend the XO R  problem in disguise) can be learned. But note that
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the oc rule that we used in the Hopfield network gives us no information
about how to treat links involving hidden units; we need a new rule.

Let us label the states o f the visible units by an index a  and those o f the hidden 
units by f i }  With N  visible units and K  hidden units a  and /? run from 1 to 2N 
and from 1 to 2K respectively. A state o f the whole system is uniquely specified by 
an a  and a /?, with 2N+K possibilities. The probability Pap o f finding each o f these 
states is given by (7.4). The probability Pa o f finding the visible units in state a 
irrespective o f /? is then obtained from

Pa =  > > . ,
P

=  J 2 e ~pHa0/z  (7-7)
p

where
Z =  Y ^ e ~ pHafi (7.8)

a/3

and

H ap =  - \ Y , w^ S f  (7.9)

is the energy o f the system in state a/?, in which is the value ( ± 1 ) o f S{.
Equation (7.7) gives the actual probability PQ o f finding the visible units in 

state a  in the freely running system, and is determined by the s. We, on the 
other hand, have a set o f desired  p rob ab ilities  R a for these states. A suitable 
measure of the difference between the distributions Pa and Ra , properly weighted 
by the occurrence probabilities i?a , is the relative entropy

E  =  ' £ /Ra l o g ^ .  (7.10)

This may be derived from information-theoretic arguments as for (5.52), though we 
will discuss an alternative statistical mechanics interpretation below. E  is always
positive or zero, and can only be zero if Pa =  Ra for all a ?  We therefore minimize
E , using gradient descent:

dE  ^  Ra dPa (n 11 ^
Au^  =  (7-n )

1 We use (3 in this sense as well as to mean 1 /T, but the latter never occurs as an index or subscript.

2 It is easy to show from the integral definition of the logarithm that log X  > 1 — 1/X. Therefore
E > E *  jR« (1 -  -  P“ ) = °-
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Using (7.7)-(7.9) we find

dPa
dwij Z Z2

p { Y , s f s f p ° e - p° ( SiSi)\ • (7.12)

Thus

AtDij 10 [E T- £ - £ **<$$)]
c t a P OC

n p f c R v P ^ s f s f - i S i S j ) ]

T]/3 |(S'i5j)clamped (SiSj)free| (7.13)

where we have defined the conditional probability Pp\a ° f  hidden state /? given 
visible state a  by

as the value o f (SiSj) when the visible units are clamped in state a , averaged over 
a ’s according to their probabilities R a.

Equation (7.13) is the central rule o f Boltzmann learning. The first term is 
essentially a Hebb term, with the visible units clamped, while the second term 
corresponds to Hebbian u n learn ing with the system free running. The process 
converges when the free unit-unit correlations (SiSj) are equal to the clamped 
ones. It is crucial that Hebb-like learning in a network employ both these terms, 
or have some other way o f telling the hidden units whether or not the visible units 
are clamped. Otherwise an attempt to adjust to increase the correlation (SiSj) 
between two units will “learn” internally generated fluctuations as well as externally 
applied signals; the network will become absorbed in its own fantasies.

To operate a Boltzmann machine we need to be in equilibrium at some temper
ature T  >  0. The state { 5 , }  o f the whole system then fluctuates, and we measure 
the correlations (SiSj) by taking a time average o f SiSj. To obtain all the infor
mation needed for the update rule (7.13) we need to do this once with the visible 
units clamped in each of their states a  for which R a >  0, and once with them un
clamped. In each case we must bring the system to equilibrium anew before taking 
an average.

Some specialized electronic [Alspector and Allen, 1987] and optoelectronic 
[Farhat, 1987; Ticknor and Barrett, 1987] hardware has been developed for the

PotP — Pp\otPot (7.14)

and have identified
(SiSj ) damped (7.15)
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Boltzmann machine. But in the absence of such hardware we must study the sys
tem by M o n te  C arlo  s im u la tion ,3 selecting units at random and updating them 
according to the probability (7.2). This is equivalent (as in (4.4)) to flipping their 
state (Si —► —Si) with probability

Prob(S,- -  - S i )  =  — ------(7-16)
1  +  exp((3AHi) v y

where Aif* is the energy change produced by such a flip. Unfortunately this pro
cedure takes a very long time to come to equilibrium at low T  because the system 
tends to get trapped in local minima o f the (free) energy. But we do need fairly low 
T ’s, to represent a wide range o f probabilities. The solution is to use a sim ulated  
annealing procedure, with a gradual lowering o f the temperature from a high ini
tial value to the desired value T, as discussed on page 75. This achieves equilibrium 
at the working temperature T  much more rapidly than starting from there initially.

The Boltzmann machine is clearly very computation intensive, even with sim
ulated annealing to help us reach equilibrium. In effect there are four nested loops:

1. At the outermost level we must adjust the weights many times for conver
gence, using (7.13) for each update.

2. For each of these we must calculate (SiSj) in an unclamped state, and with 
the visible units clamped in each desired pattern.

3. For each of these averages we must come to equilibrium using an annealing 
sch edu le  T (t) o f gradually decreasing temperatures.

4. At each o f these temperatures we must sample many units and update them 
according to (7.16).

Note that the weight updates depend on the difference between two averages, each 
of which has fluctuations. Using a poorly equilibrated system or a short averaging 
time can reduce the time per update, but produces poor Aw tj ’s and ultimately 
requires more updating cycles.

Choice o f the annealing schedule and the final working temperature are part o f 
an active research field [see e.g., Salamon et al., 1988]. In practice various ad hoc 
schedules are used. Ideally one can speed up simulated annealing greatly, and use 
a To/t schedule, by considering occasional m u ltip le  flips o f many units at a time, 
using the same rule (7.16) to decide whether to accept such moves [Szu, 1986]. This 
is known as fast sim u lated  annealing or a C auchy m achine. However it is not 
clear how to generate such moves in practice and a neural network implementation 
has not yet been demonstrated.

Boltzmann machines have been applied to a number o f problems, including 
constraint satisfaction problems in vision [Hinton and Sejnowski, 1983], the en
coder problem [Ackley et al., 1985; Parks, 1987], learning symmetries in two di
mensions [Sejnowski et al., 1986], statistical pattern recognition [Kohonen et al.,

3 A good introduction to Monte Carlo methods is Binder and Heerman [1988]. Mazaika [1987] 
discusses selection and update rules for the Boltzmann machine.
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1988], speech recognition [see Lippmann, 1989], and combinatorial optimization 
problems [Gutzmann, 1987]. Although extremely slow they are found to be very 
effective. In a detailed comparison on a statistical decision task, Kohonen et al. 
[1988] found that a Boltzmann machine achieved considerably better accuracy than 
a back-propagation network, and came close to the theoretical Bayes limit.

Variations on Boltzmann Machines

Several minor variations on the Boltzmann rule are often used in practice [Ackley 
et al., 1985; Derthick, 1984]:
■ Weight decay terms can be added, as described in Chapter 6 on page 157.

This seems to improve performance considerably. Hinton [1989] notes that it 
also makes the weights automatically become symmetric ( =  Wji) even 
if we start from an asymmetric state, because the updates (7.13) are always 
symmetric.

■ A commonly used modification, convenient to implement, is the in crem en 
tal ru le, in which we add a small constant e to each time Si and Sj are 
on together during the clamped phase, and subtract e each time they are on 
together during the free-running phase. This can be expressed by our stan
dard rule (7.13) if we replace Si by n,- =  | ( 1  +  Si), which is 0 or 1 . Note that 
this rule uses co -o ccu rre n ce s  of nt- and rij, not their full correlation. The 
use o f a constant step-size £, instead o f one dependent on the local gradient 
of E, helps the algorithm to make progress along shallow valleys while avoid
ing oscillations across such valleys (cf. Fig. 5.10). It is usually appropriate to 
decrease e gradually during the training process.

■ If (as is usual) some o f the possible states a  have zero desired probability R a , 
it may be worthwhile increasing this to a small nonzero value. This avoids 
the need for infinite weights, which are the only way that the network can 
make Pa =  0 if T  >  0. One way o f producing all states a  at least occasionally 
is to add noise to the desired patterns before using them for clamping.
Thus far we have discussed learning a set of patterns on the visible units, with 

associated probabilities. We can also consider a network having distinguishable 
input, output, and hidden units, with states labelled by 7 , a, and /? respectively. 
Then we want the network to learn associations 7  —► a; for each 7  we want to 
be able to make the network’s distribution Pa |7 as close as possible to a desired 
distribution R a|7 . If the possible inputs 7  occur with probabilities p7 a suitable 
error measure is

E  =  Y ^ P ^ R° h h & T 7 L - (7-17)
y a r <*h

This leads to the learning rule

A Wij — 77/? [(5 f5 j)j q cIampec| (SiSj) j damped] (7.18)
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in which both the inputs and outputs are clamped in the Hebb term, while only 
the inputs are clamped in the unlearning term, with averages over the inputs taken 
in both cases [Hopfield, 1987].

Smolensky [1986] introduced a related network called h arm on iu m , based on 
his h arm on y  th eory . Harmonium is effectively a two-layer version of a Boltzmann 
machine, with connections only between the layers, though “connections” involving 
more than two units are also allowed. The harmony function is essentially equivalent 
to minus the free energy F  discussed below.

Hopfield et al. [1983] proposed a learning procedure very similar to the Boltz
mann learning rule (7.13) for networks without hidden units. In this case the 
clamped term just reduces to the Hebb recipe and does not require any simula
tion; we simply average £?£? over patterns //. Instead of the unlearning term in 
(7.13), Hopfield et al. proposed starting from random configurations, letting the 
network relax at zero temperature, and averaging SiSj over the resulting local en
ergy minima. This weighting is different from that in the Boltzmann rule; different 
states contribute proportionally to the sizes o f their basins o f attraction rather than 
according to their thermal weights exp(—(3H)/Z. Although this is not as elegant 
as the Boltzmann learning and does not guarantee A w ĵ =  0 when the equilib
rium correlations are the same as the average clamped ones, it is much faster to 
implement. Recent work by van Hemmen et al. [1990] shows that this addition o f 
unlearning to the Hopfield model produces a large increase o f memory capacity and 
the ability to deal automatically with biased patterns.

Statistical Mechanics Reformulation *

Boltzmann learning may be reinterpreted from a statistical mechanics viewpoint 
(see the Appendix). First consider the probability Pa o f finding the visible units in 
state a  given by (7.7). The numerator e~PHaf* is a partition function damped 
for the hidden units when the visible units are clamped in state a. Using the general 
correspondence between free energy F  and partition function Z ,

Z  =  e -P F (7.19)

we can write (7.7) as

p  _  ^damped _  e PFcl*m*'d _  - P ( F ^ mptd- F )  /y  2Q)
f a  -  z  -  e_pF -  ■

Since the cost function (7.10) is just a constant Eq minus R a log Pa it becomes

E  =  Eo +  p [ f ° L ^ - f ] . (7.21)

We now see that we are attempting to minimize the difference between the average
clamped free energy and the full free energy (which is necessarily lower).
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< S S , )  =  - ^ -  ( 7 . 2 2 )

which also holds for the case o f clamped visible units. To prove (7.22), we just 
perform the differentiation using (7.19):

dF  log Z _  T  dZ  _  y '  aap „ ap e -P Hae
~ d ^ J  = T ~ d ^ ~  ~ Si ~ ~ z ~ '  6)

The fraction in the last sum is the probability Pap, so (7.22) follows.

The learning rule (7.13) now follows immediately from (7.21) using the identity

Deterministic Boltzmann Machines

A new mean field method suggested by Peterson and Anderson [1987] appears 
to circumvent the problem o f excessive computer time for Boltzmann machines. 
Instead of calculating (SiSj) with Monte Carlo simulation and simulated annealing, 
they suggest using m ean  fie ld  annealing (see also Soukoulis et al. [1983] and 
Bilbro et al. [1989]). Specifically they take

(SiSj) «  mtmj (7-24)

where mi =  (Si) is given by (2.45):

=  tanh (j3 y ]  Wjj mj') . (7.25)
j

This is the natural mean field approximation, equivalent to (2.50). There is one 
such equation for each free unit i, while clamped units have mj set to ±1 . Solving 
these simultaneous nonlinear equations is still not easy, but can be accomplished 
by iteration,

mtnew =  tanh (/? £  w{j m °Id)  (7.26)
j

combined if necessary with a gradual lowering o f T  (annealing). Peterson and An
derson [1987] found this procedure to be 10-30 times faster than the Monte Carlo 
approach on some test problems. It actually gave somewhat better results as well.

Statistical mechanics again makes an alternative formulation possible. The free 
energy o f the system is given by F  =  H —TS  where S  is the entropy (see Appendix). 
In the mean field approximation the units are treated as independent, so the entropy 
is

s  =  ~ Y 1  (P t  *°gP.+ +  Pi l°g P i ) (7-27)



172 SEVEN Recurrent Networks

where p f  is the probability that S{ is ±1 . Since p f  -\-pi = 1  and m,- = 
is easy to see that

± 1 ±rrii
Pi =  — •

Thus the mean field free energy is

^MF =  ^WijUljmj
ij

^  ̂  f l  +  rrii 1 +  rrii 1 — ra,- 1 — ra,- \
+ ( - y -  ' ° s - j -  + - j -  > ° g - - j - )

i

using 5,- —► ra,- in the energy (7.3). A more formal derivation gives the same re
sult [Peterson and Anderson, 1987]. A similar expression for F ^ f is found for the 
clamped states, the only difference being that the visible ra,-’s are fixed at ±1 . 
Minimizing Fmf with respect to ra,- by setting dFMr/drrii =  0 gives (7.25) again.

We may also regard this deterministic version o f the Boltzmann machine in
dependently o f the original stochastic version, simply looking at the problem of 
minimizing the cost function

Emf =  E q +  P [  Ffo F — Fm f ] (7.30)

with respect to the Wij’s [Hinton, 1989]. Equation (7.30) is just the mean field 
approximation to (7.21). Note that a double minimization is still involved; for each 
choice o f the Wij’s we must minimize (7.29) with respect to the ra,*’s by iteration 
o f equations (7.26). Using gradient descent for the minimization gives directly

A =  - 7 7 =  tj/3 [m fm f  -  rriimj] (7.31)

which is the standard result (7.13) within the approximation (7.24).

7.2 Recurrent Back-Propagation
Pineda [1987, 1988, 1989], Almeida [1987, 1988], and Rohwer and Forrest [1987] 
have independently pointed out that back-propagation can be extended to arbitrary 
networks as long as they converge to stable states. At first sight it will appear that 
an N  x N  matrix inversion is required for each learning step, but Pineda and 
Almeida each showed that a modified version o f the network itself can calculate 
what is required much more rapidly. The algorithm is usually called recu rren t 
b ack -p rop aga tion .

Consider N  continuous-valued units Vi with connections and activation 
function g(h). Some of these units may be designated as input units and have input

P t -  Pi i<;

(7.28)

(7.29)
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(a) ]_c (b) E

FIGURE 7.2 Recurrent back-propagation can handle arbitrary connections be
tween the units, (a) Units 1 and 2 are output units with targets £i and £2• Units 
1, 3, and 5 are input units. Note that unit 1 is both an input and an output unit, 
while unit 4 is neither, (b) The corresponding error-propagation network, with 
reversed connections and error inputs E\ and E^,

values specified in pattern \i. We define £? =  0 for the rest. Similarly some may 
be output units, with desired training values Figure 7.2(a) provides an example. 
Henceforth we drop the pattern index \i for convenience; appropriate sums over /i 
are implicit.

Various dynamical evolution rules may be imposed on the network, such as

which is based on (3.31). It is easily seen that this dynamical rule leads to the right 
fixed points, where dVi/dt =  0, given by

j

We assume that at least one such fixed point exists and is a stable attractor. 
Alternatives such as limit cycles and chaotic trajectories will be considered in the 
next section.

A natural error measure for the fixed point is the quadratic one

(7.32)

(7.33)

(7.34>
k

where
if k is an output unit; 
otherwise.

(7.35)



Gradient descent gives

* *  ■ < ^ >

and to evaluate dVk jdw pq we differentiate the fixed point equation (7.33) to obtain

=  9 '{hi) [sipVt +  £  ^ -J - ]  . (7 .3 7 )
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Collecting terms this may be written as

dV 
' dw<5 3  *■*«? ~  f>ip9'(hi)Vq (7.38)

j uwpq

where
L*j =  $ij — 9 {hi)wij (7.39)

and
hi =  Y , wn vj + t i  (7-4°)

j

is the net input to unit i when the network is at the attractor. Inverting the linear 
equations (7.38) gives

^  =  (L- 1 W ( M n  (7-41)

and thus from (7.36)

A Wpq =  ^ £ * ( L  ~l )kpg\hp)Vq . (7.42)
k

This may be written in the familiar delta-rule form

Awpq =  TjSpVq (7.43)

if we define
« p = * ' ( M X > * ( L - 1 )*p- C7-44)

k

Equation (7.43) is our new learning rule. As it stands it requires a matrix 
inversion for the 6’s, which could be done numerically [Rohwer and Forrest, 1987]. 
If however we write

Sp =  g'(hp)Yp (7.45)

so that
Yp =  J£ Ek (l~ 1)kP (7-46)
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then we can undo the inversion and obtain linear equations for Yp

piYp =  Ei (7.47)
P

or, using (7.39),
Y i - Y , g ' { h P)wPiYp =  E i. (7.48)

P

This equation is o f the same form as the original fixed point equation (7.33), and 
can be “solved” in the same way, by the evolution o f a new error-p rop a g a tion  
n etw ork  with a dynamical equation analogous to (7.32):

=  ~ Yi +  £  9 '(hp)wpiYp +  E i . (7.49)
P

The topology o f the required error-propagation network is the same as that o f the 
original network, with the coupling from j  to i replaced by g'{hi)wij from i to j ,
a simple linear transfer function g(x )  =  x ) and an input term E{ (the error at unit
i in the original network) instead o f Figure 7.2(b) shows the error-propagation 
network corresponding to Fig. 7.2(a). In electrical network theory the two networks 
would be called n etw ork  tran sposition s o f one another.

The whole procedure is thus:
1. relax the original network with (7.32) to find the V*’s;
2. compare with the targets to find the E^s from (7.35);
3. relax the error-propagation network with (7.49) to find the Y*’s; and
4. update the weights using (7.43) and (7.45).

This allows us to extend back-propagation to general networks without requiring 
any non-local operations (such as matrix inversion) that go outside the original 
connectivity o f the network. Back-propagation itself is a special case o f the general 
procedure; without recurrent connections the relaxation steps can be replaced by 
the corresponding fixed-point equations (7.33) and (7.48).

One can also have the two networks running together. The original network 
continuously supplies the error-propagation network with the error signals E { , and
the error-propagation network in turn adjusts the weights in the original network.
A similar idea was put forward earlier by Lapedes and Farber [1986a, 1986b] in 
their m aster-slave netw ork , where the master network calculates the weights 
for the slave. However, they had one master unit for each connection in the slave 
network (N 2 master units for JVslave units), and made the master network calculate 
appropriate weights without using the slave for feedback. The problem solved by 
the master— find weights for the slave to minimize the total sum-of-squares error—  
was essentially an optimization problem, and was treated in much the same way as 
those described in Chapter 4 .
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It is worth noting that (7.48) is a stable attractor o f (7.49) if (7.33) is a stable 
attractor o f (7.32) (as we assumed). This may be shown by linearizing the dynamical 
equations about their respective fixed points, just as we did in (3.36). Writing 
Vi =  -f Si in (7.32) and YJ =  Y f  +  77,- in (7.48), where V* and Y f  are respectively 
the solutions o f (7.33) and (7.48), we obtain to linear order

=  ~£i +  g 'ih ^ Y jW ijZ j =  - Y , U j e j  (7-50)
j j

and

Ti t =  _7?*'+ (7-51)
p p

These linear equations are congruent except that L is replaced by its transpose LT. 
But L and LT have the same eigenvalues, so the local stability o f the two equations 
is the same. Thus both attractors are stable (eigenvalues o f L all positive) if one 
is. A further analysis o f stability and convergence properties has been provided by 
Simard et al. [1989].

The scaling properties o f the algorithm are interesting even on a sequential 
digital computer where no parallelism or hardware network is exploited [Pineda,
1989]. If we consider a fully connected network of N  units, then L is an N  x AT matrix, 
and using (7.44) with direct matrix inversion would take a time proportional to 
N 3 using standard methods. In comparison, the time required to integrate (7.49) 
numerically scales as only N 2 provided the fixed points are stable. This translates 
into a great saving for large N. O f course both methods are much better than 
direct numerical differentiation o f the error measure (7.34) with respect to all N 2 

parameters, which would scale as N 4 (a relaxation o f (7.32), taking order N 2 steps, 
would be needed for each parameter).

Using g(x ) — tanh(x) and choosing the entropic error measure (5.52) instead 
o f the quadratic one (7.34) simplifies the derivation a little and leads to slightly 
different equations.

Almeida [1987] has shown that recurrent networks give a large improvement in 
performance over normal feed-forward networks for a number of problems such 
as pattern completion. Qian and Sejnowski [1988b] have used recurrent back- 
propagation to train a network to calculate stereo disparity in random-dot stere
ograms. The network configures itself to use the Marr and Poggio [1976] algorithm 
in some cases, and finds a new algorithm in others. Barhen et al. [1989] have applied 
a modified version o f recurrent back-propagation, including terminal attractors, to 
inverse kinematics problems for the control o f robot manipulators.

7.3 Learning Time Sequences
In Section 3.5 we discussed ways of making a network generate a temporal sequence 
o f states, usually in a limit cycle. This naturally required a recurrent network with
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asymmetric connections; neither a feed-forward network nor a network with sym
metric connections will do, because they necessarily go to a stationary state. The 
desired sequences were embedded into the network by design; the s were calcu
lated, not learned.

We now turn to the problem o f learning sequences. There are actually three 
distinct tasks:
■ S equen ce R e co g n it io n . Here one wants to produce a particular output pat

tern when (or perhaps just after) a specific input sequence is seen. There is 
no need to reproduce the input sequence. This is appropriate, for example, 
for speech recognition problems, where the output might indicate the word 
just spoken.

■ S equen ce  R e p ro d u c t io n . In this case the network must be able to generate 
the rest o f a sequence itself when it sees part o f it. This is the generalization 
o f auto-association or pattern completion to dynamic patterns. It would be 
appropriate for learning a set o f songs, or for predicting the future course o f a 
time series from examples.

■ T em p ora l A ssoc ia tion . In this general case a particular output sequence 
must be produced in response to a specific input sequence. The input and 
output sequences might be quite different, so this is the generalization o f 
hetero-association to dynamic patterns. It includes as special cases pure se
quence generation and the previous two cases.

We discuss in this section several approaches that can learn to do one or more 
o f these tasks. The first task— sequence recognition— does not necessarily require 
a recurrent network, but belongs naturally with the other cases, which clearly do 
need recurrency.

Tapped Delay Lines

The simplest way to perform sequence recognition (but not sequence reproduction 
or general temporal association) is to turn the temporal sequence into a spatial pat
tern on the input layer o f a network. Then conventional back-propagation methods 
can be used to learn and recognize sequences.

We already studied examples o f this approach in Chapter 6 . In NET-talk 
(page 132) a text string was moved along in front o f a 7-characte^ window, which 
thus received at a particular time characters n, n —1, . . . , n — 6 from the string. In our 
signal processing example (page 137) the values x (t ), x(t  -  A ), . . . ,  x(t -  (m  — 1)A) 
from a signal x(t)  were presented simultaneously at the input o f a network. In a 
practical network these values could be obtained by feeding the signal into a delay 
line that was tapped at various intervals, as sketched in Fig. 7.3. Or, in a syn
chronous network, a shift reg ister could be used, in effect keeping several “old” 
values in a buffer [Kohonen, 1989]. The resulting architectures are sometimes called 
tim e-d e lay  neural netw orks.
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FIGURE 7.3 A time-delay neu
ral network. Only one input 
x {i)  is shown. z(tf), x(t — r),
. . . ,  x(t — 4r) are fully con
nected to a hidden layer.

The tapped delay line scheme has been widely applied to the problem of speech 
recognition [e.g., McClelland and Elman, 1986; Elman and Zipser, 1988; Tank and 
Hopfield, 1987b; Waibel et al., 1989; Waibel, 1989; Lippmann, 1989]. Here the signal 
at a particular time is a set o f spectral coefficients (strength in each o f several 
frequency bands), so with a set o f different time delays one has input patterns in a 
two-dimensional time-frequency plane. Different phonemes show different patterns 
in this plane and can be learned by an ordinary feed-forward network. Similar 
approaches can be applied to other units o f speech or written language, such as 
syllables, letters, and words.

There are several drawbacks to this general approach to sequence recogni
tion [Mozer, 1989]. The length of the delay line or shift register must be chosen 
in advance to accommodate the longest possible sequence; we cannot work with 
arbitrary-length sequences. The large number o f units in the input layer leads to 
slow computation (unless fully parallel) and requires a lot o f training examples 
for successful learning and generalization. And, perhaps most importantly, the in
put signal must be properly registered in time with the clock controlling the shift 
register or delay line, and must arrive at exactly the correct rate.

Tank and Hopfield [1987a] suggested a way of compensating for the last o f these 
problems, thus making the scheme more robust. Given a raw signal x (t)  the usual 
delay line technique would be to use x (t), x (t  — n ) ,  x (t  — 72), . . . ,  x (t  — rm) for the 
network inputs at time t. Tank and Hopfield suggest replacing the fixed delays by 
filters that broaden the signal in time as well as delaying it, with greater broadening 
for longer delays. They used

y ( i ' ,n ) =  f G(t - t ' ;T i )x ( t ')d t '  (7.52)
J—OO

for the network inputs at time f, with

G(<;r<)= ( - Y  (7.53)
\ T{ /
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FIGURE 7.4 The function 
G(t — V'.Ti) given by (7.53) 
for Ti =  1, 2, 3, 4, 5 with 
a =  10. The network inputs 
at time t are averages o f the 
past signal weighted by these 
functions.

for each r,-. This is normalized to have maximum value 1 when t =  r,-. The param
eter a  controls the broadening; for larger a  the function G  has a narrower peak. 
Figure 7.4 shows an example at a  =  10. This scheme can successfully compensate 
for phase and speed variations if they are not too large. Note too that it works in 
continuous time; there is no need for precise synchronization by a central clock. 
Schemes like this using a variety o f delays are biologically feasible, and may be 
used in the brain, in auditory cortex for example [Hopfield and Tank, 1989]. Shift 
registers might also occur biologically [Anderson and Van Essen, 1987].

Context Units
A popular way to recognize (and sometimes reproduce) sequences has been to use 
p artia lly  recu rren t netw orks. The connections are mainly feed-forward, but 
include a carefully chosen set o f feedback connections. The recurrency lets the 
network remember cues from the recent past, but does not appreciably complicate 
the training. In most cases the feedback connections are fixed, not trainable, so back- 
propagation may easily be used for training. The updating is synchronous, with one 
update for all units at each time step. Such networks are sometimes referred to as 
sequentia l netw orks.

Figure 7.5 shows several architectures that have been used. In each case there 
is one special set o f con tex t un its G{ , either a whole layer or a part thereof, that 
receives feedback signals. The forward propagation is assumed to occur quickly, or 
without reference to time, while the feedback signal is clocked. Thus at time t the 
context units have some signals coming from the network state at time t — 1 , which 
sets a context for processing at time t. The context units remember some aspects 
o f the past, and so the state o f the whole network at a particular time depends on 
an aggregate o f previous states as well as on the current input. The network can 
therefore recognize sequences on the basis o f its state at the end o f the sequence. 
In some cases it can generate sequences too.

Elman [1990] suggested the architecture shown in Fig. 7.5(a). Similar ideas 
were proposed by Kohonen; see Kohonen [1989]. The input layer is divided into two 
parts: the true input units and the context units. The context units simply hold a
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FIGURE 7.5 Architectures with context units. Single arrows represent connections 
only from the ith unit in the source layer to the ith unit in the destination layer, 
whereas shaded arrows represent fully connected layers.

copy o f the activations o f the hidden units from the previous time step. The mod
ifiable connections are all feed-for ward, and can be trained by conventional back- 
propagation methods; this is done at each time step in the case of input sequences. 
Note that we treat the context units like inputs in applying back-propagation, and 
do not introduce terms like dCk/dwij into the derivation. The network is able to 
recognize sequences, and even to produce short continuations o f known sequences. 
Cleeremans et al. [1989] have shown that it can learn to mimic an existing finite 
state automaton, with different states o f the hidden units representing the internal 
states o f the automaton.

Figure 7.5(b) shows the Jordan [1986, 1989] architecture. It differs from that 
o f Fig. 7.5(a) by having the context units fed from the output layer (instead o f the 
hidden layer), and also from themselves. Similar behavior can probably be obtained 
whether the feedback is from a hidden or from an output layer, though particular 
problems might be better suited to one rather than the other. One could even 
use multiple sets o f context units, one set from each layer [Bengio et al., 1990]. 
More importantly, the self-connections give the context units Ci themselves some 
individual memory, or inertia. Their updating rule is

Ci(t +  l)  =  aC i(t) +  Oi(t) (7.54)
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where the Oi are the output units and a  is the strength o f the self-connections. 
We require a  <  1. If the outputs O, were fixed, then the C\ would clearly decay 
exponentially towards 0 , / (  1 -  a ), thus gradually forgetting their previous values. 
Such units are sometimes called d eca y  units, in tegrating  units, or cap acitive  
units. Iterating (7.54) we obtain

Ci(t +  1) =  O i(t) +  aO i(t -  1 ) +  a 2Oi(t -  2) +  • • •

=  £ < * ‘ - * '0 , ( 0  (7-55)
t'=0

or, in the continuum limit,

C i( t )=  I* e - r t - ^ O i W d t ?  (7.56)
Jo

where 7  =  |loga|. Thus in general context units accumulate a weighted moving 
average or trace  o f the past values they see, in this case o f 0,*. By making a  closer 
to 1 the memory can be made to extend further back into the past, at the expense 
o f loss o f sensitivity to detail. In general the value of a  should be chosen so that the 
decay rate matches the characteristic time scale o f the input sequence [Stornetta et 
al., 1988]. In a problem with a wide range o f time scales it may be useful to have 
several context units for each output unit, with a different decay rate (a  value) for 
each [Anderson et al., 1989].

Note in passing that the result (7.56) is exactly o f the form (3.57) with the 
exponential decay (3.60), so context units could be used to implement the moving 
averages needed in Section 3.5.

With fixed input, the network o f Fig. 7.5(b) can be trained to generate a set 
o f output sequences, with different input patterns triggering different output se
quences [Jordan, 1986, 1989]. W ith an input sequence, the network can be trained 
to recognize and distinguish different input sequences. Anderson et al. [1989] have 
applied this to categorizing a class of English syllables, and find that a network 
trained by one group of speakers can successfully generalize to another group.

Figure 7.5(c) shows a simpler architecture, due to Stornetta et al. [1988], that 
can also perform sequence recognition tasks. Note that the only feedback is now 
from the context units to themselves, giving them decay properties as in (7 .54 ). 
But their input is now the network input itself, which only reaches the rest of 
the network via the context units. In effect the input signal is preprocessed by 
the context units by the formation o f a weighted moving average o f past values; 
technically it is equivalent to processing by an infinite impulse response digital 
filter with transfer function 1 /(1 — a z " 1). This preprocessing serves to include past 
features o f the input signal into the present context values, thus letting the network 
recognize and distinguish different sequences. However, this architecture is less well 
suited than Fig. 7.5(a) or (b) to generating or reproducing sequences.

Mozer [1989] suggested the architecture shown in Fig. 7.5(d). This looks at first 
similar to case (c), but differs in two important ways. First, there is full connectivity
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with modifiable connections between input and context units instead o f only 
one-to-one connections. This gives the network greater flexibility to use the context 
units in a way appropriate to the problem. Second, the self-connections to the 
context units are no longer fixed, but are trained like other connections. The context 
units still act fundamentally as integrators, but the decay rate can be found during 
training to match the time scales o f the input.

Now however we need a new learning rule; conventional back-propagation does 
not allow for the modifiable recurrent connections. Recurrent back-propagation will 
not suffice either, since it assumes constant inputs and approach to an attractor, 
whereas here we are interested in input and/or output sequences. Mozer [1989] 
derived a new learning rule by differentiating an appropriate cost function and 
using gradient descent. The result is almost a special case o f the “real-time recurrent 
learning” rule o f Williams and Zipser [1989a] which we will treat shortly, so we omit 
the details here. The “almost” comes about because Mozer uses the update rule

Ci(t +  1) =  OiCi(t) +  g ( W ijtj) (7.57)
j

for the context units (where is an input pattern), whereas the Williams and 
Zipser approach for fully recurrent networks would apply strictly only to

Ci(t +  l )  =  g (a iC i(t)  +  £ .  (7.58)
j

The modification to the learning algorithm is minor however. Equation (7.57) seems 
to work somewhat better than (7.58), which has itself been studied by Bachrach 
[1988].

Like case (c), the architecture o f case (d) is better suited to recognizing se
quences than to generating or reproducing them. It works well for distinguishing 
letter sequences for example. When applying it to a problem involving reproducing 
a sequence after a delay, Mozer [1989] added an additional set o f context units to 
the input layer to echo the output layer, in the style o f case (a) or (b).

Other architectures, not illustrated in Fig. 7.5, are o f course possible, and some 
have been tried. Shimohara et al. [1988] categorize the possibilities and examine 
several.

Back-Propagation Through Time

The networks just discussed were partially recurrent. Let us now turn to fully 
recurrent networks, in which any unit Vi may be connected to any other. We retain 
for now synchronous dynamics and discrete time, so the appropriate update rule is

Vi(t +  1) =  g(h i(t)) =  g f e w i j V j i t )  +  m )  • (7-59)
j
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FIGURE 7.6  Back-propagation through time, (a) A recurrent network, (b) A feed
forward network that behaves identically for 4 time steps.

Here &(/)  is the input, if any, at node i at time t. If there is no such input at that 
node at that time we put £i(t) =  0 .

The general temporal association task is to produce particular output sequences 
Ci(t) in response to specific input sequences £;(<£). Individual units may be input 
units, output units, neither, or both; a target Q (t) is usually only defined on certain 
units at certain times.

If we are interested in sequences of a small maximum length T, we can use a 
trick to turn an arbitrary recurrent network into an equivalent feed-forward net
work. The idea, called b a ck -p rop a ga tion  th rou g h  tim e or u n fo ld in g  o f  tim e, 
was originally suggested by Minsky and Papert [1969] and combined with back- 
propagation by Rumelhart, Hinton, and Williams [1986b]. For sequences spanning 
the time steps t =  1, 2, . . . ,  T  we simply duplicate all units T  times, so that a 
separate unit V/ holds the state Vi(t) o f the equivalent recurrent network at time t. 
Figure 7.6 shows the idea for a general two-unit recurrent network and T  — 4 time 
steps. Note that the connection Wij from Vf to V^+1 is independent o f the same 
weight values must be used in each layer. It is easy to see that the two networks 
will behave identically for T  time steps.

The resulting unfolded network is strictly feed-forward and can be trained by 
a slightly modified form of back-propagation. There is no longer any need to clock 
the network; as in other feed-forward networks we can just wait for every unit 
to set its output according to its net input. It is simple to allow for input and 
output sequences; the input or output specified for unit i at time t is applied to 
unit Note in the case of outputs that error signals may be produced in any 
layer, not just the last, and are propagated backwards from the layer in which they 
originate. The only real complication is the constraint that all “copies” o f each 
connection Wij must remain identical, whereas back-propagation would normally
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produce different increments Awij for each particular copy. The usual solution is 
simply to add together the individual increments and then change all copies o f Wij 
by the total amount.

The main problem with this back-propagation through time approach is the 
need for large computer resources. Storage needs, computer time for simulation, and 
number o f training examples needed are all enlarged by the duplication of units. 
For long sequences, or for sequences o f unknown length, the approach becomes 
impractical. Note however that the duplication only applies to the training phase; 
once trained in the unfolded version, the recurrent network may be used for the 
temporal association task.

Back-propagation through time has not been widely applied, and has been 
largely superceded by the other approaches described in this chapter. Rumelhart, 
Hinton, and Williams [1986b] showed that it worked well for the task o f learning 
to be a shift register and for a sequence completion task. Nowlan [1988] obtained 
good results on a constraint satisfaction problem.

Real-Time Recurrent Learning

Williams and Zipser [1989a, b] showed how to construct a learning rule for general 
recurrent networks without duplicating the units. See also Robinson and Fallside 
[1988] and Rohwer [1990]. One version of this rule can be run on-line, learning while 
sequences are being presented rather than after they are complete. It can thus deal 
with sequences o f arbitrary length— there are no requirements to allocate memory 
proportional to the maximum sequence length.

We assume the same dynamics as for back-propagation through time,

VS(0 =  a(hi(t -  1 )) =  9 ( £  Wij Vj(t -  1 ) +  ti(t  -  1)) (7.60)
j

with target outputs Ck(t) defined for some Fs and f s  as before. An appropriate 
error measure on unit k at time t is then

Eklt) =  {  ^k^  ”  Vk^  if ^  is defined at time 1 ; (7.61)
1 0 otherwise

as in (7.35). Then the total cost function is

E  =  Y ,  E (t)  (7.62)
t=0

if the domain o f interest is t =  0, 1, . . . ,  T, where

k
(7.63)
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The gradient o f E  separates in time, so to do gradient descent we can define 

^  <7 64)

and take the full change in wpq as the time-sum o f A wpq(t). The last derivative 
in (7.64) can now be found by differentiating the dynamical rule (7.60), just as in 
(7.37),

m t)  =  s 'W  - 1)) [< » r,(< - 1) +  Y , ^ T— ] ■ <7 -65>
j pq

This relates the derivatives dVi/dwpq at time t to those at time t — 1. If we were 
interested only in a stable attractor we could set these equal and then solve the 
resulting linear equations, exactly as in recurrent back-propagation. Here instead 
we can iterate it forward from the reasonable initial condition

«  =  0 (7.66)
dwpq

at t =  0. We can do this at each time step along the way, after updating the units 
themselves according to (7.60). The time and memory requirements are nevertheless 
very large; for N  fully recurrent units there are N 3 derivatives to maintain, and 
updating each takes a time proportional to N  for each derivative, or N 4 in all at 
each time step.

Given all the derivatives, one finds A wpq(t) from (7.64) at each t . After the full 
time interval has been traversed the total weight changes are found by summing all 
these A w pq(t). The whole procedure has to be repeated until the system remembers 
the correct temporal associations. One can probably use tricks known from back- 
propagation to speed up the learning, such as momentum terms.

Williams and Zipser [1989a] find that updating the weights after each time step 
instead of waiting until the sequence is ended (at t =  T ) works well if rj is sufficiently 
small. They call the resulting algorithm rea l-tim e recu rren t learning (RTRL), 
because the weight changes occur in real time during the presentation o f the input 
and output sequences. This avoids any array storage requirements of size depending 
on the maximum time T, and is especially simple to implement.

A modification often found to be useful is teach er forc in g . Here one cor
rects units that are wrong whenever a target value is available, always replacing 
Vk(t) by (k (t) if the latter is known. This must be done o f course after computing 
the error Ek(t) and the set o f derivatives. It is easy to show that the appropriate 
modification o f the gradient descent calculation is to set dVi(t)/dwpq to zero for 
all pq in the iterative use o f (7.65) whenever unit i is forced to its target value, 
again after the weight changes have been computed. The teacher forcing procedure 
keeps the network closer to the desired track, and usually seems to speed up learn
ing considerably. It can be used in other dynamic networks too, such as that of 
Fig. 7.5(b). There is however one potential disadvantage; if we train a network to
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have an attractor under some constraint conditions such as teacher forcing, there 
is no guarantee that the attractor will remain an attractor when the constraints 
are removed. In fact an attractor can turn into a repeller upon the removal of con
straints. The terminal attractors described in Section 3.3 can be used to eliminate 
this problem.

Several examples investigated by Williams and Zipser [1989b] demonstrate the 
power and generality of the RTRL method. It works well for sequence recognition 
tasks, though these could also be performed by simpler networks. It can learn to be a 
flip-flop, so as to output a signal only after a symbol A and then— after an arbitrary 
interval— another symbol B has been seen. Clearly a tapped delay line approach 
could never do this. Most impressively, it can learn to be a finite state machine. By 
observing only the actions (not the internal states) o f a Turing machine performing 
the parentheses-balancing task, a recurrent network o f only 12  units learned the 
task. Finally the RTRL method with teacher forcing (but not without) can be used 
to teach a network to be a square wave or sine wave oscillator.

Time-Dependent Recurrent Back-Propagation

Pearlmutter [1989a, b] has developed a related algorithm for training a general 
continuous-time recurrent network (see also Werbos [1988] and Sato [1990]). The 
units evolve according to

Ti^ ¥  =  ~ V i  +  * ( T , wiiVi )  + t i ®  <7-67)
j

which is similar to the recurrent back-propagation dynamics (7.32). The inputs £,(*) 
are continuous functions of time, as are the desired outputs Ck(i)- An appropriate 
error function for an overall time domain 0- T  is

E = \ ( 7-68) 
2Jo keo

where the sum is only over those “output” units with specified values o f 0 fe(0 - As 
usual we must differentiate E  with respect to the weights Wij, which here enter E  
through Vk(t). We thus need the fu n ction a l derivatives

Ek(t) =  =  M W -& (< ) ]•  (7-69)

It is now possible to obtain the derivative dE/dwij needed for gradient descent in 
the form _
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where hi(t) =  as usual and Yj(t) is the solution o f the dynamical
equation

=  - *  -  £ -  E ,(t)  (7.71)at T{ Tj
J

with the boundary condition Yi(T ) =  0 for all i at the end point. We omit the 
derivation o f this result, which may be obtained using the calculus o f variations 
and Lagrange multipliers, or from a finite difference approximation [Pearlmutter, 
1989a]. It is possible to obtain dE/dn  too, and thus optimize with respect to the 
time constants 77.

To use these equations we first integrate (7.67) forwards from t — 0 to t =  T  
and store the resulting K ( f ) ’s. Then we integrate (7.71) backwards, from t =  T  to 
t =  0, to obtain the >7(2)’s. Finally (or by accumulation during the backward pass) 
we evaluate the integrals (7.70) to find the appropriate gradient descent increments 
Awij =  —rjdE/dwij. In practice all the integration must be done by finite difference 
methods, and the stored functions are represented by arrays.

The technique is related in various ways to many o f the others discussed in 
this chapter. It can be used to derive the Williams and Zipser RTRL approach 
[Pearlmutter, 1989a]. It may also be seen as a continuous-time extension of back- 
propagation through time, or as an extension of recurrent back-propagation to 
dynamic sequences. Notice the similarity of the backwards equation (7.71) to the 
transposed equation (7.49) in recurrent back-propagation, but recall that there we 
only cared about finding the stable attractor to which the equation led. The name 
tim e -d ep en d en t recu rren t b a ck -p rop a ga tion  is sometimes used for the present 
approach.

It is clear that the time and storage requirements o f this technique are large, 
but they are generally not as extreme as for the Williams and Zipser RTRL ap
proach. For N  fully recurrent units and K  time steps between 0 and T  the time 
per forward-backward pass scales as N 2K , compared to N AI\ for RTRL. How
ever, the appropriate K  would often be much larger in the current case where we 
are discretizing continuous time. Memory requirements here scale as a N K  +  bN2 
compared to N 3 for RTRL.

Pearlmutter [1989a] applied the forwards-backwards technique to training a 
network with two output units x =  Vi, y =  to follow various trajectories in 
the (x,y) plane, including circles and figure eights. After training they also tried 
perturbation experiments, kicking the system (7.67) off its regular trajectory with 
random perturbations. They found that it returned to its proper trajectory, which 
was therefore a stable limit cycle.

Overall, the Pearlmutter approach is probably best unless on-line learning is 
needed. It can be discretized fairly coarsely when the input and output are discrete 
time series rather than continuous trajectories. The RTRL approach of Williams 
and Zipser is needed instead when on-line learning is desired. But for many temporal 
sequence association problems a partially recurrent architecture with context units 
may suffice, and is much less costly to implement.
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FIGURE 7.7 A neural net
work interacting with its 
environment. Shaded arrows 
represent multi-component 
signals, whereas the rein
forcement signal r is a sim
ple scalar.

7.4 Reinforcement Learning
Thus far we have assumed in all o f our supervised learning discussion that correct 
“target” output values are known for each input pattern. But in some situations 
there is less detailed information available. In the extreme case there is only a single 
bit o f information, saying whether the output is right or wrong. In this section we 
look at some simple examples o f the re in forcem en t learning procedures applica
ble to this extreme case. Most o f the networks involved can either be recurrent or 
non-recurrent; we discuss them in this chapter for convenience.

Reinforcement learning is a form o f supervised learning because the network 
does, after all, get some feedback from its environment. But that feedback— the sin
gle yes/no re in forcem en t signal— is only evaluative, not instructive. Reinforce
ment learning is sometimes called learning w ith  a cr it ic  as opposed to “learning 
with a teacher.”

If the reinforcement signal says that a particular output is wrong it gives no 
hint as to what the right answer should be; in terms o f a cost function there is no 
gradient information. It is therefore important in a reinforcement learning network 
for there to be some source o f randomness in the network, so that the space o f 
possible outputs can be explored until a correct value is found. This is usually done 
by using stochastic units, such as we have described in Sections 2.4 and 5.6.

In reinforcement learning problems it is common to think explicitly o f a network 
functioning in an en v iron m en t, as sketched in Fig. 7.7. The environment supplies 
the inputs to the network, receives its output, and then provides the reinforcement 
signal. There are several different reinforcement learning problems, depending on 
the nature o f the environment:

■ C lass I. In the simplest case, the reinforcement signal is always the same 
for a given input-output pair. Thus there is a definite input-output mapping 
that the network must learn, or one o f several if there are multiple correct 
outputs for a given input. Moreover the input patterns are chosen randomly 
or in some fixed schedule by the environment, without reference to previous 
outputs. This is the situation already familiar to us from other supervised 
learning examples.

O u tp u t
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■ Class II. A common extension is to a stoch a stic  en v iron m en t. Here a par
ticular input-output pair determines only the probability o f positive reinforce
ment. This probability is however fixed (stationary) for each input-output 
pair, and again the input sequence does not depend on past history. Prob
lems like this arise frequently in modelling animal learning, economic sys
tems, and some simple games. They-are highly non-trivial even in the “non- 
associative” case o f a single fixed input (or equivalently no input at all); how 
can we best determine the output pattern with the highest probability o f pos
itive reinforcement from only a finite set o f trials? The case o f a single two
valued output in this non-associative situation is known as the tw o-a rm ed  
ban d it p rob lem , in which we imagine being able to pull either handle of a 
two-armed slot machine without prior knowledge o f the payoff probabilities. 
There has been a great deal o f theoretical work on such problems, known as 
stoch a stic  learn ing au tom ata ; see e.g., Narendra and Thathachar [1989] 
for an introduction.

■ C lass III. In the most general case the environment may itself be governed 
by a complicated dynamical process. Both reinforcement signals and input 
patterns may depend arbitrarily on the past history o f the network output. 
The classic application is to game theory, where the “environment” is actu
ally another player or players. Consider for example a neural network to play 
chess; it would only receive a reinforcement signal (win or lose) after a long 
sequence o f moves. In such situations the cred it assignm ent p ro b le m  be
comes severe; how are we to assign credit or blame individually to each move 
in such a sequence for an eventual victory or loss? This is a temporal credit 
assignment problem, as opposed to the more familiar structural credit assign
ment problem o f attributing network error to different units or weights.

Associative Reward-Penalty

We discuss first a reinforcement learning procedure applicable to class I and II prob
lems. Due originally to Barto and Anandan [1985], it is usually known as the a s s o 
c i a t i v e  r e w a r d - p e n a l t y  algorithm, or A r p .  Its essential ingredients are stochastic 
output units and a particular learning rule; the rest o f the network architecture is 
arbitrary and can be chosen to suit the problem at hand.

Let us consider a set o f output units Si =  ±  1 governed by the standard stochas
tic dynamical rule (2.48)

Ptob(5i =  ± 1 ) =  „ ( « , )  =  M ± k ,)  =  (7.72)

with hi =  'E jW ijV j as usual. The Vjys might be the activations of some hidden 
units, or might be the network inputs ( j  themselves. Our problem now is to de
termine an appropriate error estimate for each o f the output units when their 
inputs are set to a particular pattern Vj\
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Instead o f known target patterns, we are given only the reinforcement signal 
r. We take r =  +1 to mean positive reinforcement (reward) and r =  — 1 to mean 
negative reinforcement (penalty). Now we can construct our own target patterns 
Cf by using

/»#• _  /  s i if r/1 -  + 1  (reward); (7 7,x
*  “  I  - S ?  if =  - 1  (penalty) K , . }

[Widrow et al., 1973]. This suggests to the network that it should be more likely to 
do what it just did if that was rewarded, and more likely to do the opposite if not. 
Note that in the case of a single binary output and a class I problem (deterministic 
r )> Cf 25 the correct output because — S f must be correct if S f  is wrong. In that 
situation reinforcement learning is the same as ordinary supervised learning with 
known targets, and the present approach reduces to the ordinary delta rule.

To construct our learning rule we compare the target Cf with the average output 
value (S f ) to compute the appropriate 6f , just as in (5.58):

(7-74)

We could find ( S f ) by averaging for a while, or simply by calculation from (7.72) 
as in Chapter 2:

(S f)  =  (+l)tf(fcf)  +  ( - l ) [ l - f f ( f c n ]  =  tanh/?/if . (7.75)

Then our update rule for the output weights is the usual delta rule

A  (7.76)

in which we let the learning rate t] depend on whether the output was right or 
wrong. Typically ^ (+1) is taken as 10-100 times larger than We could have
put a <7' ( / i f )  factor into (7.76) too, as appropriate for minimizing X^(<$f)2, but 
choose to leave it out as for the entropic cost function (cf. (5.53)).

Overall our learning rule reads

A i f r "  =  + l  (reward);
W,j \ v ~ [ -S i  -  {S i)]V f  if r '' =  - 1  (penalty)

with rj  ̂=  ;;(±1 ). This is the standard form of the A rp  rule. It only tells us how
to adjust the weights going to the output units, but we can generate appropriate
weight adjustments for other connections in a multi-layer network simply by back- 
propagating the output errors <5f given by (7.74). Similarly in a recurrent network 
we can use recurrent back-propagation (Section 7.2) or one o f the time-dependent 
techniques described in Section 7.3.

In practice (7.77) does work, for both deterministic and stochastic reinforce
ment, but is very slow compared to supervised learning. The speed is dependent on 
the size o f the output space and the fraction o f that space which is “correct” for a
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given input pattern; if there is only one correct answer for each input the search can 
be extremely time-consuming. Nevertheless it is faster (for large enough problems) 
than a trial-and-error search in cases where the network’s generalization ability can 
help [Ackley and Littman, 1990].

When learning converges on a correct solution the (S 'f) ’s approach ±1 , mak
ing the units effectively deterministic. This is true even for class II problems; the 
outputs converge to the state that provides the largest average reinforcement. But 
the stochastic units are essential earlier on during learning, to generate exploration 
o f the output space.

Some variations on the standard rule (7.77) are worth noting:
■ For 0 /1  units instead of ±1  units the —S f in the penalty case is replaced by 

1 — 5 f, and (5 f ) is often written as p the probability o f getting a 1 .
■ If the reward r is a continuous-valued scalar evaluation signal, in the range

0 <  r <  1 (with 0 meaning terrible and 1 meaning excellent), we can general
ize (7.77) to [Barto and Jordan, 1987]

At%  -  <Sf>] +  (1 -  r * ) [ -S ?  -  (S ? )] )V f .  (7.78)

■ Some authors prefer to use (S f ) — S? instead o f — S? — ( 5 f ) for the penalty 
case, giving simply

Awij =  Vr»[S ? -  (S ? )]V f  (7.79)

if we leave out the dependence o f r] on r. This always gives A  Wij the same 
sign as does (7.77), but the magnitude is different. On receipt o f r =  — 1 , in 
effect (7.79) tells the network not to do what it is doing, while (7.77) tells it 
to do the opposite of what it is doing. In practice (7.77) seems to work bet
ter, probably because it provides larger weight changes when (Sj*) — Sj* is 
near the wrong ± 1  extreme. But (7.79) is more amenable to theoretical anal
ysis, as we will soon see.

■ It seems to improve learning speed to present a given pattern p several times 
before moving on to the next one [Barto and Jordan, 1987; Ackley and Litt
man, 1990]. It is important to do this in b a tch  m od e , accumulating all the 
weight changes and then adding the accumulated sum to the weights at the 
end. This procedure allows a better estimate o f the local gradient of the cost 
function discussed below.

A reinforcement learning approach might prove useful even when targets are 
available. Barto and Jordan [1987] suggest using the A r p  approach for training 
the hidden layers o f a multi-layer network, while using the ordinary delta-rule for 
the output units. This inevitably proves to be slower than using back-propagation, 
but might have an advantage for a hardware implementation. Instead o f needing 
circuits for back-propagation of individual errors, it is only necessary to feed a global 
signal r (based on the mean square error at the output) to each unit. A similar 
strategy was used by Grossman [1990] in his algorithm for finding effective internal 
representations in a layered net. In general this leads to a picture o f a network of
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se lf-in terested  or h ed on istic  un its achieving a global purpose through individual 
maximization o f r [Klopf, 1982].

Theory of Associative Reward-Penalty *

It would be comforting to prove that these procedures actually do converge to a 
solution. Unfortunately that goal has not been achieved except in some very special 
cases. Barto and Anandan [1985] proved convergence for the case o f a single binary 
output unit and a set o f linearly independent patterns Vj*, provided the learning 
rates rj+ and decay to zero in the right way. Having only one binary output is 
only o f interest with a stochastic environment (class II)— it is then the two-armed 
bandit problem. The proof cannot be extended to multiple output units simply by 
thinking o f them independently, because there is only one reinforcement signal r 
which depends on all their actions; they must cooperate to be rewarded.

Our usual approach to discussing convergence has been to show the existence 
o f a cost function which is steadily decreased by the learning rule. Then the process 
must eventually stop, at least at a local minimum, assuming that the cost is bounded 
below. We can do the same sort o f thing here, but in a less satisfactory way because 
the process is stochastic.

A suitable cost function is minus the average (expected) value o f the rein
forcement r. Minimizing the cost then corresponds to maximizing the average rein
forcement, which is clearly a sensible goal. For simplicity let us take a single layer 
network, replacing the general Vj Js in the above analysis by a set o f inputs . Let us 
also choose a deterministic environment (class I), so that the reinforcement signal 
r is a well-defined function r (S ,£)  o f the output pattern S and the input pattern 
£; we use vectors to represent the whole set o f inputs or outputs. Then, for a given 
pattern f j4, the average reinforcement (r )*4 is

<r)' =  5 > ( s K * ' > ( s , n  (7.80)
s

where the sum is over all possible output configurations S, each of which has a 
probability P(S|w,^/i) that depends on the input and all the weights w. In fact, 
since output unit i chooses Si =  ± 1  independently o f what all the other other units 
are doing, this probability factorizes:

where h% =  Ylj wkj€j as usual.
Now we want to differentiate (7.80) with respect to some particular weight , 

in order-to show that our learning rule goes in the gradient direction. So we need
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to differentiate the product in (7.81) with respect to w^j: 

dP{ S|w" ■ < ' ) -  (n l  »(‘ £> i f&  = + n v  » ' W  i f a  = + U  
■» ~ I 1 -  = I - m w  ifS  = -U

P K u m / o'W hW ) if s, = +i \
= •p(sl“ .f ')  { - m w  _ , m  if S = _, ) V  <7'82>

A little algebra is now required. Using the logistic function fp (h ) for g(h) implies
that g'(h) =  2/3g(h)[l -  g(h )], and (7.75) allows us to write g(h) =  %((S) +  1).
These lead easily to

r m )M K )  if s, = +11 . ,  . . .
i  - w w  -  M ) \  if s , = - i ;  ~ m  '  • 11 • ( '

Putting together (7.80), (7.82), and (7.83) we obtain

= /?£p(S|w,*>(S

=  / ? < r ( S , ^ ) [ 5 f - ( S f ) ] ) ^  (7.84)

where the averages (• • •) are over all output configurations, weighted only by the 
usual stochastic unit probabilities (7.72).

This is our desired result. First note that it would vanish if r ( S ,^ )  were the 
same for all output configurations S that had appreciable probability P(S|w,^/i), 
because ([S f — (S f )]) =  0. This is what happens when we reach a correct solution—  
we almost always get r*4 =  +1, so o f course (r )*4 has a local maximum there. Now 
comparing with (7.79) we see that we may write

so that the average weight update in response to input pattern \i is in the upward 
gradient direction o f  our (negative) cost function (r)*4. Finally we can average this 
result over all patterns /i and hence write

< * * » > - j  t7-86*

where now the averages are across all patterns and outcomes.
The result suggests that the learning rule (7.79) will continue to increase the 

average reinforcement until a maximum is reached. It does not prove such conver
gence however, because it only tells us about the average behavior. In a particular 
case a sequence o f unlucky chances might decrease (r) considerably, and might lead 
us to become stuck in a very poor configuration. The convergence o f stochastic
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processes like this is very difficult to treat, and is not yet fully understood for the 
A r p  algorithm. Nevertheless the result is encouraging, and allows us once again to 
visualize the procedure in terms o f gradient descent on a cost surface, or gradient 
ascent on an average reinforcement surface.

Equation (7.86) applies to the symmetric rule (7.79) and not to the original rule 
(7.77). It also relies on 77 being independent o f r. Both these restrictions actually 
make the algorithm worse in practice, but seem to be needed to prove the result. In 
fact it may be that the better versions are not always moving uphill in (r), even on 
average, but are thus more free to explore alternatives and to find better solutions 
in the end. Indeed it is found that the algorithms to which the result applies tend 
to converge rapidly, but to rather poor local maxima [Williams and Peng, 1989].

Another case in which (7.86) applies is obtained by modifying our reinforcement 
signal from ± 1  to 0 /1. Then maximizing (r) is a different objective, in which failures 
are not penalized. Now (7.86) applies if we use the original A r p  rule (7.77), but set 
77“  to 0. This is sometimes called the associative reward-inaction rule, or A r i .

Williams [1987, 1988b] has identified a wider class of algorithms that possess 
the gradient ascent property (7.86). His derivation is also applicable to class II 
problems with a stochastic environment, in which (r) would be an average over the 
environment’s responses as well as over the stochastic choices o f the output units. 
However the class o f algorithms, which Williams calls REINFORCE algorithms, 
still does not include the full A r p  algorithm.

Models and Critics
Another approach to reinforcement learning involves modelling the environment 
with an auxiliary network, which can then be used to produce a target for each 
output o f the main network instead o f just a global signal r [Munro, 1987; Williams, 
1988a; Werbos, 1987, 1988]. The general idea o f a separate modelling network can 
also be extended to more complex reinforcement learning problems, including class 
III problems.

A  suitable architecture is shown in Fig. 7.8. The lower network is the main 
one that produces an output to the environment in response to an input from it, as 
before. Again it normally employs stochastic output units to encourage exploration. 
The upper network is the modelling network. It monitors at its input both the input 
and the output o f the main network, and thus sees everything that the environment 
does. It has a single continuous-valued output unit i2, called the eva luation  unit, 
which is intended to duplicate the reinforcement r produced by the environment. 
If the model is a good one we will have R  «  r for each input-output pair that the 
model sees.

In class I and II problems it is easy to see how to train the modelling net
work. The environment provides the correct response r for each case encountered 
(at least on average), so we can use an ordinary supervised approach, such as back- 
propagation, to minimize (r — R )2. So that the modelling network can see a broad
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FIGURE 7.8  A reinforcement learning network which tries to model its environ
ment.

sample o f possible input-output pairs it may be expedient to turn up the temper
ature parameter (T  =  1 //? ) o f the main network’s stochastic output units while 
training the modelling network.

Once it is trained the modelling network can be used to train the main network. 
Now the aim is to maximize J?, which we take to be a good model o f r. This can 
also be done by back-propagation, through both networks. We do not change any 
weights in the modelling network, but propagate the appropriate Sys through it, 
starting from 6 =  — R  at the evaluation unit. By the time these Sys propagate back 
to the main network we have an error signal for each unit instead o f a global signal 
r, and can use ordinary supervised learning to adjust the weights.

Thus overall the whole scheme reduces the reinforcement learning problem to 
two stages o f supervised learning with known targets. In principle at least we could 
do both stages at the same time, thinking o f the two parts as a single cascaded 
network. However it is still essential to keep distinct the separate goals of the two 
subnetworks; it would be no good to train the whole network to minimize (R  — r ) 2 

without any incentive towards maximizing r, and equally pointless to maximize R  
overall without regard to r. In practice though, it seems best to train the modelling 
network first, at least partially.

One advantage o f the present approach is that the modelling network can 
smooth out the fluctuations o f a stochastic environment in class II reinforcement
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FIGURE 7.9 A reinforcement learning network with a critic. The main network 
might be a simple feed-forward network as sketched, or could itself include a 
modelling network as in Fig. 7.8.

learning problems. W ith the A r p  algorithm there is a tendency to chase meaningless 
fluctuations o f r, but maximizing R  should be less hazardous.

For class III problems there are various ways to go further, making the mod
elling network a better predictor o f reinforcement. Actually it should try to estimate 
a weighted average o f the future reinforcement, because the main network needs 
to maximize the cumulative reinforcement, not the instantaneous value. In a game, 
for example, the system might need to wait many moves for an eventual reinforce
ment. And even if continuing evaluation is provided by the environment, it may be 
appropriate to sacrifice short-term rewards for longer-term gains.

It may be worthwhile constructing a separate network (or algorithm) to perform 
this task o f predicting reinforcement. As shown in Fig. 7.9 this cr it ic  receives the 
raw reinforcement signal r from the environment and feeds a processed signal p on 
to the main network. The p signal represents an evaluation o f the current behavior 
o f the main network, whereas r typically involves the past history. If the critic can 
produce a prediction R  o f r, we could for example use p =  r — R f so the main 
network would be rewarded when r exceeded expectations, and penalized when it 
fell short; this is re in forcem en t com p a rison  [Sutton, 1984].

The critic itself would normally be adaptive and would improve with experience; 
the name ada p tive  h eu ristic  cr it ic  is sometimes used. We omit descriptions o f 
appropriate algorithms, but note that they are often closely related to d yn am ic 
program m in g ; see Sutton [1984, 1988] and Barto et al. [1991]. They are also 
related to models o f classical conditioning in behavioral psychology [e.g., Tesauro, 
1986; Sutton and Barto, 1991].

Barto et al. [1983] constructed a network consisting o f an adaptive critic and a 
set o f A rp units that learned a problem o f balancing a pole on a movable cart. The 
system was able to learn the task even though the ‘‘failure” reinforcement signal 
typically came long after the mistakes that produced it.
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8.1 Unsupervised Learning
This is the first o f two chapters on unsupervised learning. In unsupervised learn
ing there is no teacher. We still consider a network with both inputs and outputs, 
but there is no feedback from the environment to say what those outputs should 
be or whether they are correct. The network must discover for itself patterns, fea
tures, regularities, correlations, or categories in the input data and code for them 
in the output. The units and connections must thus display some degree o f self
organ iza tion .

Unsupervised learning can only do anything useful when there is red u n d a n cy  
in the input data. Without redundancy it would be impossible to find any patterns 
or features in the data, which would necessarily seem like random noise. In this 
sense redundancy provides knowledge [Barlow, 1989]. More technically, the actual 
information content o f the input data stream must be less than the maximum that 
could be carried on the same channel (the same input lines at the same rate); the 
difference is the redundancy.

The type o f pattern that an unsupervised learning network detects in the input 
data depends on the architecture, and we will consider several cases. But it is 
interesting first to consider what sort o f things such a network might tell us; what 
could the outputs be representing? There are a number o f possibilities:

1. Fam iliarity. A single continuous-valued output could tell us how similar a 
new input pattern is to typical or average patterns seen in the past. The net
work would gradually learn what is typical.

2. P r in c ip a l C o m p o n e n t A n alysis . Extending the previous case to several 
units involves constructing a multi-component basis, or set o f axes, along 
which to measure similarity to previous examples. A common approach from

197
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statistics, called principal component analysis, uses the leading eigenvector 
directions o f the input patterns’ correlation matrix.

3. C lu sterin g . A set o f binary-valued outputs, with only one on at a time, 
could tell us which o f several categories an input pattern belongs to. The ap
propriate categories would have to be found by the network on the basis of 
the correlations in the input patterns. Each cluster o f similar or nearby pat
terns would then be classified as a single output class.

4. P ro to ty p in g . The network might form categories as in the previous case, 
but then give us as output a prototype or exemplar from the appropriate 
class. It would then have the function o f an associative memory, but the 
memories would be found directly from the input patterns, not imposed from 
outside.

5. E n cod in g . The output could be an encoded version o f the input, in fewer 
bits, keeping as much relevant information as possible. This could be used 
for data compression prior to transmission over a limited-bandwidth channel, 
assuming that an inverse decoding network could also be constructed.

6 . F eature M a p p in g . If the output units had a fixed geometrical arrangement 
(such as a two-dimensional array) with only one on at a time, they could 
map input patterns to different points in this arrangement. The idea would 
be to make a topographic map o f the input, so that similar input patterns al
ways triggered nearby output units. We would expect a global organization of 
the output units to emerge.
These cases are o f course not necessarily distinct, and might also be combined in 

several ways. The encoding problem in particular could be performed using principal 
component analysis, or with clustering, which is often called v e cto r  qu an tization  
in this context. Principal component analysis could itself be used for d im en sion 
a lity  re d u ct io n  o f the data before performing clustering or feature mapping. This 
could avoid the “curse o f dimensionality” usually encountered when looking for pat
terns in unknown data; a high-dimensional space with a modest number o f samples 
is mostly empty.

It is worth noting that unsupervised learning may be useful even in situations 
where supervised learning would be possible:

■ Multi-layer back-propagation is extremely slow, in part because the best 
weight in one layer depends on all the other weights in all the other layers. 
This can be avoided to some extent by an unsupervised learning approach, or 
a hybrid approach, in which at least some layers train themselves just on the 
outputs from the immediately preceding layer.

■ Even after training a network with supervised learning, it may be advisable 
to allow some subsequent unsupervised learning so that the network can 
adapt to gradual changes or drift in its environment or sensor readings.
Unsupervised learning architectures are mostly fairly simple— the complications 

and subtleties come mainly from the learning rules. Most networks consist o f only
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FIGURE 8.1 Architecture for simple 
Hebbian learning. The output unit is 
linear, so V  — ^  w j£j.

a single layer. Most are essentially feed-forward, with the notable exception o f 
Adaptive Resonance Theory. Except in the case of Feature Mapping, usually there 
are many fewer output units than inputs. The network architectures also tend to 
be more closely modelled after neurobiological structures than elsewhere in neural 
computation.

In most of the cases considered in this chapter and the next the architecture 
and learning rule come simply from intuitively plausible suggestions. However in 
some cases there is a well-defined quantity that is being maximized, such as the 
information content or variance o f the output. These optimization approaches are 
closer to those o f statisticians. There are in fact close connections between many of 
the networks discussed here and standard statistical techniques of pattern classifi
cation and analysis [Duda and Hart, 1973; Devijver and Kittler, 1982; Lippmann, 
1987].

In this chapter we consider some techniques based on connections that learn 
using a modified Hebb rule. The outputs are continuous-valued and do not have 
a winner-take-all character, in contrast to most o f the networks considered in the 
next chapter. Thus the purpose is not clustering or classification o f patterns, but 
rather measuring familiarity or projecting onto the principal components of the 
input data. In a multi-layered network this can however lead to some remarkable 
feature extraction properties, as we will see in Section 8.4.

8.2 One Linear Unit
Let us assume that we have some input vectors £, with components £,* for i =  1, 2, 
. . . ,  N, drawn from some probability distribution P (£ ). The components could be 
continuous-valued or binary-valued. At each time step an instance £ is drawn from 
the distribution and applied to the network. After seeing enough such samples the 
network should learn to tell us— as its output— how well a particular input pattern 
conforms to the distribution. We will make this more precise shortly.

The case o f a single linear output unit is simplest. The architecture is shown 
in Fig. 8 .1 and we have simply

V =  =  w t £ =  £t w
i

(8.1)
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where w  is the weight vector. We find it convenient in this chapter to use m a trix  
m u ltip lica tion  n o ta tio n  (e.g., w T£) rather than inner product notation (e.g., 
w  • £), writing x T for the transpose (a row vector) o f x  (a column vector). All 
boldface symbols are vectors, except the matrix C introduced below.

With just one unit we clearly want the output V  to become a scalar measure o f 
familiarity. The more probable that a particular input £ is, the larger the output \V\ 
should become, at least on average. It is therefore natural to try p la in  H ebb ia n  
learn ing

A  wi =  r)V£i (8.2)

where t) controls the learning rate as usual. This strengthens the output in turn 
for each input presented, so frequent input patterns will have most influence in the 
long run, and will come to produce the largest output.

But there is a problem; the weights keep on growing without bound and learn
ing never stops. It is nevertheless instructive to examine the rule (8.2) in more
detail. Suppose for a moment that there were a stable equilibrium point for w .
After sufficient learning the weight vector would remain in the neighborhood of the 
equilibrium point, just fluctuating around it (by an amount proportional to rj) but 
not going anywhere on average. So at the equilibrium point we would expect the 
weight changes given by (8 .2) to average to zero:

0 =  (A  W i )  =  ( V £ i )  =  i j W j  =  Cw (8.3)
j j

where the angle brackets indicate an average over the input distribution P (£ ) and 
we have defined the corre la tion  m a trix  C by

C,i =  (titi)  (8-4)

or
C ee( « t >. (8.5)

Several things should be noted about C before we proceed. First, it is not 
quite the covarian ce  m atrix  o f the input, which would be defined in terms of 
the means //,• =  (&) as ((& -  //*)(£; -  /ij))- Secondly, C is symmetric, Ci;- =  Cji, 
which implies that its eigenvalues are all real and its eigenvectors can be taken as 
orthogonal. Finally, because o f the outer product form, C is positive semi-definite1; 
all its eigenvalues are positive or zero.

Now let us return to (8.3). It says that (at our hypothetical equilibrium point) 
w  is an eigenvector o f C with eigenvalue 0. But this could never be stable, because 
C necessarily has some positive eigenvalues; any fluctuation having a component 
along an eigenvector with positive eigenvalue would grow exponentially. We might 
suspect (correctly) that the direction with the largest eigenvalue Amax of C would

1 Proof: for any vector x, x TCx =  x T (££T)x  =  (xT£ £ Tx) =  ((£ Tx )2) > 0.
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FIGURE 8.2 Examples o f O ja’s unsupervised learning rule. The dots show 1000 
samples from each P (£ ). The arrows represent the average weight vector w  after 
many updates. The thin lines show a typical trajectory o f w  during training (for 
2500 updates in (a); for 1000 updates in (b )). The parameter rj was held at 0.1.

eventually become dominant, so that w  would gradually approach an eigenvector 
corresponding to Amax, with a increasingly huge norm. But in any case w  does not 
settle down; there are only unstable fixed points for the plain Hebbian learning 
procedure (8 .2 ).

Oja’s Rule

We can prevent the divergence o f plain Hebbian learning by constraining the growth 
o f the weight vector w . There are several ways to do this, such as a simple renormal
ization w[ =  aw{ o f all the weights after each update, choosing a  so that |w'| =  1 . 
But Oja [1982] suggested a more clever approach. By modifying the Hebbian rule 
itself, he showed that it is possible to make the weight vector approach a constant 
length, |w| =  1, without having to do any normalization by hand. Moreover, w  
does indeed approach an eigenvector o f C with largest eigenvalue Amax. We will 
henceforth call this a m axim al e ig en vector for brevity.

Oja’s rule corresponds to adding a weight decay proportional to V 2 to the plain 
Hebbian rule:

Awi =  r]V(€i - V w i ) . (8.6)

Note that this looks like reverse delta-rule learning; Aw  depends on the difference 
between the actual input and the back-propagated output.

It is not immediately obvious that (8 .6 ) makes w  approach unit length or tend 
to a maximal eigenvector, though we will prove these facts shortly. First let us 
see the rule in action. In each part o f Fig. 8.2 we drew samples for £ from a two- 
dimensional Gaussian distribution; £ has two components and £2> and there are
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two weights, w\ and W2 > The weights were started from small random values and 
updated according to (8 .6 ) after each sample. The thin lines show that |w| grew 
initially but reached a constant length (o f 1 ) and then merely fluctuated on an arc 
o f the circle |w| =  1. The fluctuations did not die away and were much larger in 
case (b) than in case (a). Convergence to the unit circle was much faster in case 
(b) than in case (a).

The final average weight vectors w  are shown by the heavy arrows. What do 
these tell us? Do they really make the output V  represent the familiarity o f a par
ticular input £? Well, yes and no; they do the best they can within the constraints 
o f our architecture. Because we chose linear units, the output V  is just the compo
nent o f the input £ along the w  direction. In case (a), with zero-mean data, this is 
zero on average, whatever the direction o f w , but it is largest in magnitude for the 
direction found. In case (b), the average o f V  itself is maximized for the direction 
found. So in both cases the direction o f w  found by O ja’s rule gives larger |Vj’s on 
average than for any other direction, for points drawn from the original distribu
tion. Points drawn from another distribution— “unfamiliar” points— would tend to 
give smaller values o f |Vj, unless they had larger magnitudes on average. Thus the 
network does develop a familiarity index for the distribution as a whole, though not 
necessarily for any particular sample in case (a), for instance, the most probable 
(and mean) £ is at the origin, which gives V  =  0 .

In fact O ja ’s rule chooses the direction o f  w  to maximize (V 2). This confirms, 
and makes more precise, the above observations based on Fig. 8.2. For zero-mean 
data, such as case (a), it corresponds to variance m a x im iza tion  at the output, 
and also to finding a principal component, as discussed in Section 8.3.

Theory of Oja’s Rule *

We have left ourselves with a number o f claims to prove. We have said that Oja’s 
rule converges to a weight vector w  with the following properties:

1. Unit length: |w| =  1, or wf =  1.
2. Eigenvector direction: w  lies in a maximal eigenvector direction o f C.

3. Variance maximization: w  lies in a direction that maximizes ( V 2).
Let us first show that property 3 is a simple consequence of property 2. Using 

(8.1) and (8.5) we can write

( V 2) =  ((w  Tif)  =  (w r ££T w ) =  w T C w . (8.7)

Now for fixed |w| and a symmetric matrix C, it is a standard result that the 
quadratic form w T Cw is maximized when w  is along a maximal eigenvector direc
tion o f C. So this direction also maximizes (V 2), as claimed.

[The standard result can be proved by diagonalizing the quadratic form, writing
it as

w T Cw =  ^  Aai6>2 (8.8)
a
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where the Xays are the eigenvalues o f C and the wa ys are the components o f w  along 
the corresponding eigenvectors. These eigenvectors are orthogonal and |w| =  1, so 
12a wa =  1 * To maximize (8 .8) under this constraint we clearly have to put all the 
weight into the term with the largest Aa, which is Amax by definition. Thus w  must 
be along a maximal eigenvector. In the case o f a degenerate largest eigenvalue any 
direction in the space spanned by the corresponding eigenvectors will suffice.]

To prove properties 1 and 2 we must return to Oja’s rule (8 .6 ) itself. Just as 
in (8.3) for the plain Hebbian case, we expect that the average weight change will 
vanish when an equilibrium has been reached:

0 =  (All*) =  (V ii  -  V 2Wi)

= (JT, wjtjti -  wjZjU’ktkw') 
j i*

=  -  [ 5 3 u,iC J-*u>t ]u* (8.9)
j jk

or
0 =  (Aw )  =  Cw — [wT C w ]w . (8.10)

Thus an equilibrium vector must obey

Cw =  Aw (8.11)

with
A =  w T Cw =  w t A w  =  A|w|2 . (8.12)

Equation (8.11) shows clearly that an equilibrium w  must be an eigenvector o f C, 
and (8 .1 2 ) proves that |w| =  1 . All that remains is to show that A =  Amax.

Any normalized eigenvector o f C would satisfy (8.10). But only one belonging 
to Amax is stable. To show this, let us take w  close to a particular normalized 
eigenvector c a o f  C

w  =  c a +  e (8.13)

with Cca =  Xac a and | =  1 . Then, using (8.9), the average subsequent change 
o f e to order e is

(A c ) =  (Aw )  =  C (c“  +  e) -  [((c “ )T +  eT)C (ca +  e)] (ca +  e)

=  A“ c "  +  Cc -  [(ca,)T Cca,] c a -  [£TC ca] c a 
- [ ( c “ )TC £j c“ — [(ca)T C c " ]£ +  0 (£2)

=  Ce — 2 A" [£Tc" ]  c “  — Xae +  0 ( e 2) . (8.14)

Now take the component o f this along the direction o f another normalized eigen
vector cp o f  C by multiplying by (cP)T on the left (ignoring the 0 (e2) terms):

(ĉ )t (Ac) =  X ^ c ^ T c - 2 X a [cT ca]6a 0 - X a ( ^ ) Tc

=  [X? - \ a - 2 \ a6a/3](cl})T e.  (8 .15)
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Note that we used (c^ )Tc a =  6ap by orthonormality of the eigenvectors. Equa
tion (8.15) is just what we need; for /? ^  a  it says that the component o f € along 
cP will grow— and hence the solution will be unstable— if A  ̂ >  Aa. So if Aa is not 
the largest eigenvalue Amax there will always be an unstable direction. On the other 
hand, an eigenvector corresponding to Amax stable in all directions, including the 
ca direction itself. This completes the proofs of our claims.

It is worth remarking that we have not really proved convergence to the solution, 
only that it is on average a stable fixed point of Oja’s rule. In a nonlinear stochastic 
dynamical system like this there are several things that might conceivably happen 
besides convergence to a fixed point. We might see quasi-cyclic behavior, or we 
might simply see the system continuing to fluctuate, just like a thermodynamic 
system at T  >  0 (above a phase transition perhaps, so the typical state could 
be quite unlike the ground state). We could consider quenching the fluctuations by 
steadily reducing tj to zero, but if we did this too rapidly the system might get stuck 
in the wrong place and never get to the desired solution. More powerful techniques, 
such as stoch a stic  a p p rox im a tion  th eory , are needed to prove convergence in 
these systems [see e.g., Kushner and Clark, 1978]. Such proofs have in fact been 
constructed for Oja’s rule [Oja and Karhunen, 1985].

Other Rules

Oja’s rule (8 .6 ) is not the only way one can modify the plain Hebbian rule (8.2) to 
keep the weights bounded. Linsker [1986, 1988] uses simple clipping; the individual 
weights Wi are constrained to obey w_ <  <  w+. Yuille et al. [1989] suggest a
rule

A  Wi =  r)(V£i -  w,|w|2) (8.16)

which makes w  converge to the same maximal eigenvector direction as O ja’s rule, 
but with |w| =  -y/Amax instead of |w| =  1. It has the disadvantage over Oja’s rule 
o f being nonlocal— to update we need information about other wj's— but the 
mathematical advantage that there is an associated cost fu n ction

E  =  - ^ ^ C i j W i W j  +  =  - | w T C w -i| w | 4 . (8.17)
ij •

The average effect (Ait;,*) o f (8.16) corresponds exactly to gradient descent on this 
cost surface.

Pearlmutter and Hinton [1986] also derive a gradient-descent learning rule, 
based on maximizing the information content o f the output. It is applicable to 
nonlinear as well as linear units.

8.3 Principal Component Analysis
A common method from statistics for analyzing data is p rin cip a l co m p o n e n t
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FIGURE 8.3 Illustration of principal component analysis. OA is the first principal 
component direction o f the distribution that generated the cloud of points. The 
projection onto OA shows up more structure than the projection onto another 
direction OB. After Linsker [1988].

analysis (PC A ) [see e.g., Jolliffe, 1986]. In communication theory it is known as 
the Karhunen-Loeve transform. It is also closely related to least squares methods, 
factor analysis, singular value decomposition, and matched filtering. Linsker [1988] 
notes that performing principal component analysis is equivalent to maximizing the 
information content o f the output signal in situations where that has a Gaussian 
distribution.

The aim is to find a set o f M  orthogonal vectors in data space that account for 
as much as possible o f the data’s variance. Projecting the data from their original N- 
dimensional space onto the M-dimensional subspace spanned by these vectors then 
performs a d im en sion a lity  red u ct io n  that often retains most of the intrinsic 
information in the data. Typically M  <C N, making the reduced data much easier 
to handle when, for example, subsequently searching for clusters. Figure 8.3 shows 
by example that clusters are more likely to be distinguished by projecting onto a 
high-variance direction than onto a low-variance one.

Specifically the first principal component is taken to be along the direction 
with the maximum variance. The second principal component is constrained to lie 
in the subspace perpendicular to the first. Within that subspace it is taken along 
the direction with the maximum variance. Then the third principal component is 
taken in the maximum variance direction in the subspace perpendicular to the first 
two, and so on.

In general it can be shown that the fcth principal component direction is along 
an eigenvector direction belonging to the Arth largest eigenvalue o f the full covari
ance  m a trix  ((& — where //,• =  (&). For zero-mean data this reduces
to the corresponding eigenvectors o f the correlation matrix C defined by (8 .5 ), and 
we will restrict our attention to this case. We have already seen that the uncon
strained maximum variance direction— the first principal component— corresponds
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to a maximal eigenvector o f C. To prove the corresponding result for the kth prin
cipal component, we write the variance along the direction of a unit vector x  as

*1 =  ((*TX)2> =  <xT« Tx) =  x T Cx =  (8.18)
Of

The last expression results from diagonalizing the quadratic form x TCx, just as in 
(8 .8). x a is the component o f x  along the eigenvector c a belonging to eigenvalue 
Xa o f C.

Let us take the eigenvalues to be in decreasing order, so that

A1 >  A2 >  . . .  >  A* (8.19)

with A1 =  Amax. Now we proceed by mathematical induction and assume that 
principal components 1 to k — 1 are along the first k — 1 eigenvector directions. The 
fcth principal component is constrained to be perpendicular to these directions, so 
we must have x \. . .  =  0. Maximizing subject to this condition, with |x| =  1
(and thus x\ =  1 ), clearly results in

z j =  \ t l i { i  =  k ' (8 .20)
tu  otherwise.

Thus the Arth principal component is along the Arth eigenvector, as claimed. Moreover 
(8.18) shows that the variance itself is equal to Xk when x  is along the Arth 
principal component direction.

One-Layer Feed-Forward Networks

O ja’s rule (8 .6) finds a unit weight vector which maximizes the mean square output 
( V 2). For zero-mean data this is just the first principal component. It would however 
be desirable to have an M -output network that extracts the first M  principal com
ponents. Sanger [1989a] and Oja [1989] have both designed one-layer feed-forward 
networks that do this. Other network architectures for principal component analysis 
will be discussed later.

The networks are linear, with the ith output Vi given by

Vi =  =  w  f t  =  £t w  j .  (8.21)
j

Note that the vectors here are iV-dimensional (i.e., in the input space); w , is the 
weight vector for the ith output. Sanger’s approach can also be extended to non
linear units [Sanger, 1989b], but we discuss only the linear case.

Sanger’s learning rule is

i
A =  t]Vi ( t j  -  Vkwkj )

fc=i
(8.22)
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and Oja’s M-unit rule is

N
A =  vVi ( t j  -  Y ,  v*w*i)  • (8‘23)

k=l

The only difference is in the upper limit of the summation. Both rules reduce to 
O ja’s 1-unit rule (8 .6 ) for the M  =  1 single output case. Sanger’s rule always reduces 
to O ja’s 1 -unit rule for the first unit i =  1, so we already know that that unit will 
find the first principal component o f the input data .2

It turns out that in both cases the w t- vectors converge to orthogonal unit 
vectors, w fw j  =  Sij. For Sanger’s rule the weight vectors become exactly the first 
M  principal component directions, in order:

w , —► ±c* (8.24)

where c* is a normalized eigenvector o f the correlation matrix C belonging to the ith 
largest eigenvalue A*; we take the eigenvalues to be in decreasing order, as in (8.19). 
For O ja’s Af-unit rule the M  weight vectors converge to span the same subspace as 
these first M  eigenvectors, but do not find the eigenvector directions themselves.

In both cases the outputs project an input vector £ onto the space o f the 
first M  principal components. Sanger’s rule is usually more useful in applications 
because it extracts the principal components individually in order, and gives a 
reproducible result (up to sign differences) on a given data set if the eigenvalues 
are nondegenerate. It performs exactly the Karhunen-Loeve transform. Different 
outputs are statistically uncorrelated and their variance decreases steadily with 
increasing i. Thus, in applications to data compression and encoding, fewer bits are 
needed for later outputs. It may be appropriate to look at the variance o f a given 
output (which is just the value o f the corresponding eigenvalue) as a measure o f 
the usefulness o f that output, perhaps taking only the first few outputs down to a 
variance cutoff.

O ja’s M -unit rule gives weight vectors which, while spanning the right subspace, 
differ individually from trial to trial. They depend on the initial conditions and on 
the particular data samples seen during learning. On average the variance of each 
output is the same; this may be useful in some applications (such as in one layer o f 
a multilayer network) where one wants to keep the information spread uniformly 
across the units. Furthermore, if any algorithm o f this sort is implemented in real 
brains, it would probably look more like Oja’s than Sanger’s: there is no obvious 
advantage for an animal in having information sorted out into individual principal 
components.

Neither of these new learning rules (8.22) and (8.23) is local. Updating weight
requires more information than is available at input j  and output i. However,

2Here, and henceforth, we consider only zero-mean data. Strictly speaking, the networks find the 
eigenvectors of the correlation matrix but the principal components are the eigenvectors of
the full covariance matrix ((£; — “ /*;))• For zero-mean data there is no difference.
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FIGURE 8.4 Network to implement Sanger’s unsupervised learning rule. Only one 
input line is shown. The weighted output V, of unit i is subtracted from the input 
before it reaches unit i +  1. Note that each weight appears twice; the two values 
must be kept equal. ^

Sanger suggested a reformulation o f his rule which does allow a local implementa
tion. We simply separate out the k =  i term in (8.22)

*—l
Awij =  T)Vi ^  Vkwkj ĵ -  ViiD.j] (8.25)

*=i

and observe that this is just the same as Oja’s 1 -unit rule for unit i except that 
the input has been replaced by ^  Vkwkj• So with inputs modified in
this way we can use O ja’s original rule, which is local. The modified inputs can be 
calculated by progressively decrementing the total inputs, as indicated in Fig. 8.4.

Theory of Sanger’s Rule *

We examine only Sanger’s rule in detail; Oja’s M -unit rule has been analyzed by 
Krogh and Hertz [1990]. Our aim is to demonstrate the result (8.24).

First let us substitute (8.21) into (8.22) and average:

*
(AWij)/r) =  ( ^ 2  Wiptptj ~  ^ 2  Wiptp YL  ] C  Wk^qWk j)

p p k= l q
i

=  WjpCpj — y ]  WfcgCpgWjpj Wkj (8.26)
p k=l pq

or * -i
(A w j)/t) =  Cw, -  ]P [w *  Cw,]w* -  [w f Cw*]wj (8.27)

fc=i
where we have separated out the k =  i term from the summation. Now let us 
proceed by mathematical induction and assume that weight vectors 1 , 2 , . . . ,  i — 1

have already found their appropriate eigenvectors, so w* =  ± c*  for k <  i. The
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first two terms on the right-hand side o f (8.27) then become the projection o f Cw, 
onto the subspace orthogonal to these i — 1 eigenvectors; recall (e.g., from the 
Gram-Schmidt orthogonalization procedure) that x  — (y Tx )y  is the projection of 
x  perpendicular to a unit vector y . Thus we have

(Awi)/rj =  (Cw ,)-1- -  [w f Cw,-]w,- (8.28)

where (Cw,-)-1- means the projection o f Cw,- into the subspace orthogonal to the 
first i — 1 eigenvectors. Note that (Cw,-)-1- is equal to Cw^- because C preserves this 
subspace.

Suppose now that w,- has a component not in this subspace. For that component 
the first term on the right-hand side of (8.28) gives nothing, and the second causes 
a decay towards zero (recall that w f  Cw, is a positive scalar). Thus w,- relaxes to
wards the subspace. But when restricted to the subspace the whole equation (8.28) 
becomes just O ja’s 1-unit rule (8 .6) for unit i, and so leads to the maximal eigenvec
tor in the subspace, which is ±c* with eigenvalue A,-. This completes the induction. 
In fact the weight vectors w,- approach their final values simultaneously, not one at 
a time, but our argument still applies to the endpoint.

Other Networks

The architectures considered so far for principal component analysis have all been 
one-layer feed-forward networks. Other networks, with more layers or with lateral 
connections, can also perform it, and may have some advantages.

We have already met the se lf-su pervised  b ack -p rop aga tion  approach, on 
page 136. A two-layer linear network with iV inputs, AT outputs, and M  <  N  hidden 
units is trained using back-propagation so that the outputs are as close as possible to 
the inputs in the training set. This forces the network to encode the A-dimensional 
data as closely as possible in the M  dimensions o f the hidden layer, and it should 
not be surprising to find that the hidden units end up projecting onto the subspace 
o f the first M  principal components. The network produces essentially the same 
result as O ja’s M-unit rule, with equal variance on average on each o f the hidden 
units. The dynamical approach to the solution is also similar, though not identical 
[Sanger, 1989a].

Another approach is to use a one-layer network, but have trainable lateral con
nections between the M  output units VJ. One architecture is shown in Fig. 8.5 
[Rubner and Tavan, 1989; Rubner and Schulten, 1990]. Note that a lateral connec
tion Uij from Vj to Vi is present only if i >  j .  The ordinary weights w,-* from the 
inputs are trained with a plain Hebbian rule (8.2), followed by renormalization o f 
each weight vector to unit length. But the lateral weights employ a n ti-H ebb ian  
learning, equivalent to a Hebb rule with negative 77:

A =  -yV iV j . (8.29)

Clearly the first output unit V\ extracts the first principal component, just as in 
O ja’s 1-unit rule and Sanger’s rule. The second unit would do the same but for its
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U31

FIGURE 8.5 A network for principal 
component analysis. The lateral Uij 
connections between the output units 
use anfo’-Hebbian learning.

lateral connection 1/21 from unit 1, which tries through (8.29) to decorrelate it with 
V\. This is very like the effect o f Sanger’s rule, and leads to the same result; the 
second unit extracts the second principal component. And so on; the network learns 
to extract the first M  principal components in order, just as in Sanger’s network. 
The lateral weights end up going to zero, but are still required to be present for 
stability against fluctuations. A very similar proposal was made by Foldiak [1989] 
using full lateral connections in the output layer; there was no i >  j  restriction.

8.4 Self-Organizing Feature Extraction
Hebbian learning has been applied in a number o f ways to producing featu re  
d etecto rs  in a network whose input is a two-dimensional pixel array or “retina.” 
Usually there is a well-defined set o f possible inputs— such as letter patterns, or 
bars at certain angles— and each output cell is expected to become most sensitive 
to one o f those inputs, with different output cells choosing different input patterns. 
There may be as many or more output units as input units; the aim is not to reduce 
the input information, but to transform it.

One can usefully define the se lectiv ity  o f a particular output Oi as [Bienenstock 
et al., 1982]

Selectivity =  1 ------------------------------------------------- (8.30)
max Oi

where the average (Oi) and the max are both taken over all the possible inputs. 
The selectivity approaches 1 if the output unit only responds appreciably to a 
single input (or a narrow range o f inputs in a continuous case), and goes to zero if 
it responds equally to all inputs.

The problem is to define an architecture and learning rule in which the outputs 
go from low initial selectivity to high final selectivity. Moreover one wants different 
output units to become optimally sensitive to different input patterns, with some 
output unit or units approximately matched to every input pattern. Finally, if the 
output units are arranged in a geometrical way such as two-dimensional array, one
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would like similar input patterns to give maximum response at nearby output units; 
this is a form o f feature mapping, which is discussed more fully in Section 9.4.

Most investigation has been with the visual cortex in mind. Experimental evi
dence shows the existence (e.g., in area 17 or V I) o f neurons that respond prefer
entially to bars or edges in a particular orientation in the visual field [Hubei and 
Wiesel, 1962]. These are largely organized into orien ta tion a l co lu m n s perpen
dicular to the cortical surface; neurons in a column respond maximally to approxi
mately the same orientation.

After the work o f Blakemore and Cooper [1970] on the imprinting o f orienta
tional preferences in kittens brought up in unusual environments, it was commonly 
thought that the whole orientational column structure is learned postnatally. Early 
models therefore employed input patterns o f lines or edges, such as might be en
countered postnatally, and showed how these could lead to orientational selectivity 
[von der Malsburg, 1973; Perez et al., 1975; Nass and Cooper, 1975; Bienenstock et 
al., 1982]. Now it is known that some orientation specificity is present prenatally, so 
such models cannot be the whole story [von der Malsburg and Cowan, 1982]. They 
may however be appropriate for later optimization and stabilization of the pattern, 
which occurs during a critical developmental period after birth.

Recently, Linsker [1986] proposed a model o f self-organization in the visual sys
tem that does not required structured input. It uses a version o f Hebbian learning in 
a layered network. His work is summarized in Linsker [1988], a paper that also treats 
principal components, maximum information, etc., and is highly recommended.

Linsker’s network resembles the visual system, with an input retina feeding on 
to a number of layers corresponding to the layers o f the visual cortex. The units 
of the network are linear and are organized into two-dimensional layers indexed 
A (input), B, C, and so on. There are feed-forward connections between layers, 
with each unit receiving inputs only from a neighborhood in the previous layer, the 
recep tiv e  field. These limited receptive fields are crucial; they let units respond 
to spatial correlations in the input or the previous layer. Figure 8.6 shows the 
arrangement.

Note that this is the first time we have encountered a multi-layer unsupervised 
learning network. Because the units are linear the final output in principle could be 
found by a network with just one linear layer— a product o f linear transformations 
is a linear transformation. But this does not apply to the unsupervised learning 
rule itself, which can benefit from multiple layers.

If a particular unit receives input from K  units numbered j  =  1,2,  . . . ,  K  its 
output O  is

K

O =  a +  Y 2 wjVj (8.31)
j =l

where Vj is either the input pattern (if the unit is in layer B) or the output o f a 
previous layer. The threshold term a could be omitted.

Linsker used a modified Hebbian learning rule

Awi =  rj(ViO +  bVi +  cO +  d) (8.32)
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Layer D

Layer C

Layer B

Layer A
FIGURE 8.6 Architecture o f Linsker’s 
multi-layer Hebbian learning network, 
showing the receptive fields o f a few 

External input units.

where b-d are parameters which may be tuned to produce various types o f behavior. 
The weights were clipped to the range w_ <  <  w+ to prevent them growing
indefinitely. Explicit clipping can be avoided through the use o f alternative rules 
such as (8.16) [Kammen and Yuille, 1988; Yuille et al., 1989]. Or, going more in the 
direction o f biological realism, a mixture o f purely excitatory (0 <  Wi <  w+) and 
purely inhibitory (w_ <  <  0) connections can be used instead, and leads to the
same results [Linsker, 1986].

Let us find the average weight change (A Wi). We assume that all the inputs Vi 
have the same mean V  and put Vi =  V  +  Then (8.32) becomes

(A  Wi) =  r i^ (V  +  Vi)Y^[a +  W j(V +  Vj)]^ +  bV +  c'*jr(a +  WjV) +  d
j 3

=  V Cij W j + A ( „ - £  ttfj)] (8.33)
j 3

where the constants A and fi are combinations of the old constants a-d  and V, and 
is the K  x K  covariance matrix (v{Vj) o f the inputs to our chosen unit. 
Equation (8.33) is the form o f the rule actually used. It is easy to verify that 

it is equivalent to the average of gradient descent learning, A  Wi =  —rjdE/dwi, on 
the cost fu n ction

E  =  - ^ w T C w + ^ ( / ' - E wi )  • (8-34)
3

In the first term, w T Cw is just the variance o f the output O, by extension o f (8.7) 
to the full covariance matrix. The second term may be regarded as a Lagrange 
multiplier or penalty term to impose the constraint wj =  I*- So Linsker’s rule

t t t t t
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tries to maximize the output variance subject to this constraint and to the clip
ping constraint w_ <  Wi <  w+. This may be compared to O ja’s rule (8 .6 ), which 
maximizes the same output variance subject to w? =  1 , and does not need a 
clipping constraint.

An equilibrium state o f Linsker’s rule will not normally have the right-hand 
side o f ( 8 .33) equal to zero, which would require ( 1 , 1 , . . . ,  1 ) to be an eigenvector o f 
C. Instead, most o f the weights Wi will be pinned at one o f their boundary values; 
either at with (Aw ) <  0 or at w+ with (Aw ) >  0. In fact all, or all but one, 
o f the weights must be at a boundary value; any weight vector with two or more 
components not at a boundary is unstable under (8.33). To prove this, suppose 
the contrary and consider a perturbation w ; =  w  +  £ away from the supposed 
equilibrium point. In particular, choose e so that Ylj =  0 (with £,• =  0 if W{ is at 
a boundary). Then (8.33) gives simply

(A e ) =  rjCe (8.35)

which causes |e| to grow, because C is positive definite even when restricted to the 
non-boundary rows and columns. So the chosen point cannot be an equilibrium 
point, which proves the claim.

The most interesting aspects o f Linsker’s network arise from the spatial geom
etry o f the layers and the receptive fields. We will approach them in a moment 
by describing Linsker’s simulation results. Theoretical analysis, in detail beyond 
the level o f this book, has been provided by Kammen and Yuille [1988], Yuille et 
al. [1989], and MacKay and Miller [1990], each using slightly modified rules and 
a con tin u u m  a p p rox im a tion . In the continuum approximation the weights 
become a function w (x ,y )  or it;(r) of position in the plane. The covariance matrix 
Cij becomes a two-point correlation function C(r, s) which takes the form C (r — s) 
if there is translational invariance. A Fourier transform to wave-vector space makes 
the analysis easier. The weight patterns that arise can also be described in terms of 
a set o f functions much like those encountered in the quantum mechanics o f atoms 
(Is, 2s, 2p, etc.).

Simulation Results

Linsker first trained the connections between the input layer A and the first hid
den layer B, then the next layer o f connections from B to C, and so forth. Such 
sequential training may in general be important for teaching successively higher- 
level “concepts” to a layered unsupervised network, building gradually on elements 
learned earlier. This may require a teacher who can monitor the progress o f learning 
within the network, and selectively activate or inhibit learning at different levels 
[Silverman and Noetzel, 1988]. However in Linsker’s case the sequential approach 
was mainly for convenience; only one layer was simulated at a time, using an input 
covariance matrix calculated from the output properties o f the previous layer.

The simulations used the equations (8.33) for the average (Ait;,-), not the orig
inal learning rule (8.32) for Awi itself. Thus only the appropriate input covariance
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FIGURE 8.7 Sketch o f positive and negative connection strengths within the re
ceptive fields o f units in Linsker’s network, (a) A center-surround cell in layer C. 
(b) A bilobed orientation-selective cell in layer G. After Linsker [1986].

matrix C was needed to calculate how a particular unit would behave. Once the 
resulting connection strengths feeding a whole layer had been calculated, the 
covariance matrices for that layer could be found from those o f the preceding layer 
(giving a linear transformation o f the matrices). Then the next layer could be 
treated in the same way.

Linsker took independent random noise as input in layer A, making the covari
ance matrix proportional to the identity matrix, the same for every site in layer B. 
The resulting weights from layer A  to layer B depend on the parameters A and /i, 
and on the size o f the receptive fields. For a range o f these parameters it was found 
that all the weights saturated to w+ , so the units in layer B simply averaged the 
input activity over their receptive fields. This made the B-units highly correlated 
because their receptive fields overlapped one another; a high activity in one o f B i ’s 
inputs would typically be seen also by many o f B i ’s neighbors.

As a result o f this neighbor correlation in B, the units o f layer C developed into 
cen ter-su rrou n d  cells. They responded maximally either to a bright spot in the 
center o f their receptive field surrounded by a dark area or to a dark spot on a bright 
background. In the quantum mechanical analogy this is a “2s” function [MacKay 
and Miller, 1990]. Figure 8.7(a) illustrates the pattern o f connection strengths found 
for one such unit; since most connections are pinned at either w_ or w+ we show 
their values simply by - f ’s and —’s.

Different units o f layer C had a Mexican hat covariance function; nearby units 
were positively correlated while further away there was a ring o f negative correla
tion. Note that this is a correlation that has evolved through learning, not imposed 
by the terms o f the model. Using the parameter values chosen by Linsker, this cor
relation gave rise in the following few layers (D -F ) to center-surround units with 
sharper and sharper Mexican hat correlations; the negative trough became deeper 
and deeper.

For layer G Linsker changed the parameters, increasing the radius o f the re
ceptive field. This produced a variety o f possible weight patterns, depending on the
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parameters, many o f which were no longer circularly symmetric. Units were found 
with alternating bands o f positive and negative connections, or with two or three 
islands o f inhibition around the center o f an otherwise excitatory field; Fig. 8.7(b) 
shows such a “bilobed” unit. These units had thus indeed become orien ta tion - 
se lective  cells, responding maximally for example to a bright edge or bar in a 
particular orientation against a dark background.

The emergence o f orientationally asymmetric units in a system with symmetric 
architecture and parameters is a b rok en  sy m m etry  phenomenon, and has been 
examined in those terms by Kammen and Yuille [1988]. The orientation selected by 
a given unit is rather arbitrary and varies from unit to unit.

Up to now we have needed no lateral connections within each layer. But now 
they can help us to obtain a smooth variation o f orientational preference across 
the output layer. The addition o f local excitatory connections within layer G—  
local lateral excitation— was found to produce banded patterns o f approximately 
co-oriented cells, strikingly similar to some patterns o f orientational columns found 
biologically [Linsker, 1986]. This is an example o f feature mapping, which will be 
discussed in greater detail in the following chapter. Alternatively, lateral inhibitory 
connections between pairs o f neighboring units can give rise to “quadrature pairs” 
o f cells with spatial receptive field patterns that are approximately 90° out o f phase 
[Yuille et al., 1989].

In the mammalian visual system center-surround cells are found as early as 
in the retina itself, and orientation-selective cells (including quadrature pairs) are 
found in the visual cortex. Considering the complexity of the visual system, in
cluding feedback and nonlinearity, it is remarkable that such a simple model can 
develop a similar structure. O f course this should not be taken to imply that fea
ture detecting cells in retina and visual cortex develop just as in the model; there 
are many alternative ideas as to how it might occur [see e.g., Rose and Dobson, 
1985]. However it does show that relatively simple mechanisms o f Hebbian learn
ing could produce such structures, without either visual input or detailed genetic 
programming.
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Unsupervised Competitive Learning_____

In the preceding chapter we studied unsupervised learning approaches— all based 
on Hebbian learning— in which multiple output units are often active together. We 
now turn to co m p e tit iv e  learn in g  in which only one output unit, or only one 
per group, is on at a time. The output units compete for being the one to fire, and 
are therefore often called w in ner-tak e-a ll units. They are also sometimes called 
g ra n d m oth er  cells (cf. page 143).

The aim o f such networks is to c lu ster or ca tegorize  the input data. Similar 
inputs should be classified as being in the same category, and so should fire the same 
output unit. The classes must be found by the network itself from the correlations 
o f the input data; in the language o f statistics we must deal with unlabelled data.

Categorization has obvious uses for any artificially intelligent machine trying 
to understand its world. More immediately, it can be used for data encoding and 
compression through v e c to r  quantization , in which an input data vector is re
placed by the index of the output unit that it fires. It also has applications to 
function approximation, image processing, statistical analysis, and combinatorial 
optimization.

It is worth mentioning at the outset that grandmother-cell representations have 
some rather generic disadvantages over distributed representations [Caudill, 1989]:

■ They need one output cell (and associated connections) for every category in
volved. Thus N  units can represent only TV categories, compared to 2N for a 
binary code. Actually K-o\it-of-N  codes may prove best for network computa
tion, but are not yet well understood or exploited [Hecht-Nielsen, 1987a].

■ They are not robust to degradation or failure. If one output unit fails, then 
we lose that whole category. O f course the same sort o f problem arises in 
most digital circuitry, but we have come to expect better o f neural networks.

217
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FIGURE 9.1 A simple com
petitive learning network.
The connections shown with 

y y y y y open arrows are inhibitory;
^2 ^3 ^4 ^5 the rest are excitatory.

■ They cannot represent hierarchical knowledge. Two input patterns are either 
lumped together or not; there is no way to have categories within categories. 
Adding further layers to a network clearly does not help unless we relax the 
single-winner condition.

A closely related topic is fea tu re  m appin g , which we discuss in Sections 9.4- 
9.6. Feature mapping is distinguished by the development o f significant spatial 
organization in the output layer, whereas in simple competitive learning there is no 
particular geometrical relationship between the output units. Nevertheless the his
tory and concepts o f the two ideas are closely intertwined. Indeed, because feature 
mapping is so closely associated with the name o f Kohonen, even simple compet
itive learning units are sometimes called Kohonen units. A history o f either field 
should include the seminal work o f Rosenblatt [1962], von der Malsburg [1973], 
Fukushima [1975, 1980], Grossberg [1976a, b], Kohonen [1982], and Rumelhart and 
Zipser [1985].

9.1 Simple Competitive Learning
In the simplest competitive learning networks there is a single layer o f output 
units O,*, each fully connected to a set o f inputs via excitatory connections 

>  0. Figure 9.1 shows the architecture. We consider mainly binary 0/1 inputs 
and outputs. Only one o f the output units, called the w inner, can fire at a time. 
The winner is normally the unit with the largest net input

hi =  =  W i £ (9.1)
i

for the current input vector £. Thus

w t* • £ >  Wi • £ (for all i) (9.2)
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defines the winning unit i* with O i- =  1. If the weights for each unit are normalized, 
so that (say) |w, | =  1  for all i, then (9 .2 ) is equivalent to

| w , - - £ | < | w ,  -* |  (for a lii) . (9.3)

This says that the winner is the unit with normalized weight vector w closest to 
the input vector £.

It does not much matter how the winner-take-all character o f the output is 
implemented. In a computer simulation one can merely search for the maximum 
h{. In a real network it is possible to implement a set o f winner-take-all units 
with lateral in h ib ition ; each unit inhibits the others, as shown in Fig. 9.1. A 
self-excitatory connection is also required, and the lateral weights and nonlinear 
activation function must be chosen correctly to ensure that only one output is 
chosen and that oscillation is avoided. For details see Grossberg [1976a, 1980]. 
Other schemes for winner-take-all networks have been proposed by Feldman and 
Ballard [1982], Lippmann [1987], and Winters and Rose [1989].

A winner-take-all network implements a pattern classifier using the criterion
(9.2) or (9.3). The problem now is how to get it to find clusters in the input data 
and choose the weight vectors w,- accordingly.

We start with small random values for the weights; it is important that any 
symmetry be broken. Then a set o f input patterns £** is applied to the network in 
turn or in random order. Alternatively the inputs might be drawn independently 
from a distribution P (£ ). For each input we find the winner i* among the outputs 
and then update the weights Wi*j for  the winning unit only to make the w t* vector 
closer to the current input vector This makes the winning unit more likely to
win on that input in the future. The most obvious way to do this would be

A Wi.j =  ritf (9.4)

but this is no good by itself because it makes the weights grow without bound, and 
one unit comes to dominate the competition for all inputs.

One way to correct (9.4) is to follow it with a normalization step =  awi*j 
(for all j ), choosing a  so that =  1 or (w -^ )2 =  1 (i.e., |w{.| =  1). It is
easy to show that the first o f these choices corresponds to an overall rule

A  Wi.j =  tj' -  W f.j) (9.5)

in which the first term is a normalized version o f the input.
Another solution, which we will henceforth refer to as the stan dard  co m p e t 

itiv e  learn ing rule, is to use

A  Wi.j =  -  Wi.j) (9.6)

which moves w,* directly towards O f course (9.6) is equivalent to (9.5) if the
input is already normalized, and indeed (9.6) works best for pre-normalized inputs.
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FIGURE 9.2 Competitive learning. The dots represent the input vectors, the 
crosses represent the weights for each o f three units, (a) Before learning, (b) After 
learning.

Grossberg [1976a] shows how to normalize the input appropriately using an extra 
input layer o f units.

Note that these learning rules are for the winner only. Because Oi* =  1 and 
Oi =  0 for i ^  i* by definition o f the winner, we can write (9.6) in the form

A =  r)Oi(Cj ~  Wij) (9.7)

which is valid for all i and looks more like a Hebb rule with a decay term. In fact 
it is identical to Sanger’s rule (8.22) and to O ja’s M-unit rule (8.23) when they 
are specialized to the single winner case. It is also an appropriate generalization o f 
competitive learning for multiple continuous-valued winners [Grossberg, 1976a].

A geometric analogy is very useful for understanding the consequences of com
petitive learning rules. Consider a case with 3 inputs so that each input pattern is 
a three-dimensional vector £** =  (£f >£3 )* For binary this vector lies on one
o f the vertices of a cube, but in this low dimension it is more convenient to think in 
terms o f continuous variables. We can represent the direction o f each £** by a point 
on the surface o f a unit sphere, as shown by the dots in Fig. 9.2. The direction o f 
the weight vector w* =  (w u, w,*2 , ^*3) for each output unit i also corresponds to a 
point on the same sphere; the weights for 3 output units are depicted by crosses 
in the figure. These vectors are normalized to unit length (and therefore lie on the 
surface o f the sphere) if we use the |wi| =  1 normalization. Diagram (a) shows a 
possible initial state and diagram (b) a typical final state; the output units have 
each discovered a cluster o f inputs and have moved to its center o f gravity. This 
is the principal function o f a competitive learning network— it discovers clusters o f 
overlapping input vectors.

We can see how this works geometrically. First, (9.2) defines the winner for 
a given input as the output unit with the greatest value o f w ,• • £, which means 
the smallest angle 0 to the £ direction (if |w,| =  1). So the winner o f a given dot 
is the closest cross. Secondly, the winning w t- is modified by (9.5) or (9.6), which
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moves it towards the active input vector. The patterns thus compete for output 
units, continually trying to bring the nearest one closer. The final state shown in 
Fig. 9.2(b) is a stable attractor if the inputs are activated about equally often.

One problem is that units with w t- far from any input vector may never win, and 
therefore never learn. These are sometimes called dead  units. They may actually 
be desirable if the future might bring different input patterns, but otherwise can 
be prevented in several ways:

1. We can initialize the weights to samples from the input itself, thus ensuring 
that they are all in the right domain.

2. We can update the weights o f all the losers as well as those o f the winners, 
but with a much smaller 77 [Rumelhart and Zipser, 1985; see also Grossberg, 
1987b]. Then a unit that has always been losing will gradually move towards 
the average input direction until eventually it succeeds in winning a competi
tion. This has been called leaky learning.

3. If the units are arranged in a geometrical way, such as in a two-dimensional 
array, we can update the weights o f neighboring losers as well as those o f the 
winners. This is the essence o f Kohonen feature mapping, discussed in detail 
in Section 9.4.

4. We can turn the input patterns on gradually, using +  (1 — a )v , where v  is 
some constant vector to which all the weight vectors w, are initialized. As we 
turn a  up gradually from 0 to 1 the pattern vectors move away from v  and 
take weight vectors with them [Hecht-Nielsen, 1987b].

5. We can subtract a bias (or threshold) term //,• from hi in (9.1) and adjust the 
thresholds to make it easier for frequently losing units to win. Units that win 
often should raise their ^ s, while the losers should lower them [Grossberg, 
1976b; Bienenstock et al., 1982]. Stabilizing such a scheme is a little tricky, 
but can be done; indeed one can force M  output units to win 1 /M th o f the 
time on average [DeSieno, 1988]. The mechanism is sometimes called a co n 
scien ce ; frequent winners are supposed to feel guilty and so reduce their win
ning rate.

6 . We can smear the pattern vectors with the addition of noise, using a distribu
tion with a long tail so that there is some positive probability for q»ny £ [Szu, 
1986; Hueter, 1988].

Cost Functions and Convergence

It would be nice to prove that competitive learning converges to the “best” solution 
o f a given problem. But the best solution o f a general clustering problem is not very 
clearly defined, and there exist various different criteria in the statistics literature 
[see e.g., Krishnaiah and Kanal, 1982 or Duda and Hart, 1973]. In practice most 
authors have defined an algorithm and then looked after the fact (if at all) at what 
it optimized.
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O f most interest is the standard rule (9.6), for which there is an associated cost 
(Lyapunov) function given by [Ritter and Schulten* 1988c]

=  \ £  M tiS ? -  Wijf  =  \ j 2 \ e - w,-. I2. (9.8)
ijfi H

Here M ? is the clu ster m em b ersh ip  m a trix  which specifies whether or not input 
pattern £** activates unit i as winner:

M ? =  (  1 if (9.9)
10 otherwise.

Note that the winner i* is a function o f the input //, and of all the weights ,
in both (9.8) and (9.9). Thus the membership matrix in general will change in the
course o f learning.

Gradient descent on the cost function (9.8) yields

s p
(Awij)  =  - w ^ )  (9.10)

O W ij  ^

which is just the sum o f the standard rule (9.6) over all the patterns for which i 
is the winner.1 Thus on average (for small enough rj) the standard rule decreases
(9.8) until we reach a local minimum. This works even though (9.8) is only piecewise 
differentiable.

This result is, however, somewhat deceptive for two reasons. Firstly, there are 
typically very many local minima, corresponding to different clusterings of the 
data. Nevertheless the cost function does let us rank different clusterings in order 
o f desirability, regarding lower cost ones as better. Stochastic noise (e.g., from the 
input presentation order) may be able like simulated annealing to kick us out o f 
the higher minima and towards progressively lower ones, but there is no guarantee 
o f finding the global minimum.

Secondly, we have averaged across the different patterns. We could actually 
use (9.10) directly, and update in b a tch  m o d e  by accumulating the changes A  
given by each o f a finite set o f patterns £** before actually updating the weights. 
Then our argument would be watertight and we would necessarily reach a stable 
equilibrium (though still only a local minimum). In fact that procedure corresponds 
exactly to the classical k -m eans clu sterin g  algorithm [e.g., Krishnaiah and Kanal, 
1982]. But with incremental updates— after each pattern \i— continuing changes in 
the i*(n) classification can occur. With a regular cyclic presentation o f patterns 
one can even produce examples in which the winners are permuted in every cy
cle [Grossberg, 1976a]. These problems can be reduced to some extent by doing 
the weight adjustments with “momentum” as in (6.24), effectively performing a

1 We assume that the patterns are weighted equally. In general a probability P ** could be inserted 
into (9.8) and (9.10).
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weighted moving average over a set o f recent patterns that resulted in the same 
winner.

Only in the case o f sufficiently sparse patterns can one prove stability and 
convergence theorems for incremental updating [Grossberg, 1987b, and references 
therein]. The patterns are sparse enough if, for example, we can find a set of clusters 
so that the minimum overlap £** • within a cluster exceeds the maximum overlap 
between that cluster and any other.

In practice, both to prove theorems (using e.g., stochastic approximation meth
ods) and to classify real data, it helps to decrease the learning rate 77 during learn
ing. An initial large value encourages wide exploration, while later on a smaller 
value suppresses further winner changes and allows refinement of the weights. It is 
common to use either 77(f) =  r)ot~a (with a  <  1 ) or 77(f) =  7 7 0 ( 1 — ext).

It is possible to start with a cost function and derive a learning rule from it, as 
we have seen elsewhere. An interesting example was suggested by Bachmann et al. 
[1987] who replaced the quadratic form in (9.8) by a different power law:

(9-n )
ijf*

They also let the winning weight vector be repelled by input vectors in other clus
ters, in addition to being attracted by those in its own cluster, taking

Q f =  2 A f / * - l .  (9.12)

For p =  N  — 2 the motion2 o f the weight vectors in the JV-dimensional input space 
is like that o f electrostatic point charges attracted toward stationary charges fixed 
at the s o f the winning cluster, and repelled by charges at other s. This kind 
o f model is therefore called a C ou lom b  en ergy  netw ork  [Scofield, 1988].

9.2 Examples and Applications of Competitive Learning

Graph Bipartitioning

As a simple illustration of competitive learning we consider the graph bipartitioning 
problem defined in Section 4.3; we want to divide a given graph into two equal parts 
with as few links as possible between the parts. Let us have one binary 0/1 input 
for each vertex o f the graph and two output units, one to indicate each partition. 
Then, after the problem has been solved, we should be able to turn on one vertex 
and have the output tell us the partition to which it belongs.

2As in almost all the physical analogies in this book, the motion we think of here is overdamped; 
we should imagine it as taking place in a very viscous fluid.
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(a)

FIGURE 9.3 Application o f competitive learning to graph bipartitioning. There 
are two output units, L and R, and one input for each vertex. Vertices are shown 
solid if L wins when that vertex is on alone (monopole stimulus), and open if R 
wins. Edges are shown heavy if L wins when the vertices at both ends are both 
on (dipole stimulus), and light if R  wins. After Rumelhart and Zipser [1985].

How can we hope to produce such a network? Clearly we have to tell it about 
the edges o f the graph. A good way to do this is to represent each edge by a d ip o le  
stim ulus in which the two vertices belonging to the edge are turned on together. 
If we use this set o f patterns (one for each edge) as our input data f  j4, the network 
should learn to divide them into two roughly equal halves with minimum overlap. 
This does not quite correspond to the graph bipartitioning problem, for which we 
want equal numbers o f vertices in each partition, not necessarily equal number o f 
edges. However, it is often close enough to be interesting, and serves as a useful 
illustration [McClelland and Rumelhart, 1988].

Figure 9.3 shows two examples. In (a) the graph is a regular grid, examined in 
detail by Rumelhart and Zipser [1985] using the rule (9.5). The figure shows a typical 
result after learning, indicating which o f the two output units fires in response to 
monopole stimuli (one vertex) and to dipole stimuli (two vertices on one edge). The 
network has found one o f the two optimum solutions to the bipartitioning problem, 
and has divided the dipole stimuli roughly equally. However, it sometimes finds 
a solution which divides the graph diagonally, which is far from optimal for the 
bipartitioning problem.

In (b) we show the result o f applying the rule (9.6) to the bipartitioning problem 
o f Fig. 4.6. We accumulated the changes A  Wij for each o f the 28 dipole stimuli 
(edges) before actually updating the weights. Starting the weights from uniform 
random values in the range [0,1] we found convergence to an optimum solution in 
approximately 30% o f our trials, using rj =  0.1. Convergence usually occurred within 
10 weight updates. The typical solution shown has not only solved the bipartitioning 
problem for the vertices, but has also divided the edges exactly in two.
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FIGURE 9.4 Voronoi tessellation. The space is 
divided into polyhedral regions according to 
which o f the prototype vectors (dots) is clos
est. The boundaries are perpendicular bisector 
planes o f lines joining pairs o f neighboring pro
totype vectors.

Vector Quantization

Probably the most important application o f competitive learning is v e c to r  quan
tiza tion  for data compression. Vector quantization is used both for storage and for 
transmission o f speech and image data. Gray [1984] and Nasrabadi and King [1988] 
provide reviews o f the general problem and of traditional algorithms.

The idea is to categorize a given set or distribution o f input vectors £** into 
M  classes, and then represent any vector just by the class into which it falls. The 
vector components are usually continuous-valued. We can just transmit or store 
the index o f the appropriate class, rather than the input vector itself, once a set of 
classes, or a co d e b o o k , has been agreed on. Normally the classes are defined by a 
set o f M  p r o to ty p e  vectors , and we find the class of a given input by finding the 
nearest prototype vector using the ordinary (Euclidean) metric. This divides up the 
input space into a V o ro n o i tessellation  (or D irich let tessellation ), illustrated 
in Fig. 9.4

The translation to a competitive learning network is immediate. When an input 
vector is applied at the network input, the winning output tells us the appropriate 
class. The weight vectors w,* are the prototype vectors, and we find the winner using
(9.3):

lw »* -  £| <  |wi -  £| (for all t). (9.13)

Note that this is not equivalent to maximizing w,- • £ unless the weight vectors are 
normalized.

We can find an appropriate set o f prototype vectors (i.e., weights) with the 
standard competitive learning algorithm (9.6). When exposed to sample data the 
weights change to divide up the input space into Voronoi polyhedra containing 
roughly equal numbers o f sample points; they provide a discretized map o f the 
input probability P (£ ). After training we can freeze the weights to establish a 
static codebook.

Figure 9.5 shows two simple examples. In each case we defined a probability 
distribution P (£ ) for the two-dimensional input vectors £ =  (£ r ,fy). In (a) the two 
output units correctly classified the input into its two clusters. For the L-shaped 
distribution in (b) the 10 units always divided up the input distribution fairly evenly. 
More input samples gave a more precise division, symmetric about the diagonal.

In practical applications for data compression it is essential to add additional 
mechanisms to avoid dead units and to ensure an equitable distribution o f units in 
the pattern space. This has been done using Kohonen feature mapping [Nasrabadi 
and Feng, 1988; Naylor and Li, 1988] and by the use o f a conscience mechanism
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FIGURE 9.5 Examples o f vector quantization. In each case the 1000 dots are sam
ples from an input probability distribution. The black squares show the weight 
vectors o f each unit after training on these data. A unit wins the competition 
when its weight vector is closest to the input vector, so the weight vectors shown 
define a Voronoi tessellation o f the plane.

[Ahalt et al., 1990]. The conscience mechanism appears best, and produces near- 
optimal results.

Kohonen [1989] has also suggested a supervised version o f vector quantization 
called learn in g  v e c to r  quan tiza tion  (LVQ). In a supervised case the classes are 
predefined and we have a body of labelled sample data; each sample input vector 
£ is tagged with its correct class. We may usefully have several prototype vectors 
per class. The winning rule (9.13) is unmodified but the update rule depends on 
whether the class o f the winner is correct or incorrect:

_  f  +T)({j ~  Wi.j) if class is correct;
~~ “ f?(£j* — Wi*j) if class is incorrect. ^

In the first case the rule is the standard one, but in the second case the weight vector
is moved in the opposite direction, away from the sample vector. This minimizes
the number of misclassifi cat ions.

An improved algorithm called LVQ2, closer in effect to Bayes decision theory, 
has also been suggested by Kohonen [1989]. The learning rule is only applied if:

1. the input vector £ is misclassified by the winning unit i*;
2. the next-nearest neighbor %' has the correct class; and
3. the input vector £ is sufficiently close to the decision boundary (perpendicu

lar bisector plane) between w,* and w ,/.
Then both w,* and w,-/ are updated, using the incorrect and correct cases o f (9.14) 
respectively. This rule has shown excellent performance in studies on statistical and 
speech data [Kohonen et al., 1988].
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FIGURE 9.6 The horizontal/vertical line problem o f Rumelhart and Zipser [1985]. 
(a) Architecture o f the network. Not shown are teacher inputs nor connections; 
each layer is fully connected to the next. The input layer is a 6 x 6 pixel array on 
which line stimuli are presented. The intermediate layer has two groups o f four 
winner-take-all units. The output layer has two winner-take-all units, signalling 
horizontal or vertical input lines, (b) Typical sensitivity o f the four units in one 
intermediate layer group; one fires for each o f the 12 line stimuli.

Multi-Layer Networks

Our competitive learning models so far have had a single layer in which exactly 
one unit wins for each input pattern. To generalize this to a multi-layer network 
we need to allow several winners per layer so that there are interesting patterns for 
subsequent layers to analyze. In this way we can hope to detect successively higher 
order patterns in the data.

One approach is to divide up each layer into groups, in each o f which one 
unit wins [Rumelhart and Zipser, 1985]. Even if the groups in a given layer are 
structurally identical, they may well cluster the data in different ways (starting 
from random connection strengths) and hence add to the available information.

As an example, consider the horizontal/vertical line problem studied by Rumel
hart and Zipser [1985]. The inputs are arranged in a 6 x 6 array that is fully con
nected to the remaining network (which therefore has no architectural information 
about the two-dimensional layout). Input stimuli consist o f excitation o f a whole 
horizontal or vertical line o f the inputs. We want to have a pair o f output units 
which learn to fire on horizontal and vertical lines respectively.

W ith a single output layer this task is impossible. If the desired vertical feature 
detector is to win for any o f the 6 vertical lines, by symmetry it will have equal 
weight from each o f the 6 inputs in each o f the 6 vertical lines. But this is all 36 
units! Even with a teacher it cannot work.

The simplest architecture that did work required two layers, and is shown in 
Figure 9.6(a). An extra teaching input was needed initially to say whether the line



228 NINE Unsupervised Competitive Learning

was horizontal or vertical, but could be omitted after training. In each group o f 
the intermediate layer the four units learn to respond to three vertical, or three 
horizontal lines. The output layer learns the correlations between the two groups in 
the intermediate layer, which normally leads to discrimination between horizontal 
and vertical input lines. This fails if both groups in the intermediate layer happen 
to divide up the lines (6 —► 3 +  3) in the same way, but this is rare and could be 
cured using more than two groups.

Another approach to multi-layer architecture is to impose mutual inhibition 
between units only when they are within a certain distance d o f  each other (we 
assume that the units are arranged geometrically, usually within a two-dimensional 
layer). Then no two units within d can fire together, though further units may. 
Each unit has a v ic in ity  area  o f radius d which is its local group, but groups can 
overlap. This is perhaps more appropriate for biological modelling than the discrete 
groups considered above.

Fukushima [1975, 1980] employed this idea in his multi-layer unsupervised 
learning networks called the cog n itron  and n e o co g n itro n .3 Up to eight layers 
were used, with a very specific architecture o f interconnections between layers, us
ing limited receptive fields and different functional groups. The network was able 
to learn to differentiate different letters (presented as patterns on a 16 x 16 pixel 
array) even with the imposition of considerable translation, scaling, or distortion.

9.3 Adaptive Resonance Theory
As noted earlier (page 222), there is no guarantee of stability o f the categories 
formed by by competitive learning. Even if we continue to present a finite fixed 
sequence o f patterns, the category (i.e., winning unit) o f a particular pattern may 
continue changing endlessly. One way of preventing this is to reduce the learning 
rate rj gradually to zero, thus freezing the learned categories. But then the network 
loses its plasticity, or ability to react to any new data. It is not easy to have both 
stability and plasticity; this is Grossberg’s stab ility -p lastic ity  d ilem m a.

To make a real-time learning system that can exist and continue adapting in 
a nonstationary world we must clearly deal with this dilemma. But there is also 
another related stability issue: how many output units should we utilize? If we 
keep that number fixed and avoid dead units, then enforcing long-term stability o f 
the learned categories means that there will be no units available for new patterns 
subsequently encountered. On the other hand, if we somehow have an inexhaustible 
supply o f output units we must avoid paving the input space ever more finely, since 
that is not categorization at all. A good solution would be to have a finite (or 
infinite) supply o f output units, but not use them until needed. Then at any time 
there would be some output units in use, stably detecting the known categories,

3Later versions of the neocognitron [Fukushima et al., 1983] used supervised learning.
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and some more waiting in the wings until needed. If we used up the whole supply 
we should probably stop adapting; stability should come above plasticity when we 
are at full capacity.

Carpenter and Grossberg [1987a, b, 1988] have developed networks called ART1 
and ART2 that behave in just this way. These networks overcome the stability- 
plasticity dilemma by accepting and adapting the stored prototype o f a category 
only when the input is sufficiently similar to it. “ART” stands for ada ptive  reso 
n an ce th eory ; the input and stored prototype are said to resonate when they are 
sufficiently similar. When an input pattern is not sufficiently similar to any existing 
prototype a new category is formed, with the input pattern as the prototype, using 
a previously uncommitted output unit. If there are no such uncommitted units left, 
then a novel input gives no response.

The meaning o f sufficiently similar above is dependent on a v ig ilan ce  pa 
ra m eter p, with 0 <  p <  1. If p is large the similarity condition becomes very 
stringent, so many finely divided categories are formed. On the other hand a small 
p gives a coarse categorization. The vigilance level can be changed during learning; 
increasing it can prompt subdivision o f existing categories.

ART1 is designed for binary 0 /1  inputs, whereas ART2 is for continuous-valued 
inputs. We focus exclusively on ART1, the simpler case. We suggest Moore [1988] 
for further reading, as well as Carpenter and Grossberg [1988] for an overview, and 
Carpenter and Grossberg [1987a, b] for the details of ART1 and ART2 respectively.

The ART1 algorithm

It is easiest to present ART1 as an algorithm before describing the network im
plementation. Let us take input vectors £ and stored prototype vectors w b o t h  
with TV binary 0/1 components, i indexes the output units, or categories, each of 
which can be enabled or disabled. We start with w , =  1 for all i, where 1 is the 
vector o f all ones; this will represent an uncommitted state, not a category. Then 
the algorithm upon presentation o f a new input pattern £ is as follows:

1. Enable all the output units.
2. Find the winner i* among all the enabled output units (exit if there are none 

left). The winner is defined as the one for which w, • £ is largest, where w, is 
a normalized version of w T h e  normalization is given by

w * =  (9 -15)£ + w

where Wji is the jih  component o f w,-. The small number e is included to 
break ties, selecting the longer of two w,- ’s which both have all their bits in 
£. Note that an uncommitted unit wins if there is no better choice.

3. Test whether the match between £ and w,* is good enough by computing the 
ratio

r = t f  <8i6)
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This is the fraction o f bits in £ that are also in w t* . If r >  />, where p is the 
vigilance parameter, there is resonance; go to step 4. Otherwise if r <  p the 
prototype vector w t* is rejected; disable unit i* and go back to step 2.

4. Adjust the winning vector wj* by deleting any bits in it that are not also in 
£. This is logical AND operation, and is referred to as m asking the input.

This algorithm can terminate in one o f three ways. If we find a matching pro
totype vector we adjust it (if necessary) in step 4 and output that category i*. If we 
find no suitable prototype vector from among the previous categories, then one o f 
the uncommitted vectors is selected and made equal to the input £ in step 4; again 
we output the appropriate (new) category i*. Finally, if there are no matches and 
no uncommitted vectors we end up with all units disabled, and hence no output.

It should now be clear how this algorithm solves the various problems we raised. 
It continues to have plasticity until all the output units are used up. It also has sta
bility; a detailed analysis shows that all weight changes cease after a finite number 
o f presentations of any fixed set o f inputs. This comes essentially from the fact that 
the adaptation rule, step 4, can only remove bits from the prototype vector, never 
add any. Thus a given prototype vector can never cycle back to a previous value.

Note that the loop from step 3 back to step 2 constitutes a search  through 
the prototype vectors, looking at the closest, next closest, etc., by the maximum 
w, £ criterion until one is found that satisfies the r >  p criterion. These criteria are 
different, so going further away by the first measure may actually bring us closer 
by the second. The first measure is concerned with the fraction of the bits in w, 
that are also in £, whereas r is the fraction o f the bits in £ that are also in w, . O f 
course this search is comparatively slow (and more like a conventional algorithm), 
but it only occurs before stability is reached for a given input set. After that each 
category is found on the first attempt and there is never a jump back from step 3.

Network Implementation of ART1

Carpenter and Grossberg designed the ART1 network using previously developed 
building blocks that were based on biologically reasonable assumptions. The se
lection o f a winner, the input layer, the weight changes, and the enable/disable 
mechanism can all be described by realizable circuits governed by differential equa
tions. There are at least three time scales involved: the relaxation time of the 
winner-take-all circuit; the cycling time o f the search process; and the rate of weight 
update.

We describe a simpler version, taking the winner-take-all circuit for granted 
and simplifying certain other features. Figure 9.7 shows this reduced version. There 
are two layers, with units Vj in the input layer and 0 {  in the output layer fully 
connected in both directions. The forward weights Wij are normalized copies of the 
backward weights Wji, according to (9.15). Note that the Wji are each 0 or 1, as are 
£;-, Vj, O i, A, and R.

The output layer consists of winner-take-all units; only the unit with the largest 
net input . Wij Vj among all enabled units has Oi =  1. If the “reset” signal R  is
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FIGURE 9.7 The ART1 network. The large shaded arrows represent connections 
between all pairs o f output units O, and input units Vj.

turned on while a winner is active, that unit is disabled and removed from future 
competitions. All units can be re-enabled by another signal that is not shown.

The input units Vj are designed so that

a  wjiOi
if no output Oi is on; 
otherwise (9.17)

where A means logical AND. For technical reasons, and to allow some other func
tions that we omit, this is done using an auxiliary unit A , which is on (A  =  1) 
if any input is on but no output is, and off (A  =  0) otherwise. A  could be a 0/1 
threshold unit with total input Y j  — N  Y i  Oi and threshold 0.5, as suggested by 
the connection weights shown in the figure. The input units receive total input

hj — €j +  ^ 2  +  A (9.18)

and fire (Vj =  1) if this exceeds a threshold o f 1.5. This is equivalent to (9.17), and 
is referred to as the 2 /3  rule; two out o f its three inputs Y i  wjiO i , and A  must 
be on for a unit Vj to fire.

The disabling or “reset” signal is generated when r from (9.16) is less than p. 
This can be accomplished with a 0 /1 threshold unit R  that receives input p Y j  — 
Y^j Vj and has threshold 0, as shown by the connection weights in the figure.

Finally the backward weights are updated slowly according to

=  vOi(Vj -  wji) (9.19)
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so that the prototype vector for the winner i* becomes equal to the masked 
input Vj after resonance has occurred. The forward weights have a slightly more 
complicated learning rule which leads to a similar, but normalized, result.

Given the details that we have omitted, this network runs entirely autonomously. 
It does not need any external sequencing or control signals, and can cope stably 
with an infinite stream of input data. It has fast access o f well-known categories, 
automatic search for less-known categories, creation o f new categories when nec
essary, and refusal to respond to unknown inputs when its capacity is exhausted. 
And its architecture is entirely parallel.

In practice ART1 networks are somewhat tricky to adjust, and are very sensitive 
to noise in the input data. If random bits are sometimes missing from the input 
patterns, then the stored prototype vectors can be gradually degraded by the one
way masking form o f the adaptation rule. ART1 networks are also rather inefficient 
in their storage requirements; we need one unit and 2N  modifiable connections 
for each category, and many fixed connections for the A  unit, R  unit, and lateral 
inhibition. They also share the limitations o f a grandmothering approach common 
to most competitive learning schemes (see page 217). Some o f these problems are 
solved in the ART2 network.

9.4 Feature Mapping
Up to now we have paid little attention to the geometrical arrangement o f our 
competitive output units. If however we place them in a line or a plane, we may 
consider networks in which the location o f the winning output unit conveys some 
information, with nearby outputs corresponding to nearby input patterns. If £* and 
£2 are two input vectors, and r 1 and r2 are the locations o f the corresponding 
winning outputs, then r 1 and r 2 should get closer and closer, eventually coinciding, 
as £* and £2 are made more and more similar. Additionally we should not find 
r 1 =  r2 unless the patterns £* and £2 are similar. A network that performs such a 
mapping is called a featu re  m ap.

Technically what we are asking for is a to p o lo g y  preserv in g  m ap  from the 
space o f possible inputs to the line or plane of the output units. A topology pre
serving map, or to p o g ra p h ic  m ap, is essentially a mapping that preserves neigh
borhood relations. The idea may seem almost trivial, but it is not. This is best 
seen by realizing that such a map is not necessarily possible between a given pair 
o f spaces. For example we cannot map a circle onto a line without a discontinuity 
somewhere.

We have not yet specified the nature o f the inputs, beyond assuming a well- 
defined distance (metric) between pairs of input patterns. There are actually two 
cases commonly considered, as exemplified by the two architectures o f Fig. 9.8. 
In both cases there is a geometrical array o f outputs, which we show as two- 
dimensional, but the form o f the inputs is quite different.
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FIGURE 9.8 Two types o f feature mapping architecture, (a) is the conventional 
one, with continuous-valued inputs £i, £2- 0>) ls ° f  biological interest in mapping 
from, e.g., retina to cortex. Layers are fully connected, though only a few connec
tions are shown.

In the first case there are a few continuous-valued inputs, such as £1 and £2 

shown in Fig. 9.8(a). We expect a map onto the output space (ar, y) from the two- 
dimensional region o f (£ i,£ 2) space in which inputs occur; this might or might not 
be a square domain. Another natural situation in this class would be a single input 
£1 mapped to a linear array (line) o f outputs. We could also have, for instance, 
three inputs £ i~£3 mapped topologically onto a two-dimensional plane if the actual 
input patterns all fell into a two-dimensional subspace o f the three-dimensional £ 
space.

The second case, Fig. 9.8(b), is studied less often but has more biological im
portance. The inputs £,j themselves are arranged in a two-dimensional array that 
defines the input space (i, j ) .  In the simplest case the input patterns have only one 
input turned on at a time, thus defining a single point in this space. The problem 
is to learn a continuous mapping from ( i , j )  onto (x ,y ), roughly between points 
“above” one another in the two spaces. The significance o f the problem is the fre
quent occurrence o f such topologically correct mappings in the brain, including 
connections from the sense organs (eye, ear, skin) to the cortex, and connections 
between different areas o f the cortex. The re t in o to p ic  m ap  from the retina to 
the visual cortex (in higher vertebrates) or optic tectum (in lower vertebrates) is 
the most studied example o f a two-dimensional map, though the som atosen sory  
m ap  from the skin onto the somatosensory cortex (where there is an image o f the 
body surface) is also important. The to n o to p ic  m ap  from the ear onto the audi
tory cortex forms a one-dimensional example, with sounds o f different frequencies 
laid out in order on the cortex. In each of these cases it is not very likely that the 
axon routes and synapses are entirely preprogrammed or hardwired by the genes, 
so one needs a mechanism of creating the appropriate topographic maps during de
velopment. Unsupervised learning is one approach (among several) to solving this 
problem by softwiring.
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FIGURE 9.9 The “Mexican 
hat” form o f lateral connec
tion weights.

There are a number o f ways to design an unsupervised learning network that 
self-organizes into a feature map:

1. For the second case just described, limited receptive fields for the output 
layer can be put in by hand. Unsupervised learning can then refine the map
ping, as we saw in Linsker’s model o f orientational selectivity (page 211). 
However this begs the question for the softwiring problem itself.

2. We can use ordinary competitive learning with the addition o f lateral con
nections within the output layer. These need to have the Mexican hat form, 
excitatory between nearby units and inhibitory at longer range, with strength 
falling off with distance, as in Fig. 9.9. Thus neighboring units gain neighbor
ing responses, while units further away find select different patterns.

3. We can use ordinary competitive learning, but update weights going to the 
neighbors o f  the winning unit as well as those o f the winning unit itself. This 
is K o h o n e n ’ s a lgorithm .

We briefly discuss two examples o f (2), and then focus on (3).

Willshaw and von der Malsburg’s Model

An early model using lateral connections was proposed by Willshaw and von der 
Malsburg [1976] for the retinotopic map problem. They used the architecture o f 
Fig. 9.8(b), but added lateral connections o f Mexican hat form within the output 
layer. Their output units were not strictly winner-take-all, though a threshold en
sured that only a few fired at a time. For learning they employed a plain Hebbian 
rule followed by renormalization o f the weights.

To train their network Willshaw and von der Malsburg used d ip o le  stim uli 
with two adjacent inputs turned on. Learning then converged on an ordered to
pographic map, such as that shown in Fig. 9.10. Note that this is a diagram of 
the output weights plotted in the input space. Specifically each output unit Oi is 
represented by the intersection between lines that connect it to its neighbors, and 
is plotted at the point WikT*> where *k is the location of input £* in the input 
space. This gives the center o f mass o f the effective receptive field of unit Ot.

The mapping could converge on any of eight possible orientations; corners 
ABCD o f the input array might map, for instance, onto BADC of the output. 
In order to select a particular orientation (as found biologically), Willshaw and von 
der Malsburg chose four of the inputs to be p o la rity  m arkers, with initial strong
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FIGURE 9.10 A mapping between two 6 x 6  arrays 
produced by Willshaw and von der Malsburg’s net
work. The outer square represents the input array 
and the locations o f the line intersections represent 
the output weights. The polarity markers are labelled 
a-d.

connections to the correct places in the output array. The polarity markers acted 
as nucleation regions to break the initial symmetry. Another approach would be to 
pin certain units at the boundary o f the desired mapping [Cottrell and Fort, 1986].

Amari [1980] and Takeuchi and Amari [1979] analyzed a modified version of 
Willshaw and von der Malsburg’s model using continuous one-dimensional lines for 
both input and output. They found that a correct feature map will form provided 
the width o f the Mexican hat function is large enough compared to the width o f 
typical input patterns. If this condition is not satisfied they find that the mapping 
develops discontinuous jumps.

It is not now believed that this unsupervised learning mechanism is solely re
sponsible for the retinotopic maps found biologically. In particular it cannot repro
duce the experimental phenomena o f regeneration after damage. Current theories 
involve some degree o f chem oaffin ity , in which growing axons carry chemical 
markers that help to define appropriate target sites. However a degree o f soft wiring 
by unsupervised learning is often invoked to refine the map.

von der Malsburg’s Model for Orientation Column Formation

Somewhat earlier, von der Malsburg [1973] used a very similar scheme to model the 
formation o f the orientation columns in the visual cortex described in Section 8.4. 
There is no longer a simple mapping between position in the input space and posi
tion in the output layer. Instead, a mapping develops from the angle o f orientation 
o f an input object to position in the output layer. The preferred orientation of the 
output units changes smoothly (with occasional breaks) across the array, as found 
in nature.

It is important to notice that the network itself is not essentially different from 
the one which makes the position-to-position map; the difference lies in the set o f 
input images it is trained on. Whereas the Willshaw-von der Malsburg model used 
spatially localized dipole patterns, the von der Malsburg orientation column model 
used elongated bar-like patterns, always centered at the middle o f the image and 
presented in various orientations. The very different results illustrate dramatically 
the influence o f experience on the properties o f neural networks.
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Kohonen’s Algorithm

Kohonen’s algorithm takes a computational shortcut to achieve the effect accom
plished by the Mexican hat lateral interactions. There are no lateral connections, 
but the weight update rule is modified to involve neighborhood relations in the 
output array.

The algorithm is normally applied to the architecture o f Fig. 9.8(a). Thus there 
are AT continuous-valued inputs, £1 to £/v, defining a point £ in an N-dimensional 
real space. The output units O,* are arranged in an array (generally one- or two- 
dimensional), and are fully connected via to the inputs. A competitive learning 
rule is used, choosing the winner i* as the output unit with weight vector closest 
to the current input

lw «* — £ I <  lw * — £ I (for all i). (9.20)

As remarked before, this cannot be done by a linear network unless the weights are 
normalized, but the algorithm is generally used computationally rather than with 
an actual network.

Thus far we have exactly the same design as for e.g., vector quantization. The 
difference is in the learning rule, which is [Kohonen, 1982, 1989]

A =  rjA(i, -  wfj) (9.21)

for all i and j .  The n e ig h b o rh o o d  fu n ction  A(i, i*) is 1 for i =  i* and falls off 
with distance |r,* — r,-* | between units i and i* in the output array. Thus units close 
to the winner, as well as the winner i* itself, have their weights changed appreciably, 
while those further away, where A(i, i*) is small, experience little effect. It is here 
that the topological information is supplied; nearby units receive similar updates 
and thus end up responding to nearby input patterns.

The rule (9.21) drags the weight vector w t* belonging to the winner towards £. 
But it also drags the w^’s o f the closest units along with it. Therefore we can think 
o f a sort o f e lastic  net in input space that wants to come as close as possible to 
the inputs; the net has the topology o f the output array (i.e., a line or a plane) and 
the points o f the net have the weights as coordinates. This picture is particularly 
useful to keep in mind when interpreting Figs. 9.10-9.13.

To construct a practical algorithm we have to specify A(i, i*) and rj. It turns 
out to be useful (and often essential for convergence) to change these dynamically 
during learning. We start with a wide range for A(i, i*) and a large 77, and then 
reduce both the range o f A (i, i*) and the value o f 77 gradually as learning proceeds. 
This allows the network to organize its elastic net rapidly, and then refine it slowly 
with respect to the input patterns. Making 77 go to 0 eventually stops the learning 
process.

A typical choice for A (i,i* ) is

A(i, f )  =  exp(—|r< -  r,-. |2/2<r2) (9.22)
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FIGURE 9.11 Kohonen 
feature mapping from a 
square region o f the plane 
onto a 10 x 10 array o f out
put units.

where <r is a width parameter that is gradually decreased. The time dependence of 
rj(t) and a(t)  can take various forms, including 1 j t  and a — bt, though there is some 
theoretical reason to prefer rj oc t~ a with 0 <  a  <  1.

Note that (9.21) is Kohonen’s choice o f learning rule, but the same idea of 
updating the neighbors o f the winner could be incorporated into other rules too.

Examples and Applications

Figure 9.11 shows an example o f mapping 2 inputs £i and £2 onto a 10 x 10 planar 
array. Input patterns were chosen randomly (with uniform weight) from the square 
{ 0 < £ i  <  1 , 0  <  £2 <  1}> which is shown as the outer boundary in each diagram. 
The weights (w n,W i2 ) for each output unit are shown in this input space by an 
intersection in the grid o f lines, which connects all nearest neighbor pairs.

The weights were started from random values near to (0.5,0.5) as shown in 
Fig. 9.11(a). As learning progressed, indicated by the snapshots in (b )-(d ), the 
weights were pulled apart by the input patterns and organized themselves into a 
square grid. The fold seen in (c) is not uncommon and takes a long time to eliminate. 
Eventually the grid would become even more regular than in (d), filling most4 o f 
the unit square.

Note that we used a uniform probability distribution for the random input 
patterns. If the distribution had been non-uniform we would have found more grid

4 But not all: there is always a border which is not filled, with a width inversely proportional to 
the linear size of the output array [Kohonen, 1989].
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(C)

FIGURE 9.12 Kohonen feature mapping from various regions in the plane onto a 
15 x 15 array o f output units.

points o f the weight network where the probability was higher. Ideally we might 
hope that the local density o f grid points would be proportional to the input prob
ability there, but this is not quite true. Nevertheless a higher probability generally 
leads to a higher density of points.

Figure 9.12 shows three further examples o f mapping from two inputs to a 
square array. Now the input probability distribution has been chosen uniformly 
from a circle, a triangle, or an L-shape. We show only the final result o f each map. 
The square shape o f the output array has a clear effect on the result, making the 
point density somewhat non-uniform in (b) and (c), and leaving noticeable corners 
in all cases. In (c) there are four grid-points in a region with zero probability, but 
it is hard to find a better solution without clustering a lot o f points near the inside 
corner. The outlying points are pulled this way and that as their neighbors in the 
arms o f the L win in turn, but they have no stable place to go.

We can also try maps from two dimensions onto one dimension, despite the 
impossibility o f preserving all the topology. Figure 9.13 shows the development o f 
a map from a two-dimensional L shape to a one-dimensional line o f 50 output 
units. The initial weights were random in the unit square, as shown in (a). They 
evolved rather quickly to a regular curve in (b), and then gradually developed a 
finer structure to cover the space as best they could. With a larger number o f 
output units we get a good approximation to a space-filling (Peano) curve. Note 
that such a map is not entirely topology preserving; a small step in the input space 
can trigger a very different winner when we jump from one loop o f the curve to 
another; this occurs most drastically near the point x in our example.

Maps from one dimension to one dimension are also possible, and much of the 
theoretical analysis has been for this case. Figure 9.14 shows an example, with 
the weights Wi plotted directly against i. The single input £x was taken uniformly 
from the interval 0 <  £,• <  1, so we expect the output weights to become linearly 
ordered, as seen in (c). Note that there are two possible solutions, with Wi increasing 
or decreasing. Indeed, at the intermediate time shown in (b) part o f the network has 
adopted one solution and part has adopted the other. The way that this smooths 
out to produce (c) will be discussed in the next section.
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FIGURE 9.13 Kohonen fea
ture mapping from a two- 
dimensional L-shaped re
gion to a linear array o f 50 
units.

FIGURE 9.14 Kohonen feature mapping from a one-dimensional interval onto a 
linear array o f 40 units.

Applications o f feature mapping have been made in many areas, including sen
sory mapping, motor control, speech recognition, vector quantization, and com
binatorial optimization. Kohonen [1989] and Ritter and Schulten [1988c] provide 
partial reviews. We discuss combinatorial optimization separately in Section 9.6, 
and mention just a few other applications here.

In a simple example o f robot sensing, a robot arm has a number of angles 
specifying the state o f each o f its joints, and a given set of these angles corresponds 
to a point in space for the end effector. A feature mapping network can be given the 
angles as inputs, with samples taken randomly from the arm’s workspace. It will 
then develop a map o f that space, generally avoiding obstacles [Kohonen, 1989; Graf 
and LaLonde, 1988; Ritter and Schulten, 1988a]. Here a three-dimensional output
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array would clearly be appropriate. In a real application it would probably be better 
to construct an initial map theoretically, but unsupervised learning might well be 
useful for making small subsequent adjustments as conditions change or sensors 
degrade.

An interesting example o f a one-dimensional map onto one dimension was pro
vided by Kohonen [1982]. He fed single audio tones into a set o f 20 randomly tuned 
bandpass filters (or resonators), each o f which produced maximum output for its 
random center frequency. The 20 values were then used as the inputs to a network 
with a linear array o f 10 units. After training, the output units had ranked the 
original input frequencies into increasing or decreasing order— a correct tonotopic 
map. Note that this is technically a map from 20 dimensions onto one dimension, 
but the data only occupy a one-dimensional subspace o f that space. Alternatively 
it can be seen as an example o f the layer-to-layer architecture o f Fig. 9.8(b).

In an application to speech processing, Kohonen et al. [1984] used a similar set o f 
15 frequency channels as inputs with a fitw-dimensional array for the output. Then 
they took sampled Finnish speech as the input signal. The map evolved to have well- 
defined units or clusters o f units for each Finnish phoneme, with “similar” phonemes 
generally close to one another. Such a “phonotopic map” is truly a projection from 
a high-dimensional space (15 in this case) onto a two-dimensional one, and may be 
very useful for visualizing similarities and structures in the original space.

9.5 Theory of Feature Mapping
There are many theoretical questions to ask about the Kohonen feature mapping 
algorithm. Exactly what mappings does it produce? Does it always converge? Does 
it have problems with getting stuck in non-optimum states? How long does it take 
to converge? How do all these questions depend on the shape and time dependence 
o f A (i, i*) and on the value and time dependence o f 77? Are there optimum values for 
these parameters? Some o f these questions are rather hard to answer in general, and 
much of the analysis has been done only in the case of one-dimensional mappings.

Once more there is a cost function, based on an extension o f the competitive 
learning one (9.8) [Ritter and Schulten, 1988c]:

£<»«>  =  5 =  i E A f t O K ' - w . l ’ . (9-23)
ijkn in

Here M /4 is again the cluster membership matrix (9.9), equal to 1 if i =  i*{n) and 
0 otherwise. It is important to keep in mind that the winner i* depends on fi. 

Gradient descent on this cost function yields
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which is just the sum o f the Kohonen rule (9.21) over all the patterns /i. Thus on 
average (for small enough r/) the Kohonen rule decreases the cost (9.23) until we 
reach a local minimum. However, as we discussed for the competitive learning case
(page 222), this result is a little deceptive: there may be local minima, and we have
averaged over fi.

To investigate the equilibrium states we can set (A Wij) =  0 as usual, giving 

0 =  ^ A ( i >r ) ( ^ - u ; i i ) (9.25)

for all i and j .  This equation is not, however, easy to solve. In the case o f a uniform 
distribution o f £** vectors we can convince ourselves that it is satisfied by a uniform 
distribution o f w , ’s in the same space if  we ignore the boundaries. For further 
progress in the general case it is best to go to a con tin u u m  a pp rox im a tion , 
replacing (9.25) by ° = J A ( r - r * ( £ ) ) f c - w ( r ) ] P ( O d £ -  (9.26)

Here the sum over fi became f  P (£ )  d£, allowing for an arbitrary distribution o f £ 
vectors, and the index i for the output array became a position vector r. We also 
wrote A (r—r*(£ )) instead o f A (r ,r* (£ )); we would normally choose a neighborhood 
function that only depends on the distance between r and the winner r*(£).

It is possible to derive an implicit partial differential equation for the weights 
w (r) from (9.26) [Ritter and Schulten, 1986]. However, an explicit solution for 
a given P (£ ) is only known for the one-dimensional case, and for certain cases 
that factorize into a product o f one-dimensional cases. The solution for the one
dimensional case shows that the weights become regularly increasing or decreasing, 
as we saw in Fig. 9.14, with a density o f output units proportional to P (£ )2/ 3 around 
point £. An ideal representation would have density proportional to P (£) instead o f 
P (£ )2/ 3, go the Kohonen algorithm tends to undersample high probability regions 
and oversample low probability ones.

One-Dimensional Equilibrium *

A derivation o f the P (£ )2/ 3 result is interesting. We replace r by x in (9.26) and 
assume that the neighborhood function A(x — x*(£)) is fairly sharply peaked. Then 
we can expand the integrand in powers of

c =  * * ( ( ) - *  (9.27)

and ignore terms beyond £2. The relevant expansions are a little tricky:

■ A (# — £*(£)) becomes just A (—£). We assume that A is an even function, so
this is the same as A(e).
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■ £ becomes w (x*) or w (x  +  £), and thus £ — tt;(x) expands into ew' +  \e2wn.
We leave it understood that wf and wn are evaluated at point x.

m P(£) becomes P (w (x* ))  =  P (w (x  +  £)) and expands into P (w ) +  eP '(w )w f.

u d£ becomes dw(x +  e) giving w '(x  +  e) dey which expands into (w' +  ew ") de.

Putting these into (9.26) and collecting powers o f e up to e2 (dropping higher 
order terms) produces

0 =  J A(e) (ew f +  \e2wn) {P {w ) 4- e P f(w)w ') (w' +  ew ") de 

=  J A(e) (ew f2P (w )  +  e 2wf [^wffP (w ) +  w,2P '(w j\) de 

=  w '[\ w "P {w ) +  w'2P'(wj\ j A ( e ) £ 2 d£. (9.28)

The term o f order e disappeared because A(e) is even. Assuming that wf(x)  is 
nowhere zero, we must clearly have

| w "P {w )  +  w,2P '{w ) =  0 (9.29)

giving
d , , /, wn 9 P'(w )w ' 0 d , v

s log|„| =  —  =  - f - p f j j -  =  (9.30)

which shows that
K | o c P ( w ) - 2/ 3 . (9.31)

This is the result desired, because the density o f output units in w (or £) space 
is \dx/dw\ or |l/u/|. Note that there are two possible solutions, with w' always 
positive or always negative, as we have already realized.

The differential equation (9.29) can be solved for the actual weights w (x) if
we are given a particular P (£ ). For example P (£) oc £a gives ttf(x) oc x& with
13= l / ( l  +  2 a /3 ).

Convergence

The above analysis o f the equilibrium states tells us nothing about how the al
gorithm convergences to them. We must eventually get to one o f them however, 
because there is nowhere else to go as long as rj and <r remain non-zero; the whole 
Kohonen algorithm is a Markov process with only two absorbing states. A detailed 
analysis leads to conditions on rj(t) needed to ensure convergence [Cottrell and Fort, 
1986; Ritter and Schulten, 1988b].

The two-dimensional case is much harder than the one-dimensional one, but can 
be formulated in terms o f a Fokker-Planck (probability diffusion) equation for the 
probability o f finding any particular set o f weights at time t [Ritter and Schulten, 
1988b]. Such an equation can also provide information about the likely fluctuations
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FIGURE 9.15 Kohonen maps in one dimension, (a) Any monotonic region of 
weights remains monotonic when the weights are updated, (b) The boundary be
tween two monotonic regions can move one step at an update.

before the equilibrium is reached. It is found that wave-like fluctuations can occur in 
the output weights, as one would expect from interpreting the meshes in Figs. 9.11 
and 9.12 as elastic nets.

In most cases the convergence process has two phases. The map first becomes 
untangled and fairly even, and only then adapts in detail to the input probability 
P (£ ). The untangling phase can often dominate the total time required, because 
some types o f tangle can take a long time to iron out. Two examples o f tangles are 
evident in the our examples: in Fig. 9.11(c) there is a tw ist, and in Fig. 9.14 there 
is a k ink.

Geszti [1990, chapter 10] studied the problem of kinks in the one-dimensional 
case. He observed (see also Kohonen [1989]) that a monotonically increasing or 
decreasing sequence of weights Wi remains monotonic at each update. We can see 
this by rewriting the learning rule

Aw{ =  77A(i, f ) ( £  -  Wi) (9.32)

in the form
[Wi -  £]new =  (1 -  »?A(i, **))[Wi -  e ld (9.33)

and looking at Fig. 9.15(a). The vertical distance W( — £ o f a point Wi from the 
input value £ is multiplied by a factor 1 — i/A (i,i*), which becomes closer to 1 as 
we move further from the winner i*. Thus the monotonic order of the weight values 
cannot change.

The interesting things happen at the bou n d aries  between monotonically or
dered regions. Such a boundary can jump one step to either side, as shown in 
Fig. 9.15(a). Boundaries can also disappear by annihilation when two meet, or by 
wandering off the edge. But no new boundaries can appear.
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This tells us a lot about the time it takes to untangle the map. Consider for 
instance the single kink in Fig. 9.14(b); that kink has to diffuse to one end of the 
chain in order to be eliminated. But it only moves at all when £ happens to be 
chosen nearby (which happens with probability o f order l/ N for N units), and even 
then it is equally likely to move left or right. It therefore executes a ra n dom  walk 
and takes of order N 2 steps to get to one end o f the chain. Thus the total time 
scales as N 3.

This conclusion is based on assuming that A ( i , j )  is symmetric (A ( i j )  =  
A ( . m ) ) ,  s o  that left and right jumps are equally likely. Instead, Geszti suggested 
making A(i, j )  strongly asymmetric, to drive the boundaries in one direction. Then 
the time should scale as only AT2, and indeed simulation shows that the ordering is 
much faster.

In two dimensions there are many more types o f “topological defects” than the 
simple boundaries found in one dimension, but it turns out that one o f them—  
the twist shown in Fig. 9.11(c)— is dominant. Geszti found that an anisotropic A, 
with different ranges in the horizontal and vertical directions, speeds up learning 
considerably.

9.6 The Travelling Salesman Problem
We return here to the travelling salesman problem first introduced in Chapter 4 
to see how it can be solved by feature mapping. We also discuss the elastic ring 
m e th o d  which is closely related to the feature mapping approach, though originally 
derived from a different route.

Consider the case o f N  cities in a two-dimensional plane. A tour is line though 
all the points, and so can be regarded as a mapping from the plane to a line. 
Or actually a ring; the ends should be joined. We know how to make a Kohonen 
network produce that, using N  units in a ring and two inputs (for the x and y 
coordinates). In the end we expect the weights to become equal to the coordinates 
o f the cities, and yet have neighboring weights relatively close to one another. Thus 
the sequence o f the cities defined by the units should be a good, if not optimal, tour 
for our salesman.

Some details must be filled in, and modifications made, to get this to work 
well in practice. Since more than one unit can be attracted to the same city it is 
actually best to have more units than cities. Or one can adapt the algorithm so that 
extra units are added or deleted as needed. With such modifications the method 
has been shown to perform fairly well compared to other algorithms [Angeniol et 
al., 1988; Hueter, 1988]. Figure 9.16 shows an example, starting from a small ring 
in the center o f the cities.

One o f the drawbacks o f this approach is that there is no cost function associ
ated with the process; it is built only on intuition. It works something like an elastic 
rubber ring that is gradually drawn towards the cities and otherwise stays as small
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FIGURE 9.16 The gradual 
formation o f a tour for the 
travelling salesman prob
lem by a feature map, or 
by the Durbin-Willshaw 
method, for 30 cities and 
70 units.

as possible. This physical picture were used explicitly by Durbin and Willshaw 
[1987] who used the updating rule

Awj =  A,‘ (i)(£#‘ -  w,-) +  k(w ,+ i  -  2wj +  w<_i)) . (9.34)

where the weight w,- specifies a point on the rubber ring and £** is the position 
o f city i. Durbin and Willshaw did not actually use the same terminology, but we 
have put their algorithm into our terms; on the mathematical level the methods 
are closely related. Thus (9.34) looks like the Kohonen algorithm (9.21) summed 
over all cities, except that A(i, i*) has been replaced by A/i(i) and a second term 
with coefficient k has been introduced. In Durbin and Willshaw’s physical picture 
the first term is a force that drags each point w t- on the ring towards each city £** 
with influence coefficients A^(i), and the second term is an elastic force that drags 
each point towards neighboring points on the ring.

The coefficient A /i(i) specifies how strongly w , is pulled towards city In the 
usual Kohonen algorithm it would be a Gaussian function o f |i — i* |, the number of 
units between w,- and the w  closest to The dependence on the number o f units 
(i.e., neighborhoods in the output array) was needed to build in the topology of 
the array. But now the k term takes care o f keeping neighboring w,-’s close to one 
another, and we can let A/i(i) depend simply on the distance between w* and 
Durbin and Willshaw used a normalized Gaussian form

A "(i) =
exp (—| ^ - w<|2/2<r2) 

£ . e x p ( —l ^ - w , ! 2^ 2)
(9.35)



246 NINE Unsupervised Competitive Learning

FIGURE 9.17 A hybrid learning net
work. Counterpropagation networks, 
hierarchical feature map classifiers, 
and radial basis function (locally 
tuned) networks all have this basic 
architecture.

with a determining the effective range o f the influence. The parameters 77, cr, and 
k are taken as relatively large initially, and then reduced gradually as the tour 
develops (Durbin and Willshaw took them all equal). Thus large-scale adjustments 
occur early on, and smaller refinements later.

Now there is a cost function

£ { w i }  =  - ( r 2 ^ l o g [ ^ e x p ( - | ^  -  w , |2/2<r2)]  +  | X ] l w<+ 1 ~ w<!2 ( 9 ‘36)
A4 * *

for which (9.34) is a gradient descent algorithm. Thus (9.36) is minimized by the 
algorithm. In the limit N  —► 00 (where N  is the number o f units) and <r —► 0 the 
first term goes to zero and the second term is minimized by the shortest possible 
tour. Thus the algorithm should find the shortest tour if it manages to escape local 
minima.

In practice the Durbin-Willshaw approach seems to do fairly well, and is com
parable to the Kohonen algorithm described above. However, a hybrid o f the two, 
with additional modifications, appears to be much faster than either method [Burr,
1988]. It has also recently been shown [Simic, 1990] that there is a formal con
nection in statistical mechanics between the Durbin-Willshaw algorithm and the 
Hopfield-Tank network described in Section 4.2.

9.7 Hybrid Learning Schemes
In some problems it can be useful to combine supervised and unsupervised learning 
in the same network. The most common idea (see Fig. 9.17) is to have one layer 
that learns in an unsupervised way, followed by one (or more) layers trained by 
back-propagation. The problem being solved is hetero-association, and so could be 
approached with a purely supervised learning approach. But back-propagation is 
extremely slow, especially for networks with more than one hidden layer. So, if it
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does not greatly degrade our results, we can speed up learning considerably by 
training some layers in an unsupervised way.

This works well when the problem to be solved has the property that similar 
input vectors produce similar outputs. Then it is a sensible first step to categorize 
the inputs into clusters with competitive learning, and use only the category infor
mation for the supervised learning. On the other hand we would not expect success 
on something like the parity function (page 131), where changing a single input bit 
changes the target output.

The hybrid schemes are not optimal in the sense that back-propagation is, 
since the hidden layer responses are not optimized with respect to the output per
formance. Therefore we will probably need more hidden units to get comparable 
results. But the savings in training time may make up for this many times over.

Counterpropagation Networks

Networks with the architecture o f Fig. 9.17 have been proposed by Hecht-Nielsen 
[1987b, 1988] and Huang and Lippmann [1988]. They have been called cou n ter
p rop a g a tion  n etw orks and h ierarch ica l fea tu re  m ap  classifiers. Counter
propagation networks [Hecht-Nielsen, 1987b, 1988] are actually more general, in
volving a common hidden layer between two separate pairs of input and output 
layers, one o f which can be used for the inverse mapping o f the first, but we de
scribe just the “forward only” case.

The first (or hidden) layer uses the standard competitive learning rule, so the 
hidden units divide up the input space in a Voronoi tessellation. Then the output 
layer, which is linear, is trained with the usual delta rule (5.42)

A  wa =  tKCT -  0 ? )V j  . (9.37)

Since only one of the hidden units Vj fires at a time, this may also be written

&Wij =  77(Cf -  Wij)Vj (9.38)

(where Vj is 1 for the winner and 0 otherwise). In this form the delta rule is
equivalent to one form o f ou tstar learning [Grossberg, 1969; see also Caudill,
1989]. It leads to

( W i j )  =  (A f /c n  (9.39)

where as usual MJ is 1 if hidden unit j  wins the competition for input pattern 
and 0 otherwise. This says that in each of the Voronoi polyhedra the output is fixed 
at the average o f all the output vectors whose corresponding input vector £** is 
in that polyhedron.

In effect the network is implementing a key-value look u p  table . The keys are 
encoded in the input-to-hidden weights and the values are in the hidden-to-output 
weights. But the important difference from a conventional lookup table is that this 
one is self-programming; the key vectors are found by unsupervised learning, and 
should evolve a good statistical representation of the input space.
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In some applications it may be desirable to interpolate the output between 
those for the different polyhedra. This can be done by relaxing the winner-take-all 
constraint ( after the task has been learned), allowing several hidden units to fire 
at a time. If the total strength Vj of these multiple winners is normalized to 1, 
then the total output will interpolate linearly between the individual vectors. To 
select which units fire we could choose all those with weight vectors within a certain 
radius o f the input or just the K  closest ones for some fixed K .

Many applications have been investigated, including pattern classification, data 
compression, speech recognition, function approximation, and statistical analysis 
[Hecht-Nielsen, 1988; Huang and Lippmann, 1988; Lippmann, 1989]. One example 
is vector quantization. In our earlier discussion (page 225) we were satisfied with 
finding a set of prototype vectors, the centroids o f the polyhedra. But in a practical 
application for data compression we actually need to generate a binary code saying 
which vector to use. Clearly the counterpropagation network can be trained to 
generate appropriate codes in its output layer. We could for example use M  output 
units and 2M hidden units with such coding.

The greatest appeal o f these networks is their speed. For a given problem 
they are typically a factor o f 10-100 times faster to train than conventional back- 
propagation networks, with results that are often comparable.

Radial Basis Functions

Another example of a hybrid network, again with the architecture of Fig. 9.17, 
was examined by Moody and Darken [1988, 1989]. Similar schemes have also been 
suggested by Casdagli [1989], Specht [1990], Niranjan and Fallside [1990], Poggio 
and Girosi [1990], and many others.

The hidden units in the Moody-Darken network are neither linear winner-take- 
all units (as for competitive learning), nor sigmoidal units (as for back-propagation). 
Instead they have normalized G aussian  activa tion  fu n ction s

exp[— (£ — / i ) 2/2cr?]a (940)
where £ is the input vector itself. By normalized we mean that 9j(€) — 1 f°r 
any £. Thus unit j  gives a maximum response to input vectors near . We say that 
each hidden unit has its own receptive field in the input space, a region centered on 
pLj with size proportional to crj. The Gaussians are a particular example o f radial 
basis fu n ction s.

The idea is now to pave the input space (or, better, the part o f it where the 
input vectors lie) with these receptive fields. Then the problem is almost solved. 
Suppose a particular input vector lies in the middle o f the receptive field for 
unit jf, so ^  =  pij. If we ignore the overlaps between different receptive fields, then 
only hidden unit j  will be activated, making it the only “winner”. We could simply 
choose the output weights leading from that unit to be =  Cf (for each i), which 
will produce the target pattern at the output assuming linear output units.
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If another input lies, say, between two receptive field centers, then those two 
hidden units will be appreciably activated, and the output will be a weighted average 
o f the corresponding targets. In this way the network makes a sensible smooth fit 
to the desired function.

The choice Wij =  £ f for the hidden-to-output weights is not optimal if the 
overlaps between receptive fields are taken into account. However, it is a simple 
matter to optimize them, just as in the counterpropagation network, using delta 
rule learning. The rule is simply

A  m J =  f i (C t -O i )V i  (9-41)

where O f =  WijVj. When averaged over \i this minimizes the usual quadratic cost 
function

=  \ "  w^ A e ) ? .  (9-42)
ijp

The unsupervised part o f the learning is the determination o f the receptive field 
centers Hj and widths <jj. Appropriate / i ’s can be found by any vector quantization 
approach, including the usual competitive learning algorithm. The (t’s are usually 
determined by an ad hoc choice, such as the mean distance to the first few nearest 
neighbor / / ’s. The performance o f the network is not very sensitive to the precise 
values o f the <r’s.

Overall this scheme is very like the counterpropagation approach. The main 
difference is that the Moody-Darken approach uses locally tuned hidden units, 
whereas the counterpropagation network requires a winner-take-all search (or cir
cuit). Interpolation between target patterns is also more natural in the present case. 
On the other hand normalized Gaussian activation functions do not so easily lend 
themselves to electronic implementation. Note that locally tuned receptive fields are 
widely found in biology, but usually emerge from a network and are not single-cell 
properties.

M oody and Darken tried their method out on the extrapolation problem for the 
Mackey-Glass equation described in Section 6.9 (pages 137-139). In this context 
it is interesting to note that the present method, with Gaussian receptive fields, 
allows one to fit an arbitrary function with just one hidden layer [Hartman et al.,
1990]. With sigmoidal units, the arguments o f Section 6.4 suggested that it takes 
two hidden layers to fit an arbitrary function. Indeed the “bump” construction 
described on page 142 essentially used two layers to construct hidden units with 
local receptive fields out o f sigmoidal functions, so it is not surprising that we can 
save a layer by starting with units that already have bump-like responses.

The Lapedes-Farber network described in Section 6.9 had two hidden layers, 
so there were three layers o f connections to train by back-propagation, requiring 
considerable supercomputer time. Moody and Darken were able to train their net
work several orders of magnitude faster than this, since they only had one layer o f 
connections trained by supervised learning. They did not quite achieve the accu
racy o f Lapedes and Farber (or that obtained by Farmer and Sidorowich with their 
non-neural algorithm), but were not far behind.
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The best results to date on the signal extrapolation problem have been obtained 
by Stokbro et al. [1990]. They generalize the Moody-Darken network so that each 
hidden unit j  passes on to each output unit i a linear fit Wij -f v ,;- • £, instead of 
just a constant value This allows for much better interpolation between the 
receptive field centers f i j , but at the price o f needing extra units and connections 
to represent the • £ terms.

The receptive field centers • and widths crj are found as in the Moody-Darken 
case. Then delta rule supervised learning can be used to find the appropriate ’s 
and Vij ’s because there is a cost function

v 0 } =  \ -  (wij +  \ij • O g j i t 1*)}2 (9.43)
ijH

on which we can perform gradient descent. The problem can be framed in network 
terms by associating an extra AT hidden units with each o f the original hidden units, 
where JVis the input vector dimensionality. The kth one o f these (1 <  k <  N) at 
the jth  location computes £k9j(£) and is connected to output unit i with weight 
[v *j]fc> the fcth component o f v»j.

Stokbro et al. find that it does pay to use N  -f 1 times as many hidden units per 
receptive field in this way, even if the number o f receptive fields is reduced by the 
same factor (i.e., with a fixed total number o f hidden units). On the Mackey-Glass 
data, they were able to train a network as fast as M oody and Darken, achieving bet
ter prediction accuracy than either Lapedes and Farber or Farmer and Sidorowich.



Formal Statistical Mechanics of 
Neural Networks

TEN

As we have stressed in earlier chapters, neural networks are large interacting systems 
o f simple units, like the physical systems we study in statistical mechanics. The 
formal methods and concepts o f statistical physics are therefore natural tools to 
use for neural networks. In this chapter we illustrate the use of such methods in 
two different problems that we encountered earlier in the book: the recall o f stored 
patterns in the Hopfield associative memory network, and the capacity o f a simple 
perceptron.

This chapter is not for everyone. Up to this point, this book has been a fairly 
general introduction to the theory o f neural networks, and has not required special
ized knowledge o f formal techniques. While what follows is also self-contained, it 
is much more formal mathematically, and readers without other exposure to tech
niques o f this sort will probably find it hard going. We include these calculations 
here anyway because they illustrate how such theoretical methods can be brought 
to bear on problems in neural computation, with nontrivial results.

We do assume in this chapter some basic knowledge o f statistical mechanics. 
The necessary ideas are reviewed briefly in the Appendix.

10.1 The Hopfield Model
In Chapter 2 we described the stochastic Hopfield model and obtained a number 
o f its properties heuristically. The starting points were the Hebb rule (2.9) for 
the connection strengths, and the dynamics based on the stochastic evolution rule 
(2.40). We then calculated the average activations (Si) in the heuristically motivated

251
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mean field scheme (2.50). Here we will take a more systematic approach, obtaining 
the quantities we want by first calculating the p a rtit ion  fu n ction

Z =  Trs e x p ( -0 H { S i } )  (10.1)

where the trace, Tr5 , means a sum over all possible states, {S* =  i l } . 1 We can 
then take appropriate derivatives to obtain quantities o f more direct interest, as 
outlined in the Appendix. Our treatment follows closely the classic article by Amit, 
Gutfreund, and Sompolinsky [1987a].

We start with the energy function

=  < « w >
/i = l *

which is the same as (2.30) except for the second term (a constant), which cancels
out the diagonal Sf contributions from the first term. As we showed in (2.31), this
energy function has the Hebbian connection strengths (2.9).

We again define a  =  p/AT, the ratio o f the number o f desired memories to the size 
o f the system. We consider only the large N  limit (the so-called th erm od y n a m ic 
lim it N  —» 00), so when we discuss a ^ O w e  mean that the number o f patterns p 
scales proportionally with the number o f units N. But first we discuss the simpler 
case o  =  0 with a fixed number p o f patterns, independent o f N.

Mean Field Theory for a  =  0

We start by adding to Ho a set o f “exteriial fields” one for each pattern :

H  =  H0 - ' £ /h>‘ Y ,Z i S i -  (1.0.3)

We will set all the strengths hp to zero later, after these fields have served their 
purpose.

The partition function (10.1) is now

Z  =  e f}p 2̂ Trs exp \ A .
2 N

(10.4)

This would be easy to evaluate if both the terms in the exponent were linear in the 
S i’s. Then the trace would simply factor into a product o f N  independent terms, 
one for each i1 every term being a simple sum over Si =  +1 and Si =  — 1 .

* Usually the trace of an operator (or matrix) means the sum of all the diagonal elements. This 
way of using it originates in quantum statistics.
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Unfortunately the first term is quadratic. But we can use the “Gaussian integral 
trick” to make it linear, at the expense o f some other complications. This trick 
exploits the identity

linear in b (on the left). The cost, o f course, is the introduction o f the auxiliary 
variable « , and the integral over it. Our price is actually p times higher, because 
(10.4) contains p quadratic terms, one for each p. So we introduce p auxiliary 
variables ra**, and take a =  (3N/2 and b** =  /? Yli &ye

Now let us adopt a shorthand vector notation, taking m , h, and to be 
p-component vectors with components m^, h**, and £? respectively. Then (10.6) 
becomes

The trace is now easy because the exponent is linear in 5*. Using e*4-e x =  2 cosh x, 
we obtain after a little reorganization

We still have a p-fold integral to do, but the fact that the exponent in (10.8) 
is proportional to N  allows us to evaluate it in the limit o f large N. The bigger N  
is, the more the integral is dominated by contributions from the region where /  is 
smallest. So we can approximate it by finding the value o f m  which minimizes / ,  and 
expanding the integrand around there. This is called the sad d le -po in t m eth od , 
and is best understood through a simple example.

Suppose that we had a one-dimensional integral of the form

which can be used to turn an exponential in b2 (on the right) into an exponential

x T r s J J  I* dm** expf-| /?A T(m /i)2 +  +  h*) Sj)  . (10.6)

Z  =  e-Pr/2 ( g ) ' 7  dm e~^Nm^ 2 J J  T iSi e« ” +h)^ f5‘ . (10.7)

(10 .8)

/ ( /? , m ) =  \a +  ±m 2 -  ^  log (2 cosh[/?(m +  h) • ^ ] )  . (10.9)
with

I = V N  dxe-N9W. (10.10)

Then expanding the exponent around the point xq where g{x)  is minimized we get

I  =  y/N J dx exp (—JV[sf(x0) +  \ g "{x 0)(*  -  a:0)2 H ]) (10.11)
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using g*(xo) =  0. If we truncate the expansion at this point, the integral is just a 
Gaussian one, so

7  =  ^  • < 1 0 1 2 >

For large N  this result is dominated by the exponential factor, as can be clearly
seen by putting it in the form

- j f  loS 1 =  9 (z  o) +  (lo6 9"(xo) ~  log 2tt)

g (x 0) • (10.13)

Thus all we need to do is to find xq; this is often called the saddle p o in t, from
behavior in the complex x plane.

For (10.8) we use a p-dimensional version o f the same idea, thereby obtaining

-  -^ lo g Z  =  /?m in /( /? ,m ) (10.14)iv m

in the N  —► oo limit. Comparing this with (A.9) we see that

F/N  =  min /( /? , m ) (10.15)m

where F  is the free energy, so minm /( /? ,m )  gives us the free energy per unit.
We now have to minimize /( /? , m ), which requires

°  =  X X  tanh[/?(m +  h) •$,]. (10.16)
i

Note that this is a set o f p nonlinear simultaneous equations for the p unknowns 
m These equations appear to depend on the random patterns , but in fact the 
system is self-averaging; we can replace the average over units by an
average over patterns at any one site, yielding

m** =  ((£•* tanh[/?(m +  h) • { ] ) )  (10.17)

where ((• • •)) indicates an average over the random distribution o f £ patterns. Sim
ilarly (10.9) becomes (with a  —► 0)

/  =  ^m 2 — /?- 1 ((log(2 cosh[/?(m +  h) • £]))) . (10.18)

It is easy to see how the self-averaging property arises. As we go from unit to 
unit in the sum on i in (10.9) or (10.16), we are choosing AT independent ^ /s  from 
the distribution P(£)> which we take to be uniform over the 2P possibilities. So if N
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is large compared to 2P the average over sites is equivalent to an average over the 
distribution. This requires p  <C log N, which is valid in our present a  =  0 case, but 
not for the a  ^  0 case considered later.

The values o f  rop at the saddle point given by (10.17) admit a simple physical 
interpretation. To see this, we start from the free energy F  =  —/?- 1 log Z  and 
differentiate with respect to Using the original expression (10.4) for Z  leads— as 
in (A .10)— to

w  =  “  " B a x ?  (1019)i

whereas (10.15), (10.17), and (10.18) give us

=  =  -•/v( ( ^ tanh[/?(m  +  h ) •£])) =  - N m l *  ■ (10.20) 

We can thus identify

i

so the saddle-point value o f is just the average overlap o f the network configu
ration with pattern number /z.

It was to derive (10.21) that we needed the external field terms inserted in
(10.3). Now they are no longer needed and we henceforth set h*1 =  0. Thus the 
mean field equation (10.17) becomes simply

m** =  ( (^  tanh(/?m • £ ))). (10.22)

There are many solutions of (10.22). The simplest and most important are the 
m e m o ry  states, which have a finite correlation with just one of the patterns 
So from (10.21) we expect the m  vector for these solutions to have the form

m  =  (m, 0 , 0 , . . . )  (10.23)

if we order the indices fi so that the “condensed” pattern is first. Then (10.22) 
reduces to

m/i =  ((£** tanh/Jm f1)) =  ((£/i£1)) tanh/?m =  ^ t a n h /J m . (10.24)

So (10.23) does give a solution— putting (10.23) into the right-hand side o f (10.22) 
produces the same form on the left— provided the magnitude m o f the average 
overlap with pattern 1 satisfies

m  =  tanh j3m . (10.25)

This is identical to the equation (2.54) that we found in our simpler analysis in 
Chapter 2. It implies stable memory states for T  <  Tc with Tc =  1, and tells us 
what fraction of the bits will be correct at any such temperature; see Fig. 2.14.
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TABLE 10.1 
Critical Temperatures

n Tn

1 1
3 0.46
5 0.39
7 0.35

There are also more complicated solutions o f the mean field equations, cor
responding to the spurious states. The simplest o f these are the sym m etr ic  
m ix tu re  states in which the m  vector has the form

m  =  . . .  , m , 0 , 0 , . . .  ,0 ) (10.26)V V •' V-I..—v......✓
n p —n

with n nonzero entries o f m  equal to some value m._Note that there are (£) ways 
we might have placed the nonzero elements, corresponding to many such spurious 
states. There is actually a further degeneracy factor of 2n, because solutions like 
(dbm, ± m , ± m , 0 , . . . ,  0) are all possible.

If we insert the form (10.26) into the mean field equations (10.22) we obtain

n
m** =  tanh m £ C ) ) )  (10.27)

J/=l

which vanishes if \i >  n (because ((f/4fi')) =  0 for /i ^  v), and otherwise gives

m =  ((z tanh pmz))/n (10.28)

where z is the random variable

* =  £ * "  (10-29)

which has a binomial distribution. Thus our symmetric combination pattern (10.26) 
solves the mean field equations if m satisfies (10.28). This has solutions at any n, 
as long as T  <  1.

However, not all these solutions are stable. We want m  to produce a minimum 
o f / ( /? ,m ) ,  whereas our mean field equations only guarantee a stationary point, 
d f  /dmp =  0. So we also need the eigenvalues o f the matrix

^  (10'30)

to be positive. This turns out to be satisfied only if n is odd, and then only if the
temperature T  is below a cr it ica l tem p era tu re  Tn. The first few Tn’s are shown
in table 10.1.
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There are also a sy m m etric  m ixtu re  states, such as

m = (2>i>5>4’5>0’0’0’ "-)- (10.31)

None o f these is stable above T3 , however. This means that one can avoid all mixture 
states by going to temperatures above Z 3 . O f course raising the temperature from 
T  =  0 degrades the memory states somewhat, but the amount is actually very small; 
(jVcorrect) fans only very slowly from AT with increasing T, as seen in Fig. 2.14. At 
T  =  0.47 we find from (10.25) that (ATCorrect) «  0.97A, so only about 3% of the bits 
will be recalled incorrectly if we work just above T 3 .

Mean Field Theory for a ^ 0

As we observed already in Chapter 2, the crosstalk between different patterns on 
account o f their random overlap begins to affect the recall o f a given pattern when 
p becomes of the order o f N. We now examine the statistical mechanics for this 
case. The self-averaging we used in the a  =  0 calculation breaks down, and we are 
forced to do the averaging over the distribution o f patterns more systematically.

As always, the basic quantity we start from is log Z. Now Z  depends on the 
particular set o f patterns used to compute the weights W{j using the Hebb rule
(2.9). What is o f interest to us is the average ((log Z)) over the distribution of all 
random binary patterns; this gives us the average free energy whose derivatives give 
the average quantities we want to know, such as m**. Unfortunately this average is 
very hard to calculate directly, and is not the same thing as log((Z)), which would 
be much easier. To get meaningful results we must average the relevant quantity, 
which is logZ , not Z.

Luckily there is a technique, called the rep lica  m eth od , that lets us circumvent 
averaging log Z . It is based on the identity

lo g Z  =  lim — ■ ■ * (10.32)

which allows us to compute ((logZ)) from knowledge o f ((Z n)). Note that we need 
this for the parameter n close to 0 , but we ignore that for a while and focus on 
((Z n)) for integer n. In that case we can think o f Z n as the partition function o f n 
copies, or rep licas, o f the original system, writing

Zn = Tr5i TrS2 ... Trs * e-K Elstt+"+Els™ . (10.33)

Each copy is labelled by a superscript rep lica  in d ex  on its Si’s, running from 1 to 
n.

Proceeding as we did in the a  =  0 case for (10.6), using the Gaussian integral 
trick for each pattern and each replica, we now find
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« Z " »  =  « - » " / ’ ((•&» f l f l j
n= l p = l j

x e x p ( - i /? jV (m p 2 +  / ? m £ ^ £ f S 'f ) ^  (10.34)
i

where p labels the different replicas. Note that the pattern average ((• • •)) is still 
over the Np variables ; there is no replica index on the patterns. We have omitted 
any external fields h** this time, although it would be easy to include them.

Henceforth we focus on states in which the configuration has appreciable over
lap with only a finite number s o f the p stored patterns, called the con d en sed  
pattern s. Specifically we assume that the ra£’s2 are only appreciable in size when 
p <  s, with s independent o f N. This will eventually allow us to use the self
averaging trick just on these / / ’s. For p >  s we assume 1.

Let us consider the contribution o f the last term in the integrand o f (10.34) for 
a particular p >  s, one of the small m £’s:

( n - p K E ^ ; ) ) )  = n f * ( * r s » w ) »
p i  i p

=  n c o s h ^ E ^ r )
* p

=  exp [5 3  !°g  COsh [p  m p Si )  ]
* p** exp [£ ^ 0 ?E m?5O ]
i p

=  e x p ( ^ 5 3 5 f 5 f m ^ m ^ )  (10.35)
tp<7

where the approximation involved log cosh x «  x 2/2  for small x. If we now define 
an n x n matrix A pa by

A „  =  V - O W E W  (10.36)

we can write the whole exponential factor (for fixed p >  s) in (10.34) as

0N

pa
^  =  e x p ( - ^ 5 3 A „ m ^ ) .  (10.37)

2Strictly speaking: the saddle-point values of the ra£’s. That is, we will again evaluate the multi
dimensional integral by the saddle-point method, and the values of the nip that will matter will
be those at the saddle point.
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This leaves us with an n-dimensional Gaussian integral, giving

We get a contribution exactly like this for every value o f p greater than s (about p 
in all, since p >> s), giving an overall factor

The extra complications we encounter for a >  0 all come from this factor
(10.39), which, together with the other parts o f (10.34), now has to be summed 
over all the 5 f. Unfortunately the 5-dependence is buried in the eigenvalues Ap, 
and the trace is far from easy. So now we use some more auxiliary variable tricks. 
First let us define a generalized version of Apa:

using a Dirac delta function, where the Ap’s are the eigenvalues o f A, and are 
functions o f the gp<7’s. There are n(n  — l ) /2  integrals (the notation (per) means all 
distinct pairs), and we leave it as understood that qpa =  qap and qpp =  0.

Now we introduce yet another set of auxiliary variables, this time for an integral 
representation of the delta-function:

(detA ) p/ 2 =  exp (—|plogdet A) =  exp log J J  A ^
p

(10.39)
p

where \p are the eigenvalues o f A.

Apa =  (1 —‘ ~~ Pqpcr (10.40)

This is equal to A pa if

for p ^  a ; 
otherwise.

(10.41)

Thus we can write any function G {AP} o f the eigenvalues of A in the form

g {  a , } =  (10-42)
J L i(p°)

(10.43)

We need to use this n{n — l ) /2  times, giving us

G{ AP} oc f  f J J  dqpadrp(r e x p ( -N a P 2rpaqp<, +  o  0 i rpa'YJ S ?sf\  G {A ,}
J  L(/,<r) i J

(10.44)
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where we have left out unimportant prefactors and scaled the r variables by a factor 
o f Not(32 for later convenience.

When we apply the transformation (10.44) to (10.39), we can write our full 
expression (10.34) for ((Z n)) as

« z » ) > «

* exp ( -  ^  ^  log A, -  £  r „ q „ \
PP P po

x (10.45)
pp i ipa

where the sums over p now run only over the condensed patterns: p =  1, 2, . . . ,  s. 
We have also written  ̂Ylpa insfead o f  X2(p<r) anc  ̂ aSain if understood that 
diagonal pp terms are zero.

Now at last we can get rid o f the i indices through self-averaging. The last line 
o f (10.45) is the pattern average of an expression with the form

X  =  -Lrs exp ( £ > { & ,  S i})
i

=  I J T t s , exp F {£ i,S i}  
i

=  exp ( 5 3  log I t s ,  exp F « i ,  5 , } )
i

The function F  depends on and S j- S ”, but only one index i is needed at a
time. The trace in (10.46) is over all the S? ’s (all Vs and all p ’s), but in (10.47) 
and (10.48) is over only the ’s for a particular i. The result o f the trace would 
be exactly the same for each i except for the dependence o f F  on the ’s, because 
i is otherwise a dummy index. But since N  (the number o f Vs) is much larger as 
TV —> oo than 2s (the number of possible sets {£ ? }  at fixed i), the sum over i is 
equivalent to an average over patterns. Thus

X  =  exp (x ( ( l o g  Trs exp F {& , S i } ) ) )  (10.49)

where now all Vs have disappeared and we have in effect a single unit with n different 
S pys and p  different f^ ’s. Note that in the end we did not need the outer average 
((• • •)) in (10.45), because the self-aver aging o f the inner i sum already performs all 
the pattern averaging. So we may drop the outer average.

Now we can write the whole expression for ((Z n)) as an integral o f the expo
nential o f something proportional to N:

(10.46)

(10.47)

(10.48)
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where

f { m ,q ,r }  =  \  ^  ^  l ° g  X p  +  r P<’ q P<>2/3
HP P P°

-  i ( ( l o g 'n 5 e x p ( / 3 ^ m ^  +  ia /3 2 ^ r „ 5 ^ ) ) ) .  (10.51)
r  up pa

The factor o f AT in the exponent allows us to use the saddle-point method again, 
minimizing this time with respect to the q ’s and r ’s as well as the m ’s. Thus we 
obtain the free energy per unit

F /N  =  - ^ « l ° g Z »  =  - j g  lim i ( « Z " »  -  1) (10.52)

=  - m a x ,  N < Z “ »
OL 1

=  — +  lirn — m in /{m ,< j, r }  . (10.53)

In replacing ((Z n)) — 1 by log((Zn)) we just assumed that ((Z n)) goes to 1 as n —► 0,
as it must; that is why we didn’t bother to keep all the prefactors earlier.

The location o f the saddle point is determined by the equations

d f
drrip
d f

dqpa
d f

dVpa

0 (10.54)

0 (10.55)

0 . (10.56)

As in the simpler a  =  0 case, these equations lead to interpretations o f the o rd er  
param eters  m£, qpa, and rpa at the saddle point:

m P =  ( 10-57)
i

^  =  ( ( ^ D 5 ' ) ^ ) ) )  (io.58)
t

rp<r =  (10.59)
H>*

We omit the detailed derivations o f these results, which require the inclusion of 
external field terms h** as in the a  =  0 case. Equation (10.59), which comes from 
df/dqpa =  0, also involves rewriting the logAp term as a Gaussian integral. Note 
that (10.57) is just like the a  =  0 result (10.21) apart from the presence of the 
replica index p .
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To proceed further we have to make an ansaiz without a priori justification: 
that o f rep lica  sym m etry . This means that we assume that the saddle-point 
values of the order parameters do not depend on their replica indices:

mp — m p (10.60)

II ►Q (10.61)

8̂ II 1 (10.62)

The validity o f this assumption can be tested afterwards, and one finds that it 
is exactly true except at very low temperatures, and that even there it is a good 
approximation.

With this simplification the meaning o f the order parameters (10.57)-(10.59) is 
evident, and consistent with the heuristic treatment in Chapter 2: mp is (as before) 
the overlap between the network configuration and the fiih pattern, q is the mean 
squared magnetization, and a r  is the mean squared value of the overlap with the 
uncondensed patterns (fi >  s). Each for /i >  s is o f order 1 / V N , but r remains 
finite as N  —* oo because there are o f order N  terms in the sum (10.59).

Using the replica symmetric ansaiz the expression (10.51) for / ( m , g , r )  sim
plifies to

f (m ,q ,r )  =  ±7im2 +  Y ]  log \p +  \n(n -  l)a/3rq +  \nafir
P

_ i ( ( logTrseXp[/?m' ^ ^ 5',, +  ̂ Q'/?2r( ^ ‘S0  ])) (10-63)
P P

where the last term on the first line is to cancel the diagonal part of the Sp)2 
term. We still have to evaluate the sum of the log Ap’s and compute the average o f 
the Tr over the S 1-S n but, thanks to the replica symmetry, these can now be done 
without too much trouble.

Let us first deal with the eigenvalue sum. The matrix Apa now has the simple 
form

v  =  { ^ /  00.64)

It is an elementary exercise to show that such a matrix has eigenvalues

Xi =  1 — f3 — (n -  1 )/3q (10.65)

with multiplicity 1 and
A2 =  l - / ? ( l - < ? )  (10.66)

with multiplicity (i.e., number o f eigenvectors with this eigenvalue) n — 1. Thus the
sum over the logs of the eigenvalues becomes

l $ > g A ,  =  i { l o g [ l  —/ ? — ( n — l)0q\ + ( n -  1) log [l - /?(1 -  g)] } 
ti np

00.67)
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To evaluate the Tr over the S's, we again use the Gaussian integral trick: 

exp j^a /?2r ( Y ]  S p)  ] =  J - 4 =  exp ( ~ \ ^  +  0y/arz ^  Sp)  (10.68)

giving for the trace X  =  Trexp[- • •] in (10.63):

X  =  Tr5 J^= e x p ( - ± z 2 + (3 (y/ w z +  m - £ ) Y ^ S p>)

=  j ~ =  e~z^ 2 ^2 cosh /3(y/arz +  m  •

=  J ~ ^ =  e~z2! 2 exp log [2 cosh f3(y/arz +  m  • £)]^ . (10.69)

We actually want 1/n times the average o f the log o f this, in the n —► 0 limit. 
Expanding for small n gives

l ( ( lo g X ) )  =  1  ̂ l o g j - ^ = e ~ z^ 2 ( l  +  n log [2 cosh 0(y/arz +  m  ■ £)] +•••)))

=  J e-2 ^ 2 log[2 cosh/?(^/<xr2 +  m  • £)] H------^

((log[2 cosh f3(y/arz +  m  • £)])) (10.70)

where now we take ((• • •)) to mean both the average over the condensed patterns 
/i <  s and the Gaussian average over z. Physically this means averaging over all 
the patterns, since the Gaussian random field z came from representing the effects 
o f the uncondensed patterns /i >  s.

All we have left is to collect the terms from (10.53), (10.63), (10.67), and (10.70) 
to give the average free energy per site in the form

F /N  =  J„ +  i m .  +  i ( k , g [ l - W - , ) ] _ T_ | l _ ^ )

+  \ a 0r( 1 -  q) -  i((lo g [2 co sh /? (\ /a rz  +  m  • £ )])) . (10.71)

The saddle-point equations (10.54)-(10.56) are equivalent to setting the derivatives 
o f F/N  to zero, giving

m 1* =  ((£** tanh(3{\/arz +  m  •£))) (10.72)

q =  ((tanh2 0(y/arz +  m  • £ ))) (10.73)

r = [ ! - / ? ( ! - g ) ] 2 ' (10J4)
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Only the second o f these, which comes from dF/dr =  0, is a little tricky, needing 
the identity

for any bounded function f ( z ) .
Equation (10.72) is just like (10.22) for the a  =  0 case, except for the addition 

o f the effective Gaussian random field term, which represents the crosstalk from the 
uncondensed patterns. For a =  0 it reduces directly to (10.22). Equation (10.73) 
is the obvious equation for the mean square magnetization. Equation (10.74) gives 
the (nontrivial) relation between q and the mean square value o f the random field, 
and is identical to (2.67).

For m e m o ry  states, i.e., m-vectors o f the form (m, 0,0, . . . ) ,  the saddle-point 
equations (10.72) and (10.73) become simply

where the averaging is solely over the Gaussian random field. These are are identical 
to (2.65) and (2.68) that we found in the heuristic theory o f Section 2.5. Their 
solution, and the consequent phase diagram o f the model in a — T  space, can be 
studied as we sketched there. Spurious states, such as the symmetric combinations 
(10.26), can also be analyzed at finite a  using the full equations (10.72)-( 10.74). 

There are several subtle points in this replica method calculation:

■ We started by calculating ((Z n)) for integer n but eventually interpreted n 
as a real number and took the n —► 0 limit. This is not the only possible 
continuation from the integers to the reals; we might for example have added 
a function like sin7rn/n.

■ We treated the order o f limits and averages in a cavalier fashion, and in par
ticular reversed the order o f n —» 0 and N  —+ oo.

■ We made the replica symmetry approximation (10.60)—(10.62) which was re
ally only based on intuition.

Experience has shown that the replica method usually does work, but there are few 
rigorous mathematical results. It can be shown for the Sherrington-Kirkpatrick spin 
glass model, and probably for this one too, that the reversal o f limits is justified, 
and that the replica symmetry assumption is correct for  integer n [van Hemmen 
and Palmer, 1979]. But for some problems, including the spin glass, the method 
sometimes gives the wrong answer. This can be blamed on the integer-to-real con
tinuation, and can be corrected by rep lica  sy m m etry  breaking, in which the 
replica symmetry assumption is replaced by a more complicated assumption. Then 
the natural continuation seems to give the right answer.

For the present problem Amit et al. showed that the replica symmetric approx
imation is valid except at very low temperatures where there is replica symmetry 
breaking. This seems to lead only to very small corrections in the results. However,

(10.75)

m =  ((tanh/?(\ /orz +  m ) » ,  

q =  ((tanh2 /3(y/arz +  m ) » ,

(10.76)

(10.77)
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the predicted change in the capacity— a c becomes 0.144 instead o f 0.138— can be 
detected in numerical simulations [Crisanti et al., 1986].

10.2 Gardner Theory of the Connections
The second classic statistical mechanical tour de force in neural networks is the 
computation by Gardner [1987, 1988] o f the capacity o f a simple perceptron. The 
calculation applies in the same form to a Hopfield-like recurrent network for auto- 
associative memory if the connections are allowed to be asymmetric.

This theory is very general; it is not specific to any particular algorithm for 
determining the connections. On the other hand, it does not provide us with a 
specific set o f connections even when it has told us that such a set exists. As 
in Section 6.5, the basic idea is to consider the fraction o f w eight space  that 
implements a particular input-output function; recall that weight space is the space 
o f all possible connection weights w  =  {wi j } .

In Section 6.5 we used relatively simple methods to calculate weight space 
volumes. The present approach is more complicated, though often more powerful. 
We use many of the techniques introduced in the previous section, including replicas, 
auxiliary variables, and the saddle-point method.

We consider a simple perceptron with AT binary inputs =  ±1  and M  binary 
threshold units that compute the outputs

Oi =  sgn ( a t - 1/ 2 ^ 2  W ijtj) • (10.78)
j

factor will be discussed shortly. Given a desired set o f associations 
/i =  1, 2, . . . ,  p, we want to know in what fraction of weight space the

Ct =  sgn ( i V 1/ 2 £  (10.79)
j

(for all i and p). Or equivalently, in what fraction o f this space are the 

c f  AT-1/ 2 2 2  W ijtf >  0 (10.80)
3

true?
It is also interesting to ask the corresponding question if the condition (10.80) 

is strengthened so there is a m argin  size k >  0 as in (5.20):

<f A r - 1/2X > o ^ > K -  (10.81)
3

A nonzero k guarantees correction o f small errors in the input pattern.

The A T 1/ 2 
-  cr  for 

equations

are satisfied 
inequalities
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Until (10.81) the factor AT” 1/ 2 was irrelevant. We include it because it is conve
nient to work with Wij’s o f order unity, and a sum o f N  such terms o f random sign 
gives a result o f order AT1/ 2. Thus the explicit factor AT"*1/ 2 makes the left-hand 
side o f (10.81) o f order unity, and it is appropriate to think about /c’s that are 
independent o f N. O f course this is only appropriate if the terms in the sum over j  
are really o f random sign, but that turns out to be the case o f most interest here. 
On the other hand, in Chapter 5 we were mainly dealing with a correlated sum, 
and so used a factor AT instead o f AT1/ 2.

For a recurrent autoassociative network, the same equations with give
the condition for the stability o f the patterns, and a nonzero k ensures finite basins 
o f attraction.

The Capacity of a Simple Perceptron

The fundamental quantity that we want to calculate is the volume fraction o f weight 
space in which (10.81) is satisfied. Adding an additional constraint

J 2 wl  = N (10-82)
j

for each unit i, so as to keep the weights within bounds, this fraction is

^  = -------------------------- / . i - a  * ( £ , « & - * )  ' ( 1 0 ' 8 3 )

Here we enforce the constraint (10.82) with the delta functions, and restrict the 
numerator to regions satisfying (10.81) with the step functions © (x).

The expression (10.83) is rather like a statistical-mechanical partition func
tion (10.1), but the conventional exponential weight is replaced by an all-or-nothing 
one given by the step functions. It is also important to recognize that here it is the 
weights W{j that are the fundamental statistical-mechanical variables, not the acti
vations o f the units.

We observe immediately that (10.83) factors into a product o f identical terms, 
one for each i. Therefore we can drop the index i altogether, reducing without loss 
o f generality the calculation to the case of a single output unit. The corresponding 
step also works for the recurrent network if Wij and Wji are independent, but the 
calculation cannot be done this way if a symmetry constraint =  wji is imposed.

In the same way as for Z  in the previous section, the statistically relevant 
quantity is the average over the pattern distribution, not o f V  itself, but o f Us 
logarithm. Therefore, we introduce replicas again and compute the average

« I C .  e K -A T -1' 1 Ej«f ( f  -  « ) > ( £ , « ) »  -  If)}
(< >>_

(10.84)
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where the integrals are over all the w? ’s and the average ((• • •)) is over the £j*’s and 
the C^’s.

To proceed we use the same kinds o f tricks as in the previous section. First we 
work on the step functions, using the integral representation

r oo poo p J

Q ( z - k) =  J  d X 6 ( X - z )  =  j  dXJ  2 ^ e<x(A"* ) - ( 10 85)

We have step functions for each a  and /z, so at this point we need auxiliary variables 
A£ and x%. Thus a particular step function becomes

0  (c"A T "1/ 2 2 2  ~ K) =  / ° ° 1 “  J dx«  e'* “ A“ ( 10-86)
j *

where
z» =  C N - ii 2 2 2 wU j  ■ ( 10-87)

j

It is now easy to average over the patterns, which occur only in the last factor
o f (10.86). We consider the case o f independent binary patterns, for which we have((IT ,x“"£)) = n((e*p(-‘-c%̂ 1/2

fia jfi a

=  eXP ( 5 2  1°® COS ^ 2  x awj ] )
jfi a

N~*°° exp ( - - ^ J 2 x “ x p Y , wi wi )  ' ( 10-88)

The resulting term is not easy to deal with directly, so we replace it
by a new variable qap defined by

qaP -  I t X )  wf wi ■ ( 10-89)
J

This gives qaa =  1 from (10.82), but we prefer to treat the a =  (3 terms explicitly 
and use qap only for a  ^  /?. Thus we rewrite (10.88) as((IT",X“*“)) = IIeXP(~ 2 “  X (10-90)

(A a  a < p

using qap =  qpa . The qap ys play the same role in this problem that qap and rap 
did in the previous section.

When we insert (10.90) into (10.86) we see that we get an identical result for 
each jz, so we can drop all the /z’s and write

( ( n e w - " ) ) } = [ f ( n l f )II/V Lv K n, " /v

P

(10.91)
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where
K^XjX^q}  =  i ^  ^x aXa —  ̂ ^  ^X<x ^  j Qa(3x otx f3 • (10.92)

or or a</3

Now we turn to the delta functions. Using the basic integral representation

(10.93)

we choose r =  E af 2 for each a  to write the delta functions in (10.84) as

« ( E « ) 2 "  N )  =  /  ^  eNEo f2~E^ 7 ) 3̂  . (10.94)
j

In the same way we enforce the condition (10.89) for each pair a /? (with a  >  /?) 
using r =  NFap:

S (qap -  N - 1 £  w f v j )  e - NF° ^ + F<-> E i . (10.95)
j

We also have to add an integral over each o f the ga/?’s, so that the delta function 
can pick out the desired value.

A factorization o f the integrals over the w ’s is now possible. Taking everything 
not involving w* outside, the numerator o f (10.84) includes a factor

d w f) e~ W / a + E „ < ,  F°>w“ <  (10.96)

for each j .  These factors are all identical— w® is a dummy variable, and j  no longer 
appears elsewhere— so we can drop the j ’s and rewrite (10.96) as

[ /  (IP™ *) E« e ° w° / 2+Y1o,</> F’>ew° we (10.97)

The same transformation applies to the denominator o f (10.84), except that there 
are no Fap terms.

It is now time to collect together our factors from (10.92), (10.94), (10.95), and 
(10.97). Writing A k as exp (H ogyl), and omitting prefactors, (10.84) becomes

/(T L , <® «) ( O x ,  ‘ ‘ l . fd F .s )  e ^ ' . F E i

where

«n >  = f u w ' a   ( 1 0 ' 9 8 )

o u , f , e )  =  i , og[ / “ ( n ^ )  /a i*o«“w '
k a a

+  log y  ( n  dwa)  e~ S .  * - « * / 2+ E .< ,

a < /3  OC
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and
H { E }  =  log ( j^ d w a 'je  J la EaW<*f2 +  1 ^ 2  Ea . (10.100)

Since the exponents inside the integrals in (10.98) are proportional to N , we will be
able to evaluate them exactly using the saddle-point method in the large-AT limit. 

As before, we make a replica-symmetric ansatz:

Q afi=q Fa(3 =  F  E a =  E  (10.101)

(where the first two apply for a  ^  /? only). This allows us to evaluate each term of
G.

For the first term we can rewrite K  from (10.92) as

K { X , x , q }  =  i ^ 2 x aXa -  (10.102)
a a a

and linearize the last term with the usual Gaussian integral trick

e~h^(J2a x“ ) =  J - ^ - e - i3f 2+iiV iJ2aXa (10.103)

derived from (10.5). Then the x a integrals can be done, leaving a product o f identical 
integrals over the Aa ’s. Upon replacing these by a single integral to the nth power 
we obtain for the whole first line o f (10.99):

n —►O— ► na

where a =  p/N.
The second term in G  can be evaluated in the same way, linearizing the 
wa )2 term with a Gaussian integral trick, then performing in turn the wa 

integrals and the Gaussian integral. The final result in the small n limit is

\n (log(2?r) -  lo g (£  +  F ) +  • (10.105)

Finally, the third term o f G  gives simply (again for small n)

\n(E  +  qF) .  (10.106)

Now we are in a position to find the saddle point o f G  with respect to g, F, and 
E.  The most important order parameter is g. Its value at the saddle point is the
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most probable value o f the overlap (10.89) between a pair of solutions. If, as at small 
a, there is a large region o f w-space that solves (10.80), then different solutions can 
be quite uncorrelated and q will be small. As we increase a, it becomes harder and 
harder to find solutions, and the typical overlap between a pair o f them increases. 
Finally, when there is just a single solution, q becomes equal to 1. This point defines 
the op tim a l p e rce p tro n : the one with the largest capacity for a given stability 
parameter « , or equivalently the one with highest stability for a given a. We focus 
on this case henceforth, taking q —► 1 shortly.

The saddle-point equations dG/dE  =  0 and dG/dF =  0 can readily be solved 
to express E  and F  in terms o f q:

F  =  

E  =

( 1 - 9 ) 2 
1 - 2  q

( I - ? ) 2 '
(10.107)

Substituting these into the expression for G  (and making a change o f variable in 
the dX integral), we get

s ° (,) = “/ ^ e"'v ,|osU
dz

+  i  log(27r) +  \ !°g (l  -  q) +

Setting dG/dq =  0 to find the saddle point gives

g -  + i  
2(1 -  q) +  2

t +  Ky/<i _
2V?(1 -  ?)3/2 2(1 -  9)2

(10.108)

(10.109)

where u =  (/c +  ty/q)/y/l — q. Taking the limit q -+  1 is a little tricky, but can be 
done using L ’Hospital’s rule, yielding the final result

(10.110)

Equation (10.110) gives the capacity for fixed k . Alternatively we can use it to 
find the appropriate k for the optimal perceptron to store Na patterns. In the limit 
k =  0 it gives

oe(0) = 2 (10.111)

in agreement with the result found geometrically by Cover that was outlined in 
Chapter 5.

One can also perform the corresponding calculation for biased patterns with a 
distribution

P(f?) =  1(1 +  m)6(tf  -  1) +  ±(1 -  m )S (tf +  1) (10.112)
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a

FIGURE 10.1 Capacity a c 
as a function o f k for three 
values o f m (from Gardner 
[1988]).

so that ((£f)) =  m. The calculation is just a little bit more complicated, with 
an extra set o f variables M a =  TV-1 / 2 ^ -  wf  with respect to which G  has to be 
maximized. The results for the storage capacity as a function o f m and k are shown 
in Fig. 10.1.

An interesting limit is that o f m —► 1 (sparse patterns). Then the result for 
k =  0 is

(1 -  to) l o g ( i ^ )

which shows that one can store a great many sparse patterns. But there is nothing 
very surprising about this, because very sparse patterns have very small informa
tion content. Indeed, if we work out the total information capacity— the maximum 
information we can store, in bits— given by

I  =  —
N 2a c 
log 2

then we obtain

1 =
N  2

2 log 2 (10.115)

in the limit m —► 1. This is less than the result for the unbiased case (m =  0, 
a c =  2), which is I  =  2N 2. In fact the total information capacity is always o f the 
order TV2, depending only slightly on m.

It is interesting to note that a capacity o f the order o f the optimal one (10.113) 
is obtained for a Hopfield network from a simple Hebb-like rule [Willshaw et al., 
1969; Tsodyks and FeigeFman, 1988], as we mentioned in Chapter 2.

A number o f extensions o f this work have been made, notably to patterns with 
a finite fraction o f errors, binary weights, diluted connections, and (in the recurrent 
network) connections with differing degrees o f correlation between and Wji 
[Gardner and Derrida, 1988; Gardner et al., 1989].
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Generalization Ability

A particularly interesting application is to the calculation o f the generalization 
ability o f a simple perceptron. Recall from Section 6.5 that the generalization ability 
o f a network was defined as the probability o f its giving the correct output for 
the mapping it is trained to implement when tested on a random example o f the 
mapping, not restricted to the training set. This can be calculated analytically by 
Gardner’s methods [Gyorgyi and Tishby, 1990; Gyorgyi, 1990; Opper et al., 1990].

The basic idea, first used by Gardner and Derrida [1989], is to perform a cal
culation of the weight-space volume like the one just described, but, instead of 
considering random input-target pairs (ZjX**)) using pairs which are examples o f 
a particular function / ( £ )  =  sgn(v • £) that the perceptron could learn. That is, 
we think o f our perceptron as learning to imitate a teach er p e rce p tro n  whose 
weights are V{.

Under learning, the pupil perceptron’s weight vector w  will come to line up 
with that o f its teacher. Its generalization ability will depend on one parameter, 
the dot product o f the two vectors:

(10.116)

Here both w  and v  are normalized as in (10.82). R  is introduced into the calculation 
in the same way that q was earlier, by inserting a delta function and integrating 
over it. Ultimately one obtains saddle-point equations for both q and R.

To find the generalization ability from iZ, consider the two variables

x =  anc* V =  (10.117)
j 3

which are the net inputs to the pupil and the teacher respectively. For large N, x 
and y are Gaussian variables, each o f zero mean and unit variance, with covariance 
(xy)  =  R.  Thus their joint distribution is

r./ 1 (  x2 - 2 R x y  +  y2\ /m  11 q\
p (x ' y ) -  2 7 rV n rR S eXP(  2(1 — R 2) )•  ( )

Having averaged over all inputs, the generalization ability g( f )  no longer depends 
on the specific mapping o f the teacher (parametrized by v ), but only on the number
of examples. We therefore write it as g(ot). Clearly g{oc) is the probability that x
and y have the same sign. Simple geometry then leads to

g(a)  =  1 — — cos-1 R  (10.119)
7r

where R  is obtained from the saddle-point condition as described above.

w v .
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a

FIGURE 10.2 The gen
eralization ability, flf(o), 
as a function o f rela
tive training-set size, a.  
Adapted from Opper et al. 
[1990].

Figure 10.2 shows the resulting g(ot). The necessary number o f examples for 
good generalization is clearly o f order N , in agreement with the estimate (6.81). In 
the limit o f many training examples perfect generalization is approached:

1 -  3(a ) =  1  •
OC

(10.120)

This form o f approach means that the a priori generalization ability distribution 
Po(g) discussed in Section 6.5 has no gap around g =  1.

This example shows how one can actually do an explicit calculation (for the 
simple perceptron) which fits into the theoretical framework for generalization in
troduced in Section 6.5. We hope it will guide us in future calculations for less 
trivial architectures.

All the preceding has been algorithm-independent— it is about the existence 
o f connection weights that implement the desired association, not about how they 
are found. It is also possible to apply statistical mechanics methods to particular 
algorithms [Kinzel and Opper, 1990; Hertz et al., 1989; Hertz, 1990], including 
their dynamics, but these calculations lie outside the scope o f the framework we 
have presented here.
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________________ APPENDIX
Statistical Mechanics

In this appendix we describe some of the basic results from statistical mechanics. 
We consider only discrete systems, but most o f the results are easily generalized to 
continuous systems by replacing the sums by integrals.

A.1 The Boltzmann-Gibbs Distribution
The starting point o f statistical mechanics is an energy function. We consider a 
physical system with a set o f states a, each o f which has an energy Ha . Note that 
a particular a  specifies the state or configuration o f the entire system, not just of 
one unit or one spin, and Ha is the total energy o f the system in that state.

If the system is at an absolute temperature T  >  0, its state a  will vary with 
time, and quantities such as Ha that depend on the state will themselves fluctuate. 
Although there must be some driving mechanism for these fluctuations, part o f the 
idea o f temperature involves ignoring this and treating them as random; thermal 
energy is by definition disordered. When a system is first prepared, or after a change 
o f parameters, the fluctuations may have on average a definite direction, such as 
that o f decreasing energy Ha . But after a while any such trend ceases and the 
system just fluctuates around constant average values. Then we say that it is in 
th erm al equ ilib rium .

A fundamental result from physics tells us that in thermal equilibrium each of 
the possible states a  occurs with probability

pa =  ^ e ~ H'-lkBT (A .l)

275
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where the normalizing factor

Z =  Y ^ e ~ Ha,kBT (A.2)
a

is called the p a rtit ion  fu n ction , k s  is B o ltzm a n n ’ s con stan t, with value 1.38 x 
1 0 "16 erg/K .

Equation (A .l)  is called the Boltzmann-Gibbs distribution. We will not at
tempt to justify it here. It is usually derived from very general assumptions about 
microscopic dynamics, but can also be interpreted from the viewpoint o f informa
tion theory. It usually works well, but can fail when a system does not explore all 
o f its possible states.

In applications to neural networks, the “temperature” of a stochastic network 
is of course not related to the physical temperature, but is simply a parameter 
controlling the update rule. So its scale is irrelevant, and we can choose to measure 
it in units such that k s  =  1. We have implicitly done this in all the statistical 
mechanics calculations in this book, simply omitting the ks  factor, as we do in the 
rest o f this Appendix.

If we know the energy function Ha for a system we can in principle use (A .l)  to 
calculate the probability o f finding it in each o f its states a. Then we can compute 
the average value (A) o f any quantity A  that has a particular value A a in each 
state, using

(A) =  J 2 A aPa . (A.3)
a

This is called a th erm al average, and for a large system usually corresponds 
closely to the measured value o f A. This is how we can compute useful quantities 
for prediction or comparison with experiment.

In practice the hardest part is calculating the partition function Z. On the
other hand, once we have done so, we can usually compute the desired averages (A)
from Z  itself, and do not have to evaluate summations like (A.3) explicitly.

Let us see how this works for the example of a Hopfield network, with the 
energy function

H { S }  =  -  ^ E  wHSiSi -  E  biSi • (A -4)
ij i

Here we have added explicit bias terms 6; for the purposes o f the present calculation; 
we can set 6,* =  0 later if we so desire. Note that H  is a function o f all the activations 
£,•; the set o f all 5,*’s plays the role of the generic state label a  used above.

The partition function is a sum over all the possible states, all the 2N combi
nations o f Si =  ±1 :

z- E ••• E exp(̂Eu;,'-’5<5>+/?E6,'5»') (A-5)
5 i=±l 1 ij *
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where fi =  1/T. The sum over all states is called a trace  and instead o f writing out 
all the summations it is common to write (A.5) as

Z  =  Trs exp ^  WijSiSj + / ? ^  6,-S<) . (A.6)
•j •

The average activation (Si) o f unit i is given by

Si exp ^  SiSj +  / ? ^  h S ij  1 (A.7)
L ij i J

and it looks at first as though we have to do two traces to evaluate the average, 
one in (A.6) and one in (A.7). But if we know the Z  as a function o f the 6,-, then 
(Si) can be obtained by differentiation:

=  =  T W , h s Z - (A '8)

O f course we still haven’t evaluated Z  (see Section 10.1), but at least we have 
reduced two problems to one.

A.2 Free Energy and Entropy
Many averages can be calculated in this same sort o f way, and that is one reason 
why it is a good idea to define the free  en ergy

F  =  —T l o g Z .  (A .9)

In terms of the free energy, (A.8) becomes simply

=  (A.10)

Similarly, the correlation function is

(S S ,)  =  ( A H )

as we showed on page 171,and used in deriving the Boltzmann learning algorithm. 
Almost every quantity o f interest can be written as a suitable derivative o f F, so
computing F  or log Z  is a central goal o f the statistical mechanics approach to a
problem.
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It is interesting to calculate the difference between the average energy (H ) and 
the free energy, using J2a Pa =  1:

(H)  — F  =  ^ P . H . - T l a g Z
a

=  TY,P«(pna-\ogz)
a

=  - T E ^ I o g - g -
a

=  - r £ p a iog pQ . (A. 12)
a

Apart from a factor o f T, the result is called the en trop y :

S =  — E  Pa loS Pa (A .13)
a

and the free energy can be written as

F  =  (H ) — T S . (A .14)

The entropy S has several interpretations. One is as the width of the probability 
distribution Pa \ the more states a  that have appreciable probability, the larger 5 .
An easy way to see this is to consider a simple case where K  states have the same
probability l/ K  and the rest have zero probability. Then

S =  ~ Y ^ P a\ °gP a  =  log I<. (A .15)
a

It is sometimes useful to invert this and use exp(£) as a measure o f the number 
of appreciably weighted states, even when the probabilities are not all equal. This 
number can also be thought o f as the volume of state  space— the space o f all 
possible a ’s— in which the system resides.

Another interpretation o f entropy comes from information theory. If we have a 
set o f possible states a  with probabilities Pa , then

I  =  - ^ P Qlog2Pa (A .16)
Of

can be shown to be the average amount o f additional information required to spec
ify one o f the states. The larger / ,  the more uncertain the actual state a. The 
thermodynamic entropy S  and the information entropy I  are the same except for a 
factor o f log 2; the information theoretic version is normally written with a base 2
logarithm so as to give a result in b its. For the case o f K  equally likely states we
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find I  — Iog2 K ,  which is indeed the number o f bits needed to specify one choice 
out o f K  alternatives.

The free energy F  can be interpreted further by writing (A.2) and (A.9) as

o - f / t =  Z  =  'Y ^e~HalT. (A.17)

This shows that F  is something like an exponentially weighted sum o f energies. 
More importantly, dividing out a factor o f Z  we obtain

p - F / T  ^  p—H c /TV = E V = Eft- <A18>
Of

Thus e~ F!T/Z (which is just 1) can be thought of as the sum of the probabilities o f 
the individual states. The significance o f this is that it still applies if the sum over 
all a ’s is replaced by a restricted sum over a subset o f them; then e~F lT/Z gives 
the probability o f finding the system in that subset, where F* is the restricted free 
energy. This is the approach used in Section 7.1.

A.3 Stochastic Dynamics
In some cases we have detailed knowledge of the stochastic sequence o f states ot\, 
<*2> <*3 > For example in the Hopfield network we used the update rule (2.48)

P ,ob(S , =  ± 1 ) =  / , ( * * , )  =  (A .19)

where hi was the net input Ylj wijSj +  &,• to unit i. This can be rewritten as a 
tran sition  p rob a b ility  to flip unit i from Si to —Si

t +  J (<?Agi) (A.20)

where

A  Hi =  H ( S 1 . . . - S i . . . S N) - H ( S 1 . . . S i . . . S N) =  2/itS; (A.21)

is the energy change resulting from such a flip.
The transition probabilities (A.20) give us a complete description o f the stochas

tic sequence o f states in the Hopfield model. In the general case we might know the 
transition probabilities W ( a  —► a 7) for all pairs o f states a  and a 7. Typically many 
o f these would be zero; in the Hopfield model we choose zero transition probability 
for any change involving two or more units at a time.
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A set o f transition probabilities W ( a  —► a ')  describes a very general kind of 
model which is not necessarily describable by equilibrium statistical mechanics; an

o f leading to thermal equilibrium. Usually however, we are chiefly interested in 
equilibrium, in part because o f the availability o f powerful methods of analysis. It 
is therefore important to seek a condition on W ( a  —► a f) to guarantee equilibrium.

In equilibrium the probability Pa o f finding the system in a given state a  is 
independent o f time and is given by the Boltzmann-Gibbs distribution (A .l) . A 
sufficient condition for maintaining this state o f affairs is that the average numbers 
o f transitions from a  to a* and from a 9 to a  be equal:

where A H  =  Ha• — Ha. It is easy to check that the rule (A .20) does indeed satisfy 
this condition, so we can expect to find thermal equilibrium in the Hopfield model. 
Indeed it is the condition (A .23) that motivates the choice (A .20) for the update 
rule.

Other evolution rules satisfying (A.23) are also possible, and also lead to the 
Boltzmann-Gibbs distribution in equilibrium. In simulating physical systems a very 
common choice is the Metropolis algorithm [Metropolis et al., 1953] where

This has the advantage that it makes more flips and therefore reaches equilibrium 
more rapidly.

Note that we haven’t actually shown that the system relaxes to thermal equi
librium from an arbitrary starting state, but this can be demonstrated with more 
powerful methods.

arbitrary set o f W ( a  —► a ') ’s can produce a limit cycle or chaotic behavior instead

P «W (a  — a') =  Pa>W(a' -+ a) (A.22)

or
(A.23)

(A .24)
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h a rd  lim ite r

see sign  fu n c tio n

h a rd w a re  im p le m e n ta tio n s , 9, 58-63, 16 7  

h a rd w irin g , 233  

h a rm o n iu m , 170  

h a rm o n y  th e o ry, 170  

H e a v isid e  fu n ctio n  

see s te p  fu n c tio n  

H e b b  ru le, 16 , 2 0 , 2 2 -24 , 33, 4 3 -4 5, 4 9 - 5 3 , 

64, 69, 9 7, 10 4, 1 1 1 ,  19 9, 2 5 1 , 2 5 7  

in cre m e n ta l, 44  

h e d o n is tic  u n its , 192  

H essian  m a tr ix , 12 5  

h e te r o -a s so c ia tio n , 92 

h e u ristic  c ritic , 196  

h id d e n  u n its , 90, 1 1 5 - 1 8 7  

n u m b e r n ee d ed , 14 2 -14 4  

h ie ra rch ica l co rrela tio n , 52  

h ie ra rch ica l fe a tu r e  m a p  cla ssifiers, 2 4 7 -  

248

h ie rarch ica l k n o w le d g e , 218  

h ip p o c a m p u s , 7  

h isto ry, 6 - 8 , 2 18  

h o lo g ra m , 62

H op field  m o d el, 1 1 -6 9 , 7 1 ,  2 5 1-2 6 5  

ca p a c ity , 17 -2 0 , 35, 17 0 , 2 5 1 -2 6 5  

d efin itio n , 13  

e n e rg y  fu n c tio n , 81  

e x te n s io n s , 43-69  

fo rm a l th e o ry, 2 5 1-2 6 5  

m ea n  field  th e o ry, 3 3 -4 1, 2 5 1-2 6 5  

p h a se  d ia g r a m , 39 -4 1  

s ta tis t ic a l m ech a n ics, 2 5 1 -2 6 5 , 276  

s to ch a s tic , 3 2 -4 1  

h o r iz o n ta l/ v e r tic a l lin e  p ro b le m , 227  

h y b r id  le a r n in g  sch em es, 246-250  

h y p e r b o lic  s e c a n t fu n c tio n , 111  
h y p e r b o lic  ta n g e n t, ta n h ( x ) , 28, 108  

h y p e r c u b e , 13

h y p e r p la n e  c o n d itio n , 93, 1 1 2  

w ith  th r e sh o ld , 94 

h y p h e n a tio n , 134  

h yste re sis, 7

I
id e n tity  m a tr ix , 51  

ill-p o se d  p ro b le m s, 82 

im a g e  co m p re ssio n , 13 6 , 225  

im a g e  p ro ce ssin g, 8 1-8 7  

im a g e  re co n stru ctio n , 12 , 82, 85
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in a c c u r a te  c o n n e c tio n s , 43 

in c r e m e n ta l ru le, 169  

in d ic a to r  fu n c tio n , 149  

in e r tia

see m o m e n tu m  

in fin ite  ra n g e  in te ra c tio n s , 29 

in fo rm a tio n  c a p a c ity , 2 7 1  

in fo rm a tio n  c o n te n t, 204-205  

in fo rm a tio n  th e o ry, 16 6, 278  

in h ib ito r y  s y n a p s e , 3 

in n er p r o d u c t, 93 

in p u t  n o r m a liz a tio n , 2 19 -2 2 0  

in p u t  re p re se n ta tio n , 14 4 -1 4 5  

in te g r a tin g  u n its , 18 1

see also c o n te x t  u n its  

in te rn a l field, 25

in te rn a l re p re se n ta tio n s, 1 3 2 -1 3 3 , 158  

o p tim iz in g , 1 22  
iron , 30

Isin g m o d el, 25, 32 

d y n a m ic s , 2 7  

fe rr o m a g n e t, 30

J

Jo rd an  n e tw o rk , 180  

K
k -m e a n s  c lu s te r in g , 2 2 2  
K a r h u n e n -L o e v e  tra n sfo rm , 205, 207

see also p r in cip a l c o m p o n e n t a n a ly sis  

k e y -v a lu e  ta b le , 2 4 7  

k in k , 243

K o h o n e n  fe a tu r e  m a p p in g , 236-2 46  

K o h o n e n  u n its , 218  

K ro n e c k e r d e lt a  s y m b o l, 50

L

la b e lle d  d a t a , 226

L a g r a n g e  m u ltip lie r, 2 1 2
la te r a l c o n n e c tio n s , 209, 2 1 5 , 2 19 , 234

la te r a l e x c ita tio n , 2 1 5

la te r a l in h ib itio n , 2 1 5 , 2 19 , 234

la ye rs

n u m b e r n ee d ed , 142

n u m b e rin g  of, 90

see also m u lti-la y e r  n etw o rk s

le a rn in g, 10, 89

a n ti-H e b b ia n , 209 

b y  se le ctio n , 69 

c o m p e titiv e , 2 17 -2 4 6  

g e o m e tr ic a l p ic tu re , 99 

H e b b ia n , 2 0 0 -2 15  

h yb r id , 246-250  

le a k y , 2 2 1  
off-lin e, 12 4  

on -lin e , 184

re in fo rcem e n t, 10, 1 10 , 18 8 -19 6  

s u p e r v ise d , 10 , 8 9 -19 6  

u n s u p e r v is e d , 10, 19 7-2 4 6  

w ith  a tea ch e r, 89 

see also le a r n in g  rule  

le a r n in g  a lg o r ith m , 6 
le a rn in g  a u to m a ta , 189  

le a rn in g  cu rve s, 13 5 , 15 2  

le a r n in g  ra te, 44, 98, 200 

a d a p tiv e , 124  

le a r n in g  rule  

ad a lin e , 104  

a n ti-H e b b , 209

a s s o c ia tiv e  r e w a rd -p e n a lty , 190  

b a c k -p r o p a g a tio n , 1 1 8  

b a c k -p r o p a g a tio n  th r o u g h  tim e , 18 2 -  

184

c o m p e titiv e , 2 19  

d e lta , 104, 2 4 7 , 249  

D u r b in -W ills h a w , 245  

g r a d ie n t d e sce n t, 1 0 3 -10 7  

K o h o n e n , 236  

L in sk er, 2 11  
L M S , 104  

O ja  A f-u n it , 207  

O ja  1-u n it, 20 1-20 4  

P e a r lm u tte r  an d  H in to n , 204 

p e rce p tro n , 98 

p la in  H e b b ia n , 2 0 0  
reverse d e lta , 2 01  
S a n g e r, 206-209  

W id r o w -H o ff, 104  

W illia m s -Z ip s e r , 18 4 -18 6  

Y u ille  e t al., 204  

le a r n in g  v e c to r  q u a n tiz a tio n , 226  

le a r n in g  w ith  a c r itic , 188

see also re in fo rcem e n t le a r n in g  

le a r n in g  w ith  a  te a ch e r, 10
see also s u p e r v is e d  le a r n in g
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le a r n in g  w ith in  b o u n d s , 44  

L E D , 61

lim it  c y c le , 48, 5 6 , 63, 17 6  

le a r n in g , 18 7  

lin e  p ro ce sse s, 85 

lin e  search  m in im iz a tio n , 1 2 5  

lin ea r in d e p e n d e n ce , 9 7 , 10 2 , 19 2  

lin e a r  p e r c e p tr o n , 10 2 -10 7  

lin e a r  s e p a ra b ility , 9 4 -9 7, 10 3, 1 1 1  

lin e a r tra n s fo r m a tio n , 2 14  

lin e a r u n its, 10 2 -10 7 , 13 6 , 19 9-20 4 , 2 1 1  

lin es

h o rizo n ta l a n d  v e r tic a l, 2 2 7  

lin k s

see co n n e c tio n s  

L in s k e r ’s m o d e l, 2 1 0 -2 1 5  

L itt le  m o d e l, 16  

L M S  ru le, 104  

lo a d  p a r a m e te r , 36

lo c a l m in im a , 78, 108, 1 2 9 -1 3 0 , 222, 246

lo ca lity , 52, 1 1 9

lo c a lly  tu n e d  u n its , 249

lo g is tic  fu n c tio n , fp(x),  27, 32, 1 1 9

lo n g -tim e  c o n n e c tio n s , 65

lo o k u p  ta b le , 247

lo o p  e n e rg y, 8 6
L V Q , 226

L V Q 2 , 226

L y a p u n o v  fu n c tio n , 22-2 3

M

M a c k e y -G la s s  d iffe r e n tia l-d e la y  e q u a tio n ,  

13 9 , 249  

m a g n e tic  field , 25 

m a g n e tic  m a te r ia ls , 25  

m a g n e tic  s y s te m s , 2 5 -3 2  

m a g n e tiz a tio n , 28 

m a g n e ts , 2 5  

m a r g in  size , 98-99, 265  

M a r k o v  p ro ce ss, 242  

m a s k in g , 230  

m a s te r  u n it, 160  

m a s te r -s la v e  n e tw o rk , 1 7 5  

m a tc h  filters, 14 3  

m a tc h e d  filte r in g , 205  

m a tc h in g , 72

m a tr ix  m u ltip lic a tio n  n o ta tio n , 2 0 0  
m a x im a l e ig e n v e c to r , 2 0 1 , 206

M c C u llo c h -P it t s  u n it, 3, 7  

see also th re sh o ld  u n it  

m ea n  field  a n n e a lin g , 76, 1 7 1  

m ea n  field  a p p r o x im a tio n , 29, 1 7 1  

m ea n  field  B o ltz m a n n  m a ch in e

see d e te r m in is tic  B o ltz m a n n  m a c h in e  

m ea n  field  th e o ry, 2 9 -3 2 , 45, 2 52 , 2 5 7  

fe rr o m a g n e t, 3 1  

H o p field  m o d e l, 3 3 -4 1, 2 5 1 -2 6 5  

s to c h a s tic  u n its, 3 3 -4 1  

m e ch a n ica l n etw o rk , 83 

m e d ic a l d ia g n o sis, 109, 16 5  

m e m b e r sh ip  m a tr ix , 2 2 2  
m e m o ry

see a s s o c ia tiv e  m e m o ry  

m e m o ry  s ta te s , 24, 255, 264  

m e m o ry  tra ce , 65, 18 1  

m e m o ry  u n its , 1 7 9 -1 8 2  

m en to r in p u t

see t a r g e t  p a tte r n  

M e tr o p o lis  a lg o r ith m , 280 

M e x ic a n  h a t, 2 14 , 234  

m in im iz a tio n  m e th o d s , 12 4 -12 9  

M in s k y  a n d  P a p e r t, 7  

m ix tu r e  s ta te s , 24, 35, 40 

a s y m m e tr ic , 2 5 7  

s y m m e tr ic , 256  

m o d e llin g  n etw o rk , 19 4  

m o m e n tu m , 84, 12 3 , 18 5, 222  

m o m e n tu m  p a r a m e te r, 12 3  

M o n te  C a r lo  sim u la tio n , 7 5 , 16 8 , 280 

M o o d y -D a r k e n  a r ch ite ctu re , 249  

M o o r e -P e n r o s e  in verse, 5 1  

m o to r co n tro l, 239  

m o v in g  av era g e , 65, 18 1  

m u lti-la y e r  n etw o rk s, 8 , 1 1 5 - 1 6 2  

p e rfo rm a n ce , 1 4 1 - 1 4 7  

m u ltip le  flips, 168  

m u ltip lic ity , 262  

m u tu a l in h ib itio n , 7 5

N

n a v ig a tio n  o f a  car, 13 5  

n e ig h b o r h o o d  fu n c tio n , 236  

a s y m m e tr ic , 244  

n e o co g n itro n , 228  

N E R F s ,  14 4 , 1 4 7  

n erve cells , 2
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N E T t a lk ,  13 2  

n e tw o rk

C o u lo m b  e n e rg y, 223  

c o u n te r p r o p a g a tio n , 2 4 7-2 4 8  

e le ctro n ic , 58 -6 1  

fe e d -fo rw a r d , 9 0 -16 2  

H o p fie ld , 1 1 -6 9 , 7 1 ,  2 5 1-2 6 5  

J o rd a n , 180  

la y e re d , 90 

m a s te r -s la v e , 1 7 5  

m o d e llin g , 194  

m u lti-la y e r , 8 , 1 1 5 - 1 6 2  

o p tic a l, 9, 6 1-6 3  

p a r tia lly  re cu rren t, 179  

re cu rren t, 90, 1 6 3 -1 8 7 , 266  

s e q u e n tia l, 17 9  

s to c h a s tic , 3 2 -4 1, 55  

tim e -d e la y , 1 7 7  

see also a r ch ite ctu re ; u n it  

n e tw o rk  c o n s tr u c tio n  a lg o r ith m s , 1 5 8 -1 6 2  

n e tw o rk  tr a n s p o s itio n , 1 7 5  

n eu ra l field  th e o ry, 6 
n eu ra l tre e, 160  

n e u r o c o m p u ta tio n , 2 
n eu ro d es, 5

see also u n it  

n e u r o d y n a m ic s , 6 
N e u ro g a m m o n , 13 7  

n eu ron , 2-5

c y c le  tim e , 5 

d ela y, 4

in p u t  c a p a c ita n c e , 59 

p u lse  p h a se , 4

tra n s m e m b r a n e  re sista n ce , 59 

see also u n it  

n eu ro scie n ce , 2 

N e w t o n ’s m e th o d , 12 5  

n o d e

see u n it  

noise, 32

im p r o v in g  p e rfo r m a n ce , 35, 12 9 , 13 7  

n o n lin e a r u n its , 10 7 -10 9  

n o n lin e a rity, 4, 12  

n o t u sefu l, 136  

n o n lo c a l, 52

n o r m a liz a tio n  o f in p u t, 2 2 0  
N P -c o m p le te , 72  

n u m b e r o f  w e ig h t u p d a te s , 101  
n u m b e rin g  la ye rs, 90

numerical integration, 55

O
o b je c tiv e  fu n c tio n , 22, 7 1  

off-lin e le a r n in g , 12 4  

O j a ’s 1-u n it  ru le, 20 1-20 4  

e x a m p le , 2 01  

th eo ry, 202-204  

O j a ’s M -u n it  ru le, 207, 2 2 0  
o n -lin e  le a r n in g , 184  

o p tic  te c tu m , 233  

o p tic a l n etw o rk s, 9, 6 1-6 3  

o p tim a l a r c h ite c tu re s, 1 5 6 -1 6 2  

o p tim a l b r a in  d a m a g e , 1 4 1  

o p tim a l p e rc e p tro n , 99, 270  

o p tim iz a tio n  p ro b le m s, 7 1 -8 7  

o p to e le ctr o n ic , 61 

order p a r a m e te r, 261  

o r ie n ta tio n -s e le c tiv e  cells, 2 15  

o r ie n ta tio n a l co lu m n s, 211  
o r th o g o n a l p a tte r n s , 20  
o scilla to r, 186  

o u ts ta r  le a r n in g , 247  

o v e r-d a m p e d  lim it, 83 

o v e rfittin g , 14 7  

o ve rla p , 36

P

P  a n d  N P  p ro b le m s, 72  

p a c e m a k e r, 64, 67  

p a lim p se s t, 45  

p a r a lle l p ro ce ssin g , 5-6, 7 1  

p a r a m a g n e t, 29

p a r e n th e s e s -b a la n c in g  ta s k , 186  

p a r ity  fu n c tio n , 96, 13 1  

p a r tia l o rd e rin g , 53 

p a r tia l s o lu tio n s, 108  

p a r tia lly  recu rren t n etw o rk s, 179  

p a r titio n  fu n c tio n , 16 5 , 170 , 252 , 2 57, 266, 

276

p a tte r n  c la ss ifica tio n , 2 1 7 -2 3 2 , 248 

s ta tis t ic a l tech n iq u e s, 199  

p a tte r n  c o m p le tio n , 16 5 , 1 7 7  

p a tte r n  ge n era to rs, 67  

p a tte r n  r e co g n itio n , 168 , 228  

p a tte r n  su b s p a c e , 10 3 -10 4  

p a tte r n  v e cto r , 92
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patterns
c o rr e la te d , 4 9 -5 3 , 64 

lin ea r d e p e n d e n c e , 5 1  

o r th o g o n a l, 20  
ra n d o m , 14  

s e q u e n tia l, 63-69  

P e a n o  cu rve , 238  

p e n a lty , 190

p e n a lty  term s, 7 3 , 7 7 -7 8 , 80, 85, 15 7 , 2 12  

p e rc e p tro n  le a r n in g  ru le, 9 7 -10 1  

c o n v e r g e n c e  p ro o f, 1 0 0 -1 0 1  
p e rce p tro n s , 6 , 90 

c a p a c ity , 1 1 1 - 1 1 4  

e x p lic it  s o lu tio n , 1 0 2  
lin ea r, 10 2 -10 7  

m u lti-la y e r

see m u lti-la y e r  n etw o rk s  

n o n lin e a r, 10 7 -10 9  

o p tim a l, 99, 270  

s im p le

see s im p le  p e rc e p tro n s  

te a ch e r, 2 7 2  

V C  d im en sio n , 1 5 5  

p e rfe ct re call, 19  

p e rio d ic  b o u n d a r y  c o n d itio n s , 78  

p h a se  d ia g r a m

H o p fie ld  m o d e l, 3 9 -4 1  

p h a se  tr a n s itio n , 30, 35 

p h a s e -c o n ju g a te  m irrors, 63 

p h o n e m e  m a p p in g , 240 

p h o n em e s, 13 3 , 178  

p h o n o to p ic  m a p , 240  

p ix e ls, 81

p la ce m e n t p ro b le m s, 79  

p la in  H e b b ia n  le a r n in g , 2 0 0  
p la q u e tte , 8 6  
p la s tic ity , 228  

p o c k e t a lg o r ith m , 160  

P o la k -R ib ie r e  ru le, 126  

p o la r ity  m ark ers, 234  

p o le  b a la n cin g , 196  

p o s itiv e  s e m i-d e fin ite , 2 0 0  
p o w er in  resisto r, 85 

p re p ro ce ssin g , 14 4 , 18 1  

p rim e  fa cto r s, 144

p r in c ip a l c o m p o n e n t a n a ly sis , 13 6 , 19 7 , 

2 0 4 -210

e x a m p le , 205  

p r o b a b ilis tic  ta r g e ts , 109, 16 5 -1 6 6

p ro ce ssin g  ele m e n t  

see u n it  

p ro g ra m m a b le  lo g ic  array, 143  

p ro g ra m m in g , 10 
p r o je c tio n  m e th o d , 5 1  

p ro te in  s e c o n d a ry  s tr u c tu r e , 134  

p r o to ty p e  ve cto rs, 225  

p r o to ty p in g , 198  

p ru n in g, 1 5 7 -1 5 8  

p se u d o -in verse , 4 9 -52, 64, 102  

p s e u d o -N e w to n  rule, 1 2 7 , 140  

p se u d o -te m p e r a tu r e , 32

Q
q u a d r a tic  form , 104, 202, 206 

q u a d ra tu re  p airs, 2 15  

q u a n tu m  m ech an ics, 2 13  

q u a s i-N e w to n  m e th o d , 1 2 7

R
ra d ia l b a sis  fu n ctio n s, 14 3 , 248-250  

rain g u tte r , 105  

ra n d o m  a s y m m e tr y , 48 

ra n d o m  w a lk , 244  

r a n d o m ized  co n n e ctio n s , 44, 48 

re a l-tim e  le a rn in g, 8
r e a l-tim e  recu rren t le a r n in g , 18 2 , 1 8 4 -1 8 7  

recall d y n a m ic s , 30 

re c e p tiv e  field, 140, 14 5 , 2 1 1  

r e co n stru ctio n  o f  an  im a g e , 12 , 8 1, 85 

recu rren t b a c k -p r o p a g a tio n , 1 7 2 - 1 7 6 , 18 7 ,  

190

s ca lin g , 17 6  

s ta b ility , 176  

tim e -d e p e n d e n t, 1 8 6 -18 7  

recu rren t n etw o rk s, 90, 1 6 3 -1 8 7 , 266  

recu rsio n  re la tio n , 1 1 4  

red an d  b la c k  p o in ts, 112  
re d u n d a n cy , 6 , 19 7  

re fr a cto ry  p e rio d , 3 

r e g u la r iza tio n  th e o ry, 82 

R E I N F O R C E  a lg o r ith m s , 194  

rein fo rcem en t  

av erage , 192  

p re d ic te d , 196  

re in fo rcem e n t co m p a r iso n , 196  

re in fo rcem e n t le a rn in g, 10, 110 , 18 8 -19 6
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re in fo rcem e n t sig n a l, 188  

c o n tin u o u s -v a lu e d , 1 9 1  

re la tiv e  e n tro p y, 109  

re la x a tio n , 91  

rep eller, 186  

re p lica , 266  

re p lica  in d e x , 2 57  

r e p lica  m e th o d , 2 5 7  

p ro b le m s, 264  

r e p lica  s y m m e tr y , 262, 264, 269  

b r e a k in g , 8 1, 264  

R e s c o r la -W a g n e r  m o d e l, 104  

re so n an ce, 69, 229

see also a d a p tiv e  re so n an ce  th e o r y  

re tin a , 210 , 2 15 , 233  

silico n , 87 

r e tin o to p ic  m a p , 23 3 -2 3 4  

retrieved s ta te s , 24, 2 5 5 , 264  

reverse d e lta -r u le  le a r n in g , 2 0 1  
reversed  s ta te s , 15 , 24, 35  

rew ard , 190

r o b o t m a n ip u la to r s , 17 6  

r o b o t sen sin g, 239  

ro b u stn e ss, 5, 8 
R T R L , 185  

ru le e x tr a c tio n , 146

S

s a d d le  p o in t, 254, 2 6 1, 269  

s a d d le -p o in t m e th o d , 253 , 2 6 1, 269  

S a n g e r ’s ru le, 206-209, 2 2 0  
lo c a l im p le m e n ta tio n , 208 

th e o r y, 208-209  

s a tu r a tio n  n o n lin e a rity, 53  

sca la r p r o d u c t, 93 

s ca lin g

b a c k -p r o p a g a tio n , 1 1 9  

re a l-tim e  re cu rren t le a r n in g , 185  

re cu rren t b a c k -p r o p a g a tio n , 17 6  

t im e -d e p e n d e n t re cu rren t b a c k -p r o p a 

g a tio n , 18 7  
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