Solutions to 1st Midterm

1. (a) $\emptyset,\{\emptyset\}$
(b) $|A|=3$
(c) $\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}$
(d) \emptyset
(e) $\{\emptyset\}$
(f) $\emptyset,\{\emptyset\}$
(g) A
(h) A
(i) A
2. (a) No.
(b) Yes.
(c) Yes.
3. (a) Suppose f and g are injective. $g(f(x))=g(f(y))$, and since g is injective, $f(x)=f(y)$. f is also injective, so $x=y$, thus $g \circ f$ is injective. Suppose f and g are surjective. $\forall z \in C: \exists y \in B: g(y)=z$. Since f is surjective, $\forall y \in B: \exists x \in A: f(x)=y$. Therefore $\forall z \in C: \exists x: g(f(x))=z$, thus $g \circ f$ is surjective. $g \circ f$ is both injective and surjective, thus bijective. This statement is true.
(b) Let $A=B=C=\mathbb{N} ; f(x)=1, g(x)=x . g$ is surjective, since $\operatorname{ran}(g)=\mathbb{N}$, but $\operatorname{ran}(g(f(x)))=1$. This statement is false.
(c) Let $A=B=C=\mathbb{N} ; f(x)=1, g(x)=x . g$ is injective, since $g(x)=g(y) \Rightarrow x=y$, but $f(g(x))=f(g(y)) \nRightarrow x=y$ for $x=1$ and $y=2$. This statement is false.
(d) Let $A=\mathbb{N}, B=\{0,1,2, \ldots 10\}, C=\{1\} ; f(x)=x \bmod 10, g(x)=1 . f$ is not surjective, since $\operatorname{ran}(f)=\{0 \ldots 9\} \neq B$, but $\operatorname{ran}(g(f(x)))=\{1\}=C$. This statement is true.
(e) Let A, B, C be arbitrary sets, f is not injective, so $\exists x, y \in A: f(x)=f(y)=a \wedge x \neq y$. In this case, $g \circ f: A \rightarrow C . f(x)=f(y)$, thus $(g \circ f)(x)=(g \circ f)(y)$, but $x \neq y . g \circ f$ is not injective, this statement is false.
4. $[1]=\{1,4,5\},[2]=\{2,6\},[3]=\{3\}$,
$[4]=\{1,4,5\},[5]=\{1,4,5\},[6]=\{2,6\}$.
Then we get $\mathrm{R}=\{(1,1),(1,4),(1,5),(2,2),(2,6),(3,3),(4,1),(4,4),(4,5),(5,1),(5,4),(5,5),(6,2),(6,6)\}$
