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Preface to the Fourth Edition

As the teaching of calculus in many colleges and universities has become more problem-
oriented with added emphasis on the use of calculators and computers, the theoretical
gap between the material presented in calculus and the mathematical background
expected (or at least hoped for) in advanced calculus and other more advanced courses
has widened. In an attempt to narrow this gap and to better prepare students for the
more abstract mathematics courses to follow, many colleges and universities have
introduced courses that are now commonly called “transition courses.” In these courses,
students are introduced to problems whose solution involves mathematical reasoning
and a knowledge of proof techniques, where writing clear proofs is emphasized. Topics
such as relations, functions and cardinalities of sets are encountered throughout theo-
retical mathematics courses. Lastly, transition courses often include theoretical aspects
of number theory, combinatorics, abstract algebra and calculus. This textbook has been
written for such a course.

The idea for this textbook originated in the early 1980s, long before transition
courses became fashionable, during the supervision of undergraduate mathematics re-
search projects. We came to realize that even advanced undergraduates lack a sound
understanding of proof techniques and have difficulty writing correct and clear proofs.
At that time, we developed a set of notes for these students. This was followed by the
introduction of a transition course, for which a more detailed set of notes was written.
The first edition of this book emanated from these notes, which in turn has ultimately
led to this fourth edition.

While understanding proofs and proof techniques and writing good proofs are major
goals here, these are not things that can be accomplished to any great degree in a single
course during a single semester. These must continue to be emphasized and practiced in
succeeding mathematics courses.

Our Approach

Since this textbook originated from notes that were written exclusively for undergrad-
uates to help them understand proof techniques and to write good proofs, the tone is
student-friendly. Numerous examples of proofs are presented in the text. Following com-
mon practice, we indicate the end of a proof with the square symbol . Often we precede
a proof by a discussion, referred to as a proof strategy, where we think through what
is needed to present a proof of the result in question. Other times, we find it useful to
reflect on a proof we have just presented to point out certain key details. We refer to a
discussion of this type as a proof analysis. Periodically, we present and solve problems,
and we may find it convenient to discuss some features of the solution, which we refer to



simply as an analysis. For clarity, we indicate the end of a discussion of a proof strategy,
proof analysis, analysis, or solution of an example with the diamond symbol �.

A major goal of this textbook is to help students learn to construct proofs of their
own that are not only mathematically correct but clearly written. More advanced mathe-
matics students should strive to present proofs that are convincing, readable, notationally
consistent and grammatically correct. A secondary goal is to have students gain suffi-
cient knowledge of and confidence with proofs so that they will recognize, understand
and appreciate a proof that is properly written.

As with the first three editions, the fourth edition of this book is intended to assist
the student in making the transition to courses that rely more on mathematical proof and
reasoning. We envision that students taking a course based on this book have probably
had a year of calculus (and possibly another course such as elementary linear algebra)
although no specific prerequisite mathematics courses are required. It is likely that, prior
to taking this course, a student’s training in mathematics consisted primarily of doing
patterned problems; that is, students have been taught methods for solving problems,
likely including some explanation as to why these methods worked. Students may very
well have had exposure to some proofs in earlier courses but, more than likely, were
unaware of the logic involved and of the method of proof being used. There may have
even been times when the students were not certain what was being proved.

New to This Edition

The following changes and additions to the third edition have resulted in this fourth
edition of the text:

• Presentation slides in PDF and LaTeX formats have been created to accompany
every chapter. These presentations provide examples and exposition on key topics.

Using short URLs (which are called out in the margin using the icon), these

presentations are linked in the text beside the supplemental exercises at the end of
each chapter. These slides can be used by instructors in lecture, or by students to
learn and review key ideas.

• The new Chapter 7, “Reviewing Proof Techniques,” summarizes all the techniques
that have been presented. The placement of this chapter allows instructors and
students to review all of these techniques before beginning to explore different
contexts in which proofs are used. This new chapter includes many new examples
and exercises.

• The new Chapter 13, “Proofs in Combinatorics,” has been added because of a
demand for such a chapter. Here, results and examples are presented in this
important area of discrete mathematics. Numerous exercises are also included in
this chapter.

• The new online Chapter 18, “Proofs with Real and Complex Numbers,” has been
added to provide information on these two important classes of numbers. This
chapter includes many important classical results on real numbers as well as
important results from complex variables. In each case, detailed proofs are given.



Chapters 16 (Proofs in Ring Theory), 17 (Proofs in Linear Algebra), and 19 (Proofs
in Topology) continue to exist online to allow faculty to tailor the course to meet
their specific needs.

• More than 250 exercises have been added. Many of the new exercises fall into the
moderate difficulty level and require more thought to solve.

• Section exercises for each chapter have been moved from the end of the chapter to
the end of each section within a chapter. (Exceptions: for the review chapter [7] and
the online chapters [16–19], all exercises remain at the end of the chapter.)

• In the previous edition, there were exercises at the end of each chapter called
Additional Exercises. These summative exercises served to pull together the ideas
from the various sections of the chapter. These exercises remain at the end of the
chapters in this edition, but they have been renamed Supplemental Exercises.

Contents and Structure

Outline of Contents

Each of the Chapters 1–6 and 8–15 is divided into sections, and exercises for each section
occur at the end of that section. There is also a final supplemental section of exercises
for the entire chapter appearing at the end of that chapter.

Since writing good proofs requires a certain degree of competence in writing, we
have devoted Chapter 0 to writing mathematics. The emphasis of this chapter is on effec-
tive and clear exposition, correct usage of symbols, writing and displaying mathematical
expressions, and using key words and phrases. Although every instructor will empha-
size writing in his or her own way, we feel that it is useful to read Chapter 0 periodically
throughout the course. It will mean more as the student progresses through the course.

Chapter 1 contains a gentle introduction to sets, so that everyone has the same
background and is using the same notation as we prepare for what lies ahead. No proofs
involving sets occur until Chapter 4. Much of Chapter 1 may very well be a review for
many.

Chapter 2 deals exclusively with logic. The goal here is to present what is needed
to get into proofs as quickly as possible. Much of the emphasis in Chapter 2 is on
statements, implications and quantified statements, including a discussion of mixed quan-
tifiers. Sets are introduced before logic so that the student’s first encounter with mathe-
matics here is a familiar one and because sets are needed to discuss quantified statements
properly in Chapter 2.

The two proof techniques of direct proof and proof by contrapositive are introduced
in Chapter 3 in the familiar setting of even and odd integers. Proof by cases is discussed
in this chapter as well as proofs of “if and only if” statements. Chapter 4 continues this
discussion in other settings, namely divisibility of integers, congruence, real numbers
and sets.

The technique of proof by contradiction is introduced in Chapter 5. Since existence
proofs and counterexamples have a connection with proof by contradiction, these also
occur in Chapter 5. The topic of uniqueness (of an element with specified properties) is
also addressed in Chapter 5.



Proof by mathematical induction occurs in Chapter 6. In addition to the Principle of
Mathematical Induction and the Strong Principle of Mathematical Induction, this chapter
includes proof by minimum counterexample.

Chapter 7 reviews all proof techniques (direct proof, proof by contrapositive, proof
by contradiction and induction) introduced in Chapters 3–6. This chapter provides many
examples to solidify the understanding of these techniques, emphasizing both how and
when to use the techniques. Exercises in this chapter are distributed randomly with re-
spect to the method of proof used.

The main goal of Chapter 8 (Prove or Disprove) concerns the testing of statements
of unknown truth value, where it is to be determined, with justification, whether a given
statement is true or false. In addition to the challenge of determining whether a statement
is true or false, such problems provide added practice with counterexamples and the
various proof techniques. Testing statements is preceded in this chapter by a historical
discussion of conjectures in mathematics and a review of quantifiers.

Chapter 9 deals with relations, especially equivalence relations. Many examples
involving congruence are presented and the set of integers modulo n is described.

Chapter 10 involves functions, with emphasis on the properties of one-to-one (in-
jective) and onto (subjective) functions. This gives rise to a discussion of bijective func-
tions and inverses of functions. The well-defined property of functions is discussed in
more detail in this chapter. In addition, there is a discussion of images and inverse images
of sets with regard to functions as well as operations on functions, especially composi-
tion.

Chapter 11 deals with infinite sets and a discussion of cardinalities of sets. This chapter
includes a historical discussion of infinite sets, beginning with Cantor and his fascination
and difficulties with the Schröder–Bernstein Theorem, then proceeding to Zermelo and
the Axiom of Choice, and ending with a proof of the Schröder–Bernstein Theorem.

All of the proof techniques are employed in Chapter 12, where numerous results
in the area of number theory are introduced and proved.

Chapter 13 deals with proofs in the area of discrete mathematics called combina-
torics. The primary goal of this chapter is to introduce the basic principles of counting
such as multiplication, addition, pigeonhole and inclusion-exclusion. The concepts of
permutations and combinations described here give rise to a wide variety of counting
problems. In addition, Pascal triangles and the related binomial theorem are discussed.
This chapter describes many proofs that occur in this area including many examples of
how this subject can be used to solve a variety of problems.

Chapter 14 deals with proofs that occur in calculus. Because these proofs are quite
different from those previously encountered but are often more predictable in nature,
many illustrations are given that involve limits of sequences and functions and their
connections with infinite series, continuity and differentiability.

The final Chapter 15 deals with modern algebra, beginning with binary operations
and moving into proofs that are encountered in the area of group theory.

It is our experience that many students have benefited by reading and solving prob-
lems in these later chapters that deal with courses they are currently taking or are about
to take. The same is true for the following online chapters.

The study of proofs in modern algebra continues in the first online Chapter 16
(goo.gl/zKdQor), where the major topic is ring theory. Proofs concerning integral
domains and fields are presented here as well.



In Chapter 17 (goo.gl/Tmh2ZB), we discuss proofs in linear algebra, where the
concepts of vector spaces and linear transformations are emphasized.

Even though real numbers (and, to a lesser degree, complex numbers) occur through-
out mathematics, there are many properties of these two classes of numbers of which
students may be unaware. This is the topic for Chapter 18 (goo.gl/ymv5kJ).

The final online chapter is Chapter 19 (goo.gl/bWFRMu), where we discuss
proofs in topology. Included in this chapter are proofs involving metric spaces and topo-
logical spaces. A major topic here is open and closed sets.

Exercises

There are over 1000 exercises in Chapters 1–19. The degree of difficulty of the exer-
cises ranges from routine to medium difficulty to moderately challenging. As mentioned
earlier, the fourth edition contains more exercises in the moderately difficult category.
Types of exercises include:

• Exercises that present students with statements, asking students to decide whether
they are true or false (with justification).

• Proposed proofs of statements, asking if the argument is valid.
• Proofs without a statement given, which ask students to supply a statement of what

has been proved.
• Exercises that call upon students to make conjectures of their own and possibly to

provide proofs of these conjectures.

Chapter 3 is the first chapter in which students will be called upon to write proofs. At
such an early stage, we feel that students need to (1) concentrate on constructing a valid
proof and not be distracted by unfamiliarity with the mathematics, (2) develop some
self-confidence with this process and (3) learn how to write a proof properly. With this
in mind, many of the exercises in Chapter 3 have been intentionally structured so as to
be similar to the examples in that chapter.

Exercises for each section in Chapters 1–6 and 8–15 occur at the end of a section
(section exercises) and additional exercises for the entire chapter (supplemental exer-
cises) appear at the end of the chapter as do chapter exercises for Chapter 7. Answers
or hints to the odd-numbered section exercises appear at the end of the text as do odd-
numbered chapter exercises for Chapter 7. One should also keep in mind, however, that
proofs of results are not unique in general.

Teaching a Course from This Text

Although a course using this textbook could be designed in many ways, here are our
views on such a course. As we noted earlier, we think it is useful for students to reread
(at least portions of) Chapter 0 throughout the course, as we feel that with each read-
ing, the chapter becomes more meaningful. The first part of Chapter 1 (Sets) will likely
be familiar to most students, although the last part may not. Chapters 2–6 will proba-
bly be part of any such course, although certain topics could receive varying degrees of
emphasis (with perhaps proof by minimum counterexample in Chapter 6 possibly even
omitted). Chapter 7 reviews all proof techniques introduced in Chapters 3–6. If the in-
structor believes that students have obtained a strong understanding of these techniques,



this chapter could be omitted. Nevertheless, we feel it is good for students to read this
chapter and try solving the exercises. Instructors who choose to omit Chapter 7 might
find it useful to assign exercises from this chapter, asking students to determine which
proof technique is to be used.

One could spend much or little time on Chapter 8, depending on how much time
is used to discuss the large number of “prove or disprove” exercises. We think that
most of Chapters 9 and 10 would be covered in such a course. It would be useful to
cover some of the fundamental ideas addressed in Chapter 11 (Cardinalities of Sets).
As time permits, portions of the later chapters could be covered, especially those of in-
terest to the instructor, including the possibility of going to the web site for even more
variety.

Supplements and Technology

Online Chapters

Four additional chapters, Chapters 16–19 (dealing with proofs in ring theory, linear
algebra, real and complex numbers, and topology), can be found by going to:
goo.gl/bf2Nb3.

Instructor’s Solutions Manual (downloadable)
ISBN-10: 0134840461 — ISBN-13: 9780134840468

The Instructor’s Solutions Manual, written by the authors, provides worked-out solutions
for all exercises in the text. It is available for download to qualified instructors from the
Pearson Instructor Resource Center https://www.pearson.com/us/sign-in.html.

Chapter Presentations

This icon , found beside the supplemental exercises for each chapter, indicates a

chapter presentation. The short URLs in the margin of the text provide students with
direct access to the presentations in PDF form. The URL goo.gl/bf2Nb3 provides
access to the complete library of presentations in both PDF and editable LaTeX (Beamer)
formats.
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0
Communicating Mathematics

Quite likely, the mathematics you have already encountered consists of doing prob-
lems using a specific approach or procedure. These may include solving equations

in algebra, simplifying algebraic expressions, verifying trigonometric identities, using
certain rules to find and simplify the derivatives of functions, and setting up and evalu-
ating a definite integral that gives the area of a region or the volume of a solid. Accom-
plishing all of these is often a matter of practice.

Many of the methods used to solve problems in mathematics are based on results in
mathematics that were discovered by people and shown to be true. This kind of math-
ematics may very well be new to you and, as with anything that’s new, there are things
to be learned. But learning something new can be (and, in fact should be) fun. There
are several steps involved here. The first step is discovering something in mathematics
that we believe to be true. How does one discover new mathematics? This usually comes
about by considering examples and observing that a pattern seems to be occurring with
the examples. This may lead to a guess on our part as to what appears to be happen-
ing. We then have to convince ourselves that our guess is correct. In mathematics this
involves constructing a proof showing what we believe to be true is, in fact, true. But
this is not enough. We need to convince others that we are right. So we need to write
a proof that is written so clearly and so logically that people who know the methods
of mathematics will be convinced. Where mathematics differs from all other scholarly
fields is that once a proof has been given of a certain mathematical statement, there is
no longer any doubt. This statement is true. Period. There is no other alternative.

Our main emphasis here will be in learning how to construct mathematical proofs
and learning to write proofs in such a manner that these proofs will be clear to and
understood by others. Even though learning to guess new mathematics is important and
can be fun, we will spend only a little time on this as it often requires an understanding of
more mathematics than can be discussed at this time. But why would we want to discover
new mathematics? While one possible answer is that it comes from the curiosity that
most mathematicians possess, a more common explanation is that we have a problem to
solve that requires knowing that some mathematical statement is true.

1
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2 Chapter 0 Communicating Mathematics

0.1 LEARNING MATHEMATICS

One of the major goals of this book is to assist you as you progress from an individual
who uses mathematics to an individual who understands mathematics. Perhaps this will
mark the beginning of you becoming someone who actually develops mathematics of
your own. This is an attainable goal if you have the desire.

The fact that you’ve gone this far in your study of mathematics suggests that you
have ability in mathematics. This is a real opportunity for you. Much of the mathematics
that you will encounter in the future is based on what you are about to learn here. The
better you learn the material and the mathematical thought process now, the more you
will understand later. To be sure, any area of study is considerably more enjoyable when
you understand it. But getting to that point will require effort on your part.

There are probably as many excuses for doing poorly in mathematics as there are
strategies for doing well in mathematics. We have all heard students say (sometimes,
remarkably, even with pride) that they are not good at mathematics. That’s only an alibi.
Mathematics can be learned like any other subject. Even some students who have done
well in mathematics say that they are not good with proofs. This, too, is unacceptable.
What is required is determination and effort. To have done well on an exam with little or
no studying is nothing to be proud of. Confidence based on being well prepared is good,
however.

Here is some advice that has worked for several students. First, it is important to
understand what goes on in class each day. This means being present and being prepared
for every class. After each class, recopy any lecture notes. When recopying the notes,
express sentences in your own words and add details so that everything is as clear as
possible. If you run into snags (and you will), talk them over with a classmate or your
instructor. In fact, it’s a good idea (at least in our opinion) to have someone with whom
to discuss the material on a regular basis. Not only does it often clarify ideas, it gets you
into the habit of using correct terminology and notation.

In addition to learning mathematics from your instructor, solidifying your under-
standing by careful note-taking and talking with classmates, your textbook is (or at least
should be) an excellent source as well. Read your textbook carefully with pen (or pen-
cil) and paper in hand. Make a serious effort to do every homework problem assigned
and, eventually, be certain that you know how to solve them. If there are exercises in the
textbook that have not been assigned, you might even try to solve these as well. Another
good idea is to try to create your own problems. In fact, when studying for an exam, try
creating your own exam. If you start doing this for all of your classes, you might be sur-
prised at how good you become. Creativity is a major part of mathematics. Discovering
mathematics not only contributes to your understanding of the subject but has the poten-
tial to contribute to mathematics itself. Creativity can come in all forms. The following
quote is from the well-known writer J. K. Rowling (author of the Harry Potter novels).

Sometimes ideas just come to me. Other times I have to sweat and almost bleed
to make ideas come. It’s a mysterious process, but I hope I never find out exactly
how it works.

In her book Defying Gravity: The Creative Career of Stephen Schwartz from God-
spell to Wicked, Carol de Giere writes a biography of Stephen Schwartz, one of the most
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0.2 What Others Have Said About Writing 3

successful composer-lyricists, in which she discusses not only creativity in music but
how an idea can lead to something special and interesting and how creative people may
have to deal with disappointment. Indeed, de Giere dedicates her book to the creative
spirit within each of us. While Schwartz wrote the music for such famous shows as God-
spell and Wicked, he discusses creativity head-on in the song “The Spark of Creation,”
which he wrote for the musical Children of Eden. In her book, de Giere writes:

In many ways, this song expresses the theme of Stephen Schwartz’s life – the
naturalness and importance of the creative urge within us. At the same time he
created an anthem for artists.

In mathematics our goal is to seek the truth. Finding answers to mathematical ques-
tions is important, but we cannot be satisfied with this alone. We must be certain that
we are right and that our explanation for why we believe we are correct is convincing
to others. The reasoning we use as we proceed from what we know to what we wish to
show must be logical. It must make sense to others, not just to ourselves.

There is joint responsibility here. As writers, it is our responsibility to give an accu-
rate, clear argument with enough details provided to allow the reader to understand what
we have written and to be convinced. It is the reader’s responsibility to know the basics
of logic and to study the concepts involved so that a well-presented argument will be
understood. Consequently, in mathematics writing is important, very important. Is it re-
ally important to write mathematics well? After all, isn’t mathematics mainly equations
and symbols? Not at all. It is not only important to write mathematics well, it is impor-
tant to write well. You will be writing the rest of your life, at least reports, letters and
email. Many people who never meet you will know you only by what you write and how
you write.

Mathematics is a sufficiently complicated subject that we don’t need vague, hazy
and boring writing to add to it. A teacher has a very positive impression of a student
who hands in well-written and well-organized assignments and examinations. You want
people to enjoy reading what you’ve written. It is important to have a good reputation
as a writer. It’s part of being an educated person. Especially with the large number of
email letters that so many of us write, it has become commonplace for writing to be more
casual. Although all people would probably subscribe to this (since it is more efficient),
we should know how to write well, formally and professionally, when the situation
requires it.

You might think that considering how long you’ve been writing and that you’re set
in your ways, it will be very difficult to improve your writing. Not really. If you want to
improve, you can and will. Even if you are a good writer, your writing can always be
improved. Ordinarily, people don’t think much about their writing. Often just thinking
about your writing is the first step to writing better.

0.2 WHAT OTHERS HAVE SAID ABOUT WRITING

Many people who are well known in their areas of expertise have expressed their thoughts
about writing. Here are quotes by some of these individuals.
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Anything that helps communication is good. Anything that hurts it is bad.

I like words more than numbers, and I always did—conceptual more than
computational.

Paul Halmos, mathematician

Writing is easy. All you have to do is cross out all the wrong words.

Mark Twain, author (The Adventures of Hucklebery Finn)

You don’t write because you want to say something; you write because you’ve
got something to say.

F. Scott Fitzgerald, author (The Great Gatsby)

Writing comes more easily if you have something to say.

Scholem Asch, author

Either write something worth reading or do something worth writing.

Benjamin Franklin, statesman, writer, inventor

What is written without effort is in general read without pleasure.

Samuel Johnson, writer

Easy reading is damned hard writing.

Nathaniel Hawthorne, novelist (The Scarlet Letter)

Everything that is written merely to please the author is worthless.

The last thing one knows when writing a book is what to put first.

I have made this letter longer because I lack the time to make it short.

Blaise Pascal, mathematician and physicist

The best way to become acquainted with a subject is to write a book about it.

Benjamin Disraeli, prime minister of England

In a very real sense, the writer writes in order to teach himself, to understand
himself, to satisfy himself; the publishing of his ideas, though it brings gratifica-
tion, is a curious anticlimax.

Alfred Kazin, literary critic

The skill of writing is to create a context in which other people can think.

Edwin Schlossberg, exhibit designer

A writer needs three things, experience, observation, and imagination, any two
of which, at times any one of which, can supply the lack of the other.

William Faulkner, writer (The Sound and the Fury)

If confusion runs rampant in the passage just read,
It may very well be that too much has been said.

So that’s what he meant! Then why didn’t he say so?

Frank Harary, mathematician

A mathematical theory is not to be considered complete until you have made it
so clear that you can explain it to the first man whom you meet on the street.

David Hilbert, mathematician
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Everything should be made as simple as possible, but not simpler.

Albert Einstein, physicist

Never let anything you write be published without having had others critique
it.

Donald E. Knuth, computer scientist and writer

Some books are to be tasted, others to be swallowed, and some few to be chewed
and digested.

Reading maketh a full man, conference a ready man, and writing an exact man.

Francis Bacon, writer and philosopher

Judge an article not by the quality of what is framed and hanging on the wall,
but by the quality of what’s in the wastebasket.

Anonymous (Quote by Leslie Lamport)

We are all apprentices in a craft where no-one ever becomes a master.

Ernest Hemingway, author (For Whom the Bell Tolls)

There are three rules for writing a novel. Unfortunately, no one knows what they
are.

W. Somerset Maugham, author (Of Human Bondage)

0.3 MATHEMATICAL WRITING

Most of the quotes given above pertain to writing in general, not to mathematical writing
in particular. However, these suggestions for writing apply as well to writing mathemat-
ics. For us, mathematical writing means writing assignments for a mathematics course
(particularly a course with proofs). Such an assignment might consist of writing a single
proof, writing solutions to a number of problems, or perhaps writing a term paper which,
more than likely, includes definitions, examples, background and proofs. We’ll refer to
any of these as an “assignment.” Your goal should be to write correctly, clearly and in
an interesting manner.

Before you even begin to write, you should have already thought about a number
of things. First, you should know what examples and proofs you plan to include if this
is appropriate for your assignment. You should not be overly concerned about writing
good proofs on your first attempt – but be certain that you do have proofs.

As you’re writing your assignment, you must be aware of your audience. What is
the target group for your assignment? Of course, it should be written for your instructor.
But it should be written so that a classmate would understand it. As you grow mathe-
matically, your audience will grow with you and you will adapt your writing to this new
audience.

Give yourself enough time to write your assignment. Don’t try to put it together
just a few minutes before it’s due. The disappointing result will be obvious to your
instructor. And to you! Find a place to write that is comfortable for you: your room,
an office, a study room, the library and sitting at a desk, at a table, in a chair. Do what
works best for you. Perhaps you write best when it’s quiet or when there is background
music.
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Now that you’re comfortably settled and have allowed enough time to do a good
job, let’s put a plan together. If the assignment is fairly lengthy, you may need an outline,
which, most likely, will include one or more of the following:

1. background and motivation

2. definitions to be presented and possibly notation to be used

3. examples to include

4. results to be presented (whose proofs have already been written, probably in
rough form)

5. references to other results you intend to use

6. the order of everything mentioned above.

If the assignment is a term paper, it may include extensive background material
and may need to be carefully motivated. The subject of the paper should be placed in
perspective. Where does it fit in with what we already know?

Many writers write in “spirals.” Even though you have a plan for your assignment
that includes an ordered list of things you want to say, it is likely that you will reach some
point (perhaps sooner than you think) when you realize that you should have included
something earlier – perhaps a definition, a theorem, an example, some notation. (This
happened to us many times while writing this textbook.) Insert the missing material,
start over again and write until once again you realize that something is missing. It is
important, as you reread, that you start at the beginning each time. Then repeat the steps
listed above.

We are about to give you some advice, some “pointers,” about writing mathematics.
Such advice is necessarily subjective. Not everyone subscribes to these suggestions on
writing. Indeed, writing “experts” don’t agree on all issues. For the present, your instruc-
tor will be your best guide. But writing does not follow a list of rules. As you mature
mathematically, perhaps the best advice about your writing is the same advice given by
Jiminy Cricket to Disney’s Pinocchio: Always let your conscience be your guide. You
must be yourself. And one additional piece of advice: Be careful about accepting advice
on writing. Originality and creativity don’t follow rules. Until you reach the stage of
being comfortable and confident with your own writing, however, we believe that it is
useful to consider a few writing tips.

Since a number of these writing tips may not make sense (since, after all, we don’t
even have anything to write yet), it will probably be most useful to return to this chapter
periodically as you proceed through the chapters that follow.

0.4 USING SYMBOLS

Since mathematics is a symbol-oriented subject, mathematical writing involves a mix-
ture of words and symbols. Here are several guidelines to which a number of mathemati-
cians subscribe.

1. Never start a sentence with a symbol.
Writing mathematics follows the same practice as writing all sentences,
namely that the first word should be capitalized. This is confusing if the
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sentence were to begin with a symbol since the sentence appears to be
incomplete. Also, in general, a sentence sounds better if it starts with a word.
Instead of writing:

x2 − 6x + 8 = 0 has two distinct roots.

write:

The equation x2 − 6x + 8 = 0 has two distinct roots.

2. Separate symbols not in a list by words if possible.
Separating symbols by words makes the sentence easier to read and therefore
easier to understand. The sentence:

With the exception of a, b is the only root of (x − a)(x − b) = 0.

would be clearer if it were written as:

With the exception of a, the number b is the only root of (x − a)(x − b) = 0.

3. Except when discussing logic, avoid writing the following symbols in your
assignment:

⇒, ∀, ∃, �, etc.

The first four symbols stand for “implies,” “for every,” “there exists” and
“such that,” respectively. You may have already seen these symbols and
know what they mean. If so, this is good. It is useful when taking notes or
writing early drafts of an assignment to use shorthand symbols but many
mathematicians avoid such symbols in their professional writing. (We will
visit these symbols later.)

4. Be careful about using i.e. and e.g.
These stand for that is and for example, respectively. There are situations
when writing the words is preferable to writing the abbreviations as there
may be confusion with nearby symbols. For example,

√−1 and

lim
n→∞

(
1 + 1

n

)n

are not rational numbers, that is, i and e are not rational

numbers.

5. Write out integers as words when they are used as adjectives and when the
numbers are relatively small or are easy to describe in words. Write out
numbers numerically when they specify the value of something.

There are exactly two groups of order 4.
Fifty million Frenchmen can’t be wrong.

There are one million positive integers less than 1,000,001.

6. Don’t mix words and symbols improperly.
Avoid writing:

Every integer ≥ 2 is a prime or is composite.

It is preferable to write:

Every integer exceeding 1 is prime or composite.
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or

If n ≥ 2 is an integer, then n is prime or composite.

Although

Since (x − 2)(x − 3) = 0, it follows that x = 2 or 3.

sounds correct, it is not written correctly. It should be:

Since (x − 2)(x − 3) = 0, it follows that x = 2 or x = 3.

7. Avoid using a symbol in the statement of a theorem when it’s not needed.
Don’t write:

Theorem Every bijective function f has an inverse.

Delete “ f .” It serves no useful purpose. The theorem does not depend on
what the function is called. A symbol should not be used in the statement of
a theorem (or in its proof) exactly once. If it is useful to have a name for an
arbitrary bijective function in the proof (as it probably will be), then “ f ” can
be introduced there.

8. Explain the meaning of every symbol that you introduce.
Although what you intended may seem clear, don’t assume this. For
example, if you write n = 2k + 1 and k has never appeared before, then say
that k is an integer (if indeed k is an integer).

9. Use “frozen symbols” properly.
If m and n are typically used for integers (as they probably are), then don’t
use them for real numbers. If A and B are used for sets, then don’t use these
as typical elements of a set. If f is used for a function, then don’t use this as
an integer. Write symbols that the reader would expect. To do otherwise
could very well confuse the reader.

10. Use consistent symbols.
Unless there is some special reason to the contrary, use symbols that “fit”
together. Otherwise, it is distracting to the reader.
Instead of writing:

If x and y are even integers, then x = 2a and y = 2r for some integers a and r.

replace 2r by 2b (where then, of course, we write “for some integers a
and b”). On the other hand, you might prefer to write x = 2r and y = 2s.

0.5 WRITING MATHEMATICAL EXPRESSIONS

There will be numerous occasions when you will want to write mathematical expressions
in your assignment, such as algebraic equations, inequalities and formulas. If these ex-
pressions are relatively short, then they should probably be written within the text of
the proof or discussion. (We’ll explain this in a moment.) If the expressions are rather
lengthy, then it is probably preferred for these expressions to be written as “displays.”
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For example, suppose that we are discussing the Binomial Theorem. (It’s not im-
portant if you don’t recall what this theorem is.) It’s possible that what we are writing
includes the following passage:

For example, if we expand (a + b)4, then we obtain (a + b)4 = a4 + 4a3b +
6a2b2 + 4ab3 + b4.

It would probably be better to write the expansion of (a + b)4 as a display, where
the mathematical expression is placed on a line or lines by itself and is centered. This is
illustrated below.

For example, if we expand (a + b)4, then we obtain

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4.

If there are several mathematical expressions that are linked by equal signs and
inequality symbols, then we would almost certainly write this as a display. For example,
suppose that we wanted to write n3 + 3n2 − n + 4 in terms of k, where n = 2k + 1. A
possible display is given next:

Since n = 2k + 1, it follows that

n3 + 3n2 − n + 4 = (2k + 1)3 + 3(2k + 1)2 − (2k + 1) + 4

= (8k3 + 12k2 + 6k + 1) + 3(4k2 + 4k + 1) − 2k − 1 + 4

= 8k3 + 24k2 + 16k + 7 = 8k3 + 24k2 + 16k + 6 + 1

= 2(4k3 + 12k2 + 8k + 3) + 1.

Notice how the equal signs are lined up. (We wrote two equal signs on one line since
that line would have contained very little material otherwise, as well as to balance the
lengths of the lines better.)

Let’s return to the expression (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 for a mo-
ment. If we were to write this expression in the text of a paragraph (as we are doing) and
if we find it necessary to write portions of this expression on two separate lines, then this
expression should be broken so that the first line ends with an operation or comparative
symbol such as +,−,<,≥ or =. In other words, the second line should not begin with
one of these symbols. The reason for doing this is that ending the line with one of these
symbols alerts the reader that more will follow; otherwise, the reader might conclude
(incorrectly) that the portion of the expression appearing on the first line is the entire
expression. Consequently, write

For example, if we expand (a + b)4, then we obtain (a + b)4 = a4 + 4a3b +
6a2b2 + 4ab3 + b4.

and not

For example, if we expand (a + b)4, then we obtain (a + b)4 = a4 + 4a3b
+ 6a2b2 + 4ab3 + b4.

If there is an occasion to refer to an expression that has already appeared, then this
expression should have been written as a display and labeled as below:

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4. (1)

Then we can simply refer to expression (1) rather then writing it out each time.
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0.6 COMMON WORDS AND PHRASES IN MATHEMATICS

There are some words and phrases that appear so often in mathematical writing that it is
useful to discuss them.

1. I We One Let’s

I will now show that n is even.
We will now show that n is even.
One now shows that n is even.
Let’s now show that n is even.

These are four ways that we might write a sentence in a proof. Which of
these sounds the best to you? It is not considered good practice to use “I”
unless you are writing a personal account of something. Otherwise, “I” sounds
egotistical and can be annoying. Using “one” is often awkward. Using “we” is
standard practice in mathematics. This word also brings the reader into the
discussion with the author and gives the impression of a team effort. The word
“let’s” accomplishes this as well but is much less formal. There is a danger of
being too casual, however. In general, your writing should be balanced,
maintaining a professional style. Of course, there is the possibility of avoiding
all of these words:

The integer n is now shown to be even.

2. Clearly Obviously Of course Certainly
These and similar words can turn a reader off if what’s written is not clear

to the reader. It can give the impression that the author is putting the reader
down. These words should be used sparingly and with caution. If they are
used, then at least be certain that what you say is true. There is also the
possibility that the writer (a student?) has a lack of understanding of the
mathematics or is not being careful and is using these words as a cover-up.
This gives us even more reasons to avoid these words.

3. Any Each Every

This statement is true for any integer n.

Does this mean that the statement is true for some integer n or all
integers n? Since the word “any” can be vague, perhaps it is best to avoid it. If
by “any,” we mean “each” or “every,” then use one of these two words instead.
When the word “any” is encountered, most of the time the author means
“each” or “every.”

4. Since · · ·, then · · ·
A number of people connect these two words. You should use either

“If · · ·, then · · ·” (should this be the intended meaning) or “Since · · ·, it
follows that · · ·” or, possibly, “Since · · ·, we have · · ·”. For example, it is
correct to write

If n2 is even, then n is even.
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or

Since n2 is even, it follows that n is even.

or perhaps

Since n2 is even, n is even.

but avoid

Since n2 is even, then n is even.

In this context, the word “since” can be replaced by “because.”

5. Therefore Thus Hence Consequently So It follows that This implies
that

This is tricky. Mathematicians cannot survive without these words. Often
within a proof, we proceed from something we’ve just learned to something
else that can be concluded from it. There are many (many!) openings to
sentences that attempt to say this. Although each of the words or phrases

Therefore Thus Hence Consequently So It follows that This implies that

is suitable, it is good to introduce some variety into your writing and not use
the same words or phrases any more often than necessary.

6. That Which
These words are often confused with each other. Sometimes they are

interchangeable; more often they are not.

The solution to the equation is the number less than 5 that is positive. (2)

The solution to the equation is the number less than 5 which is positive. (3)

Which of these two sentences is correct? The simple answer is: Both are correct –
or, at least, both might be correct.

For example, sentence (2) could be the response to the question: Which of the num-
bers -2, 3 and 5 is the solution of the equation? Sentence (3) could be the response to the
question: Which of the numbers 4.9 and 5.0 is the solution of the equation?

The word “that” introduces a restrictive clause and, as such, the clause is essential
to the meaning of the sentence. That is, if sentence (2) were written only as “The solution
to the equation is the number less than 5.” then the entire meaning is changed. Indeed,
we no longer know what the solution of the equation is.

On the other hand, the word “which” does not introduce a restrictive clause. It in-
troduces a nonrestrictive (or parenthetical) clause. A nonrestrictive clause only provides
additional information that is not essential to the meaning of the sentence. In sentence
(3) the phrase “which is positive” simply provides more information about the solution.
This clause may have been added because the solution to an earlier equation is negative.
In fact, it would be more appropriate to add a comma:

The solution to the equation is the number less than 5, which is positive.
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For another illustration, consider the following two statements:

I always keep the math text that I like with me. (4)

I always keep the math text which I like with me. (5)

What is the difference between these two sentences? In (4), the writer of the sentence
clearly has more than one math text and is referring to the one that he/she likes. In (5),
the writer has only one math text and is providing the added information that he/she likes
it. The nonrestrictive clause in (5) should be set off by commas:

I always keep the math text, which I like, with me.

A possible guideline to follow as you seek to determine whether “that” or “which”
is the proper word to use is to ask yourself: Does it sound right if it reads “which, by the
way”? In general, “that” is normally used considerably more often than “which.” Hence,
the advice here is: Beware of wicked which’s!

While we are discussing the word “that,” we mention that the words “assume” and
“suppose” often precede restrictive clauses and, as such, the word “that” should immedi-
ately follow one of these words. Omitting “that” leaves us with an implied “that.” Many
mathematicians prefer to include it rather than omit it.

In other words, instead of writing:

Assume N is a normal subgroup.

many would write

Assume that N is a normal subgroup.

0.7 SOME CLOSING COMMENTS ABOUT WRITING

1. Use good English. Write in complete sentences, ending each sentence with a
period (or a question mark when appropriate) and capitalize the first word of
each sentence. (Remember: No sentence begins with a symbol!)

2. Capitalize theorem and lemma as in Theorem 1.15 and Lemma 4.11. (For
example, write: In order to verify the truth of Result 3.14, we first prove the
following lemma.)

3. Many mathematicians do not hyphenate words containing the prefix “non,”
such as

nonempty, nonnegative, nondecreasing, nonzero.

4. Many words that occur often in mathematical writing are commonly
misspelled. Among these are:

commutative (independent of order)
complement (supplement, balance, remainder)
consistent (conforming, agreeing)
feasible (suitable, attainable)
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its (possessive, not “it is”)
occurrence (incident)
parallel (non-intersecting)
preceding (foregoing, former)
principle (postulate, regulation, rule)
proceed (continue, move on)

and, of course,

corollary, lemma, theorem.

5. There are many pairs of words that fit together in mathematics (while
interchanging words among the pairs do not). For example,

We ask questions.
We pose problems.
We present solutions.
We prove theorems.
We solve problems.

and
We conclude this chapter.

The Chapter Presentation for Chapter 0 can be found at goo.gl/pc77jw
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1
Sets

In this initial chapter, you will be introduced to, or more than likely be reminded of, a
fundamental idea that occurs throughout mathematics: sets. Indeed, a set is an object

from which every mathematical structure is constructed (as we will often see in the
succeeding chapters). Although there is a formal subject called set theory in which the
properties of sets follow from a number of axioms, this is neither our interest nor our
need. It is our desire to keep the discussion of sets informal without sacrificing clarity.
It is almost a certainty that portions of this chapter will be familiar to you. Nevertheless,
it is important that we understand what is meant by a set, how mathematicians describe
sets, the notation used with sets and several concepts that involve sets.

You’ve been experiencing sets all your life. In fact, all of the following are examples
of sets: the students in a particular class who have a smartphone, the items on a shopping
list, the integers. As a small child, you learned to say the alphabet. When you did this,
you were actually listing the letters that make up the set we call the alphabet. A set
is a collection of objects. The objects that make up a set are called its elements (or
members). The elements of a softball team are the players, while the elements of the
alphabet are letters.

It is customary to use capital (upper case) letters (such as A, B,C, S, X,Y ) to des-
ignate sets and lower case letters (for example, a, b, c, s, x, y) to represent elements of
sets. If a is an element of the set A, then we write a ∈ A; if a does not belong to A, then
we write a /∈ A.

1.1 DESCRIBING A SET

There will be many occasions when we (or you) will need to describe a set. The most
important requirement when describing a set is to make it clear precisely which elements
belong to the set.

If a set consists of a small number of elements, then this set can be described by
explicitly listing its elements between braces (curly brackets) where the elements are
separated by commas. Thus S = {1, 2, 3} is a set, consisting of the numbers 1, 2 and 3.
The order in which the elements are listed doesn’t matter. Thus the set S just mentioned
could be written as S = {3, 2, 1} or S = {2, 1, 3}, for example. They describe the same
set. If a set T consists of the first five letters of the alphabet, then it is not essential that we

14
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write T = {a, b, c, d, e}, that is, the elements of T need not be listed in alphabetical order.
On the other hand, listing the elements of T in any other order may create unnecessary
confusion.

The set A of all people who signed the Declaration of Independence and later
became president of the United States is A = {John Adams, Thomas Jefferson} and
the set B of all positive even integers less than 20 is B = {2, 4, 6, 8, 10, 12, 14, 16, 18}.
Some sets contain too many elements to be listed this way. Perhaps even the set B just
given contains too many elements to describe in this manner. In such cases, the ellipsis
or “three dot notation” is often helpful. For example, X = {1, 3, 5, . . . , 49} is the set of
all positive odd integers less than 50; while Y = {2, 4, 6, . . .} is the set of all positive
even integers. The three dots mean “and so on” for Y and “and so on up to” for X .

A set need not contain any elements. Although it may seem peculiar to consider sets
without elements, these kinds of sets occur surprisingly often and in a variety of settings.
For example, if S is the set of real number solutions of the equation x2 + 1 = 0, then S
contains no elements. There is only one set that contains no elements and it is called the
empty set (or sometimes the null set or void set). The empty set is denoted by ∅. We
also write ∅ = { }. In addition to the example given above, the set of all real numbers x
such that x2 < 0 is also empty.

The elements of a set may in fact be sets themselves. The symbol � below indicates
the conclusion of an example.

Example 1.1 The set S = {1, 2, {1, 2},∅} consists of four elements, two of which are sets, namely,
{1, 2} and ∅. If we write C = {1, 2}, then we can also write S = {1, 2,C,∅}.

The set T = {0, {1, 2, 3}, 4, 5} also has four elements, namely, the three integers 0, 4
and 5 and the set {1, 2, 3}. Even though 2 ∈ {1, 2, 3}, the number 2 is not an element of
T ; that is, 2 /∈ T . �

Often sets consist of those elements satisfying some condition or possessing some
specified property. In this case, we can define such a set as S = {x : p(x)}, where, by
this, we mean that S consists of all those elements x satisfying some condition p(x)
concerning x. Some mathematicians write S = {x | p(x)}; that is, some prefer to write
a vertical line rather than a colon (which, by itself here, is understood to mean “such
that”). For example, if we are studying real number solutions of equations, then

S = {x : (x − 1)(x + 2)(x + 3) = 0}
is the set of all real numbers x such that (x − 1)(x + 2)(x + 3) = 0, that is, S is the solu-
tion set of the equation (x − 1)(x + 2)(x + 3) = 0. We could have written S = {1,−2,

−3}; however, even though this way of expressing S is apparently simpler, it does not
tell us that we are interested in the solutions of a particular equation. The absolute value
|x| of a real number x is x if x ≥ 0; while |x| = −x if x < 0. Therefore,

T = {x : |x| = 2}
is the set of all real numbers having absolute value 2, that is, T = {2,−2}. In the sets
S and T that we have just described, we understand that “x” refers to a real number x. If
there is a possibility that this wouldn’t be clear to the reader, then we should specifically
say that x is a real number. We’ll say more about this soon. The set

P = {x : x has been a president of the United States}
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describes, rather obviously, all those individuals who have been president of the United
States. So, Abraham Lincoln belongs to P but Benjamin Franklin does not.

Example 1.2 Let A = {3, 4, 5, . . . , 20}. If B denotes the set consisting of those elements of A that are
less than 8, then we can write

B = {x ∈ A : x < 8} = {3, 4, 5, 6, 7}. �

Some sets are encountered so often that they are given special notation. We use N to de-
note the set of all positive integers (or natural numbers); that is, N = {1, 2, 3, . . .}. The
set of all integers (positive, negative and zero) is denoted by Z. So Z = {. . . ,−2,−1, 0,

1, 2, . . .}. With the aid of the notation we’ve just introduced, we can now describe the
set E = {. . . ,−4,−2, 0, 2, 4, . . .} of even integers by

E = {y : y is an even integer} or E = {2x : x is an integer}, or as

E = {y : y = 2x for some x ∈ Z} or E = {2x : x ∈ Z}.
Also,

S = {x2 : x is an integer} = {x2 : x ∈ Z} = {0, 1, 4, 9, . . .}
describes the set of squares of integers.

The set of real numbers is denoted by R and the set of positive real numbers is
denoted by R+. A real number that can be expressed in the form m

n , where m, n ∈ Z
and n �= 0, is called a rational number. For example, 2

3 , −5
11 , 17 = 17

1 and 4
6 are rational

numbers. Of course, 4
6 = 2

3 . The set of all rational numbers is denoted by Q. A real
number that is not rational is called irrational. The real numbers

√
2,

√
3, 3

√
2, π and e

are known to be irrational; that is, none of these numbers can be expressed as the ratio of
two integers. It is also known that the real numbers with (infinite) nonrepeating decimal
expansions are precisely the irrational numbers. There is no common symbol to denote
the set of irrational numbers. We will often use I for the set of all irrational numbers,
however. Thus,

√
2 ∈ R and

√
2 /∈ Q; so

√
2 ∈ I.

For a set S, we write |S| to denote the number of elements in S. The number |S|
is also referred to as the cardinal number or cardinality of S. If A = {1, 2} and B =
{1, 2, {1, 2},∅}, then |A| = 2 and |B| = 4. Also, |∅| = 0. Although the notation is identi-
cal for the cardinality of a set and the absolute value of a real number, we should have no
trouble distinguishing between the two. A set S is finite if |S| = n for some nonnegative
integer n. A set S is infinite if it is not finite. For the present, we will use the notation |S|
only for finite sets S. In Chapter 11, we will discuss the cardinality of infinite sets.

Let’s now consider a few examples of sets that are defined in terms of the special
sets we have just described.

Example 1.3 Let D = {n ∈ N : n ≤ 9}, E = {x ∈ Q : x ≤ 9}, H = {x ∈ R : x2 − 2 = 0} and
J = {x ∈ Q : x2 − 2 = 0}.

(a) Describe the set D by listing its elements.

(b) Give an example of three elements that belong to E but do not belong to D.

(c) Describe the set H by listing its elements.



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M02_CHART6753_04_SE_C01 PH03348-Chartrand August 16, 2017 20:6 Char Count= 0

Section 1.1 Exercises 17

(d) Describe the set J in another manner.

(e) Determine the cardinality of each set D, H and J.

Solution (a) D = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
(b) 7

5 , 0, −3.

(c) H = {√2,−√
2}.

(d) J = ∅.

(e) |D| = 9, |H| = 2 and |J| = 0. �

Example 1.4 In which of the following sets is the integer −2 an element?
S1 = {−1,−2, {−1}, {−2}, {−1,−2}}, S2 = {x ∈ N : −x ∈ N},
S3 = {x ∈ Z : x2 = 2x}, S4 = {x ∈ Z : |x| = −x},
S5 = {{−1,−2}, {−2,−3}, {−1,−3}}.

Solution The integer −2 is an element of the sets S1 and S4. For S4, | − 2| = 2 = −(−2). The set
S2 = ∅. Since (−2)2 = 4 and 2−2 = 1/4, it follows that −2 /∈ S3. Because each element
of S5 is a set, it contains no integers. �

A complex number is a number of the form a + bi, where a, b ∈ R and i = √−1.
A complex number a + bi, where b = 0, can be expressed as a + 0i or, more simply, as a.
Hence a + 0i = a is a real number. Thus every real number is a complex number. Let C
denote the set of complex numbers. If K = {x ∈ C : x2 + 1 = 0}, then K = {i,−i}. Of
course, if L = {x ∈ R : x2 + 1 = 0}, then L = ∅. You might have seen that the sum of
two complex numbers a + bi and c + di is (a + c) + (b + d)i, while their product is

(a + bi) · (c + di) = ac + adi + bci + bdi2 = (ac − bd) + (ad + bc)i.

The special sets that we’ve just described are now summarized below:

symbol for the set of

N natural numbers (positive integers)
Z integers
Q rational numbers
I irrational numbers
R real numbers
C complex numbers

Real numbers and complex numbers are described in more detail in the online
Chapter 18.

SECTION 1.1 EXERCISES

1.1. Which of the following are sets?

(a) 1, 2, 3 (b) {1, 2}, 3 (c) {{1}, 2}, 3
(d) {1, {2}, 3} (e) {1, 2, a, b}.
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1.2. Let S = {−2,−1, 0, 1, 2, 3}. Describe each of the following sets as {x ∈ S : p(x)}, where p(x) is some
condition on x.
(a) A = {1, 2, 3} (b) B = {0, 1, 2, 3}
(c) C = {−2,−1} (d) D = {−2, 2, 3}.

1.3. Determine the cardinality of each of the following sets:
(a) A = {1, 2, 3, 4, 5} (b) B = {0, 2, 4, . . . , 20}
(c) C = {25, 26, 27, . . . , 75} (d) D = {{1, 2}, {1, 2, 3, 4}}
(e) E = {∅} (f) F = {2, {2, 3, 4}}.

1.4. Write each of the following sets by listing its elements within braces.
(a) A = {n ∈ Z : −4 < n ≤ 4} (b) B = {n ∈ Z : n2 < 5}
(c) C = {n ∈ N : n3 < 100} (d) D = {x ∈ R : x2 − x = 0}
(e) E = {x ∈ R : x2 + 1 = 0}.

1.5. Write each of the following sets in the form {x ∈ Z : p(x)}, where p(x) is a property concerning x.
(a) A = {−1,−2,−3, . . .} (b) B = {−3,−2, . . . , 3}
(c) C = {−2,−1, 1, 2}.

1.6. The set E = {2x : x ∈ Z} can be described by listing its elements, namely E = {. . . ,−4,−2, 0, 2, 4, . . .}.
List the elements of the following sets in a similar manner.
(a) A = {2x + 1 : x ∈ Z} (b) B = {4n : n ∈ Z}
(c) C = {3q + 1 : q ∈ Z}.

1.7. The set E = {. . . ,−4,−2, 0, 2, 4, . . .} of even integers can be described by means of a defining condition
by E = {y = 2x : x ∈ Z} = {2x : x ∈ Z}. Describe the following sets in a similar manner.

(a) A = {. . . , −4,−1, 2, 5, 8, . . .}
(b) B = {. . . , −10,−5, 0, 5, 10, . . .}
(c) C = {1, 8, 27, 64, 125, . . .}.

1.8. Let A = {n ∈ Z : 2 ≤ |n| < 4}, B = {x ∈ Q : 2 < x ≤ 4},
C = {x ∈ R : x2 − (2 + √

2)x + 2
√

2 = 0} and D = {x ∈ Q : x2 − (2 + √
2)x + 2

√
2 = 0}.

(a) Describe the set A by listing its elements.
(b) Give an example of three elements that belong to B but do not belong to A.
(c) Describe the set C by listing its elements.
(d) Describe the set D in another manner.
(e) Determine the cardinality of each of the sets A,C and D.

1.9. For A = {2, 3, 5, 7, 8, 10, 13}, let

B = {x ∈ A : x = y + z, where y, z ∈ A} and C = {r ∈ B : r + s ∈ B for some s ∈ B}.
Determine C.

1.2 SUBSETS

A set A is called a subset of a set B if every element of A also belongs to B. If A is a
subset of B, then we write A ⊆ B. If A, B and C are sets such that A ⊆ B and B ⊆ C,
then A ⊆ C. To see why this is so, suppose that some element x belongs to A. Because
A ⊆ B, it follows that x ∈ B. But B ⊆ C, which implies that x ∈ C. Therefore, every
element that belongs to A also belongs to C and so A ⊆ C. This property of subsets might
remind you of the property of real numbers where if a, b, c ∈ R such that if a ≤ b and
b ≤ c, then a ≤ c. For the sets X = {1, 3, 6} and Y = {1, 2, 3, 5, 6}, we have X ⊆ Y .
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Also, N ⊆ Z and Q ⊆ R. In addition, R ⊆ C. Since Q ⊆ R and R ⊆ C, it therefore
follows that Q ⊆ C. Moreover, every set is a subset of itself.

Example 1.5 Find two sets A and B such that A is both an element of and a subset of B.

Solution Suppose that we seek two sets A and B such that A ∈ B and A ⊆ B. Let’s start with a
simple example for A, say A = {1}. Since we want A ∈ B, the set B must contain the set
{1} as one of its elements. On the other hand, we also require that A ⊆ B, so every element
of A must belong to B. Since 1 is the only element of A, it follows that B must also contain
the number 1. A possible choice for B is then B = {1, {1}}, although B = {1, 2, {1}}
would also satisfy the conditions. �

In the following example, we will see how we arrive at the answer to a question
asked there. This is a prelude to logic, which will be discussed in Chapter 2.

Example 1.6 Two sets A and B have the property that each is a subset of {1, 2, 3, 4, 5} and |A| =
|B| = 3. Furthermore,

(a) 1 belongs to A but not to B.

(b) 2 belongs to B but not to A.

(c) 3 belongs to exactly one of A and B.

(d) 4 belongs to exactly one of A and B.

(e) 5 belongs to at least one of A and B.

What are the possibilities for the set A?

Solution By (a) and (b), 1 ∈ A and 1 /∈ B, while 2 ∈ B and 2 /∈ A. By (c), 3 belongs to A or B but
not both. By (d), 4 belongs to A or B but not both. If 3 and 4 belong to the same set, then
either 3 and 4 both belong to A or 3 and 4 both belong to B. Should it occur that 3 ∈ A
and 4 ∈ A, then 1 /∈ B, 3 /∈ B and 4 /∈ B. This means that |B| �= 3. On the other hand, if
3 ∈ B and 4 ∈ B, then 3 /∈ A and 4 /∈ A. Therefore, A contains none of 2, 3 and 4 and
so |A| �= 3. We can therefore conclude that 3 and 4 belong to different sets. The only
way that |A| = |B| = 3 is for 5 to belong to both A and B and so either A = {1, 3, 5} or
A = {1, 4, 5}. �

If a set C is not a subset of a set D, then we write C �⊆ D. In this case, there must
be some element of C that is not an element of D. One consequence of this is that the
empty set ∅ is a subset of every set. If this were not the case, then there must be some
set A such that ∅ �⊆ A. But this would mean there is some element, say x, in ∅ that is not
in A. However, ∅ contains no elements. So ∅ ⊆ A for every set A.

Example 1.7 Let S = {1, {2}, {1, 2}}.
(a) Determine which of the following are elements of S:

1, {1}, 2, {2}, {1, 2}, {{1, 2}}.
(b) Determine which of the following are subsets of S:

{1}, {2}, {1, 2}, {{1}, 2}, {1, {2}}, {{1}, {2}}, {{1, 2}}.
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Solution (a) The following are elements of S: 1, {2}, {1, 2}.
(b) The following are subsets of S: {1}, {1, {2}}, {{1, 2}}. �

In a typical discussion of sets, we are ordinarily concerned with subsets of some
specified set U , called the universal set. For example, we may be dealing only with in-
tegers, in which case the universal set is Z, or we may be dealing only with real numbers,
in which case the universal set is R. On the other hand, the universal set being considered
may be neither Z nor R. Indeed, U may not even be a set of numbers.

Some frequently encountered subsets of R are the so-called “intervals,” which you
have no doubt encountered often. For a, b ∈ R and a < b, the open interval (a, b) is the
set

(a, b) = {x ∈ R : a < x < b}.
Therefore, all of the real numbers 5

2 ,
√

5, e, 3, π , 4.99 belong to (2, 5), but none of the
real numbers

√
2, 1.99, 2, 5 belong to (2, 5).

For a, b ∈ R and a ≤ b, the closed interval [a, b] is the set

[a, b] = {x ∈ R : a ≤ x ≤ b}.
While 2, 5 /∈ (2, 5), we do have 2, 5 ∈ [2, 5]. The “interval” [a, a] is therefore {a}. Thus,
for a < b, we have (a, b) ⊆ [a, b]. For a, b ∈ R and a < b, the half-open or half-closed
intervals [a, b) and (a, b] are defined as expected:

[a, b) = {x ∈ R : a ≤ x < b} and (a, b] = {x ∈ R : a < x ≤ b}.
For a ∈ R, the infinite intervals (−∞, a), (−∞, a], (a,∞) and [a,∞) are defined

as

(−∞, a) = {x ∈ R : x < a}, (−∞, a] = {x ∈ R : x ≤ a},
(a,∞) = {x ∈ R : x > a}, [a,∞) = {x ∈ R : x ≥ a}.

The interval (−∞,∞) is the set R. Note that the infinity symbols ∞ and −∞ are not
real numbers; they are only used to help describe certain intervals. Therefore, [1,∞],
for example, has no meaning.

Two sets A and B are equal, indicated by writing A = B, if they have exactly the
same elements. Another way of saying A = B is that every element of A is in B and every
element of B is in A, that is, A ⊆ B and B ⊆ A. In particular, whenever some element
x belongs to A, then x ∈ B because A ⊆ B. Also, if y is an element of B, then because
B ⊆ A, it follows that y ∈ A. That is, whenever an element belongs to one of these sets,
it must belong to the other and so A = B. This fact will be very useful to us in Chapter 4.
If A �= B, then there must be some element belonging to one of A and B that does not
belong to the other.

It is often convenient to represent sets by diagrams called Venn diagrams. For ex-
ample, Figure 1.1 shows Venn diagrams for two sets A and B. The diagram on the left
represents two sets A and B that have no elements in common, while the diagram on the
right is more general. The element x belongs to A but not to B, the element y belongs
to B but not to A, the element z belongs to both A and B, while w belongs to neither A
nor B. In general, the elements of a set are understood to be those displayed within the
region that describes the set. A rectangle in a Venn diagram represents the universal set
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in this case. Since every element under consideration belongs to the universal set, each
element in a Venn diagram lies within the rectangle.
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Figure 1.1 Venn diagrams for two sets A and B

A set A is a proper subset of a set B if A ⊆ B but A �= B. If A is a proper subset
of B, then we write A ⊂ B. For example, if S = {4, 5, 7} and T = {3, 4, 5, 6, 7}, then
S ⊂ T . (Although we write A ⊂ B to indicate that A is a proper subset of B, it should
be mentioned that some prefer to write A � B to indicate that A is a proper subset of B.
Indeed, there are some who write A ⊂ B, rather than A ⊆ B, to indicate that A is a subset
of B. We will follow the notation introduced above, however.)

The set consisting of all subsets of a given set A is called the power set of A and is
denoted by P (A).

Example 1.8 For each set A below, determine P (A). In each case, determine |A| and |P (A)|.
(a) A = ∅, (b) A = {a, b}, (c) A = {1, 2, 3}.

Solution (a) P (A) = {∅}. In this case, |A| = 0 and |P (A)| = 1.

(b) P (A) = {∅, {a}, {b}, {a, b}}. In this case, |A| = 2 and |P (A)| = 4.

(c) P (A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
In this case, |A| = 3 and |P (A)| = 8. �

Notice that for each set A in Example 1.8, we have |P (A)| = 2|A|. In fact, if A is any
finite set, with n elements say, then P (A) has 2n elements; that is,

|P (A)| = 2|A|

for every finite set A. (Later we will explain why this is true.)

Example 1.9 If C = {∅, {∅}}, then

P (C) = {∅, {∅}, {{∅}}, {∅, {∅}}}.
It is important to note that no two of the sets ∅, {∅} and {{∅}} are equal. (An empty box
and a box containing an empty box are not the same.) For the set C above, it is therefore
correct to write

∅ ⊆ C, ∅ ⊂ C, ∅ ∈ C, {∅} ⊆ C, {∅} ⊂ C, {∅} ∈ C,

as well as

{{∅}} ⊆ C, {{∅}} /∈ C, {{∅}} ∈ P (C). �
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SECTION 1.2 EXERCISES

1.10. Give examples of three sets A, B and C such that

(a) A ⊆ B ⊂ C
(b) A ∈ B, B ∈ C and A /∈ C
(c) A ∈ B and A ⊂ C.

1.11. Let (a, b) be an open interval of real numbers and let c ∈ (a, b). Describe an open interval I centered at c
such that I ⊆ (a, b).

1.12. Which of the following sets are equal?

A = {n ∈ Z : |n| < 2} D = {n ∈ Z : n2 ≤ 1}
B = {n ∈ Z : n3 = n} E = {−1, 0, 1}.
C = {n ∈ Z : n2 ≤ n}

1.13. For a universal set U = {1, 2, . . . , 8} and two sets A = {1, 3, 4, 7} and B = {4, 5, 8}, draw a Venn diagram
that represents these sets.

1.14. Find P (A) and |P (A)| for

(a) A = {1, 2} (b) A = {∅, 1, {a}}.
1.15. Find P (A) for A = {0, {0}}.
1.16. Find P (P ({1})) and its cardinality.

1.17. Find P (A) and |P (A)| for A = {0,∅, {∅}}.
1.18. For A = {x : x = 0 or x ∈ P ({0})}, determine P (A).

1.19. Give an example of a set S such that

(a) S ⊆ P (N) (b) S ∈ P (N)
(c) S ⊆ P (N) and |S| = 5 (d) S ∈ P (N) and |S| = 5.

1.20. Determine whether the following statements are true or false.

(a) If {1} ∈ P (A), then 1 ∈ A but {1} /∈ A.
(b) If A, B and C are sets such that A ⊂ P (B) ⊂ C and |A| = 2, then |C| can be 5 but |C| cannot be 4.
(c) If a set B has one more element than a set A, then P (B) has at least two more elements than P (A).
(d) If four sets A, BC and D are subsets of {1, 2, 3} such that |A| = |B| = |C| = |D| = 2, then at least two

of these sets are equal.

1.21. Three subsets A, B and C of {1, 2, 3, 4, 5} have the same cardinality. Furthermore,

(a) 1 belongs to A and B but not to C.
(b) 2 belongs to A and C but not to B.
(c) 3 belongs to A and exactly one of B and C.
(d) 4 belongs to an even number of A, B and C.
(e) 5 belongs to an odd number of A, B and C.
(f) The sums of the elements in two of the sets A, B and C differ by 1.

What is B?
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1.3 SET OPERATIONS

Just as there are several ways of combining two integers to produce another integer
(addition, subtraction, multiplication and sometimes division), there are several ways to
combine two sets to produce another set. The union of two sets A and B, denoted by
A ∪ B, is the set of all elements belonging to A or B, that is,

A ∪ B = {x : x ∈ A or x ∈ B}.
The use of the word “or” here, and in mathematics in general, allows an element of A ∪ B
to belong to both A and B. That is, x is in A ∪ B if x is in A, or x is in B, or x is in both
A and B. A Venn diagram for A ∪ B is shown in Figure 1.2. The shaded region indicates
the set A ∪ B.
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Figure 1.2 A Venn diagram for A ∪ B

Example 1.10 For the sets A1 = {2, 5, 7, 8}, A2 = {1, 3, 5} and A3 = {2, 4, 6, 8}, we have

A1 ∪ A2 = {1, 2, 3, 5, 7, 8},
A1 ∪ A3 = {2, 4, 5, 6, 7, 8},
A2 ∪ A3 = {1, 2, 3, 4, 5, 6, 8}.

Also, N ∪ Z = Z and Q ∪ I = R. �

The intersection of two sets A and B is the set of all elements belonging to both A
and B. The intersection of A and B is denoted by A ∩ B. In symbols,

A ∩ B = {x : x ∈ A and x ∈ B}.
A Venn diagram for A ∩ B is shown in Figure 1.3, again indicated by the shaded region.
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Figure 1.3 A Venn diagram for A ∩ B



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M02_CHART6753_04_SE_C01 PH03348-Chartrand August 16, 2017 20:6 Char Count= 0

24 Chapter 1 Sets

Example 1.11 For the sets A1, A2 and A3 described in Example 1.10,

A1 ∩ A2 = {5}, A1 ∩ A3 = {2, 8} and A2 ∩ A3 = ∅.

Also, N ∩ Z = N and Q ∩ R = Q. �

For every two sets A and B, it follows that

A ∩ B ⊆ A ∪ B.

To see why this is true, suppose that x is an element belonging to A ∩ B. Then x belongs
to both A and B. Since x ∈ A, for example, x ∈ A ∪ B and so A ∩ B ⊆ A ∪ B.

If two sets A and B have no elements in common, then A ∩ B = ∅ and A and B
are said to be disjoint. Consequently, the sets A2 and A3 described in Example 1.10 are
disjoint; however, A1 and A3 are not disjoint since 2 and 8 belong to both sets. Also, Q
and I are disjoint.

The difference A − B of two sets A and B (also written as A \ B by some mathe-
maticians) is defined as

A − B = {x : x ∈ A and x /∈ B}.
A Venn diagram for A − B is shown in Figure 1.4.
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Figure 1.4 A Venn diagram for A − B

Example 1.12 For the sets A1 = {2, 5, 7, 8} and A2 = {1, 3, 5} in Examples 1.10 and 1.11, A1 − A2 =
{2, 7, 8} and A2 − A1 = {1, 3}. Furthermore, R − Q = I. �

Example 1.13 Let A = {x ∈ R : |x| ≤ 3}, B = {x ∈ R : |x| > 2} and C = {x ∈ R : |x − 1| ≤ 4}.
(a) Express A, B and C using interval notation.

(b) Determine A ∩ B, A − B, B ∩ C, B ∪ C, B − C and C − B.

Solution (a) A = [−3, 3], B = (−∞,−2) ∪ (2,∞) and C = [−3, 5].

(b) A ∩ B = [−3,−2) ∪ (2, 3], A − B = [−2, 2], B ∩ C = [−3,−2) ∪ (2, 5],

B ∪ C = (−∞,∞), B − C = (−∞,−3) ∪ (5,∞) and C − B = [−2, 2]. �

Suppose that we are considering a certain universal set U , that is, all sets being
discussed are subsets of U . For a set A, its complement is

A = U − A = {x : x ∈ U and x /∈ A}.
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If U = Z, then N = {0,−1,−2, . . .}; while if U = R, then Q = I. A Venn diagram for
A is shown in Figure 1.5.
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Figure 1.5 A Venn diagram for A

The set difference A − B is sometimes called the relative complement of B in A.
Indeed, from the definition, A − B = {x : x ∈ A and x /∈ B}. The set A − B can also
be expressed in terms of complements, namely, A − B = A ∩ B. This fact will be estab-
lished later.

Example 1.14 Let U = {1, 2, . . . , 10} be the universal set, A = {2, 3, 5, 7} and B = {2, 4, 6, 8, 10}. De-
termine each of the following:

(a) B, (b) A − B, (c) A ∩ B, (d) B.

Solution (a) B = {1, 3, 5, 7, 9}.
(b) A − B = {3, 5, 7}.
(c) A ∩ B = {3, 5, 7} = A − B.

(d) B = B = {2, 4, 6, 8, 10}. �

Example 1.15 Let A = {0, {0}, {0, {0}}}.

(a) Determine which of the following are elements of A: 0, {0}, {{0}}.

(b) Determine |A|.
(c) Determine which of the following are subsets of A: 0, {0}, {{0}}.

For (d)–(i), determine the indicated sets.

(d) {0} ∩ A

(e) {{0}} ∩ A

(f) {{{0}}} ∩ A

(g) {0} ∪ A

(h) {{0}} ∪ A

(i) {{{0}}} ∪ A.
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Solution (a) While 0 and {0} are elements of A, {{0}} is not an element of A.

(b) The set A has three elements: 0, {0}, {0, {0}}. Therefore, |A| = 3.

(c) The integer 0 is not a set and so cannot be a subset of A (or a subset of any
other set). Since 0 ∈ A and {0} ∈ A, it follows that {0} ⊆ A and {{0}} ⊆ A.

(d) Since 0 is the only element that belongs to both {0} and A, it follows that
{0} ∩ A = {0}.

(e) Since {0} is the only element that belongs to both {{0}} and A, it follows that
{{0}} ∩ A = {{0}}.

(f) Since {{0}} is not an element of A, it follows that {{{0}}} and A are disjoint
sets and so {{{0}}} ∩ A = ∅.

(g) Since 0 ∈ A, it follows that {0} ∪ A = A.

(h) Since {0} ∈ A, it follows that {{0}} ∪ A = A.

(i) Since {{0}} /∈ A, it follows that {{{0}}} ∪ A = {0, {0}, {{0}}, {0, {0}}}.

SECTION 1.3 EXERCISES

1.22. Let U = {1, 3, . . . , 15} be the universal set, A = {1, 5, 9, 13} and B = {3, 9, 15}. Determine the following:

(a) A ∪ B (b) A ∩ B (c) A − B (d) B − A (e) A (f) A ∩ B.

1.23. Give examples of two sets A and B such that |A − B| = |A ∩ B| = |B − A| = 3. Draw the accompanying
Venn diagram.

1.24. Give examples of three sets A, B and C such that B �= C but B − A = C − A.

1.25. Give examples of three sets A, B and C such that

(a) A ∈ B, A ⊆ C and B �⊆ C
(b) B ∈ A, B ⊂ C and A ∩ C �= ∅
(c) A ∈ B, B ⊆ C and A �⊆ C.

1.26. Let U be a universal set and let A and B be two subsets of U . Draw a Venn diagram for each of the
following sets.

(a) A ∪ B (b) A ∩ B (c) A ∩ B (d) A ∪ B.
What can you say about parts (a) and (b)? parts (c) and (d)?

1.27. Give an example of a universal set U , two sets A and B and accompanying Venn diagram such that
|A ∩ B| = |A − B| = |B − A| = |A ∪ B| = 2.

1.28. Let A, B and C be nonempty subsets of a universal set U . Draw a Venn diagram for each of the following set
operations.
(a) (C − B) ∪ A (b) C ∩ (A − B).

1.29. Let A = {∅, {∅}, {{∅}}}.
(a) Determine which of the following are elements of A: ∅, {∅}, {∅, {∅}}.
(b) Determine |A|.
(c) Determine which of the following are subsets of A: ∅, {∅}, {∅, {∅}}.
For (d)–(i), determine the indicated sets.
(d) ∅ ∩ A (e) {∅} ∩ A (f) {∅, {∅}} ∩ A
(g) ∅ ∪ A (h) {∅} ∪ A (i) {∅, {∅}} ∪ A.
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1.30. Let A = {x ∈ R : |x − 1| ≤ 2}, B = {x ∈ R : |x| ≥ 1} and C = {x ∈ R : |x + 2| ≤ 3}.
(a) Express A, B and C using interval notation.
(b) Determine each of the following sets using interval notation:

A ∪ B, A ∩ B, B ∩ C, B − C.

1.31. Give an example of four different sets A, B,C and D such that (1) A ∪ B = {1, 2} and C ∩ D = {2, 3} and
(2) if B and C are interchanged and ∪ and ∩ are interchanged, then we get the same result.

1.32. Give an example of four different subsets A, B,C and D of {1, 2, 3, 4} such that all intersections of two
subsets are different.

1.33. Give an example of two nonempty sets A and B such that {A ∪ B, A ∩ B, A − B, B − A} is the power set of
some set.

1.34. Give an example of two subsets A and B of {1, 2, 3} such that all of the following sets are different: A ∪ B,
A ∪ B, A ∪ B, A ∪ B, A ∩ B, A ∩ B, A ∩ B, A ∩ B.

1.35. Give examples of a universal set U and sets A, B and C such that each of the following sets contains exactly
one element: A ∩ B ∩ C, (A ∩ B) − C, (A ∩ C) − B, (B ∩ C) − A, A − (B ∪ C), B − (A ∪ C), C − (A ∪ B),
A ∪ B ∪ C. Draw the accompanying Venn diagram.

1.4 INDEXED COLLECTIONS OF SETS

We will often encounter situations where more than two sets are combined using the
set operations described earlier. In the case of three sets A, B and C, the standard Venn
diagram is shown in Figure 1.6.
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Figure 1.6 A Venn diagram for three sets

The union A ∪ B ∪ C is defined as

A ∪ B ∪ C = {x : x ∈ A, or x ∈ B, or x ∈ C}.
Thus, in order for an element to belong to A ∪ B ∪ C, the element must belong to at least
one of the sets A, B and C. Because it is often useful to consider the union of several sets,
additional notation is needed. The union of the n ≥ 2 sets A1, A2, . . . , An is denoted by
A1 ∪ A2 ∪ · · · ∪ An or

⋃n
i=1 Ai and is defined as

n⋃
i=1

Ai = {x : x ∈ Ai for some i, 1 ≤ i ≤ n}.
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Thus, for an element a to belong to
⋃n

i=1 Ai, it is necessary that a belongs to at least one
of the sets A1, A2, . . . , An.

Example 1.16 Let B1 = {1, 2}, B2 = {2, 3}, . . ., B10 = {10, 11}; that is, Bi = {i, i + 1} for i = 1,

2, . . . , 10. Determine each of the following:

(a)
5⋃

i=1

Bi. (b)
10⋃

i=1

Bi. (c)
7⋃

i=3

Bi. (d)
k⋃

i= j

Bi, where 1 ≤ j ≤ k ≤ 10.

Solution
(a)

5⋃
i=1

Bi = {1, 2, . . . , 6}. (b)
10⋃

i=1

Bi = {1, 2, . . . , 11}.

(c)
7⋃

i=3

Bi = {3, 4, . . . , 8}. (d)
k⋃

i= j

Bi = { j, j + 1, . . . , k + 1}. �

We are often interested in the intersection of several sets as well. The intersection
of the n ≥ 2 sets A1, A2, . . . , An is expressed as A1 ∩ A2 ∩ · · · ∩ An or

⋂n
i=1 Ai and is

defined by

n⋂
i=1

Ai = {x : x ∈ Ai for every i, 1 ≤ i ≤ n}.

The next example concerns the sets mentioned in Example 1.16.

Example 1.17 Let Bi = {i, i + 1} for i = 1, 2, . . . , 10. Determine the following:

(a)
10⋂

i=1

Bi. (b) Bi ∩ Bi+1. (c)
j+1⋂
i= j

Bi, where 1 ≤ j < 10.

(d)
k⋂

i= j

Bi where 1 ≤ j < k ≤ 10.

Solution
(a)

10⋂
i=1

Bi = ∅. (b) Bi ∩ Bi+1 = {i + 1}. (c)
j+1⋂
i= j

Bi = { j + 1}.

(d)
k⋂

i= j

Bi = { j + 1} if k = j + 1; while
k⋂

i= j

Bi = ∅ if k > j + 1. �

There are instances when the union or intersection of a collection of sets cannot be
described conveniently (or perhaps at all) in the manner mentioned above. For this rea-
son, we introduce a (nonempty) set I, called an index set, which is used as a mechanism
for selecting those sets we want to consider. For example, for an index set I, suppose
that there is a set Sα for each α ∈ I. We write {Sα}α∈I to describe the collection of all sets
Sα where α ∈ I. Such a collection is called an indexed collection of sets. We define the
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union of the sets in {Sα}α∈I by⋃
α∈I

Sα = {x : x ∈ Sα for some α ∈ I},

and the intersection of these sets by⋂
α∈I

Sα = {x : x ∈ Sα for all α ∈ I}.

Hence, an element a belongs to
⋃

α∈I Sα if a belongs to at least one of the sets in the
collection {Sα}α∈I ; while a belongs to

⋂
α∈I Sα if a belongs to every set in the collection

{Sα}α∈I . We refer to
⋃

α∈I Sα as the union of the collection {Sα}α∈I and
⋂

α∈I Sα as the
intersection of the collection {Sα}α∈I . Just as there is nothing special about our choice
of i in

⋃n
i=1 Ai (that is, we could just as well describe this set by

⋃n
j=1 Aj, say), there

is nothing special about α in
⋃

α∈I Sα . We could also describe this set by
⋃

x∈I Sx. The
variables i and α above are “dummy variables” and any appropriate symbol could be
used. Indeed, we could write J or some other symbol for an index set.

Example 1.18 For n ∈ N, define Sn = {n, 2n}. For example, S1 = {1, 2}, S2 = {2, 4} and S4 = {4, 8}.
Then S1 ∪ S2 ∪ S4 = {1, 2, 4, 8}. We can also describe this set by means of an index set.
If we let I = {1, 2, 4}, then

⋃
α∈I

Sα = S1 ∪ S2 ∪ S4. �

Example 1.19 For each n ∈ N, define An to be the closed interval [− 1
n , 1

n ] of real numbers; that is,

An =
{

x ∈ R : −1
n

≤ x ≤ 1
n

}
.

So A1 = [−1, 1], A2 = [− 1
2 , 1

2 ], A3 = [− 1
3 , 1

3 ] and so on. We have now defined the sets
A1, A2, A3, . . . . The union of these sets can be written as A1 ∪ A2 ∪ A3 ∪ · · · or

⋃∞
i=1 Ai.

Using N as an index set, we can also write this union as
⋃

n∈N An. Since An ⊆ A1 =
[−1, 1] for every n ∈ N, it follows that

⋃
n∈N An = [−1, 1]. Certainly, 0 ∈ An for every

n ∈ N; in fact,
⋂

n∈N An = {0}. �

Example 1.20 Let A denote the set of the letters of the alphabet, that is, A = {a, b, . . . , z}. For α ∈ A,
let Aα consist of α and the two letters that follow α. So Aa = {a, b, c} and Ab = {b, c, d}.
By Ay, we will mean the set {y, z, a} and Az = {z, a, b}. Hence |Aα| = 3 for every α ∈ A.
Therefore,

⋃
α∈A Aα = A. Indeed, if

B = {a, d, g, j, m, p, s, v, y},
then

⋃
α∈B Aα = A as well. On the other hand, if I = {p, q, r}, then

⋃
α∈I Aα = {p, q, r,

s, t} while
⋂

α∈I Aα = {r}. �

Example 1.21 Let S = {1, 2, . . . , 10}. Each of the sets

S1 = {1, 2, 3, 4}, S2 = {4, 5, 6, 7, 8} and S3 = {7, 8, 9, 10}
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is a subset of S. Also, S1 ∪ S2 ∪ S3 = S. This union can be described in a number of ways.
Define I = {1, 2, 3} and J = {S1, S2, S3}. Then the union of the three sets belonging to
J is precisely S1 ∪ S2 ∪ S3, which can also be written as

S = S1 ∪ S2 ∪ S3 =
3⋃

i=1

Si =
⋃
α∈I

Sα =
⋃
X∈J

X. �

SECTION 1.4 EXERCISES

1.36. For a real number r, define Sr to be the interval [r − 1, r + 2]. Let A = {1, 3, 4}. Determine
⋃

α∈A Sα and⋂
α∈A Sα .

1.37. Let A = {1, 2, 5}, B = {0, 2, 4},C = {2, 3, 4} and S = {A, B,C}. Determine
⋃

X∈S X and
⋂

X∈S X .

1.38. For a real number r, define Ar = {r2}, Br as the closed interval [r − 1, r + 1] and Cr as the interval (r,∞).
For S = {1, 2, 4}, determine

(a)
⋃

α∈S Aα and
⋂

α∈S Aα

(b)
⋃

α∈S Bα and
⋂

α∈S Bα

(c)
⋃

α∈S Cα and
⋂

α∈S Cα .

1.39. Let A = {a, b, . . . , z} be the set consisting of the letters of the alphabet. For α ∈ A, let Aα consist of α and
the two letters that follow it, where Ay = {y, z, a} and Az = {z, a, b}. Find a set S ⊆ A of smallest cardinality
such that

⋃
α∈S Aα = A. Explain why your set S has the required properties.

1.40. For i ∈ Z, let Ai = {i − 1, i + 1}. Determine the following:

(a)
5⋃

i=1

A2i (b)
5⋃

i=1

(Ai ∩ Ai+1) (c)
5⋃

i=1

(A2i−1 ∩ A2i+1).

1.41. For each of the following, find an indexed collection {An}n∈N of distinct sets (that is, no two sets are equal)
satisfying the given conditions.

(a)
⋂∞

n=1 An = {0} and
⋃∞

n=1 An = [0, 1]

(b)
⋂∞

n=1 An = {−1, 0, 1} and
⋃∞

n=1 An = Z.

1.42. For each of the following collections of sets, define a set An for each n ∈ N such that the indexed collection
{An}n∈N is precisely the given collection of sets. Then find both the union and intersection of the indexed
collection of sets.

(a) {[1, 2 + 1), [1, 2 + 1/2), [1, 2 + 1/3), . . .}
(b) {(−1, 2), (−3/2, 4), (−5/3, 6), (−7/4, 8), . . .}.

1.43. For r ∈ R+, let Ar = {x ∈ R : |x| < r}. Determine
⋃

r∈R+ Ar and
⋂

r∈R+ Ar.

1.44. Each of the following sets is a subset of A = {1, 2, . . . , 10}:
A1 = {1, 5, 7, 9, 10}, A2 = {1, 2, 3, 8, 9}, A3 = {2, 4, 6, 8, 9},
A4 = {2, 4, 8}, A5 = {3, 6, 7}, A6 = {3, 8, 10}, A7 = {4, 5, 7, 9},
A8 = {4, 5, 10}, A9 = {4, 6, 8}, A10 = {5, 6, 10},
A11 = {5, 8, 9}, A12 = {6, 7, 10}, A13 = {6, 8, 9}.
Find a set I ⊆ {1, 2, . . . , 13} such that for every two distinct elements j, k ∈ I, Aj ∩ Ak = ∅ and

∣∣⋃
i∈I Ai

∣∣ is
maximum.

1.45. For n ∈ N, let An = (− 1
n , 2 − 1

n

)
. Determine

⋃
n∈N An and

⋂
n∈N An.
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1.46. Determine the following:

(a)
∞⋃

n=1

(
−1

n
,

1
n

)
and

∞⋂
n=1

(
−1

n
,

1
n

)

(b)
∞⋃

n=1

[
n − 1

n
,

n + 1
n

]
and

∞⋂
n=1

[
n − 1

n
,

n + 1
n

]

1.47. Determine the following:

(a)
∞⋃

n=1

{
sin2 nπ

2
+ cos2 nπ

2

}
and

∞⋂
n=1

{
sin2 nπ

2
+ cos2 nπ

2

}

(b)
∞⋃

n=1

{
sin

nπ

2
+ cos

nπ

2

}
and

∞⋂
n=1

{
sin

nπ

2
+ cos

nπ

2

}

1.5 PARTITIONS OF SETS

Recall that two sets are disjoint if their intersection is the empty set. A collection S
of subsets of a set A is called pairwise disjoint if every two distinct subsets that be-
long to S are disjoint. For example, let A = {1, 2, . . . , 7}, B = {1, 6}, C = {2, 5}, D =
{4, 7} and S = {B,C, D}. Then S is a pairwise disjoint collection of subsets of A since
B ∩ C = B ∩ D = C ∩ D = ∅. On the other hand, let A′ = {1, 2, 3}, B′ = {1, 2}, C′ =
{1, 3}, D′ = {2, 3} and S′ = {B′,C′, D′}. Although S′ is a collection of subsets of A′ and
B′ ∩ C′ ∩ D′ = ∅, the set S′ is not a pairwise disjoint collection of sets since B′ ∩ C′ �= ∅,
for example. Indeed, B′ ∩ D′ and C′ ∩ D′ are also nonempty.

We will often have the occasion (especially in Chapter 9) to encounter, for a nonempty
set A, a collection S of pairwise disjoint nonempty subsets of A with the added property
that every element of A belongs to some subset in S. Such a collection is called a parti-
tion of A. A partition of A can also be defined as a collection S of nonempty subsets of A
such that every element of A belongs to exactly one subset in S. Furthermore, a partition
of A can be defined as a collection S of subsets of A satisfying the three properties:

(1) X �= ∅ for every set X ∈ S;

(2) for every two sets X,Y ∈ S, either X = Y or X ∩ Y = ∅;

(3)
⋃

X∈S X = A.

Example 1.22 Consider the following collections of subsets of the set A = {1, 2, 3, 4, 5, 6}:
S1 = {{1, 3, 6}, {2, 4}, {5}};
S2 = {{1, 2, 3}, {4},∅, {5, 6}};
S3 = {{1, 2}, {3, 4, 5}, {5, 6}};
S4 = {{1, 4}, {3, 5}, {2}}.

Determine which of these sets are partitions of A.

Solution The set S1 is a partition of A. The set S2 is not a partition of A since ∅ is one of the
elements of S2. The set S3 is not a partition of A either since the element 5 belongs to
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two distinct subsets in S3, namely, {3, 4, 5} and {5, 6}. Finally, S4 is also not a partition
of A because the element 6 belongs to no subset in S4. �

As the word “partition” probably suggests, a partition of a nonempty set A is a
division of A into nonempty subsets. The partition S1 of the set A in Example 1.22 is
illustrated in the diagram shown in Figure 1.7.
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Figure 1.7 A partition of a set

For example, the set Z of integers can be partitioned into the set of even integers
and the set of odd integers. The set R of real numbers can be partitioned into the set R+

of positive real numbers, the set of negative real numbers and the set {0} consisting of
the number 0. In addition, R can be partitioned into the set Q of rational numbers and
the set I of irrational numbers.

Example 1.23 Let A = {1, 2, . . . , 12}.
(a) Give an example of a partition S of A such that |S| = 5.

(b) Give an example of a subset T of the partition S in (a) such that |T | = 3.

(c) List all those elements B in the partition S in (a) such that |B| = 2.

Solution (a) We are seeking a partition S of A consisting of five subsets. One such
example is

S = {{1, 2}, {3, 4}, {5, 6}, {7, 8, 9}, {10, 11, 12}}.
(b) We are seeking a subset T of S (given in (a)) consisting of three elements.

One such example is

T = {{1, 2}, {3, 4}, {7, 8, 9}}.
(c) We have been asked to list all those elements of S (given in (a)) consisting of

two elements of A. These elements are {1, 2}, {3, 4}, {5, 6}. �

SECTION 1.5 EXERCISES

1.48. Which of the following are partitions of A = {a, b, c, d, e, f , g}? For each collection of subsets that is not a
partition of A, explain your answer.

(a) S1 = {{a, c, e, g}, {b, f }, {d}} (b) S2 = {{a, b, c, d}, {e, f }}
(c) S3 = {A} (d) S4 = {{a},∅, {b, c, d}, {e, f , g}}
(e) S5 = {{a, c, d}, {b, g}, {e}, {b, f }}.
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1.49. Which of the following sets are partitions of A = {1, 2, 3, 4, 5}?
(a) S1 = {{1, 3}, {2, 5}} (b) S2 = {{1, 2}, {3, 4, 5}}
(c) S3 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}} (d) S4 = A.

1.50. Let A = {1, 2, 3, 4, 5, 6}. Give an example of a partition S of A such that |S| = 3.

1.51. Give an example of a set A with |A| = 4 and two disjoint partitions S1 and S2 of A with |S1| = |S2| = 3.

1.52. Give an example of a partition of N into three subsets.

1.53. Give an example of a partition of Q into three subsets.

1.54. Give an example of three sets A, S1 and S2 such that S1 is a partition of A, S2 is a partition of S1 and
|S2| < |S1| < |A|.

1.55. Give an example of a partition of Z into four subsets.

1.56. Let A = {1, 2, . . . , 12}. Give an example of a partition S of A satisfying the following requirements: (i)
|S| = 5, (ii) there is a subset T of S such that |T | = 4 and | ∪X∈T X | = 10 and (iii) there is no element B ∈ S
such that |B| = 3.

1.57. A set S is partitioned into two subsets S1 and S2. This produces a partition P1 of S where P1 = {S1, S2} and
so |P1| = 2. One of the sets in P1 is then partitioned into two subsets, producing a partition P2 of S with
|P2| = 3. A total of |P1| sets in P2 are partitioned into two subsets each, producing a partition P3 of S.
Next, a total of |P2| sets in P3 are partitioned into two subsets each, producing a partition P4 of S. This is
continued until a partition P6 of S is produced. What is |P6|?

1.58. It was mentioned that there are three ways that a collection S of subsets of a nonempty set A is defined to be
a partition of A.

Definition 1 The collection S consists of pairwise disjoint nonempty subsets of A and every element of A
belongs to a subset in S.

Definition 2 The collection S consists of nonempty subsets of A and every element of A belongs to exactly
one subset in S.

Definition 3 The collection S consists of subsets of A satisfying the three properties (1) every subset in S is
nonempty, (2) every two subsets of A are equal or disjoint and (3) the union of all subsets in S is A.

(a) Show that any collection S of subsets of A satisfying Definition 1 satisfies Definition 2.
(b) Show that any collection S of subsets of A satisfying Definition 2 satisfies Definition 3.
(c) Show that any collection S of subsets of A satisfying Definition 3 satisfies Definition 1.

1.6 CARTESIAN PRODUCTS OF SETS

We’ve already mentioned that when a set A is described by listing its elements, the order
in which the elements of A are listed doesn’t matter. That is, if the set A consists of two
elements x and y, then A = {x, y} = {y, x}. When we speak of the ordered pair (x, y),
however, this is another story. The ordered pair (x, y) is a single element consisting of a
pair of elements in which x is the first element (or first coordinate) of the ordered pair
(x, y) and y is the second element (or second coordinate). Moreover, for two ordered
pairs (x, y) and (w, z) to be equal, that is, (x, y) = (w, z), we must have x = w and y = z.
So, if x �= y, then (x, y) �= (y, x).

The Cartesian product (or simply the product) A × B of two sets A and B is the
set consisting of all ordered pairs whose first coordinate belongs to A and whose second
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coordinate belongs to B. In other words,

A × B = {(a, b) : a ∈ A and b ∈ B}.

Example 1.24 If A = {x, y} and B = {1, 2, 3}, then

A × B = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)},

while

B × A = {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)}.
Since, for example, (x, 1) ∈ A × B and (x, 1) /∈ B × A, these two sets do not contain the
same elements; so A × B �= B × A. Also,

A × A = {(x, x), (x, y), (y, x), (y, y)}
and

B × B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}. �
We also note that if A = ∅ or B = ∅, then A × B = ∅.
The Cartesian product R × R is the set of all points in the Euclidean plane. For

example, the graph of the straight line y = 2x + 3 is the set

{(x, y) ∈ R × R : y = 2x + 3}.
For the sets A = {x, y} and B = {1, 2, 3} given in Example 1.24, |A| = 2 and |B| =

3; while |A × B| = 6. Indeed, for all finite sets A and B,

|A × B| = |A| · |B|.
Cartesian products will be explored in more detail in Chapters 4 and 9.

SECTION 1.6 EXERCISES

1.59. Let A = {x, y, z} and B = {x, y}. Determine A × B.

1.60. Let A = {1, {1}, {{1}}}. Determine A × A.

1.61. For A = {a, b}, determine A × P (A).

1.62. For A = {∅, {∅}}, determine A × P (A).

1.63. For A = {1, 2} and B = {∅}, determine A × B and P (A) × P (B).

1.64. Describe the graph of the circle whose equation is x2 + y2 = 4 as a subset of R × R.

1.65. List the elements of the set S = {(x, y) ∈ Z × Z : |x| + |y| = 3}. Plot the corresponding points in the
Euclidean x-y plane.

1.66. For A = {1, 2} and B = {1}, determine P (A × B).

1.67. For A = {x ∈ R : |x − 1| ≤ 2} and B = {y ∈ R : |y − 4| ≤ 2}, give a geometric description of the points in
the xy-plane belonging to A × B.

1.68. For A = {a ∈ R : |a| ≤ 1} and B = {b ∈ R : |b| = 1}, give a geometric description of the points in the
xy-plane belonging to (A × B) ∪ (B × A).
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1.69. Let A = {1, 2, 3} and B = {2, 3, 4}. Determine the following:

(a) (A × B) ∩ (B × A) (b) (A ∩ B) × (B ∩ A)

1.70. Let R = {(1, 1), (2, 1), (3, 2), (3, 3), (4, 2), (4, 3)} be a collection of ordered pairs. Find subsets A, B,C, D
of the set {1, 2, 3, 4} such that R = ((A × B) ∪ (C × D)) − (D × D).

1.71. For i = 1, 2, 3, let Ai = {i, i + 1}. Determine
∣∣∪3

i=1(Ai × Ai)
∣∣

1.72. For A = {1, 2} and B = {3, 4}, it follows that P = {A, B} is a partition of the set S = {1, 2, 3, 4}. Describe a
partition of S × S in terms of Cartesian products of the sets A and B.

The Chapter
Presentation for
Chapter 1 can be
found at
goo.gl/jxCZz4

Chapter 1 Supplemental Exercises

1.73. The set T = {2k + 1 : k ∈ Z} can be described as T = {. . . ,−3,−1, 1, 3, . . .}.
Describe the following sets in a similar manner.

(a) A = {4k + 3 : k ∈ Z} (b) B = {5k − 1 : k ∈ Z}.
1.74. Let S = {−10,−9, . . . , 9, 10}. Describe each of the following sets as {x ∈ S : p(x)},

where p(x) is some condition on x.

(a) A = {−10,−9, . . . ,−1, 1, . . . , 9, 10} (b) B = {−10,−9, . . . ,−1, 0}
(c) C = {−5,−4, . . . , 0, 1, . . . , 7} (d) D = {−10,−9, . . . , 4, 6, 7, . . . , 10}.

1.75. Describe each of the following sets by listing its elements within braces.

(a) {x ∈ Z : x3 − 4x = 0} (b) {x ∈ R : |x| = −1}
(c) {m ∈ N : 2 < m ≤ 5} (d) {n ∈ N : 0 ≤ n ≤ 3}
(e) {k ∈ Q : k2 − 4 = 0} (f) {k ∈ Z : 9k2 − 3 = 0}
(g) {k ∈ Z : 1 ≤ k2 ≤ 10}.

1.76. Determine the cardinality of each of the following sets.

(a) A = {1, 2, 3, {1, 2, 3}, 4, {4}} (b) B = {x ∈ R : |x| = −1}
(c) C = {m ∈ N : 2 < m ≤ 5} (d) D = {n ∈ N : n < 0}
(e) E = {k ∈ N : 1 ≤ k2 ≤ 100} (f) F = {k ∈ Z : 1 ≤ k2 ≤ 100}.

1.77. For A = {−1, 0, 1} and B = {x, y}, determine A × B.

1.78. Let U = {1, 2, 3} be the universal set and let A = {1, 2}, B = {2, 3} and C = {1, 3}.
Determine the following.

(a) (A ∪ B) − (B ∩ C) (b) A (c) B ∪ C (d) A × B.

1.79. Let A = {1, 2, . . . , 10}. Give an example of two sets S and B such that S ⊆ P (A),
|S| = 4, B ∈ S and |B| = 2.

1.80. For A = {1} and C = {1, 2}, give an example of a set B such that P (A) ⊂ B ⊂ P (C).

1.81. Give examples of two sets A and B such that A ∩ P (A) ∈ B and P (A) ⊆ A ∪ B.

1.82. Which of the following sets are equal?
A = {n ∈ Z : −4 ≤ n ≤ 4} D = {x ∈ Z : x3 = 4x}
B = {x ∈ N : 2x + 2 = 0} E = {−2, 0, 2}.
C = {x ∈ Z : 3x − 2 = 0}
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1.83. Let A and B be subsets of some unknown universal set U . Suppose that A = {3, 8, 9},
A − B = {1, 2}, B − A = {8} and A ∩ B = {5, 7}. Determine U , A and B.

1.84. Let I denote the interval [0,∞). For each r ∈ I, define

Ar = {
(x, y) ∈ R × R : x2 + y2 = r2

}
Br = {

(x, y) ∈ R × R : x2 + y2 ≤ r2
}

Cr = {
(x, y) ∈ R × R : x2 + y2 > r2

}
.

(a) Determine
⋃

r∈I Ar and
⋂

r∈I Ar.
(b) Determine

⋃
r∈I Br and

⋂
r∈I Br.

(c) Determine
⋃

r∈I Cr and
⋂

r∈I Cr.

1.85. Give an example of four sets A1, A2, A3, A4 such that |Ai ∩ Aj| = |i − j| for every
two integers i and j with 1 ≤ i < j ≤ 4.

1.86. (a) Give an example of two problems suggested by Exercise 1.85 (above).
(b) Solve one of the problems in (a).

1.87. Let A = {1, 2, 3}, B = {1, 2, 3, 4} and C = {1, 2, 3, 4, 5}. For the sets S and T
described below, explain whether |S| < |T |, |S| > |T | or |S| = |T |.
(a) Let B be the universal set and let S be the set of all subsets X of B for which

|X | �= |X |. Let T be the set of 2-element subsets of C.
(b) Let S be the set of all partitions of the set A and let T be the set of 4-element

subsets of C.
(c) Let S = {(b, a) : b ∈ B, a ∈ A, a + b is odd} and let T be the set of all nonempty

proper subsets of A.

1.88. Give an example of a set A = {1, 2, . . . , k} for a smallest k ∈ N containing subsets
A1, A2, A3 such that |Ai − Aj| = |Aj − Ai| = |i − j| for every two integers i and j
with 1 ≤ i < j ≤ 3.

1.89. (a) For A = {−3,−2, . . . , 4} and B = {1, 2, . . . , 6}, determine
S = {(a, b) ∈ A × B : a2 + b2 = 25}.

(b) For C = {a ∈ B : (a, b) ∈ S} and D = {b ∈ A : (a, b) ∈ S}, where A, B, S are the
sets in (a), determine C × D.

1.90. For A = {1, 2, 3}, let B be the set of 2-element sets belonging to P (A) and let C be
the set consisting of the sets that are the intersections of two distinct elements of B.
Determine D = P (C).

1.91. For a real number r, let Ar = {r, r + 1}. Let S = {x ∈ R : x2 + 2x − 1 = 0}.
(a) Determine B = As × At for the distinct elements s, t ∈ S, where s < t.
(b) Let C = {ab : (a, b) ∈ B}. Determine the sum of the elements of C.

1.92. (a) For a set A with |A| = 2, what is the largest possible value of |A ∩ P (A)|?
(b) What is the largest possible value of |A ∩ P (A)| if |A| = 3?
(c) This should suggest another question to you. What is the answer to your

question?

1.93. For n ∈ N, let Sn =
{

x + y : x, y ∈ R,
1
n2

≤ x2 + y2 ≤ 1
}

. Determine
∞⋃

n=1

Sn

and
∞⋂

n=1

Sn.
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1.94. For the set S = {1, 2, . . . , 7}, consider the five subsets
A1 = {1, 2}, A2 = {3, 4, 5}, A3 = {2, 5, 6}, A4 = {2, 7}, A5 = {1, 2}.
(a) Is the collection P1 = {A1, A2, A3, A4, A5} a partition of S?
(b) Let Bi = Ai − Ai+1 for i = 1, 2, 3, 4. Is P2 = {B1, B2, B3, B4} a partition of S?
(c) Let Ci = A6−i − A5−i for i = 1, 2, 3, 4. Is P3 = {C1,C2,C3,C4} a partition of S?

1.95. Let S = {1, 2, 3}. Find a condition under which nonempty subsets A, B,C of S have
the property that |A × (B ∪ C)| = |A × B| + |A × C|.
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2
Logic

In mathematics our goal is to seek the truth. Are there connections between two given
mathematical concepts? If so, what are they? Under what conditions does an object

possess a particular property? Finding answers to questions such as these is important,
but we cannot be satisfied only with this. We must be certain that we are right and that
our explanation for why we believe we are correct is convincing to others. The reasoning
we use as we proceed from what we know to what we wish to show must be logical. It
must make sense to others, not just to ourselves.

There is joint responsibility here, however. It is the writer’s responsibility to use the
rules of logic to give a valid and clear argument with enough details provided to allow
the reader to understand what we have written and to be convinced. It is the reader’s
responsibility to know the basics of logic and to study the concepts involved sufficiently
well so that he or she will not only be able to understand a well-presented argument
but can decide as well whether it is valid. Consequently, both writer and reader must be
familiar with logic.

Although it is possible to spend a great deal of time studying logic, we will present
only what we actually need and will instead use the majority of our time putting what
we learn into practice.

2.1 STATEMENTS

In mathematics we are constantly dealing with statements. By a statement we mean a
declarative sentence or assertion that is true or false (but not both). Statements therefore
declare or assert the truth of something. Of course, the statements in which we will be
primarily interested deal with mathematics. For example, the sentences

The integer 3 is odd.
The integer 57 is prime.

are statements (only the first of which is true).
Every statement has a truth value, namely true (denoted by T ) or false (denoted

by F). We often use P, Q and R to denote statements, or perhaps P1, P2, . . . , Pn if there
are several statements involved. We have seen that

P1 : The integer 3 is odd.
38
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and

P2 : The integer 57 is prime.

are statements, where P1 has truth value T and P2 has truth value F .
Sentences that are imperative (commands) such as

Substitute the number 2 for x.
Find the derivative of f (x) = e−x cos 2x.

or are interrogative (questions) such as

Are these sets disjoint?
What is the derivative of f (x) = e−x cos 2x?

or are exclamatory such as

What an interesting question!
How difficult this problem is!

are not statements since these sentences are not declarative.
It may not be immediately clear whether a statement is true or false. For example, the

sentence “The 100th digit in the decimal expansion of π is 7.” is a statement, but it may
be necessary to find this information in a website on the Internet to determine whether
this statement is true. Indeed, for a sentence to be a statement, it is not a requirement
that we know or are able to determine its truth value.

The sentence “The real number r is rational.” is a statement provided we know what
real number r is being referred to. Without this additional information, however, it is im-
possible to assign a truth value to it. This is an example of what is often referred to as an
open sentence. In general, an open sentence is a declarative sentence that contains one
or more variables, each variable representing a value in some prescribed set, called the
domain of the variable, and which becomes a statement when values from their respec-
tive domains are substituted for these variables. For example, the open sentence “3x =
12” where the domain of x is the set of integers is a true statement only when x = 4.

An open sentence that contains a variable x is typically represented by P(x), Q(x) or
R(x). If P(x) is an open sentence, where the domain of x is S, then we say P(x) is an open
sentence over the domain S. Also, P(x) is a statement for each x ∈ S. For example, the
open sentence

P(x) : (x − 3)2 ≤ 1

over the domain Z is a true statement when x ∈ {2, 3, 4} and is a false statement
otherwise.

Example 2.1 For the open sentence

P(x, y): |x + 1| + |y| = 1

in two variables, suppose that the domain of the variable x is S = {−2,−1, 0} and the
domain of the variable y is T = {−1, 0, 1}. Then

P(−1, 1) : |(−1) + 1| + |1| = 1
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is a true statement, while

P(1,−1) : |1 + 1| + | − 1| = 1

is a false statement. In fact, P(x, y) is a true statement when

(x, y) ∈ {(−2, 0), (−1,−1), (−1, 1), (0, 0)},

while P(x, y) is a false statement for all other elements (x, y) ∈ S × T . �

The possible truth values of a statement are often listed in a table, called a truth
table. The truth tables for two statements P and Q are given in Figure 2.1. Since there
are two possible truth values for each of P and Q, there are four possible combinations of
truth values for P and Q. The truth table showing all these combinations is also given in
Figure 2.1. If a third statement R is involved, then there are eight possible combinations
of truth values for P, Q and R. This is displayed in Figure 2.1 as well. In general, a
truth table involving n statements P1, P2, · · · , Pn contains 2n possible combinations of
truth values for these statements and a truth table showing these combinations would
have n columns and 2n rows. Much of the time, we will be dealing with two statements,
usually denoted by P and Q; so the associated truth table will have four rows with the
first two columns headed by P and Q. In this case, it is customary to consider the four
combinations of the truth values in the order TT, TF, FT, FF from top to bottom.

T

F

F

T

T

F

F

T

T

F

F

T

T

F

T

QP

F

FF

T

RPQQ

F

F

F

T

T

F

.........................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................................................................................................................

T

T

P

T

F

F

TT

F

T

F

T

Figure 2.1 Truth tables for one, two and three statements

SECTION 2.1 EXERCISES

2.1. Which of the following sentences are statements? For those that are, indicate the truth value.

(a) The integer 123 is prime. (b) The integer 0 is even.
(c) Is 5 × 2 = 10? (d) x2 − 4 = 0.
(e) Multiply 5x + 2 by 3. (f) 5x + 3 is an odd integer.
(g) What an impossible question!



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M03_CHART6753_04_SE_C02 PH03348-Chartrand August 16, 2017 20:13 Char Count= 0

2.2 Negations 41

2.2. Consider the sets A, B,C and D below. Which of the following statements are true? Give an explanation for
each false statement.

A = {1, 4, 7, 10, 13, 16, . . .} C = {x ∈ Z : x is prime and x �= 2}
B = {x ∈ Z : x is odd} D = {1, 2, 3, 5, 8, 13, 21, 34, 55, . . .}

(a) 25 ∈ A (b) 33 ∈ D (c) 22 /∈ A ∪ D (d) C ⊆ B (e) ∅ ∈ B ∩ D (f) 53 /∈ C.

2.3. Which of the following statements are true? Give an explanation for each false statement.

(a) ∅ ∈ ∅ (b) ∅ ∈ {∅} (c) {1, 3} = {3, 1}
(d) ∅ = {∅} (e) ∅ ⊂ {∅} (f) 1 ⊆ {1}.

2.4. Consider the open sentence P(x) : x(x − 1) = 6 over the domain R.

(a) For what values of x is P(x) a true statement?
(b) For what values of x is P(x) a false statement?

2.5. For the open sentence P(x) : 3x − 2 > 4 over the domain Z, determine:

(a) the values of x for which P(x) is true.
(b) the values of x for which P(x) is false.

2.6. For the open sentence Q(A) : A ⊆ {1, 2, 3} over the domain S = P ({1, 2, 4}), determine:

(a) all A ∈ S for which Q(A) is true.
(b) all A ∈ S for which Q(A) is false.
(c) all A ∈ S for which A ∩ {1, 2, 3} = ∅.

2.7. Let P(n): n and n + 2 are primes. be an open sentence over the domain N. Find six positive integers n for
which P(n) is true. If n ∈ N such that P(n) is true, then the two integers n, n + 2 are called twin primes. It
has been conjectured that there are infinitely many twin primes.

2.8. Let P(n) : n2+5n+6
2 is even.

(a) Find a set S1 of three integers such that P(n) is an open sentence over the domain S1 and P(n) is true for
each n ∈ S1.

(b) Find a set S2 of three integers such that P(n) is an open sentence over the domain S2 and P(n) is false
for each n ∈ S2.

2.9. Find an open sentence P(n) over the domain S = {3, 5, 7, 9} such that P(n) is true for half of the integers in
S and false for the other half.

2.10. Find two open sentences P(n) and Q(n), both over the domain S = {2, 4, 6, 8}, such that P(2) and Q(2) are
both true, P(4) and Q(4) are both false, P(6) is true and Q(6) is false, while P(8) is false and Q(8) is true.

2.2 NEGATIONS

Much of the interest in integers and other familiar sets of numbers comes not only from
the numbers themselves but from properties of the numbers that result by performing
operations on them (such as taking their negatives, adding or multiplying them, or com-
binations of these). Similarly, much of our interest in statements comes from investi-
gating the truth or falseness of new statements that can be produced from one or more
given statements by performing certain operations on them. Our first example concerns
producing a new statement from a single given statement.

The negation of a statement P is the statement

not P
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and is denoted by ∼ P. (The negation of a statement P is expressed as ¬P by some, but
we will denote the negation of P by ∼ P.)

Although ∼ P could always be expressed as “It is not the case that P,” there are better
ways to express the statement ∼ P in words. Consequently, we follow the practice of not
expressing negation in this manner.

Example 2.2 For the statement

P1 : The integer 3 is odd.

described above, we have

∼ P1 : The integer 3 is not odd.

or better yet to write

∼ P1 : The integer 3 is even.

Similarly, the negation of the statement

P2: The integer 57 is prime.

considered above is

∼ P2 : The integer 57 is not prime.

Note that ∼ P1 is false, while ∼ P2 is true. �

Indeed, the negation of a true statement is always false and the negation of a false
statement is always true; that is, the truth value of ∼ P is opposite to that of P. This is
summarized in Figure 2.2, which gives the truth table for ∼ P (in terms of the possible
truth values of P).

T

P

F

TF

∼ P

Figure 2.2 The truth table for negation

SECTION 2.2 EXERCISES

2.11. State the negation of each of the following statements.

(a)
√

2 is a rational number.
(b) 0 is not a negative integer.
(c) 111 is a prime number.
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2.12. Complete the truth table in Figure 2.3.

F

T

F

T

F

T

F

T

∼ Q∼ PQP

Figure 2.3 The truth table for Exercise 2.12.

2.13. State the negation of each of the following statements.

(a) The real number r is at most
√

2.
(b) The absolute value of the real number a is less than 3.
(c) Two angles of the triangle are 45◦.
(d) The area of the circle is at least 9π .
(e) Two sides of the triangle have the same length.
(f) The point P in the plane lies outside of the circle C.

2.14. State the negation of each of the following statements.

(a) At least two of my library books are overdue.
(b) One of my two friends misplaced his homework assignment.
(c) No one expected that to happen.
(d) It’s not often that my instructor teaches that course.
(e) It’s surprising that two students received the same exam score.

2.3 DISJUNCTIONS AND CONJUNCTIONS

For two given statements P and Q, a common way to produce a new statement from
them is by inserting the word “or” or “and” between P and Q. The disjunction of the
statements P and Q is the statement

P or Q

and is denoted by P ∨ Q. The disjunction P ∨ Q is true if at least one of P and Q is true;
otherwise, P ∨ Q is false. Therefore, P ∨ Q is true if exactly one of P and Q is true or if
both P and Q are true.

Example 2.3 For the statements

P1 : The integer 3 is odd. and P2 : The integer 57 is prime.

described earlier, the disjunction is the new statement

P1 ∨ P2: Either 3 is odd or 57 is prime.
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which is true since at least one of P1 and P2 is true (namely, P1 is true). Of course, in this
case exactly one of P1 and P2 is true. �

For two statements P and Q, the truth table for P ∨ Q is shown in Figure 2.4. This
truth table then describes precisely when P ∨ Q is true (and when it is false).

P ∨ QQP

T T

T

T

F

F

T

F

T

T

F

F

....................................................................................................................................................................................

....................................................................................................................................................................................

Figure 2.4 The truth table for disjunction

The conjunction of the statements P and Q is the statement

P and Q

and is denoted by P ∧ Q. The conjunction P ∧ Q is true only when both P and Q are
true; otherwise, P ∧ Q is false.

Example 2.4 For P1 : The integer 3 is odd. and P2 : The integer 57 is prime., the statement

P1 ∧ P2 : 3 is odd and 57 is prime.

is false since P2 is false and so not both P1 and P2 are true. �

The truth table for the conjunction of two statements is shown in Figure 2.5.

P ∧ QQP

TT T

FFT

F T F

FFF

..................................................................................................................................................................................

Figure 2.5 The truth table for conjunction

Since the statement P3 : 59 is prime. is true, it follows that the conjunction

P1 ∧ P3 : 3 is odd and 59 is prime.

is a true statement.
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SECTION 2.3 EXERCISES

2.15. Complete the truth table in Figure 2.6.

QP P ∧ (∼ Q)∼ Q

F

T

F

T

F

T

F

T

Figure 2.6 The truth table for Exercise 2.15.

2.16. For the sets A = {1, 2, · · · , 10} and B = {2, 4, 6, 9, 12, 25}, consider the statements

P: A ⊆ B. Q: |A − B| = 6.

Determine which of the following statements are true.

(a) P ∨ Q (b) P ∨ (∼ Q) (c) P ∧ Q
(d) (∼ P) ∧ Q (e) (∼ P) ∨ (∼ Q).

2.17. Let P: 15 is odd. and Q : 21 is prime. State each of the following in words and determine whether it is true
or false.

(a) P ∨ Q (b) P ∧ Q (c) (∼ P) ∨ Q (d) P ∧ (∼ Q).

2.18. Let S = {1, 2, . . . , 6} and let

P(A): A ∩ {2, 4, 6} = ∅. and Q(A): A �= ∅.

be open sentences over the domain P (S).

(a) Determine all A ∈ P (S) for which P(A) ∧ Q(A) is true.
(b) Determine all A ∈ P (S) for which P(A) ∨ (∼ Q(A)) is true.
(c) Determine all A ∈ P (S) for which (∼ P(A)) ∧ (∼ Q(A)) is true.

2.4 IMPLICATIONS

A statement formed from two given statements in which we will be most interested is
the implication (also called the conditional). For statements P and Q, the implication
(or conditional) is the statement

If P, then Q.

and is denoted by P ⇒ Q. In addition to the wording “If P, then Q.”, we also express
P ⇒ Q in words as

P implies Q.

The truth table for P ⇒ Q is given in Figure 2.7.
Notice that P ⇒ Q is false only when P is true and Q is false (P ⇒ Q is true

otherwise).
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P ⇒ QP Q

TTT

FFT

F T T

TFF

.................................................................................................................................................................................

Figure 2.7 The truth table for implication

Example 2.5 For P1 : The integer 3 is odd. and P2 : The integer 57 is prime., the implication

P1 ⇒ P2 : If 3 is an odd integer, then 57 is prime.

is a false statement. The implication

P2 ⇒ P1 : If 57 is prime, then 3 is odd.

is true, however. �

While the truth tables for the negation ∼ P, the disjunction P ∨ Q and the conjunc-
tion P ∧ Q are probably what one would expect, this may not be so for the implication
P ⇒ Q. There is ample justification, however, for the truth values in the truth table of
P ⇒ Q. We illustrate this with an example.

Example 2.6 A student is taking a math class (let’s say this one) and is currently receiving a B+. He
visits his instructor a few days before the final examination and asks her, “Is there any
chance that I can get an A in this course?” His instructor looks through her grade book
and says, “If you earn an A on the final exam, then you will receive an A for your final
grade.” We now check the truth or falseness of this implication based on the various
combinations of truth values of the statements

P: You earn an A on the final exam.

and

Q : You receive an A for your final grade.

which make up the implication.

Analysis Suppose first that P and Q are both true. That is, the student receives an A on his final
exam and later learns that he got an A for his final grade in the course. Did his instructor
tell the truth? I think we would all agree that she did. So if P and Q are both true, then
so too is P ⇒ Q, which agrees with the first row of the truth table of Figure 2.7.

Second, suppose that P is true and Q is false. So the student got an A on his final exam
but did not receive an A as a final grade (say he received a B). Certainly, his instructor
did not do as she promised (as she will soon be reminded by her student). What she said
was false, which agrees with the second row of the table in Figure 2.7.
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Third, suppose that P is false and Q is true. In this case, the student did not get an A
on his final exam (say he earned a B), but when he received his final grades, he learned
(and was pleasantly surprised) that his final grade was an A. How could this happen?
Perhaps his instructor was lenient. Perhaps the final exam was unusually difficult and
a grade of B on it indicated an exceptionally good performance. Perhaps the instructor
made a mistake. In any case, the instructor did not lie; so she told the truth. Indeed, she
never promised anything if the student did not get an A on his final exam. This agrees
with the third row of the table in Figure 2.7.

Finally, suppose that P and Q are both false. That is, suppose the student did not
get an A on his final exam and he also did not get an A for a final grade. The instructor
did not lie here either. She only promised the student an A if he got an A on the final
exam. Once again, she did not promise anything if the student did not get an A on the
final exam. So the instructor told the truth and this agrees with the fourth and final row
of the table. �

In summary then, the only situation for which P ⇒ Q is false is when P is true and
Q is false (so ∼ Q is true). That is, the truth tables for

∼ (P ⇒ Q) and P ∧ (∼ Q)

are the same. We’ll revisit this observation again soon.
We have already mentioned that the implication P ⇒ Q can be expressed as both

“If P, then Q” and “P implies Q.” In fact, there are several ways of expressing P ⇒ Q
in words, namely:

If P, then Q.

Q if P.
P implies Q.

P only if Q.

P is sufficient for Q.

Q is necessary for P.

It is probably not surprising that the first three of these say the same thing but perhaps
not at all obvious that the last three say the same thing as the first three. Consider the
statement “P only if Q.” This says that P is true only under the condition that Q is true;
in other words, it cannot be the case that P is true and Q is false. Thus, it says that if P is
true, then necessarily Q must be true. We can also see from this that the statement “Q is
necessary for P” has the same meaning as “P only if Q.” The statement “P is sufficient
for Q” states that the truth of P is sufficient for the truth of Q. In other words, the truth
of P implies the truth of Q; that is, “P implies Q.”

SECTION 2.4 EXERCISES

2.19. Consider the statements P: 17 is even. and Q: 19 is prime. Write each of the following statements in words
and indicate whether it is true or false.

(a) ∼ P (b) P ∨ Q (c) P ∧ Q (d) P ⇒ Q.

2.20. For statements P and Q, construct a truth table for (P ⇒ Q) ⇒ (∼ P).
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2.21. Consider the statements P :
√

2 is rational. and Q : 22/7 is rational. Write each of the following statements
in words and indicate whether it is true or false.

(a) P ⇒ Q (b) Q ⇒ P (c) (∼ P) ⇒ (∼ Q) (d) (∼ Q) ⇒ (∼ P).

2.22. Consider the statements:

P:
√

2 is rational. Q: 2
3 is rational. R:

√
3 is rational.

Write each of the following statements in words and indicate whether the statement is true or false.

(a) (P ∧ Q) ⇒ R (b) (P ∧ Q) ⇒ (∼ R)
(c) ((∼ P) ∧ Q) ⇒ R (d) (P ∨ Q) ⇒ (∼ R).

2.23. Suppose that {S1, S2} is a partition of a set S and x ∈ S. Which of the following are true?

(a) If we know that x /∈ S1, then x must belong to S2.
(b) It’s possible that x /∈ S1 and x /∈ S2.
(c) Either x /∈ S1 or x /∈ S2.
(d) Either x ∈ S1 or x ∈ S2.
(e) It’s possible that x ∈ S1 and x ∈ S2.

2.24. Two sets A and B are nonempty disjoint subsets of a set S. If x ∈ S, then which of the following are true?

(a) It’s possible that x ∈ A ∩ B.
(b) If x is an element of A, then x can’t be an element of B.
(c) If x is not an element of A, then x must be an element of B.
(d) It’s possible that x /∈ A and x /∈ B.
(e) For each nonempty set C, either x ∈ A ∩ C or x ∈ B ∩ C.
(f) For some nonempty set C, both x ∈ A ∪ C and x ∈ B ∪ C.

2.25. A college student makes the following statement:

If I receive an A in both Calculus I and Discrete Mathematics this semester, then I’ll take either
Calculus II or Computer Programming this summer.

For each of the following, determine whether the statement above is true or false.

(a) The student doesn’t get an A in Calculus I but decides to take Calculus II this summer anyway.
(b) The student gets an A in both Calculus I and Discrete Mathematics but decides not to take any class this

summer.
(c) The student does not get an A in Calculus I and decides not to take Calculus II but takes Computer

Programming this summer.
(d) The student gets an A in both Calculus I and Discrete Mathematics and decides to take both Calculus II

and Computer Programming this summer.
(e) The student gets an A in neither Calculus I nor Discrete Mathematics and takes neither Calculus II nor

Computer Programming this summer.

2.26. A college student makes the following statement:

If I don’t see my advisor today, then I’ll see her tomorrow.

For each of the following, determine whether the statement above is true or false.

(a) The student doesn’t see his advisor either day.
(b) The student sees his advisor both days.
(c) The student sees his advisor on one of the two days.
(d) The student doesn’t see his advisor today and waits until next week to see her.
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2.27. The instructor of a computer science class announces to her class that there will be a well-known speaker
on campus later that day. Four students in the class are Alice, Ben, Cindy and Don. Ben says that he’ll
attend the lecture if Alice does. Cindy says that she’ll attend the talk if Ben does. Don says that he will go to
the lecture if Cindy does. That afternoon exactly two of the four students attend the talk. Which two
students went to the lecture?

2.28. Consider the statement (implication):
If Bill takes Sam to the concert, then Sam will take Bill to dinner.
Which of the following implies that this statement is true?

(a) Sam takes Bill to dinner only if Bill takes Sam to the concert.
(b) Either Bill doesn’t take Sam to the concert or Sam takes Bill to dinner.
(c) Bill takes Sam to the concert.
(d) Bill takes Sam to the concert and Sam takes Bill to dinner.
(e) Bill takes Sam to the concert and Sam doesn’t take Bill to dinner.
(f) The concert is canceled.
(g) Sam doesn’t attend the concert.

2.29. Let P and Q be statements. Which of the following implies that P ∨ Q is false?

(a) (∼ P) ∨ (∼ Q) is false. (b) (∼ P) ∨ Q is true.
(c) (∼ P) ∧ (∼ Q) is true. (d) Q ⇒ P is true. (e) P ∧ Q is false.

2.5 MORE ON IMPLICATIONS

We have just discussed four ways to create new statements from one or two given state-
ments. In mathematics, however, we are often interested in declarative sentences con-
taining variables and whose truth or falseness is only known once we have assigned
values to the variables. The values assigned to the variables come from their respective
domains. These sentences are, of course, precisely the sentences we have referred to as
open sentences. Just as new statements can be formed from statements P and Q by nega-
tion, disjunction, conjunction or implication, new open sentences can be constructed
from open sentences in the same manner.

Example 2.7 Consider the open sentences

P1(x) : x = −3. and P2(x) : |x| = 3.

where x ∈ R, that is, where the domain of x is R in each case. We can then form the
following open sentences:

∼ P1(x) : x �= −3.

P1(x) ∨ P2(x) : x = −3 or |x| = 3.

P1(x) ∧ P2(x) : x = −3 and |x| = 3.

P1(x) ⇒ P2(x) : If x = −3, then |x| = 3.

For a specific real number x, the truth value of each resulting statement can be de-
termined. For example, ∼ P1(−3) : −3 �= −3 is a false statement; while each of the
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remaining sentences above results in a true statement when x = −3. Both P1(2) ∨ P2(2)
and P1(2) ∧ P2(2) are false statements. On the other hand, both ∼ P1(2) and P1(2) ⇒
P2(2) are true statements. In fact, for each real number x �= −3, the implication P1(x) ⇒
P2(x) is a true statement since P1(x) : x = −3 is a false statement. Thus, P1(x) ⇒ P2(x)
is true for all x ∈ R. We will see that open sentences that result in true statements for all
values of the domain will be especially interesting to us.

Listed below are various ways of wording the implication P1(x) ⇒ P2(x) :

If x = −3, then |x| = 3.
|x| = 3 if x = −3.

x = −3 implies that |x| = 3.
x = −3 only if |x| = 3.

x = −3 is sufficient for |x| = 3.
|x| = 3 is necessary for x = −3. �

We now consider another example, this time from geometry. You may recall that a
triangle is called equilateral if the lengths of its three sides are the same, while a triangle
is isosceles if the lengths of any two of its three sides are the same. Figure 2.8 shows an
isosceles triangle T1 and an equilateral triangle T2. Actually, since the lengths of any two
of the three sides of T2 are the same, T2 is isosceles as well. Indeed, this is precisely the
fact we wish to discuss.

Example 2.8 For a triangle T , let

P(T ) : T is equilateral. and Q(T ) : T is isosceles.

Thus, P(T ) and Q(T ) are open sentences over the domain S of all triangles. Consider
the implication P(T ) ⇒ Q(T ), where the domain then of the variable T is the set S.
For an equilateral triangle T1, both P(T1) and Q(T1) are true statements and so P(T1) ⇒
Q(T1) is a true statement as well. If T2 is not an equilateral triangle, then P(T2) is a
false statement and so P(T2) ⇒ Q(T2) is true regardless of the truth of P(T2). Therefore,
P(T ) ⇒ Q(T ) is a true statement for all T ∈ S. We now state P(T ) ⇒ Q(T ) in a variety
of ways:

If T is an equilateral triangle, then T is isosceles.
A triangle T is isosceles if T is equilateral.
A triangle T being equilateral implies that T is isosceles.
A triangle T is equilateral only if T is isosceles.
For a triangle T to be isosceles, it is sufficient that T be equilateral.
For a triangle T to be equilateral, it is necessary that T be isosceles. �

Notice that at times we change the wording to make the statement or open sentence
sound better. In general, the statement or open sentence P in the implication P ⇒ Q is
commonly referred to as the hypothesis or premise of P ⇒ Q, while Q is called the
conclusion of P ⇒ Q.

It is often easier to deal with an implication when expressed in an “if, then” form.
This allows us to identify the hypothesis and conclusion more easily. Indeed, since
implications can be stated in a wide variety of ways (even in addition to those men-
tioned above), being able to reword an implication as “if, then” is especially useful. For
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Figure 2.8 Isosceles and equilateral triangles

example, the implication P(T ) ⇒ Q(T ) described in Example 2.8 can be encountered
in many ways, including the following:

• Let T be an equilateral triangle. Then T is isosceles.
• Suppose that T is an equilateral triangle. Then T is isosceles.
• Every equilateral triangle is isosceles.
• Whenever a triangle is equilateral, it is isosceles.

We now investigate the truth or falseness of implications involving open sentences
for values of their variables.

Example 2.9 Let S = {2, 3, 5} and let

P(n): n2 − n + 1 is prime. and Q(n): n3 − n + 1 is prime.

be open sentences over the domain S. Determine the truth or falseness of the implication
P(n) ⇒ Q(n) for each n ∈ S.

Solution In this case, we have the following:

P(2): 3 is prime. P(3): 7 is prime. P(5): 21 is prime.;
Q(2): 7 is prime. Q(3): 25 is prime. Q(5): 121 is prime.

Consequently, P(2) ⇒ Q(2) and P(5) ⇒ Q(5) are true, while P(3) ⇒ Q(3) is false. �

Example 2.10 Let S = {1, 2} and let T = {−1, 4}. Also, let

P(x, y): ||x + y| − |x − y|| = 2 and Q(x, y): xy+1 = yx

be open sentences, where the domain of the variable x is S and the domain of y
is T . Determine the truth or falseness of the implication P(x, y) ⇒ Q(x, y) for all
(x, y) ∈ S × T .

Solution For (x, y) = (1,−1), we have

P(1,−1) ⇒ Q(1,−1): If 2 = 2, then 1 = −1.

which is false. For (x, y) = (1, 4), we have

P(1, 4) ⇒ Q(1, 4): If 2 = 2, then 1 = 4.

which is also false. For (x, y) = (2,−1), we have

P(2,−1) ⇒ Q(2,−1): If 2 = 2, then 1 = 1.
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which is true; while for (x, y) = (2, 4), we have

P(2, 4) ⇒ Q(2, 4): If 2 = 4, then 32 = 16.

which is true. �

SECTION 2.5 EXERCISES

2.30. Consider the open sentences P(n) : 5n + 3 is prime. and Q(n) : 7n + 1 is prime., both over the domain N.

(a) State P(n) ⇒ Q(n) in words.
(b) State P(2) ⇒ Q(2) in words. Is this statement true or false?
(c) State P(6) ⇒ Q(6) in words. Is this statement true or false?

2.31. In each of the following, two open sentences P(x) and Q(x) over a domain S are given. Determine the truth
value of P(x) ⇒ Q(x) for each x ∈ S.

(a) P(x) : |x| = 4; Q(x) : x = 4; S = {−4,−3, 1, 4, 5}.
(b) P(x) : x2 = 16; Q(x) : |x| = 4; S = {−6,−4, 0, 3, 4, 8}.
(c) P(x) : x > 3; Q(x) : 4x − 1 > 12; S = {0, 2, 3, 4, 6}.

2.32. In each of the following, two open sentences P(x) and Q(x) over a domain S are given. Determine all x ∈ S
for which P(x) ⇒ Q(x) is a true statement.

(a) P(x) : x − 3 = 4; Q(x) : x ≥ 8; S = R.
(b) P(x) : x2 ≥ 1; Q(x) : x ≥ 1; S = R.
(c) P(x) : x2 ≥ 1; Q(x) : x ≥ 1; S = N.
(d) P(x) : x ∈ [−1, 2]; Q(x) : x2 ≤ 2; S = [−1, 1].

2.33. In each of the following, two open sentences P(x, y) and Q(x, y) are given, where the domain of both x and y
is Z. Determine the truth value of P(x, y) ⇒ Q(x, y) for the given values of x and y.

(a) P(x, y): x2 − y2 = 0. and Q(x, y): x = y.
(x, y) ∈ {(1,−1), (3, 4), (5, 5)}.

(b) P(x, y): |x| = |y|. and Q(x, y): x = y.
(x, y) ∈ {(1, 2), (2,−2), (6, 6)}.

(c) P(x, y): x2 + y2 = 1. and Q(x, y): x + y = 1.
(x, y) ∈ {(1,−1), (−3, 4), (0,−1), (1, 0)}.

2.34. Each of the following describes an implication. Write the implication in the form “if, then.”

(a) Any point on the straight line with equation 2y + x − 3 = 0 whose x-coordinate is an integer also has
an integer for its y-coordinate.

(b) The square of every odd integer is odd.
(c) Let n ∈ Z. Whenever 3n + 7 is even, n is odd.
(d) The derivative of the function f (x) = cos x is f ′(x) = − sin x.
(e) Let C be a circle of circumference 4π . Then the area of C is also 4π .
(f) The integer n3 is even only if n is even.
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2.6 BICONDITIONALS

For statements (or open sentences) P and Q, the implication Q ⇒ P is called the
converse of P ⇒ Q. The converse of an implication will often be of interest to us, either
by itself or in conjunction with the original implication.

Example 2.11 For the statements

P1: 3 is an odd integer. P2 : 57 is prime.

the converse of the implication

P1 ⇒ P2: If 3 is an odd integer, then 57 is prime.

is the implication

P2 ⇒ P1: If 57 is prime, then 3 is an odd integer. �

For statements (or open sentences) P and Q, the conjunction

(P ⇒ Q) ∧ (Q ⇒ P)

of the implication P ⇒ Q and its converse is called the biconditional of P and Q and
is denoted by P ⇔ Q. For statements P and Q, the truth table for P ⇔ Q can therefore
be determined. This is given in Figure 2.9. From this table, we see that P ⇔ Q is true
whenever the statements P and Q are both true or are both false, while P ⇔ Q is false
otherwise. That is, P ⇔ Q is true precisely when P and Q have the same truth values.

F

F

TF F T

P Q

T T

T

TF

F

F

F

T

T

F

F

P ⇔ Q

(P ⇒ Q) ∧ (Q ⇒ P)P ⇒ Q Q ⇒ PQP

T


T

T

F

T

F

T

T

F

T

T

T

F

T

Figure 2.9 The truth table for a biconditional
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The biconditional P ⇔ Q is often stated as

P is equivalent to Q.

or

P if and only if Q.

or as

P is necessary and sufficient for Q.

For statements P and Q, it then follows that the biconditional “P if and only if Q” is true
only when P and Q have the same truth values.

Example 2.12 The biconditional

3 is an odd integer if and only if 57 is prime.

is false; while the biconditional

100 is even if and only if 101 is prime.

is true. Furthermore, the biconditional

5 is even if and only if 4 is odd.

is also true. �

The phrase “if and only if” occurs often in mathematics and we shall discuss this
at greater length later. For the present, we consider two examples involving statements
containing the phrase “if and only if.”

Example 2.13 We noted in Example 2.7 that for the open sentences

P1(x) : x = −3. and P2(x) : |x| = 3.

over the domain R, the implication

P1(x) ⇒ P2(x) : If x = −3, then |x| = 3.

is a true statement for each x ∈ R. However, the converse

P2(x) ⇒ P1(x) : If |x| = 3, then x = −3.

is a false statement when x = 3 since P2(3) is true and P1(3) is false. For all other real
numbers x, the implication P2(x) ⇒ P1(x) is true. Therefore, the biconditional

P1(x) ⇔ P2(x) : x = −3 if and only if |x| = 3.

is false when x = 3 and is true for all other real numbers x. �
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Example 2.14 For the open sentences

P(T ) : T is equilateral. and Q(T ) : T is isosceles.

over the domain S of all triangles, the converse of the implication

P(T ) ⇒ Q(T ) : If T is equilateral, then T is isosceles.

is the implication

Q(T ) ⇒ P(T ) : If T is isosceles, then T is equilateral.

We noted that P(T ) ⇒ Q(T ) is a true statement for all triangles T , while Q(T ) ⇒ P(T )
is a false statement when T is an isosceles triangle that is not equilateral. On the other
hand, the second implication becomes a true statement for all other triangles T . There-
fore, the biconditional

P(T ) ⇔ Q(T ) : T is equilateral if and only if T is isosceles.

is false for all triangles that are isosceles and not equilateral, while it is true for all other
triangles T . �

We now investigate the truth or falseness of biconditionals obtained by assigning to
a variable each value in its domain.

Example 2.15 Let S = {0, 1, 4}. Consider the following open sentences over the domain S:

P(n): n(n+1)(2n+1)
6 is odd.

Q(n): (n + 1)3 = n3 + 1.

Determine three distinct elements a, b, c in S such that P(a) ⇒ Q(a) is false,
Q(b) ⇒ P(b) is false and P(c) ⇔ Q(c) is true.

Solution Observe that

P(0): 0 is odd. P(1): 1 is odd. P(4): 30 is odd.
Q(0): 1 = 1. Q(1): 8 = 2. Q(4): 125 = 65.

Thus, P(0) and P(4) are false, while P(1) is true. Also, Q(1) and Q(4) are false, while
Q(0) is true. Thus, P(1) ⇒ Q(1) and Q(0) ⇒ P(0) are false, while P(4) ⇔ Q(4) is true.
Hence, we may take a = 1, b = 0 and c = 4. �

Analysis Notice in Example 2.15 that both P(0) ⇔ Q(0) and P(1) ⇔ Q(1) are false bicondition-
als. Hence, the value 4 in S is the only choice for c. �
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SECTION 2.6 EXERCISES

2.35. Let P: 18 is odd. and Q : 25 is even. State P ⇔ Q in words. Is P ⇔ Q true or false?

2.36. Let P(x) : x is odd. and Q(x) : x2 is odd. be open sentences over the domain Z. State P(x) ⇔ Q(x) in two
ways: (1) using “if and only if” and (2) using “necessary and sufficient.”

2.37. For the open sentences P(x) : |x − 3| < 1. and Q(x) : x ∈ (2, 4). over the domain R, state the biconditional
P(x) ⇔ Q(x) in two different ways.

2.38. Consider the open sentences:

P(x) : x = −2. and Q(x) : x2 = 4.

over the domain S = {−2, 0, 2}. State each of the following in words and determine all values of x ∈ S for
which the resulting statements are true.

(a) ∼ P(x) (b) P(x) ∨ Q(x) (c) P(x) ∧ Q(x) (d) P(x) ⇒ Q(x)
(e) Q(x) ⇒ P(x) (f) P(x) ⇔ Q(x).

2.39. For the following open sentences P(x) and Q(x) over a domain S, determine all values of x ∈ S for which
the biconditional P(x) ⇔ Q(x) is true.

(a) P(x) : |x| = 4; Q(x) : x = 4; S = {−4,−3, 1, 4, 5}.
(b) P(x) : x ≥ 3; Q(x) : 4x − 1 > 12; S = {0, 2, 3, 4, 6}.
(c) P(x) : x2 = 16; Q(x) : x2 − 4x = 0; S = {−6,−4, 0, 3, 4, 8}.

2.40. In each of the following, two open sentences P(x, y) and Q(x, y) are given, where the domain of both x and
y is Z. Determine the truth value of P(x, y) ⇔ Q(x, y) for the given values of x and y.

(a) P(x, y): x2 − y2 = 0. and Q(x, y): x = y.
(x, y) ∈ {(1,−1), (3, 4), (5, 5)}.

(b) P(x, y): |x| = |y|. and Q(x, y): x = y.
(x, y) ∈ {(1, 2), (2,−2), (6, 6)}.

(c) P(x, y): x2 + y2 = 1. and Q(x, y): x + y = 1.
(x, y) ∈ {(1,−1), (−3, 4), (0,−1), (1, 0)}.

2.41. Determine all values of n in the domain S = {1, 2, 3} for which the following is a true statement:

A necessary and sufficient condition for n3+n
2 to be even is that n2+n

2 is odd.

2.42. Determine all values of n in the domain S = {2, 3, 4} for which the following is a true statement:
The integer n(n−1)

2 is odd if and only if n(n+1)
2 is even.

2.43. Let S = {1, 2, 3}. Consider the following open sentences over the domain S:

P(n): (n+4)(n+5)
2 is odd.

Q(n): 2n−2 + 3n−2 + 6n−2 > (2.5)n−1.

Determine three distinct elements a, b, c in S such that P(a) ⇒ Q(a) is false, Q(b) ⇒ P(b) is false and
P(c) ⇔ Q(c) is true.

2.44. Let S = {1, 2, 3, 4}. Consider the following open sentences over the domain S:

P(n): n(n−1)
2 is even.

Q(n): 2n−2 − (−2)n−2 is even.
R(n): 5n−1 + 2n is prime.
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Determine four distinct elements a, b, c, d in S such that

(i) P(a) ⇒ Q(a) is false; (ii) Q(b) ⇒ P(b) is true;
(iii) P(c) ⇔ R(c) is true; (iv) Q(d) ⇔ R(d) is false.

2.45. Let P(n): 2n − 1 is a prime. and Q(n): n is a prime. be open sentences over the domain
S = {2, 3, 4, 5, 6, 11}. Determine all values of n ∈ S for which P(n) ⇔ Q(n) is a true statement.

2.7 TAUTOLOGIES AND CONTRADICTIONS

The symbols ∼,∨,∧,⇒ and ⇔ are sometimes referred to as logical connectives. From
given statements, we can use these logical connectives to form more intricate statements.
For example, the statement (P ∨ Q) ∧ (P ∨ R) is a statement formed from the given
statements P, Q and R and the logical connectives ∨ and ∧. We call (P ∨ Q) ∧ (P ∨ R) a
compound statement. More generally, a compound statement is a statement composed
of one or more given statements (called component statements in this context) and
at least one logical connective. For example, for a given component statement P, its
negation ∼ P is a compound statement.

The compound statement P ∨ (∼ P), whose truth table is given in Figure 2.10, has
the feature that it is true regardless of the truth value of P.

..........................................................................................

F

T

T

F

P ∼ P P ∨ (∼ P)

T

T

Figure 2.10 An example of a tautology

A compound statement S is called a tautology if it is true for all possible combina-
tions of truth values of the component statements that comprise S. Hence, P ∨ (∼ P) is
a tautology.

Example 2.16 For statements P and Q, the compound statement (∼ Q) ∨ (P ⇒ Q) is a tautology, as is
verified in the truth table shown in Figure 2.11. �

T

FTFT

F T F T

T

T

T

T

(∼ Q) ∨ (P ⇒ Q)P ⇒ Q∼ Q

F

F F TT

P Q

T T

Figure 2.11 Verifying that (∼ Q) ∨ (P ⇒ Q) is a tautology

Letting

P1: 3 is odd. and P2 : 57 is prime.
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we see that not only is

57 is not prime, or 57 is prime if 3 is odd.

a true statement, but (∼ P2) ∨ (P1 ⇒ P2) is true regardless of which statements P1 and
P2 are being considered.

On the other hand, a compound statement S is called a contradiction if it is false for
all possible combinations of truth values of the component statements that are used to
form S. The statement P ∧ (∼ P) is a contradiction, as is shown in Figure 2.12. Hence,
the statement

3 is odd and 3 is not odd.

is false.

..........................................................................................

F

T

T

F

P ∼ P P ∧ (∼ P)

F

F

Figure 2.12 An example of a contradiction

Example 2.17 For statements P and Q, the compound statement

(P ∧ Q) ∧ (Q ⇒ (∼ P))

is a contradiction, which is verified in the truth table shown in Figure 2.13. �

F F

T F F F T F

F T T F T F

∼ PQ P ∧ Q (P ∧ Q) ∧ (Q ⇒∼ P)Q ⇒∼ P

T






F F F TT F

P

T T F

Figure 2.13 Verifying that (P ∧ Q) ∧ (Q ⇒ (∼ P)) is a contradiction

Indeed, if a compound statement S is a tautology, then its negation ∼ S is a
contradiction.

Example 2.18 For statements P and Q, determine whether the compound statement

(P ∧ Q) ⇒ (P ∨ Q)

is a tautology, a contradiction or neither.

Solution The truth table in Figure 2.14 shows that the compound statement (P ∧ Q) ⇒ (P ∨ Q)
is a tautology. �
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P Q P ∧ Q P ∨ Q (P ∧ Q) ⇒ (P ∨ Q)
T T T T T
T F F T T
F T F T T
F F F F T

Figure 2.14 Verifying that (P ∧ Q) ⇒ (P ∨ Q) is a tautology

Example 2.19 For statements P and Q, determine whether the compound statement

(P ∧ (∼ Q)) ⇔ (P ⇒ Q)

is a tautology, a contradiction or neither.

Solution The truth table in Figure 2.15 shows that the compound statement (P ∧ (∼ Q)) ⇔
(P ⇒ Q) is a contradiction. �

P Q ∼ Q P ∧ (∼ Q) P ⇒ Q (P ∧ (∼ Q)) ⇔ (P ⇒ Q)
T T F F T F
T F T T F F
F T F F T F
F F T F T F

Figure 2.15 Verifying that (P ∧ (∼ Q)) ⇔ (P ⇒ Q) is a contradiction

SECTION 2.7 EXERCISES

2.46. For statements P and Q, show that P ⇒ (P ∨ Q) is a tautology.

2.47. For statements P and Q, show that (P ∧ (∼ Q)) ∧ (P ∧ Q) and (P ⇒∼ Q) ∧ (P ∧ Q) are contradictions.

2.48. For statements P and Q, show that (P ∧ (P ⇒ Q)) ⇒ Q is a tautology. Then state (P ∧ (P ⇒ Q)) ⇒ Q in
words. (This is an important logical argument form, called modus ponens.)

2.49. For statements P, Q and R, show that ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R) is a tautology. Then state this
compound statement in words. (This is another important logical argument form, called syllogism.)

2.50. Let R and S be compound statements involving the same component statements. If R is a tautology and S is
a contradiction, then what can be said of the following?

(a) R ∨ S (b) R ∧ S (c) R ⇒ S (d) S ⇒ R.

2.51. For statements P and Q, determine whether the compound statement
(P ∨ Q) ∨ (Q ⇒ P) is a tautology, a contradiction or neither.

2.52. For statements P and Q, determine whether the compound statement
((P ⇒ Q) ⇒ P) ⇒ (P ⇒ (Q ⇒ P)) is a tautology, a contradiction or neither.
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2.8 LOGICAL EQUIVALENCE

Figure 2.16 shows a truth table for the two statements P ⇒ Q and (∼ P) ∨ Q. The cor-
responding columns of these compound statements are identical; in other words, these
two compound statements have exactly the same truth value for every combination of
truth values of the statements P and Q. Let R and S be two compound statements involv-
ing the same component statements. Then R and S are called logically equivalent if R
and S have the same truth values for all combinations of truth values of their component
statements. If R and S are logically equivalent, then this is denoted by R ≡ S. Hence,
P ⇒ Q and (∼ P) ∨ Q are logically equivalent and so P ⇒ Q ≡ (∼ P) ∨ Q.

F

T

T

T

F

T

T

T

F

T

TFF

∼ P P ⇒ Q (∼ P) ∨ Q

F

QP

T T

T

F T

F

Figure 2.16 Verification of P ⇒ Q ≡ (∼ P) ∨ Q

Another, even simpler example of logical equivalence concerns P ∧ Q and Q ∧ P.
That P ∧ Q ≡ Q ∧ P is verified in the truth table shown in Figure 2.17.

Q ∧ P

F

F

F

F

F

TT

F

P ∧ QQP

T T

FT

F T

FF

....................................................................................................................................................................................

..................................................................................................................................................................................

Figure 2.17 Verification of P ∧ Q ≡ Q ∧ P

What is the practical significance of logical equivalence? Suppose that R and S are
logically equivalent compound statements. Then we know that R and S have the same
truth values for all possible combinations of truth values of their component statements.
But this means that the biconditional R ⇔ S is true for all possible combinations of
truth values of their component statements and hence R ⇔ S is a tautology. Conversely,
if R ⇔ S is a tautology, then R and S are logically equivalent.

Let R be a mathematical statement that we would like to show is true and suppose
that R and some statement S are logically equivalent. If we can show that S is true, then
R is true as well. For example, suppose that we want to verify the truth of an implica-
tion P ⇒ Q. If we can establish the truth of the statement (∼ P) ∨ Q, then the logical
equivalence of P ⇒ Q and (∼ P) ∨ Q guarantees that P ⇒ Q is true as well.
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Example 2.20 Let’s return to Example 2.6 and whether a certain mathematics instructor kept her promise
that

If you earn an A on the final exam, then you will receive an A for the final grade.

We need only know that the student did not receive an A on the final exam or the student
received an A as a final grade to see that the instructor kept her promise. �

Since the logical equivalence of P ⇒ Q and (∼ P) ∨ Q, verified in Figure 2.16, is
especially important and we will have occasion to use this fact often, we state it as a
theorem.

Theorem 2.21 Let P and Q be two statements. Then

P ⇒ Q and (∼ P) ∨ Q

are logically equivalent.

Let’s return to the truth table in Figure 2.17, where we showed that P ∧ Q and Q ∧ P
are logically equivalent for any two statements P and Q. In particular, this says that

(P ⇒ Q) ∧ (Q ⇒ P) and (Q ⇒ P) ∧ (P ⇒ Q)

are logically equivalent. Of course, (P ⇒ Q) ∧ (Q ⇒ P) is precisely what is called the
biconditional of P and Q. Since (P ⇒ Q) ∧ (Q ⇒ P) and (Q ⇒ P) ∧ (P ⇒ Q) are log-
ically equivalent, (Q ⇒ P) ∧ (P ⇒ Q) represents the biconditional of P and Q as well.
Since Q ⇒ P can be written as “P if Q” and P ⇒ Q can be expressed as “P only if Q,”
their conjunction can be written as “P if Q and P only if Q” or, more simply, as

P if and only if Q.

Consequently, expressing P ⇔ Q as “P if and only if Q” is justified. Furthermore, since
Q ⇒ P can be phrased as “P is necessary for Q” and P ⇒ Q can be expressed as “P
is sufficient for Q,” writing P ⇔ Q as “P is necessary and sufficient for Q” is likewise
justified.

SECTION 2.8 EXERCISES

2.53. For statements P and Q, the implication (∼ P) ⇒ (∼ Q) is called the inverse of the implication of P ⇒ Q.

(a) Use a truth table to show that these implications are not logically equivalent.
(b) Find another implication that is logically equivalent to (∼ P) ⇒ (∼ Q) and verify your answer.

2.54. Let P and Q be statements.

(a) Is ∼ (P ∨ Q) logically equivalent to (∼ P) ∨ (∼ Q)? Explain.
(b) What can you say about the biconditional ∼ (P ∨ Q) ⇔ ((∼ P) ∨ (∼ Q))?

2.55. For statements P, Q and R, use a truth table to show that each of the following pairs of statements are
logically equivalent.

(a) (P ∧ Q) ⇔ P and P ⇒ Q.
(b) P ⇒ (Q ∨ R) and (∼ Q) ⇒ ((∼ P) ∨ R).
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2.56. For statements P and Q, show that (∼ Q) ⇒ (P ∧ (∼ P)) and Q are logically equivalent.

2.57. For statements P, Q and R, show that (P ∨ Q) ⇒ R and (P ⇒ R) ∧ (Q ⇒ R) are logically equivalent.

2.58. Two compound statements S and T are comprised of the same component statements P, Q and R. If S and T
are not logically equivalent, then what can we conclude from this?

2.59. Five compound statements S1, S2, S3, S4 and S5 are all comprised of the same component statements P and
Q whose truth tables have identical first and fourth rows. Show that at least two of these five statements are
logically equivalent.

2.9 SOME FUNDAMENTAL PROPERTIES
OF LOGICAL EQUIVALENCE

It probably comes as no surprise that the statements P and ∼ (∼ P) are logically equiv-
alent. This fact is verified in Figure 2.18.

P ∼ P

T

F

F

T

∼ (∼ P)

T

F

Figure 2.18 Verification of P ≡ ∼ (∼ P)

We mentioned in Figure 2.17 that, for two statements P and Q, the statements P ∧ Q
and Q ∧ P are logically equivalent. There are other fundamental logical equivalences that
we often encounter as well.

Theorem 2.22 For statements P, Q and R,

1. Commutative Laws

(a) P ∨ Q ≡ Q ∨ P.
(b) P ∧ Q ≡ Q ∧ P.

2. Associative Laws

(a) P ∨ (Q ∨ R) ≡ (P ∨ Q) ∨ R.
(b) P ∧ (Q ∧ R) ≡ (P ∧ Q) ∧ R.

3. Distributive Laws

(a) P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R).
(b) P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R).

4. De Morgan’s Laws

(a) ∼ (P ∨ Q) ≡ (∼ P) ∧ (∼ Q).
(b) ∼ (P ∧ Q) ≡ (∼ P) ∨ (∼ Q).

Each part of Theorem 2.22 can be verified by means of a truth table. We have al-
ready established the commutative law for conjunction (namely P ∧ Q ≡ Q ∧ P) in Fig-
ure 2.17. In Figure 2.19 P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R) is verified by observing that
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the columns corresponding to the statements P ∨ (Q ∧ R) and (P ∨ Q) ∧ (P ∨ R) are
identical.

T

T

F

F

T

T

T

T

T

TT T

F

F

F

T

F

F

F

P ∨ (Q ∧ R) (P ∨ Q) ∧ (P ∨ R)

T

T

T

T

T

T

F

F

FF

F

F

T

T

T

T

T

F

F

T

T

T

P ∨ Q

F

F

T

T

T

T

F

P ∨ RQ ∧ R

F

F

F

F

T

T

T

RQP

F

F

T

T

F

F

T

T

F

Figure 2.19 Verification of the distributive law P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)

The laws given in Theorem 2.22 together with other known logical equivalences
can be used to good advantage at times to prove other logical equivalences (without
introducing a truth table).

Example 2.23 Suppose that we are asked to verify

∼ (P ⇒ Q) ≡ P ∧ (∼ Q)

for every two statements P and Q. Using the logical equivalence of P ⇒ Q and
(∼ P) ∨ Q from Theorem 2.21 and Theorem 2.22(4a), we see that

∼ (P ⇒ Q) ≡ ∼ ((∼ P) ∨ Q) ≡ (∼ (∼ P)) ∧ (∼ Q) ≡ P ∧ (∼ Q), (2.1)

implying that the statements ∼ (P ⇒ Q) and P ∧ (∼ Q) are logically equivalent, which
we alluded to earlier. �

It is important to keep in mind what we have said about logical equivalence. For
example, the logical equivalence of P ∧ Q and Q ∧ P allows us to replace a statement
of the type P ∧ Q by Q ∧ P without changing its truth value. As an additional example,
according to De Morgan’s Laws in Theorem 2.22, if it is not the case that an integer a is
even or an integer b is even, then it follows that a and b are both odd.

Example 2.24 Using the second of De Morgan’s Laws and (2.1), we can establish a useful logically
equivalent form of the negation of P ⇔ Q by the following string of logical equivalences:

∼ (P ⇔ Q) ≡ ∼ ((P ⇒ Q) ∧ (Q ⇒ P))

≡ (∼ (P ⇒ Q)) ∨ (∼ (Q ⇒ P))

≡ (P ∧ (∼ Q)) ∨ (Q ∧ (∼ P)). �
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What we have observed about the negation of an implication and a biconditional is
repeated in the following theorem.

Theorem 2.25 For statements P and Q,

(a) ∼ (P ⇒ Q) ≡ P ∧ (∼ Q).

(b) ∼ (P ⇔ Q) ≡ (P ∧ (∼ Q)) ∨ (Q ∧ (∼ P)).

Example 2.26 Once again, let’s return to what the mathematics instructor in Example 2.6 said:

If you earn an A on the final exam, then you will receive an A for your final grade.

If this instructor was not truthful, then it follows by Theorem 2.25(a) that

You earned an A on the final exam and did not receive A as your final grade.

Suppose, on the other hand, that the mathematics instructor had said:

If you earn an A on the final exam, then you will receive an A for the final grade
– and that’s the only way that you will get an A for a final grade.

If this instructor was not truthful, then it follows by Theorem 2.25(b) that

Either you earned an A on the final exam and didn’t receive A as your final grade
or you received an A for your final grade and you didn’t get an A on the final
exam. �

SECTION 2.9 EXERCISES

2.60. Verify the following laws stated in Theorem 2.22:

(a) Let P, Q and R be statements. Then

P ∨ (Q ∧ R) and (P ∨ Q) ∧ (P ∨ R) are logically equivalent.

(b) Let P and Q be statements. Then

∼ (P ∨ Q) and (∼ P) ∧ (∼ Q) are logically equivalent.

2.61. Write negations of the following open sentences:

(a) Either x = 0 or y = 0.
(b) The integers a and b are both even.

2.62. Consider the implication: If x and y are even, then xy is even.

(a) State the implication using “only if.”
(b) State the converse of the implication.
(c) State the implication as a disjunction (see Theorem 2.21).
(d) State the negation of the implication as a conjunction (see Theorem 2.25(a)).

2.63. For a real number x, let P(x) : x2 = 2. and Q(x) : x = √
2. State the negation of the biconditional P ⇔ Q in

words (see Theorem 2.25(b)).

2.64. Let P and Q be statements. Show that [(P ∨ Q)∧ ∼ (P ∧ Q)] ≡∼ (P ⇔ Q).
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2.65. Let n ∈ Z. For which implication is its negation the following?
The integer 3n + 4 is odd and 5n − 6 is even.

2.66. For which biconditional is its negation the following?

n3 and 7n + 2 are odd or n3 and 7n + 2 are even.

2.10 QUANTIFIED STATEMENTS

We have mentioned that if P(x) is an open sentence over a domain S, then P(x) is a
statement for each x ∈ S. We illustrate this again.

Example 2.27 If S = {1, 2, · · · , 7}, then

P(n) :
2n2 + 5 + (−1)n

2
is prime.

is a statement for each n ∈ S. Therefore,

P(1): 3 is prime.
P(2): 7 is prime.
P(3): 11 is prime.
P(4): 19 is prime.

are true statements; while

P(5): 27 is prime.
P(6): 39 is prime.
P(7): 51 is prime.

are false statements. �

There are other ways that an open sentence can be converted into a statement,
namely by a method called quantification. Let P(x) be an open sentence over a domain
S. Adding the phrase “For every x ∈ S” to P(x) produces a statement called a quanti-
fied statement. The phrase “for every” is referred to as the universal quantifier and is
denoted by the symbol ∀. Other ways to express the universal quantifier are “for each”
and “for all.” This quantified statement is expressed in symbols by

∀x ∈ S, P(x) (2.2)

and is expressed in words by

For every x ∈ S, P(x). (2.3)

The quantified statement (2.2) (or (2.3)) is true if P(x) is true for every x ∈ S; while the
quantified statement (2.2) is false if P(x) is false for at least one element x ∈ S.

Another way to convert an open sentence P(x) over a domain S into a statement
through quantification is by the introduction of a quantifier called an existential quanti-
fier. Each of the phrases “there exists,” “there is,” “for some,” and “for at least one” is
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referred to as an existential quantifier and is denoted by the symbol ∃. The quantified
statement

∃x ∈ S, P(x) (2.4)

can be expressed in words by

There exists x ∈ S such that P(x). (2.5)

The quantified statement (2.4) (or (2.5)) is true if P(x) is true for at least one element
x ∈ S; while the quantified statement (2.4) is false if P(x) is false for all x ∈ S.

We now consider two quantified statements constructed from the open sentence we
saw in Example 2.27.

Example 2.28 For the open sentence

P(n) :
2n2 + 5 + (−1)n

2
is prime.

over the domain S = {1, 2, · · · , 7}, the quantified statement

∀n ∈ S, P(n): For every n ∈ S,
2n2 + 5 + (−1)n

2
is prime.

is false since P(5) is false, for example; while the quantified statement

∃n ∈ S, P(n): There exists n ∈ S such that
2n2 + 5 + (−1)n

2
is prime.

is true since P(1) is true, for example. �

The quantified statement ∀x ∈ S, P(x) can also be expressed as

If x ∈ S, then P(x).

Consider the open sentence P(x) : x2 ≥ 0. over the set R of real numbers. Then

∀x ∈ R, P(x)

or, equivalently,

∀x ∈ R, x2 ≥ 0

can be expressed as

For every real number x, x2 ≥ 0.

or

If x is a real number, then x2 ≥ 0.

as well as

The square of every real number is nonnegative.
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In general, the universal quantifier is used to claim that the statement resulting from
a given open sentence is true when each value of the domain of the variable is assigned
to the variable. Consequently, the statement ∀x ∈ R, x2 ≥ 0 is true since x2 ≥ 0 is true
for every real number x.

Suppose now that we were to consider the open sentence Q(x) : x2 ≤ 0. The state-
ment ∀x ∈ R, Q(x) (that is, for every real number x, we have x2 ≤ 0) is false since, for
example, Q(1) is false. Of course, this means that its negation is true. If it were not
the case that for every real number x, we have x2 ≤ 0, then there must exist some real
number x such that x2 > 0. This negation

There exists a real number x such that x2 > 0.

can be written in symbols as

∃x ∈ R, x2 > 0 or ∃x ∈ R,∼ Q(x).

More generally, if we are considering an open sentence P(x) over a domain S, then

∼ (∀x ∈ S, P(x)) ≡ ∃x ∈ S,∼ P(x).

Example 2.29 Suppose that we are considering the set A = {1, 2, 3} and its power set P (A), the set of
all subsets of A. Then the quantified statement

For every set B ∈ P (A), A − B �= ∅. (2.6)

is false since for the subset B = A = {1, 2, 3}, we have A − B = ∅. The negation of the
statement (2.6) is

There exists B ∈ P (A) such that A − B = ∅. (2.7)

The statement (2.7) is therefore true since for B = A ∈ P (A), we have A − B = ∅. The
statement (2.6) can also be written as

If B ⊆ A, then A − B �= ∅. (2.8)

Consequently, the negation of (2.8) can be expressed as

There exists some subset B of A such that A − B = ∅. �

The existential quantifier is used to claim that at least one statement resulting from
a given open sentence is true when the values of a variable are assigned from its domain.
We know that for an open sentence P(x) over a domain S, the quantified statement ∃x ∈ S,
P(x) is true provided P(x) is a true statement for at least one element x ∈ S. Thus, the
statement ∃x ∈ R, x2 > 0 is true since, for example, x2 > 0 is true for x = 1.

The quantified statement

∃x ∈ R, 3x = 12

is therefore true since there is some real number x for which 3x = 12, namely x = 4 has
this property. (Indeed, x = 4 is the only real number for which 3x = 12.) On the other
hand, the quantified statement

∃n ∈ Z, 4n − 1 = 0
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is false as there is no integer n for which 4n − 1 = 0. (Of course, 4n − 1 = 0 when
n = 1/4, but 1/4 is not an integer.)

Suppose that Q(x) is an open sentence over a domain S. If the statement ∃x ∈ S, Q(x)
is not true, then it must be the case that for every x ∈ S, Q(x) is false. That is,

∼ (∃x ∈ S, Q(x)) ≡ ∀x ∈ S,∼ Q(x)

is true. We illustrate this with a specific example.

Example 2.30 The following statement contains the existential quantifier.

There exists a real number x such that x2 = 3. (2.9)

If we let P(x) : x2 = 3, then (2.9) can be rewritten as ∃x ∈ R, P(x). The statement (2.9)
is true since P(x) is true when x = √

3 (or when x = −√
3). Hence, the negation of (2.9)

is:

For every real number x, x2 �= 3. (2.10)

The statement (2.10) is therefore false. �

Let P(x, y) be an open sentence, where the domain of the variable x is S and the
domain of the variable y is T . Then the quantified statement

For all x ∈ S and y ∈ T , P(x, y).

can be expressed symbolically as

∀x ∈ S,∀y ∈ T, P(x, y). (2.11)

The negation of the statement (2.11) is

∼ (∀x ∈ S,∀y ∈ T, P(x, y)) ≡ ∃x ∈ S, ∼ (∀y ∈ T, P(x, y))

≡ ∃x ∈ S, ∃y ∈ T, ∼ P(x, y). (2.12)

We now consider examples of quantified statements involving two variables.

Example 2.31 Consider the statement

For every two real numbers x and y, x2 + y2 ≥ 0. (2.13)

If we let

P(x, y) : x2 + y2 ≥ 0

where the domain of both x and y is R, then statement (2.13) can be expressed as

∀x ∈ R,∀y ∈ R, P(x, y) (2.14)

or as

∀y ∈ R,∀x ∈ R, P(x, y)
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or as

∀x, y ∈ R, P(x, y) or ∀y, x ∈ R, P(x, y)

since quantifiers of the same type commute. Since x2 ≥ 0 and y2 ≥ 0 for all real numbers
x and y, it follows that x2 + y2 ≥ 0 and so P(x, y) is true for all real numbers x and y.
Thus, the quantified statement (2.14) is true.

The negation of statement (2.14) is therefore

∼ (∀x ∈ R,∀y ∈ R, P(x, y)) ≡ ∃x ∈ R, ∃y ∈ R, ∼ P(x, y)

≡ ∃x, y ∈ R,∼ P(x, y), (2.15)

which, in words, is

There exist real numbers x and y such that x2 + y2 < 0. (2.16)

The statement (2.16) is therefore false. �

For an open sentence containing two variables, the domains of the variables need
not be the same.

Example 2.32 Consider the statement

For every s ∈ S and t ∈ T , st + 2 is a prime. (2.17)

where the domain of the variable s is S = {1, 3, 5} and the domain of the variable t is
T = {3, 9}. If we let

Q(s, t ): st + 2 is a prime.

then the statement (2.17) can be expressed as

∀s ∈ S,∀t ∈ T, Q(s, t ). (2.18)

Since all of the statements

Q(1, 3): 1 · 3 + 2 is a prime. Q(3, 3): 3 · 3 + 2 is a prime.
Q(5, 3): 5 · 3 + 2 is a prime.

Q(1, 9): 1 · 9 + 2 is a prime. Q(3, 9): 3 · 9 + 2 is a prime.
Q(5, 9): 5 · 9 + 2 is a prime.

are true, the quantified statement (2.18) is true.
As we saw in (2.12), the negation of the quantified statement (2.18) is

∼ (∀s ∈ S,∀t ∈ T, Q(s, t )) ≡ ∃s ∈ S, ∃t ∈ T, ∼ Q(s, t )

and so the negation of (2.17) is

There exist s ∈ S and t ∈ T such that st + 2 is not a prime. (2.19)

The statement (2.19) is therefore false. �
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Again, let P(x, y) be an open sentence, where the domain of the variable x is S and
the domain of the variable y is T . The quantified statement

There exist x ∈ S and y ∈ T such that P(x, y).

can be expressed in symbols as

∃x ∈ S, ∃y ∈ T, P(x, y) or ∃y ∈ T, ∃x ∈ S, P(x, y) (2.20)

or as

∃x ∈ S, y ∈ T, P(x, y) or ∃y ∈ T, x ∈ S, P(x, y).

The negation of the statement (2.20) is then

∼ (∃x ∈ S, ∃y ∈ T, P(x, y)) ≡ ∀x ∈ S, ∼ (∃y ∈ T, P(x, y))

≡ ∀x ∈ S,∀y ∈ T, ∼ P(x, y). (2.21)

We now illustrate this situation.

Example 2.33 Consider the open sentence

R(s, t ): |s − 1| + |t − 2| ≤ 2.

where the domain of the variable s is the set S of even integers and the domain of the
variable t is the set T of odd integers. Then the quantified statement

∃s ∈ S, ∃t ∈ T, R(s, t ) (2.22)

can be expressed in words as

There exist an even integer s and an odd integer t such that |s − 1| + |t − 2| ≤ 2.
(2.23)

Since R(2, 3): 1 + 1 ≤ 2 is true, the quantified statement (2.23) is true.
The negation of (2.22) is therefore

∼ (∃s ∈ S, ∃t ∈ T, R(s, t )) ≡ ∀s ∈ S,∀t ∈ T, ∼ R(s, t ) (2.24)

and so the negation of (2.22), in words, is

For every even integer s and every odd integer t, |s − 1| + |t − 2| > 2. (2.25)

The quantified statement (2.25) is therefore false. �

In the next two examples of negations of quantified statements, De Morgan’s laws
are also used.

Example 2.34 The negation of

For all integers a and b, if ab is even, then a is even and b is even.

is

There exist integers a and b such that ab is even and a or b is odd. �
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Example 2.35 Let A = {√2, π} and B = {−√
2,

√
3, e}. The negation of

There exists a rational number r such that r ∈ A or r ∈ B.

is

For every rational number r, both r /∈ A and r /∈ B. �

Quantified statements may contain both universal and existential quantifiers. While
we present examples of these now, we will discuss these in more detail in Section 8.2.

Example 2.36 Consider the open sentence

P(a, b) : ab = 1.

where the domain of both a and b is the set Q+ of positive rational numbers. Then the
quantified statement

∀a ∈ Q+, ∃b ∈ Q+, P(a, b). (2.26)

can be expressed in words as

For every positive rational number a, there exists
a positive rational number b such that ab = 1.

It turns out that the quantified statement (2.26) is true. If we replace Q+ by R, then we
have

∀a ∈ R, ∃b ∈ R, P(a, b). (2.27)

The negation of this statement is

∼ (∀a ∈ R, ∃b ∈ R, P(a, b)) ≡ ∃a ∈ R,∼ (∃b ∈ R, P(a, b))

≡ ∃a ∈ R,∀b ∈ R,∼ P(a, b),

which, in words, says that

There exists a real number a such that for every real number b, ab �= 1.

This negation is true since for a = 0 and every real number b, ab = 0 �= 1. Thus, the
quantified statement (2.27) is false. �

Example 2.37 Consider the open sentence

Q(a, b): ab is odd.

where the domain of both a and b is the set N of positive integers. Then the quantified
statement

∃a ∈ N,∀b ∈ N, Q(a, b), (2.28)
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expressed in words, is

There exists a positive integer a such that for every positive integer b, ab is odd.

The statement (2.28) turns out to be false. The negation of (2.28), in symbols, is

∼ (∃a ∈ N,∀b ∈ N, Q(a, b)) ≡ ∀a ∈ N,∼ (∀b ∈ N, Q(a, b))

≡ ∀a ∈ N, ∃b ∈ N,∼ Q(a, b).

In words, this says

For every positive integer a, there exists a positive integer b such that ab is even.

This statement, therefore, is true. �

Suppose that P(x, y) is an open sentence, where the domain of x is S and the domain
of y is T . Then the quantified statement

∀x ∈ S, ∃y ∈ T, P(x, y)

is true if ∃y ∈ T, P(x, y) is true for each x ∈ S. This means that for every x ∈ S, there is
some y ∈ T for which P(x, y) is true.

Example 2.38 Consider the open sentence

P(x, y): x + y is prime,

where the domain of x is S = {2, 3} and the domain of y is T = {3, 4}. The quantified
statement

∀x ∈ S, ∃y ∈ T, P(x, y),

expressed in words, is

For every x ∈ S, there exists y ∈ T such that x + y is prime.

This statement is true. For x = 2, P(2, 3) is true and for x = 3, P(3, 4) is true. �

While two quantifiers of the same type commute, this is not the case for quantifiers
of a different type.

Example 2.39 Once again, consider the open sentence

P(x, y): x + y is prime,

where the domain of x is S = {2, 3} and the domain of y is T = {3, 4}. Here, we consider
the quantified statement

∃y ∈ T,∀x ∈ S, P(x, y), (2.29)
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which, expressed in words, is

There exists some y ∈ T such that x + y is prime for every x ∈ S.

The statement is false, however, for if y = 3, then for x = 3, x + y = 6 is not prime.
Also, for y = 4, it follows for x = 2 that x + y = 6 is not prime. Hence, the quantified
statement (2.29) is false. �

Suppose that Q(x, y) is an open sentence, where S is the domain of x and T is the
domain of y. The quantified statement

∃x ∈ S,∀y ∈ T, Q(x, y)

is true if ∀y ∈ T, Q(x, y) is true for some x ∈ S. This means that for some element x in
S, the open sentence Q(x, y) is true for all y ∈ T .

Example 2.40 Consider the open sentence

Q(x, y): x + y is prime,

where the domain of x is S = {3, 5, 7} and the domain of y is T = {2, 6, 8, 12}. The
quantified statement

∃x ∈ S,∀y ∈ T, Q(x, y), (2.30)

expressed in words, is

There exists some x ∈ S such that for every y ∈ T , x + y is prime.

For x = 5, all of the numbers 5 + 2, 5 + 6, 5 + 8 and 5 + 12 are prime. Consequently,
the quantified statement (2.30) is true. �

Let’s review symbols that we have introduced in this chapter:

∼ negation (not)
∨ disjunction (or)
∧ conjunction (and)
⇒ implication
⇔ biconditional
∀ universal quantifier (for every)
∃ existential quantifier (there exists)

SECTION 2.10 EXERCISES

2.67. Let S denote the set of odd integers and let

P(x): x2 + 1 is even. and Q(x): x2 is even.

be open sentences over the domain S. State ∀x ∈ S, P(x) and ∃x ∈ S, Q(x) in words.

2.68. Define an open sentence R(x) over some domain S and then state ∀x ∈ S, R(x) and ∃x ∈ S, R(x) in words.
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2.69. State the negations of the following quantified statements, where all sets are subsets of some universal
set U :

(a) For every set A, A ∩ A = ∅.
(b) There exists a set A such that A ⊆ A.

2.70. State the negations of the following quantified statements:

(a) For every rational number r, the number 1/r is rational.
(b) There exists a rational number r such that r2 = 2.

2.71. Let P(n): (5n − 6)/3 is an integer. be an open sentence over the domain Z. Determine, with explanations,
whether the following statements are true:

(a) ∀n ∈ Z, P(n). (b) ∃n ∈ Z, P(n).

2.72. Determine the truth value of each of the following statements.
(a) ∃x ∈ R, x2 − x = 0. (b) ∀n ∈ N, n + 1 ≥ 2.
(c) ∀x ∈ R,

√
x2 = x. (d) ∃x ∈ Q, 3x2 − 27 = 0.

(e) ∃x ∈ R, ∃y ∈ R, x + y + 3 = 8. (f) ∀x, y ∈ R, x + y + 3 = 8.
(g) ∃x, y ∈ R, x2 + y2 = 9. (h) ∀x ∈ R,∀y ∈ R, x2 + y2 = 9.

2.73. The statement

For every integer m, either m ≤ 1 or m2 ≥ 4.

can be expressed using a quantifier as:

∀m ∈ Z, m ≤ 1 or m2 ≥ 4.

Do this for the following two statements.

(a) There exist integers a and b such that both ab < 0 and a + b > 0.
(b) For all real numbers x and y, x �= y implies that x2 + y2 > 0.
(c) Express in words the negations of the statements in (a) and (b).
(d) Using quantifiers, express in symbols the negations of the statements in both (a) and (b).

2.74. Let P(x) and Q(x) be open sentences where the domain of the variable x is S. Which of the following
implies that (∼ P(x)) ⇒ Q(x) is false for some x ∈ S?

(a) P(x) ∧ Q(x) is false for all x ∈ S.
(b) P(x) is true for all x ∈ S.
(c) Q(x) is true for all x ∈ S.
(d) P(x) ∨ Q(x) is false for some x ∈ S.
(e) P(x) ∧ (∼ Q(x)) is false for all x ∈ S.

2.75. Let P(x) and Q(x) be open sentences where the domain of the variable x is T . Which of the following
implies that P(x) ⇒ Q(x) is true for all x ∈ T ?

(a) P(x) ∧ Q(x) is false for all x ∈ T .
(b) Q(x) is true for all x ∈ T .
(c) P(x) is false for all x ∈ T .
(d) P(x) ∧ (∼ (Q(x)) is true for some x ∈ T .
(e) P(x) is true for all x ∈ T .
(f) (∼ P(x)) ∧ (∼ Q(x)) is false for all x ∈ T .

2.76. Consider the open sentence

P(x, y, z): (x − 1)2 + (y − 2)2 + (z − 2)2 > 0.
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where the domain of each of the variables x, y and z is R.

(a) Express the quantified statement ∀x ∈ R,∀y ∈ R,∀z ∈ R, P(x, y, z) in words.
(b) Is the quantified statement in (a) true or false? Explain.
(c) Express the negation of the quantified statement in (a) in symbols.
(d) Express the negation of the quantified statement in (a) in words.
(e) Is the negation of the quantified statement in (a) true or false? Explain.

2.77. Consider the quantified statement

For every s ∈ S and t ∈ S, st − 2 is prime.

where the domain of the variables s and t is S = {3, 5, 11}.
(a) Express this quantified statement in symbols.
(b) Is the quantified statement in (a) true or false? Explain.
(c) Express the negation of the quantified statement in (a) in symbols.
(d) Express the negation of the quantified statement in (a) in words.
(e) Is the negation of the quantified statement in (a) true or false? Explain.

2.78. Let A be the set of circles in the plane with center (0, 0) and let B be the set of circles in the plane with
center (1, 1). Furthermore, let

P(C1,C2): C1 and C2 have exactly two points in common.

be an open sentence where the domain of C1 is A and the domain of C2 is B.

(a) Express the following quantified statement in words:

∀C1 ∈ A, ∃C2 ∈ B, P(C1,C2). (2.31)

(b) Express the negation of the quantified statement in (2.31) in symbols.
(c) Express the negation of the quantified statement in (2.31) in words.

2.79. For a triangle T , let r(T ) denote the ratio of the length of the longest side of T to the length of the smallest
side of T . Let A denote the set of all triangles and let

P(T1, T2): r(T2) ≥ r(T1).

be an open sentence where the domain of both T1 and T2 is A.

(a) Express the following quantified statement in words:

∃T1 ∈ A,∀T2 ∈ A, P(T1, T2). (2.32)

(b) Express the negation of the quantified statement in (2.32) in symbols.
(c) Express the negation of the quantified statement in (2.32) in words.

2.80. Consider the open sentence P(a, b): a/b < 1. where the domain of a is A = {2, 3, 5} and the domain of
b is B = {2, 4, 6}.
(a) State the quantified statement ∀a ∈ A, ∃b ∈ B, P(a, b) in words.
(b) Show the quantified statement in (a) is true.

2.81. Consider the open sentence Q(a, b): a − b < 0. where the domain of a is A = {3, 5, 8} and the domain of
b is B = {3, 6, 10}.
(a) State the quantified statement ∃b ∈ B,∀a ∈ A, Q(a, b) in words.
(b) Show the quantified statement in (a) is true.
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2.11 CHARACTERIZATIONS

Let’s return to the biconditional P ⇔ Q. Recall that P ⇔ Q represents the compound
statement (P ⇒ Q) ∧ (Q ⇒ P). Earlier, we described how this compound statement can
be expressed as

P if and only if Q.

Many mathematicians abbreviate the phrase “if and only if” by writing “iff.” Although
“iff” is informal and, of course, is not a word, its use is common and you should be
familiar with it.

Recall that whenever you see

P if and only if Q.

or

P is necessary and sufficient for Q.

this means

If P then Q and if Q then P.

Example 2.41 Suppose that

P(x) : x = −3 and Q(x) : |x| = 3,

where x ∈ R. Then the biconditional P(x) ⇔ Q(x) can be expressed as

x = −3 if and only if |x| = 3.

or

x = −3 is necessary and sufficient for |x| = 3.

or, perhaps better, as

x = −3 is a necessary and sufficient condition for |x| = 3.

Let’s now consider the quantified statement ∀x ∈ R, P(x) ⇔ Q(x). This statement
is false because P(3) ⇔ Q(3) is false. �

Suppose that some concept (or object) is expressed in an open sentence P(x) over
a domain S and Q(x) is another open sentence over the domain S concerning this con-
cept. We say that this concept is characterized by Q(x) if ∀x ∈ S, P(x) ⇔ Q(x) is a true
statement. The statement ∀x ∈ S, P(x) ⇔ Q(x) is then called a characterization of this
concept. For example, irrational numbers are defined as real numbers that are not ratio-
nal and are characterized as real numbers whose decimal expansions are nonrepeating.
This provides a characterization of irrational numbers:

A real number r is irrational if and only if r has a nonrepeating decimal expansion.
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We saw that equilateral triangles are defined as triangles whose sides are equal. They
are characterized, however, as triangles whose angles are equal. Therefore, we have the
characterization:

A triangle T is equilateral if and only if T has three equal angles.

You might think that equilateral triangles are also characterized as those triangles having
three equal sides but the associated biconditional:

A triangle T is equilateral if and only if T has three equal sides.

is not a characterization of equilateral triangles. Indeed, this is the definition we gave of
equilateral triangles. A characterization of a concept then gives an alternative, but equiv-
alent, way of looking at this concept. Characterizations are often valuable in studying
concepts or in proving other results. We will see examples of this in future chapters.

We mentioned that the following biconditional, though true, is not a characteriza-
tion: A triangle T is equilateral if and only if T has three equal sides. Although this is the
definition of equilateral triangles, mathematicians rarely use the phrase “if and only if”
in a definition since this is what is meant in a definition. That is, a triangle is defined to
be equilateral if it has three equal sides. Consequently, a triangle with three equal sides
is equilateral but a triangle that does not have three equal sides is not equilateral.

SECTION 2.11 EXERCISES

2.82. Give a definition of each of the following and then state a characterization of each.

(a) Two lines in the plane are perpendicular.
(b) A rational number.

2.83. Define an integer n to be odd if n is not even. State a characterization of odd integers.

2.84. Define a triangle to be isosceles if it has two equal sides. Which of the following statements are
characterizations of isosceles triangles? If a statement is not a characterization of isosceles triangles, then
explain why.

(a) If a triangle is equilateral, then it is isosceles.
(b) A triangle T is isosceles if and only if T has two equal sides.
(c) If a triangle has two equal sides, then it is isosceles.
(d) A triangle T is isosceles if and only if T is equilateral.
(e) If a triangle has two equal angles, then it is isosceles.
(f) A triangle T is isosceles if and only if T has two equal angles.

2.85. By definition, a right triangle is a triangle one of whose angles is a right angle. Also, two angles in a
triangle are complementary if the sum of their degrees is 90◦. Which of the following statements are
characterizations of a right triangle? If a statement is not a characterization of a right triangle, then explain
why.

(a) A triangle is a right triangle if and only if two of its sides are perpendicular.
(b) A triangle is a right triangle if and only if it has two complementary angles.
(c) A triangle is a right triangle if and only if its area is half of the product of the lengths of some pair of its

sides.
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(d) A triangle is a right triangle if and only if the square of the length of its longest side equals the sum of
the squares of the lengths of the two smallest sides.

(e) A triangle is a right triangle if and only if twice of the area of the triangle equals the area of some
rectangle.

2.86. Two distinct lines in the plane are defined to be parallel if they don’t intersect. Which of the following is a
characterization of parallel lines?

(a) Two distinct lines �1 and �2 are parallel if and only if any line �3 that is perpendicular to �1 is also
perpendicular to �2.

(b) Two distinct lines �1 and �2 are parallel if and only if any line distinct from �1 and �2 that doesn’t
intersect �1 also doesn’t intersect �2.

(c) Two distinct lines �1 and �2 are parallel if and only if whenever a line � intersects �1 in an acute angle
α, then � also intersects �2 in an acute angle α.

(d) Two distinct lines �1 and �2 are parallel if and only if whenever a point P is not on �1, the point P is not
on �2.

The Chapter
Presentation for
Chapter 2 can be
found at
goo.gl/F7ZM53

Chapter 2 Supplemental Exercises

2.87. Construct a truth table for P ∧ (Q ⇒ (∼ P)).

2.88. Given that the implication (Q ∨ R) ⇒ (∼ P) is false and Q is false, determine the
truth values of R and P.

2.89. Find a compound statement involving the component statements P and Q that has
the truth table given in Figure 2.20.

T

F

TT

F

T

F

T

∼ QQP

T T

FT

F T

FF

Figure 2.20 Truth table for Exercise 2.89.

2.90. Determine the truth value of each of the following quantified statements:

(a) ∃x ∈ R, x3 + 2 = 0. (b) ∀n ∈ N, 2 ≥ 3 − n.
(c) ∀x ∈ R, |x| = x. (d) ∃x ∈ Q, x4 − 4 = 0.
(e) ∃x, y ∈ R, x + y = π . (f) ∀x, y ∈ R, x + y =

√
x2 + y2.

2.91. Rewrite each of the implications below using (1) only if and (2) sufficient.

(a) If a function f is differentiable, then f is continuous.
(b) If x = −5, then x2 = 25.

2.92. Let P(n): n2 − n + 5 is a prime. be an open sentence over a domain S.

(a) Determine the truth values of the quantified statements ∀n ∈ S, P(n) and
∃n ∈ S,∼ P(n) for S = {1, 2, 3, 4}.
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(b) Determine the truth values of the quantified statements ∀n ∈ S, P(n) and
∃n ∈ S,∼ P(n) for S = {1, 2, 3, 4, 5}.

(c) How are the statements in (a) and (b) related?

2.93. (a) For statements P, Q and R, show that

((P ∧ Q) ⇒ R) ≡ ((P ∧ (∼ R)) ⇒ (∼ Q)).

(b) For statements P, Q and R, show that

((P ∧ Q) ⇒ R) ≡ (Q ∧ (∼ R) ⇒ (∼ P)).

2.94. For a fixed integer n, use Exercise 2.93 to restate the following implication in two
different ways:

If n is a prime and n > 2, then n is odd.

2.95. For fixed integers m and n, use Exercise 2.93 to restate the following implication in
two different ways:

If m is even and n is odd, then m + n is odd.

2.96. For a real-valued function f and a real number x, use Exercise 2.93 to restate the
following implication in two different ways:

If f ′(x) = 3x2 − 2x and f (0) = 4, then f (x) = x3 − x2 + 4.

2.97. For the set S = {1, 2, 3}, give an example of three open sentences P(n), Q(n) and
R(n), each over the domain S, such that (1) each of P(n), Q(n) and R(n) is a true
statement for exactly two elements of S, (2) all of the implications P(1) ⇒ Q(1),
Q(2) ⇒ R(2) and R(3) ⇒ P(3) are true, and (3) the converse of each implication in
(2) is false.

2.98. Do there exist a set S of cardinality 2 and a set {P(n), Q(n), R(n)} of three open
sentences over the domain S such that the implications P(a) ⇒ Q(a), Q(b) ⇒ R(b)
and R(c) ⇒ P(c) are true, where a, b, c ∈ S and (2) the converses of the implications
in (1) are false? Necessarily, at least two of these elements a, b and c of S are equal.

2.99. Let A = {1, 2, . . . , 6} and B = {1, 2, . . . , 7}. For x ∈ A, let P(x) : 7x + 4 is odd. For
y ∈ B, let Q(y) : 5y + 9 is odd. Let

S = {(P(x), Q(y)) : x ∈ A, y ∈ B, P(x) ⇒ Q(y) is false}.
What is |S|?

2.100. Let P(x, y, z) be an open sentence, where the domains of x, y and z are A, B and C,
respectively.

(a) State the quantified statement ∀x ∈ A,∀y ∈ B, ∃z ∈ C, P(x, y, z) in words.
(b) State the quantified statement ∀x ∈ A,∀y ∈ B, ∃z ∈ C, P(x, y, z) in words for

P(x, y, z) : x = yz.
(c) Determine whether the quantified statement in (b) is true when A = {4, 8},

B = {2, 4} and C = {1, 2, 4}.
2.101. Let P(x, y, z) be an open sentence, where the domains of x, y and z are A, B and C,

respectively.

(a) Express the negation of ∀x ∈ A,∀y ∈ B, ∃z ∈ C, P(x, y, z) in symbols.
(b) Express ∼ (∀x ∈ A,∀y ∈ B, ∃z ∈ C, P(x, y, z)) in words.
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(c) Determine whether ∼ (∀x ∈ A,∀y ∈ B, ∃z ∈ C, P(x, y, z)) is true when
P(x, y, z) : x + z = y. for A = {1, 3}, B = {3, 5, 7} and C = {0, 2, 4, 6}.

2.102. Write each of the following using “if, then.”

(a) A sufficient condition for a triangle to be isosceles is that it has two equal angles.
(b) Let C be a circle of diameter

√
2/π . Then the area of C is 1/2.

(c) The 4th power of every odd integer is odd.
(d) Suppose that the slope of a line � is 2. Then the equation of � is y = 2x + b for

some real number b.
(e) Whenever a and b are nonzero rational numbers, a/b is a nonzero rational

number.
(f) For every three integers, there exist two of them whose sum is even.
(g) A triangle is a right triangle if the sum of two of its angles is 90◦.
(h) The number

√
3 is irrational.

2.103. State the negation of each of the following statements.

(a) The real number r has the property that 3 ≤ r < π .
(b) The real number r has the property that |r − n| ≥ 1

2 for every integer n.
(c) The real number r has the property that rs = s for every real number s.

2.104. Let {S, T } be a partition of the set N of positive integers and let U be a nonempty
subset of N. State the negation of each of the following statements.

(a) Every element of U can be expressed as x + y, where x ∈ S and y ∈ T .
(b) For every x ∈ S and y ∈ T , xy ∈ S.
(c) For every element x ∈ S, there is an element y ∈ T such that y > x.

2.105. Let P(n) be an open sentence over the domain N of positive integers. State the
negation of each of the following statements.

(a) If P(n) is true for infinitely many n ∈ N, then P(n) cannot be false for infinitely
many n ∈ N.

(b) There is no element n ∈ N such that P(n) and P(n + 1) are both true.
(c) If P(n) is false for some positive integer n, then there is a smallest positive

integer m such that P(m) is false.

2.106. Each of the following describes an implication. Write the implication in the form
“if, then.”

(a) For every odd integer n ≥ 3, the integer n + m is prime for some even integer m.
(b) Let n ∈ N. The integer 2n is even.
(c) We only need to know that n is odd to show that 3n + 4 is odd.
(d) Once we know that n is an even integer, we can conclude that n3 is even.
(e) The only possibility for the integer n − 3 to be even is for n to be odd.

2.107. Let P(n) : 2n + 1 is even. and Q(n) : 3n + 2 is odd. be open sentences over the
domain S = {0, 1, 2}. For which n ∈ S is P(n) ⇒ Q(n) true?
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3
Direct Proof and Proof
by Contrapositive

We are now prepared to begin discussing our main topic: mathematical proofs. Ini-
tially, we will be primarily concerned with one question: For a given true mathe-

matical statement, how can we show that it is true? In this chapter you will be introduced
to two important proof techniques.

A true mathematical statement whose truth is accepted without proof is referred to
as an axiom. For example, an axiom of Euclid in geometry states that for every line � and
point P not on �, there is a unique line containing P that is parallel to �. A true mathe-
matical statement whose truth can be verified is often referred to as a theorem, although
many mathematicians reserve the word “theorem” for such statements that are especially
significant or interesting. For example, the mathematical statement “2 + 3 = 5” is true
but few, if any, would consider this to be a theorem under this latter interpretation. In
addition to the word “theorem,” other common terms for such statements include propo-
sition, result, observation and fact, the choice often depending on the significance of the
statement or the degree of difficulty of its proof. We will use the word “theorem” spar-
ingly, however, primarily reserving it for true mathematical statements that will be used
to verify other mathematical statements that we will encounter later. Otherwise, we will
simply use the word “result.” For the most part then, our results are examples used to
illustrate proof techniques and our goal is to prove these results.

A corollary is a mathematical result that can be deduced from, and is thereby a
consequence of, some earlier result. A lemma is a mathematical result that is useful
in establishing the truth of some other result. Some people like to think of a lemma
as a “helping result.” Indeed, the German word for lemma is “hilfsatz,” whose English
translation is “helping theorem.” Ordinarily then, a lemma is not of primary importance
itself. Indeed, its very existence is due only to its usefulness in proving another (more
interesting) result.

Most theorems (or results) are stated as implications. We now begin our study of
proofs of such mathematical statements.

81
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3.1 TRIVIAL AND VACUOUS PROOFS

In nearly all of the implications P ⇒ Q that we will encounter, P and Q are open sen-
tences; that is, we will actually be considering P(x) ⇒ Q(x) or P(n) ⇒ Q(n) or some
related implication, depending on which variable is being used. The variables x or n (or
some other symbols) are used to represent elements of some set S being discussed, that
is, S is the domain of the variable. As we have seen, for each value of a variable from
its domain, a statement results. (It is possible, of course, that P and Q are expressed in
terms of two or more variables.) Whether P(x) (or Q(x)) is true ordinarily depends on
which element x ∈ S we are considering; that is, it is rarely the case that P(x) is true for
all x ∈ S (or that P(x) is false for all x ∈ S). For example, for

P(n) : 3n2 − 4n + 1 is even

where n ∈ Z, P(1) is a true statement while P(2) is a false statement. Likewise, it is
seldom the case that Q(x) is true for all x ∈ S or that Q(x) is false for all x ∈ S.

When the quantified statement ∀x ∈ S, P(x) ⇒ Q(x) is expressed as a result or
theorem, we often write such a statement as

For x ∈ S, if P(x) then Q(x).

or as

Let x ∈ S. If P(x), then Q(x). (3.1)

Thus, (3.1) is true if P(x) ⇒ Q(x) is a true statement for each x ∈ S; while (3.1) is false
if P(x) ⇒ Q(x) is false for at least one element x ∈ S.

For a given element x ∈ S, let’s recall (see the truth table in Figure 3.1) the conditions
under which P(x) ⇒ Q(x) has a particular truth value.

.................................................................................................................................................................................

T

T

F

T

P(x) Q(x) P(x) ⇒ Q(x)

T

T

F

F F

T

F

T

Figure 3.1 The truth table for the implication

P(x) ⇒ Q(x) for an element x in its domain

Accordingly, if Q(x) is true for all x ∈ S or P(x) is false for all x ∈ S, then determin-
ing the truth or falseness of (3.1) becomes considerably easier. Indeed, if it can be shown
that Q(x) is true for all x ∈ S (regardless of the truth value of P(x)), then, according to
the truth table for the implication (shown in Figure 3.1), (3.1) is true. This constitutes a
proof of (3.1) and is called a trivial proof. Accordingly, the statement

Let n ∈ Z. If n3 > 0, then 3 is odd.
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is true and a (trivial) proof consists only of observing that 3 is an odd integer. The fol-
lowing provides a more interesting example of a trivial proof.

Result 3.1 Let x ∈ R. If x < 0, then x2 + 1 > 0.

Proof Since x2 ≥ 0 for each real number x, it follows that

x2 + 1 > x2 ≥ 0.

Hence, x2 + 1 > 0.

Consider

P(x) : x < 0 and Q(x) : x2 + 1 > 0

where x ∈ R. Then Result 3.1 asserts the truth of: For all x ∈ R, P(x) ⇒ Q(x). Since
we verified that Q(x) is true for every x ∈ R, it follows that P(x) ⇒ Q(x) is true for all
x ∈ R and so Result 3.1 is true. In this case, when considered over the domain R, Q(x) is
actually a true statement. It is this fact that allowed us to give a trivial proof of Result 3.1.

The proof of Result 3.1 does not depend on x < 0. Indeed, provided that x ∈ R, we
could have replaced “x < 0” by any hypothesis (including the more satisfying “x ∈ R”)
and the result would still be true. In fact, this new result has the same proof. To be sure,
it is rare indeed when a trivial proof is used to verify an implication; nevertheless, this
is an important reminder of the truth table in Figure 3.1.

The symbol that occurs at the end of the proof of Result 3.1 indicates that the
proof is complete. There are definite advantages to using (or some other symbol) to
indicate the conclusion of a proof. First, as you start reading a proof, you can look ahead
for this symbol to determine the length of the proof. Also, without this symbol, you may
continue to read past the end of the proof, still thinking that you’re reading a proof of
the result. When you reach this symbol, you are supposed to be convinced that the result
is true. If you are, this is good! Everything happened as planned. On the other hand, if
you’re not convinced, then, to you, the writer hasn’t presented a proof. This may not be
the writer’s fault, however.

In the past, the most common way to indicate that a proof has concluded was to write
Q.E.D., which stands for the Latin phrase “quod erat demonstrandum,” whose English
translation is “which was to be demonstrated.” Some still use it.

Let P(x) and Q(x) be open sentences over a domain S. Then ∀x ∈ S, P(x) ⇒ Q(x)
is a true statement if it can be shown that P(x) is false for all x ∈ S (regardless of the
truth value of Q(x)), according to the truth table for implication. Such a proof is called
a vacuous proof of ∀x ∈ S, P(x) ⇒ Q(x). Therefore,

Let n ∈ Z. If 3 is even, then n3 > 0.

is a true statement. Let’s take a look, however, at a more interesting example of a vacuous
proof.

Result 3.2 Let x ∈ R. If x2 − 2x + 2 ≤ 0, then x3 ≥ 8.
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Proof First observe that

x2 − 2x + 1 = (x − 1)2 ≥ 0.

Therefore, x2 − 2x + 2 = (x − 1)2 + 1 ≥ 1 > 0. Thus, x2 − 2x + 2 ≤ 0 is false for all
x ∈ R and the implication is true.

For

P(x) : x2 − 2x + 2 ≤ 0 and Q(x) : x3 ≥ 8

over the domain R, Result 3.2 asserts the truth of ∀x ∈ R, P(x) ⇒ Q(x). Since we veri-
fied that P(x) is false for every x ∈ R, it follows that P(x) ⇒ Q(x) is true for each x ∈ R.
Hence, Result 3.2 is true. In this case, P(x) is a false statement for each x ∈ R. This is
what permitted us to give a vacuous proof of Result 3.2.

In the proof of Result 3.2, the truth or falseness of x3 ≥ 8 played no role whatsoever.
Indeed, had we replaced x3 ≥ 8 by x3 ≤ 8, for example, then neither the truth nor the
proof of Result 3.2 would be affected. Whenever there is a vacuous proof of a result, we
often say that the result follows vacuously. As we mentioned, a trivial proof is almost
never encountered in mathematics; however, the same cannot be said of vacuous proofs,
as we will see later.

We consider one additional example.

Result 3.3 Let S = {n ∈ Z : n ≥ 2} and let n ∈ S. If 2n + 2
n < 5, then 4n2 + 4

n2 < 25.

Proof First, we observe that if n = 2, then 2n + 2
n = 5. Of course, 5 < 5 is false. If n ≥ 3,

then 2n + 2
n > 2n ≥ 6. So, when n ≥ 3, 2n + 2

n < 5 is false as well. Thus, 2n + 2
n < 5

is false for all n ∈ S. Hence, the implication is true.

In two of the examples that we presented to illustrate trivial and vacuous proofs, we
used the fact (and assumed it was known) that 3 is odd. Also, in the proofs of Results 3.1
and 3.2, we used the fact that if r is any real number, then r2 ≥ 0. Although you are
certainly familiar with this property of real numbers, it is essential that any facts used
within a proof are known to and likely to be recalled by the reader. Facts used within a
proof should not come as a surprise to the reader. This subject will be discussed in more
detail shortly.

Even though the trivial and vacuous proofs are rarely encountered in mathematics,
they are important reminders of the truth table for implication. We are now prepared to
introduce the first major proof technique in mathematics.

SECTION 3.1 EXERCISES

3.1. Let x ∈ R. Prove that if 0 < x < 1, then x2 − 2x + 2 �= 0.

3.2. Let n ∈ N. Prove that if |n − 1| + |n + 1| ≤ 1, then |n2 − 1| ≤ 4.

3.3. Let r ∈ Q+. Prove that if r2+1
r ≤ 1, then r2+2

r ≤ 2.

3.4. Let x ∈ R. Prove that if x3 − 5x − 1 ≥ 0, then (x − 1)(x − 3) ≥ −2.
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3.5. Let n ∈ N. Prove that if n + 1
n < 2, then n2 + 1

n2 < 4.

3.6. Prove that if a, b and c are odd integers such that a + b + c = 0, then abc < 0. (You are permitted to use
well-known properties of integers here.)

3.7. Prove that if x, y and z are three real numbers such that x2 + y2 + z2 < xy + xz + yz, then x + y + z > 0.

3.2 DIRECT PROOFS

Typically, when we are discussing an implication P(x) ⇒ Q(x) over a domain S, there is
some connection between P(x) and Q(x). That is, the truth value of Q(x) for a particular
x ∈ S often depends on the truth value of P(x) for that same element x, or the truth value
of P(x) depends on the truth value of Q(x). These are the kinds of implications in which
we are primarily interested and it is the proofs of these types of results that will occupy
much of our attention. We begin with the first major proof technique, which occurs more
often in mathematics than any other technique.

Let P(x) and Q(x) be open sentences over a domain S. Suppose that our goal is
to show that P(x) ⇒ Q(x) is true for every x ∈ S, that is, our goal is to show that the
quantified statement ∀x ∈ S, P(x) ⇒ Q(x) is true. If P(x) is false for some x ∈ S, then
P(x) ⇒ Q(x) is true for this element x. Hence, we need only be concerned with showing
that P(x) ⇒ Q(x) is true for all x ∈ S for which P(x) is true. In a direct proof of P(x) ⇒
Q(x) for all x ∈ S, we consider an arbitrary element x ∈ S for which P(x) is true and
show that Q(x) is true as well for this element x. To summarize then, to give a direct
proof of P(x) ⇒ Q(x) for all x ∈ S, we assume that P(x) is true for an arbitrary element
x ∈ S and show that Q(x) must be true for this element x.

In order to illustrate this type of proof (and others as well), we need to deal with
mathematical topics with which we’re all familiar. Let’s first consider the integers and
some of their elementary properties. We assume that you are familiar with the integers
and the following properties of integers:

1. The negative of every integer is an integer.

2. The sum (and difference) of every two integers is an integer.

3. The product of every two integers is an integer.

We will agree that we can use any of these properties. No justification is required or
expected. Initially, we will use even and odd integers to illustrate our proof techniques.
In this case, however, any properties of even and odd integers must be verified before they
can be used. For example, you probably know that the sum of every two even integers
is even but this must first be proved to be used. We need to lay some groundwork before
any examples of direct proofs are given.

Since we will be working with even and odd integers, it is essential that we have
precise definitions of these kinds of numbers. An integer n is defined to be even if n = 2k
for some integer k. For example, 10 is even since 10 = 2 · 5 (where, of course, 5 is an
integer). Also, −14 = 2(−7) is even, as is 0 = 2 · 0. The integer 17 is not even since
there is no integer k for which 17 = 2k. Thus, we see that the set of all even integers is
the set

S = {2k : k ∈ Z} = {. . . ,−4,−2, 0, 2, 4, . . .}.
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We could define an integer n to be odd if it’s not even but it would be difficult to
work with this definition. Instead, we define an integer n to be odd if n = 2k + 1 for some
integer k. Now 17 is odd since 17 = 2 · 8 + 1. Also, −5 is odd because −5 = 2(−3) + 1.
On the other hand, 26 is not odd since there is no integer k such that 26 = 2k + 1. In fact,
26 is even. Hence, according to the definition of odd integers that we have just given,
we see that the set of all odd integers is precisely the set

T = {2k + 1 : k ∈ Z} = {. . . ,−5,−3,−1, 1, 3, 5, . . .}.
Observe that S and T are disjoint sets and S ∪ T = Z; that is, Z is partitioned into S
and T . Therefore, every integer is either even or odd.

From time to time, we will find ourselves in a position where we have a result to
prove and it may not be entirely clear how to proceed. In such a case, we need to consider
our options and develop a plan, which we refer to as a proof strategy. The idea is to
discuss a proof strategy for the result and, from it, construct a proof. At other times, we
may wish to reflect on a proof that we have just given in order to understand it better.
Such a discussion will be referred to as a proof analysis. As with examples, we conclude
both a proof strategy and a proof analysis with the symbol �.

We are now prepared to illustrate the direct proof technique. We follow the proof
by a proof analysis.

Result 3.4 If n is an odd integer, then 3n + 7 is an even integer.

Proof Assume that n is an odd integer. Since n is odd, we can write n = 2k + 1 for some
integer k. Now,

3n + 7 = 3(2k + 1) + 7 = 6k + 3 + 7 = 6k + 10 = 2(3k + 5).

Since 3k + 5 is an integer, 3n + 7 is even.

PROOF ANALYSIS First, notice that Result 3.4 could have been stated as either

For every odd integer n, the integer 3n + 7 is even.

or

Let n be an odd integer. Then 3n + 7 is even.

Thus, the domain of the variable n in Result 3.4 is the set of odd integers. In the proof
of Result 3.4, the expression 2k + 1 was substituted for n in 3n + 7 and simplified as
6k + 10. Since our goal was to show that 3n + 7 is even, we needed to show that 3n + 7
can be expressed as twice an integer. Consequently, we factored 2 from 6k + 10 and
wrote it as 2(3k + 5). Since 3 and k are integers, so is 3k (the product of two integers
is an integer). Since 3k and 5 are integers, so is 3k + 5 (the sum of two integers is an
integer). Therefore, 3n + 7 satisfies the definition of an even integer.

One other remark deserves mention here. In the second sentence, we wrote:

Since n is odd, we can write n = 2k + 1 for some integer k.

It would be incorrect to write: “If n is odd” rather than “Since n is odd” because we have
already assumed that n is odd and therefore n is now known to be odd. �
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We defined an integer n to be odd if we can write n as 2k + 1 for some integer
k. This means that whenever we want to show that an integer, say m, is odd, we must
follow this definition; that is, we must show that m = 2k + 1 for some integer k. (Of
course, the use of the symbol k is not important. For example, an odd integer n can be
written as n = 2� + 1 for some integer �.) We could have defined an integer n to be odd
if it is possible to write n = 2k − 1 for some integer k, but we didn’t. However, if we
could prove that an integer n is odd if and only if n can be expressed as 2k − 1 for some
integer k, then we could use this characterization of odd integers to show that an integer
is odd. This, however, would require additional work on our part with no obvious benefit.
Similarly, we could have defined an integer n to be even if we can write n = 2k + 2, or
n = 2k − 2 or perhaps n = 2k + 100 for some integer k. The definitions of even and odd
integers that we chose are probably the most commonly used. Any other definitions that
could have been given provide no special advantage to us.

The proof given of Result 3.4 is an example of a direct proof. Let

Q(n): 3n + 7 is an even integer.

over the domain of odd integers. We verified Result 3.4 by assuming that n is an arbitrary
odd integer and then showing that Q(n) is true for this element n. Showing that Q(n) is
true essentially required one step on our part. As we venture further into proofs, we will
see that we can’t always establish the truth of the desired conclusion so quickly. It may
be necessary to establish the truth of some other mathematical statements along the way
that can then be used to establish the truth of Q(n). We will see examples of this later.

Let’s consider another example. For variety, we use an alternative opening sentence
and different symbols in the proof of the following result.

Result 3.5 If n is an even integer, then −5n − 3 is an odd integer.

Proof Let n be an even integer. Then n = 2x, where x is an integer. Therefore,

−5n − 3 = −5(2x) − 3 = −10x − 3 = −10x − 4 + 1 = 2(−5x − 2) + 1.

Since −5x − 2 is an integer, −5n − 3 is an odd integer.

We now consider another example, which may have a surprise ending.

Result 3.6 If n is an odd integer, then 4n3 + 2n − 1 is odd.

Proof Assume that n is odd. Then n = 2y + 1 for some integer y. Therefore,

4n3 + 2n − 1 = 4(2y + 1)3 + 2(2y + 1) − 1

= 4(8y3 + 12y2 + 6y + 1) + 4y + 2 − 1

= 32y3 + 48y2 + 28y + 5

= 2(16y3 + 24y2 + 14y + 2) + 1.

Since 16y3 + 24y2 + 14y + 2 is an integer, 4n3 + 2n − 1 is odd.

PROOF ANALYSIS Although the direct proof of Result 3.6 that we gave is correct, this is not the desired
proof. Indeed, had we observed that

4n3 + 2n − 1 = 4n3 + 2n − 2 + 1 = 2(2n3 + n − 1) + 1
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and that 2n3 + n − 1 ∈ Z, we could have concluded immediately that 4n3 + 2n − 1 is
odd for every integer n. Hence, a trivial proof of Result 3.6 could be given and, in fact,
is preferred. The fact that 4n3 + 2n − 1 is odd does not depend on n being odd. Indeed,
it would be far better to replace the statement of Result 3.6 by

If n is an integer, then 4n3 + 2n − 1 is odd. �

We give an additional example of a somewhat different type.

Result 3.7 Let S = {1, 2, 3} and let n ∈ S. If
n(n + 3)

2
is even, then

(n + 2)(n − 5)
2

is even.

Proof Let n ∈ S such that n(n + 3)/2 is even. Since n(n + 3)/2 = 2 when n = 1, n(n + 3)/2
= 5 when n = 2 and n(n + 3)/2 = 9 when n = 3, it follows that n = 1. When n = 1,
(n + 2)(n − 5)/2 = −6, which is even. Therefore, the implication is true.

PROOF ANALYSIS In the proof of Result 3.7, we were only concerned with those elements n ∈ S for which
n(n + 3)/2 is even. Furthermore, it is not initially clear for which elements n of S the in-
teger n(n + 3)/2 is even. Since S consists only of three elements, this can be determined
rather quickly, which is what we did. We saw that only n = 1 has the desired property
and this is the only element we needed to consider. �

If our goal is to establish the truth of P(x) ⇒ Q(x) for all x in a domain S by means of
a direct proof, then the proof begins by assuming that P(x) is true for an arbitrary element
x ∈ S. It is often common in this situation, however, to omit the initial assumption that
P(x) is true for an arbitrary element x ∈ S. It is then understood that we are giving a
direct proof. We illustrate this with a short example.

Result 3.8 If n is an even integer, then 3n5 is an even integer.

Proof Since n is an even integer, n = 2x for some integer x. Therefore,

3n5 = 3(2x)5 = 3(32x5) = 96x5 = 2(48x5).

Since 48x5 ∈ Z, the integer 3n5 is even.

For the present, when giving a direct proof of P(x) ⇒ Q(x) for all x in a domain
S, we will often include the initial assumption that P(x) is true for an arbitrary element
x ∈ S in order to solidify this technique in your mind.

SECTION 3.2 EXERCISES

3.8. Prove that if x is an odd integer, then 9x + 5 is even.

3.9. Prove that if x is an even integer, then 5x − 3 is an odd integer.

3.10. Prove that if a and c are odd integers, then ab + bc is even for every integer b.

3.11. Let n ∈ Z. Prove that if 1 − n2 > 0, then 3n − 2 is an even integer.
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3.12. Let x ∈ Z. Prove that if 22x is an odd integer, then 2−2x is an odd integer.

3.13. Let S = {0, 1, 2} and let n ∈ S. Prove that if (n + 1)2(n + 2)2/4 is even, then (n + 2)2(n + 3)2/4 is even.

3.14. Let S = {1, 5, 9}. Prove that if n ∈ S and n2+n−6
2 is odd, then 2n3+3n2+n

6 is even.

3.15. Let A = {n ∈ Z : n > 2 and n is odd} and B = {n ∈ Z : n < 11}. Prove that if n ∈ A ∩ B, then n2 − 2 is
prime.

3.3 PROOF BY CONTRAPOSITIVE

For statements P and Q, the contrapositive of the implication P ⇒ Q is the implication
(∼ Q) ⇒ (∼ P). For example, for P1 : 3 is odd and P2: 57 is prime, the contrapositive
of the implication

P1 ⇒ P2: If 3 is odd, then 57 is prime.

is the implication

(∼ P2) ⇒ (∼ P1): If 57 is not prime, then 3 is even.

The most important feature of the contrapositive (∼ Q) ⇒ (∼ P) is that it is log-
ically equivalent to P ⇒ Q. This fact is stated formally as a theorem and is verified in
the truth table shown in Figure 3.2.

Theorem 3.9 For every two statements P and Q, the implication P ⇒ Q and its contrapositive are
logically equivalent; that is,

P ⇒ Q ≡ (∼ Q) ⇒ (∼ P).

T

P Q P ⇒ Q ∼ Q ∼ P

T

F

T

T TT

F

T F

T

F F

(∼ Q) ⇒ (∼ P)

F

T

T T F F T

F

T

FT

Figure 3.2 The logical equivalence of an implication and its contrapositive

Let

P(x) : x = 2 and Q(x) : x2 = 4

where x ∈ R. The contrapositive of the implication

P(x) ⇒ Q(x) : If x = 2, then x2 = 4.

is the implication

(∼ Q(x)) ⇒ (∼ P(x)) : If x2 �= 4, then x �= 2.
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Suppose that we wish to prove a result (or theorem) that is expressed as

Let x ∈ S. If P(x), then Q(x). (3.2)

or as

For all x ∈ S, if P(x), then Q(x). (3.3)

We have seen that a proof of such a result consists of establishing the truth of the impli-
cation P(x) ⇒ Q(x) for all x ∈ S. If it can be shown that (∼ Q(x)) ⇒ (∼ P(x)) is true
for all x ∈ S, then P(x) ⇒ Q(x) is true for all x ∈ S. A proof by contrapositive of the
result (3.2) (or of (3.3)) is a direct proof of its contrapositive:

Let x ∈ S. If ∼ Q(x), then ∼ P(x).

or

For all x ∈ S, if ∼ Q(x), then ∼ P(x).

Thus, to give a proof by contrapositive of (3.2) (or of (3.3)), we assume that ∼ Q(x) is
true for an arbitrary element x ∈ S and show that ∼ P(x) is true for this element x.

There are certain types of results where a proof by contrapositive is preferable or
perhaps even essential. We now give some examples to illustrate this method of proof.

Result 3.10 Let x ∈ Z. If 5x − 7 is even, then x is odd.

Proof Assume that x is even. Then x = 2a for some integer a. So

5x − 7 = 5(2a) − 7 = 10a − 7 = 10a − 8 + 1 = 2(5a − 4) + 1.

Since 5a − 4 ∈ Z, the integer 5x − 7 is odd.

PROOF ANALYSIS Some comments are now in order. The goal of Result 3.10 was to prove P(x) ⇒ Q(x)
for all x ∈ Z, where P(x): 5x − 7 is even and Q(x): x is odd. Since we chose to give a
proof by contrapositive, we gave a direct proof of (∼ Q(x)) ⇒ (∼ P(x)) for all x ∈ Z.
Hence, the proof began by assuming that x is not odd, that is, x is even. The object then
was to show that 5x − 7 is odd.

Had we attempted to prove Result 3.10 with a direct proof, we would have begun
by assuming that 5x − 7 is even for an arbitrary integer x. Then 5x − 7 = 2a for some
integer a. So, x = (2a + 7)/5. We then would want to show that x is odd. With the ex-
pression we have for x, it is not even clear that x is an integer, much less that x is an
odd integer, although, of course, we were told in the statement of Result 3.10 that the
domain of x is the set of integers. Therefore, it is not only that a proof by contrapositive
provides us with a rather simple method of proving Result 3.10, but that it may not be
immediately clear how or whether a direct proof can be used.

How did we know beforehand that it is a proof by contrapositive that we should
use here? This is not as difficult as it may appear. If we use a direct proof, then we
begin by assuming that 5x − 7 is even for an arbitrary integer x; while if we use a proof
by contrapositive, then we begin by assuming that x is even. Therefore, using a proof
by contrapositive allows us to work with x initially rather than the more complicated
expression 5x − 7. �
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In all of the examples that we have seen so far, we have considered only implications.
Now we look at a biconditional.

Result 3.11 Let x ∈ Z. Then 11x − 7 is even if and only if x is odd.

Proof There are two implications to prove here, namely,

(1) if x is odd, then 11x − 7 is even and

(2) if 11x − 7 is even, then x is odd.

We begin with (1). In this case, a direct proof is appropriate. Assume that x is odd. Then
x = 2r + 1, where r ∈ Z. So

11x − 7 = 11(2r + 1) − 7 = 22r + 11 − 7 = 22r + 4 = 2(11r + 2).

Since 11r + 2 is an integer, 11x − 7 is even.
We now prove (2), which is the converse of (1). We use a proof by contrapositive

here. Assume that x is even. Then x = 2s, where s ∈ Z. Therefore,

11x − 7 = 11(2s) − 7 = 22s − 7 = 22s − 8 + 1 = 2(11s − 4) + 1.

Since 11s − 4 is an integer, 11x − 7 is odd.

A comment concerning the statements of Results 3.10 and 3.11 bears repeating here.
These results begin with the sentence: Let x ∈ Z. This, of course, is informing us that the
domain in this case is Z. That is, we are being told that x represents an integer. We need
not state this assumption in the proof. The sentence “Let x ∈ Z.” is commonly called an
“overriding” assumption or hypothesis and so x is assumed to be an integer throughout
the proofs of Results 3.10 and 3.11.

In the proof of Result 3.11, we discussed our plan of attack. Namely, we stated that
there were two implications to prove and we specifically stated each. Ordinarily we don’t
include such information within the proof – unless the proof is quite long, in which case
a roadmap indicating the steps we plan to take may be helpful. We give an additional
example of this type, where this time a more conventional condensed proof is presented.
The following example will be useful to us in the future; thus, we refer to it as a theorem.

Theorem 3.12 Let x ∈ Z. Then x2 is even if and only if x is even.

Proof Assume that x is even. Then x = 2a for some integer a. Therefore,

x2 = (2a)2 = 4a2 = 2(2a2).

Because 2a2 ∈ Z, the integer x2 is even.
For the converse, assume that x is odd. So, x = 2b + 1, where b ∈ Z. Then

x2 = (2b + 1)2 = 4b2 + 4b + 1 = 2(2b2 + 2b) + 1.

Since 2b2 + 2b is an integer, x2 is odd.

Suppose now that you were asked to prove the following result:

Let x ∈ Z. Then x2 is odd if and only if x is odd. (3.4)



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M04_CHART6753_04_SE_C03 PH03348-Chartrand August 5, 2017 16:26 Char Count= 0

92 Chapter 3 Direct Proof and Proof by Contrapositive

How would you do this? You might think of proving the implication “If x is odd, then
x2 is odd.” by a direct proof and its converse “If x2 is odd, then x is odd.” by a proof by
contrapositive, where, of course, the domain of x is Z. If we look at what is happening
here, we see that we are duplicating the proof of Theorem 3.12. This is no surprise
whatsoever. Theorem 3.12 states that if x is even, then x2 is even and if x2 is even, then x
is even. The contrapositive of the first implication is “If x2 is odd, then x is odd.” while the
contrapositive of the second implication is “If x is odd, then x2 is odd.” In other words,
(3.4) simply restates Theorem 3.12 in terms of contrapositives. Thus, (3.4) requires no
proof at all. It is essentially a restatement of Theorem 3.12. And speaking of restatements
of Theorem 3.12, we need to recognize that this theorem can be restated in other ways.
For example, we could restate

If x is an even integer, then x2 is even.

as

The square of every even integer is even.

Hence, Theorem 3.12 could be stated as:

An integer is even if and only if its square is even.

It is not only useful to sometimes restate results in different manners for variety, it is
important to recognize what a result is saying regardless of the manner in which it may
be stated.

At this point, it is convenient to pause and discuss how theorems (or results) can be
used and why it is that we may be interested in proving a particular theorem. First, it is
only by providing a proof of a theorem that we know for certain that the theorem is true
and therefore have the right to call it a theorem. A fundamental reason why mathemati-
cians may want to give a proof of some mathematical statement is that they consider this
a challenge — this is what mathematicians do.

This, in fact, brings up a question that many mathematicians consider of greater
importance. Where do such statements come from? Of course, the answer is that they
come from mathematicians or students. How these people arrive at such questions does
not follow any set rule. But this deals with the creative aspect of mathematics. Some
people are curious and imaginative. Perhaps while proving some theorem, it is realized
that the method of proof used could be applied to prove something even more interesting.
(What is interesting, of course, is quite subjective.) More than likely however, a person
has observed some relationship that exists in an example being considered that appears
to occur in a more general setting. This individual then attempts to show that this is the
case by giving a proof. This entire process involves the idea of conjectures (guesses) and
trying to show the accuracy of a conjecture. We’ll discuss this at greater length later.

Suppose that we have been successful in proving P(x) ⇒ Q(x) for all x in some
domain S (by whatever method). We therefore know that for every x ∈ S for which the
statement P(x) is true, the statement Q(x) is true. Also, for any x ∈ S for which the
statement Q(x) is false, the statement P(x) is false. For example, since we know that
Result 3.10 is true, if we should ever encounter an integer n for which 5n − 7 is even,
then we know that n is odd. Furthermore, if we should encounter an integer n for which
n2 is odd, then we can conclude by statement (3.4) or, better yet, by Theorem 3.12, that
n itself must be odd.
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It is not only knowing that a particular theorem might be useful to us in the future,
it is perhaps that a theorem seems surprising, interesting or even beautiful. (Yes – to
mathematicians, and hopefully to you as well, a theorem can be beautiful.)

We next describe a type of result that we have not yet encountered. Consider the
following result, which we would like to prove.

Result to Prove Let x ∈ Z. If 5x − 7 is odd, then 9x + 2 is even.

PROOF STRATEGY This result doesn’t seem to fit into the kinds of results we’ve been proving. (This is not
unusual. After learning how to prove certain statements, we encounter new statements
that require us to . . . think.) If we attempt to give either a direct proof or a proof by
contrapositive of this result, we may be headed for difficulties. There is, however, another
approach. Even though we must be very careful about what we are assuming, from what
we know about even and odd integers, it appears that if 5x − 7 is odd, then x must be
even. In fact, if we knew that whenever 5x − 7 is odd then x is even, this fact would
be extremely helpful. We illustrate this next. Don’t forget that our goal is to prove the
following result, which we will refer to as Result 3.14: Let x ∈ Z. If 5x − 7 is odd, then
9x + 2 is even. The (unusual) numbering of this result is because we will first state and
prove a lemma (Lemma 3.13) that will aid us in the proof of Result 3.14. �

In order to verify the truth of Result 3.14, we first prove the following lemma.

Lemma 3.13 Let x ∈ Z. If 5x − 7 is odd, then x is even.

Proof Assume that x is odd. Then x = 2y + 1, where y ∈ Z. Therefore,

5x − 7 = 5(2y + 1) − 7 = 10y − 2 = 2(5y − 1).

Since 5y − 1 is an integer, 5x − 7 is even.

We are now prepared to give a proof of Result 3.14.

Result 3.14 Let x ∈ Z. If 5x − 7 is odd, then 9x + 2 is even.

Proof Let 5x − 7 be an odd integer. By Lemma 3.13, the integer x is even. Since x is even,
x = 2z for some integer z. Thus,

9x + 2 = 9(2z) + 2 = 18z + 2 = 2(9z + 1).

Because 9z + 1 is an integer, 9x + 2 is even.

So, with the aid of Lemma 3.13, we have produced a very uncomplicated (and,
hopefully, easy-to-follow) proof of Result 3.14.

The main reason for presenting Result 3.14 was to show how helpful a lemma can be
in producing a proof of another result. However, having just said this, we now show how
we can prove Result 3.14 without the aid of a lemma, by performing a bit of algebraic
manipulation.
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Alternative
Proof of

Result 3.14.

Assume that 5x − 7 is odd. Then 5x − 7 = 2n + 1 for some integer n. Observe that

9x + 2 = (5x − 7) + (4x + 9) = 2n + 1 + 4x + 9

= 2n + 4x + 10 = 2(n + 2x + 5).

Because n + 2x + 5 is an integer, 9x + 2 is even.

You may prefer one proof of Result 3.14 over the other. Whether you do or not, it is
important to know that two different methods can be used. These methods might prove
to be useful for future results you encounter. Also, you might think we used a trick to
give the second proof of Result 3.14, but, as we will see, if the same “trick” can be used
often, then it becomes a technique.

SECTION 3.3 EXERCISES

3.16. Let x ∈ Z. Prove that if 7x + 5 is odd, then x is even.

3.17. Let n ∈ Z. Prove that if 15n is even, then 9n is even.

3.18. Let x ∈ Z. Prove that 5x − 11 is even if and only if x is odd.

3.19. Let x ∈ Z. Use a lemma to prove that if 7x + 4 is even, then 3x − 11 is odd.

3.20. Let x ∈ Z. Prove that 3x + 1 is even if and only if 5x − 2 is odd.

3.21. Let n ∈ Z. Prove that (n + 1)2 − 1 is even if and only if n is even.

3.22. Let S = {2, 3, 4} and let n ∈ S. Use a proof by contrapositive to prove that if n2(n − 1)2/4 is even, then
n2(n + 1)2/4 is even.

3.23. Let A = {0, 1, 2} and B = {4, 5, 6} be subsets of S = {0, 1, . . . , 6}. Let n ∈ S. Prove that if n(n−1)(n−2)
6 is

even, then n ∈ A ∪ B.

3.24. Let n ∈ Z. Prove that 2n2 + n is odd if and only if cos nπ
2 is even.

3.25. Let {A, B} be a partition of the set of S = {1, 2, . . . , 7}, where A = {1, 4, 5} and B = {2, 3, 6, 7}. Let n ∈ S.
Prove that if n2+3n−4

2 is even, then n ∈ A.

3.4 PROOF BY CASES

While attempting to give a proof of a mathematical statement concerning an element
x in some set S, it is sometimes useful to observe that x possesses one of two or more
properties. A common property that x may possess is that of belonging to a particular
subset of S. If we can verify the truth of the statement for each property that x may have,
then we have a proof of the statement. Such a proof is then divided into parts called
cases, one case for each property that x may possess or for each subset to which x may
belong. This method is called proof by cases. Indeed, it may be useful in a proof by
cases to further divide a case into other cases, called subcases.

For example, in a proof of ∀n ∈ Z, R(n), it might be convenient to use a proof by
cases whose proof is divided into the two cases

Case 1. n is even. and Case 2. n is odd.

Other possible proofs by cases might involve proving ∀x ∈ R, P(x) using the cases
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Case 1. x = 0. Case 2. x < 0. and Case 3. x > 0.

Also, we might attempt to prove ∀n ∈ N, P(n) using the cases

Case 1. n = 1. and Case 2. n ≥ 2.

Furthermore, for S = Z − {0}, we might try to prove ∀x, y ∈ S, P(x, y) by using the
cases:

Case 1. xy > 0. and Case 2. xy < 0.

Case 1 could, in fact, be divided into two subcases

Subcase 1.1. x > 0 and y > 0. and Subcase 1.2. x < 0 and y < 0.

while Case 2 could be divided into the two subcases

Subcase 2.1. x > 0 and y < 0. and Subcase 2.2. x < 0 and y > 0.

Let’s look at an example of a proof by cases.

Result 3.15 If n ∈ Z, then n2 + 3n + 5 is an odd integer.

Proof We proceed by cases, according to whether n is even or odd.

Case 1. n is even. Then n = 2x for some x ∈ Z. So,

n2 + 3n + 5 = (2x)2 + 3(2x) + 5 = 4x2 + 6x + 5 = 2(2x2 + 3x + 2) + 1.

Since 2x2 + 3x + 2 ∈ Z, the integer n2 + 3n + 5 is odd.

Case 2. n is odd. Then n = 2y + 1, where y ∈ Z. Thus,

n2 + 3n + 5 = (2y + 1)2 + 3(2y + 1) + 5 = 4y2 + 10y + 9 = 2(2y2 + 5y + 4) + 1.

Because 2y2 + 5y + 4 ∈ Z, the integer n2 + 3n + 5 is odd.

Two integers x and y are said to be of the same parity if x and y are both even or are
both odd. The integers x and y are of opposite parity if one of x and y is even and the other
is odd. For example, 5 and 13 are of the same parity, while 8 and 11 are of opposite parity.
Because the definition of two integers having the same (or opposite) parity requires the
two integers to satisfy one of two properties, any result containing these terms is likely
to be proved by cases. The following theorem presents a characterization of two integers
that are of the same parity.

Theorem 3.16 Let x, y ∈ Z. Then x and y are of the same parity if and only if x + y is even.

Proof First, assume that x and y are of the same parity. We consider two cases.

Case 1. x and y are even. Then x = 2a and y = 2b for some integers a and b. So, x + y =
2a + 2b = 2(a + b). Since a + b ∈ Z, the integer x + y is even.

Case 2. x and y are odd. Then x = 2a + 1 and y = 2b + 1, where a, b ∈ Z. Therefore,

x + y = (2a + 1) + (2b + 1) = 2a + 2b + 2 = 2(a + b + 1).

Since a + b + 1 is an integer, x + y is even.
For the converse, assume that x and y are of opposite parity. Again, we consider two

cases.



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M04_CHART6753_04_SE_C03 PH03348-Chartrand August 5, 2017 16:26 Char Count= 0

96 Chapter 3 Direct Proof and Proof by Contrapositive

Case 1. x is even and y is odd. Then x = 2a and y = 2b + 1, where a, b ∈ Z. Then

x + y = 2a + (2b + 1) = 2(a + b) + 1.

Since a + b ∈ Z, the integer x + y is odd.

Case 2. x is odd and y is even. The proof is similar to the proof of the preceding case
and is therefore omitted.

PROOF ANALYSIS A comment concerning the proof of Theorem 3.16 is useful here. Although there is
always some concern when omitting steps or proofs, it should be clear that it is truly a
waste of effort by writer and reader alike to give a proof of the case when x is odd and y
is even in Theorem 3.16. Indeed, there is an alternative when the converse is considered.

For the converse, assume that x and y are of opposite parity. Without loss of gener-
ality, assume that x is even and y is odd. Then x = 2a and y = 2b + 1, where a, b ∈ Z.
Then

x + y = 2a + (2b + 1) = 2(a + b) + 1.

Since a + b ∈ Z, the integer x + y is odd. �

We used the phrase without loss of generality (some abbreviate this as WOLOG
or WLOG) to indicate that the proofs of the two situations are similar, so the proof of
only one of these is needed. Sometimes it is rather subjective to say that two situations
are similar. We present one additional example to illustrate this.

Theorem to
Prove

Let a and b be integers. Then ab is even if and only if a is even or b is even.

PROOF STRATEGY Before we begin a proof of this result (Theorem 3.17 below), let’s see what we will be
required to show. We need to prove two implications, namely: (1) If a is even or b is
even, then ab is even. and (2) If ab is even, then a is even or b is even. We consider (1)
first. A direct proof seems appropriate. Here, we will assume that a is even or b is even.
We could give a proof by cases: (i) a is even, (ii) b is even. On the other hand, since the
proofs of these cases will certainly be similar, we could say, without loss of generality,
that a is even. We will see that it is unnecessary to make any assumption about b.

If we were to give a direct proof of (2), then we would begin by assuming that ab is
even, say ab = 2k for some integer k. But how could we deduce any information about
a and b individually? Let’s try another approach. If we use a proof by contrapositive,
then we would begin by assuming that it is not the case that a is even or b is even. This
is exactly the situation covered by one of De Morgan’s laws:

∼ (P ∨ Q) is logically equivalent to (∼ P) ∧ (∼ Q).

It is important not to forget this. In this case, we have P: a is even. and Q: b is even. So,
the negation of “a is even or b is even” is “a is odd and b is odd.” �

Let’s now prove this result.

Theorem 3.17 Let a and b be integers. Then ab is even if and only if a is even or b is even.
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Proof First, assume that a is even or b is even. Without loss of generality, let a be even. Then
a = 2x for some integer x. Thus, ab = (2x)b = 2(xb). Since xb is an integer, ab is even.

For the converse, assume that a is odd and b is odd. Then a = 2x + 1 and
b = 2y + 1, where x, y ∈ Z. Hence,

ab = (2x + 1)(2y + 1) = 4xy + 2x + 2y + 1 = 2(2xy + x + y) + 1.

Since 2xy + x + y is an integer, ab is odd.

In the proof of the following result, three cases are used.

Result 3.18 Let P = {A, B,C} be a partition of the set Z of integers, where

A = {n : n = 2a where a is an odd integer}
B = {n : n = 2b where b is an even integer}
C = {n : n is an odd integer}.

If x and y are integers belonging to distinct elements of P , then x + y ∈ A ∪ C.

Proof We consider three cases.

Case 1. x and y belong to A and B, say x ∈ A and y ∈ B. Then x = 2a and y = 2b, where
a is odd and b is even. Thus, x + y = 2a + 2b = 2(a + b). Since a is odd and b is even,
a = 2k + 1 and b = 2�, where k, � ∈ Z. Hence, a + b = (2k + 1) + 2� = 2(k + �) + 1.
Because k + � is an integer, a + b is odd and so x + y ∈ A.

Case 2. x and y belong to A and C, say x ∈ A and y ∈ C. Then x = 2a, where a is odd
and y is odd. Thus, y = 2k + 1 for some integer k. Therefore, x + y = 2a + (2k + 1) =
2(a + k) + 1. Since a + k ∈ Z, it follows that x + y is odd and so x + y ∈ C.

Case 3. x and y belong to B and C, say x ∈ B and y ∈ C. Then x = 2b, where b is even
and y is odd. Thus, y = 2k + 1 for some integer k. Therefore, x + y = 2b + (2k + 1) =
2(b + k) + 1. Since b + k ∈ Z, it follows that x + y is odd and so x + y ∈ C.

In each case, either x + y ∈ A or x + y ∈ C. Hence, x + y ∈ A ∪ C.

SECTION 3.4 EXERCISES

3.26. Prove that if n ∈ Z, then n2 − 3n + 9 is odd.

3.27. Prove that if n ∈ Z, then n3 − n is even.

3.28. Let x, y ∈ Z. Prove that if xy is odd, then x and y are odd.

3.29. Let a, b ∈ Z. Prove that if ab is odd, then a2 + b2 is even.

3.30. Let x, y ∈ Z. Prove that x − y is even if and only if x and y are of the same parity.

3.31. Let a, b ∈ Z. Prove that if a + b and ab are of the same parity, then a and b are even.

3.32. (a) Let x and y be integers. Prove that (x + y)2 is even if and only if x and y are of the same parity.
(b) Restate the result in (a) in terms of odd integers.
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3.33. Let A = {1, 2, 3} and B = {2, 3, 4} be subsets of S = {1, 2, 3, 4}. Let n ∈ S. Prove that 2n2 − 5n is either (a)
positive and even or (b) negative and odd if and only if n /∈ A ∩ B.

3.34. Let A = {3, 4} be a subset of S = {1, 2, . . . , 6}. Let n ∈ S. Prove that if n2(n+1)2

4 is even, then n ∈ A.

3.35. Prove for every nonnegative integer n that 2n + 6n is an even integer.

3.36. Let x, y ∈ Z. Prove that if 3x + 4y and 4x + 5y are both even, then x and y are both even.

3.37. Let x, y, z ∈ Z. Prove that if exactly two of the three integers x, y, z are even, then 3x + 5y + 7z is odd.

3.38. Let S = {8, 12, 20, 24}. Prove that if {x, y} is a 2-element subset of S, then either x + y = 8k for some even
integer k or x + y = 4� for some odd integer �.

3.39. Let A, B and C be sets. Prove that if x /∈ A ∪ B and x /∈ B ∪ C, then x /∈ A ∪ C.

3.40. A collection of a nonempty subsets of a nonempty set S is called a cover of S if every element of S belongs
to at least one of the subsets. (A cover is a partition of S if every element of S belongs to exactly one of the
subsets.) Consider the following.

Result Let a, b ∈ Z. If a is even or b is even, then ab is even.

Proof Assume that a is even or b is even. We consider the following cases.

Case 1. a is even. Then a = 2k, where k ∈ Z. Thus, ab = (2k)b = 2(kb). Since kb ∈ Z, it follows that ab is
even.

Case 2. b is even. Then b = 2�, where � ∈ Z. Thus, ab = a(2�) = 2(a�). Since a� ∈ Z, it follows that ab is
even.

Since the domain is Z for both a and b, we might think of Z × Z being the domain of (a, b). Consider the
following subsets of Z × Z:

S1 = {(a, b) ∈ Z × Z : a and b are odd}
S2 = {(a, b) ∈ Z × Z : a is even}
S3 = {(a, b) ∈ Z × Z : b is even}.

(a) Why is {S1, S2, S3} a cover of Z × Z and not a partition of Z × Z?
(b) Why does the set S1 not appear in the proof above?
(c) Give a proof by cases of the result above where the cases are determined by a partition and not a cover.

3.5 PROOF EVALUATIONS

We have now stated several results and have given a proof of each result (sometimes
preceding a proof by a proof strategy or following the proof with a proof analysis). Let’s
reverse this process by giving an example of a proof of a result but not stating the result
being proved. We will follow the proof with several options for the statements of the
result being proved.

Example 3.19 Given below is a proof of a result.

Proof Assume that n is an odd integer. Then n = 2k + 1 for some integer k. Then

3n − 5 = 3(2k + 1) − 5 = 6k + 3 − 5 = 6k − 2 = 2(3k − 1).

Since 3k − 1 is an integer, 3n − 5 is even.
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Which of the following is proved above?

(1) 3n − 5 is an even integer.

(2) If n is an odd integer, then 3n − 5 is an even integer.

(3) Let n be an integer. If 3n − 5 is an even integer, then n is an odd integer.

(4) Let n be an integer. If 3n − 5 is an odd integer, then n is an even integer.

The correct answers are (2) and (4). The proof given is a direct proof of (2) and a
proof by contrapositive of (4). The sentence (1) is an open sentence, not a statement, and
is only the conclusion of (2). Statement (3) is the converse of (2). �

When learning any mathematical subject, it is not the least bit unusual to make mis-
takes along the way. In fact, part of learning mathematics is to learn from your mistakes
and those of others. For this reason, you will see a few exercises at the end of several
chapters (beginning with this chapter) where you are asked to evaluate the proof of a
result. That is, a result and a proposed proof of this result will be given. You are then
asked to read this proposed proof and determine whether, in your opinion, it is, in fact,
a proof. If you don’t believe that the given argument provides a proof of the result, then
you should point out the (or a) mistake. We give two examples of this.

Problem 3.20 Evaluate the proposed proof of the following result.

Result If x and y are integers of the same parity, then x − y is even.

Proof Let x and y be two integers of the same parity. We consider two cases, according to
whether x and y are both even or are both odd.

Case 1. x and y are both even. Let x = 6 and y = 2, which are both even. Then x − y = 4,
which is even.

Case 2. x and y are both odd. Let x = 7 and y = 1, which are both odd. Then x − y = 6,
which is even.

Proof Evaluation Although the proof started correctly, assuming that x and y are two integers of the same
parity and dividing the proof into these two cases, the proof of each case is incorrect.
When we assume that x and y are both even, for example, x and y must represent arbitrary
even integers, not specific even integers. �

Problem 3.21 Evaluate the proposed proof of the following result.

Result If m is an even integer and n is an odd integer, then 3m + 5n is odd.

Proof Let m be an even integer and n an odd integer. Then m = 2k and n = 2k + 1, where
k ∈ Z. Therefore,

3m + 5n = 3(2k) + 5(2k + 1) = 6k + 10k + 5

= 16k + 5 = 2(8k + 2) + 1.

Since 8k + 2 is an integer, 3m + 5n is odd.
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Proof Evaluation There is a mistake in the second sentence of the proposed proof, where it is written that
m = 2k and n = 2k + 1, where k ∈ Z. Since the same symbol k is used for both m and n,
we have inadvertently added the assumption that n = m + 1. This is incorrect, however,
as it was never stated that m and n must be consecutive integers. In other words, we
should write m = 2k and n = 2� + 1, say, where k, � ∈ Z. �

SECTION 3.5 EXERCISES

3.41. Below is a proof of a result.

Proof We consider two cases.

Case 1. a and b are even. Then a = 2r and b = 2s for integers r and s. Thus,

a2 − b2 = (2r)2 − (2s)2 = 4r2 − 4s2 = 2(2r2 − 2s2).

Since 2r2 − 2s2 is an integer, a2 − b2 is even.

Case 2. a and b are odd. Then a = 2r + 1 and b = 2s + 1 for integers r and s. Thus,

a2 − b2 = (2r + 1)2 − (2s + 1)2 = (4r2 + 4r + 1) − (4s2 + 4s + 1)

= 4r2 + 4r − 4s2 − 4s = 2(2r2 + 2r − 2s2 − 2s).

Since 2r2 + 2r − 2s2 − 2s is an integer, a2 − b2 is even.

Which of the following is proved?

(1) Let a, b ∈ Z. Then a and b are of the same parity if and only if a2 − b2 is even.
(2) Let a, b ∈ Z. Then a2 − b2 is even.
(3) Let a, b ∈ Z. If a and b are of the same parity, then a2 − b2 is even.
(4) Let a, b ∈ Z. If a2 − b2 is even, then a and b are of the same parity.

3.42. Below is given a proof of a result. Which result is being proved?

Proof Assume that x is even. Then x = 2a for some integer a. So,

3x2 − 4x − 5 = 3(2a)2 − 4(2a) − 5 = 12a2 − 8a − 5 = 2(6a2 − 4a − 3) + 1.

Since 6a2 − 4a − 3 is an integer, 3x2 − 4x − 5 is odd.

For the converse, assume that x is odd. So, x = 2b + 1, where b ∈ Z. Therefore,

3x2 − 4x − 5 = 3(2b + 1)2 − 4(2b + 1) − 5 = 3(4b2 + 4b + 1) − 8b − 4 − 5

= 12b2 + 4b − 6 = 2(6b2 + 2b − 3).

Since 6b2 + 2b − 3 is an integer, 3x2 − 4x − 5 is even.

3.43. Evaluate the proof of the following result.

Result Let n ∈ Z. If 3n − 8 is odd, then n is odd.

Proof Assume that n is odd. Then n = 2k + 1 for some integer k. Then 3n − 8 = 3(2k + 1) − 8 = 6k +
3 − 8 = 6k − 5 = 2(3k − 3) + 1. Since 3k − 3 is an integer, 3n − 8 is odd.
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3.44. Evaluate the proof of the following result.

Result Let a, b ∈ Z. Then a − b is even if and only if a and b are of the same parity.

Proof We consider two cases.

Case 1. a and b are of the same parity. We now consider two subcases.

Subcase 1.1. a and b are both even. Then a = 2x and b = 2y, where x, y ∈ Z. Then
a − b = 2x − 2y = 2(x − y). Since x − y is an integer, a − b is even.

Subcase 1.2. a and b are both odd. Then a = 2x + 1 and b = 2y + 1, where x, y ∈ Z. Then
a − b = (2x + 1) − (2y + 1) = 2(x − y). Since x − y is an integer, a − b is even.

Case 2. a and b are of opposite parity. We again have two subcases.

Subcase 2.1. a is odd and b is even. Then a = 2x + 1 and b = 2y, where x, y ∈ Z. Then
a − b = (2x + 1) − 2y = 2(x − y) + 1. Since x − y is an integer, a − b is odd.

Subcase 2.2. a is even and b is odd. Then a = 2x and b = 2y + 1, where x, y ∈ Z. Then
a − b = 2x − (2y + 1) = 2x − 2y − 1 = 2(x − y − 1) + 1. Since x − y − 1 is an integer, a − b is odd.

3.45. The following is an attempted proof of a result. What is the result and is the attempted proof correct?

Proof Assume, without loss of generality, that x is even. Then x = 2a for some integer a. Thus,

xy2 = (2a)y2 = 2(ay2).

Since ay2 is an integer, xy2 is even.

3.46. Given below is a proof of a result. What is the result?

Proof Assume, without loss of generality, that x and y are even. Then x = 2a and y = 2b for integers a
and b. Therefore,

xy + xz + yz = (2a)(2b) + (2a)z + (2b)z = 2(2ab + az + bz).

Since 2ab + az + bz is an integer, xy + xz + yz is even.

3.47. What result is being proved below and what procedure is being used to verify the result?
First, we present the following proof.

Proof Assume that x is even. Then x = 2a for some integer a. Thus,

7x − 3 = 7(2a) − 3 = 14a − 3 = 14a − 4 + 1 = 2(7a − 2) + 1.

Since 7a − 2 is an integer, 7x − 3 is odd.
We are now prepared to prove our main result.

Proof Assume that 7x − 3 is even. From the result above, x is odd. So, x = 2b + 1 for some integer b.
Thus,

3x + 8 = 3(2b + 1) + 8 = 6b + 11 = 2(3b + 5) + 1.

Since 3b + 5 is an integer, 3x + 8 is odd.

3.48. Consider the following statement.
Let n ∈ Z. Then (n − 5)(n + 7)(n + 13) is odd if and only if n is even.
Which of the following would be an appropriate way to begin a proof of this statement?

(a) Assume that (n − 5)(n + 7)(n + 13) is odd.
(b) Assume that (n − 5)(n + 7)(n + 13) is even.
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(c) Assume that n is even.
(d) Assume that n is odd.
(e) We consider two cases, according to whether n is even or n is odd.

The Chapter
Presentation for
Chapter 3 can be
found at
goo.gl/qkvqFM

Chapter 3 Supplemental Exercises

3.49. Let x ∈ Z. Prove that if 7x − 8 is even, then x is even.

3.50. Let x ∈ Z. Prove that x3 is even if and only if x is even.

3.51. Let x ∈ Z. Use one or two lemmas to prove that 3x3 is even if and only if 5x2 is
even.

3.52. Give a direct proof of the following: Let x ∈ Z. If 11x − 5 is odd, then x is even.

3.53. Let x, y ∈ Z. Prove that if x + y is odd, then x and y are of opposite parity.

3.54. Let x, y ∈ Z. Prove that if 3x + 5y is even, then x and y are of the same parity.

3.55. Let x, y ∈ Z. Prove that (x + 1)y2 is even if and only if x is odd or y is even.

3.56. Let x, y ∈ Z. Prove that if xy and x + y are even, then both x and y are even.

3.57. Prove, for every integer x, that the integers 3x + 1 and 5x + 2 are of opposite parity.

3.58. Prove the following two results:

(a) Result A: Let n ∈ Z. If n3 is even, then n is even.
(b) Result B: If n is an odd integer, then 5n9 + 13 is even.

3.59. Prove for every two distinct real numbers a and b that either a+b
2 > a or a+b

2 > b.

3.60. Let x, y ∈ Z. Prove that if a and b are even integers, then ax + by is even.

3.61. Evaluate the proof of the following result.

Result Let x, y ∈ Z and let a and b be odd integers. If ax + by is even, then x and y
are of the same parity.

Proof Assume that x and y are of opposite parity. Then x = 2p and y = 2q + 1 for
some integers p and q. Since a and b are odd integers, a = 2r + 1 and b = 2s + 1 for
integers r and s. Hence,

ax + by = (2r + 1)(2p) + (2s + 1)(2q + 1)

= 4pr + 2p + 4qs + 2s + 2q + 1

= 2(2pr + p + 2qs + s + q) + 1.

Since 2pr + p + 2qs + s + q is an integer, ax + by is odd.

3.62. Let S = {a, b, c, d} be a set of four distinct integers. Prove that if either (1) for each
x ∈ S, the integer x and the sum of any two of the remaining three integers of S are of
the same parity or (2) for each x ∈ S, the integer x and the sum of any two of the
remaining three integers of S are of opposite parity, then every pair of integers of S
are of the same parity.

3.63. Prove that if a and b are two positive integers, then a2(b + 1) + b2(a + 1) ≥ 4ab.

3.64. Let a, b ∈ Z. Prove that if ab = 4, then (a − b)3 − 9(a − b) = 0.
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3.65. Let a, b and c be the lengths of the sides of a triangle T where a ≤ b ≤ c. Prove that
if T is a right triangle, then

(abc)2 = c6 − a6 − b6

3
.

3.66. Consider the following statement.
Let n ∈ Z. Then 3n3 + 4n2 + 5 is even if and only if n is even.
Which of the following would be an appropriate way to begin a proof of this
statement?

(a) Assume that 3n3 + 4n2 + 5 is odd.
(b) Assume that 3n3 + 4n2 + 5 is even.
(c) Assume that n is even.
(d) Assume that n is odd.
(e) We consider two cases, according to whether n is even or n is odd.

3.67. Let P = {A, B,C} be a partition of a set S of integers, where A ={n ∈ S: n is odd and
n > 0}, B = {n ∈ S : n is odd and n < 0} and C = {n ∈ S : n is even and n > 0}.
Prove that if x and y are elements of S belonging to distinct subsets in P , then xy is
either odd, even and greater than 1, or even and less than −1.

3.68. Let n ∈ N. Prove that if n3 − 5n − 10 > 0, then n ≥ 3.

3.69. Prove for every odd integer a that (a2 + 3)(a2 + 7) = 32b for some integer b.

3.70. Prove for every two positive integers a and b that

(a + b)
(

1
a

+ 1
b

)
≥ 4.

3.71. Which result is being proved below and what procedure is being used to verify the
result?
We begin with the following proof.

Proof First, assume that x is even. Then x = 2a, where a ∈ Z. Thus,

3x − 2 = 3(2a) − 2 = 6a − 2 = 2(3a − 1).

Since 3a − 1 is an integer, 3x − 2 is even.

Next, suppose that x is odd. Then x = 2b + 1 for some integer b. So,

3x − 2 = 3(2b + 1) − 2 = 6b + 1 = 2(3b) + 1.

Since 3b is an integer, 3x − 2 is odd.
We can now give the following proof.
Proof First, assume that 3x − 2 is even. From the preceding result, x is even and so
x = 2a, where a ∈ Z. Thus,

5x + 1 = 5(2a) + 1 = 2(5a) + 1.

Since 5a is an integer, 5x + 1 is odd.

Next, assume that 3x − 2 is odd. Again, by the preceding result, x is odd. Hence,
x = 2b + 1 for some integer b. Therefore,

5x + 1 = 5(2b + 1) + 1 = 10b + 6 = 2(5b + 3).

Since 5b + 3 is an integer, 5x + 1 is even.



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M04_CHART6753_04_SE_C03 PH03348-Chartrand August 5, 2017 16:26 Char Count= 0

104 Chapter 3 Direct Proof and Proof by Contrapositive

3.72. Prove that if a is an odd integer, then 5a2 − 3a + 5 is odd.

3.73. Let x, y ∈ Z. Prove that if 3x + 7y is odd or 5x + 6y is even, then x or y is even.

3.74. Let a, b, c ∈ Z. Prove that if a2 + b2 = c2, then abc is even.

3.75. Let S be the set of positive odd integers and let A = {2a : a ∈ S}, B = {4b : b ∈ S},
C = {8c : c ∈ S} and D = {16d : d ∈ S}. Prove that if x, y and z are positive integers
belonging to distinct sets A, B,C, D, then x + y + z ∈ A ∪ B.
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4
More on Direct Proof and Proof
by Contrapositive

The vast majority of the examples illustrating direct proof and proof by contraposi-
tive that we have seen involve properties of even and odd integers. In this chapter,

we will give additional examples of direct proofs and proofs by contrapositive con-
cerning integers but in new surroundings. First, we will see how even and odd inte-
gers can be studied in a more general setting, through divisibility of integers. We will
then explore some properties of real numbers and, finally, look at some properties of set
operations.

4.1 PROOFS INVOLVING DIVISIBILITY OF INTEGERS

We have now seen many examples of integers that can be written as 2x for some integer x.
These are precisely the even integers, of course. However, some integers can also be
expressed as 3x or 4x, or as −5x for some integer x. In general, for integers a and b with
a �= 0, we say that a divides b if there is an integer c such that b = ac. In this case, we
write a | b. Hence, if n is an even integer, then 2 | n; moreover, if 2 divides some integer
n, then n is even. That is, an integer n is even if and only if 2 | n. Theorem 3.17 (which
states for integers a and b, that ab is even if and only if a or b is even) can therefore be
restated for integers a and b as: 2 | ab if and only if 2 | a or 2 | b.

If a | b, then we also say that b is a multiple of a and that a is a divisor of b. Thus,
every even integer is a multiple of 2. If a does not divide b, then we write a � b. For
example, 4 | 48 since 48 = 4 · 12 and −3 | 57 since 57 = (−3) · (−19). On the other
hand, 4 � 66 as there is no integer c such that 66 = 4c.

We now apply the techniques we’ve learned to prove some results concerning di-
visibility properties of integers.

Result to Prove Let a, b and c be integers with a �= 0 and b �= 0. If a | b and b | c, then a | c.

PROOF STRATEGY It seems reasonable here to use a direct proof and to begin by assuming that a | b and
b | c. This means that b = ax and c = by for some integers x and y. Since our goal is to

105
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show that a | c, we need to show that c can be written as the product of a and some other
integer. Hence, it is logical to consider c and determine how we can express it. �

Result 4.1 Let a, b and c be integers with a �= 0 and b �= 0. If a | b and b | c, then a | c.

Proof Assume that a | b and b | c. Then b = ax and c = by, where x, y ∈ Z. Therefore,
c = by = (ax)y = a(xy). Since xy is an integer, a | c.

We now verify two other divisibility properties of integers.

Result 4.2 Let a, b, c and d be integers with a �= 0 and b �= 0. If a | c and b | d, then ab | cd.

Proof Let a | c and b | d. Then c = ax and d = by, where x, y ∈ Z. Then

cd = (ax)(by) = (ab)(xy).

Since xy is an integer, ab | cd.

Result 4.3 Let a, b, c, x, y ∈ Z, where a �= 0. If a | b and a | c, then a | (bx + cy).

Proof Assume that a | b and a | c. Then b = ar and c = as, where r, s ∈ Z. Then

bx + cy = (ar)x + (as)y = a(rx + sy).

Since rx + sy is an integer, a | (bx + cy).

The examples that we have presented thus far concern general properties of divisi-
bility of integers. We now look at some specialized properties of divisibility.

Result 4.4 Let x ∈ Z. If 2 | (x2 − 1), then 4 | (x2 − 1).

Proof Assume that 2 | (x2 − 1). So x2 − 1 = 2y for some integer y. Thus, x2 = 2y + 1 is an
odd integer. It then follows by Theorem 3.12 that x too is odd. Hence, x = 2z + 1 for
some integer z. Then

x2 − 1 = (2z + 1)2 − 1 = (4z2 + 4z + 1) − 1 = 4z2 + 4z = 4(z2 + z).

Since z2 + z is an integer, 4 | (x2 − 1).

For each of the Results 4.1–4.4, a direct proof worked very well. For the following
result, however, the situation is quite different.

Result to Prove Let n ∈ Z. If 5 � (n2 + 4), then 5 � (n − 1) and 5 � (n + 1).

PROOF STRATEGY If we let

P: 5 � (n2 + 4), Q: 5 � (n − 1) and R: 5 � (n + 1),

then we wish to prove that P ⇒ Q ∧ R for every integer n. (It should be clear that P, Q
and R are open sentences in this case, but we omit the variable n here for simplicity.) If
we use a direct proof, then we would assume that 5 � (n2 + 4) and attempt to show that
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5 � (n − 1) and 5 � (n + 1). Thus, we would then know that n2 + 4 cannot be expressed
as 5 times an integer. On the other hand, if we use a proof by contrapositive, then we
are considering the implication (∼ (Q ∧ R)) ⇒ (∼ P), which, by De Morgan’s Law, is
logically equivalent to ((∼ Q) ∨ (∼ R)) ⇒ (∼ P) and which, in words, is: If 5 | (n − 1)
or 5 | (n + 1), then 5 | (n2 + 4). This method looks more promising. �

Result 4.5 Let n ∈ Z. If 5 � (n2 + 4), then 5 � (n − 1) and 5 � (n + 1).

Proof Assume that 5 | (n − 1) or 5 | (n + 1). We consider these two cases.

Case 1. 5 | (n − 1). Then n − 1 = 5a for some integer a. So, n = 5a + 1. Hence,

n2 + 4 = (5a + 1)2 + 4 = (25a2 + 10a + 1) + 4 = 5(5a2 + 2a + 1).

Since 5a2 + 2a + 1 ∈ Z, it follows that 5 | (n2 + 4).

Case 2. 5 | (n + 1). Then n + 1 = 5b, where b ∈ Z, and so n = 5b − 1. Hence,

n2 + 4 = (5b − 1)2 + 4 = (25b2 − 10b + 1) + 4 = 5(5b2 − 2b + 1).

Since 5b2 − 2b + 1 ∈ Z, it follows that 5 | (n2 + 4).

We have already mentioned that if an integer n is not a multiple of 2, then we can
write n = 2q + 1 for some integer q (that is, if an integer n is not even, then it is odd).
This is a consequence of knowing that 0 and 1 are the only possible remainders when an
integer is divided by 2. Along the same lines, if an integer n is not a multiple of 3, then
we can write n = 3q + 1 or n = 3q + 2 for some integer q, that is,

every integer can be expressed as 3q, 3q + 1 or 3q + 2

for some integer q since 0, 1 and 2 are the only remainders that can result when an integer
is divided by 3. Similarly,

every integer can be expressed as 4q, 4q + 1, 4q + 2 or 4q + 3

for some integer q. This topic concerns a well-known theorem called the Division Algo-
rithm, which will be explored in more detail in Chapter 12.

We now consider a result that makes use of these facts.

Result to Prove Let x ∈ Z.

(a) If 3 | x, then 3 | x2; while if 3 � x, then 3 | (x2 − 1).

(b) If x is even, then 4 | x2; while if x is odd, then 8 | (x2 − 1) and so 4 | (x2 − 1).

PROOF STRATEGY For (a), if 3 | x, then x = 3q for some integer q. If, on the other hand, 3 � x, then either
x = 3q + 1 or x = 3q + 2 for some integer q. A direct proof should proceed as expected
in each case. For (b), if x is even, then x = 2q for some integer q and it should be quite
routine to show that 4 | x2. If x is odd, however, then writing x = 2q + 1 for some inte-
ger q does not lead to the desired conclusion that 8 | (x2 − 1). We have seen that every
integer can be written as 4q, 4q + 1, 4q + 2 or 4q + 3 for some integer q. Since x is odd,
either x = 4q + 1 or x = 4q + 3. Making this observation is helpful. �
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Result 4.6 Let x ∈ Z.

(a) If 3 | x, then 3 | x2; while if 3 � x, then 3 | (x2 − 1).

(b) If x is even, then 4 | x2; while if x is odd, then 8 | (x2 − 1) and so 4 | (x2 − 1).

Proof of
Result 4.6(a).

Assume, first, that 3 | x. Then x = 3q for some integer q. Hence, x2 = (3q)2 = 3(3q2).
Since 3q2 ∈ Z, it follows that 3 | x2. Next, suppose that 3 � x. Then either x = 3q + 1 or
x = 3q + 2 for some integer q. We consider these two cases.

Case 1. x = 3q + 1 for some integer q. Then

x2 − 1 = (3q + 1)2 − 1 = (9q2 + 6q + 1) − 1

= 9q2 + 6q = 3(3q2 + 2q).

Since 3q2 + 2q is an integer, 3 | (x2 − 1).

Case 2. x = 3q + 2 for some integer q. Then

x2 − 1 = (3q + 2)2 − 1 = (9q2 + 12q + 4) − 1

= 9q2 + 12q + 3 = 3(3q2 + 4q + 1).

Since 3q2 + 4q + 1 is an integer, 3 | (x2 − 1).

Proof of
Result 4.6(b).

First, assume that x is even. Then x = 2q, where q ∈ Z. Thus, x2 = (2q)2 = 4q2. Since
q2 is an integer, 4 | x2. Next, suppose that x is odd. Then either x = 4q + 1 or x = 4q + 3
for some integer q. We consider these two cases.

Case 1. x = 4q + 1 for some integer q. Then

x2 − 1 = (4q + 1)2 − 1 = (16q2 + 8q + 1) − 1

= 16q2 + 8q = 8(2q2 + q).

Since 2q2 + q is an integer, 8 | (x2 − 1).

Case 2. x = 4q + 3 for some integer q. Then

x2 − 1 = (4q + 3)2 − 1 = (16q2 + 24q + 9) − 1

= 16q2 + 24q + 8 = 8(2q2 + 3q + 1).

Since 2q2 + 3q + 1 ∈ Z, it follows that 8 | (x2 − 1).

We now consider a biconditional involving divisibility.

Result 4.7 Let x, y ∈ Z. Then 4 | (x2 − y2) if and only if x and y are of the same parity.

Proof Assume first that x and y are of the same parity. We show that 4 | (x2 − y2). There are
two cases.
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Case 1. x and y are both even. By Result 4.6(b), 4 | x2 and 4 | y2. Thus, x2 = 4a and
y2 = 4b for some integers a and b. Then

x2 − y2 = 4a − 4b = 4(a − b).

Since a − b is an integer, 4 | (x2 − y2).

Case 2. x and y are both odd. By Result 4.6(b), 4 | (x2 − 1) and 4 | (y2 − 1). Since
4 | (x2 − 1) and 4 | (y2 − 1), it follows by Result 4.3 that

4 | [(1)(x2 − 1) + (−1)(y2 − 1)]

and so 4 | (x2 − y2).

For the converse, assume that x and y are of opposite parity. We show that
4 � (x2 − y2). There are two cases here as well.

Case 1. x is odd and y is even. By Result 4.6(b), 4 | (x2 − 1) and 4 | y2. Hence, x2 − 1 =
4a and y2 = 4b, where a, b ∈ Z, and so x2 = 4a + 1. Since

x2 − y2 = (4a + 1) − 4b = 4(a − b) + 1,

it follows that there is a remainder of 1 when x2 − y2 is divided by 4. Hence, 4 �

(x2 − y2).

Case 2. x is even and y is odd. The proof of this case is similar to that of Case 1 and is
therefore omitted.

We saw in Theorem 3.17 for integers x and y that 2 | xy if and only if 2 | x or 2 | y.
We now verify a similar biconditional.

Result 4.8 Let x, y ∈ Z. Then 3 | xy if and only if 3 | x or 3 | y.

Proof First, we show that if 3 | x or 3 | y, then 3 | xy. Assume that 3 | x or 3 | y. Without loss
of generality, we may assume that 3 divides x. Then x = 3z for some integer z. Hence,
xy = (3z)y = 3(zy). Since zy is an integer, 3 | xy.

Next, we use a proof by contrapositive to verify the converse. Assume that 3 � x
and 3 � y. Then either x = 3p + 1 or x = 3p + 2 for some integer p and y = 3q + 1 or
y = 3q + 2 for some integer q. There are four cases.

Case 1. x = 3p + 1 and y = 3q + 1, where p, q ∈ Z. Then

xy = (3p + 1)(3q + 1) = 9pq + 3p + 3q + 1

= 3(3pq + p + q) + 1.

Since 3pq + p + q is an integer, 3 � xy.

The proofs of the remaining cases are similar to the proof of Case 1 and are therefore
omitted.

Case 2. x = 3p + 1 and y = 3q + 2, where p, q ∈ Z.

Case 3. x = 3p + 2 and y = 3q + 1, where p, q ∈ Z.

Case 4. x = 3p + 2 and y = 3q + 2, where p, q ∈ Z.
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SECTION 4.1 EXERCISES

4.1. Let a and b be integers, where a �= 0. Prove that if a | b, then a2 | b2.

4.2. Let a, b ∈ Z, where a �= 0 and b �= 0. Prove that if a | b and b | a, then a = b or a = −b.

4.3. By Result 4.8, for integers x and y, 3 | xy if and only if 3 | x or 3 | y. For integers x, y and z, prove that
3 | xyz if and only if 3 divides one of x, y and z.

4.4. Let x, y ∈ Z. Prove that if 3 � x and 3 � y, then 3 | (x2 − y2).

4.5. Let a, b, c ∈ Z, where a �= 0. Prove that if a � bc, then a � b and a � c.

4.6. Let a ∈ Z. Prove that if 3 | 2a, then 3 | a.

4.7. Let n ∈ Z. Prove that 3 | (2n2 + 1) if and only if 3 � n.

4.8. Let x ∈ Z. Prove that if 2 | (x2 − 5), then 4 | (x2 − 5).

4.9. Give an example of an integer x such that 2 | (x2 − 5) but 8 � (x2 − 5).

4.10. Let n ∈ Z. Prove that 2 | (n4 − 3) if and only if 4 | (n2 + 3).

4.11. It is a consequence of Result 4.6(a) that if n is an odd integer such that 3 � n, then 3 | (n2 − 1). Show, in
fact, that if n is an odd integer such that 3 � n, then 24 | (n2 − 1).

4.12. In Result 4.7, it was proved for integers x and y that 4 | (x2 − y2) if and only if x and y are of the same
parity. In particular, this says that if x and y are both even, then 4 | (x2 − y2); while if x and y are both odd,
then 4 | (x2 − y2). Prove that if x and y are both odd, then 8 | (x2 − y2).

4.13. Prove that if a, b, c ∈ Z and a2 + b2 = c2, then 3 | ab.

4.2 PROOFS INVOLVING CONGRUENCE OF INTEGERS

We know that an integer x is even if x = 2q for some integer q, while x is odd if x =
2q + 1 for some integer q. Furthermore, two integers x and y are of the same parity if
they are both even or are both odd. From this, it follows that x and y are of the same
parity if and only if 2 | (x − y). Consequently, 2 | (x − y) if and only if x and y have the
same remainder when divided by 2. We also know that an integer x can be expressed
as 3q, 3q + 1 or 3q + 2 for some integer q according to whether the remainder is 0, 1
or 2 when x is divided by 3. Furthermore, if two integers x and y are both of the form
3q + 1, then x = 3s + 1 and y = 3t + 1, where s, t ∈ Z, and so x − y = 3(s − t ). Since
s − t is an integer, 3 | (x − y). Similarly, if x and y are both of the form 3q or are both
of the form 3q + 2, then 3 | (x − y) as well. Hence, if x and y have the same remainder
when divided by 3, then 3 | (x − y). The converse of this implication is true as well. This
suggests a special interest in pairs x, y of integers such that 2 | (x − y) or 3 | (x − y) or,
in fact, in pairs x, y of integers such that n | (x − y) for some integer n ≥ 2.

For integers a, b and n ≥ 2, we say that a is congruent to b modulo n, written
a ≡ b (mod n), if n | (a − b). For example, 15 ≡ 7 (mod 4) since 4 | (15 − 7) and
3 ≡ −15 (mod 9) since 9 | (3 − (−15)). On the other hand, 14 is not congruent to 4
modulo 6, written 14 �≡ 4 (mod 6), since 6 � (14 − 4).

Since we know that every integer x can be expressed as x = 2q or as x = 2q + 1 for
some integer q, it follows that either 2 | (x − 0) or 2 | (x − 1), that is, x ≡ 0 (mod 2) or
x ≡ 1 (mod 2) for every integer x. Also, since each integer x can be expressed as x = 3q,
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x = 3q + 1 or x = 3q + 2 for some integer q, it follows that 3 | (x − 0), 3 | (x − 1) or
3 | (x − 2). Hence, for every integer x, either

x ≡ 0 (mod 3), x ≡ 1 (mod 3) or x ≡ 2 (mod 3).

Moreover, for each integer x, exactly one of

x ≡ 0 (mod 4), x ≡ 1 (mod 4), x ≡ 2 (mod 4), x ≡ 3 (mod 4)

holds, according to whether the remainder is 0, 1, 2 or 3, respectively, when x is divided
by 4. Similar statements can also be made when x is divided by an integer n ≥ 5.

We now consider some properties of congruence of integers.

Result to Prove Let a, b, k and n be integers where n ≥ 2. If a ≡ b (mod n), then ka ≡ kb (mod n).

PROOF STRATEGY A direct proof seems reasonable here. So, we begin by assuming that a ≡ b (mod n). Our
goal is to show that ka ≡ kb (mod n). Because we know that a ≡ b (mod n), it follows
from the definition that n | (a − b), which implies that a − b = nx for some integer x. We
need to show that ka ≡ kb (mod n), which means that we need to show that n | (ka − kb).
Thus, we must show that ka − kb = nt for some integer t. This suggests considering the
expression ka − kb. �

Result 4.9 Let a, b, k and n be integers where n ≥ 2. If a ≡ b (mod n), then ka ≡ kb (mod n).

Proof Assume that a ≡ b (mod n). Then n | (a − b). Hence, a − b = nx for some integer x.
Therefore,

ka − kb = k(a − b) = k(nx) = n(kx).

Since kx is an integer, n | (ka − kb) and so ka ≡ kb (mod n).

Result 4.10 Let a, b, c, d, n ∈ Z where n ≥ 2. If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡
b + d (mod n).

Proof Assume that a ≡ b (mod n) and c ≡ d (mod n). Then a − b = nx and c − d = ny for
some integers x and y. Adding these two equations, we obtain

(a − b) + (c − d) = nx + ny

and so

(a + c) − (b + d) = n(x + y).

Since x + y is an integer, n | [(a + c) − (b + d)]. Hence, a + c ≡ b + d (mod n).

The next result parallels that of Result 4.10 in terms of multiplication.

Result to Prove Let a, b, c, d, n ∈ Z where n ≥ 2. If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡
bd (mod n).

PROOF STRATEGY This result and Result 4.10 have the same hypothesis. In the proof of Result 4.10, we
arrived at the equations a − b = nx and c − d = ny and needed only to add them to
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complete the proof. This suggests that in the current result, it would be reasonable to
multiply these two equations. However, if we multiply them, we obtain (a − b)(c − d) =
(nx)(ny), which does not give us the desired conclusion that ac − bd is a multiple of n.
It is essential though that we work ac − bd into the proof. By rewriting a − b = nx and
c − d = ny as a = b + nx and c = d + ny, respectively, and then multiplying, we can
accomplish this, however. �

Result 4.11 Let a, b, c, d, n ∈ Z where n ≥ 2. If a ≡ b (mod n) and c ≡ d (mod n), then
ac ≡ bd (mod n).

Proof Assume that a ≡ b (mod n) and c ≡ d (mod n). Then a − b = nx and c − d = ny,
where x, y ∈ Z. Thus, a = b + nx and c = d + ny. Multiplying these two equations, we
obtain

ac = (b + nx)(d + ny) = bd + dnx + bny + n2xy

= bd + n(dx + by + nxy)

and so ac − bd = n(dx + by + nxy). Since dx + by + nxy is an integer, ac ≡ bd
(mod n).

We saw in Result 4.6(a) for an integer x that if 3 | x, then 3 | x2; while if 3 � x, then
3 | (x2 − 1). These facts can be expressed in terms of congruences.

Result 4.12 (a) For every integer n, either n2 ≡ 0 (mod 3) or n2 ≡ 1 (mod 3).

(b) If n is an integer, then n2 ≡ n (mod 3) unless n ≡ 2 (mod 3).

Proof of
Result 4.12(a).

By Result 4.6(a), if 3 | n, then 3 | n2 and so n2 ≡ 0 (mod 3). If 3 � n, then 3 | (n2 − 1).
Thus, n2 ≡ 1 (mod 3).

Proof of
Result 4.12(b).

If 3 | n, then n ≡ 0 (mod 3). Also, 3 | n2 by Result 4.6(a) and so n2 ≡ 0 (mod 3).
Hence, n2 ≡ n (mod 3). If n ≡ 1 (mod 3), then 3 � n and so n2 ≡ 1 (mod 3) by
Result 4.6(a). Hence, n2 ≡ n (mod 3). However, if n ≡ 2 (mod 3), then n2 ≡ 1 (mod 3)
by Result 4.6(a) and so n2 �≡ n (mod 3).

SECTION 4.2 EXERCISES

4.14. Let a, b, n ∈ Z, where n ≥ 2. Prove that if a ≡ b (mod n), then a2 ≡ b2 (mod n).

4.15. Let a, b, c, n ∈ Z, where n ≥ 2. Prove that if a ≡ b (mod n) and a ≡ c (mod n), then b ≡ c (mod n).

4.16. Let a, b ∈ Z. Prove that a2 + 2b2 ≡ 0 (mod 3) if and only if either a and b are both congruent to 0
modulo 3 or neither is congruent to 0 modulo 3.

4.17. (a) Prove that if a is an integer such that a ≡ 1 (mod 5), then a2 ≡ 1 (mod 5).
(b) Given that b is an integer such that b ≡ 1 (mod 5), what can we conclude from (a)?

4.18. Let m, n ∈ N such that m | n. Prove that if a and b are integers such that a ≡ b (mod n), then
a ≡ b (mod m).
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4.19. Let a, b ∈ Z. Show that if a ≡ 5 (mod 6) and b ≡ 3 (mod 4), then 4a + 6b ≡ 6 (mod 8).

4.20. Prove that if n is an integer such that n ≡ 8 (mod 9), then n2 ≡ 1 (mod 9).

4.21. Let a ∈ Z. Prove that a3 ≡ a (mod 3).

4.22. Let n ∈ Z. Prove each of the statements (a)–(f).

(a) If n ≡ 0 (mod 7), then n2 ≡ 0 (mod 7).
(b) If n ≡ 1 (mod 7), then n2 ≡ 1 (mod 7).
(c) If n ≡ 2 (mod 7), then n2 ≡ 4 (mod 7).
(d) If n ≡ 3 (mod 7), then n2 ≡ 2 (mod 7).
(e) For each integer n, n2 ≡ (7 − n)2 (mod 7).
(f) For every integer n, n2 is congruent to exactly one of 0, 1, 2 or 4 modulo 7.

4.23. Prove for any set S = {a, a + 1, . . . , a + 5} of six integers where 6 | a that 24 | (x2 − y2) for distinct odd
integers x and y in S if and only if one of x and y is congruent to 1 modulo 6 while the other is congruent
to 5 modulo 6.

4.24. Let x and y be even integers. Prove that x2 ≡ y2 (mod 16) if and only if either (a) x ≡ 0 (mod 4) and
y ≡ 0 (mod 4) or (b) x ≡ 2 (mod 4) and y ≡ 2 (mod 4).

4.3 PROOFS INVOLVING REAL NUMBERS

We now apply the proof techniques we have introduced to verify some mathematical
statements involving real numbers. To be certain that we are working under the same
set of rules, let us recall some facts about real numbers whose truth we accept without
justification. We have already mentioned that a2 ≥ 0 for every real number a. Indeed,
an ≥ 0 for every real number a if n is a positive even integer. If a < 0 and n is a positive
odd integer, then an < 0. Of course, the product of two real numbers is positive if and
only if both numbers are positive or both are negative.

Now let a, b, c ∈ R. If a ≥ b and c ≥ 0, then the inequality ac ≥ bc holds. Indeed,
if c > 0, then a/c ≥ b/c.

If a > b and c > 0, then ac > bc and a/c > b/c. (4.1)

If c < 0, then the inequalities in (4.1) are reversed; namely:

If a > b and c < 0, then ac < bc and a/c < b/c. (4.2)

Another important and well-known property of real numbers is that if the product
of two real numbers is 0, then at least one of these numbers is 0.

Theorem to
Prove

If x and y are real numbers such that xy = 0, then x = 0 or y = 0.

PROOF STRATEGY If we use a direct proof, then we begin by assuming that xy = 0. If x = 0, then we already
have the desired result. On the other hand, if x �= 0, then we are required to show that
y = 0. However, if x �= 0, then 1/x is a real number. This suggests multiplying xy = 0
by 1/x. �

Theorem 4.13 Let x, y ∈ R. If xy = 0, then x = 0 or y = 0.
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Proof Assume that xy = 0. We consider two cases, according to whether x = 0 or x �= 0.

Case 1. x = 0. Then we have the desired conclusion.

Case 2. x �= 0. Multiplying xy = 0 by the number 1/x, we obtain
1
x

(xy) = 1
x

· 0 = 0.

Since

1
x

(xy) =
(

1
x

x
)

y = 1 · y = y,

it follows that y = 0.

We now use Theorem 4.13 to prove the next result.

Result 4.14 Let x ∈ R. If x3 − 5x2 + 3x = 15, then x = 5.

Proof Assume that x3 − 5x2 + 3x = 15. Thus, x3 − 5x2 + 3x − 15 = 0. Observe that

x3 − 5x2 + 3x − 15 = x2(x − 5) + 3(x − 5) = (x2 + 3)(x − 5).

Since x3 − 5x2 + 3x − 15 = 0, it follows that (x2 + 3)(x − 5) = 0. By Theorem 4.13,
x2 + 3 = 0 or x − 5 = 0. Since x2 + 3 > 0, it follows that x − 5 = 0 and so x = 5.

Next we consider an example of a proof by contrapositive involving an inequality.

Result 4.15 Let x ∈ R. If x5 − 3x4 + 2x3 − x2 + 4x − 1 ≥ 0, then x ≥ 0.

Proof Assume that x < 0. Then x5 < 0, 2x3 < 0 and 4x < 0. In addition, −3x4 < 0 and −x2 <

0. Thus,

x5 − 3x4 + 2x3 − x2 + 4x − 1 < 0 − 1 < 0,

as desired.

On occasion we may encounter problems that involve the verification of a certain
equality or inequality and where it is convenient to find an equivalent formulation of
the equality or inequality whose truth is clear. This then becomes the starting point of a
proof. We now verify an inequality whose proof uses this common approach.

Result to Prove If x, y ∈ R, then

1
3

x2 + 3
4

y2 ≥ xy.

PROOF STRATEGY Let’s first eliminate fractions from the expression. Showing that 1
3 x2 + 3

4 y2 ≥ xy is equiv-
alent to showing that

12
(

1
3

x2 + 3
4

y2

)
≥ 12xy,

that is,

4x2 + 9y2 ≥ 12xy,
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which, in turn, is equivalent to

4x2 − 12xy + 9y2 ≥ 0.

That is, if we could show that 4x2 − 12xy + 9y2 ≥ 0, then we would be able to show that

1
3

x2 + 3
4

y2 ≥ xy.

Making a simple observation about 4x2 − 12xy + 9y2 leads to a proof. �

Result 4.16 If x, y ∈ R, then

1
3

x2 + 3
4

y2 ≥ xy.

Proof Since (2x − 3y)2 ≥ 0, it follows that 4x2 − 12xy + 9y2 ≥ 0 and so 4x2 + 9y2 ≥ 12xy.
Dividing this inequality by 12, we obtain

1
3

x2 + 3
4

y2 ≥ xy,

producing the desired inequality.

Recall for a real number x that its absolute value |x| is defined as

|x| =
{

x if x ≥ 0
−x if x < 0.

So, |5| = 5, |0| = 0 and | − 3| = −(−3) = 3. A well-known property of absolute values
is that |xy| = |x||y| for every two real numbers x and y (see Exercise 4.30). The following
theorem gives a familiar property of absolute values of real numbers (called the triangle
inequality) that has numerous applications. Since the definition of |x| is essentially a
definition by cases, proofs involving |x| are often by cases.

Theorem 4.17 (The Triangle Inequality) For every two real numbers x and y,

|x + y| ≤ |x| + |y|.

Proof Since |x + y| = |x| + |y| if either x or y is 0, we can assume that x and y are nonzero. We
proceed by cases.

Case 1. x > 0 and y > 0. Then x + y > 0 and

|x + y| = x + y = |x| + |y|.
Case 2. x < 0 and y < 0. Since x + y < 0,

|x + y| = −(x + y) = (−x) + (−y) = |x| + |y|.
Case 3. One of x and y is positive and the other is negative. Assume, without loss of
generality, that x > 0 and y < 0. We consider two subcases.



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M05_CHART6753_04_SE_C04 PH03348-Chartrand August 5, 2017 16:29 Char Count= 0

116 Chapter 4 More on Direct Proof and Proof by Contrapositive

Subcase 3.1. x + y ≥ 0. Then

|x| + |y| = x + (−y) = x − y > x + y = |x + y|.
Subcase 3.2. x + y < 0. Here,

|x| + |y| = x + (−y) = x − y > −x − y = −(x + y) = |x + y|.
Therefore, |x + y| ≤ |x| + |y| for every two real numbers.

Example 4.18 Show that if |x − 1| < 1 and |x − 1| < r/4, where r ∈ R+, then |x2 + x − 2| < r.

Solution First, observe that

|x2 + x − 2| = |(x + 2)(x − 1)| = |x + 2||x − 1|.
By Theorem 4.17,

|x + 2| = |(x − 1) + 3| ≤ |x − 1| + |3| < 1 + 3 = 4.

Therefore,

|x2 + x − 2| = |x + 2||x − 1| < 4
( r

4

)
= r. �

SECTION 4.3 EXERCISES

4.25. Let x, y ∈ R. Prove that if x2 − 4x = y2 − 4y and x �= y, then x + y = 4.

4.26. Let a, b and m be integers. Prove that if 2a + 3b ≥ 12m + 1, then a ≥ 3m + 1 or b ≥ 2m + 1.

4.27. Let x ∈ R. Prove that if 3x4 + 1 ≤ x7 + x3, then x > 0.

4.28. Prove that if r is a real number such that 0 < r < 1, then 1
r(1−r) ≥ 4.

4.29. Prove that if r is a real number such that |r − 1| < 1, then 4
r(4−r) ≥ 1.

4.30. Let x, y ∈ R. Prove that |xy| = |x| · |y|.
4.31. Prove for every two real numbers x and y that |x + y| ≥ |x| − |y|.
4.32. (a) Recall that

√
r > 0 for every positive real number r. Prove that if a and b are positive real numbers,

then 0 <
√

ab ≤ a+b
2 . (The number

√
ab is called the geometric mean of a and b, while (a + b)/2 is

called the arithmetic mean or average of a and b.)
(b) Under what conditions does

√
ab = (a + b)/2 for positive real numbers a and b? Justify your answer.

4.33. The geometric mean of three positive real numbers a, b and c is 3
√

abc and the arithmetic mean is
(a + b + c)/3. Prove that 3

√
abc ≤ (a + b + c)/3. [Note: The numbers a, b and c can be expressed as

a = r3, b = s3 and c = t3 for positive numbers r, s and t.]

4.34. Prove for every three real numbers x, y and z that |x − z| ≤ |x − y| + |y − z|.
4.35. Prove that if x is a real number such that x(x + 1) > 2, then x < −2 or x > 1.

4.36. Prove for every positive real number x that 1 + 1
x4 ≥ 1

x + 1
x3 .
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4.37. Prove for x, y, z ∈ R that x2 + y2 + z2 ≥ xy + xz + yz.

4.38. Let a, b, x, y ∈ R and r ∈ R+. Prove that if |x − a| < r/2 and |y − b| < r/2, then |(x + y) − (a + b)| < r.

4.39. Prove that if a, b, c, d ∈ R, then (ab + cd)2 ≤ (a2 + c2)(b2 + d2).

4.4 PROOFS INVOLVING SETS

We now turn our attention to proofs concerning properties of sets. First, let’s recall some
information about sets that was discussed in Chapter 1. For sets A and B contained in
some universal set U , the intersection of A and B is

A ∩ B = {x : x ∈ A and x ∈ B},
the union of A and B is

A ∪ B = {x : x ∈ A or x ∈ B}
and the difference of A and B is

A − B = {x : x ∈ A and x /∈ B}.
The set A − B is also called the relative complement of B in A and the relative com-
plement of A in U is called simply the complement of A and is denoted by A. Thus,
A = U − A. In what follows, we will always assume that the sets under discussion are
subsets of some universal set U .

Figure 4.1 shows Venn diagrams of A − B and A ∩ B for arbitrary sets A and B. The
diagrams suggest that these two sets are equal. This is, in fact, the case. Recall that to
show the equality of two sets C and D, we can verify the two set inclusions C ⊆ D and
D ⊆ C. To establish the inclusion C ⊆ D, we show that every element of C is also an
element of D, that is, if x ∈ C then x ∈ D. This is accomplished with a direct proof by
letting x be an (arbitrary) element of C and showing that x must belong to D as well.
Recall that we need not be concerned if C contains no elements, for in this case C = ∅
and C ⊆ D.
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Figure 4.1 Venn diagrams for A − B and A ∩ B

Result 4.19 For every two sets A and B,

A − B = A ∩ B.
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Proof First, we show that A − B ⊆ A ∩ B. Let x ∈ A − B. Then x ∈ A and x /∈ B. Since x /∈ B,

it follows that x ∈ B. Therefore, x ∈ A and x ∈ B; so x ∈ A ∩ B. Hence, A − B ⊆ A ∩ B.
Next, we show that A ∩ B ⊆ A − B. Let y ∈ A ∩ B. Then y ∈ A and y ∈ B. Since

y ∈ B, we see that y /∈ B. Now, because y ∈ A and y /∈ B, we conclude that y ∈ A − B.
Thus, A ∩ B ⊆ A − B.

PROOF ANALYSIS In the second paragraph of the proof of Result 4.19, we used y (rather than x) to denote
an arbitrary element of A ∩ B. We did this only for variety. We could have used x twice.
Once we decided to use distinct symbols, y was the logical choice since x was used
in the first paragraph of the proof. This keeps our use of symbols consistent. Another
possibility would have been to use a in the first paragraph and b in the second. This has
some disadvantages, however. Since the sets are being called A and B, we might have a
tendency to think that a ∈ A and b ∈ B, which may confuse the reader. For this reason,
we chose x and y over a and b.

Before leaving the proof of Result 4.19, we have one other remark. At one point
in the second paragraph, we learned that y ∈ A and y /∈ B. From this we could have
concluded (correctly) that y /∈ A ∩ B, but this is not what we wanted. Instead, we wrote
that y ∈ A − B. It is always a good idea to keep our goal in sight. We wanted to show
that y ∈ A − B; so it was important to keep in mind that it was the set A − B in which
we were interested, not A ∩ B. �

Next, let’s consider the Venn diagrams for (A ∪ B) − (A ∩ B) and (A − B) ∪
(B − A), which are shown in Figure 4.2. From these two diagrams, we might conclude
(correctly) that the two sets (A ∪ B) − (A ∩ B) and (A − B) ∪ (B − A) are equal. Indeed,
all that is lacking is a proof that these two sets are equal. That is, Venn diagrams can be
useful in suggesting certain results concerning sets but they are only drawings and do
not constitute a proof.
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Figure 4.2 Venn diagrams for (A ∪ B) − (A ∩ B) and (A − B) ∪ (B − A)

Result 4.20 For every two sets A and B,

(A ∪ B) − (A ∩ B) = (A − B) ∪ (B − A).

Proof First, we show that (A ∪ B) − (A ∩ B) ⊆ (A − B) ∪ (B − A). Let x ∈ (A ∪ B) − (A ∩ B).
Then x ∈ A ∪ B and x /∈ A ∩ B. Since x ∈ A ∪ B, it follows that x ∈ A or x ∈ B. Without
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loss of generality, we can assume x ∈ A. Since x /∈ A ∩ B, the element x /∈ B. Therefore,
x ∈ A − B and so x ∈ (A − B) ∪ (B − A). Hence,

(A ∪ B) − (A ∩ B) ⊆ (A − B) ∪ (B − A).

Next, we show that (A − B) ∪ (B − A) ⊆ (A ∪ B) − (A ∩ B). Let x ∈ (A − B) ∪
(B − A). Then x ∈ A − B or x ∈ B − A, say the former. So, x ∈ A and x /∈ B. Thus,
x ∈ A ∪ B and x /∈ A ∩ B. Consequently, x ∈ (A ∪ B) − (A ∩ B). Therefore,

(A − B) ∪ (B − A) ⊆ (A ∪ B) − (A ∩ B),

as desired.

PROOF ANALYSIS In the proof of Result 4.20, when we were verifying the set inclusion

(A ∪ B) − (A ∩ B) ⊆ (A − B) ∪ (B − A),

we concluded that x ∈ A or x ∈ B. At that point, we could have divided the proof into two
cases (Case 1. x ∈ A. and Case 2. x ∈ B.); however, the proofs of the two cases would be
identical, except that A and B would be interchanged. Therefore, we decided to consider
only one of these. Since it really didn’t matter which case we handled, we simply chose
the case where x ∈ A. This was accomplished by writing:

Without loss of generality, assume that x ∈ A.

In the proof of the reverse set containment, we found ourselves in a similar situation,
namely, x ∈ A − B or x ∈ B − A. Again, these two situations were basically identical and
we simply chose to work with the first (former) situation. (Had we decided to assume
that x ∈ B − A, we would have considered the latter case.) �

We now look at an example of a biconditional concerning sets.

Result 4.21 Let A and B be sets. Then A ∪ B = A if and only if B ⊆ A.

Proof First, we show that if A ∪ B = A, then B ⊆ A. We use a proof by contrapositive. Assume
that B is not a subset of A. Then there must be some element x ∈ B such that x /∈ A. Since
x ∈ B, it follows that x ∈ A ∪ B. However, since x /∈ A, we have A ∪ B �= A.

Next, we verify the converse, namely, if B ⊆ A, then A ∪ B = A. We use a direct
proof here. Assume that B ⊆ A. To verify that A ∪ B = A, we show that A ⊆ A ∪ B and
A ∪ B ⊆ A. The set inclusion A ⊆ A ∪ B is immediate (if x ∈ A, then x ∈ A ∪ B). It re-
mains only to show then that A ∪ B ⊆ A. Let y ∈ A ∪ B. Thus, y ∈ A or y ∈ B. If y ∈ A,
then we already have the desired result. If y ∈ B, then since B ⊆ A, it follows that y ∈ A.
Thus, A ∪ B ⊆ A.

PROOF ANALYSIS In the first paragraph of the proof of Result 4.21 we indicated that we were using a proof
by contrapositive, while in the second paragraph we mentioned that we were using a
direct proof. This really wasn’t necessary as the assumptions we made would inform
the reader what technique we were applying. Also, in the proof of Result 4.21, we used
a proof by contrapositive for one implication and a direct proof for its converse. This
wasn’t necessary either. Indeed, it is quite possible to interchange the techniques we
used (see Exercise 4.41). �
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SECTION 4.4 EXERCISES

4.40. Let A and B be sets. Prove that A ∪ B = (A − B) ∪ (B − A) ∪ (A ∩ B).

4.41. In Result 4.21, it was proved for sets A and B that A ∪ B = A if and only if B ⊆ A. Provide another proof of
this result by giving a direct proof of the implication “If A ∪ B = A, then B ⊆ A” and a proof by
contrapositive of its converse.

4.42. Let A and B be sets. Prove that A ∩ B = A if and only if A ⊆ B.

4.43. (a) Give an example of three sets A, B and C such that A ∩ B = A ∩ C but B �= C.
(b) Give an example of three sets A, B and C such that A ∪ B = A ∪ C but B �= C.
(c) Let A, B and C be sets. Prove that if A ∩ B = A ∩ C and A ∪ B = A ∪ C, then B = C.

4.44. Prove that if A and B are sets such that A ∪ B �= ∅, then A �= ∅ or B �= ∅.

4.45. Let A = {n ∈ Z : n ≡ 1 (mod 2)} and B = {n ∈ Z : n ≡ 3 (mod 4)}. Prove that B ⊆ A.

4.46. Let A and B be sets. Prove that A ∪ B = A ∩ B if and only if A = B.

4.47. Let A = {n ∈ Z : n ≡ 2 (mod 3)} and B = {n ∈ Z : n ≡ 1 (mod 2)}.
(a) Describe the elements of the set A − B.
(b) Prove that if n ∈ A ∩ B, then n2 ≡ 1 (mod 12).

4.48. Let A = {n ∈ Z : 2 | n} and B = {n ∈ Z : 4 | n}. Let n ∈ Z. Prove that n ∈ A − B if and only if n = 2k for
some odd integer k.

4.49. Prove for every two sets A and B that A = (A − B) ∪ (A ∩ B).

4.50. Prove for every two sets A and B that A − B, B − A and A ∩ B are pairwise disjoint.

4.51. Let A and B be subsets of a universal set. Which of the following is a necessary condition for A and B to be
disjoint?

(a) Either A = ∅ or B = ∅.
(b) Whenever x /∈ A, it must occur that x ∈ B.
(c) Whenever x /∈ A, it must occur that x /∈ B.
(d) Whenever x ∈ A, it must occur that x ∈ B.
(e) Whenever x ∈ A, it must occur that x /∈ B.

4.5 FUNDAMENTAL PROPERTIES OF SET OPERATIONS

Many results concerning sets follow from some very fundamental properties of sets
which, in turn, follow from corresponding results about logical statements that were
described in Chapter 2. For example, we know that if P and Q are two statements,
then P ∨ Q and Q ∨ P are logically equivalent. Similarly, if A and B are two sets, then
A ∪ B = B ∪ A. We list some of the fundamental properties of set operations in the
following theorem.

Theorem 4.22 For sets A, B and C,

(1) Commutative Laws

(a) A ∪ B = B ∪ A
(b) A ∩ B = B ∩ A
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(2) Associative Laws

(a) A ∪ (B ∪ C) = (A ∪ B) ∪ C
(b) A ∩ (B ∩ C) = (A ∩ B) ∩ C

(3) Distributive Laws

(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
(b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

(4) De Morgan’s Laws

(a) A ∪ B = A ∩ B
(b) A ∩ B = A ∪ B.

We present proofs of only three parts of Theorem 4.22, beginning with the commu-
tative law of the union of two sets.

Proof of
Theorem 4.22(1a)

We show that A ∪ B ⊆ B ∪ A. Assume that x ∈ A ∪ B. Then x ∈ A or x ∈ B. Applying
the commutative law for disjunction of statements, we conclude that x ∈ B or x ∈ A; so
x ∈ B ∪ A. Thus, A ∪ B ⊆ B ∪ A. The proof of the reverse set inclusion B ∪ A ⊆ A ∪ B
is similar and is therefore omitted.

Next we verify one of the distributive laws.

Proof of
Theorem 4.22(3a)

First, we show that A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C). Let x ∈ A ∪ (B ∩ C). Then x ∈ A
or x ∈ B ∩ C. If x ∈ A, then x ∈ A ∪ B and x ∈ A ∪ C. Thus, x ∈ (A ∪ B) ∩ (A ∪ C), as
desired. On the other hand, if x ∈ B ∩ C, then x ∈ B and x ∈ C; and again, x ∈ A ∪ B and
x ∈ A ∪ C. So, x ∈ (A ∪ B) ∩ (A ∪ C). Therefore, A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C).

To verify the reverse set inclusion, let x ∈ (A ∪ B) ∩ (A ∪ C). Then x ∈ A ∪ B and
x ∈ A ∪ C. If x ∈ A, then x ∈ A ∪ (B ∩ C). So, we may assume that x /∈ A. Then the fact
that x ∈ A ∪ B and x /∈ A implies that x ∈ B. By the same reasoning, x ∈ C. Thus, x ∈
B ∩ C and so x ∈ A ∪ (B ∩ C). Therefore, (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).

As a final example, we prove one of De Morgan’s laws.

Proof of
Theorem 4.22(4a)

First, we show that A ∪ B ⊆ A ∩ B. Let x ∈ A ∪ B. Then x /∈ A ∪ B. Hence, x /∈ A and
x /∈ B. Therefore, x ∈ A and x ∈ B; so x ∈ A ∩ B. Consequently, A ∪ B ⊆ A ∩ B.

Next, we show that A ∩ B ⊆ A ∪ B. Let x ∈ A ∩ B. Then x ∈ A and x ∈ B. Thus,
x /∈ A and x /∈ B; so x /∈ A ∪ B. Therefore, x ∈ A ∪ B. Hence, A ∩ B ⊆ A ∪ B.

PROOF ANALYSIS In the proof of the De Morgan law that we just presented, we arrived at the step x /∈
A ∪ B at one point and then next wrote x /∈ A and x /∈ B. Since x ∈ A ∪ B implies that
x ∈ A or x ∈ B, you might have expected us to write that x /∈ A or x /∈ B after writing
x /∈ A ∪ B, but this would not be the correct conclusion. When we say that x /∈ A ∪ B,
this is equivalent to writing ∼ (x ∈ A ∪ B), which is logically equivalent to ∼ ((x ∈ A) or
(x ∈ B)). By the De Morgan law for the negation of the disjunction of two statements
(or two open sentences), we have that ∼ ((x ∈ A) or (x ∈ B)) is logically equivalent to
∼ (x ∈ A) and ∼ (x ∈ B); that is, x /∈ A and x /∈ B. �

Proofs of some other parts of Theorem 4.22 are left as exercises.
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SECTION 4.5 EXERCISES

4.52. Prove that A ∩ B = B ∩ A for every two sets A and B (Theorem 4.22(1b)).

4.53. Prove that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) for every three sets A, B and C (Theorem 4.22(3b)).

4.54. Prove that A ∩ B = A ∪ B for every two sets A and B (Theorem 4.22(4b)).

4.55. Let A, B and C be sets. Prove that (A − B) ∩ (A − C) = A − (B ∪ C).

4.56. Let A, B and C be sets. Prove that (A − B) ∪ (A − C) = A − (B ∩ C).

4.57. Let A, B and C be sets. Use Theorem 4.22 to prove that A ∪ (B ∩ C) = (A ∩ B) ∪ (A − C).

4.58. Let A, B and C be sets. Prove that A ∩ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

4.59. Show for every three sets A, B and C that A − (B − C) = (A ∩ C) ∪ (A − B).

4.6 PROOFS INVOLVING CARTESIAN PRODUCTS OF SETS

Recall that the Cartesian product (or simply the product) A × B of two sets A and B
is defined as

A × B = {(a, b) : a ∈ A and b ∈ B}.
If A = ∅ or B = ∅, then A × B = ∅.

Before looking at several examples of proofs concerning Cartesian products of sets,
it is important to keep in mind that an arbitrary element of the Cartesian product A × B
of two sets A and B is of the form (a, b), where a ∈ A and b ∈ B.

Result 4.23 Let A, B,C and D be sets. If A ⊆ C and B ⊆ D, then A × B ⊆ C × D.

Proof Let (x, y) ∈ A × B. Then x ∈ A and y ∈ B. Since A ⊆ C and B ⊆ D, it follows that x ∈ C
and y ∈ D. Hence, (x, y) ∈ C × D.

Result 4.24 For sets A, B and C,

A × (B ∪ C) = (A × B) ∪ (A × C).

Proof We first show that A × (B ∪ C) ⊆ (A × B) ∪ (A × C). Let (x, y) ∈ A × (B ∪ C). Then
x ∈ A and y ∈ B ∪ C. Thus, y ∈ B or y ∈ C, say the former. Then (x, y) ∈ A × B and so
(x, y) ∈ (A × B) ∪ (A × C). Consequently, A × (B ∪ C) ⊆ (A × B) ∪ (A × C).

Next, we show that (A × B) ∪ (A × C) ⊆ A × (B ∪ C). Let (x, y) ∈ (A × B) ∪
(A × C). Then (x, y) ∈ A × B or (x, y) ∈ A × C, say the former. Then x ∈ A and y ∈ B ⊆
B ∪ C. Hence, (x, y) ∈ A × (B ∪ C), implying that (A × B) ∪ (A × C) ⊆ A × (B ∪ C).

We give one additional example of a proof involving the Cartesian products of sets.

Result 4.25 For sets A, B and C,

A × (B − C) = (A × B) − (A × C).
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Proof First, we show that A × (B − C) ⊆ (A × B) − (A × C). Let (x, y) ∈ A × (B − C). Then
x ∈ A and y ∈ B − C. Since y ∈ B − C, it follows that y ∈ B and y /∈ C. Because x ∈ A
and y ∈ B, we have (x, y) ∈ A × B. Since y /∈ C, however, (x, y) /∈ A × C. Therefore,
(x, y) ∈ (A × B) − (A × C). Hence, A × (B − C) ⊆ (A × B) − (A × C).

We now show that (A × B) − (A × C) ⊆ A × (B − C). Let (x, y) ∈ (A × B) −
(A × C). Then (x, y) ∈ A × B and (x, y) /∈ A × C. Since (x, y) ∈ A × B, it follows that
x ∈ A and y ∈ B. Also, since x ∈ A and (x, y) /∈ A × C, it follows that y /∈ C. So, y ∈
B − C. Thus, (x, y) ∈ A × (B − C) and (A × B) − (A × C) ⊆ A × (B − C).

PROOF ANALYSIS We add one comment concerning the preceding proof. During the proof of (A × B) −
(A × C) ⊆ A × (B − C), we needed to show that y /∈ C. We learned that (x, y) /∈ A × C.
However, this information alone did not allow us to conclude that y /∈ C. Indeed, if
(x, y) /∈ A × C, then x /∈ A or y /∈ C. Since we knew, however, that x ∈ A and (x, y) /∈
A × C, we were able to conclude that y /∈ C. �

SECTION 4.6 EXERCISES

4.60. For A = {x, y}, determine A × P (A).

4.61. For A = {1} and B = {2}, determine P (A × B) and P (A) × P (B).

4.62. Let A and B be sets. Prove that A × B = ∅ if and only if A = ∅ or B = ∅.

4.63. For sets A and B, find a necessary and sufficient condition for A × B = B × A.

4.64. For sets A and B, find a necessary and sufficient condition for (A × B) ∩ (B × A) = ∅. Verify that this
condition is necessary and sufficient.

4.65. Let A, B and C be nonempty sets. Prove that A × C ⊆ B × C if and only if A ⊆ B.

4.66. Result 4.23 states that if A, B,C and D are sets such that A ⊆ C and B ⊆ D, then A × B ⊆ C × D.

(a) Show that the converse of Result 4.23 is false.
(b) Under what added hypothesis is the converse true? Prove your assertion.

4.67. Let A, B and C be sets. Prove that A × (B ∩ C) = (A × B) ∩ (A × C).

4.68. Let A, B,C and D be sets. Prove that (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D).

4.69. Let A, B,C and D be sets. Prove that (A × B) ∪ (C × D) ⊆ (A ∪ C) × (B ∪ D).

4.70. Let A and B be sets. Show, in general, that A × B �= A × B.

The Chapter
Presentation for
Chapter 4 can be
found at
goo.gl/fw5CXo

Chapter 4 Supplemental Exercises

4.71. Let n ∈ Z. Prove that 5 | n2 if and only if 5 | n.

4.72. Prove that if a, b and c are nonzero integers such that a | b, b | c and c | a, then at
least two of a, b and c are equal.

4.73. Prove that if n is an odd integer, then 8 | [n2 + (n + 6)2 + 6].

4.74. Prove that if n is an odd integer, then 8 | (n4 + 4n2 + 11).
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4.75. Let n, m ∈ Z. Prove that if n ≡ 1 (mod 2) and m ≡ 3 (mod 4), then
n2 + m ≡ 0 (mod 4).

4.76. Find two distinct positive integer values of a for which the following is true and give
a proof in each case:

For every integer n, a � (n2 + 1).

4.77. Prove for every two real numbers a and b that ab ≤
√

a2
√

b2.

4.78. Prove for every two positive real numbers a and b that a
b + b

a ≥ 2.

4.79. Prove the following: Let x ∈ R. If x(x − 5) = −4, then
√

5x2 − 4 = 1 implies that
x + 1

x = 2.

4.80. Let x, y ∈ R. Prove that if x < 0, then x3 − x2y ≤ x2y − xy2.

4.81. Prove that 3 | (n3 − 4n) for every integer n.

4.82. Evaluate the proposed proof of the following result.

Result Let x, y ∈ Z. If x ≡ 2 (mod 3) and y ≡ 2 (mod 3), then xy ≡ 1 (mod 3).

Proof Let x ≡ 2 (mod 3) and y ≡ 2 (mod 3). Then x = 3k + 2 and y = 3k + 2
for some integer k. Hence,

xy = (3k + 2)(3k + 2) = 9k2 + 12k + 4 = 9k2 + 12k + 3 + 1

= 3(3k2 + 4k + 1) + 1.

Since 3k2 + 4k + 1 is an integer, xy ≡ 1 (mod 3).

4.83. Below is given a proof of a result. What result is proved?

Proof Assume that x ≡ 1 (mod 5) and y ≡ 2 (mod 5). Then 5 | (x − 1) and
5 | (y − 2). Hence, x − 1 = 5a and y − 2 = 5b for some integers a and b. So,
x = 5a + 1 and y = 5b + 2. Therefore,

x2 + y2 = (5a + 1)2 + (5b + 2)2 = (25a2 + 10a + 1) + (25b2 + 20b + 4)

= 25a2 + 10a + 25b2 + 20b + 5 = 5(5a2 + 2a + 5b2 + 4b + 1).

Since 5a2 + 2a + 5b2 + 4b + 1 is an integer, 5 | (x2 + y2) and so
x2 + y2 ≡ 0 (mod 5).

4.84. A proof of the following result is given.

Result Let n ∈ Z. If n4 is even, then 3n + 1 is odd.

Proof Assume that n4 = (
n2

)2
is even. Since n4 is even, n2 is even. Furthermore,

since n2 is even, n is even. Because n is even, n = 2k for some integer k. Then

3n + 1 = 3(2k) + 1 = 6k + 1 = 2(3k) + 1.

Since 3k is an integer, 3n + 1 is odd.

Answer the following questions.

(1) Which proof technique is being used?
(2) What is the starting assumption?
(3) What should be mentioned in a complete proof?
(4) Give a reason for each of the following steps in the proof.

(a) Since n4 is even, n2 is even.

(b) Furthermore, since n2 is even, n is even.
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(c) Because n is even, n = 2k for some integer k.

(d) Then 3n + 1 = 3(2k) + 1 = 6k + 1 = 2(3k) + 1.

(e) Since 3k is an integer, 3n + 1 is odd.

4.85. Given below is an attempted proof of a result.

Proof First, we show that A ⊆ (A ∪ B) − B. Let x ∈ A. Since A ∩ B = ∅, it
follows that x /∈ B. Therefore, x ∈ A ∪ B and x /∈ B; so x ∈ (A ∪ B) − B. Thus,
A ⊆ (A ∪ B) − B.

Next, we show that (A ∪ B) − B ⊆ A. Let x ∈ (A ∪ B) − B. Then x ∈ A ∪ B and
x /∈ B. From this, it follows that x ∈ A. Hence, (A ∪ B) − B ⊆ A.

(a) What result is being proved above?
(b) What change (or changes) in this proof would make it better (from your point of

view)?

4.86. Evaluate the proposed proof of the following result.

Result Let x, y ∈ Z such that 3 | x. If 3 | (x + y), then 3 | y.

Proof Since 3 | x, it follows that x = 3a, where a ∈ Z. Assume that 3 | (x + y).
Then x + y = 3b for some integer b. Hence, y = 3b − x = 3b − 3a = 3(b − a).
Since b − a is an integer, 3 | y.

For the converse, assume that 3 | y. Therefore, y = 3c, where c ∈ Z. Thus,
x + y = 3a + 3c = 3(a + c). Since a + c is an integer, 3 | (x + y).

4.87. Evaluate the proposed proof of the following result.

Result Let x, y ∈ Z. If x ≡ 1 (mod 3) and y ≡ 1 (mod 3), then xy ≡ 1 (mod 3).

Proof Assume that x ≡ 1 (mod 3) and y ≡ 1 (mod 3). Then 3 | (x − 1) and
3 | (y − 1). Hence, x − 1 = 3q and y − 1 = 3q for some integer q and so
x = 3q + 1 and y = 3q + 1. Thus,

xy = (3q + 1)(3q + 1) = 9q2 + 6q + 1 = 3(3q2 + 2q) + 1

and so xy − 1 = 3(3q2 + 2q). Since 3q2 + 2q is an integer, 3 | (xy − 1). Hence,
xy ≡ 1 (mod 3).

4.88. Evaluate the proposed proof of the following result.

Result For every three sets A, B and C, (A × C) − (B × C) ⊆ (A − B) × C.

Proof Let (x, y) ∈ (A × C) − (B × C). Then (x, y) ∈ A × C and (x, y) /∈ B × C.
Since (x, y) ∈ A × C, it follows that x ∈ A and y ∈ C. Since (x, y) /∈ B × C, we have
x /∈ B. Thus, x ∈ A − B. Hence, (x, y) ∈ (A − B) × C.

4.89. Let a ∈ Z. Prove that if 3 | 5a, then 3 | a.

4.90. Let a, b, c, d ∈ R. Prove that if a ≥ b ≥ 0 and c ≥ d ≥ 0, then ac ≥ bd.

4.91. Let a ∈ R+. Prove that if a < 1, then
√

a > a.

4.92. Prove that if x, y, z ∈ R, then |x − y| − |y − z| ≥ |x − z|.
4.93. Let A and B be two sets. Prove that (A × B) ∩ (B × A) = (A ∩ B) × (B ∩ A).

4.94. Let n1, n2 and n3 be three integers such that 3 � ni for i = 1, 2, 3. Prove that if 3 does
not divide the sum of any two of these three integers, then 3 divides the sum of all
three integers.
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4.95. Prove that for every three integers a, b and c, the sum |a − b| + |a − c| + |b − c| is
an even integer.

4.96. Prove for every four real numbers a, b, c and d that ac + bd ≤ √
a2 + b2

√
c2 + d2.

4.97. Prove that for every real number x, sin6 x + 3 sin2 x cos2 x + cos6 x = 1.

4.98. Let a ∈ Z. Prove that if 6 | a and 10 | a, then 15 | a.

4.99. Let A = {x}. Give an example of a set concerning the set A to which each of the
following elements belong.

(a) (x, {x}) (b) ({x}, x) (c) (x, x) (d) ({x}, {x})
(e) x (f) {x} (g) {(x, x)} (h) ({x}, {{x}}).

4.100. Let a, b ∈ Z. Prove that if a ≡ b (mod 2) and b ≡ a (mod 3), then a ≡ b (mod 6).

4.101. Let a, b, c ∈ R. Prove that 3
2 (a2 + b2 + c2 + 1) ≥ a(b + 1) + b(c + 1) + c(a + 1).

4.102. Prove that if a, b and c are positive real numbers, then (a + b + c)
(

1
a + 1

b + 1
c

) ≥ 9.

4.103. Let T = {1, 2, . . . , 8}.
(a) Determine the elements of the set

A = {a ∈ T : 2m ≡ a (mod 9) for some m ∈ N}.
(b) Determine the elements of the set

B = {a ∈ T : 5m ≡ a (mod 9) for some m ∈ N}.
(c) What property do the sets A and B have in (a) and (b)?

4.104. Consider the open sentence
P(m) : 5m + 1 = a2 for some a ∈ Z,

where m ∈ N. That is, P(m) is the open sentence: 5m + 1 is a perfect square.

(a) Determine four distinct solutions t of t2 ≡ 4 (mod 5). For each solution t,
determine m = 4(t2−4)

5 + 3 and show that P(m) is a true statement.

(b) Show that the set S = {t ∈ Z : t2 ≡ 4 (mod 5)} contains infinitely many
elements.

(c) Let t be an element of the set S in (b). Prove that if m = 4(t2−4)
5 + 3, then

5m + 1 is a perfect square.
(d) As a consequence of the results established in (a)–(c), what can be concluded

about the set M = {m ∈ N : 5m + 1 is a perfect square}?
4.105. Let a1, a2, . . . , an (n ≥ 3) be n integers such that |ai+1 − ai| ≤ 1 for 1 ≤ i ≤ n − 1.

Prove that if k is any integer that lies strictly between a1 and an, then there is an
integer j with 1 < j < n such that a j = k.
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5
Existence and Proof
by Contradiction

Thus far, we have been primarily concerned with quantified statements involving uni-
versal quantifiers, namely statements of the type ∀x ∈ S, R(x). We now consider

problems that involve, either directly or indirectly, quantified statements involving exis-
tential quantifiers, that is, statements of the type ∃x ∈ S, R(x).

5.1 COUNTEREXAMPLES

It must certainly come as no surprise that some quantified statements of the type ∀x ∈
S, R(x) are false. We have seen that

∼ (∀x ∈ S, R(x)) ≡ ∃x ∈ S, ∼ R(x),

that is, if the statement ∀x ∈ S, R(x) is false, then there exists some element x ∈ S for
which R(x) is false. Such an element x is called a counterexample of the (false) state-
ment ∀x ∈ S, R(x). Finding a counterexample verifies that ∀x ∈ S, R(x) is false.

Example 5.1 Consider the statement:

If x ∈ R, then (x2 − 1)2 > 0. (5.1)

or, equivalently,

For every real number x, (x2 − 1)2 > 0.

Show that the statement (5.1) is false by exhibiting a counterexample.

Solution For x = 1, (x2 − 1)2 = (12 − 1)2 = 0. Thus, x = 1 is a counterexample. �

127
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It might be noticed that the number x = −1 is also a counterexample. In fact, x = 1
and x = −1 are the only two counterexamples of the statement (5.1), which implies that

If x ∈ R − {1,−1}, then (x2 − 1)2 > 0. (5.2)

is a true statement.
If a statement P is shown to be false in some manner, then P is said to be disproved.

The counterexample x = 1 therefore disproves the statement (5.1).

Example 5.2 Disprove the statement:

If x is a real number, then tan2 x + 1 = sec2 x. (5.3)

Solution Since tan x and sec x are not defined when x = π/2, it follows that tan2 x + 1 and sec2 x
have no numerical value when x = π/2 and, consequently, tan2 x + 1 and sec2 x are not
equal when x = π/2. That is, x = π/2 is a counterexample to the statement (5.3). �

Although tan2 x + 1 = sec2 x is a well-known identity from trigonometry and state-
ment (5.3), as presented, is false, the following is true, however:

If x is a real number for which tan x and sec x are defined,

then tan2 x + 1 = sec2 x. (5.4)

Indeed, it is probably statement (5.4) that was intended in Example 5.2, rather than
statement (5.3). Since tan x and sec x are defined for precisely the same real numbers
x (namely, those numbers x such that cos x �= 0), we can restate (5.4) as

If x ∈ R − {
nπ + π

2 : n ∈ Z
}
, then tan2 x + 1 = sec2 x.

Example 5.3 Disprove the statement:

If x ∈ Z, then
x2 + x
x2 − x

= x + 1
x − 1

. (5.5)

Solution If x = 0, then x2 − x = 0 and so
x2 + x
x2 − x

is not defined. On the other hand, if x = 0, then

x + 1
x − 1

= −1; so the expressions
x2 + x
x2 − x

and
x + 1
x − 1

are certainly not equal when x = 0.

Thus, x = 0 is a counterexample to the statement (5.5). �

Since neither
x2 + x
x2 − x

nor
x + 1
x − 1

are defined when x = 1, it follows that x = 1 is also

a counterexample of statement (5.5). Indeed, x = 0 and x = 1 are the only counterex-
amples of statement (5.5) and so the statement

If x ∈ Z − {0, 1}, then
x2 + x
x2 − x

= x + 1
x − 1

.

is true.
The three preceding examples illustrate the fact that an open sentence R(x) that is

false over some domain S may very well be true over a subset of S. Therefore, the truth
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(or falseness) of a statement ∀x ∈ S, R(x) depends not only on the open sentence R(x)
but on its domain as well.

Example 5.4 Disprove the statement:

For every odd positive integer n, 3 | (n2 − 1). (5.6)

Solution Since 3 � (32 − 1), it follows that n = 3 is a counterexample. �

Indeed, this example may very well remind you of Result 4.6 where in part (a), it is
stated that if n is an integer such that 3 | n, then 3 | n2; while if 3 � n, then 3 | (n2 − 1).
So, it is not only expected that n = 3 is a counterexample but every odd integer n where
3 | n is a counterexample.

We have seen that a quantified statement of the type

∀x ∈ S, R(x)

is false if

∃x ∈ S, ∼ R(x)

is true, that is, if there exists some element x ∈ S for which R(x) is false. There will
be many instances when R(x) is an implication P(x) ⇒ Q(x). Therefore, the quantified
statement

∀x ∈ S, P(x) ⇒ Q(x) (5.7)

is false if

∃x ∈ S, ∼ (P(x) ⇒ Q(x)) (5.8)

is true. By Theorem 2.25(a), the statement (5.8) can be expressed as

∃x ∈ S, (P(x) ∧ (∼ Q(x))).

That is, to show that the statement (5.7) is false, we need to exhibit a counterexample,
which, in this case, is an element x ∈ S for which P(x) is true and Q(x) is false.

Example 5.5 Disprove the statement:

Let n ∈ Z. If n2 + 3n is even, then n is odd.

Solution If n = 2, then n2 + 3n = 22 + 3 · 2 = 10 is even and 2 is even. Thus, n = 2 is a
counterexample. �

In the preceding example, not only is 2 a counterexample, every even integer is a
counterexample.

Example 5.6 Disprove the statement:

If n is an odd integer, then n2 − n is odd. (5.9)
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Solution For the odd integer n = 1, the integer n2 − n = 12 − 1 = 0 is even. Thus, n = 1 is a
counterexample. �

Actually, it is not difficult to prove that the statement

If n is an odd integer, then n2 − n is even.

is true. Although it may very well be of interest to know this, to show that statement (5.9)
is false requires exhibiting only a single counterexample. It does not require proving
some other result. One should know the difference between these two ideas.

Example 5.7 Show that the statement:

Let n ∈ Z. If 4 | (n2 − 1), then 4 | (n − 1).

is false.

Solution Since 4 | (32 − 1) but 4 � (3 − 1), it follows that n = 3 is a counterexample. �

In Result 4.6(b), it is stated that if n is an even integer, then 4 | n2. Also, if n is odd,
then not only 4 | (n2 − 1) but 8 | (n2 − 1). So, since 4 | (n2 − 1), it follows that n2 is
odd and so n is odd by Theorem 3.17. Hence, 2 | (n − 1) but this does not mean that
4 | (n − 1).

Example 5.8 Show that the statement

If a, b and c are positive integers, then abc = (
ab

)c
.

is false.

Solution Let a = 2, b = 2 and c = 3. Then abc = 223 = 28 = 256, while
(
ab

)c = (
22

)3 =
43 = 64. Since 256 �= 64, the positive integers a = 2, b = 2 and c = 3 constitute a
counterexample. �

Example 5.9 Show that the statement:

Let a and b be nonzero real numbers. If x, y ∈ R+, then

a2

2b2
x2 + b2

2a2
y2 > xy. (5.10)

is false.

Solution Let x = b2 and y = a2. Then

a2

2b2
x2 + b2

2a2
y2 = a2b2

2
+ a2b2

2
= a2b2 = xy.

Thus, x = b2 and y = a2 is a counterexample and so the inequality is false. �



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M06_CHART6753_04_SE_C05 PH03348-Chartrand August 5, 2017 16:32 Char Count= 0

5.2 Proof by Contradiction 131

Analysis After reading the solution of Example 5.9, the only question that may occur to you
is where the counterexample x = b2 and y = a2 came from. Multiplying the inequal-
ity (5.10) by 2a2b2 (which eliminates all fractions) produces the equivalent inequality

a4x2 + b4y2 > 2a2b2xy

and so

a4x2 − 2a2b2xy + b4y2 > 0,

which can be expressed as

(a2x − b2y)2 > 0.

Of course, (a2x − b2y)2 ≥ 0. Thus, any values of x and y for which a2x − b2y = 0 pro-
duce a counterexample. Although there are many choices for x and y, one such choice
is x = b2 and y = a2. �

SECTION 5.1 EXERCISES

5.1. Disprove the statement: If a and b are any two real numbers, then log(ab) = log(a) + log(b).

5.2. Disprove the statement: If n ∈ {0, 1, 2, 3, 4}, then 2n + 3n + n(n − 1)(n − 2) is a prime number.

5.3. Disprove the statement: If n ∈ {1, 2, 3, 4, 5}, then 3 | (2n2 + 1).

5.4. Disprove the statement: Let n ∈ N. If n(n+1)
2 is odd, then (n+1)(n+2)

2 is odd.

5.5. Disprove the statement: For every two positive integers a and b, (a + b)3 = a3 + 2a2b + 2ab + 2ab2 + b3.

5.6. Let a, b ∈ Z. Disprove the statement: If ab and (a + b)2 are of opposite parity, then a2b2 and a + ab + b are
of opposite parity.

5.7. (a) In Exercise 4.78, it was stated for every two positive real numbers a and b that a
b + b

a ≥ 2. Use this fact
to show that (a + b)

(
1
a + 1

b

) ≥ 4.
(b) If a = b in the inequality in (a), then this becomes an equality. Is the converse true? That is, if a and b

are positive real numbers such that (a + b)
(

1
a + 1

b

) = 4, does a = b?

5.8. In Exercise 5.7 it is stated that (a + b)
(

1
a + 1

b

) ≥ 4 for every two positive real numbers a and b. Does it
therefore follow that (c2 + d2)

(
1
c2 + 1

d2

) ≥ 42 for every two positive real numbers c and d?

5.9. Disprove the statement: For every positive integer x and every integer n ≥ 2, the equation
xn + (x + 1)n = (x + 2)n has no solution.

5.10. Disprove the statement: For every three positive integers a, b, c, two of the integers ab, ac, bc are of the
same parity and two of the integers ab, ac, bc are of opposite parity.

5.11. Disprove the statement: If n1, n2 and n3 are three distinct positive integers, then 3 | (2n1 + 2n2 + 2n3 ).

5.2 PROOF BY CONTRADICTION

Suppose, as usual, that we would like to show that a certain mathematical statement R is
true. If R is expressed as the quantified statement ∀ x ∈ S, P(x) ⇒ Q(x), then we have
already introduced two proof techniques, namely direct proof and proof by contraposi-
tive, that could be used to establish the truth of R. We now introduce a third method that
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can be used to establish the truth of R, regardless of whether R is expressed in terms of
an implication.

Suppose that we assume R is a false statement and, from this assumption, we are able
to arrive at or deduce a statement that contradicts some assumption we made in the proof
or some known fact. (The known fact might be a definition, an axiom or a theorem.) If
we denote this assumption or known fact by P, then what we have deduced is ∼ P and
have thus produced the contradiction C : P ∧ (∼ P). We have therefore established the
truth of the implication

(∼ R) ⇒ C.

However, because (∼ R) ⇒ C is true and C is false, it follows that ∼ R is false and so
R is true, as desired. This technique is called proof by contradiction.

If R is the quantified statement ∀ x ∈ S, P(x) ⇒ Q(x), then a proof by contradiction
of this statement consists of verifying the implication

∼ (∀ x ∈ S, P(x) ⇒ Q(x)) ⇒ C

for some contradiction C. However, since

∼ (∀ x ∈ S, P(x) ⇒ Q(x)) ≡ ∃x ∈ S, ∼ (P(x) ⇒ Q(x))

≡ ∃x ∈ S, (P(x) ∧ (∼ Q(x))),

it follows that a proof by contradiction of ∀ x ∈ S, P(x) ⇒ Q(x) would begin by assum-
ing the existence of some element x ∈ S such that P(x) is true and Q(x) is false. That is,
a proof by contradiction of ∀ x ∈ S, P(x) ⇒ Q(x) begins by assuming the existence of
a counterexample of this quantified statement. Often the reader is alerted that a proof by
contradiction is being used by saying (or writing)

Suppose that R is false.

or

Assume, to the contrary, that R is false.

Therefore, if R is the quantified statement ∀ x ∈ S, P(x) ⇒ Q(x), then a proof by con-
tradiction might begin with:

Assume, to the contrary, that there exists some element x ∈ S for which P(x) is
true and Q(x) is false.

(or something along these lines). The remainder of the proof then consists of showing
that this assumption leads to a contradiction.

Let’s now look at some examples of proof by contradiction. We begin by establish-
ing a fact about positive real numbers.

Result to Prove There is no smallest positive real number.

PROOF STRATEGY In a proof by contradiction, we begin by assuming that the statement is false and attempt
to show that this leads us to a contradiction. Hence, we begin by assuming that there is
a smallest positive real number. It is useful to represent this number by a symbol, say
r. Our goal is to produce a contradiction. How do we go about doing this? Of course,
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if we could think of a positive real number that is less then r, then this would give us a
contradiction. �

Result 5.10 There is no smallest positive real number.

Proof Assume, to the contrary, that there is a smallest positive real number, say r. Since
0 < r/2 < r, it follows that r/2 is a positive real number that is smaller than r. This,
however, is a contradiction.

PROOF ANALYSIS The contradiction referred to in the proof of Result 5.10 is the statement: r is the smallest
positive real number and r/2 is a positive real number that is less than r. This statement
is certainly false. We have assumed that the reader understands what contradiction has
been obtained. If we think that the reader may not see this, then, of course, we should
specifically state (in the proof) what the contradiction is.

There is another point concerning Result 5.10 that should be made. This result states
that “there is no smallest positive real number.” This is a negative-sounding result. In the
vast majority of cases, proofs of negative-sounding results are given by contradiction.
Thus, the proof technique used in Result 5.10 is not unexpected. �

Let’s consider two additional examples.

Result 5.11 No odd integer can be expressed as the sum of three even integers.

Proof Assume, to the contrary, that there exists an odd integer n that can be expressed as the
sum of three even integers x, y and z. Then x = 2a, y = 2b and z = 2c with a, b, c ∈ Z.
Therefore,

n = x + y + z = 2a + 2b + 2c = 2(a + b + c).

Since a + b + c is an integer, n is even. This is a contradiction.

PROOF ANALYSIS Consider the statement:

R: No odd integer can be expressed as the sum of three even integers.

Obviously, Result 5.11 states that R is a true statement. In order to give a proof by con-
tradiction of Result 5.11, we attempted to prove an implication of the type (∼ R) ⇒ C
for some contradiction C. The negation ∼ R is

∼ R: There exists an odd integer that can be expressed as the sum of
three even integers.

The proof we gave of Result 5.11 began by assuming the truth of ∼ R. We introduced
symbols for the four integers involved to make it easier to explain the proof. Eventually,
we were able to show that n is an even integer. On the other hand, we knew that n is odd.
Hence, n was both even and odd. This was our contradiction C. �

In the two examples of proof by contradiction that we have given, neither state-
ment to be proved is expressed as an implication. For our next example, we consider an
implication.
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Result 5.12 If a is an even integer and b is an odd integer, then 4 � (a2 + 2b2).

Proof Assume, to the contrary, that there exist an even integer a and an odd integer b such that
4 | (a2 + 2b2). Thus, a = 2x, b = 2y + 1 and a2 + 2b2 = 4z for some integers x, y and
z. Hence,

a2 + 2b2 = (2x)2 + 2(2y + 1)2 = 4z.

Simplifying, we obtain 4x2 + 8y2 + 8y + 2 = 4z or, equivalently,

2 = 4z − 4x2 − 8y2 − 8y = 4(z − x2 − 2y2 − 2y).

Since z − x2 − 2y2 − 2y is an integer, 4 | 2, which is impossible.

PROOF ANALYSIS Let S be the set of even integers and T the set of odd integers. In Result 5.12, our goal
was to prove that

∀a ∈ S,∀b ∈ T, P(a, b). (5.11)

is true, where

P(a, b): 4 � (a2 + 2b2).

Since we were attempting to prove (5.11) by contradiction, we wanted to establish the
truth of

∼ (∀a ∈ S,∀b ∈ T, P(a, b)) ⇒ C

for some contradiction C or, equivalently, the truth of

∃a ∈ S, ∃b ∈ T, (∼ P(a, b)) ⇒ C.

Hence, we began by assuming that there exist an even integer a and an odd integer b
such that 4 | (a2 + 2b2). We eventually deduced that 4 | 2, which is a false statement
and thereby produced a desired contradiction.

Using some facts we discussed earlier, we could have given a direct proof of Re-
sult 5.12. Once we wrote a = 2x and b = 2y + 1, we have

a2 + 2b2 = (2x)2 + 2(2y + 1)2 = 4x2 + 8y2 + 8y + 2

= 4(x2 + 2y2 + 2y) + 2.

Hence, we have expressed a2 + 2b2 as 4q + 2, where q = x2 + 2y2 + 2y. That is, di-
viding a2 + 2b2 by 4 results in a remainder of 2 and so 4 � (a2 + 2b2). At this stage,
however, a proof by contradiction of Result 5.12 is probably preferred, in order to both
practice and understand this proof technique. �

Let’s consider two other negative–sounding results.

Result 5.13 The integer 100 cannot be written as the sum of three integers, an odd number of which
are odd.

Proof Assume, to the contrary, that 100 can be written as the sum of three integers a, b and c,
an odd number of which are odd. We consider two cases.
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Case 1. Exactly one of a, b and c is odd, say a. Then a = 2x + 1, b = 2y and c = 2z,
where x, y, z ∈ Z. So,

100 = a + b + c = (2x + 1) + 2y + 2z = 2(x + y + z) + 1.

Since x + y + z ∈ Z, the integer 100 is odd, producing a contradiction.

Case 2. All of a, b and c are odd. Then a = 2x + 1, b = 2y + 1 and c = 2z + 1, where
x, y, z ∈ Z. So,

100 = a + b + c = (2x + 1) + (2y + 1) + (2z + 1) = 2(x + y + z + 1) + 1.

Since x + y + z + 1 ∈ Z, the integer 100 is odd, again a contradiction.

PROOF ANALYSIS Observe that the proof of Result 5.13 begins by assuming that 100 can be written as
the sum of three integers, an odd number of which are odd (as expected). However, by
introducing symbols for these integers, namely a, b and c, this made for an easier and
clearer proof. �

Result 5.14 For every integer m such that 2 | m and 4 � m, there exist no integers x and y for which
x2 + 3y2 = m.

Proof Assume, to the contrary, that there exist an integer m such that 2 | m and 4 � m and in-
tegers x and y for which x2 + 3y2 = m. Since 2 | m, it follows that m is even. By Theo-
rem 3.16, x2 and 3y2 are of the same parity. We consider two cases.

Case 1. x2 and 3y2 are even. Since 3y2 is even and 3 is odd, it follows by Theorem 3.17
that y2 is even. Because x2 and y2 are both even, we have by Theorem 3.12 that x and y
are even. Thus, x = 2a and y = 2b, where a, b ∈ Z. Therefore,

x2 + 3y2 = (2a)2 + 3(2b)2 = 4a2 + 12b2

= 4(a2 + 3b2) = m.

Since a2 + 3b2 ∈ Z, it follows that 4 | m, producing a contradiction.

Case 2. x2 and 3y2 are odd. Since 3y2 is odd and 3 is odd, it follows by (the contraposi-
tive formulation of) Theorem 3.17 that y2 is odd. By (the contrapositive formulation of)
Theorem 3.12, x and y are both odd. Then x = 2a + 1 and y = 2b + 1, where a, b ∈ Z.
Thus,

x2 + 3y2 = (2a + 1)2 + 3(2b + 1)2 = (4a2 + 4a + 1) + 3(4b2 + 4b + 1)

= 4a2 + 4a + 12b2 + 12b + 4 = 4(a2 + a + 3b2 + 3b + 1) = m.

Since a2 + a + 3b2 + 3b + 1 ∈ Z, it follows that 4 | m, producing a contradiction.

The next result concerns irrational numbers. Recall that a real number is rational if
it can be expressed as m/n for some m, n ∈ Z, where n �= 0. Since “irrational” means
“not rational,” it is not surprising that proof by contradiction is the proof technique we
will use.

Result 5.15 The sum of a rational number and an irrational number is irrational.
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Proof Assume, to the contrary, that there exist a rational number x and an irrational number y
whose sum is a rational number z. Thus, x + y = z, where x = a/b and z = c/d for some
integers a, b, c, d and b, d �= 0. This implies that

y = z − x = c
d

− a
b

= bc − ad
bd

.

Since bc − ad and bd are integers and bd �= 0, it follows that y is rational, which is a
contradiction.

Result 5.15 concerns the irrationality of numbers. One of the best known irrational
numbers is

√
2. Although we have never verified that this number is irrational, we

establish this fact now.

Theorem to
Prove

The real number
√

2 is irrational.

PROOF STRATEGY In the proof of this result, we will use Theorem 3.12, which states that an integer x is
even if and only if x2 is even. Also, in the proof, it will be useful to express a rational
number m/n, where m, n ∈ Z and n �= 0, in lowest terms, which means that m and n
contain no common divisor greater than 1. �

Theorem 5.16 The real number
√

2 is irrational.

Proof Assume, to the contrary, that
√

2 is rational. Then
√

2 = a/b, where a, b ∈ Z and b �= 0.
We may further assume that a/b has been expressed in (or reduced to) lowest terms. Then
2 = a2/b2; so a2 = 2b2. Since b2 is an integer, a2 is even. By Theorem 3.12, a is even. So,
a = 2c, where c ∈ Z. Thus, (2c)2 = 2b2 and so 4c2 = 2b2. Therefore, b2 = 2c2. Because
c2 is an integer, b2 is even, which implies by Theorem 3.12 that b is even. Since a and b
are even, each has 2 as a divisor, which is a contradiction since a/b has been reduced to
lowest terms.

We now take a brief diversion from our discussion of proof by contradiction to
present a “story” problem.

The Three
Prisoners
Problem

Three prisoners (see Figure 5.1) have been sentenced to long terms in prison, but due to
overcrowded conditions, one prisoner must be released.

The warden devises a scheme to determine which prisoner is to be released. He tells
the prisoners that he will blindfold them and then paint a red dot or a blue dot on each
forehead. After he paints the dots, he will remove the blindfolds and a prisoner should
raise his hand if he sees a red dot on at least one of the other two prisoners. The first
prisoner to identify the color of the dot on his own forehead will be released. Of course,
the prisoners agree to this. (What do they have to lose?)

The warden blindfolds the prisoners, as promised, and then paints a dot on the fore-
heads of all three prisoners. In fact, he paints a red dot on the foreheads of all three
prisoners. He removes the blindfolds and, since each prisoner sees a red dot (indeed
two red dots), each prisoner raises his hand. Some time passes when one of the pris-
oners exclaims, “I know what color my dot is! It’s red!” This prisoner is then released.
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Figure 5.1 The three prisoners

Although the story of the three prisoners is over, there is a lingering question: How did
this prisoner correctly identify the color of the dot painted on his forehead?

The solution is given next but try to determine the answer for yourself before
reading on.

Solution of
the Three
Prisoners
Problem

Let’s assume (without loss of generality) that it’s prisoner #1 (see Figure 5.1) who deter-
mined that he had a red dot painted on his forehead. How did he come to this conclusion?
Perhaps you think he just guessed since he had nothing to lose anyway. But this is not
the answer we were looking for.

Prisoner #1 knows that the color of his dot is either red or blue. He thinks, “Assume,
to the contrary, that my dot is blue. Then, of course, #2 knows this and he knows that
#3 has a red dot. (That’s why #2 raised his hand.) But #2 also knows that #3 raised his
hand. So, if my dot is blue, #2 knows his dot is red. Similarly, if my dot is blue, then #3
knows his dot is red. In other words, if my dot is blue, then both #2 and #3 should be able
to identify the colors of their dots quite quickly. But time has passed and they haven’t
determined the colors of their dots. So, my dot can’t be blue.” Therefore, #1 exclaims,
“I know what color my dot is! It’s red!”

What you probably noticed is that the reasoning #1 used to conclude that his dot is
red is proof by contradiction. It seems as if there is more to know about prisoner #1. But
that’s another story. �

SECTION 5.2 EXERCISES

5.12. Prove that there is no largest negative rational number.

5.13. Prove that there is no smallest positive irrational number.

5.14. Prove that 200 cannot be written as the sum of an odd integer and two even integers.

5.15. Use proof by contradiction to prove that if a and b are odd integers, then 4 � (a2 + b2).

5.16. Prove that if a ≥ 2 and b are integers, then a � b or a � (b + 1).

5.17. Prove that 1000 cannot be written as the sum of three integers, an even number of which are even.
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5.18. Prove that the product of an irrational number and a nonzero rational number is irrational.

5.19. Prove that when an irrational number is divided by a (nonzero) rational number, the resulting number is
irrational.

5.20. Let a be an irrational number and r a nonzero rational number. Prove that if s is a real number, then either
ar + s or ar − s is irrational.

5.21. Prove that
√

3 is irrational. [Hint: By Result 4.8, for an integer a, 3 | a2 if and only if 3 | a.]

5.22. Prove that
√

2 + √
3 is an irrational number.

5.23. (a) Prove that
√

6 is an irrational number.
(b) Prove that there are infinitely many positive integers n such that

√
n is irrational.

5.24. Let S = {p + q
√

2 : p, q ∈ Q} and T = {r + s
√

3 : r, s ∈ Q}. Prove that S ∩ T = Q.

5.25. Prove that there is no integer a such that a ≡ 5 (mod 14) and a ≡ 3 (mod 21).

5.26. Prove that there exists no positive integer x such that 2x < x2 < 3x.

5.27. Prove that there do not exist three distinct positive integers a, b and c such that each integer divides the
difference of the other two.

5.28. Prove that the sum of the squares of two odd integers cannot be the square of an integer.

5.29. Prove that if x and y are positive real numbers, then
√

x + y �= √
x + √

y.

5.30. Prove that there do not exist positive integers m and n such that m2 − n2 = 1.

5.31. Let m be a positive integer of the form m = 2s, where s is an odd integer. Prove that there do not exist
positive integers x and y such that x2 − y2 = m.

5.32. Prove that there do not exist three distinct real numbers a, b and c such that all of the numbers a + b + c,
ab, ac, bc, abc are equal.

5.33. Use a proof by contradiction to prove the following. Let x, y ∈ Z. If 5 � xy, then 5 � x and 5 � y.

5.34. Prove that there exist no positive integers m and n for which m2 + m + 1 = n2.

5.35. (a) Prove that there is no rational number solution of the equation x2 − 3x + 1 = 0.
(b) The problem in (a) should suggest a more general problem. State and outline a proof of this.

5.3 A REVIEW OF THREE PROOF TECHNIQUES

We have seen that we’re often in a situation where we want to prove the truth of a state-
ment ∀x ∈ S, P(x) ⇒ Q(x). You have now been introduced to three proof techniques:
direct proof, proof by contrapositive, proof by contradiction. For each of these three
techniques, you should be aware of how to start a proof and what your goal should be.
You should also know what not to do. Figure 5.2 gives several ways that we might start
a proof. Only some of these can lead to a proof, however.

Let’s now compare the three proof techniques with two examples.

Result 5.17 If n is an even integer, then 3n + 7 is odd.

Direct Proof Let n be an even integer. Then n = 2x for some integer x. Therefore,

3n + 7 = 3(2x) + 7 = 6x + 7 = 2(3x + 3) + 1.

Since 3x + 3 is an integer, 3n + 7 is odd.
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First Step of “Proof” Remarks/Goal
1. Assume for an arbitrary element A direct proof is being used.

x ∈ S that P(x) is true. Show that Q(x) is true for the element x.
2. Assume for an arbitrary element A mistake has been made.

x ∈ S that P(x) is false.
3. Assume for an arbitrary element A mistake has been made.

x ∈ S that Q(x) is true.
4. Assume for an arbitrary element A proof by contrapositive is being used.

x ∈ S that Q(x) is false. Show that P(x) is false for the element x.
5. Assume for an arbitrary element A mistake has been made.

x ∈ S that P(x) and Q(x) are true.
6. Assume that there exists x ∈ S such A proof by contradiction is being used.

that P(x) is true and Q(x) is false. Produce a contradiction.
7. Assume that there exists x ∈ S A mistake has been made.

such that P(x) is false and Q(x) is true.
8. Assume that there exists x ∈ S A mistake has been made.

such that P(x) and Q(x) are false.
9. Assume that there exists x ∈ S A mistake has been made.

such that P(x) ⇒ Q(x) is true.
10. Assume that there exists x ∈ S A proof by contradiction is being used.

such that P(x) ⇒ Q(x) is false. Produce a contradiction.

Figure 5.2 How to prove (and not to prove): ∀x ∈ S, P(x) ⇒ Q(x)

Proof by
Contrapositive

Assume that 3n + 7 is even. Then 3n + 7 = 2y for some integer y. Hence,

n = (3n + 7) + (−2n − 7) = 2y − 2n − 7 = 2(y − n − 4) + 1.

Since y − n − 4 is an integer, n is odd.

Proof by
Contradiction

Assume, to the contrary, that there exists an even integer n such that 3n + 7 is even.
Since n is even, n = 2x for some integer x. Hence,

3n + 7 = 3(2x) + 7 = 6x + 7 = 2(3x + 3) + 1.

Since 3x + 3 is an integer, 3n + 7 is odd, which is a contradiction.

Although a direct proof of Result 5.17 is certainly the preferred proof technique in
this case, it is useful to compare all three techniques. The following example is more
intricate.

Result 5.18 Let x be a nonzero real number. If x + 1
x

< 2, then x < 0.

Direct Proof Assume that x + 1
x

< 2. Since x �= 0, we know that x2 > 0. Multiplying both sides of the

inequality x + 1
x

< 2 by x2, we obtain x2

(
x + 1

x

)
< 2x2. Simplifying this inequality,
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we have x3 + x − 2x2 < 0; so,

x(x2 − 2x + 1) = x(x − 1)2 < 0.

Since (x − 1)2 ≥ 0 and x(x − 1)2 �= 0, we must have (x − 1)2 > 0. Since x(x − 1)2 < 0
and (x − 1)2 > 0, it follows that x < 0, as desired.

Proof
Strategy for

Proof by
Contrapositive

For a proof by contrapositive, we will begin by assuming that x ≥ 0 and attempt to show

that x + 1
x

≥ 2. This inequality can be simplified by multiplying through by x, obtain-

ing x2 + 1 ≥ 2x. Subtracting 2x from both sides, we have x2 − 2x + 1 = (x − 1)2 ≥ 0,
which, of course, we know to be true. A proof is suggested then by reversing the order
of these steps:

x + 1
x

≥ 2

x2 + 1 ≥ 2x
x2 − 2x + 1 = (x − 1)2 ≥ 0.

This method is common when dealing with inequalities. �

Proof by
Contrapositive

Assume that x ≥ 0. Since x �= 0, it follows that x > 0. Because (x − 1)2 ≥ 0, we have
(x − 1)2 = x2 − 2x + 1 ≥ 0. Adding 2x to both sides of this inequality, we obtain x2 +
1 ≥ 2x. Dividing both sides of the inequality x2 + 1 ≥ 2x by the positive number x, we

obtain x + 1
x

≥ 2, as desired.

Proof by
Contradiction

Assume, to the contrary, that there exists a nonzero real number x such that x + 1
x

< 2

and x ≥ 0. Since x �= 0, it follows that x > 0. Multiplying both sides of the inequal-

ity x + 1
x

< 2 by x, we obtain x2 + 1 < 2x. Subtracting 2x from both sides, we have

x2 − 2x + 1 < 0. It then follows that (x − 1)2 < 0, which is a contradiction.

Many mathematicians feel that if a result can be verified by a direct proof, then this
is the proof technique that should be used, as it is normally easier to understand. This is
only a general guideline, however; it is not a hard and fast rule.

SECTION 5.3 EXERCISES

5.36. Prove that if n is an odd integer, then 7n − 5 is even by
(a) a direct proof, (b) a proof by contrapositive and (c) a proof by contradiction.

5.37. Let x be a positive real number. Prove that if x − 2
x > 1, then x > 2 by

(a) a direct proof, (b) a proof by contrapositive and (c) a proof by contradiction.

5.38. Let a, b ∈ R. Prove that if ab �= 0, then a �= 0 by using more than one proof technique.

5.39. Let x, y ∈ R+. Prove that if x ≤ y, then x2 ≤ y2 by
(a) a direct proof, (b) a proof by contrapositive and (c) a proof by contradiction.
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5.40. Prove the following statement using more than one method of proof.
Let a, b ∈ Z. If a is odd and a + b is even, then b is odd and ab is odd.

5.41. Prove the following statement using more than one method of proof.
For every three integers a, b and c, exactly two of the integers ab, ac and bc cannot be odd.

5.4 EXISTENCE PROOFS

In an existence theorem the existence of an object (or objects) possessing some specified
property or properties is asserted. Typically then, an existence theorem concerning an
open sentence R(x) over a domain S can be expressed as a quantified statement

∃x ∈ S, R(x) : There exists x ∈ S such that R(x). (5.12)

We have seen that such a statement (5.12) is true provided that R(x) is true for some x ∈ S.
A proof of an existence theorem is called an existence proof. An existence proof may
then consist of displaying or constructing an example of such an object or perhaps, with
the aid of known results, verifying that such objects must exist without ever producing a
single example of the desired type. For example, there are theorems in mathematics that
tell us that every polynomial of odd degree with real coefficients has at least one real
number as a solution, but we don’t know how to find a real number solution for every
such polynomial. Indeed, we quote the famous mathematician David Hilbert, who used
the following example in his lectures to illustrate the idea of an existence proof:

There is at least one student in this class . . . let us name him ‘X’ . . . for whom the
following statement is true: No other student in the class has more hairs on his
head than X. Which student is it? That we shall never know; but of his existence
we can be absolutely certain.

Let’s now see some examples of existence proofs.

Result to Prove There exists an integer whose cube equals its square.

PROOF STRATEGY Since this result is only asserting the existence of an integer whose cube equals its square,
we have a proof once we can think of an example. The integer 1 has this property. �

Result 5.19 There exists an integer whose cube equals its square.

Proof Since 13 = 12 = 1, the integer 1 has the desired property.

Suppose that we didn’t notice that the integer 1 satisfied the required condition in
the preceding theorem. Then an alternate proof may go something like this: Let x ∈ Z
such that x3 = x2. Then x3 − x2 = 0 or x2(x − 1) = 0. Thus, there are only two possible
integers with this property, namely 1 and 0 and, in fact, both integers have the desired
property.

A common error in elementary algebra is to write (a + b)2 = a2 + b2. Can this ever
be true?

Result 5.20 There exist real numbers a and b such that (a + b)2 = a2 + b2.



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M06_CHART6753_04_SE_C05 PH03348-Chartrand August 5, 2017 16:32 Char Count= 0

142 Chapter 5 Existence and Proof by Contradiction

Proof Let a, b ∈ Z such that (a + b)2 = a2 + b2. Then a2 + 2ab + b2 = a2 + b2, so 2ab = 0.
Since a = 1, b = 0 is a solution to this equation, we have

(a + b)2 = (1 + 0)2 = 12 = 12 + 02 = a2 + b2.

The proof presented of Result 5.20 is longer than necessary. We could have written
the following proof:

Proof Let a = 1 and b = 0. Then

(a + b)2 = (1 + 0)2 = 12 = 12 + 02 = a2 + b2.

In the first proof, we actually presented an argument for how we thought of a = 1
and b = 0. In a proof, we are not required to explain where we got the idea for the proof,
although it may very well be interesting to know this. If we feel that such information
might be interesting or valuable, it may be worthwhile to include this in a discussion
preceding or following the proof. The first proof we gave of Result 5.20 actually informs
us of all real numbers a and b for which (a + b)2 = a2 + b2, namely, (a + b)2 = a2 + b2

if and only if at least one of a and b is 0. This is more than what was requested of us but,
nevertheless, it seems interesting.

We saw in Section 5.2 that
√

2 is irrational. Since
√

2 = 21/2, it follows that there
exist rational numbers a and b such that ab is irrational, namely a = 2 and b = 1/2
have this property. Let’s reverse this question. That is, do there exist irrational num-
bers a and b such that ab is rational? Although there are many irrational numbers (in
fact, an infinite number), we have only verified that

√
2 is irrational. (On the other

hand, we know from the exercises for this section that r + √
2 is irrational for every

rational number r and that both r
√

2 and r/
√

2 are irrational for every nonzero rational
number r.)

Result to Prove There exist irrational numbers a and b such that ab is rational.

PROOF STRATEGY As we mentioned, there are only certain numbers that we know to be irrational, the sim-

plest being
√

2. This might suggest considering the (real) number
√

2
√

2
. If this number

is rational, then this answers our question. But perhaps
√

2
√

2
is irrational. Then what do

we do? This discussion suggests two cases. �

Result 5.21 There exist irrational numbers a and b such that ab is rational.

Proof Consider the number
√

2
√

2
. Of course, this number is either rational or irrational. We

consider these possibilities separately.

Case 1.
√

2
√

2
is rational. Then we can take a = b = √

2 and we have the desired result.
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Case 2.
√

2
√

2
is irrational. In this case, consider the number obtained by raising the

(irrational) number
√

2
√

2
to the (irrational) power

√
2; that is, consider ab, where

a = √
2

√
2

and b = √
2. Observe that

ab =
(√

2
√

2
)√

2

=
√

2
√

2·√2 =
√

2
2 = 2,

which is rational.

The proof of Theorem 5.21 may seem unsatisfactory to you since we still don’t
know two specific irrational numbers a and b such that ab is rational. We only know

that two such numbers exist. We actually do know a bit more, namely either (1)
√

2
√

2
is

rational or (2)
√

2
√

2
is irrational and

(√
2

√
2
)√

2

is rational. (Actually it has been proved

that
√

2
√

2
is an irrational number. Hence, there are also irrational numbers of the form

of ab, where a and b are both irrational.)
In the next result, we want to show that the equation x5 + 2x − 5 = 0 has a real

number solution between x = 1 and x = 2. It is not easy to find a number that satisfies
this equation. Instead, we use a well-known theorem from calculus to show that such a
solution exists. You may not remember all the terms used in the following theorem but
this is not crucial.

The
Intermediate

Value Theorem
of Calculus

If f is a function that is continuous on the closed interval [a, b] and k is a number between
f (a) and f (b), then there exists a number c ∈ (a, b) such that f (c) = k.

We now give an example to show how this theorem can be used.

Result 5.22 The equation x5 + 2x − 5 = 0 has a real number solution between x = 1 and x = 2.

Proof Let f (x) = x5 + 2x − 5. Since f is a polynomial function, it is continuous on the set of all
real numbers and so f is continuous on the interval [1, 2]. Now, f (1) = −2 and f (2) = 31.
Since 0 is between f (1) and f (2), it follows by the Intermediate Value Theorem of
Calculus that there is a number c between 1 and 2 such that f (c) = c5 + 2c − 5 = 0.
Hence, c is a solution.

As we just saw, the equation x5 + 2x − 5 = 0 has a real number solution between
x = 1 and x = 2. Actually, the equation x5 + 2x − 5 = 0 has exactly one real number
solution between x = 1 and x = 2. This brings up the topic of uniqueness. An element
belonging to some prescribed set A and possessing a certain property P is unique if it is
the only element of A having property P. Typically, to prove that only one element of A
has property P, we proceed in one of two ways:

(1) We assume that a and b are elements of A possessing property P and show that
a = b.

(2) We assume that a and b are distinct elements of A possessing property P and
show that a = b.
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Although (1) results in a direct proof and (2) results in a proof by contradiction, it
is often the case that either proof technique can be used.

As an illustration, we return to Result 5.22 and show, in fact, that the equation x5 +
2x − 5 = 0 has a unique real number solution between x = 1 and x = 2.

Result 5.23 The equation x5 + 2x − 5 = 0 has a unique real number solution between x = 1 and
x = 2.

Proof Assume, to the contrary, that the equation x5 + 2x − 5 = 0 has two distinct real number
solutions a and b between x = 1 and x = 2. We may assume that a < b. Since 1 < a <

b < 2, it follows that a5 + 2a − 5 < b5 + 2b − 5. On the other hand, a5 + 2a − 5 = 0
and b5 + 2b − 5 = 0. Thus,

0 = a5 + 2a − 5 < b5 + 2b − 5 = 0,

which produces a contradiction.

Actually, we could have omitted Result 5.22 altogether and replaced it by Result 5.23
only (renumbering this result by Result 5.22), including the proofs of both Results 5.22
and 5.23.

We now present another result concerning uniqueness.

Result to Prove For an irrational number r, let

S = {sr + t : s, t ∈ Q}.
For every x ∈ S, there exist unique rational numbers a and b such that x = ar + b.

PROOF STRATEGY To verify that a and b are unique, we assume that x can be expressed in two ways, say
as ar + b and cr + d, where a, b, c, d ∈ Q, and then show that a = c and b = d. Hence,
ar + b = cr + d. If a �= c, then we can show that r is a rational number, producing a
contradiction. Thus, a = c. Subtracting ar from both sides of ar + b = cr + d, we obtain
b = d as well. �

We now give a complete proof.

Result 5.24 For an irrational number r, let

S = {sr + t : s, t ∈ Q}.
For every x ∈ S, there exist unique rational numbers a and b such that x = ar + b.

Proof Let x ∈ S and suppose that x = ar + b and x = cr + d, where a, b, c, d ∈ Q. Then
ar + b = cr + d. If a �= c, then (a − c)r = d − b and so

r = d − b
a − c

.

Since d−b
a−c is a rational number, this is impossible. So, a = c. Subtracting ar = cr from

both sides of ar + b = cr + d, we obtain b = d.
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Example 5.25 (a) Show that the equation 6x3 + x2 − 2x = 0 has a root in the interval [−1, 1].

(b) Does this equation have a unique root in the interval [−1, 1]?

Solution (a) By inspection, we can see that x = 0 is a root of the equation.

(b) Observe that

6x3 + x2 − 2x = x(6x2 + x − 2) = x(3x + 2)(2x − 1) = 0.

Thus, x = −2/3 and x = 1/2 are also roots of the equation
6x3 + x2 − 2x = 0 and so this equation does not have a unique root in the
interval [−1, 1]. �

We consider a result of a somewhat different nature.

Result to Prove For every integer n ≥ 7, there exist positive integers a and b such that n = 2a + 3b.

PROOF STRATEGY First, notice that we can write 7 = 2 · 2 + 3 · 1, 8 = 2 · 1 + 3 · 2 and 9 = 2 · 3 + 3 · 1.
So, the result is certainly true for n = 7, 8, 9. On the other hand, there is no pair a, b of
positive integers such that 6 = 2a + 3b. Of course, this observation only shows that we
cannot replace n ≥ 7 by n ≥ 6.

Suppose that n is an integer such that n ≥ 7. We could bring the integer 2 into the
discussion by observing that we can write n = 2q or n = 2q + 1, where q ∈ Z. Actually,
if n = 2q, then q ≥ 4 since n ≥ 7; while if n = 2q + 1, then q ≥ 3 since n ≥ 7. This is
a useful observation. �

Result 5.26 For every integer n ≥ 7, there exist positive integers a and b such that n = 2a + 3b.

Proof Let n be an integer such that n ≥ 7. Since n is even or odd, either n = 2q or n = 2q + 1
for some integer q. We consider these two cases.

Case 1. n = 2q. Since n ≥ 7, it follows that q ≥ 4. Thus,

n = 2q = 2(q − 3) + 6 = 2(q − 3) + 3 · 2.

Since q ≥ 4, it follows that q − 3 ∈ N.

Case 2. n = 2q + 1. Since n ≥ 7, it follows that q ≥ 3. Thus,

n = 2q + 1 = 2(q − 1) + 2 + 1 = 2(q − 1) + 3 · 1.

Since q ≥ 3, it follows that q − 1 ∈ N.

SECTION 5.4 EXERCISES

5.42. Show that there exist a rational number a and an irrational number b such that ab is rational.

5.43. Show that there exist a rational number a and an irrational number b such that ab is irrational.

5.44. Show that there exist two distinct irrational numbers a and b such that ab is rational.

5.45. Show that there exist no nonzero real numbers a and b such that
√

a2 + b2 = 3
√

a3 + b3.
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5.46. Prove that there exists a unique real number solution to the equation x3 + x2 − 1 = 0 between x = 2/3 and
x = 1.

5.47. Let R(x) be an open sentence over a domain S. Suppose that ∀x ∈ S, R(x) is a false statement and that the
set T of counterexamples is a proper subset of S. Show that there exists a subset W of S such that
∀x ∈ W, R(x) is true.

5.48. (a) Prove that there exist four distinct positive integers such that each integer divides the sum of the
remaining integers.

(b) The problem in (a) should suggest another problem to you. State and solve such a problem.

5.49. Let S be a set of three integers. For a nonempty subset A of S, let σA be the sum of the elements in A. Prove
that there exist two distinct nonempty subsets B and C of S such that σB ≡ σC (mod 6).

5.50. Prove that the equation cos2(x) − 4x + π = 0 has a real number solution in the interval [0, 4]. (You may
assume that cos2(x) is continuous on [0, 4].)

5.51. Prove for every integer n ≥ 8 that there exist nonnegative integers a and b such that n = 3a + 5b.

5.52. Prove for every integer n ≥ 12 that there exist nonnegative integers a and b such that n = 3a + 7b.

5.53. Prove that there exists a set S of four distinct primes such that the sum of every three elements of S is also a
prime.

5.54. The statement ∀n ∈ N, P(n) is known to be false. Indeed, it is known that there are exactly k
counterexamples, k ∈ N, to this statement. Prove that there exists a positive integer m such that for the set
S = {n ∈ N : n ≥ m}, the statement ∀n ∈ S, P(n) is true.

5.5 DISPROVING EXISTENCE STATEMENTS

Let R(x) be an open sentence where the domain of x is S. We have already seen that to
disprove a quantified statement of the type ∀x ∈ S, R(x), it suffices to produce a coun-
terexample (that is, an element x in S for which R(x) is false). However, disproving
a quantified statement of the type ∃x ∈ S, R(x) requires a totally different approach.
Since

∼ (∃x ∈ S, R(x)) ≡ ∀x ∈ S, ∼ R(x),

it follows that the statement ∃x ∈ S, R(x) is false if R(x) is false for every x ∈ S. Let’s
look at some examples of disproving existence statements.

Example 5.27 Disprove the statement: There exists an odd integer n such that n2 + 2n + 3 is odd.

Solution We show that if n is an odd integer, then n2 + 2n + 3 is even. Let n be an odd integer.
Then n = 2k + 1 for some integer k. Thus,

n2 + 2n + 3 = (2k + 1)2 + 2(2k + 1) + 3 = 4k2 + 4k + 1 + 4k + 2 + 3

= 4k2 + 8k + 6 = 2(2k2 + 4k + 3).

Since 2k2 + 4k + 3 is an integer, n2 + 2n + 3 is even. �

Example 5.28 Disprove the statement: There is a real number x such that x6 + 2x4 + x2 + 2 = 0.
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Solution Let x ∈ R. Since x6, x4 and x2 are all even powers of the real number x, it follows that
x6 ≥ 0, x4 ≥ 0 and x2 ≥ 0. Therefore, x6 + 2x4 + x2 + 2 ≥ 0 + 0 + 0 + 2 = 2 and so
x6 + 2x4 + x2 + 2 �= 0. Hence, the equation x6 + 2x4 + x2 + 2 = 0 has no real number
solution. �

Example 5.29 Disprove the statement: There exists an integer n such that n3 − n + 1 is even.

Solution Let n ∈ Z. We consider two cases.

Case 1. n is even. Then n = 2a, where a ∈ Z. So

n3 − n + 1 = (2a)3 − (2a) + 1 = 8a3 − 2a + 1 = 2(4a3 − a) + 1.

Since 4a3 − a is an integer, n3 − n + 1 is odd and so it is not even.

Case 2. n is odd. Then n = 2b + 1, where b ∈ Z. Hence,

n3 − n + 1 = (2b + 1)3 − (2b + 1) + 1

= 8b3 + 12b2 + 6b + 1 − 2b − 1 + 1

= 8b3 + 12b2 + 4b + 1 = 2(4b3 + 6b2 + 2b) + 1.

Since 4b3 + 6b2 + 2b is an integer, n3 − n + 1 is odd and so it is not even. �

If we had replaced Example 5.27 by

For every odd integer n, n2 + 2n + 3 is even.

replaced Example 5.28 by

For every real number x, x6 + 2x4 + x2 + 2 �= 0.

and replaced Example 5.29 by

For every integer n, n3 − n + 1 is odd.

then we would have a true statement in each case and the solutions of Examples 5.27–
5.29 would become proofs.

We close this section and chapter with an example that uses some of the information
we have already encountered.

For n = 1, 2, 4, 5, there are integer solutions x and y to the equation x2 + y2 = n
since 02 + 12 = 1, 12 + 12 = 2, 02 + 22 = 4 and 12 + 22 = 5. It is easy to see that there
are no integers x and y such that x2 + y2 = 3. However, are there rational numbers x and
y for which x2 + y2 = 3?

Result to Prove There exist no rational numbers x and y such that x2 + y2 = 3.

PROOF STRATEGY The expected approach to use here is to assume, to the contrary, that there are rational
numbers x and y for which x2 + y2 = 3, say x = a

b and y = c
d , where a, b, c, d ∈ N. After

some simplifying, we can arrive at an equation involving integers, one of which is 3. As
expected, it would be helpful to make use of divisibility of integers involving 3. Result
4.8 states that 3 | ab, where a, b ∈ Z, if and only if 3 | a or 3 | b; while Result 4.12 states
that for each integer n, either n2 ≡ 0 (mod 3) when 3 | n or n2 ≡ 1 (mod 3) when 3 � n.
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Result 5.30 There exist no rational numbers x and y such that x2 + y2 = 3.

Proof Assume, to the contrary, that there exist rational numbers x and y such that x2 + y2 = 3.
We may assume that x and y are positive rational numbers. Since x, y ∈ Q+, it follows
that x = a

b and y = c
d , where a, b, c, d ∈ N. Furthermore, we may assume that a

b and c
d

are reduced to lowest terms and so no integer greater than 1 divides a and b or divides c
and d. Therefore, a2

b2 + c2

d2 = 3 and so

a2d2 + b2c2 = 3b2d2. (5.13)

First, suppose that 3 divides none of a, b, c, d. Then each of a2, b2, c2 and d2 is
congruent to 1 modulo 3 and so a2d2 + b2c2 ≡ 2 (mod 3). Because 3b2d2 ≡ 0 (mod 3),
this contradicts (5.13). Hence, 3 divides at least one of a, b, c, d.

Assume first that 3 divides one of a and c, say 3 | a. Thus, a = 3p where p ∈ Z.
Then

a2d2 + b2c2 = 9p2d2 + b2c2 = 3b2d2

and so 3(b2d2 − 3p2d2) = b2c2. Hence, 3 | b2c2 and so 3 | bc by Result 4.8. Further-
more, 3 | b or 3 | c, again by Result 4.8. Since 3 | a and a/b has been reduced to lowest
terms, 3 | c. Thus, c = 3q for some integer q. Hence, 9p2d2 + b2(9q2) = 3b2d2 and so
9(p2d2 + b2q2) = 3b2d2. Thus, 3(p2d2 + b2q2) = b2d2 and so 3 | b2d2. By Result 4.8,
3 | b or 3 | d. Since 3 | a and 3 | c, and a

b and c
d are reduced to lowest terms, it follows

that either 3 | b or 3 | d produces a contradiction. Hence, 3 � a and 3 � c, which implies
that 3 divides at least one of b and d.

We claim that 3 must divide both b and d. Assume, to the contrary, that 3 divides
exactly one of b and d, say 3 | b and 3 � d. By Results 4.8 and 4.12, b2 ≡ 0 (mod 3) and
d2 ≡ 1 (mod 3). Since a2 ≡ 1 (mod 3) and c2 ≡ 1 (mod 3), it follows that a2d2 ≡ 1
(mod 3) and b2c2 ≡ 0 (mod 3). Hence, a2d2 + b2c2 ≡ 1 (mod 3). Because 3b2d2 ≡ 0
(mod 3), this contradicts (5.13). Therefore, as claimed, 3 | b and 3 | d.

Let r ≥ 1 be the greatest power of 3 that divides b and s ≥ 1 the greatest power of 3
that divides d. We may assume that r ≤ s. Then b = 3r p and d = 3sq, where r, s, p, q ∈
N such that 3 � p and 3 � q. It then follows by (5.13) that

a2d2 + b2c2 = 32sa2q2 + 32rc2 p2 = 32r+2s+1 p2q2

and so

32s−2ra2q2 + c2 p2 = 32s+1 p2q2.

If s > r, then

c2 p2 = 32s+1 p2q2 − 32s−2ra2q2 = 3[32s p2q2 − 32s−2r−1a2q2].

Since 32s p2q2 − 32s−2r−1a2q2 is an integer, it follows that 3 | c2 p2. However, since 3 � c
and 3 � p, this contradicts Result 4.8. If r = s, then

a2q2 + c2 p2 = 32s+1 p2q2 = 3(32s p2q2).

Because 32s p2q2 is an integer, 3 | (a2q2 + c2 p2). On the other hand, since a2q2 ≡ 1
(mod 3) and c2 p2 ≡ 1 (mod 3), it follows that a2q2 + c2 p2 ≡ 2 (mod 3) and so
3 � (a2q2 + c2 p2), which is a contradiction.
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SECTION 5.5 EXERCISES

5.55. Disprove the statement: There exist odd integers a and b such that 4 | (3a2 + 7b2).

5.56. Disprove the statement: There is a real number x such that x6 + x4 + 1 = 2x2.

5.57. Disprove the statement: There is an integer n such that n4 + n3 + n2 + n is odd.

5.58. The integers 1, 2, 3 have the property that each divides the sum of the other two. Indeed, for each positive
integer a, the integers a, 2a, 3a have the property that each divides the sum of the other two. Show that the
following statement is false.

There exists an example of three distinct positive integers different from a, 2a, 3a for some a ∈ N having
the property that each divides the sum of the other two.

5.59. The statement ∀n ∈ N, P(n) is known to have an infinite number of counterexamples. Disprove the
statement: There exists a positive integer m such that ∀n ∈ (m,∞), P(n) is true.

5.60. (a) Prove that there exist two distinct primes p and q such that the four integers pq ± 2 and pq ± 4 are all
primes.

(b) Disprove the statement: There exist two distinct primes p and q such that the six integers pq ± 2,
pq ± 4 and pq ± 6 are all primes.

The Chapter
Presentation for
Chapter 5 can be
found at
goo.gl/i8Ynie

Chapter 5 Supplemental Exercises

5.61. Show that the following statement is false.
If A and B are two sets of positive integers with |A| = |B| = 3 such that whenever an
integer s is the sum of the elements of some subset of A, then s is also the sum of the
elements of some subset of B, then A = B.

5.62. (a) Prove that if a ≥ 2 and n ≥ 1 are integers such that a2 + 1 = 2n, then a is odd.
(b) Prove that there are no integers a ≥ 2 and n ≥ 1 such that a2 + 1 = 2n.

5.63. Prove that there do not exist positive integers a and n such that a2 + 3 = 3n.

5.64. Let x, y ∈ R+. Use a proof by contradiction to prove that if x < y, then
√

x <
√

y.

5.65. The king’s daughter had three suitors and couldn’t decide which one to marry. So, the
king said to the suitors, “I have three gold crowns and two silver ones. I will put
either a gold or silver crown on each of your heads. The suitor who can tell me which
crown he has will marry my daughter.” The first suitor looked around and said he
could not tell. The second did the same. The third suitor said: “ I have a gold crown.”
He is correct, but the daughter was puzzled: This suitor was blind. How did he know?
(Reference: Ask Marilyn, Parade Magazine, July 6, 2003.)

5.66. Prove that if a, b, c, d are four real numbers, then at most four of the numbers
ab, ac, ad, bc, bd, cd are negative.

5.67. Evaluate the proposed proof of the following result.

Result The number 25 cannot be written as the sum of three integers, an even
number of which are odd.

Proof Assume, to the contrary, that 25 can be written as the sum of three integers,
an even number of which are odd. Then 25 = x + y + z, where x, y, z ∈ Z. We
consider two cases.
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Case 1. x and y are odd. Then x = 2a + 1, y = 2b + 1 and z = 2c, where a, b, c ∈ Z.
Therefore,

25 = x + y + z = (2a + 1) + (2b + 1) + 2c

= 2a + 2b + 2c + 2 = 2(a + b + c + 1).

Since a + b + c + 1 is an integer, 25 is even, a contradiction.

Case 2. x, y and z are even. Then x = 2a, y = 2b and z = 2c, where a, b, c ∈ Z.
Hence,

25 = x + y + z = 2a + 2b + 2c = 2(a + b + c).

Since a + b + c is an integer, 25 is even, again a contradiction.

5.68. (a) Let n be a positive integer. Show that every integer m with 1 ≤ m ≤ 2n can be
expressed as 2�k, where � is a nonnegative integer and k is an odd integer with
1 ≤ k < 2n.

(b) Prove for every positive integer n and every subset S of {1, 2, . . . , 2n} with
|S| = n + 1 that there exist integers a, b ∈ S such that a | b.

5.69. Prove that the sum of all three irrational numbers
√

2,
√

3 and
√

5 is also irrational.

5.70. Let a1, a2, . . . , ar be odd integers where ai > 1 for i = 1, 2, . . . , r. Prove that if
n = a1a2 · · · ar + 2, then ai � n for each integer i (1 ≤ i ≤ r).

5.71. Below is given a proof of a result. What result is proved?

Proof Let a, b, c ∈ Z such that a2 + b2 = c2. Assume, to the contrary, that a, b and
c are all odd. By (the contrapositive of) Theorem 3.12, a2 and b2 are both odd.
Therefore, a2 = 2r + 1 and b2 = 2s + 1 for integers r and s. Thus, a2 + b2 = 2r +
2s + 2 = 2(r + s + 1). Since r + s + 1 is an integer, a2 + b2 is even. However,
a2 + b2 = c2 and c2 is odd. This is a contradiction.

5.72. Evaluate the proposed proof of the following result.

Result If x is an irrational number and y is a rational number, then z = x − y is
irrational.

Proof Assume, to the contrary, that z = x − y is rational. Then z = a/b, where
a, b ∈ Z and b �= 0. Since

√
2 is irrational, we let x = √

2. Since y is rational,
y = c/d, where c, d ∈ Z and d �= 0. Therefore,

√
2 = x = y + z = c

d
+ a

b
= ad + bc

bd
.

Since ad + bc and bd are integers, where bd �= 0, it follows that
√

2 is rational,
producing a contradiction.

5.73. Prove that there exist four distinct real numbers a, b, c, d such that exactly four of the
numbers ab, ac, ad, bc, bd, cd are irrational.

5.74. Below is given a proof of a result. What result is proved?

Proof Let a ≡ 2 (mod 4) and b ≡ 1 (mod 4) and assume, to the contrary, that
4 | (a2 + 2b). Since a ≡ 2 (mod 4) and b ≡ 1 (mod 4), it follows that a = 4r + 2
and b = 4s + 1, where r, s ∈ Z. Therefore,

a2 + 2b = (4r + 2)2 + 2(4s + 1) = (16r2 + 16r + 4) + (8s + 2)

= 16r2 + 16r + 8s + 6.
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Since 4 | (a2 + 2b), we have a2 + 2b = 4t, where t ∈ Z. So,
16r2 + 16r + 8s + 6 = 4t and

6 = 4t − 16r2 − 16r − 8s = 4(t − 4r2 − 4r − 2s).

Since t − 4r2 − 4r − 2s is an integer, 4 | 6, which is a contradiction.

5.75. Prove that there do not exist real numbers a and b in the open interval (0, 1) such that
4a(1 − b) > 1 and 4b(1 − a) > 1.
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6
Mathematical Induction

We have now seen three proof techniques that can be used to prove that a quan-
tified statement ∀x ∈ S, P(x) is true: direct proof, proof by contrapositive, proof

by contradiction. For certain sets S, however, there is another possible method of proof:
mathematical induction.

6.1 THE PRINCIPLE OF MATHEMATICAL INDUCTION

Let A be a nonempty set of real numbers. A number m ∈ A is called a least element (or
a minimum or smallest element) of A if x ≥ m for every x ∈ A. Some nonempty sets
of real numbers have a least element; others do not. The set N has a smallest element,
namely 1, while Z has no least element. The closed interval [2, 5] has the minimum
element 2 but the open interval (2, 5) has no minimum element. The set

A =
{

1
n

: n ∈ N
}

also has no least element.
If a nonempty set A of real numbers has a least element, then this element is nec-

essarily unique. We will verify this fact. Recall that when attempting to prove that an
element possessing a certain property is unique, it is customary to assume that there are
two elements with this property. We then show that these elements are equal, implying
that there is exactly one such element.

Theorem 6.1 If a set A of real numbers has a least element, then A has a unique least element.

Proof Let m1 and m2 be least elements of A. Since m1 is a least element, m2 ≥ m1. Also, since
m2 is a least element, m1 ≥ m2. Therefore, m1 = m2.

The proof we gave of Theorem 6.1 is a direct proof. Suppose that we had replaced
the first sentence of this proof by

Assume, to the contrary, that A contains distinct least elements m1 and m2.
152
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If the remainder of the proof of Theorem 6.1 were the same except for adding a
concluding sentence that we have a contradiction, then this too would be a proof of The-
orem 6.1. That is, with a small change, the proof technique used to verify Theorem 6.1
can be transformed from a direct proof to a proof by contradiction.

There is a property possessed by some sets of real numbers that will be of great
interest to us here. A nonempty set S of real numbers is said to be well-ordered if every
nonempty subset of S has a least element. Let S = {−7,−1, 2}. The nonempty subsets
of S are

{−7,−1, 2}, {−7,−1}, {−7, 2}, {−1, 2}, {−7}, {−1} and {2}.
Since each of these subsets has a least element, S is well-ordered. Indeed, it should be
clear that every nonempty finite set of real numbers is well-ordered. (See Exercise 6.20.)
The open interval (0, 1) is not well-ordered, since, for example, (0, 1) itself has no least
element. The closed interval [0, 1] has the least element 0; however, [0, 1] is not well-
ordered since the open interval (0, 1) is a (nonempty) subset of [0, 1] without a least
element. Because none of the sets Z, Q and R has a least element, none of these sets is
well-ordered. Hence, having a least element is a necessary condition for a nonempty set
to be well-ordered but it is not sufficient.

Although it may appear evident that the set N of positive integers is well-ordered,
this statement cannot be proved from the properties of positive integers that we have
used and derived thus far. Consequently, this statement is accepted as an axiom, which
we state below.

The
Well-Ordering

Principle

The set N of positive integers is well-ordered.

A consequence of the Well-Ordering Principle is another principle, which serves as
the foundation for another and important proof technique.

Theorem 6.2 (The Principle of Mathematical Induction) For each positive integer n, let P(n) be a
statement. If

(1) P(1) is true and

(2) the implication

If P(k), then P(k + 1).

is true for every positive integer k,

then P(n) is true for every positive integer n.

Proof Assume, to the contrary, that the theorem is false. Then conditions (1) and (2) are satisfied
but there exist some positive integers n for which P(n) is a false statement. Let

S = {n ∈ N : P(n) is false}.
Since S is a nonempty subset of N, it follows by the Well-Ordering Principle that S con-
tains a least element s. Since P(1) is true, 1 /∈ S. Thus, s ≥ 2 and s − 1 ∈ N. Therefore,
s − 1 /∈ S and so P(s − 1) is a true statement. By condition (2), P(s) is also true and so
s /∈ S. This, however, contradicts our assumption that s ∈ S.
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The Principle of Mathematical Induction is stated more symbolically below.

The Principle of
Mathematical

Induction

For each positive integer n, let P(n) be a statement. If

(1) P(1) is true and

(2) ∀k ∈ N, P(k) ⇒ P(k + 1) is true,

then ∀n ∈ N, P(n) is true.

As a consequence of the Principle of Mathematical Induction, the quantified state-
ment ∀n ∈ N, P(n) can be proved to be true if

(1) we can show that the statement P(1) is true and

(2) we can establish the truth of the implication

If P(k), then P(k + 1).

for every positive integer k.

A proof using the Principle of Mathematical Induction is called an induction proof or a
proof by induction. The verification of the truth of P(1) in an induction proof is called
the base step, basis step or the anchor of the induction. In the implication

If P(k), then P(k + 1).

for an arbitrary positive integer k, the statement P(k) is called the inductive (or induc-
tion) hypothesis. Often we use a direct proof to verify

∀k ∈ N, P(k) ⇒ P(k + 1), (6.1)

although any proof technique is acceptable. That is, we typically assume that the in-
ductive hypothesis P(k) is true for an arbitrary positive integer k and attempt to show
that P(k + 1) is true. Establishing the truth of (6.1) is called the inductive step in the
induction proof.

We illustrate this proof technique by showing that the sum of the first n positive
integers is given by n(n + 1)/2 for every positive integer n, that is,

1 + 2 + 3 + · · · + n = n(n + 1)
2

.

Result 6.3 Let

P(n) : 1 + 2 + 3 + · · · + n = n(n + 1)
2

where n ∈ N. Then P(n) is true for every positive integer n.

Proof We employ induction. Since 1 = (1 · 2)/2, the statement P(1) is true. Assume that P(k)
is true for an arbitrary positive integer k, that is, assume that

1 + 2 + 3 + · · · + k = k(k + 1)
2

.
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We show that P(k + 1) is true, that is, we show that

1 + 2 + 3 + · · · + (k + 1) = (k + 1)(k + 2)
2

.

Thus,

1 + 2 + 3 + · · · + (k + 1) = (1 + 2 + 3 + · · · + k) + (k + 1)

= k(k + 1)
2

+ (k + 1) = k(k + 1) + 2(k + 1)
2

= (k + 1)(k + 2)
2

,

as desired.
By the Principle of Mathematical Induction, P(n) is true for every positive

integer n.

Typically, a statement to be proved by induction is not presented in terms of P(n)
or some other symbols. In order to illustrate this, we give an alternative statement and
proof of Result 6.3, as it is to be understood what P(n) would represent.

Result 6.4 For every positive integer n,

1 + 2 + 3 + · · · + n = n(n + 1)
2

.

Proof We employ induction. Since 1 = (1 · 2)/2, the statement is true for n = 1. Assume that

1 + 2 + 3 + · · · + k = k(k + 1)
2

,

where k is a positive integer. We show that

1 + 2 + 3 + · · · + (k + 1) = (k + 1)(k + 2)
2

.

Thus,

1 + 2 + 3 + · · · + (k + 1) = (1 + 2 + 3 + · · · + k) + (k + 1)

= k(k + 1)
2

+ (k + 1) = k(k + 1) + 2(k + 1)
2

= (k + 1)(k + 2)
2

.

By the Principle of Mathematical Induction,

1 + 2 + 3 + · · · + n = n(n + 1)
2

for every positive integer n.
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PROOF ANALYSIS In the proof of Result 6.3 (or of Result 6.4), we began by stating that induction was
being used. This alerts the reader of what to expect in the proof. Also, in the proof of the
inductive step, it is assumed that

1 + 2 + 3 + · · · + k = k(k + 1)
2

for a positive integer k, that is, for an arbitrary positive integer k. We do not assume that

1 + 2 + 3 + · · · + k = k(k + 1)
2

for every positive integer k as this would be assuming what we are attempting to prove
in Result 6.3 (and in Result 6.4). �

Carl Friedrich Gauss (1777–1855) is considered to be one of the most brilliant math-
ematicians of all time. The story goes that when he was very young (in grade school
in Germany) his teacher gave him and his classmates the supposedly unpleasant task
of adding the integers from 1 to 100. He obtained the correct result of 5050 quickly.
It is believed that he considered both the sum 1 + 2 + · · · + 100 and its reverse sum
100 + 99 + · · · + 1 and added these to obtain the sum 101 + 101 + · · · + 101, which
has 100 terms and so equals 10,100. Since this is twice the required sum, 1 + 2 + · · · +
100 = 10100/2 = 5050. This, of course, can be quite easily generalized to find a
formula for 1 + 2 + 3 + · · · + n, where n ∈ N. Let

S = 1 + 2 + 3 + · · · + n. (6.2)

If we reverse the order of the terms on the right side of (6.2), then we obtain

S = n + (n − 1) + (n − 2) + · · · + 1. (6.3)

Adding (6.2) and (6.3), we have

2S = (n + 1) + (n + 1) + (n + 1) + · · · + (n + 1). (6.4)

Since there are n terms on the right side of (6.4), we conclude that 2S = n(n + 1) or
S = n(n + 1)/2. Hence,

1 + 2 + 3 + · · · + n = n(n + 1)
2

.

You might think that the proof of Result 6.3 (and Result 6.4) that we gave by math-
ematical induction is longer (and more complicated) than the one we just gave and this
may very well be true. But, in general, mathematical induction is a technique that can be
used to prove a wide range of statements. In this chapter, we will see a variety of state-
ments where mathematical induction is a natural technique used in verifying their truth.
We begin with an example that leads to a problem involving mathematical induction.

Suppose that an n × n square S is composed of n2 1 × 1 squares. For all integers k
with 1 ≤ k ≤ n, how many different k × k squares does S contain? (See Figure 6.1 for
the case where n = 3.) For n = 3, the square S contains the 3 × 3 square S itself, four
2 × 2 squares and nine 1 × 1 squares (see Figure 6.1). Therefore, the number of different
squares that S contains is 1 + 4 + 9 = 12 + 22 + 32 = 14.

In order to determine the number of different k × k squares in an n × n square S,
we place S in the first quadrant of the coordinate plane so that the lower left corner of S
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Figure 6.1 The squares in a 3 × 3 square

................................
......

........
........
...................... (n, n)

x

(x, y)

S∗

(0, 0)

(x + k, y + k)

y

Figure 6.2 A k × k square in an n × n square

is at the origin (0, 0). (See Figure 6.2.) Then the upper right corner of S is at the point
(n, n). Consequently, the lower left corner of a k × k square S∗, where 1 ≤ k ≤ n, is at
some point (x, y), while the upper right corner of S∗ is at (x + k, y + k). Necessarily,
x and y are nonnegative integers with x + k ≤ n and y + k ≤ n (again see Figure 6.2).
Since 0 ≤ x ≤ n − k and 0 ≤ y ≤ n − k, the number of choices for each of x and y is
n − k + 1 and so the number of possibilities for (x, y) is (n − k + 1)2. Because k is any
of the integers 1, 2, . . . , n, the total number of different squares in S is

n∑
k=1

(n − k + 1)2 = n2 + (n − 1)2 + · · · + 22 + 12

= 12 + 22 + · · · + n2 =
n∑

k=1

k2.

Is there a compact formula for the expression
n∑

k=1

k2 = 12 + 22 + · · · + n2?
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For the problem we are describing, it would be very helpful to know the answer to this
question. Since we brought up this question, you might have already guessed that the
answer is yes. A formula is given next, along with a proof by induction.

Result 6.5 For every positive integer n,

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)
6

.

Proof We proceed by induction. Since 12 = (1 · 2 · 3)/6 = 1, the statement is true when n = 1.
Assume that

12 + 22 + · · · + k2 = k(k + 1)(2k + 1)
6

for an arbitrary positive integer k. We show that

12 + 22 + · · · + (k + 1)2 = (k + 1)(k + 2)(2k + 3)
6

.

Observe that

12 + 22 + · · · + (k + 1)2 = [12 + 22 + · · · + k2] + (k + 1)2

= k(k + 1)(2k + 1)
6

+ (k + 1)2

= k(k + 1)(2k + 1)
6

+ 6(k + 1)2

6

= (k + 1)[k(2k + 1) + 6(k + 1)]
6

= (k + 1)(2k2 + 7k + 6)
6

= (k + 1)(k + 2)(2k + 3)
6

,

as desired.
By the Principle of Mathematical Induction,

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)
6

for every positive integer n.

Strictly speaking, the last sentence in the proof of Result 6.5 is typical of the last
sentence of every proof using mathematical induction, for the idea is to show that the
hypothesis of the Principle of Mathematical Induction is satisfied and so the conclusion
follows. Some therefore omit this final sentence since it is understood that once prop-
erties (1) and (2) of Theorem 6.2 are satisfied, we have a proof. For emphasis, we will
continue to include this concluding sentence, however.

There is another question that might have occurred to you. We explained why
1 + 2 + · · · + n equals n(n + 1)/2, but how did we know that 12 + 22 + · · · + n2
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equals n(n + 1)(2n + 1)/6? We can actually show that 12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)/6 by using the formula 1 + 2 + · · · + n = n(n + 1)/2. We begin by
solving

(k + 1)3 = k3 + 3k2 + 3k + 1

for k2. Since 3k2 = (k + 1)3 − k3 − 3k − 1, it follows that

k2 = 1
3

[
(k + 1)3 − k3] − k − 1

3
and so

n∑
k=1

k2 = 1
3

[
n∑

k=1

(k + 1)3 −
n∑

k=1

k3

]
−

n∑
k=1

k − 1
3

n∑
k=1

1.

Therefore,
n∑

k=1

k2 = 1
3

[
(n + 1)3 − 13] − 1

2
n(n + 1) − 1

3
n

= n3 + 3n2 + 3n
3

− n2 + n
2

− n
3

= 2n3 + 6n2 + 6n − 3n2 − 3n − 2n
6

= 2n3 + 3n2 + n
6

= n(2n2 + 3n + 1)
6

= n(n + 1)(2n + 1)
6

.

This is actually an alternative proof that

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)
6

for every positive integer n but of course this proof depends on knowing that

1 + 2 + 3 + · · · + n = n(n + 1)
2

for every positive integer n.
We have now used mathematical induction to establish the formulas

1 + 2 + · · · + n = n(n + 1)
2

(6.5)

and

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)
6

(6.6)

for every positive integer n. We saw that (6.6) gives the number of different squares in an
n × n square composed of n2 1 × 1 squares. Actually, (6.5) gives the number of intervals
in an interval of length n composed of n intervals of length 1. You can probably guess
what 13 + 23 + · · · + n3 counts. Exercise 6.6 deals with this expression.

We now present a formula for

1
2 · 3

+ 1
3 · 4

+ · · · + 1
(n + 1)(n + 2)

for every positive integer n.



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M07_CHART6753_04_SE_C06 PH03348-Chartrand August 5, 2017 18:18 Char Count= 0

160 Chapter 6 Mathematical Induction

Result 6.6 For every positive integer n,

1
2 · 3

+ 1
3 · 4

+ · · · + 1
(n + 1)(n + 2)

= n
2n + 4

.

Proof We use induction. Since

1
2 · 3

= 1
2 · 1 + 4

= 1
6
,

the formula holds for n = 1. Assume that

1
2 · 3

+ 1
3 · 4

+ · · · + 1
(k + 1)(k + 2)

= k
2k + 4

for a positive integer k. We show that

1
2 · 3

+ 1
3 · 4

+ · · · + 1
(k + 2)(k + 3)

= k + 1
2(k + 1) + 4

= k + 1
2k + 6

.

Observe that

1
2 · 3

+ 1
3 · 4

+ · · · + 1
(k + 2)(k + 3)

=
[

1
2 · 3

+ 1
3 · 4

+ · · · + 1
(k + 1)(k + 2)

]
+ 1

(k + 2)(k + 3)

= k
2k + 4

+ 1
(k + 2)(k + 3)

= k
2(k + 2)

+ 1
(k + 2)(k + 3)

= k(k + 3) + 2
2(k + 2)(k + 3)

= k2 + 3k + 2
2(k + 2)(k + 3)

= (k + 1)(k + 2)
2(k + 2)(k + 3)

= k + 1
2(k + 3)

= k + 1
2k + 6

,

giving us the desired result. By the Principle of Mathematical Induction,

1
2 · 3

+ 1
3 · 4

+ · · · + 1
(n + 1)(n + 2)

= n
2n + 4

for every positive integer n.

PROOF ANALYSIS Each of the examples of mathematical induction proofs that we have seen involves a
certain amount of algebra. We’ll need to recall even more algebra soon. Many mistakes
in these proofs are due to algebra errors. Therefore, care must be taken. For example, in
the proof of Result 6.6, we encountered the sum

k
2(k + 2)

+ 1
(k + 2)(k + 3)

.

To add these fractions, we needed to find a common denominator (actually a least com-
mon denominator), which is 2(k + 2)(k + 3). This was used to obtain the next fraction,
that is,

k
2(k + 2)

+ 1
(k + 2)(k + 3)

= k(k + 3)
2(k + 2)(k + 3)

+ 2
2(k + 2)(k + 3)

= k(k + 3) + 2
2(k + 2)(k + 3)

.
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When we expanded and factored the numerator and then cancelled the term k + 2, this
was actually expected since the final result we were looking for was

k + 1
2k + 6

= k + 1
2(k + 3)

,

which does not contain k + 2 as a factor in the denominator. �

SECTION 6.1 EXERCISES

6.1. Which of the following sets are well-ordered?

(a) S = {x ∈ Q : x ≥ −10}
(b) S = {−2,−1, 0, 1, 2}
(c) S = {x ∈ Q : −1 ≤ x ≤ 1}
(d) S = {p : p is a prime} = {2, 3, 5, 7, 11, 13, 17, . . .}.

6.2. Prove that if A is any well-ordered set of real numbers and B is a nonempty subset of A, then B is also
well-ordered.

6.3. Prove that every nonempty set of negative integers has a largest element.

6.4. Prove that 1 + 3 + 5 + · · · + (2n − 1) = n2 for every positive integer n

(1) by mathematical induction and
(2) by adding 1 + 3 + 5 + · · · + (2n − 1) and (2n − 1) + (2n − 3) + · · · + 1.

6.5. Use mathematical induction to prove that

1 + 5 + 9 + · · · + (4n − 3) = 2n2 − n

for every positive integer n.

6.6. (a) We have seen that 12 + 22 + · · · + n2 is the number of squares in an n × n square composed of
n2 1 × 1 squares. What does 13 + 23 + 33 + · · · + n3 represent geometrically?

(b) Use mathematical induction to prove that 13 + 23 + 33 + · · · + n3 = n2(n + 1)2

4
for every positive

integer n.

6.7. Find another formula suggested by Exercises 6.4 and 6.5 and verify your formula by mathematical
induction.

6.8. Find a formula for 1 + 4 + 7 + · · · + (3n − 2) for positive integers n and then verify your formula by
mathematical induction.

6.9. Prove that 1 · 3 + 2 · 4 + 3 · 5 + · · · + n(n + 2) = n(n+1)(2n+7)
6 for every positive integer n.

6.10. Let r �= 1 be a real number. Use induction to prove that a + ar + ar2 + · · · + arn−1 = a(1−rn )
1−r for every

positive integer n.

6.11. Prove that 1
3·4 + 1

4·5 + · · · + 1
(n+2)(n+3) = n

3n+9 for every positive integer n.

6.12. Consider the open sentence P(n): 9 + 13 + · · · + (4n + 5) = 4n2+14n+1
2 , where n ∈ N.

(a) Verify the implication P(k) ⇒ P(k + 1) for an arbitrary positive integer k.
(b) Is ∀n ∈ N, P(n) true?
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6.13. Prove that 1 · 1! + 2 · 2! + · · · + n · n! = (n + 1)! − 1 for every positive integer n.

6.14. Prove that 2! · 4! · 6! · · · · · (2n)! ≥ [(n + 1)!]n for every positive integer n.

6.15. Prove that 1√
1

+ 1√
2

+ 1√
3

+ · · · + 1√
n ≤ 2

√
n − 1 for every positive integer n.

6.16. Prove that 7 | [34n+1 − 52n−1] for every positive integer n.

6.2 A MORE GENERAL PRINCIPLE
OF MATHEMATICAL INDUCTION

The Principle of Mathematical Induction, described in the preceding section, gives us a
technique for proving that a statement of the type

For every positive integer n, P(n).

is true. There are situations, however, when the domain of P(n) consists of those integers
greater than or equal to some fixed integer m different from 1. We now describe an
analogous technique to verify the truth of a statement of the following type where m
denotes some fixed integer:

For every integer n ≥ m, P(n).

According to the Well-Ordering Principle, the set N of natural numbers is well-
ordered, that is, every nonempty subset of N has a least element. As a consequence of
the Well-Ordering Principle, other sets are also well-ordered.

Theorem 6.7 For each integer m, the set

S = {i ∈ Z : i ≥ m}

is well-ordered.

The proof of Theorem 6.7 is left as an exercise (see Exercise 6.17). The following
is a consequence of Theorem 6.7. This is a slightly more general form of the Principle
of Mathematical Induction. Consequently, it is commonly referred to by the same name.

Theorem 6.8 (The Principle of Mathematical Induction) For a fixed integer m, let S = {i ∈ Z :
i ≥ m}. For each integer n ∈ S, let P(n) be a statement. If

(1) P(m) is true and

(2) the implication

If P(k), then P(k + 1).

is true for every integer k ∈ S,

then P(n) is true for every integer n ∈ S.

The proof of Theorem 6.8 is similar to the proof of Theorem 6.2. We also state
Theorem 6.8 symbolically.
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The
Principle of

Mathematical
Induction

For a fixed integer m, let S = {i ∈ Z : i ≥ m}. For each n ∈ S, let P(n) be a statement.
If

(1) P(m) is true and

(2) ∀k ∈ S, P(k) ⇒ P(k + 1) is true,

then ∀n ∈ S, P(n) is true.

This (more general) Principle of Mathematical Induction can be used to prove that
certain quantified statements of the type ∀n ∈ S, P(n) are true when S = {i ∈ Z : i ≥ m}
for a prescribed integer m. Of course, if m = 1, then S = N. We now consider several
examples.

Result 6.9 For every nonnegative integer n,

2n > n.

Proof We proceed by induction. The inequality holds for n = 0 since 20 > 0. Assume that
2k > k, where k is a nonnegative integer. We show that 2k+1 > k + 1. When k = 0, we
have 2k+1 = 2 > 1 = k + 1. We therefore assume that k ≥ 1. Then

2k+1 = 2 · 2k > 2k = k + k ≥ k + 1.

By the Principle of Mathematical Induction, 2n > n for every nonnegative integer n.

PROOF ANALYSIS Let’s review the proof of Result 6.9. First, since Result 6.9 concerns nonnegative inte-
gers, we are applying Theorem 6.8 when m = 0. We began by observing that 2n > n
when n = 0. Next we assumed that 2k > k, where k is a nonnegative integer. Our goal
was to show that 2k+1 > k + 1. It seems logical to observe that 2k+1 = 2 · 2k. Since we
knew that 2k > k, we have 2k+1 = 2 · 2k > 2k. If we could show that 2k ≥ k + 1, then
we have a proof. However, when k = 0, the inequality 2k ≥ k + 1 doesn’t hold. That’s
why we handled k = 0 separately in the proof. This allowed us to assume that k ≥ 1 and
then conclude that 2k ≥ k + 1.

We could have proved Result 6.9 a bit differently. We could have observed first that
2n > n when n = 0 and then proved that 2n > n for n ≥ 1 by induction. �

Our next example is to show that 2n > n2 if n is a sufficiently large integer. We begin
by trying a few values of n, as shown below. It appears that 2n > n2 whenever n ≥ 5.

n 2n n2

0 1 0
1 2 1
2 4 4
3 8 9
4 16 16
5 32 25
6 64 36

Comparing 2n and n2
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Result to Prove For every integer n ≥ 5,

2n > n2.

PROOF STRATEGY Let’s see what an induction proof of this result might look like. Of course, 2n > n2 when
n = 5. We assume that 2k > k2 where k ≥ 5 (and k is an integer) and we want to prove
that 2k+1 > (k + 1)2. We start with

2k+1 = 2 · 2k > 2k2.

We would have a proof if we could show that 2k2 ≥ (k + 1)2 or that 2k2 ≥ k2 + 2k + 1.

There are several convincing ways to show that 2k2 ≥ k2 + 2k + 1 for integers k ≥ 5.
Here’s one way:

Observe that 2k2 = k2 + k2 = k2 + k · k ≥ k2 + 5k since k ≥ 5. Also k2 + 5k =
k2 + 2k + 3k ≥ k2 + 2k + 3 · 5 = k2 + 2k + 15, again since k ≥ 5. Finally, k2 + 2k +
15 > k2 + 2k + 1. We now present a formal proof. (Here we are using the Principle of
Mathematical Induction with m = 5.) �

Result 6.10 For every integer n ≥ 5,

2n > n2.

Proof We proceed by induction. Since 25 > 52, the inequality holds for n = 5. Assume that
2k > k2 where k ≥ 5. We show that 2k+1 > (k + 1)2. Observe that

2k+1 = 2 · 2k > 2k2 = k2 + k2 ≥ k2 + 5k

= k2 + 2k + 3k ≥ k2 + 2k + 15

> k2 + 2k + 1 = (k + 1)2.

Therefore, 2k+1 > (k + 1)2. By the Principle of Mathematical Induction, 2n > n2 for
every integer n ≥ 5.

Result 6.11 For every nonnegative integer n,

3 | (
22n − 1

)
.

Proof We proceed by induction. The result is true when n = 0 since in this case 22n − 1 = 0
and 3 | 0. Assume that 3 | (

22k − 1
)
, where k is a nonnegative integer. We show that

3 | (
22k+2 − 1

)
. Since 3 | (

22k − 1
)
, there exists an integer x such that 22k − 1 = 3x and

so 22k = 3x + 1. Now,

22k+2 − 1 = 4 · 22k − 1 = 4(3x + 1) − 1 = 12x + 3 = 3(4x + 1).

Since 4x + 1 is an integer, 3 | (
22k+2 − 1

)
.

By the Principle of Mathematical Induction, 3 | (
22n − 1

)
for every nonnegative

integer n.

PROOF ANALYSIS Let’s review the preceding proof. As expected, to establish the inductive step, we as-
sumed that 3 | (

22k − 1
)

for an arbitrary nonnegative integer k and attempted to show that
3 | (

22k+2 − 1
)
. To verify that 3 | (

22k+2 − 1
)
, it was necessary to show that 22k+2 − 1
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is a multiple of 3, that is, we needed to show that 22k+2 − 1 can be expressed as 3z for
some integer z. Since our goal was to show that 22k+2 − 1 can be expressed in a certain
form, it is natural to consider 22k+2 − 1 and see how we might write it. Since we knew
that 22k − 1 = 3x, where x ∈ Z, it was logical to rewrite 22k+2 − 1 so that 22k appears.
Actually, this is quite easy since

22k+2 = 22 · 22k = 4 · 22k.

Therefore, 22k+2 − 1 = 4 · 22k − 1. At this point, we need to be a bit careful because the
expression we are currently considering is 4 · 22k − 1, not 4(22k − 1). That is, it would
be incorrect to say that 4 · 22k − 1 = 4(3x). Hence, we need to substitute for 22k in this
case, not for 22k − 1. This is the reason that in the proof we rewrote 22k − 1 = 3x as
22k = 3x + 1. �

While the proof of Result 6.11 used the Principle of Mathematical Induction, which
we are illustrating in this chapter, an even simpler proof exists. In Result 4.6(a), we
saw for an integer x that if 3 | x, then 3 | x2; while if 3 � x, then 3 | (x2 − 1). For every
nonnegative integer n, the integer 2n is not a multiple of 3, that is, 3 � 2n. Hence, by
Result 4.6(a), 3 | (

(2n)2 − 1
)

or, equivalently, 3 | (22n − 1).
We reinforce proof by mathematical induction with another example.

Result 6.12 For every nonnegative integer n,

9 | (
43n − 1

)
.

Proof We proceed by induction. When n = 0, 43n − 1 = 0. Since 9 | 0, the statement is true
when n = 0. Assume that 9 | (

43k − 1
)
, where k is a nonnegative integer. We now show

that 9 | (
43k+3 − 1

)
. Since 9 | (

43k − 1
)
, it follows that 43k − 1 = 9x for some integer x.

Hence, 43k = 9x + 1. Now, observe that

43k+3 − 1 = 43 · 43k − 1 = 64(9x + 1) − 1

= 64 · 9x + 64 − 1 = 64 · 9x + 63

= 9(64x + 7).

Since 64x + 7 is an integer, 9 | (
43k+3 − 1

)
.

By the Principle of Mathematical Induction, 9 | (
43n − 1

)
for every nonnegative

integer n.

As a final comment regarding the preceding proof, notice that we did not multiply
64 and 9 since we were about to factor 9 from the expression in the next step in any case.

For a positive integer n, the integer n factorial, denoted by n!, is defined as

n! = n(n − 1) · · · 3 · 2 · 1.

In particular, 1! = 1, 2! = 2 · 1 = 2 and 3! = 3 · 2 · 1 = 6. Also, 0! is defined as 0! = 1.
Among the many equalities and inequalities involving n! is the following.
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Result to Prove For every positive integer n,

1 · 3 · 5 · · · (2n − 1) = (2n)!
2n · n!

.

PROOF STRATEGY First, observe that

(2n)! = 2n · (2n − 1) · (2n − 2) · · · 3 · 2 · 1. (6.7)

Of the 2n terms in the right side of expression (6.7), n of them are even, namely 2, 4, 6,

. . . , 2n. If we were to factor 2 from each of these numbers, we obtain 2n · 1 · 2 · 3 · · · n =
2n · n!, while the remaining n integers, namely 1, 3, 5, . . . , 2n − 1, are all odd. Thus

(2n)! = 2n · n! · 1 · 3 · 5 · · · (2n − 1).

Therefore,

1 · 3 · 5 · · · (2n − 1) = (2n)!
2n · n!

.

This equality can also be established by induction. �

Result 6.13 For every positive integer n,

1 · 3 · 5 · · · (2n − 1) = (2n)!
2n · n!

.

Proof We proceed by induction. Since

1 = (2 · 1)!
21 · 1!

= 2
2
,

the statement is true for n = 1. Assume, for a positive integer k, that

1 · 3 · 5 · · · (2k − 1) = (2k)!
2k · k!

.

We show that

1 · 3 · 5 · · · (2k + 1) = (2k + 2)!
2k+1 · (k + 1)!

.

Observe that
(2k + 2)!

2k+1 · (k + 1)!
= (2k + 2)(2k + 1)

2 · (k + 1)
· (2k)!

2k · (k)!
= (2k + 1)[1 · 3 · 5 · · · (2k − 1)]

= 1 · 3 · 5 · · · (2k + 1).

By the Principle of Mathematical Induction,

1 · 3 · 5 · · · (2n − 1) = (2n)!
2n · n!

for every positive integer n.

We saw in Theorem 3.12 that for an integer x, its square x2 is even if and only if x is
even. This is actually a consequence of Theorem 3.17, which states that for integers a and
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b, their product ab is even if and only if a or b is even. We now present a generalization
of Theorem 3.12.

Result 6.14 Let x ∈ Z. For every integer n ≥ 2, xn is even if and only if x is even.

Proof Assume, first, that x is even. Then x = 2y for some integer y. Hence,

xn = x · xn−1 = (2y)xn−1 = 2
(
yxn−1) .

Since yxn−1 is an integer, xn is even.
We now verify the converse, namely if xn is even, where n ≥ 2, then x is even. We

proceed by induction. If x2 is even, then we have already seen that x is even. Hence, the
statement is true for n = 2. Assume that if xk is even for some integer k ≥ 2, then x is
even. We show that if xk+1 is even, then x is even. Let xk+1 be an even integer. Then x · xk

is even. By Theorem 3.17, x is even or xk is even. If x is even, then the result is proved.
On the other hand, if xk is even, then, by the induction hypothesis, x is even as well. By
the Principle of Mathematical Induction, it follows, for every integer n ≥ 2, that if xn is
even, then x is even.

Although it is impossible to illustrate every type of result where induction can be
used, we give two examples that are considerably different than those we have seen.

One of De Morgan’s laws (see Theorem 4.22) states that

A ∪ B = A ∩ B

for every two sets A and B. It is possible to use this law to show that

A ∪ B ∪ C = A ∩ B ∩ C

for every three sets A, B andC. We show how induction can be used to prove De Morgan’s
law for any finite number of sets.

Theorem 6.15 If A1, A2, . . . , An are n ≥ 2 sets, then

A1 ∪ A2 ∪ · · · ∪ An = A1 ∩ A2 ∩ · · · ∩ An.

Proof We proceed by induction. For n = 2, the result is De Morgan’s Law and is therefore
true. Assume that the result is true for any k sets, where k ≥ 2; that is, assume that if
B1, B2, . . . , Bk are any k sets, then

B1 ∪ B2 ∪ · · · ∪ Bk = B1 ∩ B2 ∩ · · · ∩ Bk.

We prove that the result is true for any k + 1 sets. Let S1, S2, . . . , Sk+1 be k + 1 sets. We
show that

S1 ∪ S2 ∪ · · · ∪ Sk+1 = S1 ∩ S2 ∩ · · · ∩ Sk+1.

Let T = S1 ∪ S2 ∪ · · · ∪ Sk. Then

S1 ∪ S2 ∪ · · · ∪ Sk+1 = (S1 ∪ S2 ∪ · · · ∪ Sk ) ∪ Sk+1 = T ∪ Sk+1.

Now, by De Morgan’s Law,

T ∪ Sk+1 = T ∩ Sk+1.
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By the definition of T and by the inductive hypothesis, we have

T = S1 ∪ S2 ∪ · · · ∪ Sk = S1 ∩ S2 ∩ · · · ∩ Sk.

Therefore,

S1 ∪ S2 ∪ · · · ∪ Sk+1 = T ∪ Sk+1 = T ∩ Sk+1

= S1 ∩ S2 ∩ · · · ∩ Sk ∩ Sk+1.

By the Principle of Mathematical Induction, for every n ≥ 2 sets A1, A2, . . . , An,

A1 ∪ A2 ∪ · · · ∪ An = A1 ∩ A2 ∩ · · · ∩ An,

as desired.

PROOF ANALYSIS A few comments may be useful concerning the notation used in the statement and the
proof of Theorem 6.15. First, the sets A1, A2, . . . , An were used in the statement of
Theorem 6.15 only as an aid to describe the result. Theorem 6.15 could have also been
stated as:

For every integer n ≥ 2, the complement of the union of any n sets equals the
intersection of the complements of these sets.

To verify the inductive step in the proof of Theorem 6.15, we assumed that the
statement is true for any k ≥ 2 sets, which we denoted by B1, B2, . . . , Bk. The fact that
we used A1, A2, . . . , An to describe the statement of Theorem 6.15 did not mean that we
should use A1, A2, . . . , Ak for the k sets in the inductive hypothesis. In fact, it is probably
better that we do not use this notation. In the inductive step, we now need to show that
the result is true for any k + 1 sets. We used S1, S2, . . . , Sk+1 for these sets. It would have
been a bad idea to denote the k + 1 sets by B1, B2, . . . , Bk+1 because that would have
(improperly) suggested that k of the k + 1 sets must specifically be the sets mentioned
in the inductive hypothesis. �

We are now able to prove another well-known theorem concerning sets, to which
we earlier referred.

Theorem 6.16 If A is a finite set of cardinality n ≥ 0, then the cardinality of its power set P (A) is 2n.

Proof We proceed by induction. If A is a set with |A| = 0, then A = ∅. Thus, P (A) = {∅} and
so |P (A)| = 1 = 20. Therefore, the theorem is true for n = 0. Assume that if B is any
set with |B| = k for some nonnegative integer k, then |P (B)| = 2k. We show that if C is
a set with |C| = k + 1, then |P (C)| = 2k+1. Let

C = {c1, c2, . . . , ck+1}.
By the inductive hypothesis, there are 2k subsets of the set {c1, c2, . . . , ck}, that is, there
are 2k subsets of C not containing ck+1. Any subset of C containing ck+1 can be expressed
as D ∪ {ck+1}, where D ⊆ {c1, c2, . . . , ck}. Again, by the inductive hypothesis, there are
2k such subsets D. Therefore, there are 2k + 2k = 2 · 2k = 2k+1 subsets of C.
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By the Principle of Mathematical Induction, it follows for every nonnegative integer
n that if |A| = n, then |P (A)| = 2n.

Of course, Theorem 6.16 could also be stated as:

The number of subsets of a finite set with n elements is 2n.

SECTION 6.2 EXERCISES

6.17. Prove Theorem 6.7: For each integer m, the set S = {i ∈ Z : i ≥ m} is well-ordered. [Hint: For every
subset T of S, either T ⊆ N or T − N is a finite nonempty set.]

6.18. Prove that 2n > n3 for every integer n ≥ 10.

6.19. Prove the following implication for every integer n ≥ 2: If x1, x2, . . . , xn are any n real numbers such that
x1 · x2 · · · · · xn = 0, then at least one of the numbers x1, x2, . . . , xn is 0. (Use the fact that if the product of
two real numbers is 0, then at least one of the numbers is 0.)

6.20. (a) Use mathematical induction to prove that every finite nonempty set of real numbers has a largest
element.

(b) Use (a) to prove that every finite nonempty set of real numbers has a smallest element.

6.21. Prove that 4 | (5n − 1) for every nonnegative integer n.

6.22. Prove that 3n > n2 for every positive integer n.

6.23. Prove that 7 | (
32n − 2n

)
for every nonnegative integer n.

6.24. Prove Bernoulli’s Identity: For every real number x > −1 and every positive integer n,

(1 + x)n ≥ 1 + nx.

6.25. Prove that n! > 2n for every integer n ≥ 4.

6.26. Prove that 81 | (10n+1 − 9n − 10) for every nonnegative integer n.

6.27. Prove that 1 + 1
4 + 1

9 + · · · + 1
n2 ≤ 2 − 1

n for every positive integer n.

6.28. In Exercise 4.6 of Chapter 4, you were asked to prove that if 3 | 2a, where a ∈ Z, then 3 | a. Assume that
this result is true. Prove the following generalization: Let a ∈ Z. For every positive integer n, if 3 | 2na, then
3 | a.

6.29. Prove that if A1, A2, . . . , An are any n ≥ 2 sets, then

A1 ∩ A2 ∩ · · · ∩ An = A1 ∪ A2 ∪ · · · ∪ An.

6.30. Recall for integers n ≥ 2, a, b, c, d, that if a ≡ b (mod n) and c ≡ d (mod n), then both
a + c ≡ b + d (mod n) and ac ≡ bd (mod n). Use these results and mathematical induction to prove the
following: For any 2m integers a1, a2, . . . , am and b1, b2, . . . , bm for which ai ≡ bi (mod n) for 1 ≤ i ≤ m,

(a) a1 + a2 + · · · + am ≡ b1 + b2 + · · · + bm (mod n) and
(b) a1a2 · · · am ≡ b1b2 · · · bm (mod n).

6.31. We saw in Exercise 5.7(a) that (a + b)( 1
a + 1

b ) ≥ 4 for every two positive real numbers a and b. Prove for
every n ≥ 1 positive real numbers a1, a2, . . . , an that(

n∑
i=1

ai

) (
n∑

i=1

1
ai

)
≥ n2.
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6.32. Prove for every n ≥ 2 positive real numbers a1, a2, . . . , an that

(n − 1)
n∑

i=1

a2
i ≥ 2

∑
1≤i< j≤n

aia j. (6.8)

[Note: When n = 4, for example, (6.8) states that
3(a2

1 + a2
2 + a2

3 + a2
4) ≥ 2(a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4).]

6.3 THE STRONG PRINCIPLE OF MATHEMATICAL INDUCTION

There is one last form of mathematical induction. This principle goes by many names: the
Strong Principle of Mathematical Induction, the Strong Form of Induction, the Alternate
Form of Mathematical Induction and the Second Principle of Mathematical Induction
are common names.

Theorem 6.17 (The Strong Principle of Mathematical Induction) For each positive integer n, let
P(n) be a statement. If

(a) P(1) is true and

(b) the implication

If P(i) for every integer i with 1 ≤ i ≤ k, then P(k + 1).

is true for every positive integer k,

then P(n) is true for every positive integer n.

As with the Principle of Mathematical Induction (Theorem 6.2), the Strong Principle
of Mathematical Induction is also a consequence of the Well-Ordering Principle. The
Strong Principle of Mathematical Induction is now stated more symbolically below.

The Strong
Principle of

Mathematical
Induction

For each positive integer n, let P(n) be a statement. If

(1) P(1) is true and

(2) ∀k ∈ N, P(1) ∧ P(2) ∧ · · · ∧ P(k) ⇒ P(k + 1) is true,

then ∀n ∈ N, P(n) is true.

The difference in the statements of the Principle of Mathematical Induction and
the Strong Principle of Mathematical Induction lies in the inductive step (condition 2).
To prove that ∀n ∈ N, P(n) is true by the Principle of Mathematical Induction, we are
required to show that P(1) is true and to verify the implication:

If P(k), then P(k + 1). (6.9)

is true for every positive integer k. On the other hand, to prove ∀n ∈ N, P(n) is true by
the Strong Principle of Mathematical Induction, we are required to show that P(1) is
true and to verify the implication:

If P(i) for every i with 1 ≤ i ≤ k, then P(k + 1). (6.10)
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is true for every positive integer k. If we were to give direct proofs of the implications
(6.9) and (6.10), then we are permitted to assume more in the inductive step (6.10) of the
Strong Principle of Mathematical Induction than in the induction step (6.9) of the Princi-
ple of Mathematical Induction and yet obtain the same conclusion. If the assumption that
P(k) is true is insufficient to verify the truth of P(k + 1) for an arbitrary positive integer
k, but the assumption that all of the statements P(1), P(2), . . . , P(k) are true is sufficient
to verify the truth of P(k + 1), then this suggests that we should use the Strong Princi-
ple of Mathematical Induction. Indeed, any result that can be proved by the Principle
of Mathematical Induction can also be proved by the Strong Principle of Mathematical
Induction.

Just as there is a more general version of the Principle of Mathematical Induction
(namely, Theorem 6.2), there is a more general version of the Strong Principle of Math-
ematical Induction. We shall also refer to this as the Strong Principle of Mathematical
Induction.

Theorem 6.18 (The Strong Principle of Mathematical Induction) For a fixed integer m, let S =
{i ∈ Z : i ≥ m}. For each n ∈ S, let P(n) be a statement. If

(1) P(m) is true and

(2) the implication

If P(i) for every integer i with m ≤ i ≤ k, then P(k + 1).

is true for every integer k ∈ S,

then P(n) is true for every integer n ∈ S.

We now consider a class of mathematical statements where the Strong Principle of
Mathematical Induction is commonly the appropriate proof technique.

Suppose that we are considering a sequence a1, a2, a3, . . . of numbers, also ex-
pressed as {an}. One way of defining a sequence {an} is to specify explicitly the nth term

an (as a function of n). For example, we might have an = 1
n
, an = (−1)n

n2
or an = n3 + n

for each n ∈ N. A sequence can also be defined recursively. In a recursively-defined
sequence {an}, only the first term or perhaps the first few terms are defined specifically,
say a1, a2, . . . , ak for some fixed k ∈ N. These are called the initial values. Then ak+1

is expressed in terms of a1, a2, . . . , ak and, more generally, for n > k, an is expressed in
terms of a1, a2, . . . , an−1. This is called the recurrence relation.

A specific example of this is the sequence {an} defined by a1 = 1, a2 = 3 and
an = 2an−1 − an−2 for n ≥ 3. In this case, there are two initial values, namely a1 = 1
and a2 = 3. The recurrence relation here is

an = 2an−1 − an−2 for n ≥ 3.

Letting n = 3, we find that a3 = 2a2 − a1 = 5; while letting n = 4, we have a4 = 2a3 −
a2 = 7. Similarly, a5 = 9 and a6 = 11. From this information, one might well conjecture
(guess) that an = 2n − 1 for every n ∈ N. (Conjectures will be discussed in more detail
in Section 8.1.) Using the Strong Principle of Mathematical Induction, we can, in fact,
prove that this conjecture is true.
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Result 6.19 A sequence {an} is defined recursively by

a1 = 1, a2 = 3 and an = 2an−1 − an−2 for n ≥ 3.

Then an = 2n − 1 for all n ∈ N.

Proof We proceed by induction. Since a1 = 2 · 1 − 1 = 1, the formula holds for n = 1.
Assume for an arbitrary positive integer k that ai = 2i − 1 for all integers i with 1 ≤ i ≤ k.
We show that ak+1 = 2(k + 1) − 1 = 2k + 1. If k = 1, then ak+1 = a2 = 2 · 1 + 1 = 3.
Since a2 = 3, it follows that ak+1 = 2k + 1 when k = 1. Hence, we may assume that
k ≥ 2. Since k + 1 ≥ 3, it follows that

ak+1 = 2ak − ak−1 = 2(2k − 1) − (2k − 3) = 2k + 1,

which is the desired result. By the Strong Principle of Mathematical Induction, an =
2n − 1 for all n ∈ N.

PROOF ANALYSIS A few comments about the proof of Result 6.19 are in order. At one point, we assumed
for an arbitrary positive integer k that ai = 2i − 1 for all integers i with 1 ≤ i ≤ k. Our
goal was to show that ak+1 = 2k + 1. Since k is a positive integer, it may occur that k = 1
or k ≥ 2. If k = 1, then we need to show that ak+1 = a2 = 2 · 1 + 1 = 3. That a2 = 3 is
known because this is one of the initial values. If k ≥ 2, then k + 1 ≥ 3 and ak+1 can be
expressed as 2ak − ak−1 by the recurrence relation. In order to show that ak+1 = 2k + 1
when k ≥ 2, it was necessary to know that ak = 2k − 1 and that ak−1 = 2(k − 1) − 1 =
2k − 3. Because we were using the Strong Principle of Mathematical Induction, we knew
both pieces of information. If we had used the Principle of Mathematical Induction, then
we would have assumed (and therefore knew) that ak = 2k − 1 but we would not have
known that ak−1 = 2k − 3, and so we would have been unable to establish the desired
expression for ak+1. �

Example 6.20 A sequence {an} is defined recursively by

a1 = 1, a2 = 4 and an = 2an−1 − an−2 + 2 for n ≥ 3.

Conjecture a formula for an and verify that your conjecture is correct.

Solution We begin by finding a few more terms of the sequence. Observe that a3 = 2a2 −
a1 + 2 = 9, while a4 = 2a3 − a2 + 2 = 16 and a5 = 2a4 − a3 + 2 = 25. The obvious
conjecture here is that an = n2 for every positive integer n. We verify that this conjecture
is correct in the next result. �

Result 6.21 A sequence {an} is defined recursively by

a1 = 1, a2 = 4 and an = 2an−1 − an−2 + 2 for n ≥ 3.

Then an = n2 for all n ∈ N.

Proof We proceed by induction. Since a1 = 1 = 12, the formula holds for n = 1. Assume for
an arbitrary positive integer k that ai = i2 for every integer i with 1 ≤ i ≤ k. We show
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that ak+1 = (k + 1)2. Since a2 = 4, it follows that ak+1 = (k + 1)2 when k = 1. Thus,
we may assume that k ≥ 2. Hence, k + 1 ≥ 3 and so

ak+1 = 2ak − ak−1 + 2 = 2k2 − (k − 1)2 + 2

= 2k2 − (k2 − 2k + 1) + 2 = k2 + 2k + 1 = (k + 1)2.

By the Strong Principle of Mathematical Induction, an = n2 for all n ∈ N.

Although we mentioned that problems involving recurrence relations are commonly
solved with the aid of the Strong Principle of Mathematical Induction, it is by no means
the only kind of problem where the Strong Principle of Mathematical Induction can be
applied. Although the best examples of this require a knowledge of mathematics beyond
what we have covered thus far, we do present another type of example, namely an exam-
ple of the type given in Result 5.26. Indeed, the following result appears as Exercise 5.51
but here we give a proof using the Strong Principle of Mathematical Induction.

Result 6.22 For each integer n ≥ 8, there are nonnegative integers a and b such that n = 3a + 5b.

Proof We proceed by induction. Since 8 = 3 · 1 + 5 · 1, the statement is true for n = 8. Assume
for each integer i with 8 ≤ i ≤ k, where k ≥ 8 is an arbitrary integer, that there are non-
negative integers s and t such that i = 3s + 5t. Consider the integer k + 1. We show that
there are nonnegative integers x and y such that k + 1 = 3x + 5y. Since 9 = 3 · 3 + 5 · 0
and 10 = 3 · 0 + 5 · 2, this is true if k + 1 = 9 and k + 1 = 10. Hence, we may assume
that k + 1 ≥ 11. Thus, 8 ≤ (k + 1) − 3 < k. By the induction hypothesis, there are non-
negative integers a and b such that

(k + 1) − 3 = 3a + 5b and so k + 1 = 3(a + 1) + 5b.

Letting x = a + 1 and y = b, we have the desired conclusion.
By the Strong Principle of Mathematical Induction, for every integer n ≥ 8, there

are nonnegative integers a and b such that n = 3a + 5b.

We close this section with a result of a different type whose proof uses the Strong
Principle of Mathematical Induction. First, we observe that for the irrational number
r = 3+√

5
2 , it follows that r + 1

r = 3.

Result 6.23 If r is a nonzero real number such that r + 1
r is an integer, then rn + 1

rn is an integer for
every positive integer n.

Proof We use the Strong Principle of Mathematical Induction. Let r be a nonzero real number
such that r + 1

r is an integer. Since r + 1
r = r1 + 1

r1 is an integer, the statement is true
for n = 1. Assume for an arbitrary integer k ≥ 1 that mi = ri + 1

ri is an integer for every
integer i with 1 ≤ i ≤ k. We show that rk+1 + 1

rk+1 is an integer. Observe that

rk+1 + 1
rk+1

=
(

rk + 1
rk

)(
r + 1

r

)
−

(
rk−1 + 1

rk−1

)

= mkm1 − mk−1 ∈ Z.
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By the Strong Principle of Mathematical Induction, if r is a nonzero real number such
that r + 1

r ∈ Z, then rn + 1
rn ∈ Z for every positive integer n.

SECTION 6.3 EXERCISES

6.33. A sequence {an} is defined recursively by a1 = 1 and an = 2an−1 for n ≥ 2. Conjecture a formula for an

and verify that your conjecture is correct.

6.34. A sequence {an} is defined recursively by a1 = 1, a2 = 2 and an = an−1 + 2an−2 for n ≥ 3. Conjecture a
formula for an and verify that your conjecture is correct.

6.35. A sequence {an} is defined recursively by a1 = 1, a2 = 4, a3 = 9 and

an = an−1 − an−2 + an−3 + 2(2n − 3)

for n ≥ 4. Conjecture a formula for an and prove that your conjecture is correct.

6.36. Consider the sequence F1, F2, F3, . . . , where

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5 and F6 = 8.

The terms of this sequence are called Fibonacci numbers.

(a) Define the sequence of Fibonacci numbers by means of a recurrence relation.
(b) Prove that 2 | Fn if and only if 3 | n.

6.37. Exercise 5.52 asked for a proof of the following statement: For each integer n ≥ 12, there exist nonnegative
integers a and b such that n = 3a + 7b. Use the Strong Principle of Mathematical Induction to give an
alternative proof of this statement.

6.38. Use the Strong Principle of Mathematical Induction to prove the following. Let S = {i ∈ Z : i ≥ 2} and let
P be a subset of S with the properties that 2, 3 ∈ P and if n ∈ S, then either n ∈ P or n = ab, where a, b ∈ S.
Then every element of S either belongs to P or can be expressed as a product of elements of P. [Note: You
might recognize the set P of primes. This is an important theorem in mathematics which appears as
Theorem 12.17 in Chapter 12.]

6.39. Prove that there exists an odd integer m such that every odd integer n with n ≥ m can be expressed either as
3a + 11b or as 5c + 7d for nonnegative integers a, b, c and d.

6.4 PROOF BY MINIMUM COUNTEREXAMPLE

Suppose that P(n) is a statement for each positive integer n. We have seen that induction
is a natural proof technique that can be used to verify the truth of the quantified statement

∀n ∈ N, P(n). (6.11)

There are certainly such quantified statements where induction does not work or does
not work well. If we would attempt to prove (6.11) using a proof by contradiction, then
we would begin such a proof by assuming that the statement ∀n ∈ N, P(n) is false. Con-
sequently, there are positive integers n such that P(n) is a false statement. By the Well-
Ordering Principle, there exists a smallest positive integer n such that P(n) is a false
statement. Denote this integer by m. Therefore, P(m) is a false statement and for any
integer k with 1 ≤ k < m, the statement P(k) is true. The integer m is referred to as
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a minimum counterexample of the statement (6.11). If a proof (by contradiction) of
∀n ∈ N, P(n) can be given using the fact that m is a minimum counterexample, then
such a proof is called a proof by minimum counterexample.

We now illustrate this proof technique. For the example we are about to describe, it
is useful to recall from algebra that

(a + b)3 = a3 + 3a2b + 3ab2 + b3.

Suppose that we wish to prove that 6 | (n3 − n) for every positive integer n. An induction
proof would probably start like this:

If n = 1, then n3 − n = 0. Since 6 | 0, the result is true for n = 1. Assume that
6 | (

k3 − k
)
, where k is a positive integer. We wish to prove that 6 | [

(k + 1)3 − (k + 1)
]
.

Since 6 | (
k3 − k

)
, it follows that k3 − k = 6x for some integer x. Then

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1 − k − 1

= (k3 − k) + 3k2 + 3k

= 6x + 3k(k + 1).

If we can show that 6 | 3k(k + 1), we have a proof. To show this, we need only verify
that k(k + 1) is an even integer for every positive integer k. A lemma could be introduced
to verify this. This lemma could be proved in two cases (k is even and k is odd) or even
induction could be used. Although such a lemma would not be difficult to prove, we give
an alternative proof that avoids the need for a lemma.

Result 6.24 For every positive integer n,

6 | (
n3 − n

)
.

Proof Assume, to the contrary, that there are positive integers n such that 6 � (n3 − n). Then
there is a smallest positive integer n such that 6 �

(
n3 − n

)
. Let m be this integer. If n = 1,

then n3 − n = 0; while if n = 2, then n3 − n = 6. Since 6 | 0 and 6 | 6, it follows that
6 | (

n3 − n
)

for n = 1 and n = 2. Therefore m ≥ 3. So, we can write m = k + 2, where
1 ≤ k < m. Observe that

m3 − m = (k + 2)3 − (k + 2) = (k3 + 6k2 + 12k + 8) − (k + 2)

= (k3 − k) + (6k2 + 12k + 6).

Since k < m, it follows that 6 | (
k3 − k

)
. Hence, k3 − k = 6x for some integer x. So, we

have

m3 − m = 6x + 6(k2 + 2k + 1) = 6(x + k2 + 2k + 1).

Since x + k2 + 2k + 1 is an integer, 6 | (
m3 − m

)
, which produces a contradiction.

PROOF ANALYSIS Let’s see how this proof was constructed. In this proof, m is a positive integer such that
6 �

(
m3 − m

)
; while for every positive integer n with n < m, we have 6 | (

n3 − n
)
. We

are trying to determine just how large m needs to be to obtain a contradiction. We saw
that 6 | (13 − 1) and 6 | (23 − 2); so m ≥ 3. Knowing that m ≥ 3 allowed us to write
m as k + 2, where 1 ≤ k < m. Because 1 ≤ k < m, we know that 6 | (

k3 − k
)

and so
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k3 − k = 6x, where x ∈ Z. So, in the proof, we wrote

m3 − m = (k + 2)3 − (k + 2) = (k3 + 6k2 + 12k + 8) − (k + 2)

= (k3 − k) + (6k2 + 12k + 6) = 6x + 6k2 + 12k + 6.

The fact that we can factor 6 from 6x + 6k2 + 12k + 6 is what allowed us to conclude
that 6 | (

m3 − m
)

and obtain a contradiction. But how did we know that we wanted
m ≥ 3? If we had only observed that 6 | (13 − 1) and not that 6 | (23 − 2), then we would
have known only that m ≥ 2, which would have allowed us to write m = k + 1, where
1 ≤ k < m. Of course, we would still know that 6 | (

k3 − k
)

and so k3 − k = 6x, where
x ∈ Z. However, when we consider m3 − m, we would have

m3 − m = (k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1) − (k + 1)

= (k3 − k) + 3k2 + 3k = (k3 − k) + 3k(k + 1)

= 6x + 3k(k + 1).

As it stands, we can factor 3 from 6x + 3k(k + 1) but cannot factor 6 unless we can
prove that k(k + 1) is even. This is the same difficulty we encountered when we were
considering an induction proof. In any case, no contradiction is obtained. �

If a result can be proved by induction, then it can also be proved by minimum coun-
terexample. It was proved in Result 6.11 that 3 | (

22n − 1
)

for every nonnegative integer
n. We now give a proof of this result by minimum counterexample.

Result 6.25 For every nonnegative integer n,

3 | (
22n − 1

)
.

Proof Assume, to the contrary, that there are nonnegative integers n for which 3 �
(
22n − 1

)
. By

Theorem 6.7, there is a smallest nonnegative integer n such that 3 �
(
22n − 1

)
. Denote

this integer by m. Thus 3 �
(
22m − 1

)
and 3 | (

22n − 1
)

for all nonnegative integers n for
which 0 ≤ n < m. Since 3 | (

22n − 1
)

when n = 0, it follows that m ≥ 1. Hence, m can
be expressed by m = k + 1, where 0 ≤ k < m. Thus, 3 | (

22k − 1
)
, which implies that

22k − 1 = 3x for some integer x. Consequently, 22k = 3x + 1. Observe that

22m − 1 = 22(k+1) − 1 = 22k+2 − 1 = 22 · 22k − 1

= 4(3x + 1) − 1 = 12x + 3 = 3(4x + 1).

Since 4x + 1 is an integer, 3 | (
22m − 1

)
, which produces a contradiction.

Even though a proof by minimum counterexample is really a proof by contradiction,
this has a close connection to an induction proof. While a proof by minimum counterex-
ample occurs rarely in more elementary mathematics, it can be quite useful in more
advanced mathematics. We give one additional example, a familiar one, using a proof
by minimum counterexample.

Result 6.26 For every positive integer n,

1 + 2 + 3 + · · · + n = n(n + 1)
2

.
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Proof Assume, to the contrary, that

1 + 2 + 3 + · · · + n �= n(n + 1)
2

for some positive integers n. By the Well-Ordering Principle, there is a smallest positive
integer n such that

1 + 2 + 3 + · · · + n �= n(n + 1)
2

.

Denote this integer by m. Therefore,

1 + 2 + 3 + · · · + m �= m(m + 1)
2

,

while

1 + 2 + 3 + · · · + n = n(n + 1)
2

for every integer n with 1 ≤ n < m. Since 1 = 1(1 + 1)/2, it follows that m ≥ 2. Hence,
we can write m = k + 1, where 1 ≤ k < m. Consequently,

1 + 2 + 3 + · · · + k = k(k + 1)
2

.

Observe that

1 + 2 + 3 + · · · + m = 1 + 2 + 3 + · · · + (k + 1) = (1 + 2 + 3 + · · · + k) + (k + 1)

= k(k + 1)
2

+ (k + 1) = k(k + 1) + 2(k + 1)
2

= (k + 1)(k + 2)
2

= m(m + 1)
2

,

which produces a contradiction.

SECTION 6.4 EXERCISES

6.40. Use the method of minimum counterexample to prove Result 6.23: If r is a nonzero real number such that
r + 1

r is an integer, then rn + 1
rn is an integer for every positive integer n.

6.41. Give a proof by minimum counterexample that 1 + 3 + 5 + · · · + (2n − 1) = n2 for every positive
integer n.

6.42. Prove that 5 | (
n5 − n

)
for every integer n.

6.43. Use proof by minimum counterexample to prove that 3 | (
2n + 2n+1

)
for every nonnegative integer n.

6.44. Give a proof by minimum counterexample that 2n > n2 for every integer n ≥ 5.

6.45. Prove that 12 | (
n4 − n2

)
for every positive integer n.

6.46. Let S = {2n : n ∈ Z, n ≥ 0}. Use proof by minimum counterexample to prove that for every n ∈ N, there
exists a subset Sn of S such that

∑
i∈Sn

i = n.

6.47. Use proof by minimum counterexample to prove that 6 | 7n
(
n2 − 1

)
for every positive integer n.



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M07_CHART6753_04_SE_C06 PH03348-Chartrand August 29, 2017 18:46 Char Count= 0

178 Chapter 6 Mathematical Induction

The Chapter
Presentation for
Chapter 6 can be
found at
goo.gl/kRsRfB

Chapter 6 Supplemental Exercises

6.48. Prove that 1 · 2 + 2 · 3 + 3 · 4 + · · · + n(n + 1) = n(n+1)(n+2)
3 for every positive

integer n.

6.49. Prove that 4n > n3 for every positive integer n.

6.50. Prove that 24 | (52n − 1) for every positive integer n.

6.51. By Result 6.5,

12 + 22 + 32 + · · · + n2 = n(n + 1)(2n + 1)
6

(6.12)

for every positive integer n.

(a) Use (6.12) to determine a formula for 22 + 42 + 62 + · · · + (2n)2 for every
positive integer n.

(b) Use (6.12) and (a) to determine a formula for 12 + 32 + 52 + · · · + (2n − 1)2 for
every positive integer n.

(c) Use (a) and (b) to determine a formula for

12 − 22 + 32 − 42 + · · · + (−1)n+1n2

for every positive integer n.
(d) Use mathematical induction to verify the formulas in (b) and (c).

6.52. Use the Strong Principle of Mathematical Induction to prove that for each integer
n ≥ 28, there are nonnegative integers x and y such that n = 5x + 8y.

6.53. Use the Principle of Mathematical Induction to show that there exists a positive
integer m such that for each integer n ≥ m, there are positive integers x and y such
that n = 3x + 5y.

6.54. Use the Principle of Mathematical Induction to show that there exists a positive
integer m such that for each integer n ≥ m, there are integers x, y ≥ 2 such that
n = 2x + 3y.

6.55. A sequence {an} of real numbers is defined recursively by a1 = 1, a2 = 2 and
an = ∑n−1

i=1 (i − 1)ai for n ≥ 3. Prove that an = (n − 1)! for every integer n ≥ 3.

6.56. Consider the sequence a1 = 2, a2 = 5, a3 = 9, a4 = 14, etc.

(a) Find a recurrence relation that expresses an in terms of an−1 for every integer
n ≥ 2.

(b) Conjecture an explicit formula for an and then prove that your conjecture is
correct.

6.57. The following theorem allows one to prove certain quantified statements over some
finite sets.

The Principle of Finite Induction For a fixed positive integer m, let
S = {1, 2, . . . , m}. For each n ∈ S, let P(n) be a statement. If

(a) P(1) is true and
(b) the implication

If P(k), then P(k + 1).

is true for every integer k with 1 ≤ k < m,
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then P(n) is true for every integer n ∈ S.
Use the Principle of Finite Induction to prove the following result.
Let S = {1, 2, . . . , 24}. For every integer t with 1 ≤ t ≤ 300, there exists a subset
St ⊆ S such that

∑
i∈St

i = t.

6.58. Evaluate the proposed proof of the following result.

Result For every positive integer n,

1 + 3 + 5 + · · · + (2n − 1) = n2.

Proof We proceed by induction. Since 2 · 1 − 1 = 12, the formula holds for n = 1.
Assume that 1 + 3 + 5 + · · · + (2k − 1) = k2 for a positive integer k. We prove that
1 + 3 + 5 + · · · + (2k + 1) = (k + 1)2. Observe that

1 + 3 + 5 + · · · + (2k + 1) = (k + 1)2

1 + 3 + 5 + · · · + (2k − 1) + (2k + 1) = (k + 1)2

k2 + (2k + 1) = (k + 1)2

(k + 1)2 = (k + 1)2.

6.59. Below is given a proof of a result. Which result is being proved and which proof
technique is being used?

Proof Assume, to the contrary, that there is some positive integer n such that
8 � (32n − 1). Let m be the smallest positive integer such that 8 � (32m − 1). For
n = 1, 32n − 1 = 8. Since 8 | 8, it follows that m ≥ 2. Let m = k + 1. Since
1 ≤ k < m, it follows that 8 | (32k − 1). Therefore, 32k − 1 = 8x for some integer x
and so 32k = 8x + 1. Hence,

32m − 1 = 32(k+1) − 1 = 32k+2 − 1 = 9 · 32k − 1

= 9(8x + 1) − 1 = 72x + 8 = 8(9x + 1).

Since 9x + 1 is an integer, 8 | (32m − 1), which produces a contradiction.

6.60. Below is given a proof of a result. Which result is being proved and which proof
technique is being used?

Proof First observe that a1 = 8 = 3 · 1 + 5 and a2 = 11 = 3 · 2 + 5. Thus,
an = 3n + 5 for n = 1 and n = 2. Assume that ai = 3i + 5 for all integers i with
1 ≤ i ≤ k, where k ≥ 2. Since k + 1 ≥ 3, it follows that

ak+1 = 5ak − 4ak−1 − 9 = 5(3k + 5) − 4(3k + 2) − 9

= 15k + 25 − 12k − 8 − 9 = 3k + 8 = 3(k + 1) + 5.

6.61. By an n-gon, we mean an n-sided polygon. So, a 3-gon is a triangle and a 4-gon is a
quadrilateral. It is well known that the sum of the interior angles of a triangle is 180◦.
Use induction to prove that for every integer n ≥ 3, the sum of the interior angles of
an n-gon is (n − 2) · 180◦.

6.62. Suppose that {an} is a sequence of real numbers defined recursively by a1 = 1,
a2 = 2, a3 = 3 and an = 2an−1 − an−3 for n ≥ 4. Prove that an = an−1 + an−2 for
every integer n ≥ 3.
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6.63. Suppose that {an} is a sequence of real numbers defined recursively by a1 = 1,
a2 = 2 and an = an−1/an−2 for n ≥ 3.

(a) Prove that

an =
⎧⎨
⎩

1 if n ≡ 1, 4 (mod 6)
2 if n ≡ 2, 3 (mod 6)
1/2 if n ≡ 0, 5 (mod 6)

for every positive integer n.

(b) Prove, for each nonnegative integer j, that
∑6

i=1 a j+i = 7.

6.64. Let x ∈ R where x ≥ 3. Prove that (1 + x)n ≥ [ n(n−1)(n−2)
6

]
x3 for every integer n ≥ 3.

6.65. Prove that
∑n

j=1

(∑ j
i=1 i

)
= n(n+1)(n+2)

6 for every positive integer n.

6.66. Prove that
∑n

j=1

(∑ j
i=1(2i − 1)

)
= n(n+1)(2n+1)

6 for every positive integer n.

6.67. Prove that there exists an odd integer m such that every odd integer n with n ≥ m can
be expressed as 3a + 5b + 7c for positive integers a, b and c.

6.68. Since 2 · 1 + 3 · 1 + 5 · 1 = 10, there exist three positive integers a, b, c such that
2a + 3b + 5c = 10.

(a) Prove that there do not exist three positive integers a, b, c such that
2a + 3b + 5c = 11.

(b) Use Mathematical Induction to prove for every integer n ≥ 12, there exist three
positive integers a, b, c such that 2a + 3b + 5c = n.

6.69. Let {an} be a sequence of all rational numbers. For each rational number an (n ∈ N),
P(an) is a statement. Suppose that it is known that P(a1) is a true statement and that
whenever P(ak ) is a true statement for an arbitrary rational number ak, then P(ak+1)
is a true statement for the rational number ak+1. Is P(an) true for every rational
number an?

6.70. (a) Compute each of the numbers 1
1·3 + 1

3·5 , 1
1·3 + 1

3·5 + 1
5·7 and 1

1·3 + 1
3·5 + 1

5·7 + 1
7·9 .

(b) Based on your answers in (a), give a conjecture for a simplified formula for
1

1·3 + 1
3·5 + 1

5·7 + · · · + 1
(2n−1)(2n+1) for every positive integer n.

(c) Use the Principle of Mathematical Induction to verify your conjecture in (b).

6.71. Let S = 2 + 7 + 12 + · · · + (5n − 3) where n ∈ N.

(a) Write S as (5n − 3) + (5n − 8) + · · · + 7 + 2 to obtain a formula for S.
(b) Use the Principle of Mathematical Induction to verify your formula for S

obtained in (a).

6.72. (a) Since (3, 4, 5) is a Pythagorean triple, 32 + 42 = 52 = 25. What is the value of
(30)2 + (40)2?

(b) Show that there are distinct positive integers a and b such that
(1) a2 + b2 = 10, (2) a2 + b2 = 102 and (3) a2 + b2 = 103.

(c) Use the Principle of Mathematical Induction to prove for every positive integer n
that there exist distinct positive integers a and b such that a2 + b2 = 10n.

6.73. We saw in Result 4.6(a) that if x is an integer such that 3 � x, then 3 | (x2 − 1). In
particular, if x ≡ 1 (mod 3), then x2 ≡ 1 (mod 3). Use the method of minimum
counterexample to prove that if x is a positive integer such that x ≡ 1 (mod 6), then
x3 ≡ 1 (mod 18).
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7
Reviewing Proof Techniques

Now that you have been introduced to the proof techniques described in Chapters 3–6,
it is appropriate to review these techniques once more to be certain that you have

a clear understanding of them. Of course, it’s important not only that you understand
these techniques but know how and when to use them.

The examples that we have provided to illustrate these techniques have, for the most
part, involved properties of numbers (integers, rational numbers and real numbers) and
sets. Where you will encounter these techniques in the future will likely be in more
advanced courses such as abstract algebra, number theory and advanced calculus and
possibly in courses such as combinatorics and topology. It is not unusual for you to be
expected to read and understand a proof of a statement or to perform the more challeng-
ing task of verifying the truth of a statement yourself. This is part of the reason you have
been learning and applying the various proof techniques presented in Chapters 3–6. You
need to know what constitutes a proof.

When faced with a statement whose truth is to be verified, there are several questions
to be asked before attempting to give a proof. First, do you have a clear understanding
of the statement? Do you know the definitions of all mathematical concepts mentioned
in the statement? What properties of these concepts and related results do you know?
If you’re not certain or don’t recall them, then this should be reviewed. Is it clear what
information you are permitted to use in an attempt to verify the statement? A proof of a
statement will be of no value if it can’t be understood. Consequently, any proof must be
carefully and clearly written so that a well-prepared student will be convinced that the
statement is true.

Often, the way that a statement is worded will suggest a proof technique that may be
successful. Typically, the first technique to try is a direct proof. If it appears that you’re
not having success with a direct proof, then you need to determine whether another
approach might work.

It is easy to become frustrated when you’re trying to verify a statement. We all
go through this. It’s part of the learning process. Taking a single course dealing with
mathematical proofs will not make you an expert on proofs. You need added practice in
what you have learned so far. After taking a course dealing with mathematical proofs,
you might find a professor in a follow-up course disappointed that the students are hav-
ing difficulty proving theorems in the course. Indeed, you might be disappointed with

181
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yourself because of the difficulty you are having. However, expectations you and your
professor have should not be too high. Having said this though, you should know and
should recall the various proof techniques and how these are applied to verify statements.
When you are taking a new course, you have different concepts to understand and it takes
some time (and study) to get a feeling for these.

As you gain more experience, you might find yourself thinking of questions that a
given exercise suggests and then trying to answer your own questions. While we will
encounter this sort of thing in the next chapter, let’s get to the main point of this chapter,
namely to review the proof techniques we’ve already introduced and see how they can
be used to verify statements.

7.1 REVIEWING DIRECT PROOF AND PROOF BY CONTRAPOSITIVE

Let’s first review the two proof techniques direct proof and proof by contrapositive,
which were discussed in Chapters 3 and 4. Here we have two open sentences P(x) and
Q(x) defined over some domain S. That is, for each x ∈ S, both P(x) and Q(x) are state-
ments. What we’re interested in is verifying the implication

∀x ∈ S, P(x) ⇒ Q(x): Let x ∈ S. If P(x), then Q(x). (7.1)

To give a direct proof of this quantified statement, we assume that P(x) is true for an
arbitrary element x ∈ S and attempt to show that Q(x) is true for this element x. The
direct proof is the most common and most used proof technique. Typically, a direct proof
is used when the assumption that P(x) is true provides us with sufficient information to
show that Q(x) is true.

We have seen that the contrapositive of a given implication is logically equivalent
to the implication. Consequently, if the implication (7.2) below

∀x ∈ S, ∼ Q(x) ⇒ ∼ P(x): Let x ∈ S. If not Q(x), then not P(x)., (7.2)

which is the contrapositive of the implication in (7.1), can be verified, then the implica-
tion in (7.1) is verified. In a proof by contrapositive then, we assume that Q(x) is false for
an arbitrary element x ∈ S and attempt to show that P(x) is false for such an element x.
Typically, one thinks of using a proof by contrapositive rather than a direct proof if it
appears more useful to assume that Q(x) is false and thereby show that P(x) is false
rather than assume that P(x) is true and attempt to show that Q(x) is true.

Many results encountered involve biconditionals:

∀x ∈ S, P(x) ⇔ Q(x): Let x ∈ S. Then P(x) if and only if Q(x).

In this case, a proof consists of proving both the implication in (7.1) as well as its con-
verse stated in (7.3):

∀x ∈ S, Q(x) ⇒ P(x). (7.3)

It’s not unusual in a proof of a biconditional to use both a direct proof and a proof by
contrapositive. Let’s consider the following example.

Result to Prove Let n ∈ Z. Then 3n4 + 7 is odd if and only if n is even.
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The phrase “if and only if” in the wording of this result tells us that this result is a
biconditional and can therefore be expressed symbolically as

∀n ∈ Z, P(n) ⇔ Q(n), where
P(n): 3n4 + 7 is odd. and Q(n): n is even.

Therefore, to prove this result we need to verify the following two implications for an
integer n:

P(n) ⇒ Q(n): If 3n4 + 7 is odd, then n is even.
Q(n) ⇒ P(n): If n is even, then 3n4 + 7 is odd.

Let’s see then how we might prove this result.

PROOF STRATEGY The order in which we prove these two implications doesn’t matter. Proving the impli-
cation “If n is even, then 3n4 + 7 is odd.” seems quite straightforward. We use a direct
proof. Consequently, we assume that n is an even integer and so n = 2x for some integer x.
Substituting n = 2x for n in 3n4 + 7 and showing that we can express this as 2z + 1 for
some integer z will verify the implication. To verify the converse “If 3n4 + 7 is odd, then
n is even.”, it is appropriate to use a proof by contrapositive, where the contrapositive of
this implication is then “If n is odd, then 3n4 + 7 is even.” Here it appears that we need
to assume that n is odd and so n = 2y + 1 for some integer y. This gives us

3n4 + 7 = 3(2y + 1)4 + 7 = 3(16y4 + 32y3 + 24y2 + 8y + 1) + 7

= 48y4 + 96y3 + 72y2 + 24y + 10 = 2(24y4 + 48y3 + 36y2 + 12y + 5).

Since 24y4 + 48y3 + 36y2 + 12y + 5 is an integer, 3n4 + 7 is even.
Although this approach results in a correct proof of the converse, the main difficulty

may be in the step that requires us to expand (2y + 1)4. It’s quite possible that we can’t
recall how this is done and a mistake is made. Therefore, we might wonder if there is
a simpler way to handle this step. In this particular part of this proof, we have assumed
that n is odd and we are trying to show that 3n4 + 7 is even. Here it would be useful to
recall Theorem 3.12 or, better yet, the equivalent formulation of this theorem in (3.4):

Let x ∈ Z. Then x2 is odd if and only if x is odd.

Of course, in our case, the odd integer is being denoted by n. By (3.4), n2 is odd, as is
(n2)2 = n4. So, we can provide a different (and simpler) proof of the converse mentioned
above. �

Result 7.1 Let n ∈ Z. Then 3n4 + 7 is odd if and only if n is even.

Proof Assume first that n is even. Then n = 2x for some integer x. Therefore,

3n4 + 7 = 3(2x)4 + 7 = 48x4 + 7 = 2(24x4 + 3) + 1.

Since 24x4 + 3 is an integer, 3n4 + 7 is odd.
For the converse, assume that n is odd. Applying Theorem 3.12 twice, we have that

n2 and (n2)2 = n4 are both odd. So n4 = 2y + 1 for some integer y. Hence,

3n4 + 7 = 3(2y + 1) + 7 = 6y + 10 = 2(3y + 5).

Since 3y + 5 is an integer, 3n4 + 7 is even.
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There are occasions when knowing that an element x belongs to a certain set S is
not sufficiently useful to prove a given statement. However, it may occur that there is a
partition {S1, S2} of S into two (or possibly more) subsets of S such that knowing x ∈ S1

or x ∈ S2 provides us with more information that allows us to give a proof. This approach
is a proof by cases. Let’s consider an example that illustrates this.

Result to Prove Let a, b ∈ Z. Then 3 | (5a + 8b) if and only if 3 | (a + b).

Once again, we have a biconditional to verify, which consists of verifying the two
implications:

If 3 | (5a + 8b), then 3 | (a + b).
If 3 | (a + b), then 3 | (5a + 8b).

Let’s look at how we might do this.

PROOF STRATEGY To verify the second implication “If 3 | (a + b), then 3 | (5a + 8b).”, it seems reasonable
to use a direct proof, where we would begin by assuming that 3 | (a + b), which implies
that a + b = 3c for some integer c and so b = 3c − a. Our goal is to show that 5a + 8b
can be written as 3d for some integer d. To verify the converse, “If 3 | (5a + 8b), then
3 | (a + b).”, it appears that a proof by contrapositive should be used, resulting in a direct
proof of the following:

If 3 � (a + b), then 3 � (5a + 8b).

After assuming that 3 � (a + b), we know that either a + b = 3q + 1 or a + b = 3q + 2
for some integer q. Let’s see how this works. �

Result 7.2 Let a, b ∈ Z. Then 3 | (5a + 8b) if and only if 3 | (a + b).

Proof Assume first that 3 | (a + b). Then a + b = 3c for some integer c. Thus, b = 3c − a and

5a + 8b = 5a + 8(3c − a) = 5a + 24c − 8a = 24c − 3a = 3(8c − a).

Since 8c − a is an integer, 3 | (5a + 8b).
For the converse, assume that 3 � (a + b). Therefore, either a + b = 3q + 1 or

a + b = 3q + 2 for some integer q. We consider these two cases.

Case 1. a + b = 3q + 1, where q ∈ Z. Thus, b = 3q + 1 − a. Then

5a + 8b = 5a + 8(3q + 1 − a) = 5a + 24q + 8 − 8a

= 24q − 3a + 8 = 3(8q − a + 2) + 2.

Since 8q − a + 2 is an integer, 3 � (5a + 8b).

Case 2. a + b = 3q + 2, where q ∈ Z. Thus, b = 3q + 2 − a. Then

5a + 8b = 5a + 8(3q + 2 − a) = 5a + 24q + 16 − 8a

= 24q − 3a + 16 = 3(8q − a + 5) + 1.

Since 8q − a + 5 is an integer, 3 � (5a + 8b).
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Although the proof of Result 7.2 appeared to work well, it may be a good idea to
look at what we’re trying to prove once more to see if there may be a simper, clearer way
to do this.

PROOF ANALYSIS In the proof of the implication “If 3 | (a + b), then 3 | (5a + 8b).”, we have a + b = 3c
where c ∈ Z. Perhaps, this can be done more simply by noticing that 5a + 8b =
5a + 5b + 3b. �

Alternate
Proof of

Result 7.2

Assume that 3 | (a + b). Then a + b = 3q for some integer q. Then

5a + 8b = (5a + 5b) + 3b = 5(a + b) + 3b = 5(3q) + 3b = 3(5q + b).

Since 5q + b is an integer, 3 | (5a + 8b).
For the converse, assume that 3 � (a + b). Therefore, either a + b = 3q + 1 or

a + b = 3q + 2 for some integer q. We consider these two cases.

Case 1. a + b = 3q + 1, where q ∈ Z. Then

5a + 8b = 5(a + b) + 3b = 5(3q + 1) + 3b

= 3(5q + b + 1) + 2

Since 5q + b + 1 is an integer, 3 � (5a + 8b).

Case 2. a + b = 3q + 2, where q ∈ Z. Then

5a + 8b = 5(a + b) + 3b = 5(3q + 2) + 3b

= 3(5q + b + 3) + 1.

Since 5q + b + 3 is an integer, 3 � (5a + 8b).

PROOF ANALYSIS Another alternate proof of Result 7.2 can be given by attempting a direct proof of “If
3 | (5a + 8b), then 3 | (a + b).” If we first assume that 3 | (5a + 8b), then 5a + 8b = 3x
for some x ∈ Z. Then observing that

a + b = 6a + 9b − (5a + 8b) = 6a + 9b − 3x = 3(2a + 3b − x),

we have 3 | (a + b). �

7.2 REVIEWING PROOF BY CONTRADICTION
AND EXISTENCE PROOFS

Another useful proof technique that we discussed in Chapter 5 is proof by contradiction,
which is especially helpful when we are attempting to prove a negative-sounding result.
In such a situation, we assume, for an open sentence R(x) defined over a domain S,
that the statement ∀ x ∈ S, R(x) is false, which implies that the statement ∃ x ∈ S,
∼ R(x) is true, that is, there exists some element x ∈ S such that R(x) is false. If R(x)
can be expressed as an implication P(x) ⇒ Q(x), then ∼ R(x) can be expressed as
P(x) ∧ (∼ Q(x)). Hence, to prove the statement ∀ x ∈ S, P(x) ⇒ Q(x) by contradic-
tion, we assume that there is some element x ∈ S such that P(x) is true and Q(x) is false
and attempt to obtain a contradiction. Consider the following example.
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Result to Prove There is no real number x such that x + 1
x

= 1.

PROOF STRATEGY Since this result is negative-sounding, this suggests trying a proof by contradiction,
where we would begin with: Assume, to the contrary, that there is a real number x such

that x + 1
x

= 1. Now we must determine how to obtain a contradiction. Certainly, x 	= 0,

for otherwise 1/x is not defined. One possibility would be to proceed by considering var-
ious cases for x, say x < 0, x ≥ 1 and 0 < x < 1, for example. Notice that if x < 0, then

x + 1
x

< 0; if x ≥ 1, then x + 1
x

> 1; and if 0 < x < 1, then
1
x

> 1 and so x + 1
x

> 1.

Therefore, we arrive at a contradiction in each of these cases. On the other hand, since

x + 1
x

= 1, this might suggest attempting a proof that involves solving this equation. �

Result 7.3 There is no real number x such that x + 1
x

= 1.

Proof Assume, to the contrary, that there exists a real number x such that x + 1
x

= 1. So x 	= 0.

Multiplying this equation by x, we obtain x2 + 1 = x or x2 − x + 1 = 0. By the quadratic
formula, the solutions to this equation are

x = 1 ± √
1 − 4 · 1 · 1

2
= 1 ± √−3

2
.

Since x is not a real number, the equation x + 1
x

= 1 has no real number solution, which

is a contradiction.

PROOF ANALYSIS There are occasions when considering a certain statement (whether the statement is true
or false) suggests a question of whether a related statement may be true. It is always good
to be inquisitive. For example, we now know that there is no real number x such that

x + 1
x

= 1. If x = 1, then x + 1
x

= 2; that is, there does exist a real number x such that

x + 1
x

= 2. This brings up another question: For which real numbers c, does there exist

a real number x such that x + 1
x

= c or, equivalently, x2 + 1 = cx? Using the quadratic

formula to solve the equation x2 − cx + 1 = 0, we have

x = c ± √
c2 − 4
2

.

Therefore, this equation has a real number solution only when c2 ≥ 4, that is, when c ≥ 2
or c ≤ −2. �

The discussion above provides a proof of the following statement: For every real
number c with |c| ≥ 2, there is a real number solution of the equation

x + 1
x

= c. (7.4)
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In fact, for c ∈ R, the equation (7.4) has a real number solution if and only if |c| ≥ 2.
Proofs of the statements ∃x ∈ S, P(x) are existence proofs, also discussed in Chap-

ter 5. Such a proof can be given either by exhibiting an element s ∈ S such that P(s)
is true or perhaps showing that such an element s must exist even if we can’t actually
provide a specific element. Let’s look at examples of existence proofs.

Result 7.4 There exist positive integers a and b such that a + b = ab.

Proof Observe that if a = b = 2, then a + b = ab

PROOF ANALYSIS The question here is how one discovered this proof, that is, thought of values of a and b.
While it may have been simple enough to think of these values, we are interested in
solving a + b = ab for positive integers a and b. Thus, ab − a − b = 0. Adding 1 to
both sides, we have ab − a − b + 1 = 1 and so (a − 1)(b − 1) = 1. Clearly, a, b ≥ 2.
Thus, a − 1 = 1 and b − 1 = 1; hence, a = b = 2 and the example given in the proof is
the only example. �

Result 7.5 There exists a positive real number r such that r2 lies between r and r3.

Proof Observe that if r = 2, then r2 = 4 and r3 = 8 and so r < r2 < r3.

PROOF ANALYSIS A proof of this result consists of searching for a number satisfying the given condition.
It turns out that the fact that r = 2 satisfies the condition is not surprising. Since we want
r2 to lie between r and r3, we have either (1) r < r2 < r3 or (2) r3 < r2 < r. If we divide
by the positive real number r, we have either (1) 1 < r < r2 or (2) r2 < r < 1. Thus, any
positive real number different from 1 serves as a proof of the statement. �

Result 7.6 There exists a 9-digit integer n consisting of the nine digits 0, 1, . . . , 8 such that k | n
for each integer k in the 9-element set {2, 3, . . . , 10}.

Proof The integer n = 638, 157, 240 has the desired property.

PROOF ANALYSIS Finding such a number n in this proof requires experimenting with the divisibility
requirements. �

In the existence proof below, it is shown that an example exists without actually
specifying one.

Result 7.7 There exists a real number solution to the equation x8 − 3x5 + 1 = 0.

Proof The equation p(x) = x8 − 3x5 + 1 = 0 is a polynomial equation. Since p(0) = 1 and
p(1) = −1 and every polynomial is continuous, it follows by the Intermediate Value
Theorem that there exists a real number solution r ∈ (0, 1) such that p(r) = 0.
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7.3 REVIEWING INDUCTION PROOFS

In Chapter 6, we saw that proof by induction is an especially useful proof technique
when the domain S is the set N of positive integers (or a closely related set). More specif-
ically, suppose that we wish to prove a statement of the type

∀n ∈ N, P(n).

To prove such a statement by mathematical induction, we need to verify (1) that the
statement P(1) is true and (2) that the implication ∀k ∈ N, P(k) ⇒ P(k + 1) is true.
Step (1) is referred to as the basis step and Step (2) as the inductive step. Here, we are
using the Principle of Mathematical Induction to prove this statement. Let’s now look
at an example.

Result to Prove Let n be a positive integer. If a1, a2, . . . , an are n integers such that ai ≡ 2 (mod 3) for
each integer i with 1 ≤ i ≤ n, then a1a2 · · · an ≡ 1 (mod 3) if n is even and a1a2 · · · an ≡
2 (mod 3) if n is odd.

PROOF STRATEGY Let’s first be certain that we understand what we need to prove. For each integer ai,
we know that ai ≡ 2 (mod 3). Examples of such integers are 2, 5, 8 and 11. So, a1 ≡
2 (mod 3). Since 1 is odd, the statement is true if n = 1. Suppose that n = 2. Then we
need to show that a1a2 ≡ 1 (mod 3). Since a1 ≡ 2 (mod 3) and a2 ≡ 2 (mod 3), it follows
that a1 = 3x + 2 and a2 = 3y + 2 for integers x and y and so

a1a2 = (3x + 2)(3y + 2) = 9xy + 6x + 6y + 4

= 3(3xy + 2x + 2y + 1) + 1.

Since 3xy + 3x + 3y + 1 is an integer, a1a2 ≡ 1 (mod 3). Because we are required to
prove the statement is true for every integer n, an induction proof looks plausible. �

Result 7.8 For each positive integer n, let a1, a2, . . . , an be n integers such that ai ≡ 2 (mod 3) for
each integer i with 1 ≤ i ≤ n. Then a1a2 · · · an ≡ 1 (mod 3) if n is even and a1a2 · · · an ≡
2 (mod 3) if n is odd.

Proof We proceed by induction. Since a1 ≡ 2 (mod 3), the statement is true if n = 1. Assume
that the statement is true for an arbitrary positive integer k. We show that it’s true for
k + 1. We consider two cases.

Case 1. k is even. By assumption, a1a2 · · · ak ≡ 1 (mod 3). Thus, a1a2 · · · ak =
3x + 1 for some integer x. Since ak+1 ≡ 2 (mod 3), it follows that ak+1 = 3y + 2 for
some integer y. Therefore,

a1a2 · · · ak+1 = (a1a2 · · · ak )ak+1 = (3x + 1)(3y + 2)

= 9xy + 6x + 3y + 2 = 3(3xy + 2x + y) + 2.

Since 3xy + 2x + y is an integer, a1a2 · · · ak+1 ≡ 2 (mod 3).

Case 2. k is odd. By assumption, a1a2 · · · ak ≡ 2 (mod 3). Thus, a1a2 · · · ak =
3w + 2 for some integer w. Since ak+1 ≡ 2 (mod 3), it follows that ak+1 = 3z + 2 for
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some integer z. Therefore,

a1a2 · · · ak+1 = (a1a2 · · · ak )ak+1 = (3w + 2)(3z + 2)

= 9wz + 6w + 6z + 4 = 3(3wz + 2w + 2z + 1) + 1.

Since 3wz + 2w + 2z + 1 is an integer, a1a2 · · · ak+1 ≡ 1 (mod 3).

The result then follows by the Principle of Mathematical Induction.

There are occasions when an attempt to verify the inductive step (2) in an induction
proof may fail because assuming that P(k) is true does not provide sufficient information
to show that P(k + 1) is true. In this case, there is another induction principle, called the
Strong Principle of Mathematical Induction, that might be an appropriate approach
to verify the given statement. In this case, to prove

∀n ∈ N, P(n),

we need to verify the basis step (1) that the statement P(1) is true and the new inductive
step (2) that the implication ∀k ∈ N, P(1) ∧ P(2) ∧ · · · ∧ P(k) ⇒ P(k + 1) is true. Let’s
see an example of this. First, we look at a famous sequence of integers that appears
in Exercise 6.36. The sequence F1, F2, F3, . . . of integers defined by F1 = F2 = 1 and
Fn = Fn−1 + Fn−2 for n ≥ 3 is called the Fibonacci sequence. Therefore, F1 = F2 = 1,
F3 = 2, F4 = 3, F5 = 5 and F6 = 8.

Result 7.9 Let r be a positive real number. The sequence a1, a2, a3, . . . of real numbers is defined
by a1 = a2 = r and an = an−1an−2 for n ≥ 3. Then an = rFn for each n ∈ N.

Proof We use the Strong Principle of Mathematical Induction. Since a1 = r = r1 = rF1 , the
formula holds for n = 1. Assume for a positive integer k, that ai = rFi for every integer
i with 1 ≤ i ≤ k. We show that

ak+1 = rFk+1 . (7.5)

We consider two cases.

Case 1. k = 1. Then k + 1 = 2 and a2 = r = r1 = rF2 . Hence, (7.5) holds for k = 1.

Case 2. k ≥ 2. Since k + 1 ≥ 3, it follows that

ak+1 = akak−1 = rFk rFk−1 = rFk+Fk−1 = rFk+1 .

Hence, (7.5) also holds for k ≥ 2. By the Strong Principle of Mathematical Induction,
an = rFn for every positive integer n.

7.4 REVIEWING EVALUATIONS OF PROPOSED PROOFS

There are numerous types of errors that are often made when attempting to give a proof
of a mathematical statement. For example, there can be mistakes in the logic of a proof
technique, mistakes in the knowledge of the concepts used, as well as computational or
algebraic mistakes. As we did in Section 3.5, let’s evaluate some proposed proofs of a
few statements.
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Example 7.10 Evaluate the proposed proof of the following statement.

If x is an integer such that 5x − 7 is even, then x is odd.

Proof First, assume that x is even. Then x = 2a for some integer a. Hence,

5x − 7 = 5(2a) − 7 = 10a − 7 = 2(5a − 4) + 1.

Since 5a − 4 is an integer, 5x − 7 is odd.
Next, assume that x is odd. Then x = 2b + 1 for some integer b. Therefore,

5x − 7 = 5(2b + 1) − 7 = 10b − 2 = 2(5b − 1).

Since 5b − 1 is an integer, 5x − 7 is even.

Proof Evaluation If this “proof” had ended after the statement “Since 5a − 4 is an integer, 5x − 7 is odd.,”
then the proof would be complete and correct. However, by adding the paragraph fol-
lowing this, a proof is given of the the following biconditional:

An integer x is odd if and only if 5x − 7 is even.

This is not what Example 7.10 states. This “proof” makes it appear that its author is not
aware of what is required to prove this statement. �

For an integer n ≥ 2, the symbol
(n

2

)
, often read as “n choose 2,” denotes the number

of 2-element subsets of an n-element set. It turns out that
(n

2

) = n(n − 1)/2. (This symbol
will be encountered often in Chapter 13.)

Example 7.11 Evaluate the proposed proof of the following statement.

If n is an integer with n > 7, then
(n

2

) − (n − 1) > 3n − 6.

Proof Observe that (
n
2

)
− (n − 1) = n(n − 1)

2
− (n − 1) > 3n − 6

and so

n(n − 1) − 2(n − 1)
2

> 3n − 6.

Therefore,

n(n − 1) − 2(n − 1) > 6n − 12 = 6(n − 2).

Hence,

(n − 2)(n − 1) > 6(n − 2).

Dividing by n − 2, we obtain n − 1 > 6 or n > 7.
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Proof Evaluation The problem here is that the “proof” begins with
(n

2

) − (n − 1) > 3n − 6, which we
don’t know to be true, and concludes by showing that n > 7, which is part of the hy-
pothesis. The information above can be used, however, to give a correct proof of the
statement in Example 7.11 as follows:

Since n > 7, it follows that n − 1 > 6 and so n − 2 > 0. Multiplying the inequality
n − 1 > 6 by (n − 2), we have

(n − 2)(n − 1) > 6(n − 2).

Hence,

n(n − 1) − 2(n − 1) > 6n − 12.

Dividing by 2, we obtain
(n

2

) − (n − 1) > 3n − 6. �

Example 7.12 Evaluate the proposed proof of the following statement.

There exists an odd integer x > 5 such that 3 | (5x − 1).

Proof Let x = 6a + 5 for some positive integer a. Since x = 6a + 5 = 2(3a + 2) + 1 and
3a + 2 is an integer, it follows that x is odd. Because

5x − 1 = 5(6a + 5) − 1 = 30a + 24 = 3(10a + 8)

and 10a + 8 is an integer, it follows that 3 | (5x − 1).

Proof Evaluation In a certain sense, this “proof” is correct. However, to verify the statement in Exam-
ple 7.12, all one needs is a single odd integer x > 5 for which 3 | (5x − 1). The integer
x = 11 has the property that 5x − 1 = 5(11) − 1 = 54 = 3(18) and so x = 11 is such
an integer. �

Example 7.13 Evaluate the proof of the following statement.

For an integer x, 3 | (8x + 1) if and only if x = 3q + 1 for some integer q. (7.6)

Proof We consider two cases.

Case 1. x = 3q + 1 for some integer q. Then

8x + 1 = 8(3q + 1) + 1 = 24q + 9 = 3(8q + 3).

Since 8q + 3 is an integer, it follows that 3 | (8x + 1).

Case 2. There is no integer q such that x = 3q + 1. Therefore, either x = 3q for
some integer q or x = 3q + 2 for some integer q. We consider these two subcases.

Subcase 2.1. x = 3q for some integer q. Then

8x + 1 = 8(3q) + 1 = 24q + 1 = 3(8q) + 1.

Since 8q is an integer, it follows that 3 � (8x + 1).

Subcase 2.2. x = 3q + 2 for some integer q. Then

8x + 1 = 8(3q + 2) + 1 = 24q + 17 = 3(8q + 5) + 2.

Since 8q + 5 is an integer, it follows that 3 � (8x + 1).
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Proof Evaluation Since the statement is a biconditional, a proof of this statement should not be by cases.
Instead, one needs to prove the following two implications:

If x = 3q + 1 for some integer q, then 3 | (8x + 1). (7.7)

and

If 3 | (8x + 1), then x = 3q + 1 for some integer q. (7.8)

Although the necessary information is presented in the proposed proof, the logic is in-
correct. We can begin a correct proof as follows: First, assume that x = 3q + 1 for some
integer q. We can then proceed as above to verify implication (7.7). We can then say the
following: For the converse, assume that there is no integer q such that x = 3q + 1. We
can then verify implication (7.8) using two cases: Case 1. x = 3q for some integer q. and
Case 2. x = 3q + 2 for some integer q. We can then proceed as above to obtain a correct
proof of the statement (7.6). �

Example 7.14 Evaluate the proposed proof of the following statement.

For every nonnegative integer n, 2n + 3n ≥ n2 + 2n + 2.

Proof We proceed by induction. Since 20 + 30 = 02 + 2 · 0 + 2, the statement is true for n = 0.
Assume, for an arbitrary nonnegative integer k, that 2k + 3k ≥ k2 + 2k + 2. We show
that

2k+1 + 3k+1 ≥ (k + 1)2 + 2(k + 1) + 2 = k2 + 4k + 5.

Observe that

2k+1 + 3k+1 = 2 · 2k + 3 · 3k ≥ 2 · 2k + 2 · 3k = 2(2k + 3k )

≥ 2(k2 + 2k + 2) = 2k2 + 4k + 4 = (k2 + 4k + 5) + (k2 − 1)

≥ k2 + 4k + 5.

By the Principle of Mathematical Induction, 2n + 3n ≥ n2 + 2n + 2 for every nonnega-
tive integer n.

Proof Evaluation The proposed proof contains an error. The inequality

(k2 + 4k + 5) + (k2 − 1) ≥ k2 + 4k + 5

in the inductive step requires that k ≥ 1. However, it is only known that k ≥ 0. Hence,
the case when k = 0 needs to be handled separately, that is, 2k+1 + 3k+1 = 2 + 3 = 5 =
02 + 4 · 0 + 5. Once this has been observed, we can assume that k ≥ 1 and proceed as
above. �

Example 7.15 Evaluate the proposed proof of the following statement.

Let a, b, c ∈ R. If at least one of a + b, a + c and b + c is irrational, then at least
one of a, b and c is irrational.
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Proof Assume, to the contrary, that none of a + b, a + c and b + c are irrational. Then p = a + b,
q = a + c and r = b + c are all rational. Therefore, p + q + r = 2a + 2b + 2c is ratio-
nal. Since 2r = 2b + 2c is rational, (p + q + r) − 2r = 2a is rational, as is 2a/2 = a.
Similarly, b and c are rational and so all of a, b and c are rational. This is a contradiction.

Proof Evaluation The proposed proof attempts to prove the given statement using a proof by contradiction.
However, there are logical errors here. In a proof by contradiction, it should be assumed,
to the contrary, that at least one of a + b, a + c and b + c is irrational but none of a, b and
c are irrational. This would then imply that all of a, b and c are rational, from which it can
be shown that all of a + b, a + c and b + c are rational. This would be a contradiction. �

EXERCISES FOR CHAPTER 7

7.1. We saw in Result 4.8 for integers a and b that 3 | ab if and only if 3 | a or 3 | b. Use this fact to prove that if
m is an integer such that 10 | m and 12 | m, then 60 | m.

7.2. Let a, b, m ∈ Z with m ≥ 2 such that a ≡ b (mod m).

(a) According to Result 4.11, if c, d ∈ Z such that c ≡ d (mod m), then ac ≡ bd (mod m). Show that
a2 ≡ b2 (mod m) and a3 ≡ b3 (mod m).

(b) Is it true that a2 ≡ b (mod m)?
(c) Prove that an ≡ bn (mod m) for every positive integer n.
(d) Use (c) to prove that 8 | (32n − 1) for every positive integer n.
(e) According to Result 4.6(b), if x is an odd integer, then 8 | (x2 − 1). Use this fact to prove that

8 | (32n − 1) for every positive integer n.

7.3. (a) Let m ∈ Z. Prove that if m is the product of four consecutive integers, then m + 1 is a perfect square
(that is, m + 1 = k2 for some k ∈ Z).

(b) Prove, for every positive integer n, that neither n(n + 1) nor n(n + 2) is a perfect square.
(c) Prove that the product of three consecutive integers is always divisible by 6 but not always divisible by 9.

When will it be divisible by 12?

7.4. Let a, b ∈ N. Prove that if a + b is even, then there exist nonnegative integers x and y such that x2 − y2 = ab.

7.5. It follows from Result 4.6(b) that if a is an odd integer, then a2 ≡ 1 (mod 8). Use this fact to prove that if b
is an odd integer, then b2n ≡ 1 (mod 2n+2) for every positive integer n.

7.6. We saw in Exercise 4.90 that

If a, b, c, d ∈ R+ such that a ≥ b and c ≥ d, then ac ≥ bd. (7.9)

(a) Use (7.9) to prove that if a, b ∈ R+ such that a ≥ b, then
√

a ≥ √
b.

(b) Without using (7.9), prove that if a, b ∈ R+ such that a ≥ b, then
√

a ≥ √
b.

7.7. (a) Let m = 2k be an even integer where k ∈ Z. Prove that if a and b are integers such that a + b ≥ m, then
either a ≥ k or b ≥ k + 1.

(b) Let m = 3k for some k ∈ N. Prove that if a, b, c ∈ N such that a + b + c ≥ m, then a ≥ k, b ≥ k or
c ≥ k + 2.

(c) A set S consists of 20 positive integers whose sum is an even integer. Prove that at least 4 elements of S
are congruent to 0 modulo 4, at least 5 are congruent to 1 modulo 4, at least 7 are congruent to 2
modulo 4 or at least 8 are congruent to 3 modulo 4.
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7.8. (a) Express the following statement in words: ∀n ∈ {3, 4, 5, . . .}, ∃a1, a2, . . . , an ∈ N with
a1 < a2 < · · · < an such that 1

a1
+ 1

a2
+ · · · + 1

an
= 1.

(b) Express in words the negation of the statement in (a).
(c) One of the statements in (a) and (b) is true. Determine, with proof, which is true.

7.9. Prove for every positive integer m that is a multiple of 8, there exist two positive integers a and b that differ
by m such that ab is a perfect square.

7.10. A sequence {an} is defined recursively by a1 = 7 and an = 4an−1 − 9 for n ≥ 2. Conjecture a formula for
an and verify your conjecture for every positive integer n.

7.11. The triples (3, 4, 5), (5, 12, 13) and (7, 24, 25) are called Pythagorean triples because 32 + 42 = 52,
52 + 122 = 132 and 72 + 242 = 252. There are infinitely many Pythagorean triples.

(a) Prove for every odd integer a ≥ 3 that there exists an even integer b such that (a, b, b + 1) is a
Pythagorean triple.

(b) Prove for every odd integer a ≥ 3 and positive integer n, that there exist n positive even integers
b1, b2, . . . , bn such that a2 + b2

1 + b2
2 + · · · + b2

n = c2 for some positive integer c.

7.12. Use induction to prove that 11n ≡ 1 (mod 8) or 11n ≡ 3 (mod 8) for every nonnegative integer n.

7.13. Prove for every three integers a, b and c that an even number of the integers a + b, a + c and b + c are odd.

7.14. Evaluate the proof of the following statement.

Statement If x is an integer such that 3 | (x − 5), then 3 | (7x − 2).

Proof The integer x = 5 has the property that 3 | (x − 5). Furthermore, for x = 5, 3 | (7x − 2).

7.15. Evaluate the proof of the following statement.

Statement Let x, y, z ∈ Z such that 3x + 5y = 7z. If at least one of x, y and z is odd, then at least one of
x, y, z is even.

Proof Let x, y, z ∈ Z such that 3x + 5y = 7z. Assume, to the contrary, that none of x, y and z is odd and
that none of x, y and z is even. This is impossible.

7.16. Evaluate the proof of the following statement.

Statement A sequence {an} of integers is defined recursively by a1 = 1, a2 = 3, a3 = 6 and
an = an−1 + 3an−2 + 6an−3 for n ≥ 4. Then 3 | an for every integer n ≥ 2.

Proof We proceed by induction. Since a2 = 3, it follows that 3 | ak for k = 2. Assume that 3 | ak for an
integer k ≥ 2. Thus, ak = 3x for some integer x. We show that 3 | ak+1. Now

ak+1 = ak + 3ak−1 + 6ak−2 = 3x + 3ak−1 + 6ak−2

= 3(x + ak−1 + 2ak−2).

Since x + ak−1 + 2ak−2 is an integer, 3 | ak+1. By the Principle of Mathematical Induction, 3 | an for every
integer n ≥ 2.

7.17. Evaluate the proof of the following statement.

Statement Let a ∈ R+ and let S = {2r : r ∈ Q}. If a /∈ S, then log2 a is irrational.

Proof Assume, to the contrary, that log2 a is rational. Then log2 a = b ∈ Q and so a = 2b. Since b ∈ Q,
it follows that a ∈ S, which is a contradiction.

7.18. Evaluate the proof of the following statement.

Statement Let a, b, c ∈ Z. If all of the integers 3a + 4b, 5b + 6c and 7c + 8a are odd, then all of a, b, c
are odd.
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Proof Assume, to the contrary, that not all of the integers 3a + 4b, 5b + 6c and 7c + 8a are odd, say
3a + 4b is not odd. Then 3a + 4b is even and so 3a + 4b = 2d for some integer d. Hence,
3a = 2d − 4b = 2(d − 2b). Since d − 2b ∈ Z, it follows that 3a is even. This, however, implies that a is
even and so not all of a, b, c are odd.

7.19. Evaluate the proof of the following statement.

Statement Let a, b, c ∈ Z. Then ab + ac + bc is even if and only if at most one of a, b and c is odd.

Proof We consider the following cases.

Case 1. None of a, b and c is odd. Then all of a, b and c are even. Hence, ab, ac and bc are even, as is
ab + ac + bc.

Case 2. Exactly one of a, b and c is odd, say a is odd. Then b and c are even. Hence, all of ab, ac and bc are
even, as is ab + ac + bc.

Case 3. Exactly two of a, b and c are odd, say a and b are odd and c is even. Then ab is odd and ac and bc
are even. Hence, ab + ac + bc is odd.

Case 4. All of a, b and c are odd. Hence, ab, ac and bc are odd, as is ab + ac + bc.

Therefore, ab + ac + bc is even if and only if at most one of a, b and c is odd.

7.20. In Result 6.5, it was shown that

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)
6

for every positive integer n.
Evaluate the proof of the following statement.

Statement For every integer n ≥ 3,

12 + 22 + · · · + (n − 1)2 <
n3

3
− n.

Proof Assume, to the contrary, that

12 + 22 + · · · + (n − 1)2 ≥ n3

3
− n

for every integer n ≥ 3. By Result 6.5, it follows that

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)
6

.

Therefore,
(n − 1)n(2n − 1)

6
≥ n3

3
− n

and so
2n3 − 3n2 + n

6
≥ n3 − 3n

3
.

Hence, 2n3 − 3n2 + n ≥ 2n3 − 6n and so 3n2 − 7n = n(3n − 7) ≤ 0. Since n is a positive integer, n ≤ 7/3,
which is a contradiction.

7.21. Let A and B be nonempty sets. Prove that A × B = B × A if and only if P (A) = P (B).

7.22. The Fibonacci sequence F1, F2, F3, . . . of integers is defined recursively by F1 = F2 = 1 and
Fn = Fn−1 + Fn−2 for each integer n ≥ 3. (This sequence also occurred in Exercise 6.36.) Prove that if
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a0, a1, a2, . . . is a sequence of rational numbers such that a0 = 1
2 , a1 = 2

3 and an = an−2

an−1
for every integer

n ≥ 2, then for every positive integer n,

an =
⎧⎨
⎩

3Fn

2Fn+1
if n is even

2Fn+1

3Fn if n is odd.

7.23. Prove that if the real number r is a root of a polynomial with integer coefficients, then 2r is a root of a
polynomial with integer coefficients.

7.24. Prove that if the real number r is a root of a polynomial with integer coefficients, then r/2 is a root of a
polynomial with integer coefficients.

7.25. Prove, for every nonnegative integer n, that

52n + 22n ≡ 22n+1 (mod 21).

7.26. Let n ∈ Z. Prove that n + 1 and n2 + 3 are of the same parity.

7.27. Prove that an integer m equals n(n + 1)/2 for some n ∈ N if and only if 8m + 1 is a perfect square (that is,
8m + 1 = t2 for some t ∈ N).

7.28. By Result 4.8, if a, b ∈ N and 3 | ab, then 3 | a or 3 | b. Let a and n be positive integers. Prove each of the
following statements.

(a) If 3 | an, then 3 | a.
(b) If 3 | an, then 3n | an.

7.29. Prove that there do not exist two odd integers a and b with a 	≡ b (mod 4) such that 4 | (3a + 5b).

7.30. Prove that there exist three distinct integers a, b, c ≥ 2 such that a ≡ b (mod c), b ≡ c (mod a) and
a + c ≡ 0 (mod b).

7.31. (a) Prove that there exists a 10-digit integer a = a10a9 · · · a1, all of whose digits are distinct, with the
property that k divides akak−1 · · · a1 for each k with 1 ≤ k ≤ 10.

(b) Prove that there exists a 10-digit integer b = b1b2 · · · b10, all of whose digits are distinct, with the
property that k divides b1b2 · · · bk for each k with 1 ≤ k ≤ 10.

(c) The number n = 2468 is a 4-digit integer with distinct digits such that the first and last digits are
divisible by 1 (of course), the first and last 2-digit numbers of n, namely 24 and 68, are divisible by 2,
the first and last 3-digit numbers of n are divisible by 3, and n itself is divisible by 4. Is there a 5-digit
number m with the corresponding properties?

7.32. Let S = {1, 2, 3, 4, 5, 6}. Prove that there exists a collection T of five subsets of S such that for every two
sets A and B in T , there is a unique set C in T for which |A ∩ C| = |B ∩ C| = 1.

7.33. According to Result 3.16, for two integers a and b, a + b ≡ 0 (mod 2) if and only if a ≡ b (mod 2). Let
a, b, c ∈ Z. Prove that a + b + c ≡ 0 (mod 3) if and only if either every two integers in {a, b, c} are
congruent modulo 3 or no two integers in {a, b, c} are congruent modulo 3.

7.34. We have seen that a triple (a, b, c) of positive integers is a Pythagorean triple if a2 + b2 = c2. Therefore, if
(a, b, c) is a Pythagorean triple, then

(
a
c

)2 + (
b
c

)2 = 1.

(a) Show that if u and v are real numbers such that u2 + v2 = 1, then (u + v)2 + (u − v)2 = 2.
(b) We saw in Result 5.30 that there are no rational solutions to the equation x2 + y2 = 3. Prove that there

are infinitely many rational solutions to the equation x2 + y2 = 2.
(c) How many rational solutions to the equation x2 + y2 = 4 are there?

7.35. Prove, for every integer n ≥ 4, that n! > n2.

7.36. An office contains two tables, called Table 1 and Table 2. There are n cards on Table 1. On the bottom of
each card is written a positive rational number. A total of k cards are randomly selected from Table 1 and
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placed on Table 2. Each of these k cards is turned over and the number on it is multiplied by
√

2 and turned
over again. The k cards on Table 2 are then returned to Table 1 and all n cards on Table 1 are shuffled. Then
once again, k cards from Table 1 are randomly selected from Table 1 and placed on Table 2. Each of these k
cards is turned over and the number on it is multiplied by

√
2. This time, however, these k cards are left on

Table 2. Suppose now that a1 of the cards on Table 1 contain an irrational number and a2 of the cards on
Table 2 contain an irrational number. Which of the following can be said about a1 and a2?

(1) a1 < a2 (2) a1 = a2 (3) a1 > a2

(4) It is impossible to determine any relationship between a1 and a2.

7.37. Below is given a proof of a result. Which result is being proved and which proof technique is being used?

Proof Assume that 3x + 5y is odd. Then 3x + 5y = 2z + 1, where z ∈ Z. Then

7x − 11y = (3x + 5y) + (4x − 16y) = (2z + 1) + (4x − 16y)

= 2(z + 2x − 8y) + 1.

Since z + 2x − 8y is an integer, 7x − 11y is odd.
For the converse, assume that 7x − 11y is odd. Then 7x − 11y = 2w + 1 for some integer w. Then

3x + 5y = (7x − 11y) + (−4x + 16y) = (2w + 1) + (−4x + 16y)

= 2(w − 2x + 8y) + 1.

Since w − 2x + 8y is an integer, 3x + 5y is odd.

7.38. Below is given a proof of a result. Which result is being proved and which proof technique is being used?

Proof Assume, to the contrary, that there are integers a and b such that a2 − 4b2 = 2. Certainly, a is not
odd, for otherwise, a2 and a2 − 4b2 are odd and so a2 − 4b2 	= 2. Thus, a must be even and so a = 2c for
some integer c. Therefore,

a2 − 4b2 = (2c)2 − 4b2 = 4c2 − 4b2 = 4(c2 − b2) = 2.

Since c2 − b2 is an integer, 4 | 2, which is impossible.

7.39. Prove that there exist three distinct real number solutions to the polynomial equation x3 − 3x + 1 = 0.

7.40. Prove that there exists no integer a for which a ≡ 17 (mod 35) and 2a ≡ 43 (mod 49).

7.41. We have seen that
n∑

i=1

i = n(n + 1)
2

for every positive integer n. The statement below suggests that there is

another expression for this sum. Evaluate the proof of the following statement.

Statement For every positive integer n,
n∑

i=1

i = (2n + 1)2

8
.

Proof We proceed by induction. First, observe that the statement is true for n = 1. Assume that the

statement is true for a positive integer k. Thus,
k∑

i=1

i = (2k + 1)2

8
. We show that

k+1∑
i=1

i = (2k + 3)2

8
. Now,

k+1∑
i=1

i =
(

k∑
i=1

i

)
+ (k + 1) = (2k + 1)2

8
+ (k + 1)

= 4k2 + 4k + 1 + 8(k + 1)
8

= 4k2 + 12k + 9
8

= (2k + 3)2

8
.

Thus,
n∑

i=1

i = (2n + 1)2

8
for every positive integer n by the Principle of Mathematical Induction.
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7.42. Evaluate the proof of the following statement.

Statement For each positive integer n, every set of n real numbers consists only of equal numbers.

Proof We proceed by induction. Certainly, if a set consists of a single real number, then all numbers in
the set are equal. Assume, for a positive integer k, that the numbers in every set of k real numbers are equal.
Let S be a set of k + 1 real numbers, say S = {a1, a2, . . . , ak+1}. Let S1 = {a1, a2, . . . , ak} and
S2 = {a2, a3, . . . , ak+1} be two subsets of S, each consisting of k real numbers. By the induction hypothesis,
all numbers in S1 are equal and numbers in S2 are equal, that is, a1 = a2 = · · · = ak and
a2 = a3 = · · · = ak+1. Therefore, a1 = a2 = · · · = ak = ak+1 and so all numbers in S are equal. By the
Principle of Mathematical Induction, every set of n real numbers consists only of equal numbers for every
positive integer n.

7.43. Evaluate the proof of the following statement.

Statement For every nonnegative integer n, en = 1.

Proof We proceed by the Strong Principle of Mathematical Induction. First, since e0 = 1, the statement
is true for n = 0. Assume, for a nonnegative integer k, that ei = 1 for every integer i with 0 ≤ i ≤ k. We
show that ek+1 = 1. Observe that

ek+1 = ek · ek

ek−1
= 1 · 1

1
= 1.

By the Strong Principle of Mathematical Induction, en = 1 for every nonnegative integer n.

7.44. Prove that if a is a real number such that |a| < r for every positive real number r, then a = 0.

7.45. Below is given a proof of a result. Which result is being proved and which proof technique is being used?

Proof First, observe that 30 + 1 = 2 ≥ 12 = 1, which verifies the basis step. Assume that
3k + 1 ≥ (k + 1)2 for some nonnegative integer k. We show that 3k+1 + 1 ≥ (k + 2)2. When k = 0, we
have 31 + 1 = 4 = 22. Hence, we may assume that k is a positive integer. Observe that

3k+1 + 1 = 3 · 3k + 1 ≥ 3[(k + 1)2 − 1] + 1

= 3(k2 + 2k) + 1 = 3k2 + 6k + 1 = (k2 + 4k) + (2k2 + 2k) + 1

≥ k2 + 4k + 2 + 2 + 1 ≥ k2 + 4k + 4 = (k + 2)2.

7.46. Evaluate the proof of the following statement.

Statement If a1, a2, . . . , an are n real numbers such that a1a2 · · · an = 0, then ai = 0 for some i with
1 ≤ i ≤ n.

Proof We proceed by induction. Certainly, the statement is true for n = 1. Assume that the statement is
true for some positive integer k. Now, let b1, b2, . . . , bk+1 be k + 1 real numbers such that
b1b2 · · · bk+1 = 0. Thus, (b1b2 · · · bk )bk+1 = 0 and hence either b1b2 · · · bk = 0 or bk+1 = 0. If
b1b2 · · · bk = 0, then it follows by the induction hypothesis that bi = 0 for some integer i with 1 ≤ i ≤ k. If
this is not the case, then bk+1 = 0. Hence, bi = 0 for some integer i with 1 ≤ i ≤ k + 1. Therefore, the
statement is true by the Principle of Mathematical Induction.

7.47. Evaluate the proof of the following statement.

Statement If n ≥ 10 is an integer, then n3 ≥ 100 + 9n2.

Proof First, observe that if n = 10, then n3 = 1000 and 100 + 9n2 = 100 + 900 = 1000 and so
n3 = 100 + 9n2. More generally, observe that n3 ≥ 100 + 9n2 can be written as n3 − 9n2 ≥ 100 and so
n2(n − 9) ≥ 100. Since n ≥ 10, we have n2 ≥ 100 and n − 9 ≥ 1. Therefore, n2(n − 9) ≥ 100 · 1 = 100.
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7.48. It is clear that 3 + 4 > 5 and 32 + 42 = 52. Prove that 3n + 4n < 5n for every integer n ≥ 3.

7.49. Prove that if a1, a2, a3, . . . is a sequence of numbers such that a1 = 1 and an = n−1
n an−1 for each integer

n ≥ 2, then an = 1
n for every positive integer n.

7.50. For positive real numbers a, b, c and d, it follows that√
a2 + b2 + c2 + d2 �= a + b + c + d.

For example, if a = 1, b = c = 2 and d = 4, then a + b + c + d = 9 while
√

a2 + b2 + c2 + d2 = 5. In
fact, in this case, √

a2 + b2 + c2 + d2 < a + b + c + d < 2
√

a2 + b2 + c2 + d2.

(a) Prove for every four positive real numbers a, b, c and d that√
a2 + b2 + c2 + d2 < a + b + c + d.

(b) Prove for every four positive real numbers a, b, c and d that

a + b + c + d ≤ 2
√

a2 + b2 + c2 + d2, (7.10)

Furthermore, show that equality holds in (7.10) if and only if a = b = c = d.

The Chapter Presentation for Chapter 7 can be found at goo.gl/7ysHA3
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8
Prove or Disprove

In every mathematical statement that you have seen so far, you have been informed
of its truth value. If the statement was true, then we have either provided a proof or

have asked you to provide one of your own. What you didn’t know (perhaps) was how
we or you were to verify its truth. If the statement was false, then here too we either
verified this or asked you to verify that it was false. As you proceed further into the
world of mathematics, you will more and more often encounter statements whose truth
is in question. Consequently, each such statement presents two problems for you: (1)
Determine the truth or falseness of the statement. (2) Verify the correctness of your belief.

8.1 CONJECTURES IN MATHEMATICS

In mathematics, when we don’t know whether a certain statement is true but there is
good reason to believe that it is, then we refer to the statement as a conjecture. So, the
word “conjecture” is used in mathematics as a sophisticated synonym for an intelligent
guess (or perhaps just a guess). Once a conjecture is proved, then the conjecture becomes
a theorem. If, on the other hand, the conjecture is shown to be false, then we made
an incorrect guess. This is the way mathematics develops – by guessing and showing
that our guess is correct or wrong and then possibly making a new conjecture and then
repeating the process (possibly often). As we learn what’s true and what’s false about
the mathematics we’re studying, this influences the questions we ask and the conjectures
we make.

Let’s consider an example of a conjecture (although there is always the possibility
that someone has settled the conjecture between the time it was written here and the
moment you read it). A word is called a palindrome if it reads the same forward and
backward (such as deed, noon and radar). Indeed, a sentence is a palindrome if it reads
the same forward and backward, ignoring spaces (Name no one man). A positive integer
is called a palindrome if it is the same number when its digits are reversed. (It is con-
siderably easier to give an example of a number that is a palindrome than a word that is
a palindrome.) For example, 1221 and 47374 are palindromes. Consider the integer 27.
It is not a palindrome. Reverse its digits and we obtain 72. Needless to say, 72 is not a
palindrome either. Adding 27 and 72, we have:

200
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27
+ 72

99

A palindrome results. Consider another positive integer, say 59. It is not a palindrome.
Reverse its digits and add:

59
+ 95

154

The result is not a palindrome either. Reverse its digits and add:

154
+ 451

605

Once again we arrive at a number that is not a palindrome. But reverse its digits and add:

605
+ 506

1111

This time the result is a palindrome. It has been conjectured that if we begin with any
positive integer and apply the technique described above to it, then we will eventually
arrive at a palindrome. However, no one knows if this is true. (It is known to be true for
all two-digit numbers.)

Some conjectures have become famous because it has taken years, decades or even
centuries to establish their truth or falseness. Other conjectures remain undecided still
today. We now consider four conjectures in mathematics, each of which has a long his-
tory.

In 1852, a question occurred to the British student Francis Guthrie when he was col-
oring a map of the counties of England. Suppose that some country (real or imaginary)
has been divided into counties in some manner. Is it possible to color the counties in this
map with four or fewer colors such that one color is used for each county and two coun-
ties that share a common boundary (not simply a single point) are colored differently?
For example, the map of the “country” shown in Figure 8.1 has eight “counties,” which
are colored with the four colors red (R), blue (B), green (G) and yellow (Y), according
to the rules described above. This map can also be colored with more than four colors
but not less than four.

Y
B
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B G

Y
R
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Figure 8.1 Coloring the counties in a country with four colors
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Within a few years, some of the best known mathematicians of the time had become
aware of Francis Guthrie’s question and eventually a famous conjecture developed from
this.

The Four Color
Conjecture

Every map can be colored with four or fewer colors.

Many attempted to settle this conjecture. In fact, in 1879 an article was published
containing a reported proof of the conjecture. However, in 1890, an error was discov-
ered in the proof and the “theorem” returned to its conjecture status. It was not until 1976
when an actual proof by Kenneth Appel and Wolfgang Haken, combining both mathe-
matics and computers, was presented. The period between the origin of the problem and
its solution covered some 124 years. This is now a theorem.

The Four
Color Theorem

Every map can be colored with four or fewer colors.

We now describe a conjecture with an even longer history. One of the famous math-
ematicians of the 17th century was Pierre Fermat. He is undoubtedly best known for one
particular assertion he made. He wrote that for each integer n ≥ 3, there are no nonzero
integers x, y and z such that xn + yn = zn. Of course, there are many nonzero integer
solutions to the equation x2 + y2 = z2. For example, 32 + 42 = 52, 52 + 122 = 132 and
82 + 152 = 172. A triple (x, y, z) of positive integers such that x2 + y2 = z2 is often
called a Pythagorean triple. Therefore, (3, 4, 5), (5, 12, 13) and (8, 15, 17) are
Pythagorean triples. Indeed, if (a, b, c) is a Pythagorean triple and k ∈ N, then (ka, kb, kc)
is also a Pythagorean triple. Fermat’s assertion was discovered, unproved, in a margin of
a book of Fermat’s after his death. In the margin it was written that there was insufficient
space to contain his “truly remarkable demonstration.” Consequently, this statement
became known as Fermat’s Last Theorem. It would have been more appropriate, however,
to have referred to this statement as Fermat’s Last Conjecture as the truth or falseness of
this statement remained in question for approximately 350 years. However, in 1993, the
British mathematician Andrew Wiles settled the conjecture by giving a truly remarkable
proof of it. Hence, Fermat’s Last Theorem is at last a theorem.

Fermat’s Last
Theorem

For each integer n ≥ 3, there are no nonzero integers x, y and z such that xn + yn = zn.

The final two conjectures we mention concern primes. Although we have mentioned
primes from time to time, we have not yet presented a formal definition. We do this now.
An integer p ≥ 2 is a prime if its only positive integer divisors are 1 and p. A Fermat
number (Yes, the same Fermat!) is an integer of the form Ft = 22t + 1, where t is a
nonnegative integer. The first five Fermat numbers are

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65,537,

all of which happen to be primes.
In 1640 Fermat wrote to many (including to the famous mathematician Blaise Pas-

cal) that he believed every such number (he didn’t call them Fermat numbers) was a
prime but he was unable to prove this. Hence, we have the following.
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Fermat’s
Conjecture

Every Fermat number is a prime.

Nearly one century later (in 1739), the famous mathematician Leonhard Euler proved
that F5 = 4,294,967,297 is divisible by 641, thereby disproving Fermat’s Conjecture.
More specifically, Euler proved the following.

Euler’s Theorem If p is a prime factor of Ft , then p = 2t+1k + 1 for some positive integer k.

Letting t = 5 in Euler’s Theorem, we see that each prime factor of F5 is of the form
64k + 1. The first five primes of this form are 193, 257, 449, 577 and 641, the last of
which divides F5.

In recent decades, other Fermat numbers have been studied and have been shown
not to be prime. Indeed, many students of this topic now lean toward the opposing view-
point (and conjecture): Except for the Fermat numbers F0, F1, · · · , F4 (all of which were
observed to be prime by Fermat), no Fermat number is prime.

The last conjecture we describe here has its origins around 1742. The German math-
ematician Christian Goldbach conjectured that every even integer exceeding 2 is the
sum of two primes. Of course, this is easy to see for small even integers. For exam-
ple, 4 = 2 + 2, 6 = 3 + 3, 8 = 5 + 3 and 10 = 7 + 3 = 5 + 5. The major difference
between this conjecture and the three preceding conjectures is that this conjecture has
never been resolved. Hence, we conclude with the following.

Goldbach’s
Conjecture

Every even integer at least 4 is the sum of two primes.

SECTION 8.1 EXERCISES

8.1. Consider the following sequence of equalities:
1 = 0 + 1
2 + 3 + 4 = 1 + 8
5 + 6 + 7 + 8 + 9 = 8 + 27
10 + 11 + 12 + 13 + 14 + 15 + 16 = 27 + 64

(a) What is the next equality in this sequence?
(b) What conjecture is suggested by these equalities?
(c) Prove the conjecture in (b) by induction.

8.2. Consider the following statements:
(1 + 2)2 − 12 = 23

(1 + 2 + 3)2 − (1 + 2)2 = 33

(1 + 2 + 3 + 4)2 − (1 + 2 + 3)2 = 43

(a) Based on the three statements given above, what is the next statement suggested by these?
(b) What conjecture is suggested by these statements?
(c) Verify the conjecture in (b).
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8.3. A sequence {an} of real numbers is defined recursively by a1 = 2 and for n ≥ 2,

an = 2 + 1 · a2
1 + 2 · a2

2 + · · · + (n − 1)a2
n−1

n
.

(a) Determine a2, a3 and a4.
(b) Clearly, an is a rational number for each n ∈ N. Based on the information in (a), however, what

conjecture does this suggest?

8.4. It has been stated that the German mathematician Christian Goldbach is known for a conjecture he made
concerning primes. We refer to this conjecture as Conjecture A.

Conjecture A Every even integer at least 4 is the sum of two primes.

Goldbach made two other conjectures concerning primes.

Conjecture B Every integer at least 6 is the sum of three primes.

Conjecture C Every odd integer at least 9 is the sum of three odd primes.

Prove that the truth of one or more of these three conjectures implies the truth of one or two of the other
conjectures.

8.5. By an ordered partition of an integer n ≥ 2 is meant a sequence of positive integers whose sum is n. For
example, the ordered partitions of 3 are 3, 1 + 2, 2 + 1, 1 + 1 + 1.

(a) Determine the ordered partitions of 4.
(b) Make a conjecture concerning the number of ordered partitions of an integer n ≥ 2.

8.6. Two recursively-defined sequences {an} and {bn} of positive integers have the same recurrence relation,
namely an = 2an−1 + an−2 and bn = 2bn−1 + bn−2 for n ≥ 3. The initial values for {an} are a1 = 1 and
a2 = 3, while the initial values for {bn} are b1 = 1 and b2 = 2.

(a) Determine a3 and a4.
(b) Determine whether the following is true or false:

Conjecture: an = 2n−2 · n + 1 for every integer n ≥ 2.
(c) Determine b3 and b4.
(d) Determine whether the following is true or false:

Conjecture: bn = (1+√
2)n−(1−√

2)n

2
√

2
for every integer n ≥ 2.

8.7. We know that 1 + 2 + 3 = 1 · 2 · 3, that is, there exist three positive integers whose sum equals their
product. Prove or disprove (a) and (b).

(a) There exist four positive integers whose sum equals their product.
(b) There exist five positive integers whose sum equals their product.
(c) What conjecture does this suggest to you?

8.8. Observe that 3 = 1 + 2, 6 = 1 + 2 + 3, 9 = 4 + 5 and 12 = 3 + 4 + 5.

(a) Show that 13 and 14 can be expressed as the sum of two or more consecutive positive integers.
(b) Make a conjecture as for which integers n ≥ 3 can be expressed as the sum of two or more consecutive

positive integers.
(c) Prove your conjecture in (b). [Note that every positive integer n can be expressed as n = 2rs, where r is a

nonnegative integer and s is a positive odd integer.]

8.9. A sequence a2, a3, a4, . . . of real numbers is defined recursively by a2 = 1 + 1
2 , an = an−1 + 1

n for n ≥ 3.

(a) Determine a3 and a4.
(b) Certainly, an is a rational number for n ≥ 2. Based on the information in (a), what conjecture is

suggested?
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8.2 REVISITING QUANTIFIED STATEMENTS

As we review the conjectures described in the preceding section, we see that each con-
cerns the truth or falseness of a quantified statement: for every positive integer, for every
map, for every integer n ≥ 3, every Fermat number, every even integer at least 4. In-
deed, most of the statements we have encountered and will encounter in the future are
quantified statements. Because of the obvious importance of quantified statements, it
is of value to review these in greater detail. For an open sentence P(x) over a domain
S, we have often considered a quantified statement with a universal quantifier as the
following:

∀x ∈ S, P(x): For every x ∈ S, P(x). or If x ∈ S, then P(x);

while a quantified statement with an existential quantifier is:

∃x ∈ S, P(x): There exists x ∈ S such that P(x).

Recall that ∀x ∈ S, P(x) is a true statement if P(x) is true for every x ∈ S; while ∃x ∈
S, P(x) is a true statement if P(x) is true for at least one x ∈ S. Let’s look at several
examples of this.

Example 8.1 Let S = {1, 3, 5, 7} and consider

P(n): n2 + n + 1 is prime.

for each n ∈ S. Then both

∀n ∈ S, P(n): For every n ∈ S, n2 + n + 1 is prime.

and

∃n ∈ S, P(n): There exists n ∈ S such that n2 + n + 1 is prime.

are quantified statements. Since

P(1): 12 + 1 + 1 = 3 is prime. is true,
P(3): 32 + 3 + 1 = 13 is prime. is true,
P(5): 52 + 5 + 1 = 31 is prime. is true,
P(7): 72 + 7 + 1 = 57 is prime. is false,

it follows that ∀n ∈ S, P(n) is false and ∃n ∈ S, P(n) is true. On the other hand, the
statement

Q : 323 is prime.

is not a quantified statement but Q is false (as 323 = 17 · 19 is not prime). �

Let P(x) be a statement for each element x belonging to some domain S. Recall that
the negation of ∀x ∈ S, P(x) is

∼ (∀x ∈ S, P(x)) ≡ ∃x ∈ S,∼ P(x).
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and the negation of ∃x ∈ S, P(x) is

∼ (∃x ∈ S, P(x)) ≡ ∀x ∈ S,∼ P(x).

Again, consider

P(n): n2 + n + 1 is prime.

from Example 8.1, which is a statement for each n in S = {1, 3, 5, 7}. The negation of
∀n ∈ S, P(n) is

∃n ∈ S,∼ P(n): There exists n ∈ S such that n2 + n + 1 is not prime.

is true as 7 ∈ S but 72 + 7 + 1 = 57 is not prime. On the other hand, the negation of
∃n ∈ S, P(n) is

∀n ∈ S,∼ P(n): If n ∈ S, then n2 + n + 1 is not prime.

is false since, for example, 1 ∈ S and 12 + 1 + 1 = 3 is prime.
In Section 2.10 we began a discussion of quantified statements containing two quan-

tifiers. We expand this discussion here.

Example 8.2 Consider

P(s, t ): 2s + 3t is prime.

where s is a positive even integer and t is a positive odd integer. If we let S denote the
set of positive even integers and T the set of positive odd integers, then the quantified
statement

∃s ∈ S, ∃t ∈ T, P(s, t )

can be expressed in words as

There exist a positive even integer s and a

positive odd integer t such that 2s + 3t is prime. (8.1)

The statement (8.1) is true since

P(2, 1): 22 + 31 = 7 is prime.

is true. On the other hand, the quantified statement

∀s ∈ S,∀t ∈ T, P(s, t )

can be expressed in words as

For every positive even integer s and every positive odd integer t, 2s + 3t is prime.
(8.2)

The statement (8.2) is false since

P(6, 3): 26 + 33 = 91 is a prime.

is false, as 91 = 7 · 13 is not a prime. �
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Let P(s, t ) be an open sentence, where the domain of the variable s is S and the
domain of the variable t is T . Recall that the negations of the quantified statements ∃s ∈
S, ∃t ∈ T, P(s, t ) and ∀s ∈ S,∀t ∈ T, P(s, t ) are

∼ (∃s ∈ S, ∃t ∈ T, P(s, t )) ≡ ∀s ∈ S,∀t ∈ T,∼ P(s, t )

and

∼ (∀s ∈ S,∀t ∈ T, P(s, t )) ≡ ∃s ∈ S, ∃t ∈ T,∼ P(s, t ).

Therefore, the negation of the statement (8.1) is

For every positive even integer s and every positive odd integer t, 2s + 3t is not prime.

which is a false statement. On the other hand, the negation of the statement (8.2) is

There exist a positive even integer s and a
positive odd integer t such that 2s + 3t is not prime.

which is a true statement.
We have seen that quantified statements may also contain different kinds of quanti-

fiers. For example, it follows by the definition of an even integer that for every even in-
teger n, there exists an integer k such that n = 2k. There is another mathematical symbol
with which you should be familiar. The symbol 	 denotes the phrase such that (although
some mathematicians simply write s.t. for “such that”). For example, let S denote the set
of even integers again. Then

∀n ∈ S, ∃k ∈ Z 	 n = 2k (8.3)

states:

For every even integer n, there exists an integer k such that n = 2k.

This statement can be reworded as:

If n is an even integer, then n = 2k for some integer k.

If we interchange the two quantifiers in (8.3), we obtain, in words:

There exists an even integer n such that for every integer k, n = 2k.

This statement can also be reworded as

There exists an even integer n such that n = 2k for every integer k.

This statement can be expressed in symbols as

∃n ∈ S,∀k ∈ Z, n = 2k. (8.4)

Certainly, the statements (8.3) and (8.4) say something totally different. Indeed, (8.3) is
true and (8.4) is false.

Another such example of this is

For every real number x, there exists an integer n such that |x − n| < 1. (8.5)

This statement can also be expressed as

If x is a real number, then there exists an integer n such that |x − n| < 1.
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In order to state (8.5) in symbols, let

P(x, n): |x − n| < 1

where the domain of the variable x is R and the domain of the variable n is Z. Thus, (8.5)
can be expressed in symbols as

∀x ∈ R, ∃n ∈ Z, P(x, n).

The statement (8.5) is true, as we now verify. In the proof of the following result, we
will refer to the ceiling 
x� of a real number, which is the smallest integer greater than
or equal to x.

Result 8.3 For every real number x, there exists an integer n such that |x − n| < 1.

Proof Let x be a real number. If we let n = 
x�, then |x − n| = |x − 
x�| = 
x� − x < 1.

Another example of a quantified statement containing two different quantifiers is

There exists a positive even integer m such

that for every positive integer n,
∣∣ 1

m − 1
n

∣∣ ≤ 1
2 . (8.6)

Let S denote the set of positive even integers and let

P(m, n):
∣∣ 1

m − 1
n

∣∣ ≤ 1
2 .

where the domain of the variable m is S and the domain of the variable n is N. Thus,
(8.6) can be expressed in symbols as

∃m ∈ S,∀n ∈ N, P(m, n).

The truth of the statement (8.6) is now verifed.

Result 8.4 There exists a positive even integer m such that for every positive integer n,∣∣∣∣ 1
m

− 1
n

∣∣∣∣ ≤ 1
2
.

Proof Consider m = 2. Let n be a positive integer. We consider three cases.

Case 1. n = 1. Then
∣∣ 1

m − 1
n

∣∣ = ∣∣ 1
2 − 1

1

∣∣ = 1
2 .

Case 2. n = 2. Then
∣∣ 1

m − 1
n

∣∣ = ∣∣ 1
2 − 1

2

∣∣ = 0 < 1
2 .

Case 3. n ≥ 3. Then
∣∣ 1

m − 1
n

∣∣ = ∣∣ 1
2 − 1

n

∣∣ = 1
2 − 1

n < 1
2 .

Thus,
∣∣ 1

2 − 1
n

∣∣ ≤ 1
2 for every n ∈ N.

Let P(s, t ) be an open sentence, where the domain of the variable s is S and the
domain of the variable t is T . The negation of the quantified statement ∀s ∈ S, ∃t ∈
T, P(s, t ) is

∼ (∀s ∈ S, ∃t ∈ T, P(s, t )) ≡ ∃s ∈ S,∼ (∃t ∈ T, P(s, t ))

≡ ∃s ∈ S,∀t ∈ T,∼ P(s, t );
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while the negation of the quantified statement ∃s ∈ S,∀t ∈ T, P(s, t ) is

∼ (∃s ∈ S,∀t ∈ T, P(s, t )) ≡ ∀s ∈ S,∼ (∀t ∈ T, P(s, t ))

≡ ∀s ∈ S, ∃t ∈ T,∼ P(s, t ).

Consequently, the negation of the statement (8.5) is

There exists a real number x such that for every integer n, |x − n| ≥ 1.

This statement is therefore false. The negation of the statement (8.6) is

For every positive even integer m, there exists a positive integer n such that∣∣ 1
m − 1

n

∣∣ > 1
2 .

This too is false.
Let’s consider the following statement, which has more than two quantifiers.

For every positive real number e, there exists a positive real number d

such that for every real number x, |x| < d implies that |2x| < e. (8.7)

If we let

P(x, d): |x| < d and Q(x, e): |2x| < e

where the domain of the variables e and d is R+ and the domain of the variable x is R,
then (8.7) can be expressed in symbols as

∀e ∈ R+, ∃d ∈ R+,∀x ∈ R, P(x, d) ⇒ Q(x, e).

The statement (8.7) is in fact true, which we now verify.

Result 8.5 For every positive real number e, there exists a positive real number d such that if x is a
real number with |x| < d, then |2x| < e.

Proof Let e be a positive real number. Now choose d = e/2. Let x be a real number with |x| <

d = e/2. Then

|2x| = 2|x| < 2d = 2
( e

2

)
= e,

as desired.

SECTION 8.2 EXERCISES

8.10. (a) Express the following quantified statement in symbols:
For every odd integer n, the integer 3n + 1 is even.

(b) Prove that the statement in (a) is true.

8.11. (a) Express the following quantified statement in symbols:
There exists a positive even integer n such that 3n + 2n−2 is odd.

(b) Prove that the statement in (a) is true.
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8.12. (a) Express the following quantified statement in symbols:
For every positive integer n, the integer nn−1 is even.

(b) Show that the statement in (a) is false.

8.13. (a) Express the following quantified statement in symbols:
There exists an integer n such that 3n2 − 5n + 1 is an even integer.

(b) Show that the statement in (a) is false.

8.14. (a) Express the following quantified statement in symbols:
For every integer n ≥ 2, there exists an integer m such that n < m < 2n.

(b) Prove that the statement in (a) is true.

8.15. (a) Express the following quantified statement in symbols:
There exists an integer n such that m(n − 3) < 1 for every integer m.

(b) Prove that the statement in (a) is true.

8.16. (a) Express the following quantified statement in symbols:
For every integer n, there exists an integer m such that (n − 2)(m − 2) > 0.

(b) Express in symbols the negation of the statement in (a).
(c) Show that the statement in (a) is false.

8.17. (a) Express the following quantified statement in symbols:
There exists a positive integer n such that −nm < 0 for every integer m.

(b) Express in symbols the negation of the statement in (a).
(c) Show that the statement in (a) is false.

8.18. (a) Express the following quantified statement in symbols:
For every positive integer a, there exists an integer b with |b| < a such that |bx| < a for every real
number x.

(b) Prove that the statement in (a) is true.

8.19. (a) Express the following quantified statement in symbols:
For every real number x, there exist integers a and b such that a ≤ x ≤ b and b − a = 1.

(b) Prove that the statement in (a) is true.

8.20. (a) Express the following quantified statement in symbols:
There exists an integer n such that for two real numbers x and y, x2 + y2 ≥ n.

(b) Prove that the statement in (a) is true.

8.21. (a) Express the following quantified statement in symbols:
For every even integer a and odd integer b, there exists a rational number c such that either a < c < b
or b < c < a.

(b) Prove that the statement in (a) is true.

8.22. (a) Express the following quantified statement in symbols:
There exist two integers a and b such that for every positive integer n, a < 1

n < b.
(b) Prove that the statement in (a) is true.

8.23. (a) Express the following quantified statement in symbols:
There exist odd integers a, b and c such that a + b + c = 1.

(b) Prove that the statement in (a) is true.

8.24. (a) Express the following quantified statement in symbols:
For every three odd integers a, b and c, their product abc is odd.

(b) Prove that the statement in (a) is true.
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8.25. Consider the following statement.

R : There exists a real number L such that for every positive real

number e, there exists a positive real number d such that

if x is a real number with |x| < d, then |3x − L| < e.

(a) Use P(x, d): |x| < d and Q(x, L, e): |3x − L| < e to express the statement R in symbols.
(b) Prove that the statement R is true.

8.26. Prove the following statement. For every positive real number a and positive rational number b, there exist a
real number c and irrational number d such that ac + bd = 1.

8.27. Prove the following statement. For every integer a, there exist integers b and c such that |a − b| > cd for
every integer d.

8.3 TESTING STATEMENTS

We now turn our attention to the main topic of this chapter. For a given statement whose
truth value is not provided to us, our task is to determine the truth or falseness of the
statement and, in addition, show that our conclusion is correct by proving or disproving
the statement, as appropriate.

Example 8.6 Prove or disprove: There is a real number solution of the equation

x6 + 2x2 + 1 = 0.

Strategy Observe that x6 and x2 are even powers of x. Thus, if x is any real number, then x6 ≥ 0
and x2 ≥ 0, so 2x2 ≥ 0. Adding 1 to x6 + 2x2 shows that x6 + 2x2 + 1 ≥ 1. Hence, it is
impossible for x6 + 2x2 + 1 to be 0. These thoughts lead us to our solution. We begin
by informing the reader that the statement is false, so the reader knows what we will be
trying to do. �

Solution of
Example 8.6

The statement is false. Let x ∈ R. Since x6 ≥ 0 and x2 ≥ 0, it follows that x6 + 2x2 +
1 ≥ 1 and so x6 + 2x2 + 1 �= 0. �

For the preceding example, we wrote “Strategy” rather than “Proof Strategy” for two
reasons: (1) Since the statement may be false, there may be no proof in this case. (2) We
are essentially “thinking out loud,” trying to convince ourselves whether the statement
is true or false. Of course, if the statement turns out to be true, then our strategy may
very well turn into a proof strategy.

Example 8.7 Prove or disprove: Let x, y, z ∈ Z. Then two of the integers x, y and z are of the same
parity.

Strategy For any three given integers, either two are even or two are odd. So, it certainly seems
as if the statement is true. The only question appears to be whether what we said in the
preceding sentence is convincing enough to all readers. We try another approach. �
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Solution The statement is true.

Proof Consider x and y. If x and y are of the same parity, then the proof is complete. Thus, we
may assume that x and y are of opposite parity, say x is even and y is odd. If z is even,
then x and z are of the same parity; while if z is odd, then y and z are of the same parity.

Of course, the preceding proof could have been done by cases as well.

Example 8.8 Prove or disprove: Let A, B and C be sets. If A × C = B × C, then A = B.

Strategy The elements of the set A × C are ordered pairs of elements, namely they are of the form
(x, y), where x ∈ A and y ∈ C. Let (x, y) ∈ A × C. If A × C = B × C, then it follows that
(x, y) must be an element of B × C as well. This says that x ∈ B and y ∈ C. Conversely,
if (x, y) ∈ B × C, then (x, y) ∈ A × C, which implies that x ∈ A as well. These obser-
vations certainly seem to suggest that it should be possible to show that A = B under
these conditions. However, this argument depends on A × C containing an element (x, y).
Could it happen that A × C contains no elements? If A or C is empty, this would
happen. However, if C �= ∅ and A × C = ∅, then A must be empty. But B × C = A ×
C = ∅ would mean that B must also be empty and so A = B. This suggests a different
response. �

Solution of
Example 8.8

The statement is false. Let A = {1}, B = {2} and C = ∅. Then A × C = B × C = ∅, but
A �= B. Hence, these sets A, B and C form a counterexample. �

In some instances, we might consider modifying a false statement so that the re-
vised statement is true. Our preceding discussion seems to suggest that if the set C were
required to be nonempty, then the statement would have been true.

Result 8.9 Let A, B and C be sets, where C �= ∅. If A × C = B × C, then A = B.

Proof Assume that A × C = B × C. Since C �= ∅, the set C contains some element c. Let x ∈ A.
Then (x, c) ∈ A × C. Since A × C = B × C, it follows that (x, c) ∈ B × C. Hence, x ∈ B
and so A ⊆ B. By a similar argument, it follows that B ⊆ A. Thus, A = B.

Example 8.10 Prove or disprove: There exists a real number x such that x3 < x < x2.

Strategy If there is a real number x such that x3 < x < x2, then this number is certainly not 0.
Consequently, any real number x with this property is either positive or negative. If x > 0,
then we can divide x3 < x < x2 by x, obtaining x2 < 1 < x. However, if x > 1, then
x2 > 1. Therefore, there is no positive real number x for which x3 < x < x2. Hence, any
real number x satisfying x3 < x < x2 must be negative. Dividing x3 < x < x2 by x gives
us x2 > 1 > x or x < 1 < x2. Experimenting with some negative numbers tells us that
any number less than −1 has the desired property. �

Solution of
Example 8.10

The statement is true.

Proof Consider x = −2. Then x3 = −8 and x2 = 4. Thus, x3 < x < x2.
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Example 8.11 Prove or disprove: For every positive irrational number b, there exists an irrational num-
ber a such that 0 < a < b.

Strategy We begin with a positive irrational number b. If this statement is true, then we must
show that there is an irrational number a such that 0 < a < b. If we let a = b/2, then
certainly 0 < a < b. The only question is whether b/2 is necessarily irrational. We have
seen, however, that b/2 is irrational (in Exercise 5.18 in Section 5.2). �

Solution of
Example 8.11

The statement is true.

Proof Let b be a positive irrational number. Now let a = b/2. Then 0 < a < b and a is irrational
by Exercise 5.18.

Example 8.12 Prove or disprove: Every even integer is the sum of three distinct even integers.

Strategy This statement can be reworded in a variety of ways. One rewording of this statement
is: If n is an even integer, then there exist three distinct even integers a, b and c such that
n = a + b + c. What this statement does not say is that the sum of three distinct even
integers is even; that is, we do not begin with three distinct even integers and show that
their sum is even. We begin with an even integer n and ask whether we can find three
distinct even integers a, b and c such that n = a + b + c. This is certainly true for n = 0
since 0 = (−2) + 0 + 2. It is also true for n = 2 since 2 = (−2) + 0 + 4. If n = 4, then
4 = (−2) + 2 + 4. This last example may suggest a proof in general. For every even
integer n, we can write n = 2 + (−2) + n. Certainly, n, 2 and −2 are even. But are they
distinct? They are not distinct if n = 2 or n = −2. This provides a plan for a proof. �

Solution of
Example 8.12

The statement is true.

Proof Let n be an even integer. We show that n is the sum of three distinct even integers by
considering the following three cases.

Case 1. n = 2. Observe that 2 = (−2) + 0 + 4.

Case 2. n = −2. Observe that −2 = (−4) + 0 + 2.

Case 3. n �= 2,−2. Then n = 2 + (−2) + n.

Example 8.13 Prove or disprove: Let k ∈ N. If k2 + 5k is odd, then (k + 1)2 + 5(k + 1) is odd.

Strategy One idea that might occur to us is to assume that k2 + 5k is an odd integer, where k ∈ N,
and see if we can show that (k + 1)2 + 5(k + 1) is also odd. If k2 + 5k is odd, then we
can write k2 + 5k = 2� + 1 for some integer �. Then

(k + 1)2 + 5(k + 1) = k2 + 2k + 1 + 5k + 5 = (k2 + 5k) + (2k + 6)

= (2� + 1) + (2k + 6) = (2� + 2k + 6) + 1

= 2(� + k + 3) + 1,

which is an odd integer and we have a proof. �
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Solution of
Example 8.13

The statement is true.

Proof Assume that k2 + 5k is an odd integer, where k ∈ N. Then k2 + 5k = 2� + 1 for some
integer �. Hence,

(k + 1)2 + 5(k + 1) = k2 + 2k + 1 + 5k + 5 = (k2 + 5k) + (2k + 6)

= (2� + 1) + (2k + 6) = (2� + 2k + 6) + 1

= 2(� + k + 3) + 1.

Since � + k + 3 is an integer, (k + 1)2 + 5(k + 1) is an odd integer.

Example 8.14 Prove or disprove: For every positive integer n, n2 + 5n is an odd integer.

Strategy What seems like a reasonable thing to do is to investigate n2 + 5n for a few values of n.
For n = 1, we have n2 + 5n = 1 + 5 · 1 = 6. We have already solved the problem! For
n = 1, n2 + 5n is not an odd integer. We have discovered a counterexample. �

Solution of
Example 8.14

The statement is false. For n = 1, n2 + 5n = 1 + 5 · 1 = 6, which is even. Thus, n = 1
is a counterexample. �

Looking at Examples 8.13 and 8.14 again, we might be wondering what exactly
is going on. Certainly, these two examples seem to be related. Perhaps the following
thought may occur to us. For each positive integer n, let

P(n): The integer n2 + 5n is odd.

and consider the (quantified) statement

For every positive integer n, n2 + 5n is odd.

or in symbols,

∀n ∈ N, P(n). (8.8)

We might ask whether (8.8) is true. Because of the domain, a proof by induction seems
appropriate. In fact, the statement in Example 8.13 is the inductive step in an induc-
tion proof of (8.8). By Example 8.13, the inductive step is true. On the other hand, the
statement (8.8) is false as n = 1 is a counterexample. This emphasizes the importance
of verifying both the basis step and the inductive step in an induction proof. Return-
ing to Example 8.13 once again, we can show (using a proof by cases) that k2 + 5k
is even for every k ∈ N, which would provide a vacuous proof of the statement in
Example 8.13.

In this chapter we have discussed analyzing statements, particularly understanding
statements, determining whether they are true or false and proving or disproving them.
All of the statements that we have analyzed were provided to us. But how do we obtain
statements to analyze for ourselves? This is an important question and concerns the
creative aspect of mathematics – how new mathematics is discovered. Obviously, there is
no rule or formula for creativity but creating new statements often comes from studying
old statements.
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Let’s illustrate how we might create statements to analyze. In Exercise 4.6 in Chap-
ter 4, you were asked to prove the following:

Let a ∈ Z. If 3 | 2a, then 3 | a. (8.9)

What other statements does this suggest? For example, is its converse true? (The answer
is yes, but the converse is not very interesting.) Is (8.9) true if 3 and 2 are interchanged?
What integers can we replace 2 by in (8.9) and obtain a true statement? That is, for which
positive integers k is it true that if 3 | ka, then 3 | a? Of course, this is true for k = 1. And
we know that it’s true for k = 2. It is not true for k = 3; that is, it is not true that if 3 | 3a,
then 3 | a. The integer a = 1 is a counterexample. On the other hand, it is possible to
prove that if 3 | 4a, where a ∈ Z, then 3 | a. What we are attempting to do is to extend
the result in (8.9) so that we have a result of the type:

Let a ∈ Z. If 3 | ka, then 3 | a. (8.10)

for a fixed integer k greater than 2. We would like to find a set S of positive integers such
that the following is true:

Let a ∈ Z. If 3 | ka, where k ∈ S, then 3 | a. (8.11)

Surely 2 ∈ S. Result (8.9) then becomes a special case and a corollary of (8.11). For this
reason (8.11) is called a generalization of (8.9). Ideally, we would like S to have the
added property that (8.11) is true if k ∈ S; while (8.11) is false if k /∈ S. What we are
seeking then is a set S of integers such that the following is true:

Let a ∈ Z. Then 3 | ka implies that 3 | a if and only if k ∈ S.

If we were successful in finding this set S, then we might start all over again by replacing
3 in (8.9) by some other positive integer.

In mathematics it is often the case that a new result is obtained by looking at an old
result in a new way and extending it to obtain a generalization of the old result. Hence,
it frequently happens that: Today’s theorem becomes tomorrow’s corollary.

We conclude this chapter with a quiz consisting of fifteen “prove or disprove” prob-
lems. Solutions to these problems are given following the quiz.

Quiz Prove or disprove each of the following statements.

1. There are integer solutions to the equation x2 + y2 = 1; in particular,
12 + 02 = (−1)2 + 02 = 02 + 12 = 02 + (−1)2 = 1. If x, y is a real solution
to the equation x2 + y2 = 1 that is not an integer solution, then x and y are
both irrational.

2. A well-known number dealing with a positive integer n is
(n

2

)
, which is

n(n − 1)/2. (The number
(n

2

)
equals the number of 2-element subsets of an

n-element set.) If
(n

2

)
is a perfect square, that is, if

(n
2

) = a2 for some positive
integer a, then a = 1.

3. Let A be a finite set with n ≥ 1 elements. If we are given a set S of subsets of
A such that |S| ≥ 2n−1, then we can determine the set A.

4. For each irrational number r, there exists an irrational number s such that rs
is a rational number.
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5. Let a, b, c ∈ N. There exists an integer k ≥ 2 such that the number of pairs of
integers in {ka, kb, kc} of opposite parity equals the number of pairs of
integers in S = {a, b, c} of opposite parity.

6. For each irrational number r, there exists a positive integer N such that rn is a
rational number for all integers n ≥ N.

7. According to Fermat’s Last Theorem, for every three distinct positive
integers a, b, c, there exists no integer n ≥ 3 such that an + bn = cn. For
every three distinct positive integers a, b, c, there exists no positive integer n
such that na + nb = nc.

8. For every nonnegative integer n, 3 � (2n + 5n).

9. If a, b, c are any three distinct positive integers such that 1
a + 1

b + 1
c = 1,

then a + b + c is a prime.

10. There exist positive integers a and b for which each is a multiple of both 2
and 3 and such that a/2 exceeds b/3 and b/2 exceeds a/3.

11. If A and B are subsets of a universal set U such that A �⊆ B and B �⊆ A, then
A �⊆ B and B �⊆ A.

12. There exist distinct irrational numbers a and b such that a + b, ab and a
b are

(a) three distinct rational numbers.
(b) three distinct irrational numbers.
(c) one rational number and two distinct irrational numbers.
(d) one irrational number and two distinct rational numbers.

13. For every two sets A and B, P (A ∩ B) = P (A) ∩ P (B).

14. The numbers −3,−1, 1, 3 are four consecutive odd integers whose product
is the perfect square 9 = 32. There is no other perfect square that is the
product of four consecutive odd integers.

15. Let S = {a, b, c, d, e} be a set of five distinct integers. If 3 divides the sum of
every two elements of S, then 3 divides the sum of every three elements
of S.

Solutions for
Quiz

1. The statement is false. Let x =
√

3
2 and y = 1

2 . Then x is irrational, y is

rational and x2 + y2 = 1. That is, (
√

3
2 , 1

2 ) is a point on the circle whose
equation is x2 + y2 = 1.

2. The statement is false. If n = 9, then
(n

2

) = (9 · 8)/2 = 36 = 62 and
a = 6 �= 1.

3. The statement is false. Let A = {1, 2, a} and let S = {∅, {1}, {2}, {1, 2}}.
Then n = 3 and |S| = 23−1 = 4 and we cannot determine the element a in
the set A.

4. The statement is true.

Proof If r is an irrational number, then s = 1
r is also irrational and rs = 1

is rational.

5. The statement is true.
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Proof Let k ≥ 3 be any odd positive integer. Then kx is odd if and only if x
is odd for each x ∈ S. Thus, the number of pairs of integers in {ka, kb, kc} of
opposite parity equals the number of pairs of integers in S of opposite parity.

6. The statement is false. For example, r = √
2 is irrational. Let n = 2k + 1 be

an odd integer for some positive integer k. Then rn = (
√

2)2k+1 = 2k
√

2 is
irrational. Hence, there is no positive integer N such that rn is a rational
number for all integers n ≥ N.

7. The statement is true.

Proof Let a, b, c be three distinct positive integers. Assume, to the
contrary, that there exists a positive integer n such that na + nb = nc.
Certainly, n �= 1; thus, n ≥ 2. Necessarily, c is the largest of the three
integers a, b, c. We may assume that a < b < c. Dividing na + nb = nc by
na, we obtain 1 + nb−a = nc−a. Hence, nc−a − nb−a = 1 and so
nb−a(nc−b − 1) = 1. Also, n[nb−a−1(nc−b − 1)] = 1. Since
nb−a−1(nc−b − 1) ∈ Z, it follows that n | 1. This is a contradiction.

8. The statement is true.

Proof We proceed by induction. Since 20 + 50 = 2 and 3 � 2, the statement
is true for n = 0. Assume that 3 � (2k + 5k ) for some nonnegative integer k.
We show that 3 � (2k+1 + 5k+1). Since 3 � (2k + 5k ), it follows that 2k + 5k =
3q + r, where q ∈ Z and r ∈ {1, 2}. Then 5k = 3q + r − 2k. Observe that

2k+1 + 5k+1 = 2 · 2k + 5 · 5k = 2 · 2k + 5(3q + r − 2k )

= 2 · 2k + 15q + 5r − 5 · 2k = 15q − 3 · 2k + 3r + 2r

= 3(5q − 2k + r) + 2r.

Since 5q − 2k + r ∈ Z and 3 � 2r, where r ∈ {1, 2}, it follows that
3 � (2k+1 + 5k+1). By the Principle of Mathematical Induction, 5 � (2n + 3n)
for every nonnegative integer n.

9. The statement is true.

Proof Let a, b, c be three distinct positive integers such that
1
a + 1

b + 1
c = 1. We may assume that a < b < c. So 1

a > 1
b > 1

c . In
particular, 1

a > 1
3 , which implies that a = 2. Since 1

b > 1
4 and b �= 2, it

follows that b = 3. Thus, 1
c = 1 − 1

2 − 1
3 = 1

6 and so c = 6. Therefore,
a = 2, b = 3 and c = 6; thus, a + b + c = 11 is a prime.

10. The statement is true.

Proof The integers a = 24 and b = 18 have the desired properties.

11. The statement is true.

Proof Suppose that A �⊆ B. Then there is a ∈ A such that a /∈ B. Thus,
a ∈ B. Since a ∈ A, it follows that a /∈ A. Hence, A �⊆ B. Similarly, if B �⊆ A,
then B �⊆ A.

12. The statement is true.

(a) a = √
2 and b = −√

2. (b) a = √
2 and b = √

3.
(c) a = √

2 + 1 and b = √
2 − 1. (d) a = √

2 and b = 2
√

2.
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13. The statement is true.

Proof First, we show that P (A ∩ B) ⊆ P (A) ∩ P (B). Since A ∩ B ⊆ A and
A ∩ B ⊆ B, it follows that P (A ∩ B) ⊆ P (A) and P (A ∩ B) ⊆ P (B). Hence,
P (A ∩ B) ⊆ P (A) ∩ P (B).

Next, we show that P (A) ∩ P (B) ⊆ P (A ∩ B). Let S ∈ P (A) ∩ P (B). Then
S ∈ P (A) and S ∈ P (B). So, S is a subset of A and S is a subset of B. Hence,
S ⊆ A ∩ B and so S ∈ P (A ∩ B). Therefore, P (A) ∩ P (B) ⊆ P (A ∩ B).

Since P (A ∩ B) ⊆ P (A) ∩ P (B) and P (A) ∩ P (B) ⊆ P (A ∩ B), it follows
that P (A ∩ B) = P (A) ∩ P (B).

14. The statement is true.

Proof Let x − 3, x − 1, x + 1, x + 3 be four consecutive odd integers
whose product is a2. Then

(x − 3)(x − 1)(x + 1)(x + 3) = (x2 − 1)(x2 − 9)

= x4 − 10x2 + 9 = a2.

Therefore, x4 − 10x2 + (9 − a2) = 0. By the quadratic formula,

x2 = 10 ±
√

100 − 4(9 − a2)
2

= 10 ± √
4a2 + 64
2

= 5 ±
√

a2 + 16.

Thus, b = √
a2 + 16 is an integer and so b2 = a2 + 16. Hence,

b2 − a2 = (b + a)(b − a) = 16.

Since b ∈ N and b + a > b − a, it follows that b + a = 8 and b − a = 2,
which implies that b = 5 and a = 3 is the only solution.

15. The statement is true.

Proof Consider any three elements of S, say a, b, c ∈ S. We show that
3 | (a + b + c). Since 3 divides the sum of every two elements of S, it
follows that 3 | (a + b), 3 | (a + c) and 3 | (b + c). Hence, 3 divides
(a + b) + (a + c) + (b + c) = 2(a + b + c) = 2x, where
x = a + b + c ∈ Z. Since 3 | 2x and 3 � 2, it follows from Result 4.8 that
3 | x and so 3 | (a + b + c).
Note: It therefore follows that 3 divides the sum of every k elements of S for
every integer k with 1 ≤ k ≤ 5.

SECTION 8.3 EXERCISES

8.28. For the set S = {1, 2, 3, 4}, let

P(n): 2n+1 + (−1)n+1
(
2n + 2n−1

)
is prime. and Q(n): 2n + 3 is prime.

Prove or disprove: ∀n ∈ S, P(n) ⇒ Q(n).
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8.29. Let P(n): n2 + 3n + 1 is even. Prove or disprove:

(a) ∀k ∈ N, P(k) ⇒ P(k + 1).
(b) ∀n ∈ N, P(n).

For each of the exercises 8.30–8.81: Prove or disprove.

8.30. Let x ∈ Z. If 4x + 7 is odd, then x is even.

8.31. For every nonnegative integer n, there exists a nonnegative integer k such that k < n.

8.32. Every even integer can be expressed as the sum of two odd integers.

8.33. If x, y, z ∈ Z such that x + y + z = 101, then two of the integers x, y and z are of opposite parity.

8.34. For every two sets A and B, (A ∪ B) − B = A.

8.35. Let A be a set. If A ∩ B = ∅ for every set B, then A = ∅.

8.36. There exists an odd integer, the sum of whose digits is even and the product of whose digits is odd.

8.37. For every nonempty set A, there exists a set B such that A ∪ B = ∅.

8.38. If x and y are real numbers, then |x + y| = |x| + |y|.
8.39. Let S be a nonempty set. For every proper subset A of S, there exists a nonempty subset B of S such that

A ∪ B = S and A ∩ B = ∅.

8.40. There is a real number solution of the equation x4 + x2 + 1 = 0.

8.41. There exists an integer a such that a · c ≥ 0 for every integer c.

8.42. There exist real numbers a, b and c such that a+b
a+c = b

c .

8.43. If x, y ∈ R and x2 < y2, then x < y.

8.44. Let x, y, z ∈ Z. If z = x − y and z is even, then x and y are odd.

8.45. Every odd integer can be expressed as the sum of three odd integers.

8.46. Let x, y, z ∈ Z. If z = x + y and x is odd, then y is even and z is odd.

8.47. For every two integers a and c, there exists an integer b such that a + b = c.

8.48. Every even integer can be expressed as the sum of two even integers.

8.49. For every two rational numbers a and b with a < b, there exists a rational number r such that a < r < b.

8.50. Let A, B,C and D be sets with A ⊆ C and B ⊆ D. If A and B are disjoint, then C and D are disjoint.

8.51. Let A and B be sets. If A ∪ B �= ∅, then both A and B are nonempty.

8.52. For every two positive integers a and c, there exists a positive integer b such that a + b = c.

8.53. For every odd integer a, there exist integers b and c of opposite parity such that a + b = c.

8.54. For every rational number a/b, where a, b ∈ N, there exists a rational number c/d, where c and d are
positive odd integers, such that 0 < c

d < a
b .

8.55. The equation x3 + x2 − 1 = 0 has a real number solution between x = 0 and x = 1.

8.56. There exists a real number x such that x2 < x < x3.

8.57. Let A and B be sets. If A − B = B − A, then A − B = ∅.

8.58. If x ∈ Z, then x3+x
x4−1 = x

x2−1 .

8.59. For every positive rational number b, there exists an irrational number a with 0 < a < b.

8.60. Let A be a set. If A − B = ∅ for every set B, then A = ∅.

8.61. Let A, B and C be sets. If A ∩ B = A ∩ C, then B = C.
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8.62. For every nonempty set A, there exists a set B such that |A − B| = |B − A|.
8.63. Let A be a set. If A ∪ B �= ∅ for every set B, then A �= ∅.

8.64. There exist an irrational number a and a rational number b such that ab is irrational.

8.65. There exists a real number solution of the equation x2 + x + 1 = 0.

8.66. For every two sets A and B, P (A ∪ B) = P (A) ∪ P (B).

8.67. Every nonzero rational number can be expressed as the product of two irrational numbers.

8.68. Let S be a set containing at least two elements. For every proper nonempty subset A of S, there exists a
proper nonempty subset B of S such that A and B are disjoint.

8.69. Let S be a nonempty set and let T be a collection of subsets of S. If A ∩ B �= ∅ for all pairs A, B of elements
of T , then there exists an element x ∈ S such that x ∈ C for all C ∈ T .

8.70. Let A, B and C be sets. Then A ∪ (B − C) = (A ∪ B) − (A ∪ C).

8.71. Let a, b, c ∈ Z. If ab, ac and bc are even, then a, b and c are even.

8.72. Let n ∈ Z. If n3 + n is even, then n is even.

8.73. There exist three distinct integers a, b and c such that ab = bc.

8.74. Let a, b, c ∈ Z. Then at least one of the numbers a + b, a + c and b + c is even.

8.75. Every integer can be expressed as the sum of two unequal integers.

8.76. There exist positive integers x and y such that x2 − y2 = 101.

8.77. For every positive integer n, n2 − n + 11 is a prime.

8.78. For every odd prime p, there exist positive integers a and b such that a2 − b2 = p.

8.79. If the product of two consecutive integers is not divisible by 3, then their sum is.

8.80. The sum of every five consecutive integers is divisible by 5 and the sum of no six consecutive integers is
divisible by 6.

8.81. There exist three distinct positive real numbers a, b, c, none of which are integers, such that all of ab, ac, bc
and abc are integers.

The Chapter
Presentation for
Chapter 8 can be
found at
goo.gl/e5rR5L

Chapter 8 Supplemental Exercises

8.82. (a) Show that the following statement is false: For every positive integer x, there
exists a positive integer y such that x < y < x2.

(b) Make a small addition to the statement in (a) so that the new statement is true.
Prove the new statement.

8.83. (a) Show that the following statement is false: Every positive integer is the sum of
two distinct positive odd integers.

(b) Make a small addition to the statement in (a) so that the new statement is true.
Prove the new statement.

8.84. (a) Prove or disprove: There exist two distinct positive integers whose sum exceeds
their product.

(b) Your solution to (a) should suggest another problem to you. State and solve this
new problem.
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8.85. (a) Prove or disprove: If a and b are positive integers, then
√

a + b = √
a + √

b.
(b) Prove or disprove: There exist positive real numbers a and b such that√

a + b = √
a + √

b.
(c) Complete the following statement so that it’s true and provide a proof:

Let a, b ∈ R+ ∪ {0}. Then
√

a + b = √
a + √

b if and only if
.

8.86. Consider the open sentence P(n) : n! >
(

n
2

)n
for n ∈ N. Prove or disprove:

∀n ∈ N, P(n).

8.87. Evaluate the proof of the following statement.

Result Every even integer can be expressed as the sum of three distinct even
integers.

Proof Let n be an even integer. Since n + 2, n − 2 and −n are distinct even
integers and

n = (n + 2) + (n − 2) + (−n),

the desired result follows.

8.88. It is known (although challenging to prove) that for every nonnegative integer m,
the integer 8m + 3 can be expressed as a2 + b2 + c2 for positive integers a, b and c.

(a) For every integer m with 0 ≤ m ≤ 10, find positive integers a, b and c such that
8m + 3 = a2 + b2 + c2.

(b) Prove or disprove: If a, b and c are positive integers such that
a2 + b2 + c2 = 8m + 3 for some integer m, then all of a, b and c are odd.

8.89. In Exercise 4.6, you were asked to prove the statement

P: Let a ∈ Z. If 3 | 2a, then 3 | a.

(a) Prove that the converse of P is true. Now state P and its converse in a more
familiar manner.

(b) Is the statement obtained by interchanging 2 and 3 in P true?
(c) Find a set S of positive integers with 2 ∈ S and |S| ≥ 3 such that the following

is true:

Let a ∈ Z. If 3 | ka, where k ∈ S, then 3 | a.

Prove this generalization of the statement P.
(d) In Result 4.8, it was shown for integers a and b that 3 | ab if and only if 3 | a or

3 | b. How can this be used to answer (c)?

8.90. In Exercise 5.22, you were asked to prove that
√

2 + √
3 is irrational.

(a) Prove that
√

2 + √
5 is irrational.

(b) Determine, with proof, another positive integer a such that
√

2 + √
a is

irrational.
(c) State and prove a generalization of the result in (a).
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8.91. In Exercise 3.27, you were asked to prove the statement:

P: If n ∈ Z, then n3 − n is even.

This can be restated as:

P: If n ∈ Z, then 2 | (n3 − n).

(a) Find a positive integer a �= 2 such that

If n ∈ Z, then a | (n3 − n).

is true and prove this statement.
(b) Find a positive integer k �= 3 such that

If n ∈ Z, then 2 | (nk − n).

is true and prove this statement.
(c) Ask a question of your own dealing with P and provide an answer.

8.92. Let A denote the set of odd integers. Investigate the truth (or falseness) of the
following statements.

(a) For all x, y ∈ A, 2 | (x2 + 3y2).
(b) There exist x, y ∈ A such that 4 | (x2 + 3y2).
(c) For all x, y ∈ A, 4 | (x2 + 3y2).
(d) There exist x, y ∈ A such that 8 | (x2 + 3y2).
(e) There exist x, y ∈ A such that 6 | (x2 + 3y2).
(f) Provide a related statement of your own and determine whether it is true or

false.

8.93. (a) Prove or disprove the following: There exist four positive integers a, b, c and d
such that a2 + b2 + c2 = d2.

(b) Prove or disprove the following: There exist four distinct positive integers
a, b, c and d such that a2 + b2 + c2 = d2.

(c) The problems in (a) or (b) above should suggest another problem that you can
solve. State and solve such a problem.

(d) The problems in (a) or (b) above should suggest a conjecture to you (that you
probably cannot solve). State such a conjecture.

For each of the exercises 8.94–8.105: Prove or disprove.

8.94. If n is a positive integer and s is an irrational number, then n/s is an irrational
number.

8.95. For every integer b, there exists a positive integer a such that |a − |b|| ≤ 1.

8.96. If x and y are integers of the same parity, then xy and (x + y)2 are of the same parity.

8.97. Let a, b ∈ Z. If 6 � ab, then either (1) 2 � a and 3 � b or (2) 3 � a and 2 � b.

8.98. For every positive integer n, 22n ≥ 4n!.

8.99. If A, B and C are sets, then (A − B) ∪ (A − C) = A − (B ∪ C).

8.100. Let n ∈ N. If (n + 1)(n + 4) is odd, then (n + 1)(n + 4) + 3n is odd.

8.101. (a) There exist distinct rational numbers a and b such that (a − 1)(b − 1) = 1.
(b) There exist distinct rational numbers a and b such that 1

a + 1
b = 1.
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8.102. Let a, b, c ∈ Z. If every two of a, b and c are of the same parity, then a + b + c is
even.

8.103. If n is a nonnegative integer, then 5 divides 2 · 4n + 3 · 9n.

8.104. Recall that there are 2n subsets of an n-element set. For example, when n = 4, there
are 24 = 16 subsets of a 4-element set. Of these 16 subsets, 6 have two elements.
When n = 6, there are 26 = 64 subsets of a 6-element set. Of these 64 subsets, 15
have two elements and 15 have four elements, while 20 have three elements. The
maximum number of subsets of an n-element set, n ≥ 3, such that no two subsets
are subsets of each other is

(n
2

) = n(n − 1)/2.

8.105. Let n ∈ N. Then 5 | (2n + 3n) if and only if n is odd.
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9
Equivalence Relations

Two real numbers x and y can be related in a variety of ways. For example, (1) x may
be less than y, (2) y may be 1 more than the square of x, or (3) x and y may be equal;

in symbols,

(1) x < y, (2) y = x2 + 1 or (3) x = y.

In the case of integers a and b, we could have

(1) a | b, (2) a and b are of opposite parity or (3) a ≡ b (mod 3).

In the subject of geometry, a line � in 3-space can be related to a plane � in 3-space if

(1) � lies on �, (2) � is parallel to � or (3) � intersects � in exactly one point.

A triangle T can be related to a triangle T ′ if

(1) T is congruent to T ′, (2) T is similar to T ′ or (3) T has the same area as T ′.

In all of these examples, there are two sets A and B (where possibly A = B) and an
element of A is related to an element of B in some manner. The topic of relations turns
out to be important in mathematics. It is this topic we now turn to.

9.1 RELATIONS

When one refers to a relation R from a set A to a set B, we simply mean some subset of
the Cartesian product A × B of A and B. That is, the relation R is a set of ordered pairs,
where the first coordinate of the pair belongs to A and the second coordinate belongs to B.
Whenever the ordered pair (a, b) ∈ R, we say that a is related to b by R and write a R b.
If the ordered pair (a, b) /∈ R, then a is not related to b by R and we write a �R b. For
example, suppose that A = {x, y, z} and B = {1, 2} are two sets and we are considering
the subset

R = {(x, 2), (y, 1), (y, 2)} (9.1)

of A × B. Hence, R is a relation from A to B. In this case, x R 2 (x is related to 2) and x �R 1
(x is not related to 1). For any two sets A and B, the sets ∅ and A × B are always subsets
of A × B and so ∅ and A × B are relations from A to B. (Indeed, these are the extreme

224
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examples.) For the relation ∅, no element of A is related to any element of B; while for
the relation A × B, each element of A is related to every element of B. Simply said then, a
relation from a set A to a set B tells us which elements of A are related to which elements
of B. Although this may seem like a fairly simple idea, it is nevertheless important that
we have a thorough understanding of it. There is some terminology dealing with relations
with which we need to be familiar.

Let R be a relation from set A to a set B. By the domain of R, which we denote by
dom(R), is meant the subset of A defined by

dom(R) = {a ∈ A : (a, b) ∈ R for some b ∈ B};
while the range of R, denoted by range(R), is the subset of B defined by

range(R) = {b ∈ B : (a, b) ∈ R for some a ∈ A}.
That is, dom(R) is that set of elements of A that occur as first coordinates among the or-
dered pairs in R and range(R) is the set of elements of B that occur as second coordinates
among the ordered pairs in R. The domain and range of the relation R given in (9.1) are
dom(R) = {x, y} and range(R) = {1, 2}. The reason that z /∈ dom(R) is because there is
no ordered pair in R whose first coordinate is z.

If R is a relation from a set A to a set B, then the inverse relation of R is the relation
R−1 from B to A defined by

R−1 = {(b, a) : (a, b) ∈ R}.
That is, to obtain R−1 from R, the first and second coordinates of each ordered pair in
R are interchanged. For example, the inverse relation of the relation R = {(x, 2), (y, 1),
(y, 2)} from A = {x, y, z} to B = {1, 2} is the relation

R−1 = {(1, y), (2, x), (2, y)}
from B to A.

By a relation on a set A, we mean a relation from A to A. That is, a relation on a
single set A is a collection of ordered pairs whose first and second coordinates belong
to A. Therefore, {(1, 2), (1, 3), (2, 2), (2, 3)} is an example of a relation on the set A =
{1, 2, 3, 4}.

If A = {1, 2}, then

A × A = {(1, 1), (1, 2), (2, 1), (2, 2)}.
Since |A × A| = 4, the number of subsets of A × A is 24 = 16. Since a relation on A is,
by definition, a subset of A × A, it follows that there are 16 relations on A. Six of these 16
possible relations are

∅, {(1, 2)}, {(1, 1), (1, 2)}, {(1, 2), (2, 1)}, {(1, 1), (1, 2), (2, 2)}, A × A.

SECTION 9.1 EXERCISES

9.1. For the sets A = {a, b, c} and B = {r, s, t, u}, let R = {(a, s), (a, t ), (b, t )} be a relation from A to B.
Determine dom(R) and range(R).

9.2. Let A be a nonempty set and let B be a subset of the power set P (A) of A. Define a relation R from A to B by
x R Y if x ∈ Y . Give an example of two sets A and B that illustrate this. What is R for these two sets?



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M10_CHART6753_04_SE_C09 PH03348-Chartrand August 5, 2017 18:52 Char Count= 0

226 Chapter 9 Equivalence Relations

9.3. Let A = {0, 1}. Determine all the relations on A.

9.4. Let A = {a, b, c} and B = {1, 2, 3, 4}. Then R1 = {(a, 2), (a, 3), (b, 1), (b, 3), (c, 4)} is a relation from A to
B, while R2 = {(1, b), (1, c), (2, a), (2, b), (3, c), (4, a), (4, c)} is a relation from B to A. A relation R is
defined on A by x R y if there exists z ∈ B such that x R1 z and z R2 y. Express R by listing its elements.

9.5. For the relation R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} defined on the set {1, 2, 3}, what is R−1?

9.6. A relation R is defined on N by a R b if a/b ∈ N. For c, d ∈ N, under what conditions is c R−1 d?

9.7. Determine the inverse relation R−1 for the relation R = {(x, y) : x + 4y is odd} defined on N.

9.8. For the relation R = {(x, y) : x ≤ y} defined on N, what is R−1?

9.9. Let A and B be sets with |A| = |B| = 4.

(a) Prove or disprove: If R is a relation from A to B where |R| = 9 and R = R−1, then A = B.
(b) Show that by making a small change in the statement in (a), a different response to the resulting

statement can be obtained.

9.10. Let A be a set with |A| = 4. What is the maximum number of elements that a relation R on A can contain so
that R ∩ R−1 = ∅?

9.2 PROPERTIES OF RELATIONS

If R is a relation defined on a single set A, then there are three properties that R may
possess and which will be of special interest to us.

A relation R defined on a set A is called reflexive if x R x for every x ∈ A.

That is, R is reflexive if (x, x) ∈ R for every x ∈ A.
In order to illustrate this and two other properties that we will soon describe, let

S = {a, b, c} and consider the following six relations defined on S:

R1 = {(a, b), (b, a), (c, a)}
R2 = {(a, b), (b, b), (b, c), (c, b), (c, c)}
R3 = {(a, a), (a, c), (b, b), (c, a), (c, c)}
R4 = {(a, a), (a, b), (b, b), (b, c), (a, c)}
R5 = {(a, a), (a, b)}
R6 = {(a, b), (a, c)}.

The relation R1 is not reflexive since (a, a) /∈ R1, for example. Since (a, a) /∈ R2, it fol-
lows that R2 is not reflexive either. In addition, none of the relations R4, R5, R6 is reflexive.
Because (a, a), (b, b), (c, c) ∈ R3, the relation R3 is reflexive, however.

Next, we consider a second important property that a relation on a single set may
possess.

A relation R defined on a set A is called symmetric if whenever x R y, then y R x
for all x, y ∈ A.

Hence, for a relation R on A to be “not symmetric,” there must be some ordered pair
(w, z) in R for which (z, w) /∈ R. Certainly, if such an ordered pair (w, z) exists, then
w �= z. The relation R1 is not symmetric since (c, a) ∈ R1 but (a, c) /∈ R1. Notice that
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(a, b) ∈ R1 and (b, a) ∈ R1 as well. However, this does not mean that R1 is symmetric.
Recall that the definition of a symmetric relation R on a set A says that whenever x R y,
then y R x for all x, y ∈ A.

The relation R3 is symmetric, however, since both (a, c) and (c, a) belong to R3.
None of the ordered pairs (a, a), (b, b), (c, c) in R3 are relevant as to whether R3 is sym-
metric. None of the relations R2, R4, R5, R6 are symmetric.

Finally, we describe the third important property that a relation defined on a single
set may possess.

A relation R defined on a set A is called transitive if whenever x R y and y R z,
then x R z, for all x, y, z ∈ A.

Notice that in this definition, it is not required that x, y and z be distinct. Hence, for a re-
lation R on A to be “not transitive,” there must exist two ordered pairs (u, v) and (v, w) in
R such that (u, w) /∈ R. If this should occur, then necessarily u �= v and v �= w (although
perhaps u = w). For example, the relation R2 is not transitive since (a, b), (b, c) ∈ R2 but
(a, c) /∈ R2. Actually, R1 is not transitive either because (a, b), (b, a) ∈ R1 but (a, a) /∈
R1. The example (counterexample) that shows that R1 is not transitive illustrates the fact
that showing a relation is not transitive may not be easy. All of the relations R3, R4, R5,
R6 are transitive. It is not always easy to convince oneself that a relation is transitive
either. Let’s give a careful argument as to why the relations R5 and R6 are transitive.

For R5 to be transitive, it is required that (x, z) belongs to R5 whenever (x, y) and
(y, z) belong to R5 for all x, y, z ∈ A. To verify that the transitive property holds in R5, we
must consider all possible pairs of ordered pairs of the type (x, y) and (y, z). We have two
choices for (x, y) in R5, namely, (a, a) and (a, b), that is, x = a and y = a, or x = a and
y = b. If (x, y) = (a, a), then y = a and so either (y, z) = (a, a) or (y, z) = (a, b). In the
first case, we have (a, a) ∈ R5 and (a, a) ∈ R5, and (x, z) = (a, a) belongs to R5. In the
second case, (a, a) ∈ R5 and (a, b) ∈ R5, and (x, z) = (a, b) belongs to R5. This example
suggests (correctly!) that if (x, y) and (y, z) belong to some relation R and x = y, then
certainly (x, z) ∈ R. The same could be said if y = z. Thus, when checking transitivity,
we need only consider ordered pairs (x, y) and (y, z) for which x �= y and y �= z. Suppose
next that (x, y) = (a, b), so that y = b. Here there is no ordered pair of the type (y, z);
that is, there is no ordered pair of R5 whose first coordinate is b. Thus, there is nothing
to check when (x, y) = (a, b). For R5, there are only two possibilities for two ordered
pairs of the type (x, y), (y, z) and in each case, (x, z) ∈ R5. Thus, R5 is transitive.

Let’s turn to R6 now. The relation R6 does not contain two ordered pairs of the type
(x, y), (y, z) since if (x, y) = (a, b), no ordered pair has b as its first coordinate; while if
(x, y) = (a, c), no ordered pair has c as its first coordinate. Consequently, the hypothesis
of the transitive property is false and the implication “If (x, y) ∈ R6 and (y, z) ∈ R6, then
(x, z) ∈ R6.” is satisfied vacuously. Hence, R6 is transitive. Another way to convince
yourself that R6 is transitive is to think of what must happen if R6 is not transitive; namely,
there must be two ordered pairs (x, y), (y, z) in R6 such that (x, z) /∈ R6. But there are no
such ordered pairs (x, y) and (y, z)!

In the preceding discussions, we have made use of an important point when testing
a relation for transitivity. It bears repeating here.

When we are attempting to determine whether a relation R is transitive and,
consequently, checking all pairs of the type (x, y) and (y, z), we need not consider
the situation where x = y or y = z.
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In this case, the ordered pair (x, z) will always be present in R. If a relation R is not
transitive, then there must exist ordered pairs (x, y) and (y, z) in R, where x �= y and
y �= z, such that (x, z) is not in R. That is, (x, y) and (y, z) constitute a counterexample
to the implication “If (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R,” which is a requirement
of R being transitive.

Let’s consider two additional relations R7 and R8 defined on the set S = {a, b, c}:
R7 = {(a, a), (a, b), (b, a), (b, b), (b, c), (c, c)}
R8 = {(a, a), (a, c), (c, a)}.

Since (a, a), (b, b), (c, c) ∈ R7, it follows that R7 is reflexive. Because (b, c) ∈ R7 but
(c, b) /∈ R7, the relation R7 is not symmetric. Since (a, b), (b, c) ∈ R7 but (a, c) /∈ R7,
the relation R7 is not transitive. Since (b, b) /∈ R8, for example, the relation R8 is not re-
flexive. Because (a, c), (c, a) ∈ R8, the relation R8 is symmetric. Since (c, a), (a, c) ∈ R8

but (c, c) /∈ R8, the relation R8 is not transitive.
Let’s summarize then what we have said about the properties of being reflexive,

symmetric and transitive that the relations R1, R2, . . . , R8 defined on S = {a, b, c}
possess.

R1 R2 R3 R4 R5 R6 R7 R8

reflexive � �

symmetric � �

transitive � � � �

We already mentioned that relations occur frequently in mathematics. Let R be the
relation defined on the set Z of integers by a R b if a ≤ b; that is, R is the relation ≤.
Since x ≤ x for every integer x, it follows that x R x for every x ∈ Z; that is, R is reflexive.
Certainly, 2 R 3 since 2 ≤ 3. However, 3 > 2; so 3 �R 2. Therefore, R is not symmetric.
On the other hand, it is a well-known property of integers that if a ≤ b and b ≤ c, then
a ≤ c. Therefore, if a R b and b R c, then a R c. So, R is transitive.

Another relation R we could consider on the set Z is defined by a R b if a �= b.
However, then 1 �R 1 since 1 = 1. Consequently, this relation is not reflexive. If a and b
are integers such that a �= b, then we also have b �= a. So, if a R b, then b R a. This says
that this relation is symmetric. Notice that 2 �= 3 and 3 �= 2 but 2 = 2. That is, 2 R 3 and
3 R 2 but 2 �R 2. Therefore, R is not transitive.

The distance between two real numbers a and b is |a − b|. So the distance be-
tween 2 and 4.5 is |2 − 4.5| = | − 2.5| = 2.5. Thus, if the real numbers (points) a and b
are plotted on the real number line (x-axis), then the length of this segment is the dis-
tance between them. This is illustrated in Figure 9.1 for the real numbers a = 3
and b = −2, where the distance between them is thus |a − b| = |3 − (−2)| = 5 =
|(−2) − 3| = |b − a|.

� �� ��� � � ................................
......

................................
............................................

1 2−1 4

5

0−2−3 3

Figure 9.1 The distance between 3 and −2
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Define a relation R on the set R of real numbers by a R b if |a − b| ≤ 1, that is, a is
related to b if the distance between a and b is at most 1. Certainly, the distance from a
real number to itself is 0, that is, |a − a| = 0 ≤ 1 for every x ∈ R. So, a R a and R is
reflexive. If the distance between two real numbers a and b is at most 1, then the distance
between b and a is at most 1. In symbols, if |a − b| ≤ 1, then |b − a| = |a − b| ≤ 1; that
is, if a R b, then b R a. Therefore, R is symmetric. Now to the transitive property. If
a R b and b R c, is a R c? That is, if the distance between a and b is at most 1 and
the distance between b and c is at most 1, does it follow that the distance between a
and c is at most 1? The answer is no. For example, 3 R 2 and 2 R 1 since |3 − 2| ≤ 1 and
|2 − 1| ≤ 1. However, |3 − 1| = 2. So, 3 �R 1 and R is not transitive.

SECTION 9.2 EXERCISES

9.11. Let A = {a, b, c, d} and let R = {(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, c), (c, d), (d, d)} be a
relation on A. Which of the properties reflexive, symmetric and transitive does the relation R possess? If R
does not possess one of these properties, explain why.

9.12. Let S = {a, b, c}. Then R = {(a, a), (a, b), (a, c)} is a relation on S. Which of the properties reflexive,
symmetric and transitive does the relation R possess? Justify your answers.

9.13. Let S = {a, b, c}. Then R = {(a, b)} is a relation on S. Which of the properties reflexive, symmetric and
transitive does the relation R possess?

9.14. Let A = {a, b, c, d}. Give an example (with justification) of a relation R on A that has none of the following
properties: reflexive, symmetric, transitive.

9.15. A relation R is defined on Z by a R b if |a − b| ≤ 2. Which of the properties reflexive, symmetric and
transitive does the relation R possess? If R does not possess one of these properties, explain why.

9.16. Let A = {a, b, c, d}. How many relations defined on A are reflexive, symmetric and transitive and contain
the ordered pairs (a, b), (b, c), (c, d)?

9.17. Let R = ∅ be the empty relation on a nonempty set A. Which of the properties reflexive, symmetric and
transitive does R possess?

9.18. Let A = {1, 2, 3, 4}. Give an example of a relation on A that is:

(a) reflexive and symmetric but not transitive.
(b) reflexive and transitive but not symmetric.
(c) symmetric and transitive but not reflexive.
(d) reflexive but neither symmetric nor transitive.
(e) symmetric but neither reflexive nor transitive.
(f) transitive but neither reflexive nor symmetric.

9.19. A relation R is defined on Z by x R y if x · y ≥ 0. Prove or disprove the following: (a) R is reflexive,
(b) R is symmetric, (c) R is transitive.

9.20. Determine the maximum number of elements in a relation R on a 3-element set such that R has none of the
properties reflexive, symmetric and transitive.

9.21. Prove or disprove: If there exists a relation R1 on the set {a1, a2} that is not reflexive, not symmetric and not
transitive, then there exists a relation R2 on the set {b1, b2, b3} that is not reflexive, not symmetric and not
transitive.
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9.22. Let S be the set of all polynomials of degree at most 3. An element s of S can then be expressed as
s = ax3 + bx2 + cx + d, where a, b, c, d ∈ R. A relation R is defined on S by p R q if p and q have a root in
common. (For example, p = (x − 1)2 and q = x2 − 1 have the root 1 in common so that p R q.) Determine
which of the properties reflexive, symmetric and transitive are possessed by R.

9.23. A relation R is defined on N by a R b if either a | b or b | a. Determine which of the properties reflexive,
symmetric and transitive are possessed by R.

9.3 EQUIVALENCE RELATIONS

The most familiar relation in mathematics is probably the equals relation. Let R be that
relation on the set of integers; that is, R is the relation defined on Z by a R b if a = b.
Since a = a for every integer a, it follows that a R a. If a = b, then b = a. Hence, if
a R b, then b R a. Also, if a = b and b = c, then a = c. So if a R b and b R c, then a R c.
These observations tell us that the equals relation on the set of integers possesses all
three of the properties reflexive, symmetric and transitive. This suggests the question of
what other relations (on the set Z or indeed on any set) have these same three properties
possessed by the equals relation. These are the relations that will be our primary focus
in this chapter.

A relation R defined on a set A is called an equivalence relation if R is reflexive,
symmetric and transitive. Of course then, the equals relation R defined on Z by a R b
if a = b is an equivalence relation on Z. For another example, consider the set
A = {1, 2, 3, 4, 5, 6} and let R be the relation defined on A that consists of the following
ordered pairs:

R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 3), (1, 6), (6, 1), (6, 3),

(3, 1), (3, 6), (2, 4), (4, 2)}. (9.2)

Since this relation has all three of the properties reflexive, symmetric and transitive, it is
an equivalence relation.

Suppose that R is an equivalence relation on some set A. If a ∈ A, then a is related to
a since R is reflexive. Quite possibly, other elements of A are related to a as well. The set
consisting of all those elements that are related to a given element of A will turn out to
be important and, for this reason, these sets are given special names. For an equivalence
relation R defined on a set A and for an element a ∈ A, the set

[a] = {x ∈ A : x R a},
consisting of all elements in A that are related to a, is called an equivalence class. In fact,
[a] is the equivalence class containing a since a ∈ [a] (because R is reflexive). Loosely
speaking then, [a] consists of the “relatives” of a. For the equivalence relation R defined
in (9.2), the resulting equivalence classes are

[1] = {1, 3, 6}, [2] = {2, 4}, [3] = {1, 3, 6},
[4] = {2, 4}, [5] = {5}, [6] = {1, 3, 6}. (9.3)

Since [1] = [3] = [6] and [2] = [4], there are only three distinct equivalence classes in
this case, namely [1], [2] and [5].
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Let’s return to the equals relation R defined on Z by a R b if a = b to determine the
equivalence classes in this case. For a ∈ Z,

[a] = {x ∈ Z : x R a} = {x ∈ Z : x = a} = {a};
that is, every integer is in an equivalence class by itself.

We now consider a similar relation on Z.

Example 9.1 A relation R is defined on Z by x R y if |x| = |y|. This relation is also an equivalence
relation. In this case, for a ∈ Z, the equivalence class [a] consists of the two integers a
and −a, unless a = 0, in which case [0] = {0}. �

We now consider two examples from geometry.

Example 9.2 A relation R is defined on the set L of straight lines in the plane by �1R �2 if either
�1 = �2 (the lines coincide) or �1 is parallel to �2. Since every line coincides with itself,
R is reflexive. If a line �1 is parallel to a line �2 (or they coincide), then �2 is parallel to �1

(or they coincide). Thus, R is symmetric. Finally, if �1 is parallel to �2 and �2 is parallel
to �3 (including the possibility that such pairs of lines may coincide), then either �1 is
parallel to �3 or they coincide. Indeed, it may very well occur that �1 and �2 are distinct
parallel lines, as are �2 and �3 but �1 and �3 coincide. In any case, though, this relation
is transitive. Therefore, R is an equivalence relation. Hence, for � ∈ L, the equivalence
class

[�] = {x ∈ L : x R �} = {x ∈ L : x = � or x is parallel to �}
consists of � and all lines in the plane parallel to �. �

Example 9.3 Let T be the set of all triangles in a plane. We now describe two relations R1 and R2

defined on T . The relation R1 is defined by T R1 T ′ if T is congruent to T ′ and the relation
R2 is defined by T R2 T ′ if T is similar to T ′. Then both R1 and R2 are equivalence
relations. For a triangle T and the relation R1, [T ] is the set of triangles in T that are
congruent to T ; while for R2, [T ] is the set of triangles in T that are similar to T . �

We now consider examples of relations defined on Z that may require some addi-
tional thought.

Result 9.4 The relation R defined on Z by x R y if x + 3y is even is an equivalence relation.

Before proving this result, let’s be certain that we understand this relation. First,
notice that 5 R 7 since 5 + 3 · 7 = 26 is even. However, 8 �R 9 since 8 + 3 · 9 = 35 is not
even. On the other hand, 4 R 4 because 4 + 3 · 4 = 16 is even.

Proof of
Result 9.4

First, we show that R is reflexive. Let a ∈ Z. Then a + 3a = 4a = 2(2a) is even since
2a ∈ Z. Therefore, a R a and R is reflexive.

Next, we show that R is symmetric. Assume that a R b. Thus, a + 3b is even. Hence,
a + 3b = 2k for some integer k. So, a = 2k − 3b. Therefore,

b + 3a = b + 3(2k − 3b) = b + 6k − 9b = 6k − 8b = 2(3k − 4b).

Since 3k − 4b is an integer, b + 3a is even. Therefore, b R a and R is symmetric.
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Finally, we show that R is transitive. Assume that a R b and b R c. Hence, a + 3b and
b + 3c are even; so a + 3b = 2k and b + 3c = 2� for some integers k and �. Adding these
two equations, we obtain (a + 3b) + (b + 3c) = 2k + 2�. So a + 4b + 3c = 2k + 2�

and a + 3c = 2k + 2� − 4b = 2(k + � − 2b). Since k + � − 2b is an integer, a + 3c is
even. Hence, a R c and so R is transitive. Therefore, R is an equivalence relation.

PROOF ANALYSIS A few remarks concerning the preceding proof are in order. Recall that a relation R
defined on a set A is reflexive if x R x for every x ∈ A. The reflexive property may also
be reworded to read: For every x ∈ A, x R x or: If x ∈ A, then x R x. Hence, when we
proved that R is reflexive in Result 9.4, we began by assuming that a was an arbitrary
element of Z. (We’re giving a direct proof.) We were then required to show that a + 3a
is even, which we did. It would be incorrect, however, to assume that a + 3a is even or
that a R a. This, in fact, is what we want to prove. �

Since the relation defined in Result 9.4 is an equivalence relation, there are equiva-
lence classes, namely an equivalence class [a] for each a ∈ Z. Let’s start with 0, say. The
equivalence class [0] is the set of all integers related to 0. In symbols, this equivalence
class is

[0] = {x ∈ Z : x R 0} = {x ∈ Z : x + 3 · 0 is even}
= {x ∈ Z : x is even} = {0,±2,±4, . . .};

that is, [0] is the set of even integers. It shouldn’t be difficult to see that if a is an even
integer, say a = 2k, where k ∈ Z, then

[a] = {x ∈ Z : x R a} = {x ∈ Z : x + 3a is even}
= {x ∈ Z : x + 3(2k) is even} = {x ∈ Z : x + 6k is even}

is also the set of even integers. On the other hand, the equivalence class consisting of
those integers related to 1 is

[1] = {x ∈ Z : x R 1} = {x ∈ Z : x + 3 · 1 is even}
= {x ∈ Z : x + 3 is even} = {±1,±3,±5, . . .},

which is the set of odd integers. In fact, if a is an odd integer, then a = 2� + 1 for some
integer � and

[a] = {x ∈ Z : x + 3a is even} = {x ∈ Z : x + 3(2� + 1) is even}
= {x ∈ Z : x + 6� + 3 is even}

is the set of odd integers. Therefore, if a and b are even, then [a] = [b] is the set of even
integers; while if a and b are odd, then [a] = [b] is the set of odd integers. Hence, there
are only two distinct equivalence classes, namely [0] and [1], the sets of even and odd
integers, respectively. We will soon see that there is a good reason for this observation.

We consider some additional examples.

Result 9.5 The relation R defined on Z by a R b if 3 | (2a + 7b) is an equivalence relation.

Proof First, we show that R is reflexive. Let a ∈ Z. Observe that 2a + 7a = 9a = 3(3a). Since
3a ∈ Z, it follows that 3 | (2a + 7a). Thus, a R a and R is reflexive.
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Next, we show that R is symmetric. Assume that a R b. Thus, 3 | (2a + 7b). Hence,
2a + 7b = 3x for some integer x. We show that b R a, that is, 3 | (2b + 7a). Since 2a +
7b = 3x, it follows that 4a = 6x − 14b. Hence,

2b + 7a = 2b + 3a + 4a = 2b + 3a + (6x − 14b)

= 3a + 6x − 12b = 3(a + 2x − 4b).

Since a + 2x − 4b is an integer, 3 | (2b + 7a). Therefore, b R a and R is symmetric.
Finally, we show that R is transitive. Assume that a R b and b R c. Hence, 2a + 7b = 3x

and 2b + 7c = 3y for some integers x and y. Adding these two equations, we obtain

(2a + 7b) + (2b + 7c) = 3x + 3y.

So, 2a + 7c = 3x + 3y − 9b = 3(x + y − 3b). Since x + y − 3b is an integer, 3 | (2b + 7c).
Hence, a R c and so R is transitive.

Therefore, R is an equivalence relation.

Let’s see what the equivalence classes look like for the equivalence relation defined
in Result 9.5. We begin with the integer 0. Here,

[0] = {x ∈ Z : x R 0} = {x ∈ Z : 3 | (2x + 7 · 0)}
= {x ∈ Z : 3 | 2x} = {x ∈ Z : 3 | x} = {0,±3,±6, . . .}.

For the integer 1,

[1] = {x ∈ Z : x R 1} = {x ∈ Z : 3 | (2x + 7 · 1)}
= {x ∈ Z : 3 | (2x + 7)} = {1,−2, 4,−5, 7,−8, 10, . . .}.

In addition,

[2] = {x ∈ Z : x R 2} = {x ∈ Z : 3 | (2x + 7 · 2)}
= {x ∈ Z : 3 | (2x + 14)} = {2,−1, 5,−4, 8,−7, 11, . . .}.

It turns out that these are the only distinct equivalence classes.

Result 9.6 Let S = {k√2 : k ∈ Z}. The relation R defined on S by x R y if xy ∈ Z is an equivalence
relation.

Proof First, observe that if x and y are any two elements of S, then x = k
√

2 and y = �
√

2
for integers k and �. Furthermore, xy = (k

√
2)(�

√
2) = 2k�. Since 2k� ∈ Z, it follows

that x R y. Hence, R is reflexive, symmetric and transitive and so R is an equivalence
relation.

For the equivalence relation defined in Result 9.6 and an arbitrary element a ∈ S,
we have x R a for each element x ∈ R. Thus, [a] = S and so there is a single equivalence
class in this case.

Result 9.7 Let A = Z and B = Z − {0}. The relation R defined on A × B by (a, b) R (c, d) if ad =
bc is an equivalence relation.
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Proof Let (a, b) ∈ A × B. Since ab = ba, it follows that (a, b) R (a, b) and so R is reflexive.
Next, we show that R is symmetric. Let (a, b), (c, d) ∈ A × B such that (a, b) R (c, d).
Then ad = bc. Consequently, cb = da and so (c, d) R (a, b). Therefore, R is
symmetric.

Finally, we show that R is transitive. Let (a, b), (c, d), (e, f ) ∈ A × B such that
(a, b) R (c, d) and (c, d) R (e, f ). Thus, ad=bc and c f =de. We show that (a, b) R (e, f ).
Observe that

adf = (ad) f = (bc) f = b(c f ) = b(de) = bde

and so adf = bde. Since d ∈ B, it follows that d �= 0. Dividing both sides of adf = bde
by d, we have a f = be. Thus, (a, b) R (e, f ) and so R is transitive.

Therefore, R is an equivalence relation. �

The primary interest in the equivalence relation defined in Result 9.7 lies in the
equivalence classes. For example, consider the equivalence class [(1, 2)], which consists
of all ordered pairs (x, y) ∈ A × B that are related to (1, 2). By definition, (x, y) R (1, 2)
if y = 2x. That is, [(1, 2)] consists of all ordered pairs of integers, different from (0, 0),
whose second coordinate is twice the first coordinate. We can therefore think of (1, 2)
as representing the rational number 1

2 and [(1, 2)] consists of all of those representations
of 1

2 , such as 2
4 , 3

6 , −5
−10 , etc. In general, for a, b ∈ Z with b �= 0, the ordered pair (a, b)

represents the rational number a
b and [(a, b)] consists of all rational numbers equal to a

b
such as 2a

2b , 3a
3b , −5a

−5b , etc.

SECTION 9.3 EXERCISES

9.24. Let R be an equivalence relation on A = {a, b, c, d, e, f , g} such that a R c, c R d, d R g and b R f . If there
are three distinct equivalence classes resulting from R, then determine these equivalence classes and
determine all elements of R.

9.25. Let A = {1, 2, 3, 4, 5, 6}. The relation

R = {(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4),

(5, 1), (5, 5), (6, 2), (6, 3), (6, 6)}
is an equivalence relation on A. Determine the distinct equivalence classes.

9.26. Let A = {1, 2, 3, 4, 5, 6}. The distinct equivalence classes resulting from an equivalence relation R on A are
{1, 4, 5}, {2, 6} and {3}. What is R?

9.27. Let R be a relation defined on Z by a R b if a3 = b3. Show that R is an equivalence relation on Z and
determine the distinct equivalence classes.

9.28. (a) Let R be the relation defined on Z by a R b if a + b is even. Show that R is an equivalence relation and
determine the distinct equivalence classes.

(b) Suppose that “even” is replaced by “odd” in (a). Which of the properties reflexive, symmetric and
transitive does R possess?

9.29. Let R be an equivalence relation defined on a set A containing the elements a, b, c and d. Prove that if
a R b, c R d and a R d, then b R c.
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9.30. Let H = {2m : m ∈ Z}. A relation R is defined on the set Q+ of positive rational numbers by a R b if
a/b ∈ H.

(a) Show that R is an equivalence relation.
(b) Describe the elements in the equivalence class [3].

9.31. A relation R on a nonempty set A is defined to be circular if whenever x R y and y R z, then z R x for all
x, y, z ∈ A. Prove that a relation R on A is an equivalence relation if and only if R is circular and reflexive.

9.32. A relation R is defined on the set A = {a + b
√

2 : a, b ∈ Q, a + b
√

2 �= 0} by x R y if x/y ∈ Q. Show that R
is an equivalence relation and determine the distinct equivalence classes.

9.33. Let H = {4k : k ∈ Z}. A relation R is defined on Z by a R b if a − b ∈ H.

(a) Show that R is an equivalence relation.
(b) Determine the distinct equivalence classes.

9.34. Let H be a nonempty subset of Z. Suppose that the relation R defined on Z by a R b if a − b ∈ H is an
equivalence relation. Verify the following

(a) 0 ∈ H.
(b) If a ∈ H, then −a ∈ H.
(c) If a, b ∈ H, then a + b ∈ H.

9.35. Prove or disprove: There exist equivalence relations R1 and R2 on the set S = {a, b, c} such that R1 �⊆ R2,
R2 �⊆ R1 and R1 ∪ R2 = S × S.

9.4 PROPERTIES OF EQUIVALENCE CLASSES

You may have noticed that in the preceding examples of equivalence relations, we have
seen several situations where two equivalence classes are equal. It is possible to deter-
mine exactly when this happens.

Theorem 9.8 Let R be an equivalence relation on a nonempty set A and let a and b be elements of A.
Then [a] = [b] if and only if a R b.

Proof Assume that a R b. We show that the sets [a] and [b] are equal by verifying that [a] ⊆ [b]
and [b] ⊆ [a]. First, we show that [a] ⊆ [b]. Let x ∈ [a]. Then x R a. Since a R b and
R is transitive, x R b. Therefore, x ∈ [b] and so [a] ⊆ [b]. Next, let y ∈ [b]. Thus, y R b.
Since a R b and R is symmetric, b R a. Again, by the transitivity of R, we have y R a.
Therefore, y ∈ [a] and so [b] ⊆ [a]. Hence, [a] = [b].

For the converse, assume that [a] = [b]. Because R is reflexive, a ∈ [a]. But, since
[a] = [b], it follows that a ∈ [b]. Consequently, a R b.

Corollary 9.9 Let R be an equivalence relation on a nonempty set A and let a and b be elements of A.
If [a] ∩ [b] �= ∅, then [a] = [b].

Proof Since [a] ∩ [b] �= ∅, there is an element c ∈ A such that c ∈ [a] ∩ [b]. Since c ∈ [a], it
follows that c R a and since c ∈ [b], we have c R b. Because R is symmetric, a R c and
because R is transitive, a R b. By Theorem 9.8, [a] = [b].

Theorem 9.8 and Corollary 9.9 provide another corollary.
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Corollary 9.10 Let R be an equivalence relation on a nonempty set A and let a and b be elements of A.
Then a �R b if and only if [a] ∩ [b] = ∅.

Proof Suppose first that a �R b. By Theorem 9.8 then, [a] �= [b]. Hence, [a] ∩ [b] = ∅ by Corol-
lary 9.9. For the converse, suppose that [a] ∩ [b] = ∅. Thus, [a] �= [b] and so a �R b by
Theorem 9.8.

Let’s return once more to the equivalence relation defined in (9.2) on the set A =
{1, 2, 3, 4, 5, 6} and the equivalence classes given in (9.3). We observed earlier that [1] =
[3] = [6]. Since every two of the integers 1, 3, 6 are related to each other (according to
the definition of R), Theorem 9.8 tells us that the equality of [1], [3] and [6] is expected.
The same can be said of [2] and [4]. However, since (5, 6) /∈ R, for example, we know
not only that [5] �= [6] but that [5] and [6] are disjoint. Therefore, as we also observed
earlier, there are only three distinct equivalence classes, namely,

[1] = [3] = [6] = {1, 3, 6}, [2] = [4] = {2, 4}, [5] = {5}. (9.4)

Now, you might have noticed one other thing. Every element of A belongs to exactly one
equivalence class. This observation might remind you of a concept we discussed earlier.

Recall that a partition P of a nonempty set S is a collection of nonempty subsets of S
with the property that every element of S belongs to exactly one of these subsets; that is,
P is a collection of pairwise disjoint, nonempty subsets of S whose union is S. Hence, the
set of the distinct equivalence classes in (9.4) is a partition of the set A = {1, 2, 3, 4, 5, 6}.
We now show that this too is expected.

Theorem 9.11 Let R be an equivalence relation defined on a nonempty set A. Then the set of distinct
equivalence classes resulting from R is a partition of A.

Proof Certainly, each equivalence class [a] is nonempty since a ∈ [a] and so each element of
A belongs to at least one equivalence class. We show that every element of A belongs to
exactly one equivalence class. If some element x of A belongs to two equivalence classes,
say [a] and [b], then [a] = [b] by Corollary 9.9. Hence, every element of A belongs to a
unique equivalence class.

According to Theorem 9.11 then, whenever we have an equivalence relation R de-
fined on a nonempty set A, a partition of A into the associated equivalence classes of R
results. Perhaps unexpectedly, the converse is also true. That is, if we are given a parti-
tion of A, then there is an equivalence relation that can be defined on A whose resulting
equivalence classes are precisely the subsets in the given partition. For example, consider
the partition

P = {{1, 3, 4}, {2, 7}, {5, 6}}
of the set A = {1, 2, 3, 4, 5, 6, 7}. (Necessarily then, every element of A belongs to ex-
actly one subset in P.) Then

R = {(1, 1), (1, 3), (1, 4), (2, 2), (2, 7), (3, 1), (3, 3), (3, 4), (4, 1),

(4, 3), (4, 4), (5, 5), (5, 6), (6, 5), (6, 6), (7, 2), (7, 7)}
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is an equivalence relation on A, whose distinct equivalence classes are

[1] = {1, 3, 4}, [2] = {2, 7} and [5] = {5, 6},
and so P = {[1], [2], [5]}. We now establish this result in general. That is, if we have
a nonempty set A and a partition P of A, then it is possible to create an equivalence
relation R on A such that the distinct equivalence classes of R are precisely the subsets in
P. Since we are trying to verify this in general (and not for a specific example), we need
to describe the subsets in P with the aid of an index set. Since we will want every subset
in P to be an equivalence class, we will need every two elements in the same subset to be
related. On the other hand, since we will want two different subsets in P to be different
equivalence classes, we will need elements in distinct subsets not to be related.

Theorem 9.12 Let P = {Aα : α ∈ I} be a partition of a nonempty set A. Then there exists an equivalence
relation R on A such that P is the set of equivalence classes determined by R, that is,
P = {[a] : a ∈ A}.

Proof Define a relation R on A by x R y if x and y belong to the same subset in P; that is, x R y
if x, y ∈ Aα for some α ∈ I. We now show that R is an equivalence relation. Let a ∈ A.
Since P is a partition of A, it follows that a ∈ Aβ for some β ∈ I. Trivially, a and a belong
to Aβ ; so a R a and R is reflexive.

Next, let a, b ∈ A and assume that a R b. Then a and b belong to Aγ for some γ ∈ I.
Hence, b and a belong to Aγ ; so b R a and R is symmetric.

Finally, let a, b and c be elements of A such that a R b and b R c. Therefore, a, b ∈ Aβ

and b, c ∈ Aγ for some β, γ ∈ I. Since P is a partition of A, the element b belongs to
only one set in P. Hence, Aβ = Aγ and so a, c ∈ Aβ. Thus, a R c and R is transitive.
Therefore, R is an equivalence relation on A.

We now consider the equivalence classes resulting from R. Let a ∈ A. Then a ∈ Aα

for some α ∈ I. The equivalence class [a] consists of all elements of A related to a. From
the way that R is defined, however, the only elements related to a are those elements
belonging to the same subset in P to which a belongs, that is, [a] = Aα . Hence,

{[a] : a ∈ A} = {Aα : α ∈ I} = P.

With the added information we now have about equivalence classes, it is often easier
to determine the distinct equivalence classes resulting from a given equivalence relation.
To illustrate this, we consider another example of an equivalence relation defined on the
set of integers.

Result to Prove A relation R is defined on Z by x R y if 11x − 5y is even. Then R is an equivalence
relation.

PROOF STRATEGY Since we want to verify that R is an equivalence relation, we need to show that R is
reflexive, symmetric and transitive. Let’s start with the first of these. We begin with
an integer a. To show that a R a, we need to show that 11a − 5a is even. However,
11a − 5a = 6a = 2(3a), so this shouldn’t cause any difficulties.

To verify that R is symmetric, we begin with a R b (where a, b ∈ Z, of course) and
attempt to show that b R a. Since a R b, it follows that 11a − 5b is even. To show that
b R a, we need to show that 11b − 5a is even. Since 11a − 5b is even, we can write
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11a − 5b = 2k for some integer k. At first thought, it might seem like a good idea to
solve for a in terms of b or solve for b in terms of a. However, because neither the
coefficient of a nor the coefficient of b is 1 or −1 in 11a − 5b = 2k, fractions would be
introduced. We need another approach. Notice that if we write

11b − 5a = (11a − 5b) + (? a + ? b),

then we have

11b − 5a = (11a − 5b) + (−16a + 16b)

= 2k − 16a + 16b = 2(k − 8a + 8b).

This will work.
To verify that R is transitive, we begin by assuming that a R b and b R c (and attempt

to show that a R c). Thus, 11a − 5b and 11b − 5c are even and so

11a − 5b = 2k and 11b − 5c = 2�, (9.5)

for integers k and �. To show that a R c, we must verify that 11a − 5c is even. We need to
work the expression 11a − 5c into the discussion. However, this can be done by adding
the expressions in (9.5). We’re ready to give a proof now. �

Result 9.13 A relation R is defined on Z by x R y if 11x − 5y is even. Then R is an equivalence
relation.

Proof First, we show that R is reflexive. Let a ∈ Z. Then 11a − 5a = 6a = 2(3a). Since 3a is
an integer, 11a − 5a is even. Thus, a R a and R is reflexive.

Next we show that R is symmetric. Assume that a R b, where a,b ∈ Z. Thus, 11a − 5b
is even. Therefore, 11a − 5b = 2k, where k ∈ Z. Observe that

11b − 5a = (11a − 5b) + (−16a + 16b)

= 2k − 16a + 16b = 2(k − 8a + 8b).

Since k − 8a + 8b is an integer, 11b − 5a is even. Hence, b R a and R is symmetric.
Finally, we show that R is transitive. Assume that a R b and b R c. Hence, 11a − 5b

and 11b − 5c are even. Therefore, 11a − 5b = 2k and 11b − 5c = 2�, where k, � ∈ Z.
Adding these equations, we obtain (11a − 5b) + (11b − 5c) = 2k + 2�. Solving for
11a − 5c, we have

11a − 5c = 2k + 2� − 6b = 2(k + � − 3b).

Since k + � − 3b is an integer, 11a − 5c is even. Hence, a R c and R is transitive. There-
fore, R is an equivalence relation.

We now determine the equivalence classes for the equivalence relation just dis-
cussed. Let’s begin with the equivalence class containing 0, say. Then

[0] = {x ∈ Z : x R 0} = {x ∈ Z : 11x is even}
= {x ∈ Z : x is even} = {0,±2,±4, . . .}.

Recall that the distinct equivalence classes always produce a partition of the set involved
(in this case Z). Since the class [0] does not consist of all integers, there is at least one
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other equivalence class. To determine another equivalence class, we look for an element
that does not belong to [0]. Since 1 /∈ [0], the equivalence class [1] is distinct (and dis-
joint) from [0]. Thus,

[1] = {x ∈ Z : x R 1} = {x ∈ Z : 11x − 5 is even}
= {x ∈ Z : x is odd} = {±1,±3,±5, . . .}.

Since [0] and [1] produce a partition of Z (that is, every integer belongs to exactly one
of [0] and [1]), these are the only equivalence classes in this case.

SECTION 9.4 EXERCISES

9.36. Give an example of an equivalence relation R on the set A = {v, w, x, y, z} such that there are exactly three
distinct equivalence classes. What are the equivalence classes for your example?

9.37. A relation R is defined on N by a R b if a2 + b2 is even. Prove that R is an equivalence relation. Determine
the distinct equivalence classes.

9.38. Let R be a relation defined on the set N by a R b if either a | 2b or b | 2a. Prove or disprove: R is an
equivalence relation.

9.39. Let S be a nonempty subset of Z and let R be a relation defined on S by x R y if 3 | (x + 2y).

(a) Prove that R is an equivalence relation.
(b) If S = {−7,−6,−2, 0, 1, 4, 5, 7}, then what are the distinct equivalence classes in this case?

9.40. A relation R is defined on Z by x R y if 3x − 7y is even. Prove that R is an equivalence relation. Determine
the distinct equivalence classes.

9.41. (a) Prove that the intersection of two equivalence relations on a nonempty set is an equivalence relation.
(b) Consider the equivalence relations R2 and R3 defined on Z by a R2 b if a ≡ b (mod 2) and a R3 b if

a ≡ b (mod 3). By (a), R1 = R2 ∩ R3 is an equivalence relation on Z. Determine the distinct
equivalence classes in R1.

9.42. Prove or disprove: The union of two equivalence relations on a nonempty set is an equivalence relation.

9.43. Let A = {u, v, w, x, y, z}. The relation

R = {(u, u), (u, v), (u, w), (v, u), (v, v), (v, w), (w, u), (w, v),

(w, w), (x, x), (x, y), (y, x), (y, y), (z, z)}
defined on A is an equivalence relation. In particular, [u] = [v] = [w] = {u, v, w}, [x] = [y] = {x, y} and
[z] = {z}; so |[u]| = |[v]| = |[w]| = 3 and |[x]| = |[y]| = 2, while |[z]| = 1. Therefore,
|[u]| + |[v]| + |[w]| + |[x]| + |[y]| + |[z]| = 14.

Let A = {a1, a2, . . . , an} be an n-element set and let R be an equivalence relation defined on A. Prove that∑n
i=1 |[ai]| is even if and only if n is even.

9.5 CONGRUENCE MODULO n

Next, we describe one of the most important equivalence relations. If you have more
mathematics in your future, it is likely that you will see the equivalence relation we are
about to describe again – indeed often. Recall that for integers a and b, where a �= 0,
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the integer a is said to divide b, written as a | b, if there exists an integer c such that
b = ac. Also, for integers a, b and n ≥ 2, a is said to be congruent to b modulo n,
written a ≡ b (mod n), if n | (a − b). For example, 24 ≡ 6 (mod 9) since 9 | (24 − 6);
while 1 ≡ 5 (mod 2) since 2 | (1 − 5). Also, 4 ≡ 4 (mod 5) since 5 | (4 − 4). However,
8 �≡ 2 (mod 4) since 4 � (8 − 2). These concepts were introduced in Chapter 4.

Let’s consider a few examples of pairs a, b of integers such that a ≡ b (mod 5). No-
tice that 7 ≡ 7 (mod 5), −1 ≡ −1 (mod 5) and 0 ≡ 0 (mod 5). Also, 2 ≡ −8 (mod 5)
and −8 ≡ 2 (mod 5). Notice also that 2 ≡ 17 (mod 5). Therefore, both −8 ≡ 2 (mod 5)
and 2 ≡ 17 (mod 5). Furthermore, −8 ≡ 17 (mod 5). These examples might suggest
that the reflexive, symmetric and transitive properties are satisfied here – a fact which
we are about to verify. This is the important equivalence relation we referred to at the
beginning of this section, not just for n = 5 but for any integer n ≥ 2.

Theorem 9.14 Let n ∈ Z, where n ≥ 2. Then congruence modulo n (that is, the relation R defined on Z
by a R b if a ≡ b (mod n)) is an equivalence relation on Z.

Proof Let a ∈ Z. Since n | 0, it follows that n | (a − a) and so a ≡ a (mod n). Thus, a R a,
implying that R is reflexive.

Next, we show that R is symmetric. Assume that a R b, where a, b ∈ Z. Since a R b,
it follows that a ≡ b (mod n) and so n | (a − b). Hence, there exists k ∈ Z such that
a − b = nk. Thus,

b − a = −(a − b) = −(nk) = n(−k).

Since −k ∈ Z, it follows that n | (b − a) and so b ≡ a (mod n). Therefore, b R a and R
is symmetric.

Finally, we show that R is transitive. Assume that a R b and b R c, where a, b, c ∈ Z.
We show that a R c. Since a R b and b R c, it follows that that a ≡ b (mod n) and
b ≡ c (mod n). Thus, n | (a − b) and n | (b − c). Consequently,

a − b = nk and b − c = n� (9.6)

for some integers k and �. Adding the equations in (9.6), we obtain

(a − b) + (b − c) = nk + n� = n(k + �);
so a − c = n(k + �). Since k + � ∈ Z, we have n | (a − c) and so a ≡ c (mod n). There-
fore, a R c and R is transitive.

PROOF ANALYSIS Theorem 9.14 describes a well-known equivalence relation. Let’s review how we verified
this. The proof we gave to show that congruence modulo n is an equivalence relation is
a common proof technique for this kind of result and we need to be familiar with it. To
prove that R is reflexive, we began with an arbitrary element of Z. We called this element
a. Our goal was to show that a R a. By definition, a R a if and only if a ≡ a (mod n).
However, a ≡ a (mod n) if and only if n | (a − a), which is the same as the statement
n | 0. Clearly, n | 0 and this is where we decided to start.

To prove that R is symmetric, we started (as always) by assuming that a R b. Our
goal was to show that b R a. Since a R b, the definition of the relation R tells us that
a ≡ b (mod n). From this, we knew that n | (a − b) and a − b = nk for some integer k.
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However, to show that b R a, we needed to verify that b ≡ a (mod n). But this can only
be done if we can show that n | (b − a) or, equivalently, that b − a = n� for some integer
�. Hence, we needed to verify that b − a can be expressed as the product of n and some
other integer. Since b − a is the negative of a − b and we have a convenient expression
for a − b, this provided us with a key step.

Finally, to prove that R is transitive, we began by assuming that a R b and b R c, which
led us to the expressions a − b = nk and b − c = n�, where k, � ∈ Z. Since our goal was
to show that a R c, we were required to show that a − c is a multiple of n. Somehow
then, we needed to work the term a − c into the problem, knowing that a − b = nk and
b − c = n�. The key step here was to observe that a − c = (a − b) + (b − c). �

According to Theorem 9.14 then, congruence modulo 3 is an equivalence relation.
In other words, if we define a relation R on Z by a R b if a ≡ b (mod 3), then it follows
that R is an equivalence relation. Let’s determine the distinct equivalence classes in this
case. First, select an integer, say 0. Then [0] is an equivalence class. Indeed,

[0] = {x ∈ Z : x R 0} = {x ∈ Z : x ≡ 0 (mod 3)}
= {x ∈ Z : 3 | x} = {0,±3,±6,±9, . . .}.

Hence, the class [0] consists of the multiples of 3. This class could be denoted by [3],
[6], [−300] or, in fact, by [a] for any integer a which is a multiple of 3. Since there
are integers not in [0], there must be at least one equivalence class distinct from [0]. In
particular, since 1 /∈ [0], it follows that [1] �= [0], in fact, necessarily, [1] ∩ [0] = ∅. The
equivalence class

[1] = {x ∈ Z : x R 1} = {x ∈ Z : x ≡ 1 (mod 3)}
= {x ∈ Z : 3 | (x − 1)} = {1,−2, 4,−5, 7,−8, . . .}.

Since 2 �∈ [0] and 2 �∈ [1], the equivalence class [2] is different from both [0] and [1]. By
definition,

[2] = {x ∈ Z : x R 2} = {x ∈ Z : x ≡ 2 (mod 3)}
= {x ∈ Z : 3 | (x − 2)} = {2,−1, 5,−4, 8,−7, . . .}.

Since every integer belongs to (exactly) one of these classes, we have exactly three dis-
tinct equivalence classes in this case, namely:

[0] = {0,±3,±6,±9, . . .},
[1] = {1,−2, 4,−5, 7,−8, . . .},
[2] = {2,−1, 5,−4, 8,−7, . . .}.

These equivalence classes have a connection with the familiar concepts of division
and remainders, which we encountered in Section 4.1 and which are useful to review
here. If m and n ≥ 2 are integers and m is divided by n, then we can express this division
as m = nq + r, where q is the quotient and r is the remainder. The remainder r has the
requirement that 0 ≤ r < n. With this requirement, q and r are unique and the result that
we have just referred to is the Division Algorithm. (The Division Algorithm will be
studied in considerably more detail in Chapter 12.) Consequently, every integer m can
be expressed as 3q + r, where r ∈ {0, 1, 2}. Hence, every integer can be expressed as
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3q, 3q + 1 or 3q + 2 for some integer q. In this case, the equivalence class [0] consists
of the multiples of 3, and so every integer having a remainder of 0 when divided by 3
belongs to [0]. Furthermore, every integer having a remainder of 1 when divided by 3
belongs to [1]; while every integer having remainder of 2 when divided by 3 belongs to
[2]. Since

73 = 24 · 3 + 1 and −22 = (−8) · 3 + 2,

for example, it follows that 73 ∈ [1] and −22 ∈ [2]. In fact, [73] = [1] and [−22] = [2].
In general, for n ≥ 2, the equivalence relation of congruence modulo n results in n

distinct equivalence classes. In other words, if we define a R b by a ≡ b (mod n), then
there are n distinct equivalence classes: [0], [1], . . . , [n − 1]. In fact, for an integer r
with 0 ≤ r < n, an integer m belongs to the set [r] if and only if there is an integer q (the
quotient) such that m = nq + r. In fact, the equivalence class [r] consists of all integers
having a remainder of r when divided by n.

Let’s consider another equivalence relation defined on Z involving congruence but
which is seemingly different from the class of examples we have just described.

Result to Prove Let R be the relation defined on Z by a R b if 2a + b ≡ 0 (mod 3). Then R is an equiv-
alence relation.

PROOF STRATEGY To prove that R is reflexive, we must show that x R x for every x ∈ Z. This means that we
must show that 2x + x ≡ 0 (mod 3) or that 3x ≡ 0 (mod 3). This is equivalent to show-
ing that 3 | 3x, which is obvious. This tells us where to begin the proof of the reflexive
property.

Proving that R is symmetric is somewhat more subtle. Of course, we know where to
begin. We assume that x R y. From this, we have 2x + y ≡ 0 (mod 3). So, 3 | (2x + y)
or 2x + y = 3r for some integer r. Our goal is to show that y R x or, equivalently, that
2y + x ≡ 0 (mod 3). Eventually then, we must show that 2y + x = 3s for some integer s.
We cannot assume this of course. Since 2x + y = 3r, it follows that y = 3r − 2x. So

2y + x = 2(3r − 2x) + x = 6r − 3x = 3(2r − x).

Since 2r − x ∈ Z, we have 3 | (2y + x) and the verification of symmetry is nearly
complete.

Proving that R is transitive should be as expected. �

Result 9.15 Let R be the relation defined on Z by a R b if 2a + b ≡ 0 (mod 3). Then R is an equiv-
alence relation.

Proof Let x ∈ Z. Since 3 | 3x, it follows that 3x ≡ 0 (mod 3). So, 2x + x ≡ 0 (mod 3). Thus,
x R x and R is reflexive.

Next we verify that R is symmetric. Assume that x R y, where x, y ∈ Z. Thus, 2x +
y ≡ 0 (mod 3) and so 3 | (2x + y). Therefore, 2x + y = 3r for some integer r. Hence,
y = 3r − 2x. So

2y + x = 2(3r − 2x) + x = 6r − 3x = 3(2r − x).

Since 2r − x is an integer, 3 | (2y + x). So, 2y + x ≡ 0 (mod 3). Therefore, y R x and R
is symmetric.
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Finally, we show that R is transitive. Assume that x R y and y R z, where x, y, z ∈ Z.
Then 2x + y ≡ 0 (mod 3) and 2y + z ≡ 0 (mod 3). Thus, 3 | (2x + y) and 3 | (2y + z).
From this, it follows that 2x + y = 3r and 2y + z = 3s for some integers r and s. Adding
these two equations, we obtain

2x + 3y + z = 3r + 3s;
so

2x + z = 3r + 3s − 3y = 3(r + s − y).

Since r + s − y is an integer, 3|(2x + z); so 2x + z ≡ 0 (mod 3). Hence, x R z and R is
transitive.

PROOF ANALYSIS A few additional comments about the proof of the symmetric property in Result 9.15
might be helpful. At one point in the proof we knew that 2x + y = 3r for some integer r
and we wanted to show that 2y + x = 3s for some integer s. If we added these two equa-
tions, then we would obtain 3x + 3y = 3r + 3s. Of course, we can’t add these because
we don’t know that 2y + x = 3s. But this does suggest another idea.

Assume that x R y. Thus, 2x + y ≡ 0 (mod 3). Hence, 3 | (2x + y); so 2x + y = 3r
for some integer r. Observe that

3x + 3y = (2x + y) + (2y + x) = 3r + (2y + x).

Therefore,

2y + x = 3x + 3y − 3r = 3(x + y − r).

Because x + y − r ∈ Z , it follows that 3 | (2y + x). Consequently, 2y + x ≡ 0 (mod 3),
y R x and R is symmetric. �

The distinct equivalence classes for the equivalence relation described in Result 9.15
are

[0] = {x ∈ Z : x R 0} = {x ∈ Z : 2x ≡ 0 (mod 3)}
= {x ∈ Z : 3 | 2x} = {0,±3,±6,±9, . . .},

[1] = {x ∈ Z : x R 1} = {x ∈ Z : 2x + 1 ≡ 0 (mod 3)}
= {x ∈ Z : 3 | (2x + 1)} = {1,−2, 4,−5, 7,−8, . . .},

[2] = {x ∈ Z : x R 2} = {x ∈ Z : 2x + 2 ≡ 0 (mod 3)}
= {x ∈ Z : 3|(2x + 2)} = {2,−1, 5,−4, 8,−7, . . .}.

Let’s discuss how we obtained these equivalence classes. We started with the integer
0 and saw that [0] = {x ∈ Z : 3 | 2x}. By trying various values of x (namely, 0, 1, 2, 3,
4, 5, etc. and −1, −2, −3, −4, etc), we see that we are obtaining the multiples of 3.
(Exercise 4.6 asks you to show that if 3 | 2x, then x is a multiple of 3.) The contents of
[1] and [2] can be justified, if necessary, in a similar manner.

We have seen that if we define a relation R1 on Z by a R1 b if a ≡ b (mod 3),
then we have three distinct equivalence classes; while if we define a relation R2 on Z
by a R2 b if 2a + b ≡ 0 (mod 3), then we also have three distinct classes — in fact, the
same equivalence classes. Let’s see why this is true.
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Result 9.16 Let a, b ∈ Z. Then a ≡ b (mod 3) if and only if 2a + b ≡ 0 (mod 3).

Proof First, assume that a ≡ b (mod 3). Then 3 | (a − b) and so a − b = 3x for some integer x.
Thus, a = 3x + b. Now

2a + b = 2(3x + b) + b = 6x + 3b = 3(2x + b).

Since 2x + b is an integer, 3 | (2a + b) and so 2a + b ≡ 0 (mod 3).
For the converse, assume that 2a + b ≡ 0 (mod 3). Hence, 3 | (2a + b), which im-

plies that 2a + b = 3y for some integer y. Thus, b = 3y − 2a. Observe that

a − b = a − (3y − 2a) = 3a − 3y = 3(a − y).

Since a − y is an integer, 3 | (a − b) and so a ≡ b (mod 3).

We shouldn’t jump to the conclusion that just because we are dealing with an equiv-
alence relation defined in terms of the integers modulo 3, we will necessarily have three
distinct equivalence classes. For example, suppose that we define a relation R on Z by
a R b if a2 ≡ b2 (mod 3). Then, here too, R is an equivalence relation. In this case,
however, there are only two distinct equivalence classes, namely:

[0] = {0,±3,±6,±9, . . .} and [1] = {±1,±2,±4,±5, . . .},
since whenever an integer n has a remainder 1 or 2 when it is divided by 3, then n2 has
a remainder of 1 when it is divided by 3 (see Result 4.12).

SECTION 9.5 EXERCISES

9.44. Classify each of the following statements as true or false.
(a) 25 ≡ 9 (mod 8), (b) −17 ≡ 9 (mod 8), (c) −14 ≡ −14 (mod 4), (d) 25 ≡ −3 (mod 11).

9.45. A relation R is defined on Z by a R b if 3a + 5b ≡ 0 (mod 8). Prove that R is an equivalence relation.

9.46. Let R be the relation defined on Z by a R b if a + b ≡ 0 (mod 3). Show that R is not an equivalence relation.

9.47. The relation R on Z defined by a R b if a2 ≡ b2 (mod 4) is known to be an equivalence relation. Determine
the distinct equivalence classes.

9.48. The relation R defined on Z by x R y if x3 ≡ y3 (mod 4) is known to be an equivalence relation. Determine
the distinct equivalence classes.

9.49. A relation R is defined on Z by a R b if 5a ≡ 2b (mod 3). Prove that R is an equivalence relation and
determine the distinct equivalence classes.

9.50. A relation R is defined on Z by a R b if 2a + 2b ≡ 0 (mod 4). Prove that R is an equivalence relation and
determine the distinct equivalence classes.

9.51. Let R be the relation defined on Z by a R b if 2a + 3b ≡ 0 (mod 5). Prove that R is an equivalence relation
and determine the distinct equivalence classes.

9.52. Let R be the relation defined on Z by a R b if a2 ≡ b2 (mod 5). Prove that R is an equivalence relation and
determine the distinct equivalence classes.

9.53. For an integer n ≥ 2, the relation R defined on Z by a R b if a ≡ b (mod n) is an equivalence relation.
Equivalently, a R b if a − b = kn for some k ∈ Z. Define a relation R on the set R of real numbers by a R b
if a − b = kπ for some k ∈ Z. Is this relation R on R an equivalence relation? If not, explain why. If yes,
prove this and determine [0], [π ] and [

√
2].
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9.6 THE INTEGERS MODULO n

We have already seen that for each integer n ≥ 2, the relation R defined on Z by a R b if
a ≡ b (mod n) is an equivalence relation. Furthermore, this equivalence relation results
in the n distinct equivalence classes [0], [1], . . . , [n − 1]. We denote the set of these
equivalence classes by Zn and refer to this set as the integers modulo n. Thus, Z3 =
{[0], [1], [2]} and, in general,

Zn = {[0], [1], . . . , [n − 1]} .

Hence, each element [r] of Zn, where 0 ≤ r < n, is a set that contains infinitely many
integers; indeed, as we have noted, [r] consists of all those integers having the remainder
r when divided by n. For this reason, the elements of Zn are sometimes called residue
classes.

Although it makes perfectly good sense to take the union and intersection of two
elements of Zn since these elements are sets (in fact, subsets of Z), it doesn’t make
sense at this point to add or multiply two elements of Zn. However, since the elements
of Zn have the appearance of integers, say [a] and [b], where a, b ∈ Z, it does suggest
the possibility of defining addition and multiplication in Zn. We now discuss how these
operations can be defined on the set Zn.

Of course, we have seen addition and multiplication defined many times before.
When we speak of addition and multiplication being operations on a set S, we mean that
for x, y ∈ S, the sum x + y and the product xy should both belong to S. For example, in
the set Q of rational numbers, the sum and product of two rational numbers a/b and c/d
(so a, b, c, d ∈ Z and b, d �= 0) are defined by

a
b

+ c
d

= ad + bc
bd

and
a
b

· c
d

= ac
bd

,

both of which are rational numbers and so belong to Q.
As we mentioned, if addition and multiplication are operations on a set S, then

x + y ∈ S and xy ∈ S for all x, y ∈ S. Therefore, if T is a nonempty subset of S and
x, y ∈ T , then x + y ∈ S and xy ∈ S. The set T is closed under addition if x + y ∈ T
whenever x, y ∈ T . Similarly, T is closed under multiplication if xy ∈ T whenever
x, y ∈ T . Necessarily, if addition and multiplication are operations on a set S, then S
is closed under addition and multiplication.

For example, addition and multiplication are operations on Z. If A and B denote the
sets of even integers and odd integers, respectively, then A is closed under both addition
and multiplication but B is closed under multiplication only.

Regardless of how one might define addition and multiplication in Zn, we would
certainly expect that the sum and product of two elements of Zn is also an element of
Zn. There appears to be a natural definition of addition and multiplication in Zn; namely,
for two equivalence classes [a] and [b] in Zn, we define

[a] + [b] = [a + b] and [a] · [b] = [ab]. (9.7)

Let’s suppose that we are considering Z6, for example, where then Z6 = {[0], [1],
. . . , [5]}. From the definitions of addition and multiplication that we just gave, [1] +
[3] = [1 + 3] = [4] and [1] · [3] = [1 · 3] = [3]. This certainly seems harmless enough
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but let’s consider adding and multiplying two other equivalence classes, say [2] and [3].
Again, according to the definitions in (9.7), [2] + [3] = [2 + 3] = [5] and [2] · [3] =
[2 · 3] = [6]. However, we have been expressing the elements of Z6 by [0], [1], [2], [3],
[4] and [5] and we don’t explicitly see [2 · 3] = [6] among these elements. Since 6 ≡ 0
(mod 6), it follows that 6 ∈ [0], that is, [6] = [0]. Also, the remainder is 0 when 6 is
divided by 6 and so [6] = [0]. Therefore, [2] · [3] = [0]. By similar reasoning, [3] +
[5] = [2] and [3] · [5] = [3]. In fact, the complete addition and multiplication tables for
Z6 are given in Figure 9.2.

+ [0] [1] [2] [3] [4] [5]
[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]

· [0] [1] [2] [3] [4] [5]
[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]

Figure 9.2 The Addition and Multiplication Tables for Z6

If we add [1] to [0], add [1] to [1] and continue in this manner, then we obtain [0] +
[1] = [1], [1] + [1] = [2], [2] + [1] = [3], . . . , [5] + [1] = [6] = [0], [6] + [1] = [0] +
[1] = [1], etc.; that is, we return to [0] and cycle through all the classes of Z6 again (and
again). If, instead of Z6, we were dealing with Z12, we would have [0] + [1] = [1],
[1] + [1] = [2], [2] + [1] = [3], . . ., [11] + [1] = [12] = [0], [12] + [1] = [0] + [1] =
[1], etc. and this should remind you of what occurs when a certain number of hours is
added to a time (in hours), where, of course, 12 o’clock is represented here as 0 o’clock.
(For example, if it is 11 o’clock now, what time will it be 45 hours from now?)

Although the definitions of addition and multiplication in Zn that we gave in (9.7)
should seem quite reasonable and expected, there is a possible point of concern here
that needs to be addressed. According to the definition of addition in Z6, [4] + [5] = [3].
However, the class [4], which consists of all integers x such that x ≡ 4 (mod 6), need not
be represented this way. Since 10 ∈ [4], it follows that [10] = [4]. Also, [16] = [4] and
[−2] = [4], for example. Moreover, [11] = [5], [17] = [5] and [−25] = [5]. This brings
up the question: Is adding the equivalence classes [4] and [5] the same as adding [10]
and [−25]? According to the definition we have given, [10] + [−25] = [−15]. Luckily,
[−15] = [3] and so we obtain the same sum as before. But will this happen every time?
That is, does the definition of the sum of the equivalence classes [a] and [b] that we gave
in (9.7) depend on the representatives a and b of these classes? If the sum (or product)
of two equivalence classes does not depend on the representatives, then we say that this
sum (or product) is well-defined. We certainly would want this to be the case, which,
fortunately, it is. More precisely, addition and multiplication in Zn are well-defined if
whenever [a] = [b] and [c] = [d] in Zn, then [a + c] = [b + d] and [ac] = [bd].

Theorem 9.17 Addition in Zn, n ≥ 2, is well-defined.

Proof The set Zn is the set of equivalence classes resulting from the equivalence relation R
defined on Z by a R b if a ≡ b (mod n). Let [a], [b], [c], [d] ∈ Zn, where [a] = [b] and
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[c] = [d]. We prove that [a + c] = [b + d]. Since [a] = [b], it follows by Theorem 9.8
that a R b. Similarly, c R d. Therefore, a ≡ b (mod n) and c ≡ d (mod n). Thus, n |
(a − b) and n | (c − d). Hence, there exist integers x and y so that

a − b = nx and c − d = ny. (9.8)

Adding the equations in (9.8), we obtain

(a − b) + (c − d) = nx + ny = n(x + y);
so (a + c) − (b + d) = n(x + y). This implies that n | [(a + c) − (b + d)]. Thus,
(a + c) ≡ (b + d) (mod n). From this, we conclude that (a + c) R (b + d), which
implies that [a + c] = [b + d].

If the proof of Theorem 9.17 looks a bit familiar, review Result 4.10 and its proof. As
an example, in Z7, [118] + [26] = [144]. Since the remainder is 4 when 144 is divided
by 7, it follows that [118] + [26] = [4]. Furthermore, [118] = [6] and [26] = [5]; so
[118] + [26] = [6] + [5] = [11] = [4].

As we have mentioned, the multiplication in Zn that we described in (9.7) is also
well-defined. The verification of this fact has been left as an exercise (Exercise 9.58).

Addition and multiplication in Zn satisfy many familiar properties. Among these
are:

Commutative Properties
[a] + [b] = [b] + [a] and [a] · [b] = [b] · [a] for all a, b ∈ Z;

Associative Properties
([a] + [b]) + [c] = [a] + ([b] + [c]) and ([a] · [b]) · [c] = [a] · ([b] · [c]) for all

a, b, c ∈ Z;

Distributive Property
[a] · ([b] + [c]) = [a] · [b] + [a] · [c] for all a, b, c ∈ Z.

Although we defined multiplication in Zn in a manner that was probably expected,
this is not the only way it could have been defined. For example, suppose that we are
considering the set Z3 of integers modulo 3. For equivalence classes [a] and [b] in Z3,
define the “product” [a] · [b] to equal [q], where [q] is the quotient when ab is divided
by 3. Since the “product” of every two elements of Z3 is an element of Z3, this operation
is closed. In particular, [2] · [2] = [1] since the quotient is 1 when 2 · 2 = 4 is divided
by 3. However, [2] = [5] but [5] · [5] = [8] = [2]. Notice also that [5] · [2] = [3] = [0].
Hence, this multiplication is not well-defined.

SECTION 9.6 EXERCISES

9.54. Construct the addition and multiplication tables for Z4 and Z5.

9.55. In Z8, express the following sums and products as [r], where 0 ≤ r < 8.
(a) [2] + [6] (b) [2] · [6] (c) [−13] + [138] (d) [−13] · [138]

9.56. In Z11, express the following sums and products as [r], where 0 ≤ r < 11.
(a) [7] + [5] (b) [7] · [5] (c) [−82] + [207] (d) [−82] · [207]
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9.57. Let S = Z and T = {4k : k ∈ Z}. Thus, T is a nonempty subset of S.

(a) Prove that T is closed under addition and multiplication.
(b) If a ∈ S − T and b ∈ T , is ab ∈ T ?
(c) If a ∈ S − T and b ∈ T , is a + b ∈ T ?
(d) If a, b ∈ S − T , is it possible that ab ∈ T ?
(e) If a, b ∈ S − T , is it possible that a + b ∈ T ?

9.58. Prove that the multiplication in Zn, n ≥ 2, defined by [a][b] = [ab] is well-defined. (See Result 4.11.)

9.59. (a) Let [a], [b] ∈ Z8. If [a] · [b] = [0], does it follow that [a] = [0] or [b] = [0]?
(b) How is the question in (a) answered if Z8 is replaced by Z9? by Z10? by Z11?
(c) For which integers n ≥ 2 is the following statement true? (You are only asked to make a conjecture, not

to provide a proof.) Let [a], [b] ∈ Zn, n ≥ 2. If [a] · [b] = [0], then [a] = [0] or [b] = [0].

9.60. For integers m, n ≥ 2 consider Zm and Zn. Let [a] ∈ Zm where 0 ≤ a ≤ m − 1. Then a, a + m ∈ [a] in Zm.
If a, a + m ∈ [b] for some [b] ∈ Zn, then what can be said of m and n?

9.61. (a) For integers m, n ≥ 2 consider Zm and Zn. If some element of Zm also belongs to Zn, then what can be
said of Zm and Zn?

(b) Are there examples of integers m, n ≥ 2 for which Zm ∩ Zn = ∅?

The Chapter
Presentation for
Chapter 9 can be
found at
goo.gl/Tch7Cf
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9.62. Prove or disprove:

(a) There exists an integer a such that ab ≡ 0 (mod 3) for every integer b.
(b) If a ∈ Z, then ab ≡ 0 (mod 3) for every b ∈ Z.
(c) For every integer a, there exists an integer b such that ab ≡ 0 (mod 3).

9.63. A relation R is defined on R by a R b if a − b ∈ Z. Prove that R is an equivalence
relation and determine the equivalence classes [1/2] and [

√
2].

9.64. A relation R is defined on Z by a R b if |a − 2| = |b − 2|. Prove that R is an
equivalence relation and determine the distinct equivalence classes.

9.65. Let k and � be integers such that k + � ≡ 0 (mod 3) and let a, b ∈ Z. Prove that if
a ≡ b (mod 3), then ka + �b ≡ 0 (mod 3).

9.66. State and prove a generalization of Exercise 9.65.

9.67. A relation R is defined on Z by a R b if 3 | (a3 − b). Prove or disprove the following:
(a) R is reflexive. (b) R is transitive.

9.68. A relation R is defined on Z by a R b if a ≡ b (mod 2) and a ≡ b (mod 3). Prove or
disprove: R is an equivalence relation on Z.

9.69. A relation R is defined on Z by a R b if a ≡ b (mod 2) or a ≡ b (mod 3). Prove or
disprove: R is an equivalence relation on Z.

9.70. Determine each of the following.
(a) [4]3 = [4][4][4] in Z5 (b) [7]5 in Z10

9.71. Let S = {(a, b) : a, b ∈ R, a 	= 0}.
(a) Show that the relation R defined on S by (a, b) R (c, d) if ad = bc is an

equivalence relation.
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(b) Describe geometrically the elements of the equivalence classes [(1, 2)] and
[(3, 0)].

9.72. In Exercise 9.19, a relation R was defined on Z by x R y if x · y ≥ 0, and we were
asked to determine which of the properties reflexive, symmetric and transitive are
satisfied.

(a) How would our answers have changed if x · y ≥ 0 was replaced by: (i) x · y ≤ 0,
(ii) x · y > 0, (iii) x · y �= 0, (iv) x · y ≥ 1, (v) x · y is odd, (vi) x · y is even,
(vii) xy �≡ 2 (mod 3)?

(b) What are some additional questions you could ask?

9.73. For the following statement S and proposed proof, either (1) S is true and the proof is
correct, (2) S is true and the proof is incorrect or (3) S is false (and the proof is
incorrect). Explain which of these occurs.

S: Every symmetric and transitive relation on a nonempty set is an equivalence
relation.

Proof Let R be a symmetric and transitive relation defined on a nonempty set A.
We need only show that R is reflexive. Let x ∈ A. We show that x R x. Let y ∈ A such
that x R y. Since R is symmetric, y R x. Now x R y and y R x. Since R is transitive,
x R x. Thus, R is reflexive.

9.74. Evaluate the proposed proof of the following result.

Result A relation R is defined on Z by a R b if 3 | (a + 2b). Then R is an
equivalence relation.

Proof Assume that a R a. Then 3 | (a + 2a). Since a + 2a = 3a and a ∈ Z, it
follows that 3 | 3a or 3 | (a + 2a). Therefore, a R a and R is reflexive.

Next, we show that R is symmetric. Assume that a R b. Then 3 | (a + 2b). So,
a + 2b = 3x, where x ∈ Z. Hence, a = 3x − 2b. Therefore,

b + 2a = b + 2(3x − 2b) = b + 6x − 4b = 6x − 3b = 3(2x − b).

Since 2x − b is an integer, 3 | (b + 2a). So, b R a and R is symmetric.

Finally, we show that R is transitive. Assume that a R b and b R c. Then 3 | (a + 2b)
and 3 | (b + 2c). So, a + 2b = 3x and b + 2c = 3y, where x, y ∈ Z. Adding, we have
(a + 2b) + (b + 2c) = 3x + 3y. So,

a + 2c = 3x + 3y − 3b = 3(x + y − b).

Since x + y − b is an integer, 3 | (a + 2c). Hence, a R c and R is transitive.

9.75. (a) Show that the relation R defined on R × R by (a,b) R (c,d) if |a| + |b| = |c| + |d|
is an equivalence relation.

(b) Describe geometrically the elements of the equivalence classes [(1, 2)] and
[(3, 0)].

9.76. Let x ∈ Zm and y ∈ Zn, where m, n ≥ 2. If x ⊆ y, then what can be said of m and n?

9.77. Let A be a nonempty set and let B be a fixed subset of A. A relation R is defined on
P (A) by X R Y if X ∩ B = Y ∩ B.

(a) Prove that R is an equivalence relation.
(b) Let A = {1, 2, 3, 4} and B = {1, 3, 4}. For X = {2, 3, 4}, determine [X].
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9.78. Let R1 and R2 be equivalence relations on a nonempty set A. Prove or disprove each
of the following.

(a) If R1 ∩ R2 is reflexive, then so are R1 and R2.
(b) If R1 ∩ R2 is symmetric, then so are R1 and R2.
(c) If R1 ∩ R2 is transitive, then so are R1 and R2.

9.79. Prove that if R is an equivalence relation on a set A, then the inverse relation R−1 is an
equivalence relation on A.

9.80. Let R1 and R2 be equivalence relations on a nonempty set A. A relation R = R1R2 is
defined on A as follows: For a, b ∈ A, a R b if there exists c ∈ A such that a R1 c and
c R2 b. Prove or disprove: R is an equivalence relation on A.

9.81. A relation R on a nonempty set S is called sequential if for every sequence x, y, z of
elements of S (distinct or not), at least one of the ordered pairs (x, y) and (y, z)
belongs to R. Prove or disprove: Every symmetric, sequential relation on a nonempty
set is an equivalence relation.

9.82. Consider the subset H = {[3k] : k ∈ Z} of Z12.

(a) Determine the distinct elements of H and construct an addition table for H.
(b) A relation R on Z12 is defined by [a] R [b] if [a − b] ∈ H. Show that R is an

equivalence relation and determine the distinct equivalence classes.

9.83. For elements a, b ∈ Zn, n ≥ 2, a = [c] and b = [d] for some integers c and d. Define
a − b = [c] − [d] as the equivalence class [c − d]. Let H = {x1, x2, . . . , xd} be a
subset of Zn, n ≥ 2, such that a relation R defined on Zn by a R b if a − b ∈ H is an
equivalence relation.

(a) For each a ∈ Zn, determine the equivalence class [a] and show that [a] consists
of d elements.

(b) Prove that d | n.
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10
Functions

If R is a relation from a set A to a set B and x is an element of A, then either x is related
to no elements of B or x is related to at least one element of B. In the latter case, it

may occur that x is related to all elements of B or perhaps to exactly one element of B.
If every element of A is related to no elements of B, then R is the empty set ∅. If
every element of A is related to all elements of B, then R is the Cartesian product A × B.
However, if every element of A is related to exactly one element of B, then we have the
most studied relation of all: a function. Surely, you have encountered functions before,
at least in calculus and precalculus. But it is likely that you have not studied functions
in the manner we are about to describe here.

10.1 THE DEFINITION OF FUNCTION

Let A and B be nonempty sets. By a function f from A to B, written f : A → B, we mean
a relation from A to B with the property that every element a in A is the first coordinate
of exactly one ordered pair in f . Since f is a relation, the set A in this case is the domain
of f , denoted by dom( f ). The set B is called the codomain of f .

For a function f : A → B, let (a, b) ∈ f . Since f contains only one ordered pair
whose first coordinate is a, it follows that b is the unique second coordinate of an or-
dered pair whose first coordinate is a; that is, if (a, b) ∈ f and (a, c) ∈ f , then b = c. If
(a, b) ∈ f , then we write b = f (a) and refer to b as the image of a under the function f .
Sometimes f is said to map a into b. Indeed, f itself is sometimes called a mapping.
The set

range( f ) = {b ∈ B : b is an image under f of some element of A} = { f (x) : x ∈ A}
is the range of f and consists of the second coordinates of the elements of f . If A is a
finite set, then the function f is a finite set and the number of elements in f is |A| since
there is exactly one ordered pair in f corresponding to each element of A. Throughout
this chapter, as with earlier chapters, whenever we refer to cardinalities of sets, we are
concerned with finite sets only.

Suppose that f : A → B and g : A → B are two functions from A to B and a ∈ A.
Then f and gcontain exactly one ordered pair having a as its first coordinate, say (a, x) ∈ f
and (a, y) ∈ g. If the sets f and gare equal, then (a, x) belongs to gas well. Since gcontains

251
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only one ordered pair whose first coordinate is a, it follows that (a, x) = (a, y). But
this implies that x = y, that is, f (a) = g(a). Hence, it is natural to define two functions
f : A → B and g : A → B to be equal, written f = g, if f (a) = g(a) for all a ∈ A.

Let A = {1, 2, 3} and B = {w, x, y, z}. Then f1 = {(1, y), (2, w), (3, y)} is a function
from A to B and so we may write f1 : A → B. On the other hand, f2 = {(1, x), (2, z),
(3, y), (2, x)} is not a function since there are two ordered pairs whose first coordinate is 2.
In addition, f3 = {(1, z), (3, x)} is not a function from A to B either because dom( f3) �= A.
On the other hand, f3 is a function from A − {2} to B.

It is often convenient to “visualize” a function f : A → B by representing the two
sets A and B by diagrams and drawing an arrow (a directed line segment) from an element
x ∈ A to its image f (x) ∈ B. This is illustrated for the function f1 described above in
Figure 10.1. Therefore, in order to represent a function in this way, exactly one directed
line segment must leave each element of A and proceed to an element of B.
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Figure 10.1 A function f1 : A → B

In calculus, “functions” such as f (x) = x2 are considered. This function f is from
R to R, that is, A = R and B = R. Although f (x) = x2 is commonly referred to as a
“function” in calculus and elsewhere, strictly speaking f (x) is the image of a real number
x under f . The function f itself is actually the set

f = {(x, x2) : x ∈ R}.
So (2, 4) and (−3, 9), for example, belong to f . The set {(x, x2) : x ∈ R} of points
in the plane is the graph of f . In this case, the graph is a parabola. Here, the function
f : R → R defined by f (x) = x2 can also be thought of as defined by a rule, namely the
rule that associates the number x2 with each real number x.

Example 10.1 Another function encountered in calculus is g(x) = ex. As we mentioned above, this
function is actually the set

g = {(x, ex) : x ∈ R}.

More precisely, this is the function g : R → R defined by g(x) = ex for all x ∈ R. In gen-
eral, we will follow this latter convention for defining functions that are often described

by some rule or formula. Consequently, the function h(x) = 1
x − 1

from calculus is the

function h : R − {1} → R defined by h(x) = 1
x − 1

for all x ∈ R with x �= 1 and the

function φ(x) = ln x is the function φ : R+ → R defined by φ(x) = ln x for all x ∈ R+,
where, recall, R+ is the set of all positive real numbers. �
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For a function f : A → B and a subset C of A, the image f (C) of C is defined as

f (C) = { f (x) : x ∈ C}.
Therefore, f (C) ⊆ B for each subset C of A. If C = A, then f (A) is the range of f .

Example 10.2 For A = {a, b, c, d, e} and B = {1, 2, . . . , 6},
f = {(a, 3), (b, 5), (c, 2), (d, 3), (e, 6)}

is a function from A to B. For C1 = {a, b, c}, C2 = {a, d}, C3 = {e} and C4 = A,

f (C1) = {2, 3, 5}, f (C2) = {3}, f (C3) = {6}, f (C4) = range( f ) = {2, 3, 5, 6}. �

For a function f : A → B and an element b ∈ B, the inverse image f −1(b) of b is
defined as

f −1(b) = {a ∈ A : f (a) = b}.
Therefore, f −1(b) ⊆ A for each element b ∈ B. For a subset D of B,

f −1(D) = {a ∈ A : f (a) ∈ D}.
Necessarily then, f −1(B) = A.

Example 10.3 For the function f : A = {a, b, c, d, e} → B = {1, 2, . . . , 6} defined in Example 10.2 by

f = {(a, 3), (b, 5), (c, 2), (d, 3), (e, 6)},

it follows that f −1(3) = {a, d}, f −1({1, 3}) = {a, d}, f −1(4) = ∅ and f −1(B) = A. �

Among the many classes of functions encountered in calculus are the polynomial
functions, rational functions and exponential functions. The function f : R → R defined
earlier by f (x) = x2 for x ∈ R is a polynomial function. The function h : R − {1} →
R defined by h(x) = 1

x−1 in Example 10.1 is a rational function and the function g :
R → R defined by g(x) = ex (also in Example 10.1) is an exponential function. Other
important classes of functions encountered often in calculus are continuous functions
and differentiable functions.

The definition of function that we have given is most likely not the definition you
recall from calculus; in fact, you may not recall the definition of function given in cal-
culus at all. If this is the case, then this is not surprising. The evolution of what is meant
by a function has spanned hundreds of years. It was in the development of calculus that
the necessity of a formal definition of function became apparent.

Early in the 18th century, the Swiss mathematician Johann Bernoulli wrote:

I call a function of a variable magnitude a quantity composed in any manner
whatsoever from this variable magnitude and from constants.

Later in the 18th century, the famous Swiss mathematician Leonhard Euler stud-
ied calculus as a theory of functions and did not appeal to diagrams and geometric
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interpretations, as many of his predecessors had done. The definition of function that
Euler gave in his work on calculus is:

A function of a variable quantity is an analytic expression composed in any way
whatsoever of the variable quantity and numbers or constant quantities.

Early in the 19th century, the German mathematician Peter Dirichlet developed a
more modern definition of function:

y is a function of x when to each value of x in a given interval there corresponds
a unique value of y.

Dirichlet said that it didn’t matter whether y depends on x according to some formula, law
or mathematical operation. He emphasized this by considering the function f : R → R
defined by

f =
{

1 if x is rational
0 if x is irrational.

Later in the 19th century, the German mathematician Richard Dedekind wrote:

A function φ on a set S is a law according to which to every determinate element
s of S there belongs a determinate thing which is called the transform of s and is
denoted by φ(s).

So, by this time, the modern definition of function had nearly arrived.
Even if two sets A and B have relatively few elements, there are many possible

functions from A to B that can be defined. For nonempty sets A and B, the set of all
functions from A to B is denoted by BA. That is, BA = { f : f is a function from A to B}
or, more simply,

BA = { f : f : A → B}.
Although this notation may seem a bit peculiar, it is actually quite logical. For example,
let’s determine BA for the sets A = {a, b} and B = {x, y, z}. Each function f from A to B
is necessarily of the form

f = {(a, α), (b, β )},
where α, β ∈ B. Since there are 3 choices for α and 3 choices for β, the total number of
such functions f is 3 · 3 = 32 = 9. These nine functions are listed below:

f1 = {(a, x), (b, x)}, f2 = {(a, x), (b, y)}, f3 = {(a, x), (b, z)},
f4 = {(a, y), (b, x)}, f5 = {(a, y), (b, y)}, f6 = {(a, y), (b, z)},
f7 = {(a, z), (b, x)}, f8 = {(a, z), (b, y)}, f9 = {(a, z), (b, z)}.

Hence, the number of elements in BA is 32. In general, for finite sets A and B, the number
of functions from A to B is ∣∣BA

∣∣ = |B||A|.

If B = {0, 1}, then it is common to represent the set of all functions from A to B by 2A.
So, for the sets A = {a, b} and B = {x, y, z} above, the set of all functions from B to A is
AB and the number of such functions is |A||B| = 23 = 8.
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SECTION 10.1 EXERCISES

10.1. Let A = {a, b, c, d} and B = {x, y, z}. Then f = {(a, y), (b, z), (c, y), (d, z)} is a function from A to B.
Determine dom( f ) and range( f ).

10.2. Let A = {1, 2, 3} and B = {a, b, c, d}. Give an example of a relation R from A to B containing exactly
three elements such that R is not a function from A to B. Explain why R is not a function.

10.3. Let A be a nonempty set. If R is a relation from A to A that is both an equivalence relation and a function,
then what familiar function is R? Justify your answer.

10.4. For the given subset Ai of R and the relation Ri (1 ≤ i ≤ 3) from Ai to R, determine whether Ri is a
function from Ai to R.

(a) A1 = R, R1 = {(x, y) : x ∈ A1, y = 4x − 3}
(b) A2 = [0,∞), R2 = {(x, y) : x ∈ A2, (y + 2)2 = x}
(c) A3 = R, R3 = {(x, y) : x ∈ A3, (x + y)2 = 4}

10.5. Let A and B be nonempty sets and let R be a nonempty relation from A to B. Show that there exists a
subset A′ of A and a subset f of R such that f is a function from A′ to B.

10.6. In each of the following, a function fi : Ai → R (1 ≤ i ≤ 5) is defined, where the domain Ai consists of
all possible real numbers x for which fi(x) is defined. In each case, determine the domain Ai and the range
of fi.

(a) f1(x) = 1 + x2 (b) f2(x) = 1 − 1
x (c) f3(x) = √

3x − 1

(d) f4(x) = x3 − 8 (e) f5(x) = x
x−3 .

10.7. Let A = {3, 17, 29, 45} and B = {4, 6, 22, 60}. A relation R from A to B is defined by a R b if a + b is a
prime. Is R a function from A to B?

10.8. Let A = {5, 6}, B = {5, 7, 8} and S = {n : n ≥ 3 is an odd integer}. A relation R from A × B to S is
defined as (a, b) R s if s | (a + b). Is R a function from A × B to S?

10.9. Determine which of the following five relations Ri (i = 1, 2, . . . , 5) are functions.

(a) R1 is defined on R by x R1 y if x2 + y2 = 1.
(b) R2 is defined on R by x R2 y if 4x2 + 3y2 = 1.
(c) R3 is defined from N to Q by a R3 b if 3a + 5b = 1.
(d) R4 is defined on R by x R4 y if y = 4 − |x − 2|.
(e) R5 is defined on R by x R5 y if |x + y| = 1.

10.10. A function g : Q → Q is defined by g(r) = 4r + 1 for each r ∈ Q.

(a) Determine g(Z) and g(E ), where E is the set of even integers.
(b) Determine g−1(N) and g−1(D), where D is the set of odd integers.

10.11. Let C = {x ∈ R : x ≥ 1} and D = R+. For each function f defined below, determine f (C), f −1(C),
f −1(D) and f −1({1}).

(a) f : R → R is defined by f (x) = x2.
(b) f : R+ → R is defined by f (x) = ln x.
(c) f : R → R is defined by f (x) = ex.
(d) f : R → R is defined by f (x) = sin x.
(e) f : R → R is defined by f (x) = 2x − x2.
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10.12. For a function f : A → B and subsets C and D of A and E and F of B, prove the following.

(a) f (C ∪ D) = f (C) ∪ f (D)
(b) f (C ∩ D) ⊆ f (C) ∩ f (D)
(c) f (C) − f (D) ⊆ f (C − D)
(d) f −1(E ∪ F ) = f −1(E ) ∪ f −1(F )
(e) f −1(E ∩ F ) = f −1(E ) ∩ f −1(F )
(f) f −1(E − F ) = f −1(E ) − f −1(F ).

10.13. Determine BA for the sets A = {1, 2, 3} and B = {x, y}.
10.14. For sets A = {1, 2, 3, 4} and B = {x, y, z}, give an example of a function g ∈ BA and a function h ∈ BB.

10.15. For A = {a, b, c}, determine 2A.

10.16. (a) Give an example of sets A and B such that |BA| = 8.
(b) Give an example of an element in BA for the sets A and B given in (a).

10.17. (a) For nonempty sets A, B and C, what is a possible interpretation of the notation CBA
?

(b) According to the definition given in (a), determine CBA
for A = {0, 1}, B = {a, b} and C = {x, y}.

10.2 ONE-TO-ONE AND ONTO FUNCTIONS

We now consider two of the most important properties that a function may possess. A
function f from a set A to a set B is called one-to-one or injective if every two distinct
elements of A have distinct images in B. In symbols, a function f : A → B is one-to-one
if whenever x, y ∈ A and x �= y, then f (x) �= f (y). Thus, if a function f : A → B is not
one-to-one, then there exist distinct elements w and z in A such that f (w) = f (z).

Let A = {a, b, c, d}, B = {r, s, t, u, v} and C = {x, y, z}. Then

f1 = {(a, s), (b, u), (c, v), (d, r)}
is a one-to-one function from A to B since distinct elements of A have distinct images in
B; while the function

f2 = {(a, s), (b, t ), (c, s), (d, u)}
from A to B is not one-to-one since a and c have the same image, namely s. There is no
one-to-one function from A to C, however.

Suppose that a function f : A → B is one-to-one, where A and B are finite sets.
Since every two elements of A have distinct images in B, there must be at least as many
elements in B as in A, that is, |A| ≤ |B|.

At times, the definition of a one-to-one function is difficult to work with since it
deals with unequal elements. However, there is a useful equivalent formulation of the
definition using the contrapositive:

A function f : A → B is one-to-one if whenever f (x) = f (y), where x, y ∈ A,
then x = y.

The following result illustrates how this formulation can be applied to functions defined
by formulas.

Result 10.4 The function f : R → R defined by f (x) = 3x − 5 is one-to-one.
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Proof Assume that f (a) = f (b), where a, b ∈ R. Then 3a − 5 = 3b − 5. Adding 5 to both
sides, we obtain 3a = 3b. Dividing by 3, we have a = b and so f is one-to-one.

Example 10.5 Let the function f : R → R be defined by f (x) = x2 − 3x − 2. Determine whether f is
one-to-one.

Solution Since f (0) = −2 and f (3) = −2, it follows that f is not one-to-one. �

Analysis To show that the function f defined in Example 10.5 is not one-to-one, we must show
that there exist two distinct real numbers having the same image under f . This was
accomplished by showing that f (0) = f (3). But what if we can’t find two real numbers
with this property? Naturally, if we can’t find two such numbers, then we might think
that f is one-to-one. In that case, we should be trying to prove that f is one-to-one. We
would probably begin such a proof by assuming that f (a) = f (b), that is a2 − 3a − 2 =
b2 − 3b − 2. We would then try to show that a = b. We can simplify a2 − 3a − 2 =
b2 − 3b − 2 by adding 2 to both sides, producing a2 − 3a = b2 − 3b. When attempting
to solve an equation, it is often convenient to collect all terms on one side of the equation
with 0 on the other side. Rewriting this equation, we obtain a2 − 3a − b2 + 3b = 0.
Rearranging some terms and factoring, we have

a2 − 3a − b2 + 3b = (a2 − b2) − 3(a − b) = (a − b)(a + b) − 3(a − b)

= (a − b)(a + b − 3) = 0.

Hence, if f (a) = f (b), then (a − b)(a + b − 3) = 0. Since (a − b)(a + b − 3) = 0, it
follows that either a − b = 0 (and so a = b) or a + b − 3 = 0. Therefore, f (a) = f (b)
does not imply that a = b. It only implies that a = b or a + b = 3. Since 0 + 3 = 3, we
now see why f (0) = f (3). In fact, if a and b are any two real numbers where a + b = 3,
then f (a) = f (b). This tells us how to find all possible counterexamples to the statement:
f is one-to-one. Looking at f (x) = x2 − 3x − 2 once again, we see that f (x) =
x(x − 3) − 2. Since x(x − 3) = 0 if x = 0 or x = 3, it is now more apparent why
0 and 3 are numbers for which f (0) = f (3). �

A function f : A → B is called onto or surjective if every element of the codomain
B is the image of some element of A. Equivalently, f is onto if f (A) = B.

For example, consider the function f1 : A → B, where A = {1, 2, 3}, B = {x, y, z, w}
and f1 = {(1, y), (2, w), (3, y)}. This function f1 is not onto since neither x nor z is an
image of some element of A. You might notice that for these two sets A and B, there is no
function from A to B that is onto since any such function has exactly three ordered pairs
but B has four elements. Thus, if A and B are finite sets and f : A → B is a surjective
function, then |B| ≤ |A|. The function g : B → A where g = {(x, 3), (y, 1), (z, 3), (w, 2)}
is a surjective function, however, since each of the elements 1, 2 and 3 is an image of
some element of B. Next, we determine which of the functions defined in Result 10.4
and Example 10.5 are onto.

Result to Prove The function f : R → R defined by f (x) = 3x − 5 is onto.

PROOF STRATEGY Let’s make a few observations before we begin the proof. To show that f is onto, we
must show that every element in the codomain B = R is the image of some element in
the domain A = R. Since f (0) = −5 and f (1) = −2, certainly −5 and −2 are images
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of elements of R. The real number 10 is an image as well since f (5) = 10. Is π an image
of some real number? To answer this question, we need to determine whether there is a
real number x such that f (x) = π . Since f (x) = 3x − 5, we need only find a solution for
x to the equation 3x − 5 = π . Solving this equation for x, we find that x = (π + 5)/3,
which, of course, is a real number. Finally, observe that

f (x) = f
(

π + 5
3

)
= 3

(
π + 5

3

)
− 5 = π.

This discussion, however, gives us the information we need to prove that f is onto since
for an arbitrary real number r, say, we need to find a real number x such that f (x) = r.
However, then, 3x − 5 = r and x = (r + 5)/3. �

Result 10.6 The function f : R → R defined by f (x) = 3x − 5 is onto.

Proof Let r ∈ R. We show that there exists x ∈ R such that f (x) = r. Choose x = (r + 5)/3.
Then x ∈ R and

f (x) = f
(

r + 5
3

)
= 3

(
r + 5

3

)
− 5 = r.

PROOF ANALYSIS Notice that the proof itself of Result 10.6 does not include consideration of the equation
3x − 5 = r. Our goal was to show that some real number x exists such that f (x) = r.
How we obtain this number, though possibly interesting, is not part of the proof. On the
other hand, it may be a good idea to accompany the proof with this information. �

The function f : R → R defined in Example 10.5 by f (x) = x2 − 3x − 2 is not
onto, however. Writing x2 − 3x − 2 as (x2 − 3x + 9

4 ) − 2 − 9
4 = (x − 3

2 )2 − 17
4 , we see

that f (x) ≥ − 17
4 . Thus, for each real number r with r < − 17

4 , there is no x ∈ R such that
f (x) = r. In fact, the range of f is [− 17

4 ,∞).
Let A = {1, 2, 3}, B = {x, y, z, w} andC = {a, b, c}. Four functions g1 : A → B, g2 :

B → C, g3 : A → C and g4 : A → C are defined as follows:

g1 = {(1, y), (2, w), (3, x)},
g2 = {(x, b), (y, a), (z, c), (w, b)},
g3 = {(1, a), (2, c), (3, b)},
g4 = {(1, b), (2, b), (3, b)}.

The functions g1 and g3 are one-to-one; while g2 and g4 are not one-to-one since g2(x) =
g2(w) = b and g4(1) = g4(2) = b. Both g2 and g3 are onto. The function g1 is not onto
because z is not an image of any element of A; while g4 is not onto since neither a nor c
is an image of an element of A.

SECTION 10.2 EXERCISES

10.18. Let A = {w, x, y, z} and B = {r, s, t}. Give an example of a function f : A → B that is neither one-to-one
nor onto. Explain why f fails to have these properties.

10.19. Give an example of two finite sets A and B and two functions f : A → B and g : B → A such that f is
one-to-one but not onto and g is onto but not one-to-one.
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10.20. A function f : Z → Z is defined by f (n) = 2n + 1. Determine whether f is (a) injective, (b) surjective.

10.21. A function f : Z → Z is defined by f (n) = n − 3. Determine whether f is (a) injective, (b) surjective.

10.22. A function f : Z → Z is defined by f (n) = 5n + 2. Determine whether f is (a) injective, (b) surjective.

10.23. Prove or disprove: For every nonempty set A, there exists an injective function f : A → P (A).

10.24. Determine whether the function f : R → R defined by f (x) = x2 + 4x + 9 is (a) one-to-one, (b) onto.

10.25. Is there a function f : R → R that is onto but not one-to-one? Explain your answer.

10.26. Give an example of a function f : N → N that is
(a) one-to-one and onto (b) one-to-one but not onto
(c) onto but not one-to-one (d) neither one-to-one nor onto.

10.27. Let A = {2, 3, 4, 5} and B = {6, 8, 10}. A relation R is defined from A to B by a R b if a | b and (b/a) + 1
is a prime.

(a) Is R a function from A to B?
(b) If R is a function from A to B, then determine whether this function is one-to-one and/or onto.

10.28. Let A = {2, 4, 6} and B = {1, 3, 4, 7, 9}. A relation f is defined from A to B by a f b if 5 divides ab + 1. Is
f a one-to-one function?

10.29. Let f be a function with dom( f ) = A and let C and D be subsets of A. Prove that if f is one-to-one, then
f (C ∩ D) = f (C) ∩ f (D).

10.3 BIJECTIVE FUNCTIONS

We have already mentioned, for finite sets A and B, that if f : A → B is a surjective
function, then |A| ≥ |B|. Also, we mentioned that if f : A → B is one-to-one, then |A| ≤ |B|.
Hence, if A and B are finite sets and f : A → B is a function that is both one-to-one and
onto, then |A| = |B|. What happens when A and B are infinite sets will be dealt with in
Chapter 11.

A function f : A → B is called bijective or a one-to-one correspondence if it is
both one-to-one and onto. From what we mentioned earlier, if a function f : A → B is
bijective and A and B are finite sets, then |A| = |B|. Perhaps it is also clear that if A and B
are finite sets with |A| = |B|, then there exists a bijective function f : A → B. A bijective
function from a set A to a set B creates a pairing of the elements of A with the elements
of B.

In the case where A and B are sets with |A| = |B| = 3, say A = {a, b, c} and B =
{x, y, z}, the bijective functions from A to B are

f1 = {(a, x), (b, y), (c, z)}
f2 = {(a, y), (b, z), (c, x)}
f3 = {(a, z), (b, x), (c, y)}
f4 = {(a, y), (b, x), (c, z)}
f5 = {(a, z), (b, y), (c, x)}
f6 = {(a, x), (b, z), (c, y)}.

That is, there are six bijective functions from A to B; indeed there are six bijective func-
tions from any 3-element set to any 3-element set. More generally, we have the following.
(See Exercise 10.34.)
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Theorem 10.7 If A and B are finite sets with |A| = |B| = n, then there are n! bijective functions from A
to B.

Proof Suppose that A = {a1, a2, . . . , an}. Then any bijective function f : A → B can be
expressed as

f = {(a1,−), (a2,−), . . . , (an,−)},
where the second coordinate of each ordered pair of f belongs to B. There are n pos-
sible images for a1 in f . Once an image for a1 has been determined, then there are
n − 1 possible images for a2. Since f is one-to-one, no element of B can be the image
of two elements of A. Because neither of the images of a1 and a2 can be images of a3,
there are n − 2 possibilities for a3. Continuing in this manner, we see that there is only
one possibility for the image of an. It turns out that the total number of possible bijective
functions f is obtained by multiplying these numbers and so there are n(n − 1)
(n − 2) · · · 1 = n! bijective functions from A to B.

There is another interesting fact concerning the existence of bijective functions f :
A → B for finite sets A and B with |A| = |B|.

Theorem 10.8 Let A and B be finite nonempty sets such that |A| = |B| and let f be a function from A
to B. Then f is one-to-one if and only if f is onto.

Proof Let |A| = |B| = n. Assume first that f is one-to-one. Since the n elements of A have
distinct images, there are n distinct images. Thus, range( f ) = B and so f is onto.

For the converse, assume that f is onto. Thus, each of the n elements of B is an
image of some element of A. Consequently, the n elements of A have n distinct images
in B, which implies that no two distinct elements of A can have the same image and so
f is one-to-one.

Theorem 10.8 concerns finite sets A and B with |A| = |B|. Even though we have not
defined cardinality for infinite sets, we would certainly expect that |A| = |A| for every
infinite set A. With this understanding, Theorem 10.8 is false for infinite sets A and B,
even when A = B. For example, the function f : Z → Z defined by f (n) = 2n is one-
to-one; yet its range is the set of all even integers. That is, f is not onto, even though f
is a one-to-one function from Z to Z. The function f : N → N defined by g(n) = n − 1
when n ≥ 2 and g(1) = 1 is onto but not one-to-one since g(1) = g(2) = 1.

For the sets A = {1, 2, 3}, B = {x, y, z, w} and C = {a, b, c} described at the end of
Section 10.2, no function from A to B or from B to C can be bijective. It is possible to have
a bijective function from A to C, however, since |A| = |C|. In fact, g3 is such a function,
although other bijective functions from A to C exist. Certainly, not every function from
A to C is bijective, as g4 illustrates.

For a nonempty set A, the function iA : A → A defined by iA(a) = a for each a ∈ A
is called the identity function on A. If the set A under discussion is clear, we write the
identity function iA by i. For S = {1, 2, 3}, the identity function is

iS = i = {(1, 1), (2, 2), (3, 3)}.



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M11_CHART6753_04_SE_C10 PH03348-Chartrand August 5, 2017 18:57 Char Count= 0

10.3 Bijective Functions 261

Not only is this identity function bijective, the identity function iA is bijective for every
nonempty set A. Identity functions are important and we will see them again soon.

We give one additional example of a bijective function.

Result 10.9 The function f : R − {2} → R − {3} defined by

f (x) = 3x
x − 2

is bijective.

Proof Here it is necessary to show that f is both one-to-one and onto. We begin with the first

of these. Assume that f (a) = f (b), where a, b ∈ R − {2}. Then
3a

a − 2
= 3b

b − 2
. Multi-

plying both sides by (a − 2)(b − 2), we obtain 3a(b − 2) = 3b(a − 2). Simplifying, we
have 3ab − 6a = 3ab − 6b. Adding −3ab to both sides and dividing by −6, we obtain
a = b. Thus, f is one-to-one.

To show that f is onto, let r ∈ R − {3}. We show that there exists x ∈ R − {2} such

that f (x) = r. Choose x = 2r
r − 3

. Then

f (x) = f
(

2r
r − 3

)
= 3

(
2r

r−3

)
2r

r−3 − 2
= 6r

2r − 2(r − 3)
= 6r

6
= r,

implying that f is onto. Therefore f is bijective.

PROOF ANALYSIS Some remarks concerning the proof that the function f in Result 10.9 is onto may be
useful. For a given real number r in R − {3}, we need to find a real number x in R − {2}
such that f (x) = r. Since we wanted f (x) = 3x

x − 2
= r, it was required to solve

this equation for x. This can be done by rewriting this equation as 3x = r(x − 2) and
then simplifying it to obtain rx − 3x = 2r. Now, factoring x from rx − 3x and dividing
by r − 3, we have the desired choice of x, namely x = 2r/(r − 3). Incidentally, it was
perfectly permissible to divide by r − 3 since r ∈ R − {3} and so r �= 3. Notice also that
x ∈ R − {2} for if x = 2r/(r − 3) = 2, then 2r = 2r − 6, which is impossible. Although

solving
3x

x − 2
= r for x is not part of the proof, again it may be useful to include this

work in addition to the proof. �

Suppose that f is a function from A to B, that is, f : A → B. If f (x) = f (y) implies
that x = y for all x, y ∈ A, then f is one-to-one. It may seem obvious that if x = y, then
f (x) = f (y) for all x, y ∈ A since this is simply a requirement of a function. In order
for a relation f from a set A to a set B to be a function from A to B, the following two
conditions must be satisfied:

(1) For each element a ∈ A, there is an element b ∈ B such that (a, b) ∈ f .

(2) If (a, b), (a, c) ∈ f , then b = c.

Condition (1) states that the domain of f is A, that is, every element of A has an image
in B; while condition (2) says that if an element of A has an image in B, then this image
is unique.



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M11_CHART6753_04_SE_C10 PH03348-Chartrand August 5, 2017 18:57 Char Count= 0

262 Chapter 10 Functions

Occasionally, a function f that satisfies condition (2) is called well-defined. Since
(2) is a requirement of every function however, it follows that every function must be
well-defined. There are situations, though, when the definition of a function f may
make it unclear whether f is well-defined. The next result illustrates this with the set
Z4 of integers modulo 4. Recall that Z4 consists of the four classes (sets of integers)
[0], [1], [2], [3], where for r ∈ {0,1,2,3}, [r] = {3q + r : q ∈ Z}. Furthermore, if a,b ∈ [r]
for some r with 0 ≤ r ≤ 3, then [a] = [b] and a ≡ b (mod 4).

Result to Prove The function f : Z4 → Z4 defined by f ([x]) = [3x + 1] is a well-defined bijective
function.

PROOF STRATEGY To prove that this function is well-defined, we are required to prove that if [a] = [b],
then f ([a]) = f ([b]), that is, [3a + 1] = [3b + 1]. It seems reasonable to use a direct
proof, so we assume that [a] = [b]. Since [a] = [b], it follows that a ≡ b (mod 4). This
implies that 4 | (a − b) and so a − b = 4k for some integer k. To verify that [3a + 1] =
[3b + 1], we are required to show that 3a + 1 ≡ 3b + 1 (mod 4) or, equivalently, that
(3a + 1) − (3b + 1) = 3a − 3b = 3(a − b) is a multiple of 4.

Since Z4 consists only of the four elements [0], [1], [2], [3], to prove that f is bijec-
tive, we need only observe that the elements f ([0]), f ([1]), f ([2]), f ([3]) are distinct
by Theorem 10.8. �

Result 10.10 The function f : Z4 → Z4 defined by f ([x]) = [3x + 1] is a well-defined bijective
function.

Proof First, we verify that this function is well-defined; that is, if [a] = [b], then f ([a]) =
f ([b]). Assume then that [a] = [b]. Thus, a ≡ b (mod 4) and so 4 | (a − b). Hence,
a − b = 4k for some integer k. Therefore,

(3a + 1) − (3b + 1) = 3(a − b) = 3(4k) = 4(3k).

Since 3k is an integer, 4 | [(3a + 1) − (3b + 1)]. Thus, 3a + 1 ≡ 3b + 1 (mod 4) and
[3a + 1] = [3b + 1]; so f ([a]) = f ([b]). Hence, f is well-defined. Since f ([0]) = [1],
f ([1]) = [0], f ([2]) = [3] and f ([3]) = [2], it follows that f is both one-to-one and
onto, that is, f is bijective.

SECTION 10.3 EXERCISES

10.30. Prove that the function f : R → R defined by f (x) = 7x − 2 is bijective.

10.31. Let f : Z5 → Z5 be a function defined by f ([a]) = [2a + 3].

(a) Show that f is well-defined.
(b) Determine whether f bijective.

10.32. Prove that the function f : R − {2} → R − {5} defined by f (x) = 5x+1
x−2 is bijective.

10.33. Let A = [0, 1] denote the closed interval of real numbers between 0 and 1. Give an example of two
different bijective functions f1 and f2 from A to A, neither of which is the identity function.

10.34. Give a proof of Theorem 10.7 using mathematical induction.
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10.35. For two finite nonempty sets A and B, let R be a relation from A to B such that range(R) = B. Define the
domination number γ (R) of R as the smallest cardinality of a subset S ⊆ A such that for every element y
of B, there is an element x ∈ S such that x is related to y.

(a) Let A = {1, 2, 3, 4, 5, 6, 7} and B = {a, b, c, d, e, f , g} and let R = {(1, c), (1, e), (2, c), (2, f ), (2, g),
(3, b), (3, f ), (4, a), (4, c), (4, g), (5, a), (5, b), (5, c), (6, d), (6, e), (7, a), (7, g)}. Determine γ (R).

(b) If R is an equivalence relation defined on a finite nonempty set A (and so B = A), then what is γ (R)?
(c) If f is a bijective function from A to B, then what is γ ( f )?

10.36. Let A = {a, b, c, d, e, f } and B = {u, v, w, x, y, z}. Suppose, with each element r ∈ A, that there is
associated a list or subset L(r) ⊆ B. The goal is to define a “list function” φ : A → B with the property
that φ(r) ∈ L(r) for each r ∈ A.

(a) For L(a) = {w, x, y}, L(b) = {u, z}, L(c) = {u, v}, L(d) = {u, w}, L(e) = {u, x, y}, L( f ) = {v, y}, does
there exist a bijective list function φ : A → B for these lists?

(b) For L(a) = {u, v, x, y}, L(b) = {v, w, y}, L(c) = {v, y}, L(d) = {u, w, x, z}, L(e) = {v, w},
L( f ) = {w, y}, does there exist a bijective list function φ : A → B for these lists?

10.4 COMPOSITION OF FUNCTIONS

As it is common to define operations on certain sets of numbers (and on the elements of
the set Zn of integers modulo n, as we described in Chapter 9), it is possible to define
operations on certain sets of functions, under suitable circumstances. For example, for
functions f : R → R and g : R → R, you might recall from calculus that the sum f + g
and product f g of f and g are defined by

( f + g)(x) = f (x) + g(x) and ( f g)(x) = f (x) · g(x) (10.1)

for all x ∈ R. So if f is defined by f (x) = x2 and g is defined by g(x) = sin x, then
( f + g)(x) = x2 + sin x and ( f g)(x) = x2 sin x for all x ∈ R. In calculus we are espe-
cially interested in these operations because once we have learned how to determine the
derivatives of f and g, we want to know how to use this information to find the deriva-
tives of f + g and f g. The derivative of f g, for example, gives rise to the well-known
product rule for derivatives:

( f g)′(x) = f (x) · g′(x) + g(x) · f ′(x).

This later led us to study the quotient rule for derivatives.
The definitions in (10.1) of the sum f + g and product f g of the functions f : R → R

and g : R → R depend on the fact that the codomain of these two functions is R, whose
elements can be added and multiplied, and so f (x) + g(x) and f (x) · g(x) make sense. On
the other hand, if f : A → B and g : A → B, where B = {a, b, c}, say, then f (x) + g(x)
and f (x) · g(x) have no meaning.

There is an operation that can be defined on pairs of functions satisfying appropriate
conditions that has no connection with numbers. For nonempty sets A, B and C and
functions f : A → B and g : B → C, it is possible to create a new function from f and
g, called their composition. The composition g ◦ f of f and g is the function from A to
C defined by

(g ◦ f )(a) = g( f (a)) for all a ∈ A.
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To illustrate this definition, let A = {1, 2, 3, 4}, B = {a, b, c, d} andC = {r, s, t, u, v}
and define the functions f : A → B and g : B → C by

f = {(1, b), (2, d), (3, a), (4, a)},
g = {(a, u), (b, r), (c, r), (d, s)}.

We now have the correct arrangement of sets and functions to consider the composi-
tion g ◦ f . Since g ◦ f is a function from A to C, it follows that g ◦ f has the following
appearance:

g ◦ f = {(1, α), (2, β ), (3, γ ), (4, δ)},
where α, β, γ , δ ∈ C. It remains only to determine the image of each element of A. First,
we find the image of 1. According to the definition of g ◦ f ,

(g ◦ f )(1) = g( f (1)) = g(b) = r,

so (1, r) ∈ g ◦ f . Similarly, (g ◦ f )(2) = g( f (2)) = g(d) = s and so (2, s) ∈ g ◦ f . Con-
tinuing in this manner, we obtain

g ◦ f = {(1, r), (2, s), (3, u), (4, u)}.
A diagram that illustrates how g ◦ f is determined is shown in Figure 10.2. To find the
image of 1 under g ◦ f , we follow the arrow from 1 to b and then from b to r. The function
g ◦ f is basically found by removing the set B. The fact that g ◦ f is defined does not
necessarily imply that f ◦ g is also defined. Since g is a function from B to C and f is a
function from A to B, the only way that f ◦ g would be defined is if range(g) ⊆ A. In the
example we have just seen, f ◦ g is not defined since range(g) = {r, s, u} �⊆ A.
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Figure 10.2 The composition function g ◦ f

Composition of functions was also encountered in calculus. Let’s consider an ex-
ample of composition that you might have seen in calculus. Again, suppose that the
functions f : R → R and g : R → R are defined by f (x) = x2 and g(x) = sin x. In this
case, we can determine both g ◦ f and f ◦ g; namely,

(g ◦ f )(x) = g( f (x)) = g(x2) = sin
(
x2)

( f ◦ g)(x) = f (g(x)) = f (sin x) = (sin x)2 = sin2 x.
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Secondly, this example also serves to illustrate that even when g ◦ f and f ◦ g are both
defined, they need not be equal.

The study of composition of functions in calculus led us to the well-known chain
rule for differentiation:

(g ◦ f )′(x) = g′ ( f (x)) · f ′(x).

There are two facts concerning properties of composition of functions that will be
especially useful to us. First, if f and g are injective functions such that g ◦ f is defined,
then g ◦ f is injective. The corresponding statement is also true for surjective functions.

Result to Prove Let f : A → B and g : B → C be two functions.

(a) If f and g are injective, then so is g ◦ f .

(b) If f and g are surjective, then so is g ◦ f .

PROOF STRATEGY To verify (a), we use a direct proof and begin by assuming that f and g are one-to-one.
To show that g ◦ f is one-to-one, we prove that whenever (g ◦ f )(a1) = (g ◦ f )(a2), then
a1 = a2. However, (g ◦ f )(a1) = (g ◦ f )(a2) means that g( f (a1)) = g( f (a2)). But g is
one-to-one; so g(x) = g(y) implies that x = y. The form g(x) = g(y) is exactly what we
have, where x = f (a1) and y = f (a2). This leads us to f (a1) = f (a2). But we also know
that f is one-to-one.

To verify (b), we need to prove that if f and g are onto, then g ◦ f is onto. To show
that g ◦ f is onto, it is necessary to show that every element of C is an image of some
element of A under the function g ◦ f . So we begin with an element c ∈ C. Since g is
onto, there is an element b ∈ B such that g(b) = c. But f is onto; so there is an element
a ∈ A such that f (a) = b. This suggests considering (g ◦ f )(a). �

Theorem 10.11 Let f : A → B and g : B → C be two functions.

(a) If f and g are injective, then so is g ◦ f .

(b) If f and g are surjective, then so is g ◦ f .

Proof Let f : A → B and g : B → C be injective functions. Assume that (g ◦ f )(a1) =
(g ◦ f )(a2), where a1, a2 ∈ A. By definition, g( f (a1)) = g( f (a2)). Since g is injective, it
follows that f (a1) = f (a2). However, since f is injective, it follows that a1 = a2. This
implies that g ◦ f is injective.

Next, let f : A → B and g : B → C be surjective functions and let c ∈ C. Since g
is surjective, there exists b ∈ B such that g(b) = c. On the other hand, since f is surjec-
tive, it follows that there exists a ∈ A such that f (a) = b. Hence, (g ◦ f )(a) = g( f (a)) =
g(b) = c, implying that g ◦ f is also surjective.

Combining the two parts of Theorem 10.11 produces an immediate corollary.

Corollary 10.12 If f : A → B and g : B → C are bijective functions, then g ◦ f is bijective.

For nonempty sets A, B,C and D, let f : A → B, g : B → C and h : C → D be func-
tions. Then the compositions g ◦ f : A → C and h ◦ g : B → D are defined, as are the
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compositions h ◦ (g ◦ f ) : A → D and (h ◦ g) ◦ f : A → D. Composition of the func-
tions f , g and h is associative if the functions h ◦ (g ◦ f ) and (h ◦ g) ◦ f are equal. This
is, in fact, the case.

Theorem 10.13 For nonempty sets A, B,C and D, let f : A → B, g : B → C and h : C → D be
functions. Then (h ◦ g) ◦ f = h ◦ (g ◦ f ).

Proof Let a ∈ A and suppose that f (a) = b, g(b) = c and h(c) = d. Then

((h ◦ g) ◦ f )(a) = (h ◦ g)( f (a)) = (h ◦ g)(b) = h(g(b)) = h(c) = d;
while

(h ◦ (g ◦ f ))(a) = h((g ◦ f )(a)) = h(g( f (a))) = h(g(b)) = h(c) = d.

Thus, (h ◦ g) ◦ f = h ◦ (g ◦ f ).

As we have mentioned, it is common when considering the composition of functions
to begin with two functions f and g, where f : A → B and g : B → C and arrive at the
function g ◦ f : A → C. Strictly speaking, however, all that is needed is for the domain
of g to be a set B′ where range( f ) is a subset of B′. In other words, if f and g are functions
with f : A → B and g : B′ → C, where range( f ) ⊆ B′, then the composition g ◦ f :
A → C is defined.

Example 10.14 For the sets A = {−3,−2, . . . , 3} and B = {0, 1, . . . , 10}, B′ = {0, 1, 4, 5, 8, 9} and C =
{1, 2, . . . , 10}, let f : A → B and g : B′ → C be functions defined by f (n) = n2 for all
n ∈ A and g(n) = n + 1 for all n ∈ B′.

(a) Show that the composition g ◦ f : A → C is defined.

(b) For n ∈ A, determine (g ◦ f )(n).

Solution (a) Since range( f ) = {0, 1, 4, 9} and range f ⊆ B′, it follows that the
composition g ◦ f : A → C is defined.

(b) For n ∈ A, (g ◦ f )(n) = g( f (n)) = g(n2) = n2 + 1. �

SECTION 10.4 EXERCISES

10.37. Let A = {1, 2, 3, 4}, B = {a, b, c} and C = {w, x, y, z}. Consider the functions f : A → B and g : B → C,
where f = {(1, b), (2, c), (3, c), (4, a)} and g = {(a, x), (b, y), (c, x)}. Determine g ◦ f .

10.38. Two functions f : R → R and g : R → R are defined by f (x) = 3x2 + 1 and g(x) = 5x − 3 for all x ∈ R.
Determine (g ◦ f )(1) and ( f ◦ g)(1).

10.39. Two functions f : Z10 → Z10 and g : Z10 → Z10 are defined by f ([a]) = [3a] and g([a]) = [7a].

(a) Determine g ◦ f and f ◦ g.
(b) What can be concluded as a result of (a)?

10.40. Let A and B be nonempty sets. Prove that if f : A → B, then f ◦ iA = f and iB ◦ f = f .

10.41. Let A be a nonempty set and let f : A → A be a function. Prove that if f ◦ f = iA, then f is bijective.
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10.42. Prove or disprove the following:

(a) If two functions f : A → B and g : B → C are both bijective, then g ◦ f : A → C is bijective.
(b) Let f : A → B and g : B → C be two functions. If g is onto, then g ◦ f : A → C is onto.
(c) Let f : A → B and g : B → C be two functions. If g is one-to-one, then g ◦ f : A → C is one-to-one.
(d) There exist functions f : A → B and g : B → C such that f is not onto and g ◦ f : A → C is onto.
(e) There exist functions f : A → B and g : B → C such that f is not one-to-one and g ◦ f : A → C is

one-to-one.

10.43. For nonempty sets A, B and C, let f : A → B and g : B → C be functions.

(a) Prove:

If g ◦ f is one-to-one, then f is one-to-one.

using each of the following proof techniques: direct proof, proof by contrapositive, proof by
contradiction.

(b) Disprove: If g ◦ f is one-to-one, then g is one-to-one.

10.44. Let A denote the set of integers that are multiples of 4, let B denote the set of integers that are multiples of
8 and let B′ denote the set of even integers. Thus, A = {4k : k ∈ Z}, B = {8k : k ∈ Z} and
B′ = {2k : k ∈ Z}. Let f : A × A → B and g : B′ → Z be functions defined by f ((x, y)) = xy for x, y ∈ A
and g(n) = n/2 for n ∈ B′. For simplicity, we denote f ((x, y)) by f (x, y). So f (x, y) = xy.

(a) Show that the composition function g ◦ f : A × A → Z is defined.
(b) For k, � ∈ Z, determine (g ◦ f )(4k, 4�).

10.45. Let A be the set of even integers and B the set of odd integers. A function f : A × B → B × A is defined
by f (a, b) = (a + b, a) and a function g : B × A → B × B is defined by g(c, d) = (c + d, c).

(a) Determine (g ◦ f )(18, 11).
(b) Determine whether the function g ◦ f : A × B → B × B is one-to-one.
(c) Determine whether g ◦ f is onto.

10.46. Let A be the set of odd integers and B the set of even integers. A function f : A × B → A × A is defined
by f (a, b) = (3a − b, a + b) and a function g : A × A → B × A is defined by g(c, d) = (c − d, 2c + d).

(a) Determine (g ◦ f )(3, 8).
(b) Determine whether the function g ◦ f : A × B → B × A is one-to-one.
(c) Determine whether g ◦ f is onto.

10.47. For functions f , g and h with domain and codomain R, prove or disprove the following:

(a) (g + h) ◦ f = (g ◦ f ) + (h ◦ f ).
(b) f ◦ (g + h) = ( f ◦ g) + ( f ◦ h).

10.48. The composition g ◦ f : (0, 1) → R of two functions f and g is given by (g ◦ f )(x) = 4x−1
2
√

x−x2 , where
f : (0, 1) → (−1, 1) is defined by f (x) = 2x − 1 for x ∈ (0, 1). Determine the function g.

10.5 INVERSE FUNCTIONS

Associated with every bijective function is another bijective function. In order to describe
this second bijective function, we return to relations to recall a concept introduced in
Chapter 9. For a relation R from a set A to a set B, the inverse relation R−1 from B to A
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is defined as

R−1 = {(b, a) : (a, b) ∈ R}.
For example, if A = {a, b, c, d}, B = {1, 2, 3} and

R = {(a, 1), (a, 3), (c, 2), (c, 3), (d, 1)}
is a relation from A to B, then

R−1 = {(1, a), (3, a), (2, c), (3, c), (1, d)}
is the inverse relation of R. Of course, every function f : A → B is also a relation from A
to B and so there is an inverse relation f −1 from B to A. This brings up a natural question:
Under what conditions is the inverse relation f −1 from B to A also a function from B to A?
If the inverse relation f −1 is a function from B to A, then certainly dom( f −1) = B.
This means that f must be onto. If f is not one-to-one, then f (a1) = f (a2) = b for some
a1, a2 ∈ A and b ∈ B, where a1 �= a2. But then (b, a1), (b, a2) ∈ f −1, which cannot oc-
cur if f −1 is a function. Consequently, if f −1 is a function from B to A, then f must be
one-to-one. This leads us to the following theorem. In the proof, two basic facts are used
repeatedly, namely

(1) f (a) = b if and only if (a, b) ∈ f and

(2) if f −1 is a function and f (a) = b, then (b, a) ∈ f −1.

Theorem 10.15 Let f : A → B be a function. Then the inverse relation f −1 is a function from B to A if
and only if f is bijective. Furthermore, if f is bijective, then f −1 is also bijective.

Proof First, assume that f −1 is a function from B to A. We show that f is both one-to-one and
onto. Assume that f (a1) = f (a2) = y, where y ∈ B. Then (a1, y), (a2, y) ∈ f , implying
that (y, a1), (y, a2) ∈ f −1. Since f −1 is a function from B to A, every element of B has
a unique image under f −1. Thus, in particular, y has a unique image under f −1. Since
f −1(y) = a1 and f −1(y) = a2, it now follows that a1 = a2 and so f is one-to-one.

To show that f is onto, let b ∈ B. Since f −1 is a function from B to A, there exists a
unique element a ∈ A such that f −1(b) = a. Hence, (b, a) ∈ f −1, implying that (a,b) ∈ f ,
that is, f (a) = b. Therefore, f is onto and so f is bijective.

For the converse, assume that the function f : A → B is bijective. We show that
f −1 is a function from B to A. Let b ∈ B. Since f is onto, there exists a ∈ A such that
(a, b) ∈ f . Hence, (b, a) ∈ f −1. It remains to show that (b, a) is the unique element of
f −1 whose first coordinate is b. Assume that (b, a) and (b, a′) are both in f −1. Then
(a, b), (a′, b) ∈ f , which implies that f (a) = f (a′) = b. Since f is one-to-one, a = a′.
Therefore, we have shown that for every b ∈ B, there exists a unique element a ∈ A such
that (b, a) ∈ f −1, that is, f −1 is a function from B to A.

Finally, we show that if f is bijective, then f −1 is bijective. Assume that f is bijec-
tive. We have just seen that f −1 is a function from B to A. First, we show that f −1 is
one-to-one.

Assume that f −1(b1) = f −1(b2) = a. Then (b1, a), (b2, a) ∈ f −1 and so (a, b1),
(a, b2) ∈ f . Since f is a function, b1 = b2 and f −1 is one-to-one. To show that f −1 is
onto, let a ∈ A. Since f is a function, there is an element b ∈ B such that (a, b) ∈ f . Con-
sequently, (b, a) ∈ f −1 so that f −1(b) = a and f −1 is onto. Therefore, f −1 is bijective.
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According to Theorem 10.15, if f : A → B is a bijective function, then f −1 : B → A
is also a bijective function. The function f −1 is referred to as the inverse function or sim-
ply the inverse of f . Hence, both composition functions f −1 ◦ f and f ◦ f −1 are defined.
In fact, f −1 ◦ f is a function from A to A and f ◦ f −1 is a function from B to B. As we are
about to learn, f −1 ◦ f and f ◦ f −1 are functions we’ve visited earlier. Let a ∈ A and sup-
pose that f (a) = b. So, (a, b) ∈ f and therefore (b, a) ∈ f −1, that is, f −1(b) = a. Thus,(

f −1 ◦ f
)

(a) = f −1 ( f (a)) = f −1(b) = a and
(

f ◦ f −1
)

(b) = f
(

f −1(b)
) = f (a) = b.

So, it follows that

f −1 ◦ f = iA and f ◦ f −1 = iB

are the identity functions on the sets A and B, respectively (see Figure 10.3).
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Figure 10.3 A bijective function and its inverse

In fact, if f : A → B and g : B → A are functions for which g ◦ f = iA and f ◦ g = iB,
then f and g have some important properties.

Theorem 10.16 If f : A → B and g : B → A are two functions such that g ◦ f = iA and f ◦ g = iB, then
f and g are bijective and g = f −1.

Proof Let f : A → B and g : B → A be two functions such that g ◦ f = iA and f ◦ g = iB.
First, we show that f is one-to-one. Assume that f (a1) = f (a2), where a1, a2 ∈ A. Then
g( f (a1)) = g( f (a2)). Since g ◦ f = iA, it follows that

a1 = (g ◦ f )(a1) = g( f (a1)) = g( f (a2)) = (g ◦ f )(a2) = a2

and so f is one-to-one.
Next, we show that f is onto. Let b ∈ B and suppose that g(b) = a. Since f ◦ g = iB,

it follows that ( f ◦ g)(b) = b. Therefore, ( f ◦ g)(b) = f (g(b)) = f (a) = b and so f is
onto. Hence, f is bijective and, by Theorem 10.15, f −1 exists. Similarly, g is bijective.

It remains to show that g = f −1. Let b be an arbitrary element of B. We show
that g(b) = f −1(b). Since f is onto, there exists a ∈ A such that f (a) = b ∈ B. Then
f −1(b) = a. Since g ◦ f = iA, it follows that a = (g ◦ f )(a) = g( f (a)) = g(b). There-
fore, g(b) = f −1(b) and so g = f −1.

If a bijective function f has a relatively small number of ordered pairs, then it is easy
to find f −1. But what if f is a bijective function that one might encounter in calculus,
say? We illustrate this next with a function described in Result 10.9.
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Example 10.17 The function f : R − {2} → R − {3} defined by

f (x) = 3x
x − 2

is known to be bijective. Determine f −1(x), where x ∈ R − {3}.

Solution Since
(

f ◦ f −1
)

(x) = x for all x ∈ R − {3}, it follows that

(
f ◦ f −1) (x) = f

(
f −1(x)

) = 3 f −1(x)
f −1(x) − 2

= x.

Thus, 3 f −1(x) = x( f −1(x) − 2) and 3 f −1(x) = x f −1(x) − 2x. Collecting the terms in-
volving f −1(x) on the same side of the equation and then factoring out the term f −1(x),
we have

x f −1(x) − 3 f −1(x) = 2x;
so

f −1(x)(x − 3) = 2x.

Solving for f −1(x), we obtain

f −1(x) = 2x
x − 3

. �

Analysis You might very well have dealt with the problem of finding the inverse of a function
before and might recall a somewhat different approach than the one we just gave. Let’s
look at this example again, but from a different perspective.

When we consider functions from calculus, rather than writing f (x) = x2, g(x) =
5x + 1 or h(x) = x + 1

x
, we sometimes write these as y = x2, y = 5x + 1 or y = x + 1

x
.

In Example 10.17, we were given f (x) = 3x
x − 2

and found that f −1(x) = 2x
x − 3

. Let’s

write the inverse as y = 2x
x − 3

instead. That is, (x, y) ∈ f −1, where y = 2x
x − 3

. Of course,

initially, we don’t know what y is. But if (x, y) ∈ f −1, then (y, x) ∈ f and we know that

x = f (y) = 3y
y − 2

. Solving this equation for y, we have x(y − 2) = 3y, so xy − 2x = 3y.

Collecting the terms with y on the same side of the equation and factoring out the term
y, we obtain

xy − 3y = 2x and y(x − 3) = 2x.

Solving for y, we obtain y = 2x
x − 3

; that is,

f −1(x) = 2x
x − 3

.

In short, to find f −1 if f (x) = 3x
x − 2

, we replace f (x) by x and x by y and then solve for y.

The result is f −1(x). Of course, the procedure we have described for finding f −1(x)
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is exactly the same as before. The only difference is the notation. You might have also
noticed that the algebra performed to determine f −1(x) in Example 10.17 is exactly the
same as the algebra performed in proving f is onto in Result 10.9. �

The following two examples also deal with finding the inverses of bijective func-
tions. In the first example, we use the fact that every real number has a unique cube
root and in the second example, every nonnegative real number has a unique square root
(which is also nonnegative).

Example 10.18 Let f : R → R be defined by f (x) = x3 + 1
2

.

(a) Prove that f is bijective.

(b) Determine f −1(x).

(a) Proof First, we show that f is one-to-one. Assume that f (a) = f (b), where

a, b ∈ R. Then
a3 + 1

2
= b3 + 1

2
and so a3 = b3. Taking the cube roots of

both sides, we have a = b and so f is one-to-one.
Next, we show that f is onto. Let r ∈ R. We show that there exists x ∈ R
such that f (x) = r. Let x = 3

√
2r − 1 ∈ R. Then

f (x) = f
(

3
√

2r − 1
)

= ( 3
√

2r − 1)3 + 1
2

= (2r − 1) + 1
2

= r.

Hence, f is onto and, consequently, f is bijective.

(b) Solution Since
(

f ◦ f −1
)

(x) = x for all x ∈ R, it follows that

(
f ◦ f −1) (x) = f

(
f −1(x)

) = ( f −1(x))3 + 1
2

= x.

Thus, ( f −1(x))3 = 2x − 1 and so f −1(x) = 3
√

2x − 1. �

Example 10.19 Let f : [0, 1] → [0, 1] be defined by f (x) = √
1 − x2.

(a) Prove that f is bijective.

(b) Determine f −1(x).

(a) Proof First, we show that f is one-to-one. Assume that f (a) = f (b), where
a, b ∈ [0, 1]. Then

√
1 − a2 = √

1 − b2. Squaring both sides, we obtain
1 − a2 = 1 − b2 and so a2 = b2. Since a ≥ 0 and b ≥ 0, it follows that
a = b. Hence, f is one-to-one.
Next, we show that f is onto. Let r ∈ [0, 1]. We show that there exists
x ∈ [0, 1] such that f (x) = r. Let x = √

1 − r2 ∈ [0, 1]. Then

f (x) = f
(√

1 − r2
)

=
√

1 −
(√

1 − r2
)2

=
√

1 − (1 − r2) =
√

r2.

Since r ≥ 0, it follows that f (x) = r and so f is onto. Thus, f is bijective.
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(b) Solution Since
(

f ◦ f −1
)

(x) = x for all x ∈ [0, 1], it follows that
(

f ◦ f −1) (x) = f
(

f −1(x)
) =

√
1 − ( f −1(x))2 = x.

Hence, 1 − ( f −1(x))2 = x2 and so ( f −1(x))2 = 1 − x2. Since f −1(x) ∈ [0, 1],
it follows that f −1(x) = √

1 − x2. �

Finding the inverse of a bijective function is not always possible by algebraic manip-
ulation. For example, the function f : R → (0, ∞) defined by f (x) = ex is bijective but
f −1(x) = ln x. Indeed, the function g : R → R defined by g(x) = 3x7 + 5x3 + 4x − 1 is
bijective but there is no way to find an expression for g−1(x).

If f : A → B is a one-to-one function from A to B that is not onto, then, of course,
f is not bijective, and, according to Theorem 10.15, f does not have an inverse (from
B to A). On the other hand, if we define a new function g : A → range( f ) by g(x) = f (x)
for all x ∈ A, then g is a bijective function and so its inverse function g−1 : range( f ) → A
exists. For example, let E denote the set of all even integers and consider the function
f : Z → Z by f (n) = 2n. Then this function f is injective but not surjective and so there
is no inverse function of f from Z to Z. Observe that range( f ) = E. If we define g : Z → E
by g(n) = f (n) for all n ∈ Z, then g is bijective and g−1 : E → Z is a (bijective) function.
In fact, g−1(n) = n/2 for all n ∈ E.

There is a class of bijective functions in which we often have a specific interest. We
conclude this chapter with a brief discussion of these functions. We have already men-
tioned that the identity function iA defined on a nonempty set A is bijective. Normally,
there are many bijective functions that can be defined on nonempty sets. Indeed, the
number of bijections on an n-element set is n!, according to Theorem 10.7. These types
of functions occur often in mathematics, especially in the area of mathematics called
abstract (or modern) algebra.

A permutation of (or on) a nonempty set A is a bijective function on A, that is, a
function from A to A that is both one-to-one and onto. By Results 10.4 and 10.6, the
function f : R → R defined by f (x) = 3x − 5 is a permutation of R. Let’s consider an
even simpler example. For A = {1, 2, 3}, let f be a permutation of A. Then f is com-
pletely determined once we know the images of 1, 2 and 3 under f . We saw that there are
three possible choices for f (1), two choices for f (2) once f (1) has been specified, and
one choice for f (3) once f (1) and f (2) have been specified. From this, it follows that
there are 3 · 2 · 1 = 3! = 6 different permutations f of the set A = {1, 2, 3}. This agrees
with Theorem 10.7.

One of these functions is the identity function defined on {1, 2, 3}, which we denote
by α1; that is,

α1 = {(1, 1), (2, 2), (3, 3)}.
Another permutation of {1, 2, 3} is

α2 = {(1, 1), (2, 3), (3, 2)}.
There are other common ways to represent these permutations. A permutation of {1, 2, 3}
is also written as (

1 2 3
− − −

)
,
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where the numbers immediately below 1, 2 and 3 are their images. Hence, α1, α2 and
the other four permutations of {1, 2, 3} can be expressed as:

α1 =
(

1 2 3
1 2 3

)
α2 =

(
1 2 3
1 3 2

)
α3 =

(
1 2 3
3 2 1

)

α4 =
(

1 2 3
2 1 3

)
α5 =

(
1 2 3
2 3 1

)
α6 =

(
1 2 3
3 1 2

)
.

Since each permutation αi (1 ≤ i ≤ 6) is a bijective function from {1, 2, 3} to
{1, 2, 3}, it follows from Corollary 10.12 that the composition of any two permutations
of {1, 2, 3} is again a permutation of {1, 2, 3}. For example, let’s consider

α2 ◦ α5 =
(

1 2 3
1 3 2

)
◦

(
1 2 3
2 3 1

)
=

(
1 2 3
− − −

)
.

Since (α2 ◦ α5) (1) = α2(α5(1)) = α2(2) = 3, (α2 ◦ α5) (2) = 2 and (α2 ◦ α5) (3) = 1,
it follows that

α2 ◦ α5 =
(

1 2 3
1 3 2

)
◦

(
1 2 3
2 3 1

)
=

(
1 2 3
3 2 1

)
= α3.

By Theorem 10.13, it follows that composition of permutations on the same
nonempty set A is associative. Hence, for all integers i, j, k ∈ {1, 2, · · · , 6},

(αi ◦ α j ) ◦ αk = αi ◦ (α j ◦ αk ).

Also, by Theorem 10.15, since a permutation is a bijective function, each permuta-
tion has an inverse, which is also a permutation. Thus, for each i (1 ≤ i ≤ 6), α−1

i = α j

for some j (1 ≤ j ≤ 6). The inverse of a permutation can be found by interchanging the
two rows and then re-ordering the columns so that the top row is in the natural order
1, 2, 3, . . .. Thus,

α−1
5 =

(
2 3 1
1 2 3

)
=

(
1 2 3
3 1 2

)
= α6.

The set of all n! permutations of the set {1, 2, , · · · , n} is denoted by Sn. Thus,

S3 = {α1, α2, . . . , α6}.
As we have seen with S3, the elements of Sn satisfy the properties of closure, asso-

ciativity and the existence of inverses for every positive integer n. This will be revisited
in Chapter 15.

SECTION 10.5 EXERCISES

10.49. Let A = {a, b, c}. Give an example of a function f : A → A such that the inverse (relation) f −1 is not a
function.

10.50. Show that the function f : R → R defined by f (x) = 4x − 3 is bijective and determine f −1(x) for x ∈ R.

10.51. Show that the function f : R − {3} → R − {5} defined by f (x) = 5x
x−3 is bijective and determine f −1(x)

for x ∈ R − {5}.
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10.52. The functions f : R → R and g : R → R defined by f (x) = 2x + 1 and g(x) = 3x − 5 for x ∈ R are
bijective. Determine the inverse function of g ◦ f −1.

10.53. Let A and B be sets with |A| = |B| = 3. How many functions from A to B have inverse functions?

10.54. Let the functions f : R → R and g : R → R be defined by f (x) = 2x + 3 and g(x) = −3x + 5.

(a) Show that f is one-to-one and onto.
(b) Show that g is one-to-one and onto.
(c) Determine the composition function g ◦ f .
(d) Determine the inverse functions f −1 and g−1.
(e) Determine the inverse function (g ◦ f )−1 of g ◦ f and the composition f −1 ◦ g−1.

10.55. Let A = R − {1} and define f : A → A by f (x) = x
x − 1

for all x ∈ A.

(a) Prove that f is bijective.
(b) Determine f −1.
(c) Determine f ◦ f ◦ f .

10.56. Let A, B and C be nonempty sets and let f , g and h be functions such that f : A → B, g : B → C and
h : B → C. For each of the following, prove or disprove:

(a) If g ◦ f = h ◦ f , then g = h.
(b) If f is one-to-one and g ◦ f = h ◦ f , then g = h.

10.57. The function f : R → R is defined by

f (x) =
{

1
x−1 if x < 1√

x − 1 if x ≥ 1.

(a) Show that f is a bijection.
(b) Determine the inverse f −1 of f .

10.58. Suppose, for a function f : A → B, that there is a function g : B → A such that f ◦ g = iB. Prove that if g
is surjective, then g ◦ f = iA.

10.59. Let f : A → B, g : B → C and h : B → C be functions where f is a bijection. Prove that if g ◦ f = h ◦ f ,
then g = h.

10.60. Let α =
(

1 2 3 4 5
2 3 4 5 1

)
and β =

(
1 2 3 4 5
3 5 2 4 1

)
be permutations in S5. Determine α ◦ β and β−1.

10.61. Let α =
(

1 2 3 4 5 6
2 6 4 1 5 3

)
and β =

(
1 2 3 4 5 6
5 3 6 2 1 4

)
be elements of S6.

(a) Determine α−1 and β−1. (b) Determine α ◦ β and β ◦ α.

10.62. Prove for every integer n ≥ 3 that there exist α, β ∈ Sn for which α ◦ β �= β ◦ α.

The Chapter
Presentation for
Chapter 10 can be
found at
goo.gl/MrqVnH

Chapter 10 Supplemental Exercises

10.63. Let f : R → R be the function defined by f (x) = x2 + 3x + 4.

(a) Show that f is not injective.
(b) Find all pairs r1, r2 of real numbers such that f (r1) = f (r2).
(c) Show that f is not surjective.
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(d) Find the set S of all real numbers such that if s ∈ S, then there is no real number
x such that f (x) = s.

(e) What well-known set is the set S in (d) related to?

10.64. Let f : R → R be the function defined by f (x) = x2 + ax + b, where a, b ∈ R.
Show that f is not one-to-one. [Hint: It might be useful to consider the cases a �= 0
and a = 0 separately.]

10.65. In Result 10.4, we saw that the (linear) function f : R → R defined by
f (x) = 3x − 5 is one-to-one. In fact, we have seen other linear functions that are
one-to-one. Prove the following generalization of this result: The function
f : R → R defined by f (x) = ax + b, where a, b ∈ R and a �= 0, is one-to-one.

10.66. Evaluate the proposed proof of the following result.

Result The function f : R − {1} → R − {3} defined by f (x) = 3x
x − 1

is

bijective.

Proof First, we show that f is one-to-one. Assume that f (a) = f (b), where

a, b ∈ R − {1}. Then
3a

a − 1
= 3b

b − 1
. Crossmultiplying, we obtain

3a(b − 1) = 3b(a − 1). Simplifying, we have 3ab − 3a = 3ab − 3b. Subtracting
3ab from both sides and dividing by −3, we have a = b. Thus, f is one-to-one.

Next, we show that f is onto. Let f (x) = r. Then
3x

x − 1
= r; so 3x = r(x − 1).

Simplifying, we have 3x = rx − r and so 3x − rx = −r. Therefore, x(3 − r) = −r.

Since r ∈ R − {3}, we can divide by 3 − r and obtain x = −r
3 − r

= r
r − 3

.

Therefore,

f (x) = f
(

r
r − 3

)
= 3

(
r

r−3

)
r

r−3 − 1
= 3r

r − (r − 3)
= 3r

3
= r.

Thus, f is onto.

10.67. For each of the following functions, determine, with explanation, whether the
function is one-to-one and whether it is onto.

(a) f : R × R → R × R, where f (x, y) = (3x − 2, 5y + 7)
(b) g : Z × Z → Z × Z, where g(m, n) = (n + 6, 2 − m)
(c) h : Z × Z → Z × Z, where h(r, s) = (2r + 1, 4s + 3)
(d) φ : Z × Z → S = {a + b

√
2 : a, b ∈ Z}, where φ(a, b) = a + b

√
2

(e) α : R → R × R, where α(x) = (x2, 2x + 1).

10.68. Let S be a nonempty set. Show that there exists an injective function from P (S)
to P (P (S)).

10.69. Let A = {a, b, c, d, e}. Then f = {(a, c), (b, e), (c, d), (d, b), (e, a)} is a bijective
function from A to A.

(a) Show that it is possible to list the five elements of A in such a way that the
image of each of the first four elements on the list is to the immediate right of
the element and that the image of the last element on the list is the first element
on the list.

(b) Show that it is not possible to list elements of A as in (a) for every bijective
function from A to A.
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10.70. Let A = R − {0} and let f : A → A be defined by f (x) = 1 − 1
x for all x ∈ A.

(a) Show that f ◦ f ◦ f = iA. (b) Determine f −1.

10.71. Give an example of a finite nonempty set A and a bijective function f : A → A such
that (1) f �= iA, (2) f ◦ f �= iA and (3) f ◦ f ◦ f = iA.

10.72. For nonempty sets A and B and functions f : A → B and g : B → A, suppose that
g ◦ f = iA, the identity function on A.

(a) Prove that f is one-to-one and g is onto.
(b) Show that f need not be onto.
(c) Show that g need not be one-to-one.
(d) Prove that if f is onto, then g is one-to-one.
(e) Prove that if g is one-to-one, then f is onto.
(f) Combine the results in (d) and (e) into a single statement.

10.73. Let A = {1, 2}, B = {1,−1, 2,−2} and C = {1, 2, 3, 4}. Then f ={(1, 1), (1,−1),
(2, 2), (2,−2)} is a relation from A to B while g = {(1, 1), (−1, 1), (2, 4), (−2, 4)}
is a relation from B to C. Furthermore,

gf = {(x, z) : (x, y) ∈ f and (y, z) ∈ g for some y ∈ B}
is a relation from A to C. Observe that even though the relation f is not a function
from A to B, the relation gf is a function from A to C. Explain why.

10.74. A relation f on R is defined by f = {(x, y) : x ∈ R and y = x or y = −x} and a
function g : R → R is defined by g(x) = x2. Then

gf = {(x, z) : (x, y) ∈ f and (y, z) ∈ g for some y ∈ R}.
(a) Explain why f is not a function from R to R.
(b) Show that gf is a function from R to R and explicitly determine it.
(c) Even though the relation f is not a function from R to R, the relation gf is a

function from R to R. Explain why.

10.75. Let A = {1, 2}, B = {1, 2, 3, 4} and C = {1, 2, 3, 4, 5, 6}. Give an example of a
function f from A to B and a relation g from B to C that is not a function from B to C
such that

gf = {(x, z) : (x, y) ∈ f and (y, z) ∈ g for some y ∈ B}
is a function from A to C.

10.76. Let F be the set of all functions with domain and codomain R. Define a relation R
on F by f R g if there exists a constant C such that f (x) = g(x) + C for all x ∈ R.

(a) Show that R is an equivalence relation.
(b) Let f ∈ F . If the derivative of f is defined for all x ∈ R, then use this

information to describe the elements in the equivalence class [ f ].

10.77. Let S be the set of odd positive integers. A function F : N → S is defined by
F (n) = k for each n ∈ N, where k is that odd positive integer for which
3n + 1 = 2mk for some nonnegative integer m. Prove or disprove the following:
(a) F is one-to-one. (b) F is onto.

10.78. A function F : N → N ∪ {0} is defined by F (n) = m for each n ∈ N, where m is
that nonnegative integer for which 3n + 1 = 2mk and k is an odd integer. Prove or
disprove the following:

(a) F is one-to-one. (b) F is onto.
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10.79. Recall that the derivative of ln x is 1/x and that the derivative of xn is nxn−1 for every
integer n. In symbols, d

dx (ln x) = 1
x and d

dx (xn) = nxn−1. Let f : R+ → R be
defined by f (x) = ln x for every x ∈ R+. Prove that the nth derivative of f (x) is
given by f (n)(x) = (−1)n+1(n−1)!

xn for every positive integer n.

10.80. Let f : R → R be defined by f (x) = xe−x for every x ∈ R. Prove that the nth
derivative of f (x) is given by f (n)(x) = (−1)ne−x(x − n) for every positive integer n.

10.81. The function h : Z16 → Z24 is defined by h([a]) = [3a] for a ∈ Z.

(a) Prove that the function h is well-defined, that is, prove that if [a] = [b] in Z16,
then h([a]) = h([b]) in Z24.

(b) For the subsets A = {[0], [3], [6], [9], [12], [15]} and B = {[0], [8]} of Z16,
determine the subsets h(A) and h(B) of Z24.

(c) For the subsets C = {[0], [6], [16], [18]} and D = {[4], [8], [16]} of Z24,
determine h−1(C) and h−1(D).

10.82. Let f : R − {t} → R − {s} be defined by f (x) = sx
x − t

, where s, t �= 0.

(a) Prove that f is bijective.
(b) Determine f −1(x).

10.83. Let f : R → R be defined by f (x) = 3
√

1 − x3.

(a) Prove that f is bijective.
(b) Determine f −1(x).

10.84. Let U be some universal set and A a subset of U . A function gA : U → {0, 1} is
defined by

gA(x) =
{

1 if x ∈ A
0 if x /∈ A.

Verify each of the following.

(a) gU (x) = 1 for all x ∈ U .
(b) g∅(x) = 0 for all x ∈ U .
(c) For U = R and A = [0,∞), (gA ◦ gA)(x) = 1 for x ∈ R.
(d) For subsets A and B of U and C = A ∩ B, gC = (gA) · (gB), where

((gA) · (gB))(x) = gA(x) · gB(x).
(e) For A ⊆ U , gA(x) = 1 − gA(x) for each x ∈ U .

10.85. (a) Let S = {a, b, c, d} and let T be the set of all six 2-element subsets of S. Show
that there exists an injective function f : S → {0, 1, 2, . . . , |T |} such that the
function g : T → {1, 2, . . . , |T |} defined by g({i, j}) = | f (i) − f ( j)| is
bijective.

(b) Let S = {a, b, c, d, e} and let T be the set of all ten 2-element subsets of S.
Show that there exists no injective function f : S → {0, 1, 2, . . . , |T |} such that
the function g : T → {1, 2, . . . , |T |} defined by g({i, j}) = | f (i) − f ( j)| is
bijective.

(c) For the sets S and T in (b), show that there exists an injective function
f : S → {0, 1, 2, . . . , |T | + 2} such that the function
g : T → {1, 2, . . . , |T | + 2} defined by g({i, j}) = | f (i) − f ( j)| is injective.

(d) The results in (b) and (c) should suggest a question to you. Ask and answer
such a question.
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Many consider the Italian mathematician and scientist Galileo Galilei to be the
founder of modern physics. Among his major contributions was his mathemat-

ical view of the laws of motion. Early in the 17th century, Galileo applied mathematics
to study the motion of the earth. He was convinced that the earth revolved about the sun,
an opinion not shared by the Catholic Church at that time. This led him to be imprisoned
for the last nine years of his life.

Galileo’s two main scientific writings were Dialogue Concerning the Two Chief
World Systems and Discourses and Mathematical Demonstrations Concerning Two New
Sciences, the first published before he went to prison and the second published (in the
Netherlands) while he was in prison. In these two works, he would often discuss scientific
theories by means of a dialogue among fictional characters. It is in this manner that he
could state his positions on various theories.

One topic that intrigued Galileo was infinite sets. Galileo observed that there is a
one-to-one correspondence (that is, a bijective function) between the set N of positive
integers and the subset S of N consisting of the squares of positive integers. This led
Galileo to observe that even though there are many positive integers that are not squares,
there are as many squares as there are positive integers. This led Galileo to be faced
with a property of an infinite set that he found bothersome: There can be a one-to-one
correspondence between a set and a proper subset of the set. While Galileo concluded
correctly that the number of squares of positive integers is not less than the number of
positive integers, he could not bring himself to say that these sets have the same number
of elements.

Bernhard Bolzano was a Bohemian priest, philosopher and mathematician. Although
best known for his work in calculus during the first half of the 19th century, he too was in-
terested in infinite sets. His Paradoxes of the Infinite, published two years after his death
and unnoticed for twenty years, contained many ideas of the modern theory of sets. He
noted that one-to-one correspondences between an infinite set and a proper subset of
itself were common. Furthermore, Bolzano was comfortable with this fact, contrary to
Galileo’s feelings. The German mathematician Richard Dedekind studied under the bril-
liant Carl Friedrich Gauss. Dedekind had a long and productive career in mathematics
and made many contributions to the study of irrational numbers. What had confused
Galileo and interested Bolzano gave rise to a definition of an infinite set by Dedekind
during the last part of the 19th century: A set S is infinite if it contains a proper subset that278
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can be put in one-to-one correspondence with S. Certainly, then, understanding infinite
sets was not an easy task, even among well-known mathematicians of the past.

We mentioned in Chapter 1 that the cardinality |S| of a set S is the number of ele-
ments in S and, for the present, we would use the notation |S| only when S is a finite set.
A set S is finite if either S = ∅ or |S| = n for some n ∈ N; while a set is infinite if it is
not finite. It may seem that we should write |S| = ∞ if S is infinite but we will soon see
that this is not particularly informative. Indeed, it is considerably more difficult to give a
meaning to |S| if S is an infinite set; however, it is precisely this topic that we are about
to explore.

11.1 NUMERICALLY EQUIVALENT SETS

It is rather obvious that the sets A = {a, b, c} and B = {x, y, z} have the same cardinality
since each has exactly three elements. That is, if we count the number of elements in
two sets and arrive at the same value, then these two sets have the same cardinality.
There is, however, another way to see that the sets A and B described above have the
same cardinality without counting the elements in each set. Observe that we can pair
off the elements of A and B, say as (a, x), (b, y) and (c, z). This implies that A and B
have the same number of elements, that is, |A| = |B|. What we have actually done is
describe a bijective function f : A → B, namely f = {(a, x), (b, y), (c, z)}. Although it
is much easier to see that |A| = |B| by observing that each set has three elements than
by constructing a bijective function from A to B, it is this latter method of showing that
|A| = |B| that can be generalized to the situation where A and B are infinite sets.

Two sets A and B (finite or infinite) are said to have the same cardinality, written
|A| = |B|, if either A and B are both empty or there is a bijective function from A to B.
Two sets having the same cardinality are also referred to as numerically equivalent sets.
Two finite sets are therefore numerically equivalent if they are both empty or if both have
n elements for some positive integer n. Consequently, two nonempty sets A and B are
not numerically equivalent, written |A| �= |B|, if there is no bijective function from one
set to the other. The study of numerically equivalent infinite sets is more challenging but
considerably more interesting than the study of numerically equivalent finite sets.

The justification for the term “numerically equivalent sets” lies in the following
theorem, which combines the major concepts of Chapters 9 and 10.

Theorem 11.1 Let S be a nonempty collection of nonempty sets. A relation R is defined on S by A R B
if there exists a bijective function from A to B. Then R is an equivalence relation.

Proof Let A ∈ S. Since the identity function iA : A → A is bijective, it follows that A R A. Thus,
R is reflexive. Next, assume that A R B, where A, B ∈ S. Then there is a bijective function
f : A → B. By Theorem 10.15, f has an inverse function f −1 : B → A and, furthermore,
f −1 is bijective. Therefore, B R A and R is symmetric.

Finally, assume that A R B and B R C, where A, B,C ∈ S. Then there are bijective
functions f : A → B and g : B → C. It follows by Corollary 10.12 that the composition
g ◦ f : A → C is bijective as well and so A R C. Therefore, R is transitive. Consequently,
R is an equivalence relation.
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According to the equivalence relation defined in Theorem 11.1, if A is a nonempty
set, then the equivalence class [A] consists of all those elements of S having the same
cardinality as A; hence, the term “numerically equivalent sets” is natural for two sets
having the same cardinality.

Example 11.2 Let S = {A1, A2, A3, A4, A5, A6} where

A1 = {1, 2, 3}, A2 = {a, b, c, d}, A3 = {x, y, z},
A4 = {r, s, t}, A5 = {m, n}, A6 = {7, 8, 9, 10}.

Then every two of the sets A1, A3 and A4 are numerically equivalent, while A2 and A6

are numerically equivalent. This says that |A1| = |A3| = |A4| and |A2| = |A6|. The only
set in S that is numerically equivalent to A5 is A5 itself. Thus,

[A1] = {A1, A3, A4}, [A2] = {A2, A6} and [A5] = {A5}
are the distinct equivalence classes of S. �

While Example 11.2 deals only with finite sets, it is infinite sets in which we will be
primarily interested in this chapter. In particular, we will have a special interest in sets
that are numerically equivalent to N or to R.

SECTION 11.1 EXERCISES

11.1. Let S = {A1, A2, A3, A4, A5} be a collection of five subsets of the set A = {−5,−4, . . . , 5}, where
A1 = {x ∈ A : 1 < x2 < 10}
A2 = {x ∈ A : (x + 2)(x − 4) > 0}
A3 = {x ∈ A : |x + 2| + |x − 3| ≤ 5}
A4 = {x ∈ A : 1

x2+1 > 2
5 }

A5 = {x ∈ A : sin πx
4 = 0}.

A relation R is defined on S by Ai R Aj (1 ≤ i, j ≤ 5) if Ai and Aj are numerically equivalent. According to
Theorem 11.1, R is an equivalence relation. Determine the distinct equivalence classes for this equivalence
relation.

11.2. (a) Let S be a collection of n ≥ 2 numerically equivalent sets. Prove that these sets can be shown to be
numerically equivalent by means of n − 1 bijective functions between pairs of sets in S.

(b) What other question is suggested by the problem in (a)?

11.2 DENUMERABLE SETS

In order to start gaining an understanding of the cardinality of an infinite set, we begin
with a particular class of infinite sets. A set A is called denumerable if |A| = |N|, that
is, if A has the same cardinality as the set of natural numbers. Certainly, if A is denu-
merable, then A is infinite. By definition, if A is a denumerable set, then there is a bijec-
tive function f : N → A and so f = {(1, f (1)), (2, f (2)), (3, f (3)), . . .}. Consequently,
A = { f (1), f (2), f (3), . . .}, that is, we can list the elements of A as f (1), f (2), f (3), . . ..
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Equivalently, we can list the elements of A as a1, a2, a3, . . ., where then ai = f (i) for
i ∈ N. Conversely, if the elements of A can be listed as a1, a2, a3, . . . , where ai �= a j for
i �= j, then A is denumerable since the function g : N → A defined by g(n) = an for each
n ∈ N is certainly bijective. Therefore, A is a denumerable set if and only if it is possible
to list the elements of A as a1, a2, a3, . . . and so A = {a1, a2, a3, . . .}.

A set is countable if it is either finite or denumerable. Countably infinite sets are
then precisely the denumerable sets. Hence, if A is a nonempty countable set, then we
can either write A = {a1, a2, a3, . . . , an} for some n ∈ N or A = {a1, a2, a3, . . .}. A set
that is not countable is called uncountable. An uncountable set is necessarily infinite.
It may not be clear whether any set is uncountable but we will soon see that such sets do
exist.

Let’s look at a few examples of denumerable sets. Certainly, N itself is denumer-
able since the identity function iN : N → N is bijective. However, not only is the set of
positive integers denumerable, the set of all integers is denumerable. The proof of this
fact that we give illustrates a common technique for showing that a set is denumerable,
namely, if we can list the elements of a set A as a1, a2, a3, . . . such that every element of
A appears exactly once in the list, then A is denumerable.

Result 11.3 The set Z of integers is denumerable.

Proof Observe that the elements of Z can be listed as 0, 1,−1, 2,−2, . . . . Thus, the function
f : N → Z described in Figure 11.1 is bijective and so Z is denumerable.

1 2 3 4 5 · · ·
f : ↓ ↓ ↓ ↓ ↓ ↓

0 1 −1 2 −2 · · ·

Figure 11.1 A bijective function f : N → Z

The function f : N → Z given in Figure 11.1 can also be defined by

f (n) = 1 + (−1)n(2n − 1)
4

. (11.1)

Although we have already observed that this function f is bijective, Exercise 11.8 asks
for a formal proof of this fact.

The fact that Z is denumerable illustrates what Galileo had observed centuries ago:
It is possible for two sets to have the same cardinality where one is a proper subset of
the other. (Such a situation could never occur with finite sets, however.) For example,
N ⊂ Z and |N| = |Z|. This fact serves as an illustration of a result, the proof of which
is a bit intricate.

Theorem to
Prove

Every infinite subset of a denumerable set is denumerable.

PROOF STRATEGY In the proof, we begin with two sets, which we’ll call A and B, where A is denumerable,
B ⊆ A and B is infinite. Because A is denumerable, we can write A = {a1, a2, a3, . . .}.
Since our goal is to show that B is denumerable, we need to show that we can write
B = {b1, b2, b3, . . .}. The question, of course, is how to do it.
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Because B is an infinite subset of A, some of the elements of A belong to B (in fact,
infinitely many elements of A belong to B); while, most likely, some elements of A do
not belong to B. We can keep track of the elements of A that belong to B by means
of a set of positive integers, which we’ll denote by S. If a1 ∈ B, then 1 ∈ S; if a1 /∈ B,
then 1 /∈ S. In general, n ∈ S if and only if an ∈ B. Certainly, S ⊆ N. Since N is a
well-ordered set (by the Well-Ordering Principle), S contains a smallest element, say s.
That is, as ∈ B. Furthermore, if r is an integer such that 1 ≤ r < s, then ar /∈ B. It is
the element as that we will call b1. It is now logical to look at the (infinite) set S − {s}
and consider its smallest element, say t. Thus, t > s. The element at will become b2.
And so on.

Since we want to give a precise and careful proof, we are already faced with two
problems. First, denoting the smallest element of S by s and denoting the smallest ele-
ment of S − {s} by t will present difficulties to us. We need to use better notation. So,
let us denote the smallest element of S by i1 (so b1 = ai1 ) and the smallest element of
S − {i1} by i2 (so b2 = ai2 ). This is much better notation. The other problem we have
is when we wrote “And so on.” Once we have the positive integers i1 and i2, it will
follow that the positive integer i3 is the least element of S − {i1, i2}. In general, once
we have determined the positive integers i1, i2, . . . , ik, where k ∈ N, the positive integer
ik+1 is the smallest element of S − {i1, i2, . . . , ik}. In fact, this suggests that the elements
b1, b2, b3, . . . can be located in A using induction.

After using induction to construct the set {b1, b2, b3, . . .}, which we will denote by
B′, say, then we still have one more concern. Are we certain that B′ = B? Because each
element of B′ belongs to B, we know that B′ ⊆ B. To show that B′ = B, we must also
be sure that B ⊆ B′. As we know, the standard way to show that B ⊆ B′ is to take an
arbitrary element b ∈ B and show that b ∈ B′.

Let’s now write a complete proof. �

Theorem 11.4 Every infinite subset of a denumerable set is denumerable.

Proof Let A be a denumerable set and let B be an infinite subset of A. Since A is denumerable,
we can write A = {a1, a2, a3, . . .}. Let S = {i ∈ N : ai ∈ B}; that is, S consists of all
those positive integers that are subscripts of the elements in A that also belong to B. Since
B is infinite, S is infinite. First, we use induction to show that B contains a denumerable
subset. Since S is a nonempty subset of N, it follows from the Well-Ordering Principle
that S has a least element, say i1. Let b1 = ai1 . Let S1 = S − {i1}. Since S1 �= ∅ (indeed,
S1 is infinite), S1 has a least element, say i2. Let b2 = ai2 , which, of course, is distinct
from b1. Assume that for an arbitrary integer k ≥ 2, the (distinct) elements b1, b2, . . . , bk

have been defined by b j = ai j for each integer j with 1 ≤ j ≤ k, where i1 is the smallest
element in S and i j is the minimum element in S j−1 = S − {i1, i2, . . . , i j−1} for 2 ≤ j ≤ k.
Now let ik+1 be the minimum element of Sk = S − {i1, i2, . . . , ik} and let bk+1 = aik+1 .
Hence, it follows that for each integer n ≥ 2, an element bn belongs to B that is distinct
from b1, b2, . . . , bn−1. Thus, we have exhibited the elements b1, b2, b3, . . . in B.

Let B′ = {b1, b2, b3, . . .}. Certainly B′ ⊆ B. We claim, in fact, that B = B′. It re-
mains only to show that B ⊆ B′. Let b ∈ B. Since B ⊆ A, it follows that b = an for some
n ∈ N and so n ∈ S. If n = i1, then b = b1 = an and so b ∈ B′. Thus, we may assume
that n > i1. Let S′ consist of those positive integers less than n that belong to S. Since
n > i1 and i1 ∈ S, it follows that S′ �= ∅. Certainly, 1 ≤ |S′| ≤ n − 1; so S′ is finite. Thus,
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|S′| = m for some m ∈ N. The set S′ therefore consists of the m smallest integers of S,
that is, S′ = {i1, i2, . . . , im}. The smallest integer that belongs to S and is greater than im
must be im+1, of course, and im+1 ≥ n. But n ∈ S, so n = im+1 and b = an = aim+1 ∈ B′.
Hence, B = B′ = {b1, b2, b3, . . .}, which is denumerable.

In order to use Theorem 11.4 to describe other denumerable sets, it is convenient to
introduce some additional notation. Let k ∈ N. Then the set kZ is defined by

kZ = {kn : n ∈ Z}.
Similarly,

kN = {kn : n ∈ N}.
Thus, 1Z = Z and 1N = N, while 2Z is the set of even integers. An immediate conse-
quence of Theorem 11.4 is stated next.

Result 11.5 The set 2Z of even integers is denumerable.

Proof Since 2Z is infinite and 2Z ⊆ Z, it follows by Theorem 11.4 that 2Z is denumerable.

Of course, kZ is denumerable for every nonzero integer k. We now describe a de-
numerable set that can be obtained from two given denumerable sets. Recall, for sets A
and B, that the Cartesian product A × B = {(a, b) : a ∈ A, b ∈ B}.

Result 11.6 If A and B are denumerable sets, then A × B is denumerable.

Proof Since A and B are denumerable sets, we can write A = {a1, a2, a3, . . .} and B =
{b1, b2, b3, . . .}. Consider the table shown in Figure 11.2(a), which has an infinite (de-
numerable) number of rows and columns, where the elements a1, a2, a3, . . . are written
along the side and b1, b2, b3, . . . are written across the top. In row i, column j of the
table, we place the ordered pair (ai, b j ). Certainly, every element of A × B appears ex-
actly once in this table. This table is reproduced in Figure 11.2(b), where the directed

(a3, b1)

(a2, b1)

(a1, b1)a1

a2

(a3, b2)

(a2, b3)

(a1, b3)
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a3

(b)(a)

b3b2b1 b3b2b1
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)
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)

(a1, b3)

(

((

a2, b1)a2

(a1, b1)a1

�

�

�

�

�

�

�

�

�

�

�

�

3

�

�

�

�

�

�

�

�

�

�

�

�

�� �

�� �

�� �

� ��

�� �

�� �

�� �

� ��

Figure 11.2 Constructing a bijective function f : N → A × B
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lines indicate the order in which we will encounter the entries in the table. That is, we
encounter the elements of A × B in the order

(a1, b1), (a1, b2), (a2, b1), (a1, b3), (a2, b2), . . . .

Since every element of A × B occurs in this list exactly once, this describes a bijec-
tive function f : N → A × B, where

f (1) = (a1, b1), f (2) = (a1, b2), f (3) = (a2, b1), f (4) = (a1, b3), f (5) = (a2, b2), . . ..

Therefore, A × B is denumerable.

We can use a technique similar to that used in proving Result 11.6 to show that
another familiar set is denumerable.

Result 11.7 The set Q+ of positive rational numbers is denumerable.

Proof Consider the table shown in Figure 11.3(a). In row i, column j, we place the rational
number j/i. Certainly, then, every positive rational number appears in the table of Fig-
ure 11.2(a); indeed, it appears infinitely often. For example, the number 1/2 appears in
row 2, column 1, as well as in row 4, column 2.
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Figure 11.3 A table used to show that Q+ is denumerable

The table of Figure 11.3(a) is reproduced in Figure 11.3(b), where the arrows indi-
cate the order in which we will consider the entries in the table. That is, we now consider
the positive rational numbers in the order

1
1 , 2

1 , 1
2 , 3

1 , 2
2 , 1

3 , 4
1 , . . . .

With the aid of this list, we can describe a bijective function f : N → Q+. In partic-
ular, we define f (1) = 1/1 = 1, f (2) = 2/1 = 2, f (3) = 1/2 and f (4) = 3/1 = 3 as
expected. However, since 2/2 = 1 and we have already defined f (1) = 1, we do not
define f (5) = 1 (since f must be one-to-one). We bypass 2/2 = 1 and, following the
arrows, go directly to the next number on the list, namely 1/3. In fact, whenever we
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encounter a number on the list that we have previously seen, we move to the next num-
ber on the list. In this manner, the function f being described will be one-to-one. The
function f is shown in Figure 11.4.

1 2 3 4 5 · · ·
f : ↓ ↓ ↓ ↓ ↓ ↓

1 2 1
2 3 1

3 · · ·

Figure 11.4 A bijective function f : N → Q+

Because every element of Q+ is eventually encountered, f is onto as well and so f
is bijective. Consequently, Q+ is denumerable.

The function f described in Figure 11.4 is by no means unique. There are many
ways to traverse the positive rational numbers in the table described in Figure 11.3(a).
The tables shown in Figure 11.5 indicate two additional methods.
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Figure 11.5 Traversing the positive rational numbers

Some care must be taken when proceeding about the entries in the table of Figure 11.3(a).
For example, traversing the positive rational numbers by rows (see Figure 11.6) just
won’t do. Since the first row never ends, we will only encounter the positive integers.

The set Q+ can also be shown to be denumerable with the aid of the table in
Figure 11.7. In the first row, all positive rational numbers j/i with i = 1 are shown.
In the second row, all positive rational numbers j/i with i = 2 and such that j/i has been
reduced to lowest terms are shown. This results in the rational number (2 j − 1)/2 in row 2,
column j. We continue in this manner with all other rows. In this way, every positive
rational number appears exactly once in the table. Thus, when we proceed through the
entries as the arrows indicate, we obtain the positive rational numbers in the order

1
1 , 2

1 , 1
2 , 3

1 , 3
2 , 1

3 , 4
1 , . . .

and the corresponding bijective function g : N → Q+. Therefore, g(1) = 1, g(2) = 2,
g(3) = 1/2, g(4) = 3, g(5) = 3/2 and so on.
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Figure 11.6 How not to traverse the positive rational numbers
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Figure 11.7 Another bijective function g : N → Q+

Now that we have shown that Q+ is denumerable, it is not difficult to show that the
set Q of all rational numbers is denumerable.

Result 11.8 The set Q of all rational numbers is denumerable.

Proof Since Q+ is denumerable, we can write Q+ = {q1, q2, q3, . . .}. Thus, Q = {0} ∪ {q1, q2,

q3, . . .} ∪ {−q1,−q2,−q3, . . .}. Therefore, Q = {0, q1,−q1, q2,−q2, . . .} and the func-
tion f : N → Q shown in Figure 11.8 is bijective and so Q is denumerable.
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1 2 3 4 5 · · ·
f : ↓ ↓ ↓ ↓ ↓ ↓

0 q1 −q1 q2 −q2 · · ·

Figure 11.8 A bijective function f : N → Q

SECTION 11.2 EXERCISES

11.3. Prove that if A and B are disjoint denumerable sets, then A ∪ B is denumerable.

11.4. Let R+ denote the set of positive real numbers and let A and B be denumerable subsets of R+. Define
C = {x ∈ R : −x ∈ B}. Show that A ∪ C is denumerable.

11.5. Prove that |Z| = |Z − {2}|.
11.6. (a) Prove that the function f : R − {1} → R − {2} defined by f (x) = 2x

x−1 is bijective.
(b) Explain why |R − {1}| = |R − {2}|.

11.7. Let

S =
{

x ∈ R : x = n2 + √
2

n
, n ∈ N

}
.

Define f : N → S by f (n) = n2+√
2

n .

(a) List three elements that belong to S.
(b) Show that f is one-to-one.
(c) Show that f is onto.
(d) Is S denumerable? Explain.

11.8. Prove that the function f : N → Z defined in (11.1) by f (n) = 1+(−1)n (2n−1)
4 is bijective.

11.9. Show that every denumerable set A can be partitioned into two denumerable subsets of A.

11.10. Let A be a denumerable set and let B = {x, y}. Prove that A × B is denumerable.

11.11. Let B be a denumerable set and let A be a nonempty set of unspecified cardinality. If f : A → B is a
one-to-one function, then what can be said about the cardinality of A? Explain.

11.12. Prove that the set of all 2-element subsets of N is denumerable.

11.13. A Gaussian integer is a complex number of the form a + bi, where a, b ∈ Z and i = √−1. Show that the
set G of Gaussian integers is denumerable.

11.14. Prove that S = {(a, b) : a, b ∈ N and b ≥ 2a} is denumerable.

11.15. Let S ⊆ N × N be defined by S = {(i, j) : i ≤ j}. Show that S is denumerable.

11.16. Let A1, A2, A3, . . . be pairwise disjoint denumerable sets. Prove that ∪∞
i=1Ai is denumerable.

11.17. Let A = {a1, a2, a3, . . .}. Define B = A − {an2 : n ∈ N}. Prove that |A| = |B|.
11.18. A function f : N × N → N is defined by f (m, n) = 2m−1(2n − 1).

(a) Prove that f is one-to-one and onto.
(b) Show that N × N is denumerable.

11.19. Prove that every denumerable set A can be partitioned into a denumerable number of denumerable subsets
of A.
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11.3 UNCOUNTABLE SETS

Although we have now given several examples of denumerable sets (and consequently
countably infinite sets), we have yet to give an example of an uncountable set. We will
do this next. First though, let’s review a few facts about decimal expansions of real num-
bers. Every irrational number has a unique decimal expansion and this expansion is non-
repeating, while every rational number has a repeating decimal expansion. For example,
3

11 = 0.272727 · · ·. Some rational numbers, however, have two (repeating) decimal ex-
pansions. For example, 1

2 = 0.5000 · · · and 1
2 = 0.4999 · · ·. (The number 3

11 has only one
decimal expansion.) In particular, a rational number a/b, where a, b ∈ N, that is reduced
to lowest terms has two decimal expansions if and only if the only primes that divide b
are 2 or 5. If a rational number has two decimal expansions, then one of the expansions
repeats the digit 0 from some point on (that is, the decimal expansion terminates), while
the alternate expansion repeats the digit 9 from some point on.

We are now prepared to give an example of an uncountable set. Recall that for real
numbers a and b with a < b, the open interval (a, b) is defined by

(a, b) = {x ∈ R : a < x < b}.
Although, as it will turn out, all open intervals (a, b) of real numbers are uncountable,
we will prove now only that (0, 1) is uncountable.

Theorem to
Prove

The open interval (0, 1) of real numbers is uncountable.

PROOF STRATEGY Since uncountable means not countable, it is not surprising that we should try a proof
by contradiction here. So the proof would begin by assuming that (0, 1) is countable.
Since (0, 1) is an infinite set, this means that we are assuming that (0, 1) is denumerable,
which implies that there must exist a bijective function f : N → (0, 1). Therefore, for
each n ∈ N, f (n) is a number in the set (0, 1). It might be convenient to introduce some
notation for the number f (n), say f (n) = an, where then 0 < an < 1. Since f is assumed
to be one-to-one, it follows that ai �= a j for distinct positive integers i and j. Each number
an has a decimal expansion, say an = 0.an1an2an3 · · ·, where an1 is the first digit in the
expansion, an2 is the second digit in the expansion and so on. We have to be a bit careful
here, however, for, as we have seen, some real numbers have two decimal expansions.
To avoid possible confusion, we can choose the decimal expansion that repeats the digit 0
from some point on. That is, no real number an has a decimal expansion that repeats 9
from some point on.

But where does this lead to a contradiction? From what we have said, (0, 1) =
{a1, a2, a3, . . .}. If we can think of some real number b ∈ (0, 1) such that b /∈ {a1, a2,

a3, . . .}, then this would give us a contradiction because this would say that f is not onto.
So, we need to find a number b ∈ (0,1) such that b �= an for each n ∈ N. Since b ∈ (0,1), the
number b has a decimal expansion, say b = 0.b1b2b3 · · ·. How can we choose the digits
b1, b2, b3, . . . so that b �= an for every n ∈ N? We could choose b1 �= a11, b2 �= a22, etc.
But would this mean that b �= a1, b �= a2, etc? Care must be taken here as well. For exam-
ple, 0.500 · · · and 0.499 · · · are two equal numbers whose first digits in their expansions
are not equal. Of course, the reason for this is that one is the alternate decimal expansion
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of the other. Thus, provided we can avoid selecting a decimal expansion for b that is the
alternate decimal expansion for some number an, where n ∈ N, we will have found a
number b ∈ (1, 0) such that b /∈ {a1, a2, a3, . . .}. This will give us a contradiction. �

Theorem 11.9 The open interval (0, 1) of real numbers is uncountable.

Proof Assume, to the contrary, that (0, 1) is countable. Since (0, 1) is infinite, it is denumerable.
Therefore, there exists a bijective function f : N → (0, 1). For n ∈ N, let f (n) = an.
Since an ∈ (0, 1), the number an has a decimal expansion, say 0.an1an2an3 · · ·, where
ani ∈ {0, 1, 2, . . . , 9} for all i ∈ N. If an is irrational, then its decimal expansion is unique.
If an ∈ Q, then the expansion may be unique. If it is not unique, then, without loss of
generality, we assume that the digits of the decimal expansion 0.an1an2an3 · · · are 0 from
some position on. For example, since f is bijective, 2/5 is the image of exactly one
positive integer and this image is written as 0.4000 · · · (rather than as 0.3999 · · ·). To
summarize, we have

f (1) = a1 = 0.a11a12a13 · · ·
f (2) = a2 = 0.a21a22a23 · · ·
f (3) = a3 = 0.a31a32a33 · · ·
...

...
...

We show that the function f is not onto, however. Define the number b =
0.b1b2b3 · · ·, where bi ∈ {4, 5} for all i ∈ N, by

bi =
{

4 if aii = 5
5 if aii �= 5.

(For example, let’s suppose that a1 = 0.31717 · · · , a2 = 0.151515 · · · and a3 =
0.04000 · · ·. Then the first three digits in the decimal expansion of b are 5, 4 and 5,
that is, b = 0.545 · · ·.)

For each i ∈ N, the digit bi �= aii, implying that b �= an for all n ∈ N since b is not
the alternate expansion of any rational number, as no digit in the expansion of b is 9.
Thus, b is not an image of any element of N. Therefore, f is not onto and, consequently,
not bijective, producing a contradiction.

In the proof of Theorem 11.9, each digit in the decimal expansion of the number b
constructed is 4 or 5. We could have selected any two distinct digits that did not use 9.
It is now easy to give examples of other uncountable sets with the aid of the following
result.

Theorem 11.10 Let A and B be sets such that A ⊆ B. If A is uncountable, then B is uncountable.

Proof Let A and B be two sets such that A ⊆ B and A is uncountable. Necessarily then A and B
are infinite. Assume, to the contrary, that B is denumerable. Since A is an infinite subset
of a denumerable set, it follows by Theorem 11.4 that A is denumerable, producing a
contradiction.

Corollary 11.11 The set R of real numbers is uncountable.
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Proof Since (0, 1) is uncountable by Theorem 11.9 and (0, 1) ⊆ R, it follows by Theorem 11.10
that R is uncountable.

Let’s pause for a moment to review a few facts that we’ve discovered about infi-
nite sets (at least about certain infinite sets). First, recall that two nonempty sets A and
B are defined to have the same cardinality (same number of elements) if there exists a
bijective function from A to B. We’re especially interested in the situation when A and B
are infinite. One family of infinite sets we’ve introduced is the class of denumerable
sets. Recall too that a set S is denumerable if there exists a bijective function from
N to S.

Suppose that A and B are two denumerable sets. Then there exist bijective functions
f : N → A and g : N → B. Since f is bijective, f has an inverse function f −1 : A → N,
where f −1 is also bijective (Theorem 10.15). Since f −1 : A → N and g : N → B
are bijective functions, it follows that the composition function g ◦ f −1 : A → B is also
bijective (Corollary 10.12). This tells us that |A| = |B|, that is, A and B have the same
number of elements. We state this as a theorem for emphasis.

Theorem 11.12 Every two denumerable sets are numerically equivalent.

Next, suppose that B is an uncountable set. So, B is an infinite set that is not denumer-
able. In addition, suppose that A is a denumerable set. Therefore, there exists a bijective
function f : N → A. We claim that |A| �= |B|, that is, A and B do not have the same num-
ber of elements. Let’s prove this. Assume, to the contrary, that |A| = |B|. Hence, there
exists a bijective function g : A → B. Since the functions f : N → A and g : A → B are
bijective, the composition function g ◦ f : N → B is bijective. But this means that B is
a denumerable set, which is a contradiction. We also state this fact as a theorem.

Theorem 11.13 If A is a denumerable set and B is an uncountable set, then A and B are not numerically
equivalent.

Theorems 11.12 and 11.13 can also be considered as consequences of Theorem 11.1.
In particular, Theorem 11.13 says that Z and R are not numerically equivalent and so
|Z| �= |R|. So, here are two infinite sets that do not have the same number of elements.
In other words, there are different sizes of infinity. This now brings up a number of
questions, one of which is: Do there exist three infinite sets so that no two of them have
the same number of elements? Also, if A is a denumerable set and B is an uncountable
set, is one of these sets “bigger” than the other in some sense? In other words, we would
like to be able to compare |A| and |B| in some precise manner. Since |Z| �= |R| and
Z ⊂ R, it is tempting to conclude that |Z| < |R| but we have yet to give a meaning to
|A| < |B| for infinite sets A and B. This idea will be addressed in Section 11.4. We should
remind ourselves, however, that for infinite sets C and D, it is possible that both C ⊂ D
and |C| = |D|. For example, Z ⊂ Q and |Z| = |Q| since Z and Q are both denumerable.
Before leaving our discussion of Z and R, one other observation is useful. Recall that,
according to Theorem 11.4, if B is an infinite subset of a denumerable set A, then B is
also denumerable. But what if A is uncountable? That is, if B is an infinite subset of an
uncountable set A, can we conclude that B is uncountable? The sets Z and R answer this
question since Z is infinite, R is uncountable and Z ⊂ R. However, Z is not uncountable.
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We have now seen two examples of uncountable sets, namely the open interval (0,1) of
real numbers and the set R of all real numbers. Neither of these sets have the same number
of elements as any denumerable set. But how do they compare with each other? We will
show, in fact, that these two sets have the same number of elements. Prior to verifying this,
we show that the open interval (−1,1) and R have the same number of elements.

Theorem to
Prove

The sets (−1, 1) and R are numerically equivalent.

PROOF STRATEGY The obvious approach to proving this theorem is to locate a bijective function
f : (−1, 1) → R. Actually, there are several such functions with this property. With
each such function, we are faced with the problem of determining how involved it is
to show that the function is bijective. We describe one of these here. Another is given in
Exercise 11.25. Consider the function f : (−1, 1) → R defined by

f (x) = x
1 − |x| .

(See Figure 11.9.) This function is defined for all x ∈ (−1, 1). Observe that f (0) = 0,
f (x) > 0 when 0 < x < 1 and f (x) < 0 when −1 < x < 0. This function also has the
property that

lim
x→1−

x
1 − |x| = +∞ and lim

x→−1+

x
1 − |x| = −∞.

If you recall enough information about continuous functions from calculus, you might
see that this function is continuous on the interval (−1, 1). From this information, it
follows that f ((−1, 1)) = R and that f is onto. Also, the derivative of this function on
the interval (−1, 1) is

f ′(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
(1−x)2 if x ∈ (0, 1)

1 if x = 0
1

(1+x)2 if x ∈ (−1, 0).

This says that f ′(x) > 0 for all x ∈ (−1, 1) and so f is an increasing function on the
interval (−1, 1). This information tells us that f must be one-to-one and so f is bijective.
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Figure 11.9 The graph of y = x
1−|x|



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M12_CHART6753_04_SE_C11 PH03348-Chartrand August 16, 2017 21:27 Char Count= 0

292 Chapter 11 Cardinalities of Sets

While the argument just given relies on calculus and you may not recall all of this,
an argument can be given that is of the type we have been discussing. �

Theorem 11.14 The sets (−1, 1) and R are numerically equivalent.

Proof Consider the function f : (−1, 1) → R defined by

f (x) = x
1 − |x| . (11.2)

We show that f is bijective. First, we verify that f is one-to-one. Let f (a) = f (b), where
a, b ∈ (−1, 1). Then a

1−|a| = b
1−|b| . If a

1−|a| = b
1−|b| = 0, then a = b = 0. If a

1−|a| =
b

1−|b| > 0, then a > 0 and b > 0. Thus, a
1−a = b

1−b . Hence, a(1 − b) = b(1 − a) and so

a = b. If a
1−|a| = b

1−|b| < 0, then a < 0 and b < 0. Thus, a
1+a = b

1+b . Hence, a(1 + b) =
b(1 + a) and so a = b. Therefore, f is one-to-one.

Next, we show that f is onto. Let r ∈ R. Since f (0) = 0, we may assume that r �= 0.
If r > 0, then r

1+r ∈ (0, 1) and f ( r
1+r ) = r. If r < 0, then r

1−r ∈ (−1, 0) and f ( r
1−r ) = r.

Thus, f is onto.
Since f is a bijective function, the sets (−1, 1) and R are numerically equivalent.

It is straightforward to show that the function g : (0, 1) → (−1, 1) defined by g(x) =
2x − 1 is bijective. For this function g and the function f in (11.2) in the proof of The-
orem 11.14, it therefore follows that f ◦ g : (0, 1) → R is also bijective. This gives an
immediate corollary.

Corollary 11.15 The sets (0, 1) and R are numerically equivalent.

Not only are (0, 1) and R numerically equivalent (as well as (−1, 1) and R), but
every open interval (a, b) of real numbers with a < b and R are numerically equivalent.
(See Exercise 11.23.)

SECTION 11.3 EXERCISES

11.20. Prove that the set of irrational numbers is uncountable.

11.21. Prove that the set of complex numbers is uncountable.

11.22. Prove that the open interval (−2, 2) and R are numerically equivalent by finding a bijective function
h : (−2, 2) → R. (Show that your function is, in fact, bijective.)

11.23. (a) Prove that the function f : (0, 1) → (0, 2), mapping the open interval (0, 1) into the open interval
(0, 2) and defined by f (x) = 2x, is bijective.

(b) Explain why (0, 1) and (0, 2) have the same cardinality.
(c) Let a, b ∈ R, where a < b. Prove that (0, 1) and (a, b) have the same cardinality.

11.24. Prove that R and R+ are numerically equivalent.

11.25. Consider the function g : (−1, 1) → R defined by g(x) = x
1−x2 .

(a) Prove that g is onto.
(b) Prove that g is one-to-one.
(c) From the information obtained in (a) and (b), what conclusion can be made?
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11.4 COMPARING CARDINALITIES OF SETS

As we know, two nonempty sets A and B have the same cardinality if there exists a
bijective function f : A → B. Let’s illustrate this concept one more time by showing
that two familiar sets associated with a given set are numerically equivalent. Recall that
the power set P (A) of a set A is the set of all subsets of A and that 2A is the set of
all functions from A to {0, 1}. If A = {a, b, c}, then |P (A)| = 23 = 8. Also, the set 2A

contains 2|A| = 23 = 8 functions. So in this case, P (A) and 2A have the same number of
elements. This is not a coincidence.

Theorem to
Prove

For every nonempty set A, the sets P (A) and 2A are numerically equivalent.

PROOF STRATEGY If we can construct a bijective function φ : P (A) → 2A, then this will prove that P (A)
and 2A are numerically equivalent. We use φ for this function since 2A is a set of functions
and it is probably better to use more standard notation, such as f , to denote the elements
of 2A. But how can such a function φ be defined? Let’s take a look at P (A) and 2A for
A = {a, b}. In this case,

P (A) = {∅, {a}, {b}, {a, b}};
while 2A = { f1, f2, f2, f4}, where

f1 = {(a, 0), (b, 0)}, f2 = {(a, 1), (b, 0)},
f3 = {(a, 0), (b, 1)}, f4 = {(a, 1), (b, 1)}.

Since each ofP (A) and 2A has four elements, we can easily find a bijective function from
P (A) to 2A. But this is not the question. What we are looking for is a bijective function
φ : P (A) → 2A for A = {a, b} that suggests a way for us to define a bijective function
from P (A) to 2A for any set A (finite or infinite). Notice, for A = {a, b}, the connection
between the following pairs of elements, the first element belonging to P (A) and the
second belonging to 2A:

∅, f1 = {(a, 0), (b, 0)}
{a}, f2 = {(a, 1), (b, 0)}
{b}, f3 = {(a, 0), (b, 1)}
{a, b}, f4 = {(a, 1), (b, 1)}.

For example, the subset {a} of {a,b} contains a but not b, while f2 maps a to 1 and b to 0.
For an arbitrary set A, this suggests defining φ so that a subset S of A is mapped into the
function in which 1 is the image of elements of A that belong to S and 0 is the image of
elements of A that do not belong to S. �

Theorem 11.16 For every nonempty set A, the sets P (A) and 2A are numerically equivalent.

Proof We show that there exists a bijective function φ from P (A) to 2A. Define φ : P (A) → 2A

such that for S ∈ P (A), we have φ(S) = fS, where, for x ∈ A,

fS(x) =
{

1 if x ∈ S
0 if x /∈ S.
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Certainly, fS ∈ 2A. First, we show that φ is one-to-one. Let φ(S) = φ(T ). Thus, fS = fT ,
which implies that fS(x) = fT (x) for every x ∈ A. Therefore, fS(x) = 1 if and only if
fT (x) = 1 for every x ∈ A; that is, x ∈ S if and only if x ∈ T and so S = T .

It remains to show that φ is onto. Let f ∈ 2A. Define

S = {x ∈ A : f (x) = 1}.
Hence, fS = f and so φ(S) = f . Thus, φ is onto and, consequently, φ is bijective.

It is clear that A = {x,y, z} has fewer elements than B = {a,b,c,d,e}, that is, |A| < |B|.
And it certainly seems that |B| < |N| and that, in general, any finite set has fewer
elements than any denumerable set (or than any infinite set). Also, our discussion about
countable and uncountable sets appears to suggest that uncountable sets have more el-
ements than countable sets. But these assertions are based on intuition. We now make
this more precise.

A set A is said to have smaller cardinality than a set B, written as |A| < |B|, if there
exists a one-to-one function from A to B but no bijective function from A to B. That is,
|A| < |B| if it is possible to pair off the elements of A with some of the elements of B but
not with all of the elements of B. If |A| < |B|, then we also write |B| > |A|. For example,
since N is denumerable and R is uncountable, there is no bijective function from N
to R. Since the function f : N → R defined by f (n) = n for all n ∈ N is injective, it
follows that |N| < |R|. Moreover, |A| ≤ |B| means that |A| = |B| or |A| < |B|. Hence,
to verify that |A| ≤ |B|, we need only show the existence of a one-to-one function from
A to B.

The cardinality of the set N of natural numbers is often denoted by ℵ0 (often read
“aleph null”); so |N| = ℵ0. Actually, ℵ is the first letter of the Hebrew alphabet. Indeed,
if A is any denumerable set, then |A| = ℵ0. The set R of real numbers is also referred
to as the continuum and its cardinality is denoted by c. Hence, |R| = c and from what
we have seen, ℵ0 < c. It was the German mathematician Georg Cantor who helped to
put the theory of sets on a firm foundation. An interesting conjecture of his became
known as:

The Continuum Hypothesis There exists no set S such that

ℵ0 < |S| < c.

Of course, if the Continuum Hypothesis were true, then this would imply that every
subset of R is either countable or is numerically equivalent to R. However, in 1931
the Austrian mathematician Kurt Gödel proved that it was impossible to disprove the
Continuum Hypothesis from the axioms on which the theory of sets is based. In 1963
the American mathematician Paul Cohen took it one step further by showing that it
was also impossible to prove the Continuum Hypothesis from these axioms. Thus, the
Continuum Hypothesis is independent of the axioms of set theory.

Another question that might occur to you is the following: Is there a set S such that
|S| > c? This is a question we can answer, however, and the answer might be surprising.

Theorem to
Prove

If A is a set, then |A| < |P (A)|.
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PROOF STRATEGY First, it is not surprising that |A| < |P (A)| if A is finite, for if A has n elements, where
n ∈ N, then P (A) has 2n elements and 2n > n (which was proved by induction in Re-
sult 6.16). Of course, we must still show that |A| < |P (A)| when A is infinite. First, we
show that there exists a one-to-one function f : A → P (A) for every set A. Let’s give
ourselves an example, say A = {a, b}. Then P (A) = {∅, {a}, {b}, {a, b}}. Although there
are many injective functions from A to P (A), there is one natural injective function:

f = {(a, {a}), (b, {b})};
in other words, define f : A → P (A) by f (x) = {x}.

Once we have verified that this function is one-to-one, then we know that |A| ≤
|P (A)|. To show that the inequality is strict, however, we must prove that there is no
bijective function from A to P (A). The natural technique to verify this is proof by
contradiction. �

Theorem 11.17 If A is a set, then |A| < |P (A)|.

Proof If A = ∅, then |A| = 0 and |P (A)| = 1; so |A| < |P (A)|. Hence, we may assume that
A �= ∅. First, we show that there is a one-to-one function from A to P (A). Define the
function f : A → P (A) by f (x) = {x} for each x ∈ A. Let f (x1) = f (x2). Then {x1} =
{x2}. So, x1 = x2 and f is one-to-one.

To prove that |A| < |P (A)|, it remains to show that there is no bijective function
from A to P (A). Assume, to the contrary, that there exists a bijective function g : A →
P (A). For each x ∈ A, let g(x) = Ax, where Ax ⊆ A. We show that there is a subset of A
that is distinct from Ax for each x ∈ A. Define the subset B of A by

B = {x ∈ A : x /∈ Ax}.
By assumption, there exists an element y ∈ A such that B = Ay. If y ∈ Ay, then y /∈ B by
the definition of B. On the other hand, if y /∈ Ay, then, according to the definition of the
set B, it follows that y ∈ B. In either case, y belongs to exactly one of Ay and B. Hence,
B �= Ay, producing a contradiction.

According to Theorem 11.17, there is no largest set. In particular, there is a set S
with |S| > c.

SECTION 11.4 EXERCISES

11.26. Prove or disprove the following:

(a) If A is an uncountable set, then |A| = |R|.
(b) There exists a bijective function f : Q → R.
(c) If A, B and C are sets such that A ⊆ B ⊆ C and A and C are denumerable, then B is denumerable.

(d) The set S =
{√

2
n : n ∈ N

}
is denumerable.

(e) There exists a denumerable subset of the set of irrational numbers.
(f) Every infinite set is a subset of some denumerable set.
(g) If A and B are sets with the property that there exists an injective function f : A → B, then |A| = |B|.
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11.27. Let A and B be nonempty sets. Prove that |A| ≤ |A × B|.
11.28. Prove or disprove: If A and B are two sets such that A is countable and |A| < |B|, then B is uncountable.

11.29. How do the cardinalities of the sets [0, 1] and [1, 3] compare? Justify your answer.

11.30. Let A = {a, b, c}. Then P (A) consists of the following subsets of A:

Aa = ∅, Ab = A, Ac = {a, b}, Ad = {a, c},
Ae = {b, c}, A f = {a}, Ag = {b}, Ah = {c}.

In one part of the proof of Theorem 11.17, it was established (using a contradiction argument) that
|A| < |P (A)| for every nonempty set A. In this argument, the existence of a bijective function
g : A → P (A) is assumed, where g(x) = Ax for each x ∈ A. Then a subset B of A is defined by

B = {x ∈ A : x /∈ Ax}.
(a) For the sets A and P (A) described above, what is the set B?
(b) What does the set B in (a) illustrate?

11.31. Prove or disprove: There is no set A such that 2A is denumerable.

11.5 THE SCHRÖDER-BERNSTEIN THEOREM

Let f be a function from a set A to a set B and let D be a nonempty subset of A. By the
restriction f1 of f to D, we mean the function

f1 = {(x, y) ∈ f : x ∈ D}.
Hence, a restriction of f refers to restricting the domain of f . For example, for the
sets A = {a, b, c, d} and B = {1, 2, 3}, let f = {(a, 2), (b, 1), (c, 3), (d, 2)} be a func-
tion from A to B. For D = {a, c}, the restriction of f to D is the function f1 : D → B
given by {(a, 2), (c, 3)}. Sometimes, we might also consider a new codomain B′ for
such a restriction f1 of f . Of course, we must have range( f1) ⊆ B′. Next, consider the
function g : R → [0,∞) defined by g(x) = x2 for x ∈ R. Although g is onto, g is not
one-to-one since g(1) = g(−1) = 1, for example. On the other hand, the restriction g1

of g to [0,∞) is one-to-one and so the restricted function g1 : [0,∞) → [0,∞) defined
by g1(x) = g(x) = x2 for all x ∈ [0,∞) is bijective. On the other hand, if f : A → B is
a one-to-one function, then any restriction of f to a subset of A is also one-to-one.

Let f : A → B and g : C → D be functions, where A and C are disjoint sets. We
define a function h from A ∪ C to B ∪ D by

h(x) =
{

f (x) if x ∈ A
g(x) if x ∈ C.

Recalling that a function is a set of ordered pairs, we see that h is the union of the two
sets f and g. Of course, it is essential for A and C to be disjoint in order to be guaranteed
that h is a function. If f and g are onto, then h must be onto as well; however, if f and
g are one-to-one, then h need not be one-to-one. The following result does provide a
sufficient condition for h to be one-to-one, however.
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Lemma 11.18 Let f : A → B and g : C → D be one-to-one functions, where A ∩ C = ∅, and where the
function h : A ∪ C → B ∪ D is defined by

h(x) =
{

f (x) if x ∈ A
g(x) if x ∈ C.

If B ∩ D = ∅, then h is also a one-to-one function. Consequently, if f and g are bijective
functions, then h is a bijective function.

Proof Assume that h(x1) = h(x2) = y, where x1, x2 ∈ A ∪ B. Then y ∈ B ∪ D. So, y ∈ B or
y ∈ D, say the former. Since B ∩ D = ∅, it follows that y /∈ D. Hence, x1, x2 ∈ A and
so h(x1) = f (x1) and h(x2) = f (x2). Since f (x1) = f (x2) and f is one-to-one, it follows
that x1 = x2.

Let A and B be nonempty sets such that B ⊆ A and let f : A → B. Thus, for x ∈ A,
the element f (x) ∈ B. Since B ⊆ A, it follows, of course, that f (x) ∈ A and so f ( f (x)) ∈ B.
It is convenient to introduce some notation in this case. Let f 1(x) = f (x) and let
f 2(x) = f ( f (x)). In general, for an integer k ≥ 2, let f k(x) = f ( f k−1(x)). Hence, f 1(x),
f 2(x), f 3(x), . . . is a recursively defined sequence of elements of B (and of A as well).
Thus, f n(x) is defined for every positive integer n.

For example, consider the function f : Z → 2Z defined by f (n) = 4n for all n ∈ Z.
Then f 1(3) = f (3) = 4 · 3 = 12 and f 2(3) = f ( f (3)) = f (12) = 4 · 12 = 48.

If A and B are nonempty sets such that B ⊆ A, then the function φ : B → A defined
by φ(x) = x for all x ∈ B is injective. This gives us the expected result that |B| ≤ |A|.
On the other hand, if there is an injective function from A to B, a more interesting con-
sequence results.

Theorem 11.19 Let A and B be nonempty sets such that B ⊆ A. If there exists an injective function from
A to B, then there exists a bijective function from A to B.

Proof If B = A, then the identity function iA : A → B = A is bijective. Thus, we can assume
that B ⊂ A and so A − B �= ∅. Let f : A → B be an injective function. If f is bijec-
tive, then the proof is complete. Therefore, we can assume that f is not onto. Hence,
range( f ) ⊂ B and so B − range( f ) �= ∅.

Consider the subset B′ of B defined by

B′ = { f n(x) : x ∈ A − B, n ∈ N}.

Thus, B′ ⊆ range( f ). Hence, for each x ∈ A − B, its image f (x) belongs to B′. Moreover,
for x ∈ A − B, the element f 2(x) = f ( f (x)) ∈ B′, f 3(x) = f ( f 2(x)) ∈ B′ and so on.

Let C = (A − B) ∪ B′ and consider the restriction f1 : C → B′ of f to C. We show
that f1 is onto. Let y ∈ B′. Then y = f n(x) for some x ∈ A − B and some n ∈ N. This im-
plies that y = f (x) for some x ∈ A − B or y = f (x) for some x ∈ B′. Therefore, f1(x) = y
for some x ∈ C and so f1 is onto. Furthermore, since f is one-to-one, the function f1 is
also one-to-one. Hence, f1 : C → B′ is bijective.
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Let D = B − B′. Since B − range( f ) �= ∅ and B − range( f ) ⊆ B − B′, it follows
that D �= ∅. Also, D and B′ are disjoint, as are D and C. Certainly, the identity function
iD : D → D is bijective. Let h : C ∪ D → B′ ∪ D be defined by

h(x) =
{

f1(x) if x ∈ C
iD(x) if x ∈ D.

By Lemma 11.18, h is bijective. However, C ∪ D = A and B′ ∪ D = B; so h is a bijective
function from A to B.

From what we know of inequalities (of real numbers), it might seem that if A and
B are sets with |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|. This is indeed the case. This
theorem is often referred to as the Schröder-Bernstein Theorem.

Theorem 11.20 (The Schröder-Bernstein Theorem) If A and B are sets such that |A| ≤ |B| and
|B| ≤ |A|, then |A| = |B|.

Proof Since |A| ≤ |B| and |B| ≤ |A|, there are injective functions f : A → B and g : B → A.

Thus, g1 : B → range(g) defined by g1(x) = g(x) for all x ∈ B is a bijective function. By
Theorem 10.15, g−1

1 exists and g−1
1 : range(g) → B is a bijective function.

Since f : A → B and g1 : B → range(g) are injective functions, it follows by The-
orem 10.11 that g1 ◦ f : A → range(g) is an injective function. Because range(g) ⊆ A,
we have by Theorem 11.19 that there exists a bijective function h : A → range(g). Thus,
h : A → range(g) and g−1

1 : range(g) → B are bijective functions. By Corollary 10.12,

g−1
1 ◦ h : A → B

is a bijective function and |A| = |B|.

The Schröder-Bernstein Theorem is referred to by some as the Cantor – Schröder-
Bernstein Theorem. Although the history of this theorem has never been fully docu-
mented, there are several substantiated facts.

A mathematician who will forever be associated with the theory of sets is Georg
Cantor (1845–1918). Born in Russia, Cantor studied for and obtained his Ph.D. in math-
ematics from the University of Berlin in 1867. In 1869 he became a faculty member at
the University of Halle in Germany. It was while he was there that he became interested
in set theory.

In 1873 Cantor proved that the set of rational numbers is denumerable. Shortly after-
wards, he proved that the set of real numbers is uncountable. In this paper, he essentially
introduced the idea of a one-to-one correspondence (bijective function). During the next
several years, he made numerous contributions to set theory – studying sets of equal
cardinality. There were, however, a number of problems that proved difficult for Cantor.

Consider the following two theorems:

Theorem A For any two cardinal numbers a and b, exactly one of the following
occurs: (1) a = b, (2) a < b, (3) a > b.

Theorem B If A and B are two sets for which there exist a one-to-one function
from A to B and a one-to-one function from B to A, then |A| = |B|.
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Cantor observed that once Theorem A had been proved, Theorem B could be proved.
On the other hand, there has never been any evidence that Cantor was able to prove
Theorem A. Ernst Zermelo (1871–1953) was able to prove Theorem A in 1904. How-
ever, Zermelo’s proof made use of an axiom formulated by Zermelo. This axiom, which
was controversial in the mathematical world for many years, is known as the Axiom of
Choice.

The Axiom of Choice. For every collection of pairwise disjoint nonempty sets,
there exists at least one set that contains exactly one element from each of these
nonempty sets.

As it turned out, not only can the Axiom of Choice be used to prove Theorem A, but
Theorem A is true if and only if the Axiom of Choice is true.

Ernst Schröder (1841–1902), a German mathematician, was one of the important
figures in mathematical logic. During 1897–1898 Schröder presented a “proof” of Theo-
rem B, which contained a defect however. About the same time, Felix Bernstein
(1878–1956) gave his own proof of Theorem B in his doctoral dissertation, which
became the first complete proof of Theorem B. His proof did not require knowledge
of Theorem A.

You may be surprised to learn that R and the power set of N are numerically equiv-
alent. But how could one ever find a bijective function between these two sets? Theo-
rem 11.21 tells us that discovering such a function is unnecessary.

Theorem 11.21 The sets P (N) and R are numerically equivalent.

Proof First we show that there is a one-to-one function f : (0, 1) → P (N). Recall that a real
number a ∈ (0, 1) can be expressed uniquely as a = 0.a1a2a3 · · · , where each ai ∈ {0, 1,

. . . , 9} and there is no positive integer N such that an = 9 for all n ≥ N. Thus, we define

f (a) = {10n−1an : n ∈ N} = A.

For example, f (0.1234) = {1, 20, 300, 4000} and f (1/3) = {3, 30, 300, . . .}. We now
show that f is one-to-one. Assume that f (a) = f (b), where a, b ∈ (0, 1) and a =
0.a1a2a3 · · · and b = 0.b1b2b3 · · · with ai, bi ∈ {0, 1, . . . , 9} for each i ∈ N such that the
decimal expansion of neither a nor b is 9 from some point on. Therefore,

A = {10n−1an : n ∈ N} = {10n−1bn : n ∈ N} = B.

Consider the ith digit, namely ai, in the decimal expansion of a. Then 10i−1ai ∈ A. If
ai �= 0, then 10i−1ai is the unique number in the interval [10i−1, 9 · 10i−1] belonging to
A. Since A = B, it follows that 10i−1ai ∈ B. However, 10i−1bi is the unique number in the
interval [10i−1, 9 · 10i−1] belonging to B; so 10i−1ai = 10i−1bi. Thus, ai = bi. If ai = 0,
then 0 ∈ A and there is no number in the interval [10i−1, 9 · 10i−1] belonging to A. Since
A = B, it follows that 0 ∈ B and there is no number in the interval [10i−1, 9 · 10i−1]
belonging to B. Thus, bi = 0 and so ai = bi. Hence, ai = bi for all i ∈ N, and so a = b.
Therefore, f is one-to-one and |(0, 1)| ≤ |P (N)|.
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Next we define a function g : P (N) → (0, 1). For S ⊆ N, define g(S) = 0.s1s2s3 · · ·,
where

sn =
{

1 if n ∈ S
2 if n /∈ S.

Thus, g(S) is a real number in (0, 1), whose decimal expansion consists only of 1s and 2s.
We show that g is one-to-one. Assume that g(S) = g(T ), where S, T ⊆ N. Thus,

g(S) = s = 0.s1s2s3 · · · = 0.t1t2t3 · · · = t = g(T ),

where

sn =
{

1 if n ∈ S
2 if n /∈ S

and tn =
{

1 if n ∈ T
2 if n /∈ T.

Since the decimal expansions of s and t contain no 0s or 9s, both s and t have unique
decimal expansions. We show that S = T . First, we verify that S ⊆ T . Let k ∈ S. Then
sk = 1. Since s = t, it follows that tk = 1, which implies that k ∈ T . Hence, S ⊆ T . The
proof that T ⊆ S is similar and is therefore omitted. Thus, S = T and g is one-to-one.
Therefore, |P (N)| ≤ |(0, 1)|. By the Schröder-Bernstein Theorem, |P (N)| = |(0, 1)|.
By Corollary 11.15, |(0, 1)| = |R|. Thus, |P (N)| = |R|.

As a corollary to Theorems 11.16 and 11.21, we have the following result.

Corollary 11.22 The sets 2N and R are numerically equivalent.

We have already mentioned that |A| = ℵ0 for every denumerable set A and that
|R| = c. If A is denumerable, then we represent the cardinality of the set 2A by 2ℵ0 . By
Corollary 11.22, 2ℵ0 = c.

SECTION 11.5 EXERCISES

11.32. Prove that if A, B and C are nonempty sets such that A ⊆ B ⊆ C and |A| = |C|, then |A| = |B|.
11.33. Use the Schröder-Bernstein Theorem to prove that |(0, 1)| = |[0, 1]|.
11.34. Prove that |Q − {q}| = ℵ0 for every rational number q and |R − {r}| = c for every real number r.

11.35. Let R∗ be the set obtained by removing the number 0 from R. Prove that |R∗| = |R|.
11.36. Let f : Z → 2Z be defined by f (k) = 4k for all k ∈ Z.

(a) Prove that f n(k) = 4nk for each k ∈ Z and each n ∈ N.
(b) For this function f , describe the sets B′, C and D and functions f1 and h given in Theorem 11.19.

11.37. Express each positive rational number as m/n, where m, n ∈ N and m/n is reduced to lowest terms. Let da

denote the number of digits in a ∈ N. Thus, d2 = 1, d13 = 2 and d100 = 3. Define the function
f : Q+ → N so that f (m/n) is the positive integer with 2(dm + dn) digits whose first dm digits is the
integer m, whose final dn digits is the integer n and all of whose remaining dm + dn digits are 0. Thus,
f (2/3) = 2003 and f (10/271) = 1000000271.

(a) Prove that f is one-to-one.
(b) Use the Schröder-Bernstein Theorem to prove that Q+ is denumerable.
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Chapter 11 Supplemental Exercises

11.38. Evaluate the proposed proof of the following result.

Result Let A and B be two sets with |A| = |B|. If a ∈ A and b ∈ B, then
|A − {a}| = |B − {b}|.
Proof Since A and B have the same number of elements and one element is
removed from each of A and B, it follows that |A − {a}| = |B − {b}|.

11.39. Evaluate the proposed proof of the following result.

Result The sets (0,∞) and [0,∞) are numerically equivalent.

Proof Define the function f : (0,∞) → [0,∞) by f (x) = x. First, we show that
f is one-to-one. Assume that f (a) = f (b). Then a = b and so f is one-to-one.

Next, we show that f is onto. Let r ∈ [0,∞). Since f (r) = r, the function f is onto.
Since f is bijective, |(0,∞)| = |[0,∞)|.

11.40. The floor �x� of a real number x is the greatest integer less than or equal to x.
Therefore, �5.5� = 5, �3� = 3 and �−5.5� = −6. Let f : N → Z be defined by
f (n) = (−1)n�n/2�.

(a) Prove that f is bijective.
(b) What does (a) tell us about Z? (See Result 11.3.)

11.41. Show that the following pairs of intervals are numerically equivalent.

(a) (0, 1) and (0,∞)
(b) (0, 1] and [0,∞)
(c) [b, c) and [a,∞), where a, b, c ∈ R and b < c.

11.42. Let S and T be two sets. Prove that if |S − T | = |T − S|, then |S| = |T |.
11.43. Prove each of the following statements:

(a) A nonempty set S is countable if and only if there exists a surjective
function f : N → S.

(b) A nonempty set S is countable if and only if there exists an injective
function g : S → N.

11.44. Prove that |A| < |N| for every finite nonempty set A.

11.45. Let A = (0, 1) be the open interval of real numbers between 0 and 1. For each
number r ∈ A, let 0.r1r2r3 . . . denote its unique decimal expansion in which no
expansion has the digit 9 from some point on. For (a, b) ∈ A × A, let

f ((a, b)) = f ((0.a1a2a3 . . . , 0.b1b2b3 . . .)) = 0.a1b1a2b2 . . . ;
while for a ∈ A, let

g(a) = g(0.a1a2a3 . . .) = (0.a1a3a5 . . . , 0.a2a4a6 . . .).

With the aid of f and g, which of the following are we able to conclude? Explain
your answer.

(a) |A × A| ≤ |A|.
(b) |A| ≤ |A × A|.
(c) |A × A| = |A|.
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(d) Nothing because neither f : A × A → A nor g : A → A × A are functions.
(e) Nothing because both f : A × A → A and g : A → A × A are functions but

neither is injective.
(f) Nothing, for a reason other than those given in (d) and (e).

11.46. Prove, for every integer n ≥ 2, that if A1, A2, . . . , An are denumerable sets, then
A1 × A2 × · · · × An is denumerable.

11.47. As a consequence of Exercise 11.20, the set of all irrational numbers is uncountable.
Among the (many) irrational numbers are

√
2,

√
3,

√
5, 3

√
2, 3

√
3, 3

√
5 and 4

√
2. Prove

that the set S = { n
√

k : k, n ∈ N and k, n ≥ 2} is denumerable.

11.48. Let b, c ∈ Z. A number rb,c (real or complex) belongs to a set S if rb,c is a root of the
polynomial x2 + bx + c. Prove that S is denumerable.

11.49. We have seen that R is an uncountable set.

(a) Show that R can be partitioned into a countable number of uncountable sets.
(b) Show that R can be partitioned into an uncountable number of countable sets.

11.50. Prove that if A and B are two sets such that |A| = |B|, then |P (A)| = |P (B)|.
11.51. (a) Prove that the function f : (1,∞) → (0, 1) defined by f (x) = 2x

x2+1 is bijective.
(b) What conclusion can be made from the result in (a)?
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Proofs in Number Theory

We have now discussed the proof techniques that are used to verify the truth of
mathematical statements. In addition, we have discussed two fundamental con-

cepts that occur throughout mathematics, namely relations (especially equivalence re-
lations) and functions (especially bijective functions). Where we will encounter proofs
most often and where we will need a clear understanding of proof techniques is in the
various areas of mathematics. This will be illustrated in the remaining chapters as we
describe several basic results that occur in a number of the branches of mathematics,
beginning with the area referred to as number theory.

Number theory is that area of mathematics dealing with integers and their properties.
It is one of the oldest branches of mathematics, dating back at least to the Pythagore-
ans (500 b.c.). Number theory is considered to be one of the most beautiful branches of
mathematics. Indeed, it has been said that mathematics is the queen of the sciences; while
number theory is the queen of mathematics. In large measure, this subject is character-
ized by the appeal, clarity and simplicity of many of its problems and by the elegance and
style exhibited in their solutions. The main goal of this chapter is to expand on some of
the things we have learned in order to illustrate the kinds of proofs that occur in number
theory.

12.1 DIVISIBILITY PROPERTIES OF INTEGERS

You may already know that every integer n ≥ 2 can be expressed as a product of primes
and in only one way, except for the order in which the primes are written. We will see later
how to prove this fact, but first we want to return to divisibility of integers (introduced
in Chapter 4) and establish several elementary divisibility properties.

Recall that a prime is an integer p ≥ 2 whose only positive integer divisors are
1 and p. An integer n ≥ 2 that is not prime is called a composite number (or simply
composite). The first ten primes are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29. The first ten com-
posite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16 and 18. If an integer n ≥ 2 is composite,
then there exist integers a and b such that n = ab, where 1 < a < n and 1 < b < n. Cer-
tainly, if there exist integers a and b such that n = ab, where 1 < a < n and 1 < b < n,
then n is composite. We summarize these observations in the following lemma.

303
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Lemma 12.1 An integer n ≥ 2 is composite if and only if there exist integers a and b such that n = ab,
where 1 < a < n and 1 < b < n.

In Chapter 4, a number of basic divisibility properties were presented. We recall
some of these in the following theorem, where the proofs are also repeated to review the
proof techniques that we used.

Theorem 12.2 Let a, b and c be integers with a �= 0.

(i) If a | b, then a | bc.
(ii) If a | b and b | c, where b �= 0, then a | c.

(iii) If a | b and a | c, then a | (bx + cy) for every pair x, y of integers.

Proof We begin with part (i). Since a | b, there exists an integer q such that b = aq. Therefore,
bc = a(qc). Since qc is an integer, a | bc.

For part (ii), let a | b and b | c. So, there exist integers q1 and q2 such that b = aq1

and c = bq2. Consequently,

c = bq2 = (aq1)q2 = a(q1q2).

Since q1q2 is an integer, a | c.
For part (iii), let a | b and a | c. Then there exist integers q1 and q2 such that b = aq1

and c = aq2. Hence, for integers x and y,

bx + cy = (aq1)x + (aq2)y = a(q1x + q2y).

Since q1x + q2y is an integer, a | (bx + cy).

PROOF ANALYSIS In all three parts of the previous theorem, we were required to show that r | s for some
integers r and s, where r �= 0. To do this, we showed that we could write s as rt for some
integer t. Of course, this is simply the definition of what it means for r to divide s. �

Proving the two parts of the next theorem relies on the definition of r | s again, as
well as making use of certain observations. For example, in the second part, we use
a fact about absolute values, namely that |xy| = |x||y| for every two real numbers x
and y.

Theorem 12.3 Let a and b be nonzero integers.

(i) If a | b and b | a, then a = b or a = −b.
(ii) If a | b, then |a| ≤ |b|.

Proof We first prove (i). Since a | b and b | a, it follows that b = aq1 and a = bq2 for some
integers q1 and q2. Therefore, a = bq2 = (aq1)q2 = a(q1q2). Dividing by a, we obtain
1 = q1q2. Hence, q1 = q2 = 1 or q1 = q2 = −1. Therefore, a = b or a = −b.

Next we prove (ii). Since a | b, it follows that b = aq for some integer q. Further-
more, q �= 0 since b �= 0. So, |q| ≥ 1. Hence,

|b| = |aq| = |a| · |q| ≥ |a| · 1 = |a|.
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SECTION 12.1 EXERCISES

12.1. Let a, b, c, d ∈ Z with a, c �= 0. Prove that if a | b and c | d, then ac | (ad + bc).

12.2. Let a, b ∈ Z with a �= 0. Prove that if a | b, then a | (−b) and (−a) | b.

12.3. Let a, b, c ∈ Z with a, c �= 0. Prove that if ac | bc, then a | b.

12.4. Prove that 3 | (n3 − n) for every integer n.

12.5. The prime 2 can be expressed as 13 + 1. Prove that if n = k3 + 1 ≥ 3, where k ∈ Z, then n is not prime.
That is, prove that there is only one prime that is 1 greater than a perfect cube. [Hint: Recall that
k3 + 1 = (k + 1)(k2 − k + 1).]

12.6. Prove that there is only one prime that is 1 less than a perfect cube.

12.7. Prove that 8 | (52n + 7) for every positive integer n.

12.8. Prove that 5 | (33n+1 + 2n+1) for every positive integer n.

12.9. Prove that for every positive integer n, there exist n consecutive positive integers, each of which is
composite. [Hint: Consider the numbers

2 + (n + 1)!, 3 + (n + 1)!, . . . , n + (n + 1)!, n + 1 + (n + 1)!.]

12.10. (a) Prove that 6 | (5n3 + 7n) for every positive integer n.
(b) Observe that 5 + 7 = 12 is a multiple of 6. State and prove a generalization of the problem in (a).

12.11. Prove the following: Let d be a nonzero integer. If a1, a2, . . . , an and x1, x2, . . . , xn are 2n ≥ 2 integers
such that d | ai for all i (1 ≤ i ≤ n), then d | ∑n

i=1 aixi.

12.12. Let pn denote the nth prime and cn the nth composite number. Thus, p1 = 2 and p2 = 3, while c1 = 4 and
c2 = 6. Of course, pn �= cn for all n ∈ N. Determine all positive integers n such that |pn − cn| = 1.

12.13. (a) Suppose that there are k distinct positive integers that divide an odd positive integer n. How many
distinct positive integers divide 2n? How many divide 4n?

(b) Suppose that there are k distinct positive integers that divide a positive integer n that is not divisible
by 3. How many distinct positive integers divide 3n? How many divide 9n?

(c) State and answer a question suggested by the questions in (a) and (b).

12.14. For an integer n ≥ 2, let m be the largest positive integer less than n such that m | n. Then n = mk for
some positive integer k. Prove that k is a prime.

12.2 THE DIVISION ALGORITHM

We have discussed the concept of divisibility a number of times now. Of course, when we
use that term, we are referring to the statement a | b, where a, b ∈ Z and a �= 0. Surely,
the term division is more familiar to us. For positive integers a and b, it is an elementary
problem to divide b by a and ask for the quotient q and remainder r. For example, for
a = 5 and b = 17, we have q = 3 and r = 2; that is, if 17 is divided by 5, a quotient of
3 and a remainder of 2 result. This division can be expressed as 17 = 5 · 3 + 2. If a = 6
and b = 42, then q = 7 and r = 0; so 42 = 6 · 7 + 0 or 6 | 42.

More generally, for positive integers a and b, it is always possible to write b =
aq + r, where 0 ≤ r < a. The number q is the quotient and r is the remainder when b
is divided by a. In fact, not only do the integers q and r exist, they are unique. This is the
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essence of a theorem called the Division Algorithm. Although this theorem may seem
rather obvious because you’ve probably used it so often, it is important and its proof is
not all that obvious.

Theorem to
Prove

(The Division Algorithm): For positive integers a and b, there exist unique integers q
and r such that b = aq + r and 0 ≤ r < a.

PROOF STRATEGY We start the proof then with two positive integers a and b. We have two problems fac-
ing us. First, we need to show that there are integers q and r such that b = aq + r and
0 ≤ r < a. Second, we must show that only one integer q and only one integer r satisfy
the equation b = aq + r and inequality 0 ≤ r < a. How can we come up with integers
q and r satisfying these conditions? Our main concern, as it turns out, is showing that
there exist integers q and r such that b = aq + r and 0 ≤ r < a.

If a | b, then we know that b = aq for some integer q. So b = aq + 0 and r = 0
satisfies 0 ≤ r < a. If a � b, then b �= aq for every integer q and so b − aq �= 0 for every
integer q. However, when we perform the operation of dividing b by a, we obtain a
quotient q and a nonzero remainder r. The integer q has the properties that b − aq >

0 and b − aq is as small as possible. Whether a | b or a � b, this suggests considering
the set

S = {b − ax : x ∈ Z and b − ax ≥ 0},
which is a set of nonnegative integers. Once we show that S �= ∅, we can apply Theo-
rem 6.7 (which states, for every integer m, that the set {i ∈ Z : i ≥ m} is well-ordered)
to conclude that S has a smallest element r, which means that there is an integer q such
that b − aq = r. So b = aq + r and we have the beginning of a proof. �

Theorem 12.4 (The Division Algorithm) For positive integers a and b, there exist unique integers q
and r such that b = aq + r and 0 ≤ r < a.

Proof First we show that there exist integers q and r such that b = aq + r with 0 ≤ r < a. We
will verify the uniqueness later. Consider the set

S = {b − ax : x ∈ Z and b − ax ≥ 0}.
By letting x = 0, we see that b ∈ S and S is nonempty. Therefore, by Theorem 6.7, S

has a smallest element r and, necessarily, r ≥ 0. Also, since r ∈ S, there is some integer
q such that r = b − aq. Thus, b = aq + r with r ≥ 0.

Next we show that r < a. Assume, to the contrary, that r ≥ a. Let t = r − a. Then
t ≥ 0. Since a = r − t and a > 0, it follows that t < r. Moreover,

t = r − a = (b − aq) − a = b − (aq + a) = b − a(q + 1),

which implies that t ∈ S, contradicting the fact that r is the smallest element of S. There-
fore r < a, as desired.

It remains to show that q and r are the only integers for which b = aq + r and
0 ≤ r < a. Let q′ and r′ be integers such that b = aq′ + r′, where 0 ≤ r′ < a. We show
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that q = q′ and r = r′. Assume, without loss of generality, that r′ ≥ r; so r′ − r ≥ 0.
Since aq + r = aq′ + r′, it follows that

a(q − q′) = r′ − r.

Since q − q′ is an integer, a | (r′ − r). Because 0 ≤ r′ − r < a, we must have r′ − r = 0
and so r′ = r. However, a(q − q′) = r′ − r = 0 and a �= 0; so q − q′ = 0 and q = q′.

In Theorem 12.4 we restricted a and b to be positive. With minor modification in
the proof, we can remove these restrictions, although, of course, we must still require
that a �= 0. Exercise 12.20 asks for a proof of the following result.

Corollary 12.5 (The Division Algorithm, General Form) For integers a and b with a �= 0, there exist
unique integers q and r such that b = aq + r and 0 ≤ r < |a|.

The proof of Theorem 12.4 is an existence proof since it establishes the existence of
the integers q and r but does not provide a method for finding q and r. However, there is an
implicit connection between the proof of the theorem and the manner in which you were
taught to divide one positive integer by another to find the quotient and remainder (as we
mentioned earlier). For instance, when dividing 89 by 14 you first determine the number
of times 14 goes into 89, namely 6. More formally, you found the largest nonnegative
integer whose product with 14 does not exceed 89. This number is 6. You then subtract
14 · 6 = 84 from 89 to find the remainder 5. This determines the least nonnegative value
of 89 − 14q, where q is an integer, which corresponds to the least nonnegative value of
the set S for a = 14 and b = 89 in the proof of Theorem 12.4.

Example 12.6 Consistent with the notation of Corollary 12.5, find the integers q and r for the given
integers a and b.

(i) a = 17, b = 78
(ii) a = −17, b = 78

(iii) a = 17, b = −78
(iv) a = −17, b = −78

Solution (i) By simple division, we see that dividing 78 by 17 results in a quotient of 4 and a
remainder of 10, that is,

78 = 17 · 4 + 10; (12.1)

so, q = 4 and r = 10.
(ii) By replacing 17 and 4 in (12.1) by −17 and −4, respectively, we obtain

78 = (−17)(−4) + 10;
so, q = −4 and r = 10.

(iii) Multiplying (12.1) through by −1, we have

−78 = −(17 · 4) + (−10) = 17(−4) + (−10). (12.2)

Since every remainder is nonnegative, we subtract 17 from and add 17 to the right side
of (12.2), producing

−78 = 17(−5) + 7; (12.3)
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so, q = −5 and r = 7.
(iv) If, in (12.3), we replace 17 and −5 by −17 and 5, respectively, we have

−78 = (−17) · 5 + 7;
so, q = 5 and r = 7. �

We now discuss some consequences of the Division Algorithm. If this algorithm is
applied to an arbitrary integer b when a = 2, then we see that b must have one of the two
forms 2q or 2q + 1 (according to whether r = 0 or r = 1). Of course, if b = 2q, then b
is even; while if b = 2q + 1, then b is odd. We have seen this earlier and often. This, of
course, shows that every integer is either even or odd.

If we apply the Division Algorithm to an arbitrary integer b when a = 3, then b has
exactly one of the three forms 3q, 3q + 1 or 3q + 2 (according to whether r = 0, 1, 2).
We saw this earlier as well in Chapter 4. In general, for an arbitrary integer b and arbitrary
positive integer a, the remainder r is one of the integers 0, 1, 2, . . . , a − 1. Hence, b is
expressible as exactly one of aq, aq + 1, . . ., aq + (a − 1).

This last remark should also sound familiar. In Chapter 9 we considered, for an
integer n ≥ 2, a relation R defined on Z by a R b if a ≡ b (mod n), that is, if n | (a − b).
This relation was found to be an equivalence relation and the set

Zn = {[0], [1], . . . , [n − 1]}
of distinct equivalence classes was referred to as the set of integers modulo n. With the
aid of the Division Algorithm, we now take a closer look at this relation.

For each integer b, there exist, by the Division Algorithm, unique integers q and
r such that b = nq + r, where 0 ≤ r < n. Thus, b − r = nq and n | (b − r); so b ≡ r
(mod n). Since b R r, it follows that b ∈ [r]. However, since r is the unique integer with
0 ≤ r ≤ n − 1, we see that b belongs to exactly one of the classes [0], [1], . . . , [n − 1].
These observations show that

(i) the classes [0], [1], . . . , [n − 1] are pairwise disjoint and
(ii) Z = [0] ∪ [1] ∪ · · · ∪ [n − 1],

neither of which should seem surprising once we recall that the equivalence classes al-
ways produce a partition of the set on which the equivalence relation is defined. Further-
more, for each r = 0, 1, . . . , n − 1,

[r] = {nq + r : q ∈ Z} ;
that is, [r] consists of all those integers having a remainder of r when divided by n.
For this reason, these equivalence classes were also referred to as residue classes
modulo n.

The special case where n = 3 was considered in Chapter 9 and the resulting residue
classes were exhibited. In the present context, these residue classes are

[0] = {3q : q ∈ Z} = {. . . − 6,−3, 0, 3, 6, . . .}
[1] = {3q + 1 : q ∈ Z} = {. . . − 5,−2, 1, 4, . . .}
[2] = {3q + 2 : q ∈ Z} = {. . . − 4,−1, 2, 5, . . .}.
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SECTION 12.2 EXERCISES

12.15. Illustrate the Division Algorithm for:

(a) a = 17, b = 125 (b) a = −17, b = 125
(c) a = 8, b = 96 (d) a = −8, b = 96
(e) a = 22, b = −17 (f) a = −22, b = −17
(g) a = 15, b = 0 (h) a = −15, b = 0.

12.16. Give an example of a prime p of each of the forms:
(a) 4k + 1 (b) 4k + 3 (c) 6k + 1 (d) 6k + 5.

12.17. Let p be an odd prime. Prove each of the following.

(a) p is of the form 4k + 1 or of the form 4k + 3 for some nonnegative integer k.
(b) p ≥ 5 is of the form 6k + 1 or of the form 6k + 5 for some nonnegative integer k.

12.18. Show that, except for 2 and 5, every prime can be expressed as 10k + 1, 10k + 3, 10k + 7 or 10k + 9,
where k ∈ Z.

12.19. (a) Prove that if an integer n has the form 6q + 5 for some q ∈ Z, then n has the form 3k + 2 for some
k ∈ Z.

(b) Is the converse of (a) true?

12.20. Prove the General Form of the Division Algorithm (Corollary 12.5): For integers a and b with a �= 0, there
exist unique integers q and r such that b = aq + r and 0 ≤ r < |a|.

12.21. Prove that the square of every odd integer is of the form 4k + 1, where k ∈ Z (that is, for each odd integer
a ∈ Z, there exists k ∈ Z such that a2 = 4k + 1).

12.22. (a) Prove that the square of every integer that is not a multiple of 3 is of the form 3k + 1, where k ∈ Z.
(b) Prove that the square of no integer is of the form 3m − 1, where m ∈ Z.

12.23. Complete the following statement in a best possible manner and give a proof. (See Exercise 12.22(a).) The
square of an integer that is not a multiple of 5 is either of the form or .

12.24. (a) Prove that for every integer m, one of the integers m, m + 4, m + 8, m + 12, m + 16 is a multiple of 5.
(b) State and prove a generalization of the result in (a).

12.25. Prove that if a1, a2, . . . , an are n ≥ 2 integers such that ai ≡ 1 (mod 3) for every integer i (1 ≤ i ≤ n), then
a1a2 · · · an ≡ 1 (mod 3).

12.26. Let a, b and c be integers. Prove that if abc ≡ 1 (mod 3), then an odd number of a, b and c are congruent
to 1 modulo 3.

12.27. Prove or disprove: If a and b are odd integers, then 4 | (a − b) or 4 | (a + b).

12.28. Prove for every positive integer n that n2 + 1 is not a multiple of 6.

12.29. It is known that there are infinitely many positive integers whose square is the sum of the squares of two
positive integers. For example, 52 = 32 + 42 and 132 = 52 + 122.
(a) Prove that there are infinitely many positive integers whose square is the sum of the squares of three

positive integers. For example, 592 = 502 + 302 + 92.
(b) Prove that there are infinitely many positive integers whose square is the sum of the squares of four

positive integers.

12.30. (a) Let n ∈ N. Show that for every set S of n distinct integers, there is a nonempty subset T of S such that
n divides the sum of the elements of T . [Hint: Let S = {a1, a2, . . . , an} and consider the subsets
Sk = {a1, a2, . . . , ak} for each k (1 ≤ k ≤ n).]

(b) Is the word “distinct” necessary in (a)?
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12.31. For an integer n ≥ 2, let Sn be the set of all positive integers m for which n is the smallest positive integer
such that when m is divided by n, the remainder 1 results.

(a) What does S2 consist of?
(b) To which set Sn does 14 belong?
(c) To which set Sn does 16 belong?
(d) Prove or disprove: For each integer n ≥ 2, the set Sn either contains infinitely many elements or is

empty.

12.3 GREATEST COMMON DIVISORS

We now move from the divisors of an integer to the divisors of a pair of integers. An
integer c �= 0 is a common divisor of two integers a and b if c | a and c | b. We are
primarily interested in the largest integer that is a common divisor of a and b. Formally,
the greatest common divisor of two integers a and b, not both 0, is the greatest posi-
tive integer that is a common divisor of a and b. The requirement that a and b are not
both 0 is needed since every positive integer divides 0. We denote the greatest com-
mon divisor of two integers a and b by gcd(a, b), although (a, b) is common notation
as well.

If a and b are relatively small (in absolute value), it is normally easy to deter-
mine gcd(a, b). For example, it should be clear that gcd(8, 12) = 4, gcd(4, 9) = 1
and gcd(18, 54) = 18. The definition of gcd(a, b) does not require a and b to be
positive; indeed, it only requires at least one of a and b to be nonzero. For example,
gcd(−10,−15) = 5, gcd(16,−72) = 8 and gcd(0,−9) = 9.

There are two useful properties of the greatest common divisor of two integers,
particularly from a theoretical point of view, that we want to mention. For integers a
and b, an integer of the form ax + by, where x, y ∈ Z, is called a linear combination of
a and b. Using this terminology, we can now restate Theorem 12.2(iii): Every nonzero
integer that divides two integers b and c divides every linear combination of b and c.
Although there appears to be no apparent connection between linear combinations of a
and b and gcd(a, b), we are about to see that there is, in fact, a very close connection.
For example, let a = 10 and b = 16. Then 6,−4 and 0 are all linear combinations of a
and b since, for example,

6 = 10 · (−1) + 16 · (1), −4 = 10 · (−2) + 16 · (1) and 0 = 10 · 0 + 16 · 0.

The integer 4 is also a linear combination of a and b since 4 = 10(2) + 16(−1). Further-
more, 2 is a linear combination of a and b since 2 = 10(−3) + 16(2). On the other hand,
no odd integer can be a linear combination of a and b since if n is a linear combination
of a and b, then there exist integers x and y such that

n = ax + by = 10x + 16y = 2(5x + 8y).

Since 5x + 8y is an integer, n is even. Consequently, 2 is the least positive integer that
is a linear combination of 10 and 16. Curiously enough, gcd(10, 16) = 2. We now show
that this observation is no coincidence. Again, the Well-Ordering Principle will prove to
be useful.
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Theorem 12.7 Let a and b be integers that are not both 0. Then gcd(a, b) is the least positive integer
that is a linear combination of a and b.

Proof Let S denote the set of all positive integers that are linear combinations of a and b, that
is,

S = {ax + by : x, y ∈ Z and ax + by > 0}.
First we show that S is nonempty. By assumption, at least one of a and b is nonzero; so
a · a + b · b = a2 + b2 > 0. Thus, a · a + b · b ∈ S and, as claimed, S �= ∅.

Since S is a nonempty subset of N, it follows by the Well-Ordering Principle that S
contains a least element, which we denote by d. Thus, there exist integers x0 and y0 such
that d = ax0 + by0. We now show that d = gcd(a, b). Applying the Division Algorithm
when a is divided by d, we have a = dq + r, where 0 ≤ r < d. Consequently,

r = a − dq = a − q(ax0 + by0) = a(1 − qx0) + b(−qy0),

that is, r is a linear combination of a and b. If 0 < r < d, then necessarily r ∈ S, which
would contradict the fact that d is the least element in S. Therefore r = 0, which implies
that d | a. By a similar argument, it follows that d | b and so d is a common divisor of a
and b.

It remains to show that d is the greatest common divisor of a and b. Let c be a
positive integer that is also a common divisor of a and b. By Theorem 12.2 (iii), c divides
every linear combination of a and b and so c divides d = ax0 + by0. Because c and d are
positive and c | d, it follows that c ≤ d and therefore d = gcd(a, b).

PROOF ANALYSIS The proof of Theorem 12.7 illustrates a common proof technique involving divisibility of
integers. At one point of the proof, we wanted to show that d | a. A common method used
to show that one integer d divides another integer a is to apply the Division Algorithm
and divide a by d, obtaining a = dq + r, where 0 ≤ r < |d| or, if d > 0, then 0 ≤ r < d.
The goal then is to show that r = 0. �

There is another characterization of the greatest common divisor of two integers, not
both 0, that is useful to know. This characterization provides an alternative definition of
the greatest common divisor, which, in fact, is used as the definition on occasion.

Theorem 12.8 Let a and b be two integers, not both 0. Then d = gcd(a, b) if and only if d is that positive
integer which satisfies the following two conditions:

(1) d is a common divisor of a and b;

(2) if c is any common divisor of a and b, then c | d.

Proof First, assume that d = gcd(a, b). We show that d satisfies (1) and (2). By definition, d sat-
isfies (1); so it only remains to show that d satisfies (2). Let c be an integer such that c | a
and c | b. Since d = gcd(a, b), there exist integers x0 and y0 such that d = ax0 + by0.
Since c | a and c | b, it follows by Theorem 12.2(iii) that c divides ax0 + by0 = d. There-
fore, d satisfies (2).

For the converse, assume that d is a positive integer satisfying properties (1) and (2).
We show that d = gcd(a, b). Since d is already a common divisor of a and b, it suffices
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to show that d is the greatest common divisor of a and b. Let c be any positive integer
that is a common divisor of a and b. Since d satisfies (2), c | d. Since c and d are both
positive, it follows by Theorem 12.3(ii) that c ≤ d, which implies that d = gcd(a, b).

SECTION 12.3 EXERCISES

12.32. Give an example of a set S of four (distinct) positive integers such that the greatest common divisor of all
six pairs of elements of S is 6.

12.33. Give an example of a set S of four (distinct) positive integers such that the greatest common divisors of all
six pairs of elements of S are six distinct positive integers.

12.34. Prove for a ∈ Z and n ∈ N that gcd(a, a + n) | n.

12.35. Let a and b be two integers, not both 0, where gcd(a, b) = d. Prove for a positive integer k that
gcd(ka, kb) = kd.

12.36. For positive integers a, b and c, the greatest common divisor gcd(a, b, c) of a, b and c is the largest
positive integer that divides all of a, b and c. Let d = gcd(a, b, c), e = gcd(a, b) and f = gcd(e, c). Prove
that d = f .

12.4 THE EUCLIDEAN ALGORITHM

Although we know the definition of the greatest common divisor d of two integers a
and b, not both 0, and two characterizations, none of these is especially useful in com-
puting d. For this reason, we describe an algorithm for determining d = gcd(a, b) that
is attributed to the famous mathematician Euclid, best known for his work in geome-
try. First we note that if b = 0, then a �= 0 and gcd(a, b) = gcd(a, 0) = |a|. Hence, we
may assume that a and b are nonzero. Furthermore, since gcd(a, b) = gcd(a,−b) =
gcd(−a, b) = gcd(−a,−b), we can assume that a and b are both positive. In general
then, we may assume that 0 < a ≤ b. The procedure for computing d = gcd(a, b), which
we are about to describe and which is called the Euclidean Algorithm, makes use of
repeated applications of the Division Algorithm and the following lemma.

Lemma 12.9 Let a and b be positive integers. If b = aq + r for some integers q and r, then gcd(a, b) =
gcd(r, a).

Proof Let d = gcd(a, b) and e = gcd(r, a). We show that d = e. First note that b = aq + r =
aq + r · 1, that is, b is a linear combination of a and r. Since e = gcd(r, a), it follows that
e | a and e | r. By Theorem 12.2 (iii), e | (aq + r · 1) and so e | b. Hence, e is a common
divisor of a and b. Because d = gcd(a, b), we have e ≤ d.

Since b = aq + r, we can write r = b − aq = b · 1 + a(−q), and so r is a linear
combination of a and b. From the fact that d = gcd(a, b), we obtain d | (b · 1 + a(−q));
that is, d | r. So, d is a common divisor of r and a. Since e = gcd(r, a), it follows that
d ≤ e. Thus, e = d.

We are now prepared to describe the Euclidean Algorithm. We begin with two in-
tegers a and b, where 0 < a ≤ b. By the Division Algorithm,

b = aq1 + r1, where 0 ≤ r1 < a.
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By Lemma 12.9, gcd(a, b) = gcd(r1, a). So, if r1 = 0, then gcd(a, b) = gcd(0, a) =
a. Hence, we may assume that r1 �= 0 and apply the Division Algorithm to r1 and a,
obtaining

a = r1q2 + r2, where 0 ≤ r2 < r1.

At this point, we have gcd(a, b) = gcd(r1, a) = gcd(r2, r1) and 0 ≤ r2 < r1 < a. If
r2 = 0, then gcd(a, b) = gcd(r1, a) = gcd(0, r1) = r1. By now, we should see the use-
fulness of Lemma 12.9 and also what we mean by repeated applications of the Division
Algorithm. We continue this process and obtain the following sequence of equalities and
inequalities:

b = aq1 + r1 0 < r1 < a
a = r1q2 + r2 0 ≤ r2 < r1

...
...

rk−1 = rkqk+1 + rk+1 0 ≤ rk+1 < rk
...

...

By Lemma 12.9,

gcd(a, b) = gcd(r1, a) = gcd(r2, r1) = · · · = gcd(rk+1, rk ) = · · ·
and · · · < rk+1 < rk < · · · < r2 < r1 < a. Since these remainders are nonnegative, the
strictly decreasing sequence r1, r2, . . . of remainders contains at most a terms. Let rn−1

be the last nonzero remainder. Thus, rn = 0. We then have:

b = aq1 + r1 where 0 ≤ r1 < a (12.4)

a = r1q2 + r2 where 0 ≤ r2 < r1

...

rn−4 = rn−3qn−2 + rn−2 where 0 ≤ rn−2 < rn−3

rn−3 = rn−2qn−1 + rn−1 where 0 ≤ rn−1 < rn−2

rn−2 = rn−1qn + 0

and we know that

gcd(a, b) = gcd(r1, a) = gcd(r2, r1) = · · · = gcd(rn−1, rn−2) = gcd(0, rn−1) = rn−1.

The Euclidean Algorithm can now be described. We start with two integers a and b,
where 0 < a ≤ b. If a | b, then gcd(a, b) = a; while if a � b, then we apply the Divi-
sion Algorithm repeatedly until a remainder of 0 is obtained. In this latter case, the last
nonzero remainder is then gcd(a, b).

Let’s see how the Euclidean Algorithm works in practice.

Example 12.10 Use the Euclidean Algorithm to determine d = gcd(374, 946).

Solution Dividing 946 by 374, we find that

946 = 374 · 2 + 198.

Now, dividing 374 by 198, we have

374 = 198 · 1 + 176.
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Continuing in this manner, we obtain

198 = 176 · 1 + 22

176 = 22 · 8 + 0.

So gcd(374, 946) = 22. �

Given integers a and b, not both 0, we know that there exist integers s and t such
that

gcd(a, b) = as + bt.

We now describe an algorithm for finding such integers s and t, using the notation in
the calculations done after the proof of Lemma 12.9. Since gcd(a, b) = rn−1, our goal
is to find integers s and t such that rn−1 = as + bt. We begin with the equation rn−3 =
rn−2qn−1 + rn−1 and rewrite it in the form

rn−1 = rn−3 − rn−2qn−1. (12.5)

Next, using equations (12.4), we solve for rn−2, obtaining

rn−2 = rn−4 − rn−3qn−2.

Now substituting this expression for rn−2 into equation (12.5), we obtain

rn−1 = rn−3 − qn−1(rn−4 − rn−3qn−2)

= (1 + qn−1qn−2)rn−3 + (−qn−1)rn−4.

At this point, rn−1 is represented as a linear combination of rn−3 and rn−4. Notice that
rn−2 no longer appears in the expression. As we continue with this backward substitution
method, we eliminate the remainders rn−3, rn−4, . . . , r2, r1 one at a time and eventually
arrive at an equation of the form rn−1 = as + bt.

Example 12.11 For a = 374 and b = 946, find integers s and t such that as + bt = gcd(a, b).

Solution Using the computations from Example 12.10, we have

22 = 198 − 176 · 1 = 198 · 1 + 176 · (−1)

176 = 374 − 198 · 1 = 374 · 1 + 198 · (−1)

198 = 946 − 374 · 2 = 946 · 1 + 374 · (−2).

Therefore,

22 = 198 · 1 + 176 · (−1)

= 198 · 1 + [374 · 1 + 198 · (−1)] · (−1)

= 198 · 1 + 374 · (−1) + 198 · 1

= 198 · 2 + 374 · (−1)

= [946 · 1 + 374 · (−2)] · 2 + 374 · (−1)

= 946 · 2 + 374 · (−4) + 374 · (−1)

= 946 · 2 + 374 · (−5).

Hence, s = −5 and t = 2. �
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The integers s and t that we have just found are not unique. Indeed, if gcd(a, b) = d
and d = as + bt, then d = a(s + b) + b(t − a) as well.

SECTION 12.4 EXERCISES

12.37. Use the Euclidean Algorithm to find the greatest common divisor for each of the following pairs of
integers:

(a) 51 and 288 (b) 357 and 629 (c) 180 and 252.

12.38. Determine integers x and y such that (see Exercise 12.37):

(a) gcd(51, 288) = 51x + 288y
(b) gcd(357, 629) = 357x + 629y
(c) gcd(180, 252) = 180x + 252y.

12.39. Let a and b be integers, not both 0. Show that there are infinitely many pairs s, t of integers such that
gcd(a, b) = as + bt.

12.40. Let a, b ∈ Z, where not both a and b are 0, and let d = gcd(a, b). Show that n is a linear combination of a
and b if and only if d | n.

12.41. An integer n > 1 has the properties that n | (35m + 26) and n | (7m + 3) for some integer m. What is n?

12.42. Let a, b ∈ Z, where not both a and b are 0. Prove that if d = gcd(a, b), a = a1d and b = b1d, then
gcd(a1, b1) = 1.

12.43. Prove the following: Let a, b, c, m, n ∈ Z, where m, n ≥ 2. If a ≡ b (mod m) and a ≡ c (mod n) where
d = gcd(m, n), then b ≡ c (mod d).

12.44. In Exercise 12.36, it was shown for positive integers a, b and c that gcd(a, b, c) = gcd(gcd(a, b), c). Show
that there are integers x, y and z such that gcd(a, b, c) = ax + by + cz.

12.45. Suppose that the Euclidean Algorithm is being applied to determine gcd(a, b) for two positive integers a
and b. If, at some stage of the algorithm, we arrive at a remainder ri that is a prime number, then what
conclusion can be made about gcd(a, b)?

12.5 RELATIVELY PRIME INTEGERS

For two integers a and b, not both 0, we know that if gcd(a, b) = 1, then there exist
integers s and t such that as + bt = 1. What may be surprising is that the converse holds
in this special case as well.

Theorem 12.12 Let a and b be integers, not both 0. Then gcd(a, b) = 1 if and only if there exist integers
s and t such that 1 = as + bt.

Proof If gcd(a, b) = 1, then by Theorem 12.7 there exist integers s and t such that as + bt = 1.
We now consider the converse. Let a and b be integers, not both 0, for which there exist
integers s and t such that as + bt = 1. By Theorem 12.7, gcd(a, b) is the smallest positive
integer that is a linear combination of a and b. Since 1 is a linear combination of a and
b, it follows that gcd(a, b) = 1.
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Two integers a and b, not both 0, are called relatively prime if gcd(a, b) = 1. By
Theorem 12.12 then, two integers a and b are relatively prime if and only if 1 is a linear
combination of a and b. This fact is extremely useful, as we are about to see.

If a, b and c are integers such that a | bc, then there is no reason to believe that
a | b or a | c. For example, let a = 4, b = 6 and c = 2. Then 4 | 6 · 2 but 4 � 6 and 4 � 2.

However, if a and b are relatively prime, then we can draw another conclusion. The
following result is often called Euclid’s Lemma.

Theorem to
Prove

(Euclid’s Lemma) Let a, b and c be integers, where a �= 0. If a | bc and gcd(a, b) = 1,
then a | c.

PROOF STRATEGY If we use a direct proof, then we assume that a | bc and gcd(a, b) = 1. In order to show
that a | c, we need to show that c can be expressed as ar for some integer r. Because
a | bc, we know that bc = aq for some integer q. Also, because gcd(a, b) = 1, there are
integers s and t such that as + bt = 1. If we were to multiply as + bt = 1 by c, then
we would have c = acs + bct. However, bc = aq and we could factor a from acs + bct.
This is the plan. �

Theorem 12.13 (Euclid’s Lemma) Let a, b and c be integers, where a �= 0. If a | bc and gcd(a, b) = 1,
then a | c.

Proof Since a | bc, there is some integer q such that bc = aq. Since a and b are relatively prime,
there exist integers s and t such that 1 = as + bt. Thus,

c = c · 1 = c(as + bt ) = a(cs) + (bc)t = a(cs) + (aq)t = a(cs + qt ).

Since cs + qt is an integer, a | c.

Euclid’s Lemma is of special interest when the integer a is a prime.

Corollary 12.14 Let b and c be integers and p a prime. If p | bc, then either p | b or p | c.

Proof If p divides b, then the corollary is proved. Suppose then that p does not divide b. Since
the only positive integer divisors of p are 1 and p, it follows that gcd(p, b) = 1. Thus,
by Euclid’s Lemma, p | c and the proof is complete.

The preceding corollary can be extended to the case when a prime p divides any
product of integers.

Corollary 12.15 Let a1, a2, . . . , an, where n ≥ 2, be integers and let p be a prime. If

p | a1 a2 · · · an,

then p | ai for some integer i (1 ≤ i ≤ n).
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Proof We proceed by induction. For n = 2, this is simply a restatement of Corollary 12.14. As-
sume then that if a prime p divides the product of k integers (k ≥ 2), then p divides at least
one of the integers. Now let a1, a2, . . . , ak+1 be k + 1 integers, where p | a1a2 · · · ak+1.
We show that p | ai for some i (1 ≤ i ≤ k + 1). Let b = a1a2 · · · ak. So p | bak+1. By
Corollary 12.14, either p | b or p | ak+1. If p | ak+1, then the proof is complete. Other-
wise, p | b, that is, p | a1a2 · · · ak. However, by the induction hypothesis, p | ai for some
i (1 ≤ i ≤ k). In any case, p | ai for some i (1 ≤ i ≤ k + 1).

By the Principle of Mathematical Induction, if a prime p divides the product of any
n ≥ 2 integers, then p divides at least one of the integers.

There is another useful fact concerning relatively prime integers. Once again, we
will have occasion to use the result that whenever two integers a and b are relatively
prime, then 1 is a linear combination of a and b.

Theorem 12.16 Let a, b, c ∈ Z, where a and b are relatively prime nonzero integers. If a | c and b | c,
then ab | c.

Proof Since a | c and b | c, there exist integers x and y such that c = ax and c = by. Further-
more, since a and b are relatively prime, there exist integers s and t such that 1 = as + bt.
Multiplying by c and substituting, we obtain

c = c · 1 = c(as + bt ) = c(as) + c(bt ) = (by)(as) + (ax)(bt ) = ab(sy + xt ).

Since (sy + xt ) is an integer, ab | c.

By Theorem 12.16 then, if we wish to show that 12, say, divides some integer c, we
need only show that 3 | c and 4 | c since 12 = 3 · 4 and 3 and 4 are relatively prime.

SECTION 12.5 EXERCISES

12.46. (a) Let a, b, c ∈ Z such that a �= 0 and a | bc. Show that if gcd(a, b) �= 1, then a need not divide c.
(b) Let a, b, c ∈ Z such that a, b �= 0, a | c, and b | c. Show that if gcd(a, b) �= 1, then ab need not

divide c.

12.47. Use Corollary 12.14 to prove that
√

3 is irrational.

12.48. (a) Prove for every pair p, q of distinct primes that
√

pq is irrational.
(b) Prove for every pair p, q of distinct primes that

√
p + √

q is irrational.

12.49. Let p be a prime and let n ∈ Z, where n ≥ 2. Prove that p1/n is irrational.

12.50. Let n ∈ N. Prove or disprove each of the following:

(a) 2n and 4n + 3 are relatively prime.
(b) 2n + 1 and 3n + 2 are relatively prime.

12.51. (a) Prove that every two consecutive odd positive integers are relatively prime.
(b) State and prove a generalization of the result in (a).

12.52. Prove that if p ≥ 2 is an integer with the property that for every pair b, c of integers p | bc implies that
p | b or p | c, then p is prime. (This result is related to Corollary 12.14.)

12.53. Prove that if p and q are primes with p ≥ q ≥ 5, then 24 | (p2 − q2).
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12.54. Recall that a triple (a, b, c) of positive integers such that a2 + b2 = c2 is called a Pythagorean triple. A
Pythagorean triple (a, b, c) is called primitive if gcd(a, b) = 1. (In this case, it also happens that
gcd(a, c) = gcd(b, c) = 1.)

(a) Prove that if (a, b, c) is a Pythagorean triple, then (an, bn, cn) is a Pythagorean triple for every n ∈ N.
(b) In Exercise 4.13, it was shown that if (a, b, c) is a Pythagorean triple, then 3 | ab. Use this fact and

Theorem 12.16 to show that 12 | ab.
(c) Prove that if (a, b, c) is a primitive Pythagorean triple, then a and b are of opposite parity.

12.55. Prove the following: Let a, b, m, n ∈ Z, where m, n ≥ 2. If a ≡ b (mod m) and a ≡ b (mod n), where
gcd(m, n) = 1, then a ≡ b (mod mn).

12.56. Prove the following: Let a, b, c, n ∈ Z, where n ≥ 2. If ac ≡ bc (mod n) and gcd(c, n) = 1, then
a ≡ b (mod n).

12.57. For two integers a and b, not both 0, suppose that d = gcd(a, b). Then there exist integers x and y such that
d = ax + by, that is, d is a linear combination of a and b. This implies that d is also a linear combination
of x and y. Find a necessary and sufficient condition that d = gcd(x, y).

12.58. Suppose that the Euclidean Algorithm is being applied to determine gcd(a, b) for two positive integers a
and b. If, at some stage of the algorithm, we arrive at remainders ri and ri+1 for which ri+1 = ri − 1, then
what conclusion can be made about gcd(a, b)?

12.59. (a) Let a and b be integers different from 0 where d = gcd(a, b) and let c ∈ Z. Prove that if a | c and b | c,
then ab | cd.

(b) Show that Theorem 12.16 follows as a corollary to the result in (a).

12.60. Prove that there are infinitely many positive integers n such that each of n, n + 1 and n + 2 can be
expressed as the sum of the squares of two nonnegative integers. (For example, observe that 8 = 22 + 22,
9 = 32 + 02, 10 = 32 + 12 and 80 = 82 + 42, 81 = 92 + 02 and 82 = 92 + 12 and that 3 = 2 + 1 and
9 = 8 + 1.)

12.61. (a) Give an example of integers m, n ≥ 5 such that x ∩ y �= ∅ for each x ∈ Zm and y ∈ Zn.
(b) State a conjecture that provides conditions under which integers m, n ≥ 2 have the property that

x ∩ y �= ∅ for each x ∈ Zm and y ∈ Zn.

12.6 THE FUNDAMENTAL THEOREM OF ARITHMETIC

It is a basic divisibility fact that every integer can be expressed as a product of primes.
This fact is made precise in a famous theorem in number theory. Its proof serves as one
of the most interesting uses of the Strong Principle of Mathematical Induction.

Theorem 12.17 (Fundamental Theorem of Arithmetic) Every integer n ≥ 2 is either prime or can be
expressed as a product of primes, that is,

n = p1 p2 · · · pm,

where p1, p2, . . . , pm are primes. Furthermore, this factorization is unique except pos-
sibly for the order in which the factors occur.

Proof To show the existence of such a factorization, we employ the Strong Principle of Math-
ematical Induction. Since 2 is a prime, the statement is certainly true for n = 2.

For an integer k ≥ 2, assume that every integer i, with 2 ≤ i ≤ k, is either prime
or can be expressed as a product of primes. We show that k + 1 is either prime or can
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be expressed as a product of primes. Of course, if k + 1 is prime, then there is nothing
further to prove. We may assume, then, that k + 1 is composite. By Lemma 12.1, there
exist integers a and b such that k + 1 = ab, where 2 ≤ a ≤ k and 2 ≤ b ≤ k. Therefore,
by the induction hypothesis, each of a and b is prime or can be expressed as a product
of primes. In any case, k + 1 = ab is a product of primes.

By the Strong Principle of Mathematical Induction, every integer n ≥ 2 is either
prime or can be expressed as a product of primes.

It remains to show that such a factorization is unique. To do this, we proceed by
contradiction. Assume, to the contrary, that there is an integer n ≥ 2 that can be expressed
as a product of primes in two different ways, say

n = p1 p2 · · · ps = q1q2 · · · qt,

where in each factorization, the primes are arranged in nondecreasing order, that is,
p1 ≤ p2 ≤ · · · ≤ ps and q1 ≤ q2 ≤ · · · ≤ qt . Since the factorizations are different, there
must be a smallest positive integer r such that pr �= qr. In other words, if r ≥ 2, then
pi = qi for every i with 1 ≤ i ≤ r − 1. After canceling, we have

pr pr+1 · · · ps = qrqr+1 · · · qt . (12.6)

Consider the integer pr. Either s = r and the left side of (12.6) is exactly pr or s > r
and pr+1 pr+2 · · · ps is an integer that is the product of s − r primes. In either case,
pr | qrqr+1 · · · qt . Therefore, by Corollary 12.15, pr | q j for some j with r ≤ j ≤ t. Be-
cause q j is prime, pr = q j. Since qr ≤ q j, it follows that qr ≤ pr. By considering the
integer qr (instead of pr), we can show that pr ≤ qr. Therefore, pr = qr. But this
contradicts the fact that pr �= qr. Hence, as claimed, every integer n ≥ 2 has a unique
factorization.

An immediate consequence of Theorem 12.17 is stated next.

Corollary 12.18 Every integer exceeding 1 has a prime factor.

In fact, we can say a bit more.

Lemma 12.19 If n is a composite number, then n has a prime factor p such that p ≤ √
n.

Proof Since n is composite, we know that n = ab, where 1 < a < n and 1 < b < n. Assume,
without loss of generality, that a ≤ b. Then a2 ≤ ab = n and hence, a ≤ √

n. Since
a > 1, we know that a has a prime factor, say p. Because a is a factor of n, it follows
that p is a factor of n as well and p ≤ a ≤ √

n.

If an integer n ≥ 2 is expressed as a product q1q2 · · · qm of primes, then the primes
q1, q2, . . . , qm need not be distinct. Consequently, we can group equal prime factors and
express n in the form

n = pa1
1 pa2

2 · · · pak
k ,

where p1, p2, . . . , pk are primes such that p1 < p2 < · · · < pk and each exponent ai is
a positive integer. We call this the canonical factorization of n. From the Fundamental
Theorem of Arithmetic, every integer n ≥ 2 has a unique canonical factorization.
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For example, the canonical factorizations of 12, 210 and 1000 are 12 = 223, 210 =
2 · 3 · 5 · 7, and 1000 = 2353. Of course, it is relatively easy to determine whether a small
positive integer is prime or composite and, if it is composite, to express it as a product
of primes. We mention some tests for divisibility by certain integers. These may already
be known to you.

1. Divisibility by 2, 4 and other powers of 2:
An integer n is divisible by 2 if and only if n is even (or the last digit of n is
even). In fact, n is divisible by 4 if and only if the two-digit number consisting
of the last two digits of n is divisible by 4, the integer n is divisible by 8 if and
only if the three-digit number consisting of the last three digits of n is divisible
by 8, and so on. Therefore, the number 14220 is divisible by 4 since 20 is
divisible by 4 but it is not divisible by 8 since 220 is not divisible by 8.

2. Divisibility by 3 and 9:
An integer is divisible by 3 if and only if the sum of its digits is divisible by 3.
Indeed, an integer is divisible by 9 if and only if the sum of its digits is
divisible by 9. This procedure stops with 9, however; that is, it doesn’t extend
to 27. For example, the sum of the digits of 27 itself is not divisible by 27 but
certainly 27 is divisible by 27. The sum of the digits of the integer 4278 is 21,
which is divisible by 3 but not by 9. Consequently, 4278 is divisible by 3 but
not by 9. Clearly, 4278 is divisible by 2, but it is not divisible by 4 since 78 is
not divisible by 4. Thus, 4278 is divisible by 6 by Theorem 12.16.

3. Divisibility by 5:
An integer is divisible by 5 if and only if it ends in 5 or 0; that is, an integer is
divisible by 5 if and only if its last digit is divisible by 5.

4. Divisibility by 11:
Start with the first digit of n and sum alternate digits (every other digit).
Suppose that the resulting number is a. Then sum the remaining digits,
obtaining b. Then n is divisible by 11 if and only if a − b is divisible by 11.
For example, consider the number 71929. Observe that a = 7 + 9 + 9 = 25,
while b = 1 + 2 = 3. Since a − b = 25 − 3 = 22 is divisible by 11, the
number 71929 is divisible by 11. In fact, 71929 = 11 · 6539. However, since
(6 + 3) − (5 + 9) = −5 is not divisible by 11, the integer 6539 is not
divisible by 11; that is, 71929 is not divisible by 112 = 121.

Although there are tests for divisibility by other primes such as 7 (see Exercise 12.66)
and 13, none of these are sufficiently practical to merit inclusion here. If we apply the
tests listed above to the number n = 471240, then we find that n is divisible by 5, 8 (but
not 16), 9 and 11. Indeed, n = 5 · 8 · 9 · 11 · 119 = 5 · 8 · 9 · 11 · 7 · 17 = 23 · 32 · 5 · 7 ·
11 · 17.

We are now in a position to describe an infinite class of irrational numbers.

Theorem 12.20 Let n be a positive integer. Then
√

n is a rational number if and only if
√

n is an integer.

Proof Certainly, if
√

n is an integer, then
√

n is rational. Hence, we need only verify the con-
verse. Assume, to the contrary, that there exists some positive integer n such that

√
n

is a rational number but
√

n is not an integer. Hence,
√

n = a/b for some positive
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integers a and b. Furthermore, we may assume that a and b have no common factors,
that is, gcd(a, b) = 1. Since a/b is not an integer, b ≥ 2. Therefore, n = a2/b2 and so
a2 = nb2. By Corollary 12.18, b has a prime factor p. Thus, p | nb2 and so p | a2. By
Corollary 12.14, p | a. But then p | a and p | b, which contradicts our assumption that
gcd(a, b) = 1.

A consequence of this theorem is the following.

Corollary 12.21 If p is a prime, then
√

p is irrational.

Proof Assume, to the contrary, that there exists some prime p for which
√

p is rational. By
Theorem 12.20,

√
p = n for some integer n ≥ 2. Then p = n2. Because n2 is composite,

this is a contradiction.

Corollary 12.21 tells us that both
√

2 and
√

3 are irrational, which we have seen
often. Although our remarks imply that there are infinitely many primes, we have yet to
prove this. We do this now. Since our goal is to prove that the number of primes is not
finite, a proof by contradiction is the expected technique.

Theorem 12.22 The number of primes is infinite.

Proof Assume, to the contrary, that the number of primes is finite. Let P = {p1, p2, . . . , pn} be
the set of all primes. Let r = p1 p2 · · · pn and consider m = r + 1. Clearly, m ≥ 2. Since
1 = 1 · m + (−1)r is a linear combination of m and r, it follows by Theorem 12.12 that
m and r are relatively prime. Since every prime divides r, no prime divides m. This
contradicts Corollary 12.18.

Two primes p and q, where p < q, are called twin primes if q = p + 2. Necessarily,
twin primes are odd. For example, 5, 7 and 11, 13 are twin primes. Although we have just
verified that there are infinitely many primes, the number of twin primes is not known.

Conjecture
12.23

There are infinitely many twin primes.

If Conjecture 12.23 is true, then there are infinitely many distinct pairs p, q of primes
with q = p + 2. In particular, if one considers the sequence 3−2, 5−3, 7−5, 11−7,
13−11, 17−13, . . . of consecutive prime gaps (that is, 1, 2, 2, 4, 2, 4, . . .), then Conjec-
ture 12.23 states that this sequence has an infinite number of 2s. In 2013, Yitang Zhang
proved that this sequence contains an infinite number of terms less than 70,000,000
(a fact not known before). Since 2016, the number 70,000,000 has been reduced to 4680.

SECTION 12.6 EXERCISES

12.62. Find the smallest prime factor of each integer below:

(a) 539 (b) 1575 (c) 529 (d) 1601.

12.63. Find the canonical factorization of each of the following integers:

(a) 4725 (b) 9702 (c) 180625.
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12.64. Prove each of the following:

(a) Every prime of the form 3n + 1 is also of the form 6k + 1.
(b) If n is a positive integer of the form 3k + 2, then n has a prime factor of this form as well.

12.65. (a) Express each of the integers 4278 and 71929 as a product of primes.
(b) What is gcd(4278, 71929)?

12.66. Consider the periodic sequence 1, 3, 2,−1,−3,−2, 1, 3, 2,−1,−3,−2, . . . which we write in reverse
order:

. . . , −2 − 3,−1, 2, 3, 1,−2 − 3,−1, 2, 3, 1.

Next, consider the 8-digit positive integer n = a7a6a5a4a3a2a1a0 where each ai is a digit. It turns out that
7 | n if and only if

3 · a7 + 1 · a6 + (−2) · a5 + (−3) · a4 + (−1) · a3 + 2 · a2 + 3 · a1 + 1 · a0

is a multiple of 7. Use this to determine which of the following are multiples of 7:

(a) 56 (b) 821,317 (c) 31,142,524.

12.67. In the proof of Theorem 12.22, it was proved that there are infinitely many primes by assuming that there
were finitely many primes, say p1, p2, . . . , pn, where p1 < p2 < · · · < pn. The number
m = p1 p2 · · · pn + 1 was then considered to obtain a contradiction. Show that an alternative proof of
Theorem 12.22 can be obtained by considering pn! + 1 instead of m.

12.68. Determine a necessary and sufficient condition that pa1
1 pa2

2 · · · pak
k is the canonical factorization of the

square of some integer n ≥ 2.

12.69. For two integers m, n ≥ 2, let p1, p2, . . . , pr be those distinct primes such that each pi (1 ≤ i ≤ r) divides
at least one of m and n. Then m and n can be expressed as m = pa1

1 pa2
2 · · · par

r and n = pb1
1 pb2

2 · · · pbr
r where

the integers ai and bi (1 ≤ i ≤ r) are nonnegative. Let ci = min(ai, bi) for 1 ≤ i ≤ r. Prove that
gcd(m, n) = pc1

1 pc2
2 · · · pcr

r .

12.7 CONCEPTS INVOLVING SUMS OF DIVISORS

We close this chapter by discussing some curious concepts involving sums of divisors
of an integer. For an integer n ≥ 2, a positive integer a is called a proper divisor of n if
a | n and a < n. Thus, the proper divisors of 6 are 1, 2 and 3, while the proper divisors
of 28 are 1, 2, 4, 7 and 14. Note also that

1 + 2 + 3 = 6 and 1 + 2 + 4 + 7 + 14 = 28.

A positive integer n ≥ 2 is called perfect if the sum of its proper divisors is n. Hence,
6 and 28 are perfect integers – indeed, they are the two smallest perfect integers. The
third smallest perfect integer is 496. The largest prime divisors of 6, 28 and 496 are
3, 7 and 31, respectively. Summing the integers from 1 to each of these primes yields
possibly unexpected results:

1 + 2 + 3 = 6

1 + 2 + 3 + 4 + 5 + 6 + 7 = 28

1 + 2 + · · · + 31 = 496.
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The integers 6, 28 and 496 can also be expressed as

6 = 21(22 − 1), 28 = 22(23 − 1) and 496 = 24(25 − 1).

In fact, Euclid, the famous geometer who lived more than 2000 years ago, showed that
whenever 2p − 1 is a prime, then 2p−1(2p − 1) is a perfect integer. During the 18th cen-
tury the brilliant Swiss mathematician Leonhard Euler proved that every even perfect
integer is of the form 2p−1(2p − 1) where 2p − 1 is a prime. Prime numbers of the form
2p − 1 are referred to as Mersenne primes. As of January 2016, 49 Mersenne primes
were known and therefore 49 even perfect integers were known.

Much mystery surrounds perfect numbers. Are there any odd perfect numbers?
No one knows. Are there infinitely many even perfect numbers? No one knows that
either.

Let’s consider the first few primes — the first seven to be exact: 2, 3, 5, 7, 11, 13, 17.
The 1st, 2nd, 4th and 7th primes are 2, 3, 7 and 17 and the remaining primes (the 3rd, 5th
and 6th) are 5, 11 and 13. If we add the integers 1, 2, 4 and 7, we get the same result as
when we add 3, 5 and 6, namely, 1 + 2 + 4 + 7 = 3 + 5 + 6 = 14. That is, it is possible
to partition the first seven positive integers into two sets such that the sums of the integers
in each set are the same. While this fact may not appear to be anything special, it is also
a fact that summing the primes that correspond to these two sets of integers also gives
the same result:

2 + 3 + 7 + 17 = 5 + 11 + 13 = 29.

While the sums of these primes are equal, it is impossible for the products of these
primes, namely 2 · 3 · 7 · 17 and 5 · 11 · 13, to be equal. This is a consequence, of course,
of the Fundamental Theorem of Arithmetic. On the other hand, these products are sur-
prisingly close since

2 · 3 · 7 · 17 = 714 and 5 · 11 · 13 = 715.

The serious baseball fan will recognize these numbers. For years, the number 714 stood
as the record for home runs in a career. This record was held by Babe Ruth. However,
this record was broken in 1974 when Hank Aaron hit his 715th home run.

Two consecutive integers n, n + 1 are called Ruth-Aaron pairs of integers if the
sums of their prime divisors are equal. Thus, 714 and 715 is a Ruth-Aaron pair, as are
5 and 6. Although such pairs of integers may appear to be rare, the famous Hungarian
mathematician Paul Erdős proved that there are, in fact, infinitely many Ruth-Aaron
pairs of integers.

SECTION 12.7 EXERCISES

12.70. Let k be a positive integer.

(a) Prove that if 2k − 1 is prime, then k is prime.
(b) Prove that if 2k − 1 is prime, then n = 2k−1(2k − 1) is perfect.
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12.71. Recall, for a real number r, that the floor �r� of r is the greatest integer less than or equal to r. The greatest
number of distinct positive integers whose sum is 5 is 2 (5 = 1 + 4 = 2 + 3), while the greatest number of
distinct positive integers whose sum is 8 is 3 (8 = 1 + 2 + 5 = 1 + 3 + 4). Prove that the maximum
number of distinct positive integers whose sum is the positive integer n is �(

√
1 + 8n − 1)/2�.

The Chapter
Presentation for
Chapter 12 can be
found at
goo.gl/WbsS76

Chapter 12 Supplemental Exercises

12.72. Evaluate the proposed solution of the following problem.

Prove or disprove the following statement:

There do not exist three integers n, n + 2 and n + 4, all of which are primes.

Solution This statement is true.

Proof Assume, to the contrary, that there exist three integers n, n + 2 and n + 4,
all of which are primes. We can write n as 3q, 3q + 1 or 3q + 2, where q ∈ Z. We
consider these three cases.

Case 1. n = 3q. Then 3 | n and so n is not prime. This is a contradiction.

Case 2. n = 3q + 1. Then n + 2 = 3q + 3 = 3(q + 1). Since q + 1 is an integer,
3 | (n + 2) and so n + 2 is not prime. Again, we have a contradiction.

Case 3. n = 3q + 2. Hence, we have n + 4 = 3q + 6 = 3(q + 2). Since q + 2 is an
integer, 3 | (n + 4) and so n + 4 is not prime. This produces a contradiction.

12.73. An integer a ≥ 2 is defined to be lucky if f (n) = n2 − n + a is prime for every
integer n with 1 ≤ n ≤ a − 1. It is known that (1) 41 is lucky and (2) only nine other
integers a ≥ 2 are lucky.

(a) Prove that if a is a lucky integer, then a is prime.
(b) Give an example of three other lucky integers.
(c) If a is a lucky integer, what can be said about f (a)?

12.74. Prove that log2 3 is irrational.

12.75. State and prove a more general result than that given in Exercise 12.74.

12.76. Given below is an incomplete result with an incomplete proof. This result is
intended to determine all twin primes (primes of the form p and q = p + 2) such
that pq − 2 is also prime.

Result Let p and q = p + 2 be two primes. Then pq − 2 is prime if and only if
(complete this sentence).

Proof Let p and q = p + 2 be two primes such that pq − 2 is also prime. Since p
and p + 2 are both primes, it follows that p is odd. By the Division Algorithm, we
can write p = 3k + r, where k ∈ Z and 0 ≤ r ≤ 2. Since p is an odd prime, k ≥ 1.
We consider three cases for p, depending on the value of r.

Case 1. p = 3k. Therefore, p = , q = and pq − 2 = .
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Case 2. p = 3k + 1. Hence, q = 3k + 3. Since k ≥ 1, it follows that q = 3(k + 1).
Therefore,

Case 3. p = 3k + 2. Then q = 3k + 4. Thus,

12.77. Exercise 12.76 should suggest another exercise to you. State a result related to
Exercise 12.76 and give a proof of this result.

12.78. Assume that each positive rational number is expressed as m/n, where m, n ∈ N
and m and n are relatively prime. A function f : Q+ → N is defined by
f (m/n) = 2m3n.

(a) Prove that f is one-to-one.
(b) According to the Schröder–Bernstein Theorem (Theorem 11.20), what

information about Q+ does the result in (a) provide?

12.79. We have seen in Section 12.7 that there is a partition of the set of the first seven
primes into two subsets such that the sums of the elements in these two subsets are
equal. Show that there is no such partition of the set of the first eight primes but
there is such a partition of the set of the first nine primes.

12.80. (a) Show that 5039 = 5040 − 1 is prime, while 5041 = 5040 + 1 is not prime.
(b) Show that, except for 5039, there is no prime between 5033 = 5040 − 7 and

5047 = 5040 + 7.

12.81. Let a0, a1, a2, . . . be a sequence of positive integers for which

(1) a0 = 1, (2) a2n+1 = an for n ≥ 0 and (3) a2n+2 = an + an+1 for n ≥ 0.

Prove that an and an+1 are relatively prime for every nonnegative integer n.

12.82. The decimal expansion of every positive integer n can be expressed as
n = akak−1 · · · a2a1a0, that is,

n = ak · 10k + ak−1 · 10k−1 + · · · + a2 · 102 + a1 · 10 + a0.

It was mentioned in Section 12.6 that 9 | n if and only if
9 | (ak + ak−1 + · · · + a2 + a1 + a0). For example, for the integer n = 32,751,
9 | (3 + 2 + 7 + 5 + 1) and so 9 | 32,751. Verify this by using the fact that
10 = 9 + 1 and for a positive integer r that 10r = (9 + 1)r = 9s + 1 for some
integer s.

12.83. Let A be the set of 2-element subsets of N and B the set of 3-element subsets of N.
Let f : A → B and g : B → A be functions defined by

f ({i, j}) = {i, j, i + j} and g({i, j, k}) = {2i, 3 j5k},
where i < j < k. With the aid of the functions f and g and possibly the Schröder –
Bernstein Theorem (Theorem 11.20 in Chapter 11), which of the following are we
able to conclude?

(a) |A| ≤ |B| (b) |B| ≤ |A| (c) |A| = |B| (d) Nothing.

12.84. Let p1, p2, p3, . . . be the primes, where 2 = p1 < p2 < p3 < · · ·. Let A be a
denumerable set, where A = {a1, a2, a3, . . .}. For any integer n ≥ 2, let An denote
the Cartesian product of n copies of A, that is, An is the set of ordered n-tuples of
elements of A. Define a function f : An → N by f ((ai1 , ai2 , . . . , ain )) =
pi1

1 pi2
2 · · · pin

n .

(a) Prove that f is injective.
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(b) Use (a) to show that An and A are numerically equivalent.
(c) For every two denumerable sets A and B and every two integers n, m ≥ 2, show

that An and Bm are numerically equivalent.

12.85. Let p1, p2, . . . , pn+1 denote the first n + 1 primes. Suppose that {U,V } is a partition
of the set S = {p1, p2, . . . , pn}, where U = {q1, q2, . . . , qs} and V = {r1, r2, . . . , rt}.
Prove that if M = q1q2 · · · qs + r1r2 · · · rt < p2

n+1, then M is a prime.

12.86. We have seen on several occasions (Exercise 12.4, for example) that 3 | (n3 − n) for
every integer n and so 3 | (n3 − n) for every positive integer n.

(a) Prove, in fact, that 6 | (n3 − n) for every positive integer n.
(b) Prove that if a and b are integers such that 6 | (a − b), then 6 | (an3 − bn) for

every positive integer n.

12.87. We have seen that
√

p is irrational for every prime p and for every two distinct
primes p and q that

√
p + √

q is irrational (Exercise 12.48(b)). Prove, for every
three distinct primes p, q and r, that the number

√
p + √

q + √
r is irrational.

12.88. Determine all integer solutions to the system of congruences

x ≡ 3 (mod 5) x ≡ 4 (mod 7).
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13
Proofs in Combinatorics

Discrete mathematics is a branch of mathematics that has grown both in importance
and popularity in recent decades. This area deals more with integers than with real

numbers and involves subsets of a given set and arrangements of their elements. That part
of discrete mathematics concerning subsets and arrangements belongs to the area called
combinatorics. The primary goal of this chapter is to introduce some of the fundamental
concepts in combinatorics, to describe some proofs that occur in this area and to see
examples of how this subject can be used to solve a variety of problems.

13.1 THE MULTIPLICATION AND ADDITION PRINCIPLES

Many of the problems that occur in combinatorics can be analyzed and solved with the
aid of several principles, each of which is used to enumerate the number of possible
ways a given event can occur, subject to certain prescribed conditions. The principle
that occurs most often is the Multiplication Principle. Here, there is a certain procedure
to perform, which is accomplished by performing a number of tasks, one after another.

There are situations when a certain procedure consists of two tasks, where the sec-
ond task is performed only after the first task has been performed. We say that the pro-
cedure itself is performed when the two tasks are performed. If we know the number of
ways in which each of the two tasks can be performed, then the multiplication principle
tells us the number of ways that the procedure can be performed.

The
Multiplication

Principle

A procedure consists of two tasks. To perform this procedure, one performs the first task
followed by performing the second task. If there are n1 ways to perform the first task and
n2 ways to perform the second task after the first task has been performed, then there are
n1n2 ways to perform the procedure.

Let’s look at an example of this.

Example 13.1 A take-home exam for a course consists of selecting and solving one of four given prob-
lems (numbered 1, 2, 3, 4) and selecting and writing an essay on one of three given
topics (denoted by A, B,C). How many different such exams are possible for a student
in the course?

327
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Solution Let T1 denote the task of selecting one of the four given problems to solve and T2 the task
of selecting one of the three given topics on which to write an essay. By the Multiplication
Principle, the total number of different exams is 4 · 3 = 12. �

The answer to the question posed in Example 13.1 can also be given with the aid
of the diagram shown in Figure 13.1, called a tree diagram. We start at the top of the
diagram (called the root in this case) and proceed down along one of four possible paths
in the diagram according to which of the four possible problems we have selected to
solve. Once a decision is made as to which problem will be selected, there are then three
possible paths from there we could take, corresponding to the topics on which we choose
to write an essay. A completed path terminates at one of 12 possible locations.
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Figure 13.1 A tree diagram for Example 13.1

Despite the fact that the Multiplication Principle described above is for procedures
consisting of two tasks, this principle need not be restricted to two tasks. This suggests
the following more general principle.

The (General)
Multiplication

Principle

Performing a certain procedure consists of performing a sequence of m ≥ 2 tasks T1,
T2, . . ., Tm. If there are ni ways of performing Ti (1 ≤ i ≤ m) after any preceding tasks
have been performed, then the total number of ways of performing the procedure is
n1n2 · · · nm.

Proof We proceed by induction. By the Multiplication Principle stated earlier, the result holds
for n = 2. Assume that this principle is true for an integer k ≥ 2 and let P be the pro-
cedure that consists of performing k + 1 tasks T1, T2, . . ., Tk+1 in succession, where the
number of ways to perform Ti is ni for 1 ≤ i ≤ k + 1. Let P′ be the procedure that re-
sults from performing the first k tasks T1, T2, . . ., Tk in succession. Thus, P′ itself can
be considered as a task and P then as the procedure produced by performing Tk+1 af-
ter the task P′ is performed. By the induction hypothesis, the number of ways to per-
form P′ is n1n2 · · · nk and so the number of ways to perform P is (n1n2 · · · nk )nk+1.
The (General) Multiplication Principle then follows by the Principle of Mathematical
Induction.

When we refer to the Multiplication Principle, we are then referring to the (General)
Multiplication Principle, whether m = 2 or m > 2.

Let’s now look at two examples that address questions which can be answered with
the aid of the Multiplication Principle. A finite sequence is often referred to as a string
and the number of terms in a string is its length. A bit (or binary digit) is a 0 or 1 and a
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bit string is a string in which each term is a bit. An n-bit string is a bit string of length n.
Therefore, the strings 10110, 00100 and 01101 are all 5-bit strings.

Example 13.2 (a) How many n-bit strings are there?

(b) How many 10-bit strings are there?

(c) How many 8-bit strings begin and end with 0?

Solution (a) Since there are two possible choices for each term in an n-bit string, it
follows by the Multiplication Principle that the number of n-bit strings is 2n.

(b) 210 = 1024 by (a).

(c) Since there are two possible choices for each of the six interior terms in such
an 8-bit string, there are 26 = 64 possible 8-bit strings that begin and end
with 0. �

Example 13.3 In order for someone to access a certain website, we need to know both the person’s
username and password. Suppose that we were able to learn that the username of a person
is a 5-digit number where the 1st, 3rd and 5th digits are odd (namely, 1, 3, 5, 7 or 9) and
the remaining two digits are nonzero even digits (namely 2, 4, 6 or 8). Furthermore, we
found that the person’s password is a 5-letter word, where the 1st, 3rd and 5th letters are
vowels (where y as well as a, e, i, o, u are vowels in this case), while the remaining two
letters are consonants (non-vowels). How many times would we need to attempt to log
in to the website until we are guaranteed entrance into the website?

Solution Since there are five possible digits for the 1st, 3rd and 5th digits of the number and
four possible choices for the 2nd and 4th digits, the number of possible usernames by
the Multiplication Principle is 5 · 4 · 5 · 4 · 5 = 53 · 42 = 2000. Since 6 · 20 · 6 · 20 · 6 =
63 · 202 = 86,400, there are 86,400 possible passwords by the Multiplication Principle.
Once again, by the Multiplication Principle, the maximum number of attempts needed
to log in to the website to guarantee access to it is (2000)(86,400) = 172,800,000. �

There is another way to look at the Multiplication Principle – in terms of sets. Once
again, suppose that performing a certain procedure P consists of performing m ≥ 2 tasks
T1, T2, . . ., Tm in succession. Furthermore, suppose that there are ni ways to perform Ti

for each i with 1 ≤ i ≤ m. Let Ai denote the set of all possible ways of performing the
task Ti; so |Ai| = ni. Then the Cartesian product A1 × A2 × · · · × Am is the set of all
possible ways to perform P. In Section 1.6, it was mentioned that |A × B| = |A| · |B| for
every two finite sets A and B. From this, it follows for m ≥ 2 finite sets A1, A2, . . . , Am

with |Ai| = ni for 1 ≤ i ≤ m that

|A1 × A2 × · · · × Am| = |A1| · |A2| · · · · · |Am| = n1n2 · · · nm. (13.1)

(See Exercise 13.3.)
We now turn to a second principle that is encountered often in combinatorics. There

are occasions when performing a certain procedure consists of performing one of two
tasks that cannot be performed at the same time. Here, we say that the procedure is
performed if either task is performed. If we know the number of ways in which each of
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the two tasks can be performed, then the Addition Principle tells us of the number of
ways that such a procedure can be performed.

The Addition
Principle

A procedure consists of two tasks that cannot be performed simultaneously. To perform
this procedure, either of the two tasks is performed. If one of the tasks can be performed
in n1 ways and the other can be performed in n2 ways, then the number of ways of
performing this procedure is n1 + n2.

Answering the question in the example below can be done with the aid of the Ad-
dition Principle.

Example 13.4 Let S = {1, 2, . . . , 9}. Let T1 be the task of selecting an even number from S, let T2 be
the task of selecting an odd number from S and let T3 be the task of selecting an odd
prime from S.

(a) Let P1 be the procedure consisting of performing either of the tasks T1 and T2.
In how many ways can P1 be performed?

(b) Let P2 be the procedure consisting of performing either of the tasks T1 and T3.
In how many ways can P2 be performed?

Solution (a) Since there are four ways of performing the task T1 and five ways of
performing the task T2, it follows by the Addition Principle that there are
4 + 5 = 9 ways to perform the procedure P1.

(b) Once again, there are four ways of performing the task T1. Since the set S
contains three odd primes (namely 3, 5 and 7), there are three ways to
perform the task T3. By the Addition Principle, there are 4 + 3 = 7 ways to
perform the procedure P2. �

Analysis It may seem that there is a third possible question that could have been asked concerning
Example 13.4. That is, if we were to let P3 be the procedure consisting of performing
either of the tasks T2 and T3, then in how many ways can P3 be performed? While this
question is appropriate, it cannot be answered with the aid of the Addition Principle as
selecting any of the integers 3, 5 or 7 from S performs T2 and T3 simultaneously. In ad-
dition, if a new task T4 is defined as selecting a prime from S and P4 is the procedure
consisting of performing either of the tasks T1 and T4, then the number of ways that P4

can be performed also cannot be determined with the aid of the Addition Principle as
selecting the integer 2 from S shows that the tasks T1 and T4 can be performed simultane-
ously. In Section 13.2, we will see another principle that allows us not only to determine
the number of ways that P3 and P4 can be performed but allows us to answer an even
wider range of questions. �

As with the Multiplication Principle, there is a more general version of the Addition
Principle.

The (General)
Addition Principle

Suppose, for an integer m ≥ 2, that a procedure consists of performing one of m tasks
T1, T2, . . ., Tm, where it is impossible to perform any two of these tasks at the same time
and where the number of ways to perform Ti (1 ≤ i ≤ m) is ni. Then the total number of
ways to perform the procedure is n1 + n2 + · · · + nm.
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Proof Here too, we proceed by induction. The case where n = 2 is precisely the Addition Prin-
ciple described above. Assume that this principle is true for k tasks, where k ≥ 2, and let
P be the procedure that consists of performing one of k + 1 tasks T1, T2, . . ., Tk+1, where
it is impossible to perform any two of these tasks at the same time and where the num-
ber of ways to perform Ti is ni for 1 ≤ i ≤ k + 1. Let P′ be the procedure of performing
any one of the k tasks T1, T2, . . ., Tk. The procedure P′ can itself be considered a task.
By the induction hypothesis, the number of ways to perform P′ is n1 + n2 + · · · + nk.
Since P is performed by performing either of the two tasks P′ or Tk+1, the number of ways
to perform P is (n1 + n2 + · · · + nk ) + nk+1. The result then follows by the Principle of
Mathematical Induction.

As with the Multiplication Principle, when we refer to the Addition Principle, we
are referring to the (General) Addition Principle, whether m = 2 or m > 2.

Example 13.5 A student has a decision to make. She needs a minor for her academic program. To
complete a minor in computer science, she can take any two of three certain courses
next semester, which we denote by C1,C2 and C3. On the other hand, she could decide
on a minor in one of chemistry, physics, statistics or economics, in which case she would
take an approved course in one of these areas next semester. How many choices does
she have for next semester?

Solution If the student decides to complete a minor in computer science next semester, she has
three choices as she could take the courses C1,C2, the courses C1,C3 or the courses
C2,C3. On the other hand, if she decides on a different minor, she has four choices. By
the Addition Principle, she has a total of 3 + 4 = 7 choices. �

The Addition Principle can also be stated in terms of sets. Let P be a procedure
that consists of performing one of m ≥ 2 tasks T1, T2, . . ., Tm, no two of which can be
performed at the same time. If there are ni ways to perform Ti for 1 ≤ i ≤ m, then we saw
by the Addition Principle that the number of ways of performing P is n1 + n2 + · · · + nm.
For 1 ≤ i ≤ m, let Ai be the set of all possible ways of performing the task Ti. Then
|Ai| = ni. Since no two of the tasks T1, T2, . . ., Tm can be performed at the same time, the
sets A1, A2, . . . , Am are pairwise disjoint, that is, no two of these sets have any element
in common. Since the set of all possible ways of performing P is A1 ∪ A2 ∪ · · · ∪ Am, it
follows that the number of ways to perform P is

|A1 ∪ A2 ∪ · · · ∪ Am| = |A1| + |A2| + · · · + |An| = n1 + n2 + · · · + nm. (13.2)

(See Exercise 13.9.)

SECTION 13.1 EXERCISES

13.1. A traveler wishes to take a trip from city A to city F. To do this, the traveler must first proceed through
cities B, C, D in that order and then from D to F. If there are five ways to travel from A to B, four ways to
travel from B to C, two ways to travel from C to D and three ways to travel from D to F, then how many
ways are there for him to travel from A to F by one of these means of travel?
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13.2. A sequence (�1, �2, �3, �4) of four letters is to be chosen from the 26 letters of the alphabet in such a way
that �2 �= �1, �3 �= �2 and �4 �= �3. How many such sequences of four letters are there?

13.3. In Section 1.6, we saw that |A × B| = |A| · |B| for every two finite sets A and B.

(a) Prove by induction that for m ≥ 2 finite sets A1, A2, . . . , Am,

|A1 × A2 × · · · × Am| = |A1| · |A2| · · · · · |Am|.
(b) Determine |A1 × A2 × · · · × Am| if Ak = {1, 2, . . . , k} for k ∈ {1, 2, . . . , m}.

13.4. For a finite set A with n ≥ 2 elements, let Q be a partition of P (A) such that |X | = 2 for each X ∈ Q.
Determine |Q × Q|.

13.5. Let A be a set with m elements and B a set with n elements.

(a) How many functions are there from A to B?
(b) If n ≥ m, how many one-to-one functions are there from A to B?
(c) If m > n, how many one-to-one functions are there from A to B?

13.6. There are six ways to travel from Newark, New Jersey to Chicago by air, seven ways by car, three ways by
train and ten ways by bus. In how many ways is it possible to travel from Newark to Chicago by exactly
one of these means of travel?

13.7. A finite set A is partitioned into five subsets Ai (1 ≤ i ≤ 5). Furthermore, each subset Ai is then partitioned
into five subsets Ai j (1 ≤ j ≤ 5). If |Ai j| = i + j for 1 ≤ i ≤ 5 and 1 ≤ j ≤ 5, then what is |A|?

13.8. Define Ak = {2kb : b is a positive odd integer and 2kb | 1000} for 0 ≤ k ≤ 3.

(a) Determine |A0 ∪ A1 ∪ A2 ∪ A3|.
(b) In how many ways can a positive integer divisor m of 1000 be selected such that m is either odd or is a

multiple of 8?

13.9. Prove by induction that for n ≥ 2 finite pairwise disjoint sets A1, A2, . . . , An,

|A1 ∪ A2 ∪ · · · ∪ An| = |A1| + |A2| + · · · + |An|.
13.10. An outcome of rolling a pair of dice consists of an ordered pair (a, b), where each of a and b is one of

1, 2, . . . , 6. The result of an outcome is a + b.

(a) How many outcomes are possible in one roll of the two dice?
(b) In how many possible ways can a 4 or 7 result from a single roll of two dice?

13.11. When a coin is tossed, the outcome is either heads or tails. An experiment consists of tossing a coin n
times in succession and recording the resulting sequence of outcomes.

(a) How many such sequences are possible?
(b) Determine the number of ways in which heads can occur exactly once in such a sequence.
(c) In how many ways can heads occur exactly n − 1 times?
(d) In how many ways can heads occur at most once?

13.12. Let S = {0, 1, 3, 4, 5, 7, 9}.
(a) How many 4-digit numbers are there where each digit is an element of S and no digits are repeated?

(Note: The first digit of a 4-digit number is not 0.)
(b) How many of the numbers described in (a) are divisible by 5?
(c) How many of the numbers described in (a) are even?
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13.2 THE PRINCIPLE OF INCLUSION-EXCLUSION

Recall that in terms of sets, the Addition Principle states that for any n ≥ 2 pairwise
disjoint finite sets, the cardinality of the union of these sets is the sum of the cardinalities
of these sets. But what if the sets are not pairwise disjoint? Let’s first look at what happens
when we have two sets that are not (pairwise) disjoint.

The Principle
of Inclusion-

Exclusion (for
two sets)

For every two finite sets A and B, where |A| = a, |B| = b and |A ∩ B| = c,

|A ∪ B| = |A| + |B| − |A ∩ B| = a + b − c.

Proof First, c of the a elements in A belong to B as well. Similarly, c of the b elements in B
belong to A. Therefore, |A| + |B| not only counts the elements that belong to exactly one
of A and B, it counts the c elements belonging to both of these sets twice. Consequently,
|A ∪ B| = a + b − c.

We now illustrate this principle with the following two examples.

Example 13.6 Determine the number of integers in the set S = {1, 2, . . . , 25} that are divisible by 2
or 3.

Solution Let A and B be the subsets of S consisting of those integers in S divisible by 2 and 3,
respectively. The answer to this problem is therefore |A ∪ B|. The set A ∩ B then con-
sists of those integers in S that are divisible by both 2 and 3 and so by 6 (see The-
orem 12.16). Recall for a real number x that the floor 	x
 of x is the largest integer
less than or equal to x. Thus, the number of integers in S that are divisible by 2 is
	25/2
 = 12, that is, there are 12 even integers in S. Similarly, there are 	25/3
 =
8 integers in S divisible by 3 and 	25/6
 = 4 integers in S divisible by 6. By the
Principle of Inclusion-Exclusion, it follows that |A ∪ B| = |A| + |B| − |A ∩ B| =
12 + 8 − 4 = 16. �

Example 13.7 We saw in Example 13.2(b) that there are 210 = 1024 10-bit strings. How many of these
strings begin with three 0s or end with two 0s?

Solution Let A be the set of 10-bit strings beginning with three 0s and B the set of 10-bit strings
ending with two 0s. We seek the value |A ∪ B|. Since there are 25 10-bit strings beginning
with three 0s and ending with two 0s, it follows that |A ∩ B| = 25 and so |A ∪ B| =
|A| + |B| − |A ∩ B| = 27 + 28 − 25 = 128 + 256 − 32 = 352. �

If the sets A and B in the Principle of Inclusion-Exclusion are disjoint, then c = 0
and |A ∪ B| = |A| + |B| = a + b, which returns us to the Addition Principle in the case
of two sets. As expected, there is a general version of the Principle of Inclusion-
Exclusion.
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The Principle
of Inclusion-

Exclusion

For m ≥ 2 finite sets A1, A2, . . . , Am,

|A1 ∪ A2 ∪ · · · ∪ Am| = |A1| + |A2| + · · · + |Am| −
∑

1≤i< j≤m

|Ai ∩ Aj|

+
∑

1≤i< j<k≤m

|Ai ∩ Aj ∩ Ak| − · · ·

+ (−1)m+1|A1 ∩ A2 ∩ · · · ∩ Am|.

In the case of three finite sets A, B and C, this more general Principle of Inclusion-
Exclusion states that

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|. (13.3)

We give a proof of this special case.

Proof of the
Principle of

Inclusion-
Exclusion for

three sets

One of the distributive laws for sets (Theorem 4.22, 3(b)) states that

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Observing further that

(A ∩ B) ∩ (A ∩ C) = A ∩ B ∩ C,

we see that

|A ∪ B ∪ C| = |(A ∪ (B ∪ C)| = |A| + |B ∪ C| − |A ∩ (B ∪ C)|
= |A| + |B| + |C| − |B ∩ C| − |(A ∩ B) ∪ (A ∩ C)|
= |A| + |B| + |C| − |B ∩ C| − (|A ∩ B| + |A ∩ C| − |(A ∩ B) ∩ (A ∩ C)|)
= |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|.

Therefore, (13.3) holds.

The reason for the name of this principle is that to determine the number of elements
in A1 ∪ A2 ∪ · · · ∪ Am, we add (include) the number of elements in A1, A2, . . . , Am, sub-
tract (exclude) the number of elements in the intersections of all pairs of these sets and
then add back in the number of elements in the intersection of all triples of these sets,
and so on.

The following example is similar to Example 13.6 but uses the Principle of Inclusion-
Exclusion for three sets.

Example 13.8 Determine the number of integers in the set S = {1, 2, . . . , 100} that are divisible
by 2, 3 or 5.

Solution Let A, B and C be the subsets of S consisting of those integers in S divisible by 2, 3 and
5, respectively. The sets A ∩ B, A ∩ C and B ∩ C therefore consist of those integers in S
that are divisible by 6, 10 and 15, respectively, while A ∩ B ∩ C consists of the integers
in S divisible by 30. By the Principle of Inclusion-Exclusion,

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|
= 50 + 33 + 20 − 16 − 10 − 6 + 3 = 103 − 32 + 3 = 74. �
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In Section 13.1, we initially stated the Addition Principle as the number of ways
to perform a procedure consisting of tasks and then saw that this principle could be de-
scribed in terms of sets. While we have stated the Principle of Inclusion-Exclusion in
terms of sets and mentioned this is a more general principle than the Addition Princi-
ple, this principle could also be stated as a principle concerning the number of ways to
perform a procedure consisting of tasks to be performed. We illustrate this with the next
example, which deals with questions similar to what we saw in Example 13.4.

Example 13.9 Let S = {1, 2, . . . , 9}. Let T1 be the task of selecting an even number from S, T2 the task
of selecting an odd number from S, T3 the task of selecting an odd prime from S and T4

the task of selecting a prime from S.

(a) Let P′ be the procedure consisting of performing any of the tasks T1, T2 and
T3. In how many ways can P′ be performed?

(b) Let P′′ be the procedure consisting of performing any of the tasks T2, T3 and
T4. In how many ways can P′′ be performed?

Solution (a) The procedure P′ can be performed by selecting any integer from S. Thus,
the number of ways to perform P′ is |S| = 9. Also, there are four ways to
perform T1, five ways to perform T2 and three ways to perform T3. Further-
more, there are no ways to perform both T1 and T2, no ways to perform both
T1 and T3 and three ways to perform both T2 and T3. Finally, there are no ways
to perform T1, T2 and T3 simultaneously. It then follows by the Principle of
Inclusion-Exclusion that the number of ways to perform P′ is 4 + 5 + 3 − 0 −
0 − 3 + 0 = 9.

(b) The procedure P′′ can be performed by selecting any of the integers 1, 2,

3, 5, 7, 9 from S. Therefore, the number of ways to perform P′′ is |{1, 2, 3, 5,

7, 9}| = 6. We also answer this question using the Principle of Inclusion-
Exclusion. As in (a), there are five ways to perform T2 and three ways to per-
form T3. In addition, there are four ways to perform T4. There are three ways
to perform T2 and T3 simultaneously, three ways to perform both T2 and T4 and
three ways to perform both T3 and T4. Furthermore, there are three ways to per-
form T2, T3 and T4 simultaneously. Hence, the number of ways to perform P′′

is 5 + 3 + 4 − 3 − 3 − 3 + 3 = 6. �

Analysis The solution of Example 13.9 given above can also be expressed in terms of sets. If we
let S1 be the subset of S consisting of its even integers, S2 the subset of S consisting of
its odd integers, S3 the subset of S consisting of the odd primes in S and S4 the subset of
S consisting of the primes in S, then the number of ways that P′ can be performed is

|S1 ∪ S2 ∪ S3| = |S1| + |S2| + |S3| − |S1 ∩ S2| − |S1 ∩ S3| − |S2 ∩ S3| + |S1 ∩ S2 ∩ S3|
= 4 + 5 + 3 − 0 − 0 − 3 + 0 = 9;

while the number of ways that P′′ can be performed is

|S2 ∪ S3 ∪ S4| = |S2| + |S3| + |S4| − |S2 ∩ S3| − |S2 ∩ S4| − |S3 ∩ S4| + |S2 ∩ S3 ∩ S4|
= 5 + 3 + 4 − 3 − 3 − 3 + 3 = 6. �
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SECTION 13.2 EXERCISES

13.13. (a) How many (2n)-bit strings begin with or end with n 0s?
(b) How many (2n)-bit strings neither begin nor end with n 0s?

13.14. Let S = {1, 2, . . . , 110}. Observe that 110 = 2 · 5 · 11. Let A = {d ∈ S : 2 | d}, B = {d ∈ S : 5 | d} and
C = {d ∈ S : 11 | d}.
(a) Determine |A ∪ B ∪ C|.
(b) Determine the number of elements of S that are divisible by none of 2, 5 and 11.

13.15. Use the Principle of Inclusion-Exclusion to determine the number of bijective functions
f : {1, 2, 3} → {1, 2, 3} for which f (i) �= i for i = 1, 2, 3.

13.16. Let p, q and r be distinct primes and let n = pqr. Determine the number of elements in
S = {1, 2, . . . , pqr} that are divisible by at least one of p, q and r.

13.17. Let S = {1, 2, . . . , 100} and let T = { f : S → S} be the set of all functions f from S to S. Define
Ai = { f ∈ T : i /∈ range(T )}, where 1 ≤ i ≤ 100. Determine |A1 ∪ A2 ∪ A3|.

13.18. Determine the number of solutions of the equation x1 + x2 + x3 = 4 in which x1, x2 and x3 are
nonnegative integers and at least one of x1, x2 and x3 is 0.

13.19. Find the number of integers n with 1 ≤ n ≤ 1030 such that n is neither a perfect square, a perfect cube nor
a perfect fifth power.

13.20. Use the Principle of Inclusion-Exclusion to determine the number of positive integers in the set
S = {1, 2, . . . , 210} that are divisible by at least one of 2, 3, 5 and 7.

13.21. A coin is flipped five times, resulting in the sequence (a1, a2, a3, a4, a5), where ai (1 ≤ i ≤ 5) is either H
or T, depending on whether heads or tails occurs on the ith flip of the coin. Therefore, there are 25 = 32
such sequences. Let T1 be the task of obtaining H on the first and fifth flip of the coin, T2 the task of
obtaining H on the second, third and fourth flip of the coin and T3 the task of obtaining H on the first, third
and fifth flip of the coin. Let P be the procedure consisting of performing at least one of T1, T2 and T3. In
how many ways can P be performed?

13.3 THE PIGEONHOLE PRINCIPLE

Another principle that is encountered often in combinatorics concerns finite sets that are
partitioned into a specific number of subsets. Here, at least one of these subsets must
contain sufficiently many elements. The principle dealing with this is called the Pigeon-
hole Principle. The proof given below uses the fact that for a real number x, its ceiling
�x
, which is the smallest integer greater than or equal to x, satisfies the inequalities

�x
 − 1 < x ≤ �x
. (13.4)

The
Pigeonhole

Principle

If a set S with n elements is partitioned into k subsets, then at least one of these subsets
contains at least �n/k
 elements.

Proof Suppose that there is a partition P = {S1, S2, . . . , Sk} of S into k subsets such that every
subset contains less than �n/k
 elements. Then |Si| ≤ �n/k
 − 1 < n/k for each subset
Si (1 ≤ i ≤ k). By the Addition Principle,
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|S| = |S1 ∪ S2 ∪ · · · ∪ Sk| = |S1| + |S2| + · · · + |Sk|
≤ k(�n/k
 − 1) < k(n/k) = n,

which contradicts the fact that S has n elements.

The Pigeonhole Principle is believed to have been observed by the mathemati-
cian Johann Dirichlet in 1834 and for this reason, it is sometimes called Dirichlet’s
principle.

Example 13.10 Each output of a computer program is a randomly selected integer. How many integers
must be selected to guarantee that 10 of these integers will have the same remainder
when divided by 6?

Solution What we wish to do is to select n integers so that �n/6
 ≥ 10. Since we want n to be
the smallest positive integer satisfying this inequality, it follows that �(n − 1)/6
 < 10.
This implies that (n − 1)/6 = 9 and so n − 1 = 54. Hence, n = 55.

There is another way to look at this. An integer can have one of six different re-
mainders when divided by 6. If we happen to select 54 integers, nine of which have each
of the six different remainders when divided by 6, then this will not satisfy our require-
ment. Thus, we must select one more than this, that is, select 54 + 1 = 55 integers to
guarantee that 10 integers will have the same remainder when divided by 6. �

We now describe three results whose proofs use the Pigeonhole Principle. Recall
that every two consecutive integers are relatively prime.

Result 13.11 Let n ∈ N. Every (n + 1)-element subset of the 2n-element set A = {1, 2, . . . , 2n} con-
tains two relatively prime integers.

Proof Let Ai = {2i − 1, 2i} for i = 1, 2, . . . , n. Thus, {A1, A2, . . . , An} is a partition of A. Since
any (n + 1)-element subset B of A must contain both integers in some set Ai, the two
integers of B belonging to Ai are relatively prime.

Result 13.12 A total of 101 points P1, P2, . . . , P101 are placed in a 6 × 8 rectangle R. If a circle of
radius 1 with center Pi is constructed for each integer i with 1 ≤ i ≤ 101, then two of
these circles must intersect.

Proof Divide the rectangle R into 100 rectangles, where each is a 0.6 × 0.8 rectangle. The
length of a diagonal in each of these rectangles is 1. Since there are 101 points and 100
rectangles, it follows by the Pigeonhole Principle that two of the points Pi must lie in the
same rectangle and so the circles centered at these two points must intersect.

Result 13.13 Let a1, a2, . . . a2n be a sequence of 2n ≥ 2 positive integers. If
∑2n

i=1 ai = 3n − 1, then
there is some set of consecutive integers in this sequence whose sum is n.

Proof For j = 1, 2, . . . , n, let s j = ∑ j
i=1 ai. Then

1 ≤ s1 < s2 < · · · < s2n = 3n − 1.
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By adding n to each number in these inequalities, we have

n + 1 ≤ s1 + n < s2 + n < · · · < s2n + n = 4n − 1.

Since each of the 4n integers s1, s2, . . . , s2n, s1 + n, s2 + n, . . . , s2n + n belongs to the
set {1, 2, . . . , 4n − 1}, it follows by the Pigeonhole Principle that two of these 4n in-
tegers are equal. Because s1, s2, . . . , s2n are distinct as are s1 + n, s2 + n, . . . , s2n + n,
it follows that st = sr + n where 1 ≤ r < t ≤ 2n. Then st − sr = ar+1 + ar+2 + · · · +
at = n.

The following example is a variation of Example 13.10.

Example 13.14 Each output of a computer program is a randomly selected integer. How many integers
must be output to guarantee that either ten integers are multiples of 6, nine integers have
a remainder of 1 when divided by 6, eight have a remainder of 2, seven have a remainder
of 3, six have a remainder of 4 or five have a remainder of 5?

Solution Observe that the largest number of integers that can be output which would fail to satisfy
this requirement would occur if we select nine with a remainder 0, eight with a remainder
of 1, seven with a remainder of 2, six with a remainder of 3, five with a remainder of 4
and four with a remainder of 5. Thus, the minimum number of integers that can be output
to satisfy this requirement is 1 + (9 + 8 + 7 + 6 + 5 + 4) = 40. �

This example illustrates a principle that is more general than the Pigeonhole
Principle.

The Strong
Pigeonhole

Principle

If a set S with n elements is partitioned into k subsets S1, S2, . . ., Sk, where |Si| ≥ ni for
1 ≤ i ≤ k, then each subset of S with at least

1 +
k∑

i=1

(ni − 1)

elements contains at least ni elements of Si for some integer i with 1 ≤ i ≤ k.

Proof Assume, to the contrary, that S contains a subset T with at least 1 + ∑k
i=1(ni − 1) ele-

ments but T contains less than ni elements of Si for each integer i with 1 ≤ i ≤ k. Since
the set S is partitioned into the k subsets S1, S2, . . ., Sk, it follows that

1 +
k∑

i=1

(ni − 1) ≤ |T | ≤
k∑

i=1

(ni − 1).

This is a contradiction.

Example 13.15 A box contains k(k + 1)/2 balls, k ∈ N, each of which is colored one of the k colors
c1, c2, . . . , ck. In particular, there are i balls colored ci for i = 1, 2, . . . , k. What is the
minimum number of balls that must be removed from the box to guarantee that for some
color c j (1 ≤ j ≤ k), all balls colored c j are removed from the box?
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Solution Since there are ni = i balls colored ci for 1 ≤ i ≤ k, it follows by the Strong Pigeonhole
Principle that

1 +
k∑

i=1

(ni − 1) = 1 +
k∑

i=1

(i − 1) = 1 + k(k − 1)
2

= k2 − k + 2
2

balls must be removed from the box to guarantee that all balls colored c j for some j
(1 ≤ j ≤ k) are removed from the box.

Analysis Suppose, in the preceding example, that k = 3. Thus, the box contains six balls, one col-
ored red, say, two colored blue and three colored green. The Strong Pigeonhole Principle
tells us that four balls must be removed from the box to be certain that all balls of one
of these three colors have been removed. Suppose then that four balls are removed from
the box. If one of the four balls is red, then the one ball colored red has been removed.
If not, then each of the four balls is colored blue or green. If two blue balls are removed,
then all blue balls have been removed. On the other hand, if the two blue balls have not
been removed, then at most one blue ball is removed and so the remaining three balls,
all colored green, have been removed. �

SECTION 13.3 EXERCISES

13.22. How large must the population of a community be to guarantee that two of its residents have the same
three initials?

13.23. Suppose that the population of New York City exceeds seven million and that no person has more than one
million hairs on his or her head. Show that there are at least eight people with the same number of hairs on
their heads.

13.24. Prove that among any n + 1 people selected from a group of n women and their husbands, there is a
married couple.

13.25. (a) Prove that if 51 integers are selected from the set S = {1, 2, . . . , 100}, then there must be two among
these 51 selected integers such that one is divisible by the other.

(b) Show that the statement in (a) is false if only 50 integers are selected from the set S.

13.26. Prove that in a group of 20 people, there are at least two with the same number of acquaintances in the
group.

13.27. There are four cities where the distance in miles between every two cities is an integer. If the sum of the
distances between all pairs of cities is 103 miles, prove that there exist two cities where the distance
between them is at least 18 miles.

13.28. Prove that if 41 numbers are selected from the set S = {1, 2, . . . , 50}, then there must exist two among
those chosen whose sum is 80.

13.29. Let f : A → B be a function from a set A to a set B, where |A| = m, |B| = n and m, n ∈ N. Prove that if
m > kn for some k ∈ N, then some element of B is the image of at least k + 1 elements of A.

13.30. A point (a, b) in the plane is a lattice point if a and b are both integers. The midpoint of the line segment
joining two lattice points (a, b) and (c, d) is the point ((a + c)/2, (b + d)/2).

(a) Given five lattice points in the plane, prove that there must exist a pair among them such that the
midpoint of the line segment joining them is also a lattice point.

(b) Prove that the statement in (a) is false if only four lattice points are given.
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13.31. Show for every n integers x1, x2, . . . , xn, that there exist integers xi and x j among them with 0 ≤ i < j ≤ n
such that xi+1 + xi+2 + · · · + x j ≡ 0 (mod n).

13.32. Let S = {000, 001, 002, . . . , 999} be the 1000-element set that consists of all 3-digit integers. Prove that
every 28-element subset of S contains at least two elements a1a2a3 and b1b2b3 such that 3 | (ai − bi) for
i = 1, 2, 3.

13.33. For each positive integer k, let Rk denote the k-digit integer where each digit is 1. For example, R1 = 1,
R2 = 11 and R3 = 111. Prove that there exists a positive integer � such that R� is divisible by 1099.

13.34. Let F be a collection of subsets of S = {1, 2, . . . , n}, n ≥ 2, such that if X,Y ∈ F , then X ∩ Y �= ∅. Prove
that |F| ≤ 2n−1.

13.35. (a) Observe that 74 = 2401 is an integer whose digits end with 01. Prove that there exists a power of 7
whose digits end with 001.

(b) Prove that if p is a prime different from 2 and 5, then there exists a power of p whose digits end with
001.

13.36. Prove, for every 7-element set S of integers, that there exist at least five 2-element subsets of S such that
the difference of the integers in each set is a multiple of 3.

13.37. Let n ∈ N. Prove that a sequence s : a1, a2, . . . , an2+1 of n2 + 1 distinct real numbers either contains a
subsequence of n + 1 numbers that is increasing or a subsequence of n + 1 numbers that is decreasing.
(A sequence s′ : b1, b2, . . . , br is increasing if b1 < b2 < · · · < br and decreasing if b1 > b2 > · · · > br.
A sequence s′′ of the form s′′ : bk1 , bk2 , . . . , bkp where 1 ≤ k1 < k2 < · · · < kp ≤ r is called a
subsequence of s. For example, s′′ : b2, b5, b6, b8 is a subsequence of s′ : b1, b2, b3, b4, b5, b6, b7, b8.)
[Hint: Use a proof by contradiction and for 1 ≤ k ≤ n2 + 1, let tk denote the length of a longest increasing
subsequence of s beginning with ak.]

13.38. A set S consists of 60 integers, namely ten primes that are at least 5, the integers 2k for 1 ≤ k ≤ 20 and the
integers 3k for 1 ≤ k ≤ 30. How many integers must belong to a subset of S to guarantee that

(a) there are at least ten even integers or at least fifteen integers divisible by 3?
(b) there are at least five primes, at least five even integers and at least five integers divisible by 3?

13.39. If a drawer contains five nickels, ten dimes and 25 quarters, then what is the minimum number of coins
that must be selected from the drawer to be certain that all coins of the same denomination have been
selected?

13.40. A box contains one red ball, one blue ball, two green balls and two yellow balls. What is the minimum
number of balls that must be removed from the box to be certain that all balls of one of the four colors
have been removed?

13.4 PERMUTATIONS AND COMBINATIONS

Many of the theorems and problems encountered in combinatorics deal with the number
of certain types of subsets that a given set may have or the number of arrangements or
ordered lists of their elements. It is questions of this nature that we will consider now.
The fundamental concepts concerning this are permutations and combinations.

By a permutation of a nonempty set S is meant an arrangement or ordered list of
the elements of S.

Example 13.16 Determine the number of permutations of the set S = {a, b, c, d}.
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Solution One permutation of S is a, b, c, d, which is often written as abcd; while another permu-
tation of S is dcba. In fact, all permutations of the set S are listed below:

abcd bacd cabd dabc
abdc badc cadb dacb
acbd bcad cbad dbac
acdb bcda cbda dbca
adbc bdac cdab dcab
adcb bdca cdba dcba

Consequently, the total number of permutations of S is 24.
There is, however, a simple method to determine the number of permutations of S

without listing all of the permutations and which will be considerably more practical for
sets having a larger number of elements. A permutation of S is obtained by ordering the
four elements of S in some manner, say

There are four possible elements of S for the first term in the permutation. Once the first
term is known, there are three choices for the second term and then two possibilities for
the third term and only one choice for the fourth and last term. By the Multiplication
Principle, there are 4 · 3 · 2 · 1 = 4! = 24 permutations. The tree diagram in Figure 13.2
can be used to show all 24 permutations of S. �
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Figure 13.2 A tree diagram displaying the 24
permutations of the set S = {a, b, c, d}

The preceding example illustrates the fact that the number of permutations of a set
with n elements for some n ∈ N is

n(n − 1)(n − 2) · · · 3 · 2 · 1 = n! (n factorial).

Example 13.17 For the set S = {1, 2, . . . , 9}, consider the subsets S1 = {n ∈ S : n is prime}, S2 = {n ∈
S : 2 ≤ n < 8} and S3 = {n ∈ S : n is odd}. For each i = 1, 2, 3, give an example of two
permutations of Si and the number of permutations of Si.

Solution For S1, 2357 and 3275 are examples of permutations. Since |S1| = 4, the number of per-
mutations of S1 is 4! = 24. For S2, 234567 and 432765 are permutations. Since |S2| = 6,
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the number of permutations of S2 is 6! = 720. For S3, 13579 and 59317 are permutations.
Since |S3| = 5, the number of permutations of S3 is 5! = 120. �

The term permutation was encountered in Chapter 10, where functions were dis-
cussed. In particular, for a nonempty set A, a bijective function f : A → A was called a
permutation on (or of) A. For example, suppose that A is a finite set, say A = {a, b, c, d, e}.
Then the function f : A → A, defined by

f (a) = c, f (b) = d, f (c) = a, f (d) = e, f (e) = b

is a permutation of A. This function can also be expressed as

f = {(a, c), (b, d), (c, a), (d, e), (e, b)}.
In particular, once we know the images of a, b, c, d and e, we know the permutation f .
In this case, the images are c, d, a, e, b (or cdaeb), which is, therefore, an arrangement
of the elements of A. Hence, these two uses of the term “permutation” are equivalent.

Suppose, for a finite nonempty set A, that we wish to determine the number of or-
dered lists of some fixed number of elements of A. The next example deals with this
situation.

Example 13.18 Determine the number of ordered lists of two elements of the set S = {1, 2, 3, 4, 5}.

Solution Since there are 5 possible choices for the first element in the list, and once this ele-
ment has been selected, there are 4 possible elements for the second element in the list,
it follows by the Multiplication Principle that there are 5 · 4 = 20 ordered lists of two
elements in the set S. These 20 lists are shown below:

12 21 31 41 51
13 23 32 42 52
14 24 34 43 53
15 25 35 45 54

Of course, we were only asked for the number of such ordered lists, not the lists
themselves. �

In general, if we want to know the number of ordered lists of r elements of an n-
element set S, where 1 ≤ r ≤ n, we are considering sequences

. . .

term 1 term 2 term 3 · · · term r − 1 term r

of length r consisting of all possible orderings for every choice of r elements of S. There
are n choices for the first term of the sequence. Once the first term has been chosen,
there are n − 1 choices for the second term and n − 2 choices for the third term. Contin-
uing in this manner, we see that there are n − (r − 1) + 1 choices for term r − 1 and
finally, n − r + 1 choices for the final term r. By the Multiplication Principle, there
are

n(n − 1)(n − 2) · · · (n − r + 2)(n − r + 1) (13.5)
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possible orderings of r elements of S. Multiplying the expression in (13.5) by (n − r)!/
(n − r)!, we have

n(n − 1)(n − 2) · · · (n − r + 2)(n − r + 1)
(n − r)!
(n − r)!

= n!
(n − r)!

.

An ordered list of r elements of an n-element set S is referred to as an r-permutation
of S. The number of r-permutations of an n-element set is commonly denoted by P(n, r).
The next theorem summarizes what we just observed.

Theorem 13.19 For integers r and n with 1 ≤ r ≤ n, the number of r-permutations of an n-element set
is

P(n, r) = n!
(n − r)!

.

In Example 13.18, we saw that there are 20 ordered lists of two elements in the set
{1, 2, 3, 4, 5}, which illustrates the fact that

P(5, 2) = 5!
(5 − 2)!

= 5!
3!

= 5 · 4 · 3!
3!

= 20.

For the case when r = n, an n-permutation is an ordered list of all n elements of an n-
element set. In other words, an n-permutation of an n-element set is simply a permutation
of the set. By Theorem 13.19, the number of permutations of an n-element set is

P(n, n) = n!
(n − n)!

= n!
0!

= n!,

recalling that 0! = 1.

Example 13.20 Let S = {1, 2, 3, 4, 5, 6}.
(a) Give two examples of permutations of S.

(b) How many permutations of S are there?

(c) Give two examples of 2-permutations of S.

(d) How many 2-permutations of S are there?

(e) Give two examples of 4-permutations of S.

( f ) How many 4-permutations of S are there?

Solution (a) 123456 and 256314.

(b) P(6, 6) = 6! = 720.

(c) 13 and 63.

(d) P(6, 2) = 6!/4! = (6 · 5 · 4!)/4! = 30.

(e) 1256 and 6342.

(f) P(6, 4) = 6!/2! = 360. �

When discussing permutations or r-permutations of a set S, we are referring to se-
quences, arrangements or ordered lists of elements of S. That is, the order in which the
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elements are listed is important. There are situations, however, when the order in which
elements are selected is not important.

Example 13.21 Let S = {a, b, c, d, e}.
(a) How many subsets of S contain exactly two elements?

(b) How many subsets of S contain exactly three elements?

Solution (a) The 2-element subsets of S are given below:

{a, b}, {a, c}, {a, d}, {a, e}, {b, c},
{b, d}, {b, e}, {c, d}, {c, e}, {d, e}.

Therefore, there are ten 2-element subsets of S.

(b) The 3-element subsets of S are

{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e},
{a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}.

So the number of 3-element subsets of S is 10 as well. �

Although we answered the questions asked in Example 13.21 by listing all 2-element
subsets and all 3-element subsets of the set S = {a, b, c, d, e}, this method would not be
practical for larger sets. Furthermore, the method we used makes it too easy to make
mistakes, as we could inadvertently miss some subset we should have included or per-
haps list some subsets more than once. There is, however, another approach to answer
these questions.

For integers r and n with 0 ≤ r ≤ n, an r-element subset of an n-element set S is
referred to as an r-combination or an r-selection of S. Therefore, an r-combination is
an unordered list of r elements.

The number of r-combinations of an n-element set is denoted by C(n, r) or by
(n

r

)
.

The notation
(n

r

)
is ordinarily read as “n choose r” as we are selecting or choosing r

elements from an n-element set. Even though C(n, r) and
(n

r

)
represent the same number,

you should be familiar with both as both are common. The notation
(n

r

)
is much more

common in advanced mathematics, however.
Let A be an n-element set for some positive integer n and consider some r-element

subset B, where 1 ≤ r < n, say A = {a1, a2, . . . , an} and B = {a1, a2, . . . , ar}. In this
case, the elements ar+1, ar+2, . . . , an do not belong to B. Since B is a set, the order in
which the r elements of B are listed does not matter. However, every ordering of the
elements of B produces a permutation of B. Since |B| = r, there are r! permutations of
B. Consequently, since there are C(n, r) r-element subsets of A, it follows that r!C(n, r)
is the total number of r-permutations of A. Because this number is P(n, r) = n!/(n − r)!,
it follows that

P(n, r) = n!
(n − r)!

= r!C(n, r)

and so

C(n, r) = n!
r!(n − r)!

.
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Therefore,

C(6, 2) =
(

6
2

)
= 6!

2!4!
= 15 = 6

4! 2!
= C(6, 4) and

C(5, 2) = 5!
2!3!

= 10 = 5!
3! 2!

= C(5, 3).

Thus, it was not surprising that there are both ten 2-element subsets and ten 3-element
subsets of the set S = {a, b, c, d, e} in Example 13.21. Furthermore, we see that the
questions there can be answered more readily by computing C(5, 2) = C(5, 3). That
C(5, 2) = C(5, 3) and C(6, 2) = C(6, 4) are special cases of a more general
observation.

Theorem 13.22 For integers r and n with 0 ≤ r ≤ n,

C(n, r) = C(n, n − r) or
(

n
r

)
=

(
n

n − r

)
.

Proof We give two proofs of this fact. First,

C(n, r) = n!
r!(n − r)!

= n!
(n − r)!r!

= n!
(n − r)![n − (n − r)]!

= C(n, n − r).

Second, recall that C(n, r) represents the number of r-element subsets of an n-element
set, say S. For each r elements that are selected for a subset of S, we are selecting n − r
elements that do not belong to this subset. Since the number of ways of selecting n − r
elements of S is C(n, n − r), it follows that C(n, r) = C(n, n − r).

The second proof given in Theorem 13.22 is an example of what is commonly called
a combinatorial proof. A combinatorial proof is a proof that depends on counting ar-
guments, often counting the same set of objects in two different ways rather than alge-
braic manipulation. The following result provides another example of a combinatorial
proof.

Theorem 13.23 For every positive integer n,(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · · +

(
n

n − 1

)
+

(
n
n

)
= 2n.

Proof Let S be an n-element set. We have already seen that there are 2n subsets of S. For each
integer r with 0 ≤ r ≤ n,

(n
r

)
counts the number of r-element subsets of S. Therefore,

(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · · +

(
n

n − 1

)
+

(
n
n

)

counts all subsets of S, which, therefore, equals 2n. (See Theorem 6.16.)

For integers r and n with 0 ≤ r ≤ n, we have already seen by Theorem 13.22 that(n
r

) = ( n
n−r

)
. We now make some observations about the numbers

(n
r

)
for some specific
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values of r. Let S be an n-element set. First,(
n
0

)
=

(
n
n

)
= n!

n!0!
= 1,

which says that there is exactly one subset of S with no elements and exactly one subset
of S with n elements. These subsets are, of course, ∅ and S, respectively. Because(

n
1

)
= n!

1!(n − 1)!
= n · (n − 1)!

(n − 1)!
= n,

there are exactly n 1-element subsets of S, as expected. Also,
(n

1

) = ( n
n−1

)
and so there are

exactly n subsets of S that consist of n − 1 elements. The numbers
(n

2

)
occur frequently

in combinatorics as well. For n ≥ 2,

C(n, 2) =
(

n
2

)
= n!

2!(n − 2)!
= n(n − 1) · (n − 2)!

2 · (n − 2)!
= n(n − 1)

2
.

That is, to compute C(n, 2) for an integer n ≥ 2, we divide the product of n and n − 1
by 2. For example,(

4
2

)
= 4 · 3

2
= 6,

(
5
2

)
= 5 · 4

2
= 10 and

(
6
2

)
= 6 · 5

2
= 15.

Some other specific examples of
(n

r

)
are(

6
3

)
= 6!

3!3!
= 6 · 5 · 4 · 3!

6 · 3!
= 20 and

(
8
5

)
= 8!

5!3!
= 8 · 7 · 6 · 5!

5! · 6
= 56.

Example 13.24 We saw in Example 13.2(b) that there are 210 = 1024 10-bit strings.

(a) Give an example of three 10-bit strings containing exactly six 1s.

(b) How many 10-bit strings contain exactly six 1s?

Solution (a) 1011001101, 1110000111, 1100110011.

(b) To determine the number of 10-bit strings containing exactly six 1s, it is
sufficient to determine the number of possible positions where 1 can be
placed. For example, in the first 10-bit string in (a), the 1s are placed in terms
1, 3, 4, 7, 8 and 10. Hence, the number of 10-bit strings containing exactly
six 1s is

C(10, 6) =
(

10
6

)
= 10!

6!4!
= 10 · 9 · 8 · 7 · 6!

6!4!
= 10 · 9 · 8 · 7

4 · 3 · 2 · 1
= 210. �

The following example uses both permutations and combinations.

Example 13.25 A computer program randomly outputs an ordered list L of four elements from the set
S = {1, 2, . . . , 10} followed by a 3-element subset of the elements of S not in L. What
is the number of possible outputs of this program?

Solution This number is P(10, 4) · C(6, 3) = (5040)(20) = 100,800. �
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SECTION 13.4 EXERCISES

13.41. Let S = {1, 2, . . . , 12}.
(a) Determine the number of 8-permutations of S in which 7 and 8 do not appear.
(b) Determine the number of 8-permutations of S in which 7 and 8 do not appear consecutively in either

order.
(c) Determine the number of 9-permutations of S that contain 6.

13.42. (a) Express the number of one-to-one functions from A = {1, 2, . . . , 6} to B = {1, 2, . . . , 10} as P(n, r)
for some integers n and r.

(b) For positive integers a and b with a ≤ b, determine a generalization of the problem in (a) by
expressing the number of one-to-one functions from a set A to a set B where |A| = a and |B| = b.

13.43. By an n-letter word is meant a sequence of length n, each term of which is one of the 26 letters of the
English alphabet. Here we assume that a, e, i, o, u are the five and only vowels, while the remaining 21
letters are consonants. Determine the number of 15-letter words that contain exactly two, three or five
distinct vowels but where consonants may be repeated.

13.44. (a) Determine the number of 17-letter words (see Exercise 13.43) with distinct letters containing x, y
and z.

(b) How many of the 17-letter words in (a) have x, y and z appearing in three consecutive positions in
some order?

(c) How many of the 17-letter words in (a) do not have x, y and z occupying three consecutive positions?

13.45. Let S = {1, 2, . . . , n}, where n ∈ N.

(a) Determine n if one-fifth of the 4-element subsets of S contain n.
(b) Determine n if one-eleventh of the 4-element subsets of S contain both 1 and 2.

13.46. How many triangles are determined by n ≥ 3 points in the plane, no three of which lie on the same line?

13.47. Let S = {1, 2, . . . , n} and let m and r be integers such that 1 ≤ r < m < n. For an r-element subset A of S,
determine the number of m-permutations of S in which all elements of A appear.

13.48. Let S = {1, 2, 3, 4, 5}. Recall that a bijection f : S → S is called a permutation of S. A permutation f of S
is said to fix i ∈ S if f (i) = i. How many permutations of S fix exactly one element of S?

13.49. An experiment consists of tossing an ordinary coin n times in succession and recording the resulting
sequence of outcomes.

(a) In how many ways can exactly k heads occur?
(b) In how many ways can at most k heads occur, where 1 ≤ k ≤ n?
(c) In how many ways can more than k heads occur, where 1 ≤ k ≤ n?

13.50. Prove that
(2n

n

)
< 4n for every positive integer n.

13.51. Prove that
(2

2

) + (4
2

) + (6
2

) + · · · + (2n
2

) = n(n+1)(4n−1)
6 for every positive integer n. (See Results 6.4

and 6.5.)

13.52. Let A = {1, 2, . . . , m} and B = {1, 2, . . . , n}, where n > m.

(a) How many m-element subsets of A × B contain no elements (ordered pairs) with the same first
coordinate?

(b) How many m-element subsets of A × B contain no elements with the same second coordinate?
(c) How many m-element subsets of A × B contain no elements with the same first coordinate or the same

second coordinate?
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13.53. Let A, B and C be pairwise disjoint sets where |A| = 10, |B| = 8 and |C| = 6. Determine the number of
10-permutations of A ∪ B ∪ C that contain exactly eight elements of A.

13.54. Let A = {1, 2, . . . , 10} and B = {11, 12, . . . , 25}. Determine the number of 15-permutations of A ∪ B in
which five elements belong to A and ten belong to B.

13.55. Let k, r and n be nonnegative integers such that k + r ≤ n. Give a combinatorial proof of each of the
following.

(a)
(n+r

r

)(n
r

) = (n+r
2r

)(2r
r

)
(b)

( n
k+r

)(k+r
r

) = (n
r

)(n−r
k

)
.

13.5 THE PASCAL TRIANGLE

Blaise Pascal (1623–1662) was a French mathematician and scientist who made impor-
tant contributions to a variety of scholarly areas during the 17th century. He, along with
Pierre de Fermat, have been credited with developing probability as a theoretical area
of mathematics. As a teenager, Pascal became interested in calculating machines, which
led to his invention of a mechanical calculator. In fact, the computer programming lan-
guage Pascal, named for him, was popular and widely used during the late 1970s and
1980s.

What Pascal may be best known for, however, is a table of numbers expressed in
a triangular manner that he described in his work Treatise on the Arithmetical Triangle
(English translation from French). The first several numbers in Pascal’s triangular array
are shown in Figure 13.3.

1 1 1 1 1 1 1
1 2 3 4 5 6 . . .

1 3 6 10 15 . . .

1 4 10 20 . . .

1 5 15 . . .

1 6 . . .

1 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Figure 13.3 Pascal’s triangular array of numbers

Although Pascal described these numbers as they appear in Figure 13.3, these are
typically displayed as shown in Figure 13.4, which is referred to as the Pascal trian-
gle (also commonly called Pascal’s triangle). While this triangular array of numbers is
named for the 17th century mathematician Pascal, he was not the first to recognize this
“triangle.” There are, in fact, references to portions of this triangle during the 11th cen-
tury. In fact, Pascal was not the first European to study these numbers and never claimed
to be. The numbers in the Pascal triangle are believed to have entered Europe by way of
Arabia from China.

You may recognize some of the numbers in the Pascal triangle in Figure 13.4 as
those you have seen recently. For example, the numbers in row 4 are

1 = (4
0

)
, 4 = (4

1

)
, 6 = (4

2

)
, 4 = (4

3

)
, 1 = (4

4

)
.

In fact, for r = 0, 1, . . . , n, the (r + 1)st number in row n is
(n

r

) = C(n, r). Therefore,
the Pascal triangle can be expressed as shown in Figure 13.5.
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row 0 1

row 1 1 1

row 2 1 2 1

row 3 1 3 3 1

row 4 1 4 6 4 1

row 5 1 5 10 10 5 1

row 6 1 6 15 20 15 6 1

. . . . . . . . . . . . . . . . . . . . .

Figure 13.4 The Pascal triangle

row 0
(0

0

)
row 1

(1
0

) (1
1

)
row 2

(2
0

) (2
1

) (2
2

)
row 3

(3
0

) (3
1

) (3
2

) (3
3

)
row 4

(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)
row 5

(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)
row 6

(6
0

) (6
1

) (6
2

) (6
3

) (6
4

) (6
5

) (6
6

)
. . . . . . . . . . . . . . . . . . . . .

Figure 13.5 Another view of the Pascal triangle

Returning to the Pascal triangle as shown in Figure 13.4, you might notice that
each interior number of the triangle (those not along the edges of the triangle) is the
sum of the two numbers just above it. Expressing the numbers as given in Figure 13.5,
this suggests that (

n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1

r

)
.

We show that this statement (named for Pascal) is, in fact, true in general.

Theorem 13.26 (Pascal’s Identity) For every two integers r and n with 1 ≤ r ≤ n − 1,(
n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1

r

)
.

Proof We provide a combinatorial proof of this statement. Let A be an n-element set, say A =
{a1, a2, . . . , an}. Then

(n
r

)
represents the number of r-element subsets of A. Next, let
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A′ = {a1, a2, . . . , an−1}. Then A = A′ ∪ {an}. Of the
(n

r

)
r-element subsets of A, some do

not contain an, while others do. Since |A′| = n − 1, there are
(n−1

r

)
r-element subsets of

A that do not contain an. For those r-element subsets of A that contain an, r − 1 of the
elements belong to A′. Since there are

(n−1
r−1

)
(r − 1)-element subsets of A′, it follows by

the Addition Principle that the number of r-element subsets of S is
(n−1

r−1

) + (n−1
r

)
and so(n

r

) = (n−1
r−1

) + (n−1
r

)
.

The Pascal triangle has a number of interesting features. For example, returning to
Figure 13.3, we might observe that each number not in the first row is the sum of the
number immediately above it and the numbers to the left of this. For example, the number
20 in the 4th row equals 1 + 3 + 6 + 10. In the Pascal triangle expressed in Figure 13.5,
this says that (

6
3

)
=

(
2
0

)
+

(
3
1

)
+

(
4
2

)
+

(
5
3

)
(13.6)

or, by Theorem 13.22, (
6
3

)
=

(
2
2

)
+

(
3
2

)
+

(
4
2

)
+

(
5
2

)
. (13.7)

These are the numbers in the Pascal triangle shown in Figure 13.6. Because of the pattern
of this list of numbers in (13.6) and (13.7), this illustrates what is commonly called the
Hockey Stick Theorem.

1
0

0
0

1
1

3
0

3
1

3
2

3
3

4
1

4
3

4
4

4
0

4
2

5
0

5
1

5
2

5
3

5
4

5
5

6
0

6
1

6
2

6
3

6
4

6
5

6
6

2
0

2
1

2
2

Figure 13.6 Illustrating the Hockey Stick Theorem

Theorem 13.27 (The Hockey Stick Theorem) For every two integers r and n with 0 ≤ r ≤ n,(
n + 1
r + 1

)
=

(
r
r

)
+

(
r + 1

r

)
+

(
r + 2

r

)
+ · · · +

(
n
r

)
.
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Proof The number of bit strings of length n + 1 (sequences with n + 1 terms, each of which is 0
or 1) containing exactly r + 1 1s is

(n+1
r+1

)
. Each such string therefore has the appearance

shown below
. . . . . .

term 1 term 2 · · · term r + 1 · · · term n term n + 1

where there is either 0 or 1 at each position. Because there are r + 1 1s in the sequence,
the last 1 appears either at position r + 1 or to the right of that position. If the final 1
should happen to appear at position r + 1, then the remaining r 1s appear in positions 1
through r. Then the number of ways of selecting r of these r positions for the r 1s is(r

r

)
. If the final 1 appears in position r + 2, then the remaining r 1s appear in positions 1

through r + 1 and the number of ways of selecting r of these r + 1 positions for the
remaining r 1s is

(r+1
r

)
. Continuing in this manner, we obtain the desired conclusion that

(
n + 1
r + 1

)
=

(
r
r

)
+

(
r + 1

r

)
+

(
r + 2

r

)
+ · · · +

(
n
r

)
.

Applying the Hockey Stick Theorem for the case r = 1, we have(
n + 1

2

)
=

(
1
1

)
+

(
2
1

)
+

(
3
1

)
+ · · · +

(
n
1

)

or

n(n + 1)
2

= 1 + 2 + 3 + · · · + n,

a statement we earlier verified by induction (see Chapter 6).
Another interesting feature of the Pascal triangle is shown in Figure 13.7. Suppose

that we start with the leftmost element of row n, namely
(n

0

)
. We now move three places to

the right, from a blank space to
(n

1

)
to another blank space. The element just above this is(n−1

1

)
. We continue this, adding these numbers until we have moved off the triangle, ob-

taining either
(n

0

) + (n−1
1

) + · · · + (k
k

)
if n = 2k or

(n
0

) + (n
1

) + · · · + (k+1
k

)
if n = 2k + 1.

This resulting sum is the (n + 1)st Fibonacci number Fn+1 (see Exercise 13.62).
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Figure 13.7 Fibonacci numbers within the Pascal triangle
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SECTION 13.5 EXERCISES

13.56. Use an appropriate identity to simplify the following.

(a)
(12

4

) + (12
5

)
(b)

(5
5

) + (6
5

) + (7
5

) + · · · + (11
5

)
(c)

(10
0

) + (10
1

) + (10
2

) + · · · + (10
10

)
.

13.57. Consider the third diagonal of the Pascal Triangle in Figure 13.4 that proceeds downward from right to
left. The sums of the first three successive pairs of terms are 1 + 3 = 22, 3 + 6 = 32 and 6 + 10 = 42.

(a) Express each of these sums using the notation of combinations.
(b) Show that

(n
2

) + (n+1
2

) = n2 for every integer n ≥ 2.

(c) Explain why
(n

2

) + (n+1
2

) = (2n+1
2

) − n(n + 1) for every integer n ≥ 2.

13.58. Prove that (
n
0

)
+

(
n + 1

1

)
+

(
n + 2

2

)
+ · · · +

(
n + k

k

)
=

(
n + k + 1

k

)

for all integers k and n with 0 ≤ k ≤ n.

13.59. Prove, for all integers n ≥ 3, that
n∑

k=3

k(k − 1)(k − 2) = 3!
(

n + 1
4

)
.

13.60. Prove, for nonnegative integers k and n, that
n∑

k=0

(k + n)!
k!

= (2n + 1)!
(n + 1)!

13.61. (a) For an integer k ≥ 3, show that k3 can be expressed as a linear combination of
(k

3

)
,
(k

2

)
and

(k
1

)
. That is,

find integers a, b and c such that k3 = a
(k

3

) + b
(k

2

) + c
(k

1

)
.

(b) Use the result in (a) and the Hockey Stick Theorem to determine a formula for the sum
13 + 23 + · · · + n3 for each positive integer n.

(c) Use the result in (b) to show that 6
(n+2

4

) = (n+1
1

)2 − (n+1
2

)
.

13.62. It was illustrated for n = 0, 1, . . . , 6 in Figure 13.7 that the sum(n
0

) + (n−1
1

) + · · · + (k
k

)
or

(n
0

) + (n
1

) + · · · + (k+1
k

)
,

according to whether n is even or n is odd (and so n = 2k or n = 2k + 1, respectively) is the (n + 1)st
Fibonacci number Fn+1. Verify this for every nonnegative integer n.

13.6 THE BINOMIAL THEOREM

One of the most common expressions encountered in elementary algebra is

(x + y)2 = x2 + 2xy + y2.

You may also recall that

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.
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As the expressions above suggest, expanding the binomial x + y to the positive integer
power n results in n + 1 terms, the first being xn and the last yn. The remaining n − 1
terms in (x + y)n are of the form xn−kyk where 1 ≤ k ≤ n − 1. The only question con-
cerns the coefficient of each term xn−kyk. Notice that the coefficients of the terms in the
expansion of (x + y)n for n = 2, 3, 4 above are

(x + y)2 1 2 1 or
(2

0

) (2
1

) (2
2

)
(x + y)3 1 3 3 1 or

(3
0

) (3
1

) (3
2

) (3
3

)
(x + y)4 1 4 6 4 1 or

(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)
all of which are rows in the Pascal triangle. That this represents the coefficients of all
terms in the expansion of (x + y)n for every positive integer n is a consequence of one
of the most famous theorems in combinatorics. We provide a combinatorial proof of this
theorem.

Theorem 13.28 (The Binomial Theorem) For every positive integer n,

(x + y)n =
(

n
0

)
xn +

(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + · · · +

(
n

n − 1

)
xyn−1 +

(
n
n

)
yn.

Proof Observe that

(x + y)n = (x + y)(x + y) · · · (x + y)

is the product of n binomials, each x + y. To obtain a term in the expansion of (x + y)n,
either x or y is selected in each of these binomials x + y and these n terms are then mul-
tiplied. For example, if x is selected in each of the n binomials, we obtain xn. If y is
selected in exactly one of the n binomials x + y and x in the remaining n − 1 binomi-
als, we obtain xn−1y. Since there are n binomials in which y can be selected, the term
containing xn−1y in the expansion (x + y)n has the coefficient n. More generally, to de-
termine the coefficient of the term containing xn−kyk for 0 ≤ k ≤ n in the expansion of
(x + y)n, observe that there are

(n
k

)
possible choices for k of the n binomials in which y

is selected, with x selected in the remaining n − k binomials, giving us
(n

k

)
xn−kyk for this

term.

The following example illustrates the Binomial Theorem.

Example 13.29 Expand (x + y)6.

Solution By the Binomial Theorem,

(x + y)6 =
(

6
0

)
x6 +

(
6
1

)
x5y +

(
6
2

)
x4y2 +

(
6
3

)
x3y3 +

(
6
4

)
x2y4 +

(
6
5

)
xy5 +

(
6
6

)
y6

= x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6. �

In Example 13.29, observe that the coefficients in the expansion of (x + y)6 are

1 6 15 20 15 6 1.
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That is, the first coefficient is 1 and the coefficients increase until we reach the middle
term 20 and then these coefficients are repeated in reverse order as they decrease back
to 1. This is a consequence of the fact that(

n
k

)
=

(
n

n − k

)
,

which we observed earlier. In the expansion of (x + y)5, the coefficients are

1 5 10 10 5 1

and so there are two middle terms 10 in this case. In general, if n is an even integer,
say n = 2k, then there is exactly one middle term in the expansion of (x + y)n, namely(n

k

)
xkyk; while if n is odd, say n = 2k + 1, then there are two middle terms in the expan-

sion of (x + y)n, namely
(n

k

)
xk+1yk and

( n
k+1

)
xkyk+1. (See Exercise 13.74.)

In the expansion of (x + y)n for a positive integer n, we have seen that the first and
last coefficients are 1, while the second and next-to-last coefficients are

(n
1

) = ( n
n−1

) = n.
That is, these four coefficients are easy to determine. Furthermore, the third coefficient
is

(n
2

) = n(n − 1)/2, which, as noted earlier, is the product of n and n − 1 divided by 2.
Therefore, the third coefficient from the end, namely

( n
n−2

)
, is also n(n − 1)/2. These

two coefficients can therefore usually be computed quite quickly as well. To compute
other coefficients mentally, at least when n is not too large, the following theorem can
be helpful.

Theorem 13.30 For integers k and n with 0 ≤ k < n,(
n

k + 1

)
=

(
n
k

)
n − k
k + 1

.

Proof Observe that(
n
k

)
n − k
k + 1

= n!
k!(n − k)!

· n − k
k + 1

= n!
1

(k + 1)!
· 1

(n − k − 1)!

= n!
(k + 1)!(n − k − 1)!

=
(

n
k + 1

)
.

We now see how Theorem 13.30 and the Binomial Theorem can be used to expand
(x + y)7.

Example 13.31 Expand (x + y)7.

Solution We have seen that the expansion of (x + y)7 begins with x7 + 7x6y + (7
2

)
x5y2. Since

(7
2

) =
7 · 6/2 = 21, we have x7 + 7x6y + 21x5y2. By Theorem 13.30, the next coefficient is
obtained by multiplying the current coefficient 21 by the exponent 5 of x and dividing
by 3 (since we are currently in the 3rd term), giving us 21 · 5/3 = 35. We therefore have
35x4y3. Since this is a middle term, we can complete the expansion, arriving at

(x + y)7 = x7 + 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 + y7. �

Example 13.32 Expand (x − y)6.
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Solution By the Binomial Theorem,

(x − y)6 = (x + (−y))6 = x6 + 6x5(−y) + 15x4(−y)2 + 20x3(−y)3 +
15x2(−y)4 + 6x(−y)5 + (−y)6

= x6 − 6x5y + 15x4y2 − 20x3y3 + 15x2y4 − 6xy5 + y6. �

Example 13.33 Expand (2a + 3b)5.

Solution By the Binomial Theorem,

(2a + 3b)5 = (2a)5 + 5(2a)4(3b) + 10(2a)3(3b)2 + 10(2a)2(3b)3 +
5(2a)(3b)4 + (3b)5

= 32a5 + 5 · 16 · 3a4b + 10 · 8 · 9a3b2 + 10 · 4 · 27a2b3 +
5 · 2 · 81ab4 + 243b5

= 32a5 + 240a4b + 720a3b2 + 1080a2b3 + 810ab4 + 243b5. �

Letting x = y = 1 in the Binomial Theorem yields a familiar fact (see
Theorem 13.23).

Example 13.34 Use the Binomial Theorem to show that(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · · +

(
n
n

)
= 2n.

Solution Letting x = y = 1 in the Binomial Theorem, we have

(x + y)n = (1 + 1)n = 2n =
(

n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · · +

(
n
n

)
. �

Since
(n

k

)
represents the number of k-element subsets in an n-element set, the left-

hand expression in the statement of Example 13.34 represents the total number of subsets
in an n-element set, which we know to be 2n. We also saw this in Theorem 13.23.

Even in the case n = 2, the Binomial Theorem can provide some interesting
information.

Example 13.35 For a positive integer n, compute (10n + 5)2.

Solution Observe that

(10n + 5)2 = 100n2 + 2 · 5 · 10n + 25 = 100n2 + 100n + 25

= 100n(n + 1) + 25. �

For example, if n = 8, then Example 13.35 tells us that (85)2 = 100 · 8 · 9 + 25 =
7225. That is, to compute (85)2, we need only multiply 8 and 9, obtaining 72, and write
25 after this. Similarly, (25)2 = 625 and (95)2 = 9025.
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SECTION 13.6 EXERCISES

13.63. (a) Expand (3x − 5y)4.
For parts (b)–(d), determine the coefficient of the power of x in the given expansion.

(b) x4 in the expansion of the product (2 + x + x2)(1 − 2x)6.
(c) x12 in the expansion of the product (2x + 5)5(3x + 4)8.

(d) x0 in the expansion of
(
x3 − 4

x

)8
.

13.64. Prove that if the coefficient of x0 exists in the expansion of
(
x5 + 3

x2

)n
, then 7 | n. What is the coefficient in

this case?

13.65. For a real number r, determine a formula for the sum
∑n

k=0

(n
k

)
rk.

13.66. Expand (x2 + 3xy + y2)2 by first observing that x2 + 2xy + y2 = (x + y)2.

13.67. Compute (1.1)4 without the aid of a calculator by first observing that 1.1 = 1 + .1.

13.68. For n ∈ N, let S be a set with n elements. Prove that the number of subsets of S having an even number of
elements equals the number of subsets of S having an odd number of elements.

13.69. Recall from calculus that for a real number constant c and an integer n ≥ 2, the derivative of (c + x)n is
d
dx (c + x)n = n(c + x)n−1.

(a) Use this result to prove that n2n−1 = ∑n
k=1 k

(n
k

)
for each integer n ≥ 2.

(b) Prove that
∑n

k=1(−1)k−1k
(n

k

) = 0 for each integer n ≥ 2.

(c) Prove that
(n

1

) + 3
(n

3

) + · · · = 2
(n

2

) + 4
(n

4

) + · · · for each integer n ≥ 2.

(d) Determine a formula for the sum
∑n

k=0(2k + 1)
(n

k

) = (n
0

) + 3
(n

1

) + 5
(n

2

) + · · · + (2n + 1)
(n

n

)
.

13.70. Observe that 2 | (2
1

)
, 3 | (3

1

)
, 3 | (3

2

)
, 4 �

(4
2

)
and 5 | (5

k

)
for every integer k with 1 ≤ k ≤ 4. Prove for an

integer p ≥ 2 that p | (p
k

)
for every integer k with 1 ≤ k ≤ p − 1 if and only if p is prime.

13.71. Prove that if p is a prime, then (a + b)p ≡ ap + bp (mod p). (See Exercise 13.70.)

13.72. Let r, m, n ∈ Z where 0 ≤ r ≤ m ≤ n. Prove that
r∑

k=0

(
m
k

)(
n

r − k

)
=

(
m + n

r

)

by using

(a) a combinatorial argument.
(b) the Binomial Theorem and the identity (1 + x)m(1 + x)n = (1 + x)m+n.

13.73. We saw in Exercise 13.72, for integers r, m and n with 0 ≤ r ≤ m ≤ n, that

r∑
k=0

(
m
k

)(
n

r − k

)
=

(
m + n

r

)
. (13.8)

(a) Find a formula for
∑n

k=0

(n
k

)( n
n−k

)
for every positive integer n.

(b) Prove for every positive integer n that
∑n

k=0

(n
k

)2 = (2n
n

)
.

(c) Use the identity in (13.8) to prove Pascal’s Identity: For integers r and n with 1 ≤ r ≤ n,(
n

r − 1

)
+

(
n
r

)
=

(
n + 1

r

)
.
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13.74. A finite sequence a1, a2, . . . , an of real numbers is unimodal if a1 < a2 < · · · < ai = ai+1 = · · · =
a j > a j+1 > · · · > an for some integers i and j with 1 ≤ i ≤ j ≤ n. Prove the following.

(a)
(n

k

)
<

( n
k+1

)
for 0 < k < (n − 1)/2.

(b)
(n

k

)
>

( n
k+1

)
for k > (n − 1)/2.

(c)
(n

k

) = ( n
k+1

)
if and only if k = (n − 1)/2.

(d) Use (a) and (b) to show that the sequence
(n

0

)
,
(n

1

)
, . . . ,

(n
n

)
is unimodal. In particular, show that if n is

odd and so n = 2r + 1 for some integer r, then(n
0

)
<

(n
1

)
< · · · <

(n
r

) = ( n
r+1

)
> · · · >

(n
n

)
;

while if n is even and so n = 2s for some integer s, then(n
0

)
<

(n
1

)
< · · · <

(n
s

)
>

( n
s+1

)
> · · · >

(n
n

)
.

(Consequently,
(n

r

) = ( n
r+1

)
are the largest terms in the sequence when n = 2r + 1 and

(n
s

)
is the

largest term in the sequence when n = 2s.)

13.75. Let n ∈ N and let a and b be nonnegative integers such that a < b. Use Exercise 13.74 to prove that(n
a

) = (n
b

)
if and only if a + b = n.

13.76. Let A and B be disjoint sets with |A| = m and |B| = n and let r be an integer with 0 ≤ r < n ≤ m.

(a) Establish a formula for the number of r-permutations of A ∪ B, expressing the formula in the notation
of r-permutations as well as the notation of combinations.

(b) Establish a formula for the number of r-permutations of A ∪ B, where an r-permutation is obtained by
first selecting k elements from A and then selecting r − k elements from B, where 0 ≤ k ≤ r.

(c) What equality is obtained as a result of (a) and (b)?

13.7 PERMUTATIONS AND COMBINATIONS WITH REPETITION

One ordered list of the elements of the set S = {1, 2, . . . , 9} is the natural one: 1 2 3 4 5 6
7 8 9. This, of course, is an example of a permutation of S. We have seen that there is a
total of 9! = 362,880 permutations of S. Three other permutations of S are

1 2 3 4 5 6 7 9 8 1 2 3 4 5 7 8 6 9 1 2 3 4 5 9 8 7 6.

In the first of these, only the last two terms are interchanged. Suppose, however, that
we were to begin with the sequence 1 2 3 4 5 6 6 6 6. If the last two terms were to
be interchanged in this sequence, then we would obtain exactly the same sequence of
numbers. Therefore, the number of different ordered lists of these nine integers, only six
of which are distinct, is not 9!. In fact, this number is less than 9!. Such ordered lists
are called permutations with repetition. This suggests that when there is a repetition of
some sort among n elements, the number of distinct permutations is less than n!.

Suppose that we were to replace the last three terms of the sequence 1 2 3 4 5 6 6 6 6
by 6′, 6′′, 6′′′, arriving at 1 2 3 4 5 6 6′ 6′′ 6′′′. Since all nine terms are now distinct, the
number of permutations of these nine elements is 9!. For each such permutation, there
are 4! permutations of the elements of {6, 6′, 6′′, 6′′′}. That is, the number of distinct
permutations of the integers in the list 1 2 3 4 5 6 6 6 6 is 9!/4!. For the same reason, the
number of distinct permutations of the terms in the list 1 2 3 3 3 6 6 6 6 is 9!/4!3! and
the number of distinct permutations of the terms in the list 1 1 3 3 3 6 6 6 6 is

9!
4! 3! 2!

= 1260.
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This suggests the following theorem. Although a proof of the type described above
could be given, we provide another method of proof.

Theorem 13.36 (The Number of Distinct Permutations with Repetition) Suppose that among n ob-
jects, there are exactly k distinct objects, namely n1 of type 1, n2 of type 2 and so on, up
to nk of type k. Then the total number of distinct permutations of these n objects is

n!
n1! n2! · · · nk!

.

Proof Of the n positions for a permutation of these n objects, there are
( n

n1

)
possible locations

for the n1 elements of type 1. Of the remaining n − n1 positions, there are
(n−n1

n2

)
pos-

sible locations for the n2 elements of type 2. Continuing in this manner, we see by the
Multiplication Principle that the total number of distinct permutations of these n objects
is (

n
n1

)(
n − n1

n2

)(
n − n1 − n2

n3

)
· · ·

(
n − n1 − n2 − · · · − nk−1

nk

)

= n!
n1! (n − n1)!

· (n − n1)!
n2! (n − n1 − n2)!

· (n − n1 − n2)!
n3! (n − n1 − n2 − n3)!

· · · (n − n1 − n2 − · · · − nk−1)!
nk! 0!

= n!
n1! n2! · · · nk!

.

Example 13.37 Determine the number of distinct permutations of the elements in the list 1 1 1 2 2 2 3 3.

Solution By Theorem 13.36, this number is
8!

3!3!2!
= 560. �

Example 13.38 A mathematics professor has authored three books, namely one on calculus, one on linear
algebra and one on mathematical proofs. He has four copies of the first book, two copies
of the second book and one copy of the third book lined up on a shelf. In how many ways
can these seven books be placed on the shelf?

Solution By Theorem 13.36, these books can placed on the shelf in
7!

4! 2! 1!
= 105 ways. �

In all of the problems that we have encountered involving combinations, the ele-
ments involved have always been distinct. We now investigate the situation where repe-
tition among the elements can occur. First, recall that the number of k-element subsets
of an n-element set, 0 ≤ k ≤ n, is

C(n, k) =
(

n
k

)
= n!

k! (n − k)!
.

Example 13.39 Suppose that three sets A, B and C all have the property that they contain only duplicates
of a particular element, say each element in A is a, each element in B is b, each element
in C is c and the elements a, b and c are distinct. Three elements are selected from
A ∪ B ∪ C. How many outcomes are possible?
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Solution One outcome is to have a selected for each element, which we denote by aaa and another
outcome occurs when one element b is selected and two elements c are selected, which
we can denote by bcc. In fact, all possible outcomes are listed below:

aaa bbb ccc aab aac
abb bbc acc bcc abc.

Consequently, there are ten possible outcomes. �

Sometimes, outcomes in which there is repetition of elements, as in Example 13.39,
are expressed using set notation, that is,

{a, a, a} {b, b, b} {c, c, c} {a, a, b} {a, a, c}
{a, b, b} {b, b, c} {a, c, c} {b, c, c} {a, b, c}.

In this case, these are referred to as multisets.
The question in Example 13.39, however, asks for the number of possible outcomes

when three elements are selected from A ∪ B ∪ C, not the actual outcomes themselves.
It would not be practical to attempt to answer a question in this manner if there were
a large number of different types of elements involved or a large number of elements
selected. Problems of this nature can be looked at in another manner, however.

When an element of A ∪ B ∪ C is selected, the element belongs to A, B or C. So we
can think of A ∪ B ∪ C divided as follows.

A | B | C

The ten possible outcomes obtained in Example 13.39 can therefore be represented in
the diagram below.

A B C

aaa � � � | |
bbb | � � � |
ccc | | � � �

aab � � | � |
aac � � | | �

abb � | � � |
bbc | � � | �

acc � | | � �

bcc | � | � �

abc � | � | �

Observe that for each of the ten outcomes, there are five symbols, namely three
symbols � used to denote the three elements selected and two symbols | (vertical lines)
used to denote how the three elements are divided among A, B and C. So, in each case,
we have five symbols

where two symbols are vertical separator lines and the remaining three symbols indicate
how many elements belong to A, B and C. Since there are

(5
3

)
places where the three

symbols � can be located or, equivalently,
(5

2

)
places where the two separator lines | can

be located, the total number of outcomes is
(5

3

) = (5
2

) = 10.
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This illustrates a general theorem concerning selections (or combinations) with
repetition.

Theorem 13.40 (The Number of Distinct Combinations with Repetition) Let A be a set containing t
different kinds of elements, where there are at least s elements of each kind in A. The
number of different selections of s elements from A is(

s + t − 1
s

)
.

Proof Each selection of s elements from A corresponds to a sequence of s + t − 1 symbols

. . .

term 1 term 2 term 3 · · · term s + t − 2 term s + t − 1

where s terms in the sequence correspond to the s elements selected from A and the
remaining t − 1 terms in the sequence correspond to t − 1 separator lines, which are
used to separate the s elements into the t different kinds. Since there are

(s+t−1
s

)
locations

in the sequence for the s elements, this is the number of different selections of s elements
from A.

Example 13.41 A set A consists of 25 elements, 5 each of 5 different types. How many outcomes are
possible when 4 elements are selected from A?

Solution Since there are t = 5 different types of elements in A and s = 4 elements are being se-
lected from A, it follows by Theorem 13.40 that the number of different outcomes is(

s + t − 1
s

)
=

(
4 + 5 − 1

4

)
=

(
8
4

)
= 70. �

Theorem 13.40 can also be used to determine the number of solutions of a certain
type of equation.

Example 13.42 Determine the number of nonnegative integer solutions of the equation x1 + x2 + x3 = 6.

Solution Here we can use � to represent the integer 1. What we wish to do here is to distribute s = 6
symbols � and 3 − 1 = 2 vertical separator lines | for the values of the t = 3 variables.
The number of ways to do this is(

s + t − 1
s

)
=

(
6 + 3 − 1

6

)
=

(
8
6

)
=

(
8
2

)
= 28

and so there are 28 nonnegative integer solutions of this equation. �

We next consider a related problem.

Example 13.43 Determine the number of positive integer solutions of the equation x1 + x2 + x3 = 6.

Solution Here we begin by assigning 1 to each of the three variables. This immediately guarantees
that each of x1, x2 and x3 will be a positive integer. It remains only to distribute the three
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remaining 1s among the three variables and so s = 3. Since there are two separator lines |
for the t = 3 variables, the number of such solutions is(

s + t − 1
s

)
=

(
3 + 3 − 1

3

)
=

(
5
3

)
=

(
5
2

)
= 10. �

Actually, it is not that difficult to find all ten solutions in Example 13.43. They are

x1 = 4, x2 = x3 = 1 x1 = 1, x2 = 4, x3 = 1 x1 = x2 = 1, x3 = 4
x1 = 3, x2 = 2, x3 = 1 x1 = 3, x2 = 1, x3 = 2 x1 = 1, x2 = 3, x3 = 2
x1 = 2, x2 = 3, x3 = 1, x1 = 1, x2 = 2, x3 = 3 x1 = 2, x2 = 1, x3 = 3

x1 = x2 = x3 = 2

These solutions can be expressed more simply as follows:

4 + 1 + 1 1 + 4 + 1 1 + 1 + 4 3 + 2 + 1 3 + 1 + 2
1 + 3 + 2 2 + 3 + 1 1 + 2 + 3 2 + 1 + 3 2 + 2 + 2.

What these solutions provide are all ten ways to express the number 6 as an ordered
sum of three positive integers. These are called the ordered partitions of 6 into three
positive integers. This concept was described in Exercise 8.5. For example, all ordered
partitions of 3 are 3, 1 + 2, 2 + 1 and 1 + 1 + 1. Thus, there are four ordered partitions
of 3. This illustrates a theorem concerning this concept.

Theorem 13.44 The number of ordered partitions of a positive integer n is 2n−1.

Proof First, observe that there is only one ordered partition of n as a sum of one positive integer
(n = n) and one ordered partition of n as a sum of n positive integers (n = 1 + 1 + · · ·
+ 1, n terms 1) and that 1 = (n−1

0

) = (n−1
n−1

)
. Suppose then that we consider the number

of ordered partitions of n as a sum of k positive integers for 2 ≤ k ≤ n − 1. Here we seek
the number of positive integer solutions of the equation

x1 + x2 + · · · + xk = n.

We begin by assigning 1 to each of these k variables. It remains therefore to distribute
n − k 1s among these k variables. This can be done by selecting n − k locations in a se-
quence with (n − k) + (k − 1) = n − 1 terms, where n − k terms represent 1 and k − 1
terms represent separator lines. This number is

(n−1
n−k

) = (n−1
k−1

)
. Hence, the total number

of ordered partitions of n is(
n − 1

0

)
+

(
n − 1

1

)
+

(
n − 1

2

)
+ · · · +

(
n − 1
n − 2

)
+

(
n − 1
n − 1

)
= 2n−1.

We present one additional example dealing with combinations with repetition.

Example 13.45 In how many ways can ten identical elements be divided among three sets S1, S2 and S3

if |Si| ≥ i for i = 1, 2, 3?

Solution We begin by assigning one element to S1, two elements to S2 and three elements to S3.
It remains therefore to determine the number of ways that the remaining 10 − 6 = 4
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elements can be divided among these three sets. Applying Theorem 13.44 with s = 4
and t = 3, we see that the number of ways to do this is(

s + t − 1
s

)
=

(
4 + 3 − 1

4

)
=

(
6
4

)
=

(
6
2

)
= 15. �

SECTION 13.7 EXERCISES

13.77. For the list s, s, s, t, t, t, u, u, i, i, o, n, b of 13 letters, determine

(a) the number of permutations of these letters.
(b) the number of permutations of these letters in which the three letters s occupy positions 1, 4 and 10.
(c) the number of 12-permutations of these letters.

13.78. Determine the number of 4-permutations of the letters in the word CHATTER.

13.79. How many positive integers each digit of which is 8 or 6 contain exactly five 8s and at most three 6s?

13.80. Twelve donuts are to be chosen from 15 varieties of donuts, each in good supply.

(a) In how many ways can this be done?
(b) In how many ways can this be done if all twelve donuts are selected from only eight of the 15 varieties

and at least one donut of each type is selected?

13.81. Let m, n ∈ Z. Determine the number of nonnegative integer solutions of the equation
x1 + x2 + · · · + xn = m.

13.82. The m employees of an organization are to be assigned to n different offices (numbered 1, 2, . . . , n) where
m ≥ n. Some offices may be left empty and each office is large enough to accommodate all m employees.

(a) In how many ways can this be done?
(b) In how many ways can this be done if we are only concerned with the number of employees assigned

to each office?
(c) If m = 10 and n = 5, determine the number of ways of assigning offices to the ten employees if each

office is to have an equal number (2) of employees.

13.83. In how many ways can three gold coins and ten silver coins be placed in four boxes of different colors?

13.84. Let S = {2, 3, 5, 7} and M = {n ∈ N : n = q1q2q3q4q5q6 where qi ∈ S for 1 ≤ i ≤ 6}.
(a) Determine |M|.
(b) Determine the number of elements of M that are divisible by at least one of 2, 3 and 7.
(c) How many elements of M have 0 as their last digit?

13.85. Expand the following.
(a) (x + y + z)2. (b) (x + y + z)3.

13.86. What is the coefficient of x2y2z2 in the expansion of (x + y + z)6?

13.87. For an integer n ≥ 2, let S = {(i, j, k) : i, j, k ∈ N ∪ {0} and i + j + k = n}.
(a) Determine |S|.
(b) For (i, j, k) ∈ S, determine the coefficient of xiy jzk in the expansion of (x + y + z)n.
(c) How many terms are there in the expansion of (x + y + z)n?
(d) State the “trinomial theorem.”
(e) What is the sum of the coefficients in the expansion of (x + y + z)n?
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13.88. Let f : A → B where A = {1, 2, . . . , m} and B = {1, 2, . . . , n}. How many different possibilities are there
for the sequence | f −1({1})|, | f −1({2})|, . . . , | f −1({n})|?

13.89. Let m, n ∈ N where m >
(n+1

2

) = ∑n
i=1 i. Determine the number of integer solutions of the equation

x1 + x2 + · · · + xn = m for which xi ≥ i for each i (1 ≤ i ≤ n).

13.90. Determine the number of integer solutions of the equation x1 + x2 + x3 + x4 = 20 where 1 ≤ x1 ≤ 4 and
xi ≥ 0 for i = 2, 3, 4.

13.91. (a) Which pairs a, b of integers can be removed from the sequence 1, 2, 3, 4, 5, 6 where a < b and
b �= a + 1?

(b) In how many ways can six integers be removed from the sequence 1, 2, 3, . . . , 14 if no two of the six
integers are consecutive?

The Chapter
Presentation for
Chapter 13 can be
found at
goo.gl/7KmHTT

Chapter 13 Supplemental Exercises

13.92. Determine the number of m-digit positive integers that do not contain the digit 1.
(Thus, the first digit is neither 0 nor 1.)

13.93. Determine the number of ways to express 100,000 as an ordered product of two
positive integers. For example, the two products 100 · 1000 and 1000 · 100 are
different ordered products.

13.94. (a) Let p1, p2, p3, p4 be distinct primes and let a1, a2, a3, a4 be positive integers.
Determine the number of distinct positive divisors of n = pa1

1 pa2
2 pa3

3 pa4
4 .

(b) Prove that the integer n in (a) has an odd number of positive divisors if and
only if n is a perfect square.

13.95. Let S = {1, 3, 4, 5, 7, 9}.
(a) How many 4-digit positive integers are there where each digit belongs to S?
(b) How many of the numbers in (a) are divisible by 5?

13.96. Let P = {2, 3, 5, 7}, M = {n ∈ N : n is a product of 10 elements in P} and
Ak = {a ∈ M : 3k | a but 3k+1 � a} for k ∈ S = {0, 1, . . . , 10}.
(a) Determine |Ak| for each k ∈ S
(b) Show that the sets A0, A1, . . . , Ak are pairwise disjoint.
(c) Determine the number of integers in M that are not divisible by 35.

13.97. Determine the number of surjective functions from the set A = {1, 2, . . . , 10} to
the set B = {1, 2, 3, 4}.

13.98. How many positive integers less than 850 have no repeated digits?

13.99. Let A = {1, 2, . . . , 25}, A1 = {1, 2, . . . , 5}, A2 = {6, 7, . . . , 15} and
A3 = {16, 17, . . . , 25}. A function f : A → A satisfies f (Ai) ⊆ Ai for each
i = 1, 2, 3.

(a) How many such functions are there?
(b) How many such functions are injective?
(c) How many such functions are there such that f (Ai) consists of exactly one

element for each i = 1, 2, 3?

13.100. Let n ∈ N. Prove that if a1, a2, . . . , an+1 are n + 1 distinct integers, then there exist
two among them whose difference is divisible by n.
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13.101. Let a, n ∈ N. Prove that if n + 1 elements are selected from the set
S = {a + 1, a + 2, . . . , a + 2n}, then there exist two elements of S that differ by n.

13.102. Prove for any nine integers in the set S = {1, 2, . . . , 19} that there exist three pairs
among them having the same positive difference.

13.103. In preparation for a forthcoming concert, a violinist plans to practice one or more
blocks of one-hour sessions each day for two weeks for a total of 20 hours. Show
that during some set of consecutive days, the violinist will have practiced exactly
seven hours.

13.104. Let k, r and n be integers with 0 ≤ k ≤ r ≤ n. Use a combinatorial proof to show
that (

n
r

)
=

k∑
i=0

(
k
i

)(
n − k
r − i

)
.

13.105. Let a1, a2, . . . , a56 be integers with 1 ≤ a1 < a2 < · · · < a56 ≤ 100. Prove for
each integer k with 1 ≤ k ≤ 11 that there exist two terms in the sequence that differ
by k.

13.106. Let n ∈ N. Prove that if more than half of the subsets of an n-element set are
chosen, then there are two among them such that one is a subset of the other.

13.107. A derangement of a set S = {1, 2, . . . , n} is a permutation f of S such that
f (k) �= k for each k ∈ S. The number of derangements of S is denoted by D(n).
Therefore, D(1) = 0, D(2) = 1 and D(3) = 2.

(a) What are the derangements of {1, 2, 3, 4}?
(b) Use the Principle of Inclusion-Exclusion to determine D(4).
(c) Use a combinatorial argument to prove that for n ≥ 3, D(n) satisfies the

recurrence relation D(n) = (n − 1)(D(n − 1) + D(n − 2)). [Hint: If
f : S → S is a derangement of S, then f (1) = a for some a �= 1 and either
f (a) = 1 or f (a) �= 1.]

13.108. Recall from calculus that for a positive integer n,
∫

(1 + x)ndx = (1+x)n+1

n+1 + C and

therefore,
∫ 1

0 (1 + x)ndx = 2n+1−1
n+1 . Prove that

∑n
k=0

1
k+1

(n
k

) = 2n+1−1
n+1 for every

positive integer n.

13.109. Let S = {1, 2, . . . , 3n} where n ∈ N.

(a) Show for any (2n + 1)-element subset T of S that there exist a, b ∈ T such
that a = 3rt and b = 3st where r < s and 3 � t.

(b) Show that the statement in (a) is false for (2n)-element subsets of S.
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14
Proofs in Calculus

Your introduction to calculus most certainly included a study of limits – both limits
of sequences (including infinite series) and limits of functions (including continuity

and differentiability). While we learned methods for computing limits in these areas, the
methods presented were most likely based on facts that were not carefully verified. In
this chapter, some of the proofs of fundamental results from calculus will be presented.
The proofs that occur in calculus are considerably different from any of those we have
seen thus far. The functions encountered in calculus are real-valued functions defined
on sets of real numbers. That is, each function that we study in calculus is of the type
f : X → R, where X ⊆ R. In the study of limits, we are often interested in such functions
having the property that either (1) X = N and increasing values in the domain N result in
functional values approaching some real number L or (2) the function is defined for all
real numbers near some specified real number a and domain values approaching a result
in functional values approaching some real number L. We begin with (1), where X = N.

14.1 LIMITS OF SEQUENCES

A sequence (of real numbers) is a real-valued function defined on the set of natural
numbers; that is, a sequence is a function f : N → R. If f (n) = an for each n ∈ N,
then f = {(1, a1), (2, a2), (3, a3), . . .}. Since only the numbers a1, a2, a3, . . . are rele-
vant in f , this sequence is often denoted only by a1, a2, a3, . . . or by {an}. The numbers
a1, a2, a3, etc. are called the terms of the sequence {an}, with a1 being the first term,

a2 the second term, etc. Thus, an is the nth term of the sequence. Hence,
{

1
n

}
is the

sequence 1, 1/2, 1/3, . . .; while
{

n
2n + 1

}
is the sequence 1/3, 2/5, 3/7, · · ·. In these

two examples, the nth term of a sequence is given and, from this, we can easily find the
first few terms and, in fact, any particular term. On the other hand, finding the nth term
of a sequence whose first few terms are given can be challenging. For example, the nth
term of the sequence

1
2
,

1
4
,

1
6
, . . .

365
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is 1
2n ; the nth term of the sequence

1 + 1
2
, 1 + 1

4
, 1 + 1

8
, · · ·

is 1 + 1/2n; the nth term of the sequence

1,
3
5
,

1
2
,

5
11

,
3
7
,

7
17

, . . .

is (n + 1)/(3n − 1); the nth term of the sequence

1, −1, 1, −1, 1, −1, . . .

is (−1)n+1; while the nth term of the sequence 1, 4, 9, 16, · · · is n2.

For the sequence
{

1
n

}
, the larger the integer n, the closer 1/n is to 0; and for the

sequence
{

n
2n + 1

}
, the larger the integer n, the closer n/(2n + 1) is to 1/2. On the other

hand, for the sequence
{
n2

}
, as the integer n become larger, n2 becomes increasingly

large and does not approach any real number.
When we discuss how close two numbers are to each other, we are actually consid-

ering the distance between them. We saw in Chapter 9 that the distance between two
real numbers a and b is defined as |a − b| = |b − a|. Recall that the absolute value of a
real number x is

|x| =
{

x if x ≥ 0
−x if x < 0.

Hence, the distance between a = 3 and b = 5 is |3 − 5| = |5 − 3| = 2, while the dis-

tance between 0 and 1/n, where n ∈ N, is

∣∣∣∣0 − 1
n

∣∣∣∣ =
∣∣∣∣1
n

− 0

∣∣∣∣ = 1
n

.

For a fixed positive real number r, the inequality |x| < r is equivalent to the in-
equalities −r < x < r. Hence, |x| < 3 is equivalent to −3 < x < 3, while |x − 2| < 4
is equivalent to −4 < x − 2 < 4. Adding 2 throughout these inequalities, we obtain
−4 + 2 < (x − 2) + 2 < 4 + 2 and so, −2 < x < 6. We have seen in Exercise 4.30 and
Theorem 4.17 that for real numbers x and y,

|xy| = |x||y| and |x + y| ≤ |x| + |y|.
Both of these properties are useful throughout calculus.

We mentioned that for some sequences {an}, there is a real number L (or at least
there appears to be a real number L) such that the larger the integer n becomes, the
closer an is to L. We have now arrived at an important and fundamental idea in the study
of sequences and are prepared to introduce a concept that describes this situation.

A sequence {an} of real numbers is said to converge to a real number L if the larger
the integer n, the closer an is to L. Since the words “larger” and “closer” are vague and
consequently are open to interpretation, we need to make these words considerably more
precise.

What we want to say then is that we can make an as close to L as we wish (that
is, we can make |an − L| as small as we wish) provided that n is large enough. Let
ε (the Greek letter epsilon) denote how small we want |an − L| to be; that is, we want
|an − L| < ε by choosing n large enough. This is equivalent to −ε < an − L < ε, that is,
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L − ε < an < L + ε. Hence, we require that an be a number in the open interval (L − ε,

L + ε) when n is large enough. Now we need to know what we mean by “large enough.”
What we mean by this is that there is some positive integer N such that if n is any integer
greater than N, then an ∈ (L − ε, L + ε). If such a positive integer N can be found for
every positive number ε, regardless of how small ε might be, then we say that {an}
converges to L. This is illustrated in Figure 14.1.

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
......
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........
........
......................

1 2 3 N

L

L − ε

L + ε

(1, a1)

(2, a2)

(3, a3)

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 14.1 A sequence {an} that converges to L

Formally then, a sequence {an} of real numbers is said to converge to the real num-
ber L if for every real number ε > 0, there exists a positive integer N such that if n is an
integer with n > N, then |an − L| < ε. As we indicated, the number ε is a measure of
how close the terms an are required to be to the number L and N indicates a position in the
sequence beyond which the required condition is satisfied. If a sequence {an} converges
to L, then {an} is a convergent sequence and L is referred to as the limit of {an} and we
write lim

n→∞ an = L. If a sequence does not converge, it is said to diverge. Consequently,

if a sequence {an} diverges, then there is no real number L such that lim
n→∞ an = L.

Before looking at a few examples, let’s recall a concept that’s been encountered
before. For a real number x, the ceiling �x� of x is the smallest integer greater than

or equal to x. Consequently, �8/3� = 3,
⌈√

2
⌉

= 2, �−1.6� = −1 and �5� = 5. By the

definition of �x�, it follows that if x is an integer, then �x� = x, while if x is not an integer,
then �x� > x. In particular, if n is an integer such that n > �x�, then n > x as well.

We now show how the definition of convergent sequence is used to prove that a
sequence converges to some number.

Result to Prove The sequence
{

1
n

}
converges to 0.

PROOF STRATEGY Here we are required to show, for a given real number ε > 0, that there is a positive

integer N such that if n > N, then

∣∣∣∣1
n

− 0

∣∣∣∣ =
∣∣∣∣1
n

∣∣∣∣ = 1
n

< ε. The inequality
1
n

< ε is

equivalent to n > 1/ε. Hence, if we let N = �1/ε� and take n to be an integer greater

than N, then n >
1
ε

. We can now present a formal proof. �
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Result 14.1 The sequence
{

1
n

}
converges to 0.

Proof Let ε > 0. Choose N = �1/ε	 and let n be any integer such that n > N. Thus, n > 1/ε

and so

∣∣∣∣1
n

− 0

∣∣∣∣ = 1
n

< ε.

PROOF ANALYSIS Although the proof of Result 14.1 is quite short, the real work in constructing the proof
occurred in the proof strategy (our “scratch paper” work) that preceded the proof, but
which is not part of the proof. This explains why we chose N as we did and why this
choice of N was successful. In the proof of Result 14.1, we chose N = �1/ε	 and showed

that with this value of N, every integer n with n > N yields

∣∣∣∣1
n

− 0

∣∣∣∣ < ε, which, of

course, was our goal. There is nothing unique about this choice of N, however. Indeed,
we could have chosen N to be any integer greater than �1/ε	 or, equivalently, any integer
greater than 1/ε and reached the desired conclusion as well. We could not, however,
choose N to be an integer smaller than �1/ε	. We cannot in general choose N = 1/ε

since there is no guarantee that N is an integer. �

We now consider another illustration of a convergent sequence.

Result to Prove The sequence
{

3 + 2
n2

}
converges to 3.

PROOF STRATEGY Here we are required to show, for a given ε > 0, that there exists a positive integer N
such that if n > N, then ∣∣∣∣

(
3 + 2

n2

)
− 3

∣∣∣∣ =
∣∣∣∣ 2
n2

∣∣∣∣ = 2
n2

< ε.

The inequality
2
n2

< ε is equivalent to
n2

2
>

1
ε

and n >
√

2/ε. Therefore, if we let

N =
⌈√

2/ε
⌉

and choose n to be an integer greater than N, then n >
√

2/ε. We can

now give a proof. �

Result 14.2 The sequence
{

3 + 2
n2

}
converges to 3.

Proof Let ε > 0. Choose N =
⌈√

2/ε
⌉

and let n be any integer such that n > N. Thus,

n >
√

2/ε and n2 > 2/ε. So
1
n2

<
ε

2
and

2
n2

< ε. Therefore,

∣∣∣∣
(

3 + 2
n2

)
− 3

∣∣∣∣ =
∣∣∣∣ 2
n2

∣∣∣∣ = 2
n2

< ε.

We now consider a somewhat more complicated example.
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Result to Prove The sequence
{

n
2n + 1

}
converges to

1
2

.

PROOF STRATEGY Observe that ∣∣∣∣ n
2n + 1

− 1
2

∣∣∣∣ =
∣∣∣∣2n − 2n − 1

2(2n + 1)

∣∣∣∣ =
∣∣∣∣− 1

4n + 2

∣∣∣∣ = 1
4n + 2

.

The inequality
1

4n + 2
< ε is equivalent to 4n + 2 > 1/ε, which, in turn, is equivalent

to n >
1
4ε

− 1
2

. It may appear that the proper choice for N is
⌈

1
4ε

− 1
2

⌉
; but if ε ≥ 1/2,

then N = 0, which is not acceptable since N is required to be a positive integer. However,

notice that
1
4ε

>
1
4ε

− 1
2

. So if n >
1
4ε

, then n >
1
4ε

− 1
2

as well. Hence, if we choose

N = �1/4ε	, then we can obtain the desired inequality. �

Result 14.3 The sequence
{

n
2n + 1

}
converges to

1
2

.

Proof Let ε > 0 be given. Choose N = �1/4ε	 and let n > N. Then n >
1
4ε

>
1
4ε

− 1
2

and so

4n >
1
ε

− 2 and 4n + 2 > 1/ε. Hence,
1

4n + 2
< ε. Thus

∣∣∣∣ n
2n + 1

− 1
2

∣∣∣∣ =
∣∣∣∣2n − 2n − 1

2(2n + 1)

∣∣∣∣ =
∣∣∣∣− 1

4n + 2

∣∣∣∣ = 1
4n + 2

< ε.

Again, the choice made for N in the proof of Result 14.3 is not unique. We could

choose N to be any integer greater than
1
4ε

.

We mentioned that a sequence {an} is said to diverge if it does not converge. To
prove that a sequence {an} diverges, a proof by contradiction would be anticipated. We
would begin such a proof by assuming, to the contrary, that {an} converges, say to some
real number L. We know that for every ε > 0, there is a positive integer N such that if
n > N, then |an − L| < ε. If we could show even for one choice of ε > 0 that no such
positive integer N exists, then we would have produced a contradiction and the desired
result would be proved. Let’s see how this works in two examples.

Result to Prove The sequence
{
(−1)n+1

}
is divergent.

PROOF STRATEGY First, let’s be certain we know what the sequence
{
(−1)n+1

}
is. It could also be written

as 1,−1, 1,−1, . . . . Initially, one might think that this sequence converges either to 1 or
to −1. However, such is not the case. In a proof by contradiction, we begin by assuming
that

{
(−1)n+1

}
converges, to the limit L say. Our goal is to show that there is some

value of ε > 0 for which there is no positive integer N that satisfies the requirement. We
choose ε = 1. According to the definition of what it means for

{
(−1)n+1

}
to converge
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to L, there must exist a positive integer N such that if n is an integer with n > N, then∣∣(−1)n+1 − L
∣∣ < ε = 1. Let k be an odd integer such that k > N. Then∣∣(−1)k+1 − L

∣∣ = |1 − L| = |L − 1| < 1.

Therefore, −1 < L − 1 < 1 and 0 < L < 2. Now let � be an even integer such that
� > N. Then ∣∣(−1)�+1 − L

∣∣ = |−1 − L| = |L + 1| < 1.

Thus, −1 < L + 1 < 1 and −2 < L < 0. So, L < 0 < L, which, of course, is impossi-
ble. We now repeat what we have just said in a formal proof. �

Result 14.4 The sequence
{
(−1)n+1

}
is divergent.

Proof Assume, to the contrary, that the sequence
{
(−1)n+1

}
converges. Then

lim
n→∞(−1)n+1 = L for some real number L. Let ε = 1. Then there exists a positive

integer N such that if n > N, then
∣∣(−1)n+1 − L

∣∣ < ε = 1. Let k be an odd integer such
that k > N. Then ∣∣(−1)k+1 − L

∣∣ = |1 − L| = |L − 1| < 1.

Therefore, −1 < L − 1 < 1 and 0 < L < 2. Next, let � be an even integer such that
� > N. Then ∣∣(−1)�+1 − L

∣∣ = |−1 − L| = |L + 1| = |1 + L| < 1.

So −1 < L + 1 < 1 and −2 < L < 0. Therefore, L < 0 < L, which is a contradiction.

PROOF ANALYSIS One question that now occurs is how we knew to choose ε = 1. If ε denotes an arbitrary
positive integer, then both inequalities |L − 1| < ε and |L + 1| < ε must be satisfied, but
these result in the inequalities

1 − ε < L < 1 + ε and −1 − ε < L < −1 + ε.

In particular, 1 − ε < L < −1 + ε and so 1 − ε < −1 + ε. This is only possible if
2ε > 2 or ε > 1. Hence, if we choose ε to be any number such that 0 < ε ≤ 1, a con-
tradiction will be produced. We decided to choose ε = 1. �

Result to Prove The sequence
{
(−1)n+1 n

n+1

}
is divergent.

PROOF STRATEGY As expected, we will attempt a proof by contradiction and assume that
{
(−1)n+1 n

n+1

}
is a convergent sequence, with limit L say. For ε > 0, there is a positive integer N then
such that ∣∣∣∣(−1)n+1 n

n + 1
− L

∣∣∣∣ < ε

for each integer n such that n > N. There are some useful observations.
First, if n > N and n is odd, then∣∣∣∣ n

n + 1
− L

∣∣∣∣ < ε and so −ε <
n

n + 1
− L < ε.
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Hence,

L − ε <
n

n + 1
< L + ε.

Second, if n > N and n is even, then∣∣∣∣− n
n + 1

− L

∣∣∣∣ < ε and so −ε < − n
n + 1

− L < ε.

Hence,

L − ε < − n
n + 1

< L + ε.

Also, since n > 1, we have n + n > n + 1 and so 2n > n + 1. Hence,
n

n + 1
>

1
2

.

Depending on whether L = 0, L > 0 or L < 0, we are faced with the decision as to how
to choose ε in each case to produce a contradiction. �

Result 14.5 The sequence
{
(−1)n+1 n

n+1

}
is divergent.

Proof Assume, to the contrary, that
{
(−1)n+1 n

n+1

}
converges. Then lim

n→∞(−1)n+1 n
n + 1

=
L for some real number L. We consider three cases, depending on whether L = 0, L > 0
or L < 0.

Case 1. L = 0. Let ε = 1
2

. Then there exists a positive integer N such that if n > N,

then

∣∣∣∣(−1)n+1 n
n + 1

− 0

∣∣∣∣ <
1
2

or
n

n + 1
<

1
2

. Then 2n < n + 1 and so n < 1, which is

a contradiction.

Case 2. L > 0. Let ε = L
2

. Then there exists a positive integer N such that if n > N, then∣∣∣∣(−1)n+1 n
n + 1

− L

∣∣∣∣ <
L
2

. Let n be an even integer such that n > N. Then

−L
2

< − n
n + 1

− L <
L
2

.

Hence,
L
2

< − n
n + 1

<
3L
2

, which is a contradiction.

Case 3. L < 0. Let ε = −L
2

. Then there exists a positive integer N such that if n > N,

then

∣∣∣∣(−1)n+1 n
n + 1

− L

∣∣∣∣ < −L
2

. Let n be an odd integer such that n > N. Then

L
2

<
n

n + 1
− L < −L

2

and so
3L
2

<
n

n + 1
<

L
2

. This is a contradiction.
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A sequence {an} may diverge because as n becomes larger, an becomes larger and
eventually exceeds any given real number. If a sequence has this property, then {an} is
said to diverge to infinity. More formally, a sequence {an} diverges to infinity, written
lim

n→∞ an = ∞, if for every positive number M, there exists a positive integer N such that

if n is an integer such that n > N, then an > M. The sequence
{
(−1)n+1

}
encountered

in Result 14.4, although divergent, does not diverge to infinity. However, the sequence{
n2 + 1

n

}
does diverge to infinity.

Result to Prove lim
n→∞

(
n2 + 1

n

)
= ∞.

PROOF STRATEGY For a given positive number M, we are required to show the existence of a positive integer

N such that if n > N, then n2 + 1
n

> M. Notice that if n2 > M, then n2 + 1
n

> n2 > M.

Since M > 0, it follows that n2 > M is equivalent to n >
√

M. A formal proof can now
be constructed. �

Result 14.6 lim
n→∞

(
n2 + 1

n

)
= ∞.

Proof Let M be a positive number. Choose N =
⌈√

M
⌉

and let n be any integer such that

n > N. Hence, n >
√

M and so n2 > M. Thus n2 + 1
n

> n2 > M.

SECTION 14.1 EXERCISES

14.1. Give an example of a sequence that is not expressed in terms of trigonometry but whose terms are exactly
those of the sequence of {cos(nπ )}.

14.2. Give an example of two sequences different from the sequence {n2 − n! + |n − 2|} whose first three terms
are the same as those of {n2 − n! + |n − 2|}.

14.3. Prove that the sequence
{

1
2n

}
converges to 0.

14.4. Prove that the sequence
{

1
n2+1

}
converges to 0.

14.5. Prove that the sequence
{
1 + 1

2n

}
converges to 1.

14.6. Prove that the sequence
{

n+2
2n+3

}
converges to 1

2 .

14.7. By definition, limn→∞ an = L if for every ε > 0, there exists a positive integer N such that if n is an
integer with n > N, then |an − L| < ε. By taking the negation of this definition, write out the meaning of
limn→∞ an �= L using quantifiers. Then write out the meaning of {an} diverges using quantifiers.

14.8. Show that the sequence
{
n4

}
diverges to infinity.

14.9. Show that the sequence
{

n5+2n
n2

}
diverges to infinity.

14.10. (a) Prove that 1 + 1
2 + 1

3 + · · · + 1
n < 2

√
n for every positive integer n.

(b) Let sn = 1
n + 1

2n + 1
3n + · · · + 1

n2 for each n ∈ N. Prove that the sequence {sn} converges to 0.

14.11. Prove that if a sequence {sn} converges to L, then the sequence {sn2} also converges to L.
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14.2 INFINITE SERIES

An important concept in calculus involving sequences is infinite series. For real numbers

a1, a2, a3, . . . , we write
∞∑

k=1

ak = a1 + a2 + a3 + · · · to denote an infinite series (often

simply called a series). For example,
∞∑

k=1

1
k2

= 1 + 1
22

+ 1
32

+ · · · and
∞∑

k=1

k
2k2 + 1

= 1
3

+ 2
9

+ 3
19

+ · · ·

are infinite series.

The numbers a1, a2, a3, . . . are called the terms of the series
∞∑

k=1

ak = a1 + a2 +
a3 + · · ·. The notation certainly seems to suggest that we are adding the terms a1, a2,

a3, . . .. But what does it mean to add infinitely many numbers? A meaning must be given
to this. For this reason, we construct a sequence {sn}, called the sequence of partial sums
of the series. Here s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3 and, in general, for n ∈ N,

sn = a1 + a2 + · · · + an =
n∑

k=1

ak.

Because sn is determined by adding a finite number of terms, there is no confusion in
understanding the terms of the sequence {sn}. If the sequence {sn} converges, say to the

number L, then the series
∞∑

k=1

ak is said to converge to L and we write
∞∑

k=1

ak = L. This

number L is called the sum of
∞∑

k=1

ak. If {sn} diverges, then
∞∑

k=1

ak is said to diverge.

The French mathematician Augustin-Louis Cauchy was one of the most productive
mathematicians of the 19th century. Among his many accomplishments was his defini-
tion of convergence of infinite series, a definition which is still used today. In his work
Cours d’Analyse, Cauchy considered the sequence {sn} of partial sums of a series. He
stated the following:

If, for increasing values of n, the sum sn approaches indefinitely a certain limit
s, the series will be called convergent and this limit in question will be called the
sum of the series.

We consider an example of a convergent series.

Result to Prove The infinite series
∞∑

k=1

1
k(k + 1)

converges to 1.

PROOF STRATEGY First, we consider the sequence {sn} of partial sums for this series. Since
∞∑

k=1

1
k(k + 1)

= 1
1 · 2

+ 1
2 · 3

+ 1
3 · 4

+ · · · ,
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it follows that s1 = 1
1 · 2

= 1
2

, s2 = 1
1 · 2

+ 1
2 · 3

= 1
2

+ 1
6

= 2
3

and

s3 = 1
1 · 2

+ 1
2 · 3

+ 1
3 · 4

= 1
2

+ 1
6

+ 1
12

= 3
4
.

Based on these three terms, it appears that sn = n
n + 1

for every positive integer n. We

prove that this is indeed the case. �

Lemma 14.7 For every positive integer n,

sn = 1
1 · 2

+ 1
2 · 3

+ 1
3 · 4

+ · · · + 1
n(n + 1)

= n
n + 1

.

Proof of
Lemma 14.7

We proceed by induction. For n = 1, we have s1 = 1
1 · 2

= 1
1 + 1

and the result holds.

Assume that sk = 1
1 · 2

+ 1
2 · 3

+ 1
3 · 4

+ · · · + 1
k(k + 1)

= k
k + 1

, where k is a positive

integer. We show that

sk+1 = 1
1 · 2

+ 1
2 · 3

+ 1
3 · 4

+ · · · + 1
(k + 1)(k + 2)

= k + 1
k + 2

.

Observe that

sk+1 =
[

1
1 · 2

+ 1
2 · 3

+ 1
3 · 4

+ · · · + 1
k(k + 1)

]
+ 1

(k + 1)(k + 2)

= k
k + 1

+ 1
(k + 1)(k + 2)

= k(k + 2) + 1
(k + 1)(k + 2)

= k2 + 2k + 1
(k + 1)(k + 2)

= (k + 1)2

(k + 1)(k + 2)
= k + 1

k + 2
.

By the Principle of Mathematical Induction, sn = n
n + 1

for every positive

integer n.

There is another way that we might have been able to see that sn = n
n + 1

. If we

had observed that

an = 1
n(n + 1)

= 1
n

− 1
n + 1

,

then a1 = 1
1 · 2

= 1 − 1
2

, a2 = 1
2 · 3

= 1
2

− 1
3

, etc. In particular,

sn = a1 + a2 + a3 + · · · + an

=
(

1 − 1
2

)
+

(
1
2

− 1
3

)
+

(
1
3

− 1
4

)
+ · · · +

(
1
n

− 1
n + 1

)

= 1 − 1
n + 1

= n
n + 1

.



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M15_CHART6753_04_SE_C14 PH03348-Chartrand August 5, 2017 20:43 Char Count= 0

14.2 Infinite Series 375

In any case, since we now know that sn = n
n + 1

, it remains only to prove that

lim
n→∞ sn = lim

n→∞
n

n + 1
= 1.

Lemma to Prove lim
n→∞

n
n + 1

= 1.

PROOF STRATEGY For a given ε > 0, we are required to find a positive integer N such that if n > N, then∣∣∣∣ n
n + 1

− 1

∣∣∣∣ < ε. Now

∣∣∣∣ n
n + 1

− 1

∣∣∣∣ =
∣∣∣∣n − n − 1

n + 1

∣∣∣∣ =
∣∣∣∣ −1
n + 1

∣∣∣∣ = 1
n + 1

.

The inequality
1

n + 1
< ε is equivalent to n + 1 >

1
ε

, which in turn is equivalent to

n >
1
ε

− 1. If n >
1
ε

, then n >
1
ε

− 1. We can now present a proof of this lemma. �

Lemma 14.8 lim
n→∞

n
n + 1

= 1.

Proof of
Lemma 14.8

Let ε > 0 be given. Choose N = �1/ε	 and let n > N. Then n >
1
ε

>
1
ε

− 1. So

n >
1
ε

− 1. Thus, n + 1 >
1
ε

and
1

n + 1
< ε. Hence,

∣∣∣∣ n
n + 1

− 1

∣∣∣∣ =
∣∣∣∣ −1
n + 1

∣∣∣∣ = 1
n + 1

< ε.

We are now prepared to give a proof of the result.

Result 14.9 The infinite series
∞∑

k=1

1
k(k + 1)

converges to 1.

Proof The nth term of the sequence {sn} of partial sums of the series
∞∑

k=1

1
k(k + 1)

is

sn = 1
1 · 2

+ 1
2 · 3

+ 1
3 · 4

+ · · · + 1
n(n + 1)

.

By Lemma 14.7,

sn = 1
1 · 2

+ 1
2 · 3

+ 1
3 · 4

+ · · · + 1
n(n + 1)

= n
n + 1
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and so sn = n
n + 1

. By Lemma 14.8,

lim
n→∞

n
n + 1

= 1.

Since lim
n→∞ sn = 1, it follows that

∞∑
k=1

1
k(k + 1)

= 1.

We now turn to a divergent series. The series
∞∑

k=1

1
k

= 1 + 1
2

+ 1
3

+ · · · is famous

and is called the harmonic series. Indeed, it is probably the best known divergent series.

Result 14.10 The harmonic series
∞∑

k=1

1
k

diverges.

Proof Assume, to the contrary, that
∞∑

k=1

1
k

converges, say to the number L. For each posi-

tive integer n, let sn =
n∑

k=1

1
k

. Hence, the sequence {sn} of partial sums converges to L.

Therefore, for each ε > 0, there exists a positive integer N such that if n > N, then
|sn − L| < ε. Let’s consider ε = 1/4 and let n be an integer with n > N. Then

−1
4

< sn − L <
1
4
.

Since 2n > N, it is also the case that |s2n − L| <
1
4

and so −1
4

< s2n − L <
1
4
. Observe

that

s2n = sn + 1
n + 1

+ 1
n + 2

+ · · · + 1
2n

> sn + n
(

1
2n

)
= sn + 1

2
.

Hence,

1
4

> s2n − L > sn + 1
2

− L = (sn − L) + 1
2

> −1
4

+ 1
2

= 1
4
,

which is impossible.

PROOF ANALYSIS In Result 14.10, we showed that a certain series diverges, that is, it does not converge.
Consequently, it is not surprising that we proved this by contradiction. By assuming that
the sequence {sn} converges, this meant that the sequence has a limit L. This tells us
that an inequality of the type |sn − L| < ε exists for every positive number ε and for
sufficiently large integers n (which depend on ε). The goal, of course, was to obtain a
contradiction. We did this by making a choice of ε (ε = 1/4 worked!) that eventually
produced a mathematical impossibility. �
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The harmonic series
∞∑

k=1

1
k

not only diverges, it diverges to infinity; that is, if {sn} is

the sequence of partial sums for the harmonic series, then lim
n→∞ sn = ∞. We also establish

this fact. First, we verify a lemma, which shows once again that mathematical induction
can be a useful proof technique in calculus.

Lemma 14.11 Let sn =
n∑

k=1

1
k

= 1 + 1
2

+ · · · + 1
n

, where n ∈ N. Then s2n ≥ 1 + n
2

for every positive

integer n.

Proof We proceed by induction. For n = 1, s21 = 1 + 1
2

and so the result holds for n = 1.

Assume that s2k ≥ 1 + k
2

, where k ∈ N. We show that s2k+1 ≥ 1 + k + 1
2

. Now observe

that

s2k+1 = 1 + 1
2

+ · · · + 1
2k+1

= s2k + 1
2k + 1

+ 1
2k + 2

+ · · · + 1
2k+1

≥ s2k + 1
2k+1

+ 1
2k+1

+ · · · + 1
2k+1

= s2k + 2k

2k+1
= s2k + 1

2

≥ 1 + k
2

+ 1
2

= 1 + k + 1
2

.

By the Principle of Mathematical Induction, s2n ≥ 1 + n
2

for every positive

integer n.

Result 14.12 The harmonic series
∞∑

k=1

1
k

diverges to infinity.

Proof For n ∈ N, let sn =
n∑

k=1

1
k

. Thus, {sn} is the sequence of partial sums for the harmonic

series. We show that lim
n→∞ sn = ∞. Let M be a positive integer and choose N = 22M . Let

n > N. Then, using Lemma 14.11, we have

sn = 1 + 1
2

+ · · · + 1
N

+ 1
N + 1

+ · · · + 1
n

= sN + 1
N + 1

+ 1
N + 2

+ · · · + 1
n

> sN = s22M ≥ 1 + 2M
2

> M.
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SECTION 14.2 EXERCISES

14.12. Prove that the series
∑∞

k=1
1

(3k−2)(3k+1) converges and determine its sum by

(a) computing the first few terms of the sequence {sn} of partial sums and conjecturing a formula for sn;
(b) using mathematical induction to verify that your conjecture in (a) is correct;
(c) completing the proof.

14.13. Prove that the series
∑∞

k=1
1
2k converges and determine its sum by

(a) computing the first few terms of the sequence {sn} of partial sums and conjecturing a formula for sn;
(b) using mathematical induction to verify that your conjecture in (a) is correct;
(c) completing the proof.

14.14. The terms a1, a2, a3, · · · of the series
∑∞

k=1 ak are defined recursively by a1 = 1
6 and

an = an−1 − 2
n(n + 1)(n + 2)

for n ≥ 2. Prove that
∑∞

k=1 ak converges and determine its value.

14.15. Prove that the series
∑∞

k=1
k+3

(k+1)2 diverges to infinity.

14.16. (a) Prove that if
∑∞

k=1 ak is a convergent series, then limn→∞ an = 0.
(b) Show that the converse of the result in (a) is false.

14.17. Let
∑∞

k=1 ak be an infinite series whose sequence of partial sums is {sn} where sn = 3n
4n+2 .

(a) What is the series
∑∞

k=1 ak?
(b) Determine the sum s of

∑∞
k=1 ak and prove that

∑∞
k=1 ak = s.

14.3 LIMITS OF FUNCTIONS

We now turn to another common type of limit problem (perhaps the most common). Here
we consider functions f : X → R, where X ⊆ R, and study the behavior of such a func-
tion f near some real number (point) a. For the present, we are not concerned whether
a ∈ X , but since we are concerned about the numbers f (x) for real numbers x near a, it is
necessary that f is defined in some “deleted neighborhood” of a. By a deleted neighbor-
hood of a, we mean a set of the type (a − δ, a) ∪ (a, a + δ) = (a − δ, a + δ) − {a} ⊆ X
for some positive real number δ (the Greek letter delta). (See Figure 14.2.) It may actu-
ally be the case that (a − δ, a + δ) ⊆ X for some δ > 0. For example, if f : X → R is

defined by f (x) = |x|
x

and we are interested in the behavior of f near 0, then 0 /∈ X . In

fact, it might very well be that X = R − {0}, in which case, (−δ, 0) ∪ (0, δ) ⊆ X for ev-

ery positive real number δ. On the other hand, if f : X → R is defined by f (x) = x
x2 − 1

and, once again, we are interested in the behavior of f near 0, then 1,−1 /∈ X . A natural
choice for X is R − {1,−1}, in which case (−δ, δ) ⊆ X for every real number δ such
that 0 < δ ≤ 1.
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a

a + δa − δ ..........................

.......................... ..........
.........
...

................................
...... x-axis..........

.........
...

Figure 14.2 A deleted neighborhood of a

We are now prepared to present the definition of the limit of a function. Let f be a
real-valued function defined on a set X of real numbers. Also, let a ∈ R such that f is
defined in some deleted neighborhood of a. Then we say that the real number L is the
limit of f (x) as x approaches a, written lim

x→a
f (x) = L, if the closer x is to a, the closer

f (x) is to L. The vagueness of the word “closer” here too requires a considerably more
precise definition. Let the positive number ε indicate how close f (x) is required to be to
L, that is, we require that | f (x) − L| < ε. Then the claim is that if x is sufficiently close
to a, then | f (x) − L| < ε. We use the positive number δ to represent how close x must
be to a in order for the inequality | f (x) − L| < ε to be satisfied, recalling that we are not
concerned about how, or even if, f is defined at a.

More precisely then, L is the limit of f (x) as x approaches a, written lim
x→a

f (x) = L,

if for every real number ε > 0, there exists a real number δ > 0 such that for every
real number x with 0 < |x − a| < δ, it follows that | f (x) − L| < ε. This implies that
if 0 < |x − a| < δ, then certainly f (x) is defined. If there exists a number L such that
lim
x→a

f (x) = L, then we say that the limit lim
x→a

f (x) exists and is equal to L; otherwise, this

limit does not exist. Thus, to show that lim
x→a

f (x) = L, it is necessary to specify ε > 0

first and then show the existence of a real number δ > 0. Ordinarily, the smaller the
value of ε, the smaller the value of δ. However, we must be certain that the number
δ selected satisfies the requirement regardless of how small (or large) ε may be. Even
though our choice of δ depends on ε, it should not depend on which real number x with
0 < |x − a| < δ is being considered.

Accordingly, if lim
x→a

f (x) = L, then for a given ε > 0, there exists δ > 0 such that if

x is any number in the open interval (a − δ, a + δ) that is different from a, then f (x) is a
number in the interval (L − ε, L + ε). This geometric interpretation of the definition of
limit is illustrated in Figure 14.3.

We illustrate these ideas with an example.

a

y-axis

x-axis

L L + ε

a + δa − δ x

L − ε f (x)

................................
......

................................
......

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
......
........
........
......................

��

�
...............................

..........

..........
..........

......................

..........
..........

.........................

Figure 14.3 A geometric interpretation of lim
x→a

f (x) = L

Result to Prove lim
x→4

(3x − 7) = 5.
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PROOF STRATEGY Before giving a formal proof of this limit, let’s discuss the procedure we will use. The
proof begins by letting ε > 0 be given. What we are required to do is to find a number
δ > 0 such that if 0 < |x − 4| < δ, then |(3x − 7) − 5| < ε or, equivalently, |3(x − 4)|
< ε. This is also equivalent to |3| · |x − 4| < ε and to |x − 4| < ε/3. This suggests our
choice of δ. We can now give a proof. �

Result 14.13 lim
x→4

(3x − 7) = 5.

Proof Let ε > 0 be given. Choose δ = ε/3. Let x ∈ R such that 0 < |x − 4| < δ = ε/3. Then

|(3x − 7) − 5| = |3x − 12| = |3(x − 4)| = 3|x − 4| < 3(ε/3) = ε.

Let’s consider another example.

Result to Prove lim
x→−3

(−2x + 1) = 7.

PROOF STRATEGY First we do some preliminary algebra. The inequality |(−2x + 1) − 7| < ε is equivalent
to | − 2x − 6| < ε and to 2|x + 3| < ε. This suggests a desired value of δ. We can now
give a proof. �

Result 14.14 lim
x→−3

(−2x + 1) = 7.

Proof Let ε > 0 be given and choose δ = ε/2. Let x ∈ R such that 0 < |x − (−3)| < δ = ε/2,
so 0 < |x + 3| < ε/2. Then

|(−2x + 1) − 7| = | − 2x − 6| = | − 2(x + 3)| = | − 2||x + 3|
= 2|x + 3| < 2(ε/2) = ε.

The two examples that we have seen thus far should tell us how to proceed when
the function is linear (that is, f (x) = ax + b, where a, b ∈ R). We now present a slight
variation of this.

Result to Prove lim
x→ 3

2

4x2 − 9
2x − 3

= 6.

PROOF STRATEGY In this example, | f (x) − L| < ε becomes

∣∣∣∣4x2 − 9
2x − 3

− 6

∣∣∣∣ < ε or, after simplifying,∣∣∣∣ (2x + 3)(2x − 3)
2x − 3

− 6

∣∣∣∣ < ε. However, since the numbers x are in a deleted neighbor-

hood of 3/2, it follows that x �= 3/2 and thus 2x − 3 �= 0. Thus,∣∣∣∣ (2x + 3)(2x − 3)
2x − 3

− 6

∣∣∣∣ < ε becomes |(2x + 3) − 6| < ε or |2x − 3| < ε. Therefore,

2|x − 3/2| < ε and |x − 3/2| < ε/2. We are now prepared to give a proof. �

Result 14.15 lim
x→ 3

2

4x2 − 9
2x − 3

= 6.
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Proof Let ε > 0 be given and choose δ = ε/2. Let x ∈ R such that 0 < |x − 3/2| < δ = ε/2.
So 2|x − 3/2| < ε and |2x − 3| < ε. Hence, |(2x + 3) − 6| < ε. Since 2x − 3 �= 0, it

follows that

∣∣∣∣ (2x + 3)(2x − 3)
2x − 3

− 6

∣∣∣∣ < ε and so

∣∣∣∣4x2 − 9
2x − 3

− 6

∣∣∣∣ < ε.

We now turn to a limit of a quadratic function.

Result to Prove lim
x→3

x2 = 9.

PROOF STRATEGY Once again for a given ε > 0, we are required to find δ > 0 such that if 0 < |x − 3| < δ,
then |x2 − 9| < ε. To find an appropriate choice of δ in terms of ε, we begin with
|x2 − 9| < ε. We wish to work the expression |x − 3| into this inequality. Actually, this
is quite easy since |x2 − 9| < ε is equivalent to |x − 3||x + 3| < ε. This might make

us think of writing |x − 3| <
ε

|x + 3| and choosing δ = ε

|x + 3| . However, δ is required

to be a positive number (a constant) that depends on ε but is not a function of x. The
expression |x + 3| can be eliminated though, as we now show. Since it is our choice
how to select δ, we can certainly require δ ≤ 1, which we do. Thus, |x − 3| < 1 and so
−1 < x − 3 < 1. Hence, 2 < x < 4. Thus, 5 < x + 3 < 7 and so |x + 3| < 7. So, under
this restriction for δ, it follows that |x − 3||x + 3| < 7|x − 3|. Now if 7|x − 3| < ε, that
is, if |x − 3| < ε/7, then it will certainly follow that |x − 3||x + 3| < ε. Arriving at this
inequality required that both |x − 3| < 1 and |x − 3| < ε/7. This suggests an appropriate
choice of δ. �

Result 14.16 lim
x→3

x2 = 9.

Proof Let ε > 0 be given and choose δ = min(1, ε/7). Let x ∈ R such that 0 < |x − 3| < δ =
min(1, ε/7). Since |x − 3| < 1, it follows that −1 < x − 3 < 1 and so 5 < x + 3 < 7.
In particular, |x + 3| < 7. Because |x − 3| < ε/7, it follows that

|x2 − 9| = |x − 3||x + 3| < |x − 3| · 7 < (ε/7) · 7 = ε.

We have now seen four proofs of limits of type lim
x→a

f (x) = L. In Result 14.13, we

chose δ = ε/3 for the given ε > 0 and in Result 14.14, we chose δ = ε/2. In each case,
if we had considered a different value of a for the same function, then the same choice of
δ would be successful. This is because the function is linear in each case. In Result 14.15,
for a given ε > 0, the selection of δ = ε/2 would also be successful if a �= 3/2, provided
3/2 /∈ (a − δ, a + δ). This is because the function f in Result 14.15 defined by f (x) =
(4x2 − 9)/(2x − 3) is “nearly linear,” that is, f (x) = 2x + 3 if x �= 3/2 and f (3/2) is
not defined. However, our choice of δ = ε/7 in the proof of Result 14.16 depended on
a = 3; that is, if a �= 3, a different choice of δ is needed. For example, if we were to prove
that lim

x→4
x2 = 16, then for a given ε > 0, an appropriate choice for δ is min(1, ε/9).

Next, we consider a limit involving a polynomial function of a higher degree.

Result to Prove lim
x→2

(x5 − 2x3 − 3x − 7) = 3.
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PROOF STRATEGY For a given ε > 0, we are required to show that |(x5 − 2x3 − 3x − 7) − 3| < ε if
0 < |x − 2| < δ for a suitable choice of δ > 0. We then need to work |x − 2| into the
expression |x5 − 2x3 − 3x − 10|. Dividing x5 − 2x3 − 3x − 10 by x − 2, we obtain
x5 − 2x3 − 3x − 10 = (x − 2)(x4 + 2x3 + 2x2 + 4x + 5). Hence, we have

|x5 − 2x3 − 3x − 10| = |x − 2||x4 + 2x3 + 2x2 + 4x + 5|.
Thus, we seek an upper bound for |x4 + 2x3 + 2x2 + 4x + 5|. To do this, we impose a
restriction on δ; namely, we require that δ ≤ 1. Thus, |x − 2| < δ ≤ 1. So, −1 < x −
2 < 1 and 1 < x < 3. Hence,

|x4 + 2x3 + 2x2 + 4x + 5| ≤ |x4| + |2x3| + |2x2| + |4x| + |5| < 170.

We are now prepared to prove Result 14.17. �

Result 14.17 lim
x→2

(x5 − 2x3 − 3x − 7) = 3.

Proof Let ε > 0 be given and choose δ = min(1, ε/170). Let x ∈ R such that 0 < |x − 2| <

δ = min(1, ε/170). Since |x − 2| < 1, it follows that 1 < x < 3 and so

|x4 + 2x3 + 2x2 + 4x + 5| ≤ |x4| + |2x3| + |2x2| + |4x| + |5| < 170.

Since |x − 2| < ε/170, we have

|(x5 − 2x3 − 3x − 7) − 3| = |x5 − 2x3 − 3x − 10|
= |x − 2| |x4 + 2x3 + 2x2 + 4x + 5|
< (ε/170) · 170 = ε.

Our next example involves a rational function (the ratio of two polynomials).

Result to Prove lim
x→1

x2 + 1
x2 + 4

= 2
5
.

PROOF STRATEGY First observe that∣∣∣∣x2 + 1
x2 + 4

− 2
5

∣∣∣∣ =
∣∣∣∣5(x2 + 1) − 2(x2 + 4)

5(x2 + 4)

∣∣∣∣ = |3x2 − 3|
5(x2 + 4)

= 3|x − 1||x + 1|
5(x2 + 4)

.

Hence, it is necessary to find an upper bound for
3|x + 1|

5(x2 + 4)
. Once again we restrict δ so

that δ ≤ 1. Then |x − 1| < 1 or 0 < x < 2. Hence, 1 < x + 1 < 3 and so 3|x + 1| < 9.

Also, since x > 0, it follows that 5(x2 + 4) > 20. Thus,
1

5(x2 + 4)
<

1
20

and so

3|x + 1|
5(x2 + 4)

< 9
(

1
20

)
= 9

20
.

We now present a proof of this result. �

Result 14.18 lim
x→1

x2 + 1
x2 + 4

= 2
5
.
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Proof Let ε > 0 be given and choose δ = min(1, 20ε/9). Let x ∈ R such that 0 < |x − 1| < δ.
Since |x − 1| < 1, we have 0 < x < 2 and 1 < x + 1 < 3. Hence, 3|x + 1| ≤ 3 · 3 = 9

and 5(x2 + 4) > 20, so
1

5(x2 + 4)
<

1
20

. Therefore,
3|x + 1|

5(x2 + 4)
< 9/20. Since |x − 1| <

20ε/9, it follows that∣∣∣∣x2 + 1
x2 + 4

− 2
5

∣∣∣∣ =
∣∣∣∣5(x2 + 1) − 2(x2 + 4)

5(x2 + 4)

∣∣∣∣ = |3x2 − 3|
5(x2 + 4)

= 3|x − 1||x + 1|
5(x2 + 4)

<
20ε

9
· 9

20
= ε.

We now present one additional example on this topic.

Example 14.19 What would be a reasonable conjecture for lim
x→1

x2 − 1
2x − 1

?

Solution Since it appears that lim
x→1

(x2 − 1) = 0 and lim
x→1

(2x − 1) = 1, we would expect that

lim
x→1

x2 − 1
2x − 1

= 0
1

= 0. �

Let’s now give a formal proof of this, beginning with a plan for a proof.

PROOF STRATEGY To verify that the limit in Example 14.19 is 0, we show for a given ε > 0 that there exists
δ > 0 such that if 0 < |x − 1| < δ, then∣∣∣∣ x2 − 1

2x − 1
− 0

∣∣∣∣ =
∣∣∣∣ x2 − 1
2x − 1

∣∣∣∣ < ε.

Observe that ∣∣∣∣ x2 − 1
2x − 1

∣∣∣∣ =
∣∣∣∣ (x − 1)(x + 1)

2x − 1

∣∣∣∣ = |x + 1|
|2x − 1| |x − 1|.

Proceeding as before, we find an upper bound for
|x + 1|
|2x − 1| . Ordinarily, we might re-

strict δ ≤ 1, as before, but in this situation, we have a problem. If δ ≤ 1, then
0 < |x − 1| < δ and so |x − 1| < 1. Thus, 0 < x < 2 or x ∈ (0, 2). However, this in-

terval of real numbers includes 1/2 and
|x + 1|
|2x − 1| is not defined when x = 1/2. Thus, we

place a tighter restriction on δ. The restriction δ ≤ 1/2 is not suitable either, for if |x − 1|
< δ ≤ 1/2, then 1/2 < x < 3/2. Even though

|x + 1|
|2x − 1| is defined for all real numbers x

in this interval, this expression becomes arbitrarily large if x is arbitrarily close to 1/2,
allowing |2x − 1| to be arbitrarily close to 0. That is, we cannot find an upper bound

for
|x + 1|
|2x − 1| if δ = 1/2. Hence, we require that δ ≤ 1/4, say, and so |x − 1| < δ ≤ 1/4.

Thus, 3/4 < x < 5/4. Hence, |x + 1| < 9/4. Also, |2x − 1| > 2
(

3
4

) − 1 = 1/2 and so
1

|2x − 1| < 2. Therefore,
|x + 1|
|2x − 1| <

9
4

· 2 = 9
2
. �
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Result 14.20 lim
x→1

x2 − 1
2x − 1

= 0.

Proof Let ε > 0 be given and choose δ = min(1/4, 2ε/9). Let x ∈ R such that 0 < |x − 1| < δ.
Since δ ≤ 1/4, it follows that |x − 1| < 1/4 and so 3/4 < x < 5/4. Hence, |x + 1| <

5/4 + 1 = 9/4. Also, |2x − 1| > 2
(

3
4

) − 1 = 1/2 and so
1

|2x − 1| < 2. Therefore,

|x + 1|
|2x − 1| <

9
4

· 2 = 9
2
. Since |x − 1| < δ ≤ 2ε/9, it follows that

∣∣∣∣ x2 − 1
2x − 1

− 0

∣∣∣∣ =
∣∣∣∣ x2 − 1
2x − 1

∣∣∣∣ = |x + 1|
|2x − 1| |x − 1| <

2ε

9
· 9

2
= ε.

Next we consider a limit problem where the limit does not exist.

Result to Prove lim
x→0

1
x

does not exist.

PROOF STRATEGY As expected, we will give a proof by contradiction. If lim
x→0

1
x

does exist, then there exists

a real number L such that lim
x→0

1
x

= L. Hence, for every ε > 0, there exists δ > 0 such

that if 0 < |x| < δ, then

∣∣∣∣1
x

− L

∣∣∣∣ < ε. For numbers x “close” to 0, it certainly appears

that
1
x

is “large” (in absolute value). Hence, regardless of the value of ε, it seems that

there should be a real number x with 0 < |x| < δ such that

∣∣∣∣1
x

− L

∣∣∣∣ ≥ ε. It is our plan to

show that this is indeed the case. Thus, we choose ε = 1, for example, and show that no
desired δ can be found. �

Result 14.21 lim
x→0

1
x

does not exist.

Proof Assume, to the contrary, that lim
x→0

1
x

exists. Then there exists a real number L such that

lim
x→0

1
x

= L. Let ε = 1. Then there exists δ > 0 such that if x is a real number for which

0 < |x| < δ, then

∣∣∣∣1
x

− L

∣∣∣∣ < ε = 1. Choose an integer n such that n > �1/δ	 ≥ 1. Since

n > 1/δ, it follows that 0 < 1/n < δ. We consider two cases.

Case 1. L ≤ 0. Let x = 1/n. So 0 < |x| < δ. Since −L ≥ 0, it follows that∣∣∣∣1
x

− L

∣∣∣∣ = |n − L| = n − L ≥ n > 1 = ε,

which is a contradiction.
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Case 2. L > 0. Let x = −1/n. So, 0 < |x| < δ. Thus,∣∣∣∣1
x

− L

∣∣∣∣ = | − n − L| = | − (n + L)| = n + L > n > 1 = ε,

producing a contradiction in this case as well.

Result to Prove Let f (x) = |x|/x, where x ∈ R and x �= 0. Then lim
x→0

f (x) does not exist.

PROOF STRATEGY The graph of this function is shown in Figure 14.4. If x > 0, then f (x) = |x|/x =
x/x = 1; while if x < 0, then f (x) = |x|/x = −x/x = −1. Hence, there are numbers x
that are “near” 0 such that f (x) = 1 and numbers x that are “near” 0 such that f (x) = −1.
This suggests a proof. �

.............................

.............................

................................
......

........
........
......................

x

1

−1

0

y

Figure 14.4 The graph of the function f (x) = |x|/x

Result 14.22 Let f (x) = |x|/x, where x ∈ R and x �= 0. Then lim
x→0

f (x) does not exist.

Proof Assume, to the contrary, that lim
x→0

f (x) exists. Then there exists a real number L such

that lim
x→0

f (x) = L. Let ε = 1. Then there exists δ > 0 such that if x is a real number

satisfying 0 < |x − 0| = |x| < δ, then | f (x) − L| < ε = 1. We consider two cases.

Case 1. L ≥ 0. Consider x = −δ/2. Then |x| = δ/2 < δ. However, f (x) = f (−δ/2) =
(δ/2)/(−δ/2) = −1. So | f (x) − L| = | − 1 − L| = 1 + L ≥ 1, a contradiction.

Case 2. L < 0. Let x = δ/2. Then |x| = δ/2 < δ. Also, f (x) = f (δ/2) = (δ/2)/
(δ/2) = 1. So | f (x) − L| = |1 − L| = 1 − L > 1, a contradiction.

SECTION 14.3 EXERCISES

14.18. Give an ε − δ proof that limx→2
(

3
2 x + 1

) = 4.

14.19. Give an ε − δ proof that limx→−1 (3x − 5) = −8.

14.20. Give an ε − δ proof that limx→2 (2x2 − x − 5) = 1.
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14.21. Give an ε − δ proof that limx→2 x3 = 8.

14.22. Determine limx→1
1

5x−4 and verify that your answer is correct with an ε − δ proof.

14.23. Give an ε − δ proof that limx→3
3x+1
4x+3 = 2

3 .

14.24. Determine limx→3
x2−2x−3
x2−8x+15 and verify that your answer is correct with an ε − δ proof.

14.25. Show that limx→0
1
x2 does not exist.

14.26. The function f : R → R is defined by

f (x) =
⎧⎨
⎩

1 x < 3
1.5 x = 3
2 x > 3.

(a) Determine whether limx→3 f (x) exists and verify your answer.
(b) Determine whether limx→π f (x) exists and verify your answer.

14.27. A function g : R → R is bounded if there exists a positive real number B such that |g(x)| < B for each
x ∈ R.

(a) Let g : R → R be a bounded function and suppose that f : R → R and a ∈ R such that
limx→a f (x) = 0. Prove that limx→a f (x)g(x) = 0.

(b) Use the result in (a) to determine limx→0 x2 sin
(

1
x2

)
.

14.28. Suppose that limx→a f (x) = L, where L > 0. Prove that limx→a
√

f (x) = √
L.

14.29. Suppose that f : R → R is a function such that limx→0 f (x) = L.

(a) Let c ∈ R. Prove that limx→c f (x − c) = L.
(b) Suppose that f has the property that f (a + b) = f (a) + f (b) for all a, b ∈ R. Use the result in (a) to

prove that limx→c f (x) exists for all c ∈ R.

14.30. Let f : R → R be a function.

(a) Prove that if limx→a f (x) = L, then limx→a | f (x)| = |L|.
(b) Prove or disprove: If limx→a | f (x)| = |L|, then limx→a f (x) exists.

14.4 FUNDAMENTAL PROPERTIES OF LIMITS OF FUNCTIONS

If we were to continue computing limits, then it would be essential to have some theo-
rems at our disposal that would allow us to compute limits more rapidly. We now present
some theorems that will allow us to determine limits more easily. We begin with a stan-
dard theorem on limits of sums of functions.

Theorem to
Prove

If lim
x→a

f (x) = L and lim
x→a

g(x) = M, then

lim
x→a

( f (x) + g(x)) = L + M.

PROOF STRATEGY In this case, we are required to show, for a given ε > 0, that |( f (x) + g(x)) − (L + M)| < ε

if 0 < |x − a| < δ for a suitable choice of δ > 0. Now,

|( f (x) + g(x)) − (L + M)| = |( f (x) − L) + (g(x) − M)| ≤ | f (x) − L| + |g(x) − M|.
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Hence, if we can show that both | f (x) − L| < ε/2 and |g(x) − M| < ε/2, for example,
then we will have obtained the desired inequality. However, because of the hypothesis,
this can be accomplished. We now make all of this precise. �

Theorem 14.23 If lim
x→a

f (x) = L and lim
x→a

g(x) = M, then

lim
x→a

( f (x) + g(x)) = L + M.

Proof Let ε > 0. Since ε/2 > 0, there exists δ1 > 0 such that if 0 < |x − a| < δ1, then
| f (x) − L| < ε/2. Also, there exists δ2 > 0 such that if 0 < |x − a| < δ2, then |g(x) −
M| < ε/2. Choose δ = min(δ1, δ2) and let x ∈ R such that 0 < |x − a| < δ. Since
0 < |x − a| < δ, it follows that both 0 < |x − a| < δ1 and 0 < |x − a| < δ2. Therefore,

|( f (x) + g(x)) − (L + M)| = |( f (x) − L) + (g(x) − M)|
≤ | f (x) − L| + |g(x) − M| < ε/2 + ε/2 = ε.

Theorem 14.23 states that the limit of the sum of two functions is the sum of their
limits. Next we show that this is also true for products. Before getting to this theorem,
let’s see what would be involved to prove it. Let lim

x→a
f (x) = L and lim

x→a
g(x) = M. This

means that we can make the expressions | f (x) − L| and |g(x) − M| as small as we wish.
Our goal is to show that we can make | f (x) · g(x) − LM| as small as we wish, say less
than ε for every given ε > 0. The question then becomes how to use what we know about
| f (x) − L| and |g(x) − M| as we consider | f (x) · g(x) − LM|. A common way to do this
is to add and subtract the same quantity to and from f (x) · g(x) − LM. For example,

| f (x) · g(x) − LM| = | f (x) · g(x) − f (x) · M + f (x) · M − LM|
= | f (x)(g(x) − M) + ( f (x) − L)M|
≤ | f (x)||g(x) − M| + | f (x) − L||M|.

If we can make each of | f (x)||g(x) − M| and | f (x) − L||M| less than ε/2, say, then we
will have accomplished our goal. Since |M| is a nonnegative constant and | f (x) − L| and
|g(x) − M| can be made arbitrarily small, only | f (x)| is in question. In fact, all that is
required to show is that f (x) can be bounded in a deleted neighborhood of a, that is,
| f (x)| ≤ B for some constant B > 0.

Lemma 14.24 Suppose that lim
x→a

f (x) = L. Then there exists δ > 0 such that if 0 < |x − a| < δ, then

| f (x)| < 1 + |L|.

Proof Let ε = 1. Then there exists δ > 0 such that if 0 < |x − a| < δ, then | f (x) − L| < 1.
Thus

| f (x)| = | f (x) − L + L| ≤ | f (x) − L| + |L| < 1 + |L|.

We are now prepared to show that the limit of the product of two functions is the
product of their limits.

Theorem to
Prove

If lim
x→a

f (x) = L and lim
x→a

g(x) = M, then lim
x→a

f (x) · g(x) = LM.
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PROOF STRATEGY As we discussed earlier,

| f (x) · g(x) − LM| = | f (x) · g(x) − f (x) · M + f (x) · M − LM|
= | f (x)(g(x) − M) + ( f (x) − L)M|
≤ | f (x)||g(x) − M| + | f (x) − L||M|.

For a given ε > 0, we show that each of | f (x)||g(x) − M| and | f (x) − L||M| can
be made less than ε/2, which will give us a proof of the result. Of course, this fol-
lows immediately for | f (x) − L||M| if M = 0. Otherwise, we can make | f (x) − L| less
than ε/(2|M|). By Lemma 14.24, we can make | f (x)| less than 1 + |L|. Thus, we make
|g(x) − M| < ε/(2(1 + |L|)). Now, let’s put all of the pieces together. �

Theorem 14.25 If lim
x→a

f (x) = L and lim
x→a

g(x) = M, then lim
x→a

f (x) · g(x) = LM.

Proof Let ε > 0 be given. By Lemma 14.24, there exists δ1 > 0 such that if 0 < |x − a| < δ1,
then | f (x)| < 1 + |L|. Since lim

x→a
g(x) = M, there exists δ2 > 0 such that if 0 < |x −

a| < δ2, then |g(x) − M| < ε/(2(1 + |L|)). We consider two cases.

Case 1. M = 0. Choose δ = min(δ1, δ2). Let x ∈ R such that 0 < |x − a| < δ. Then

| f (x) · g(x) − LM| = | f (x) · g(x) − f (x) · M + f (x) · M − LM|
= | f (x)(g(x) − M) + ( f (x) − L)M|
≤ | f (x)||g(x) − M| + | f (x) − L||M|
< (1 + |L|)ε/(2(1 + |L|)) + 0 = ε/2 < ε.

Case 2. M �= 0. Since lim
x→a

f (x) = L, there exists δ3 > 0 such that if 0 < |x − a| < δ3,

then | f (x) − L| < ε/(2|M|). In this case, we choose δ = min(δ1, δ2, δ3). Now let x ∈ R
such that 0 < |x − a| < δ. Then

| f (x) · g(x) − LM| = | f (x) · g(x) − f (x) · M + f (x) · M − LM|
= | f (x)(g(x) − M) + ( f (x) − L)M|
≤ | f (x)||g(x) − M| + | f (x) − L||M|
< (1 + |L|)ε/(2(1 + |L|)) + (ε/(2|M|))|M|
= ε/2 + ε/2 = ε.

Next, we consider the limit of the quotient of two functions. As before, let

lim
x→a

f (x) = L and lim
x→a

g(x) = M. Our goal is to show that lim
x→a

f (x)
g(x)

= L
M

. Of course,

this is not true if M = 0; so we will need to assume that M �= 0. Since lim
x→a

g(x) = M �= 0,

it follows not only that g(x) �= 0 in some deleted neighborhood of a but that there is a
properly chosen deleted neighborhood of a on which 1/|g(x)| is bounded. This is ac-
complished in the following lemma.

Lemma 14.26 If lim
x→a

g(x) = M �= 0, then 1/|g(x)| < 2/|M| for all x in some deleted neighborhood

of a.
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Proof Let ε = |M|/2. Then there exists δ > 0 such that if 0 < |x − a| < δ, then |g(x) − M| <

|M|/2. Therefore,

|M| = |M − g(x) + g(x)| ≤ |M − g(x)| + |g(x)|.
Hence, |g(x)| ≥ |M| − |M − g(x)| > |M| − |M|/2 = |M|/2. Thus, 1/|g(x)| < 2/|M|.

Theorem to
Prove

If lim
x→a

f (x) = L and lim
x→a

g(x) = M �= 0, then lim
x→a

f (x)
g(x)

= L
M

.

PROOF STRATEGY To prove that lim
x→a

f (x)
g(x)

= L
M

, we are required to show that

∣∣∣∣ f (x)
g(x)

− L
M

∣∣∣∣ can be made

arbitrarily small. Observe that∣∣∣∣ f (x)
g(x)

− L
M

∣∣∣∣ =
∣∣∣∣ f (x) · M − L · g(x)

g(x) · M

∣∣∣∣ =
∣∣∣∣ f (x) · M − LM + LM − L · g(x)

g(x) · M

∣∣∣∣
=

∣∣∣∣ ( f (x) − L)M + L(M − g(x))
g(x) · M

∣∣∣∣ ≤ | f (x) − L||M| + |L||M − g(x)|
|g(x)||M|

≤ | f (x) − L|
|g(x)| + |L||M − g(x)|

|g(x)||M| .

Thus, to show that

∣∣∣∣ f (x)
g(x)

− L
M

∣∣∣∣ can be made less than ε for any given positive number ε,

it is sufficient to show that each of
| f (x) − L|

|g(x)| and
|L||M − g(x)|

|g(x)||M| can be made less

than ε/2.
With the aid of Lemma 14.26, we now have∣∣∣∣ f (x)

g(x)
− L

M

∣∣∣∣ ≤ | f (x) − L|
|g(x)| + |L||M − g(x)|

|g(x)||M|
< | f (x) − L| · 2

|M| + |L||M − g(x)| · 2
|M|2 .

This suggests how small we must make | f (x) − L| and |g(x) − M| = |M − g(x)| to
accomplish our goal. �

Theorem 14.27 If lim
x→a

f (x) = L and lim
x→a

g(x) = M �= 0, then lim
x→a

f (x)
g(x)

= L
M

.

Proof Let ε > 0 be given. By Lemma 14.26, there exists δ1 > 0 such that if 0 < |x − a| < δ1,
then 1/|g(x)| < 2/|M|. Since lim

x→a
f (x) = L, there exists δ2 > 0 such that if 0 < |x −

a| < δ2, then | f (x) − L| < |M|ε/4. We consider two cases.

Case 1. L = 0. Define δ = min(δ1, δ2). Let x ∈ R such that 0 < |x − a| < δ. Then∣∣∣∣ f (x)
g(x)

− L
M

∣∣∣∣ ≤ | f (x) − L|
|g(x)| + |L||M − g(x)|

|g(x)||M|
<

|M|ε
4

· 2
|M| + 0 = ε

2
< ε.
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Case 2. L �= 0. Since lim
x→a

g(x) = M, there exists δ3 > 0 such that if 0 < |x − a| < δ3,

then |g(x) − M| < |M|2ε/(4|L|). In this case, define δ = min(δ1, δ2, δ3). Let x ∈ R such
that 0 < |x − a| < δ. Then∣∣∣∣ f (x)

g(x)
− L

M

∣∣∣∣ ≤ | f (x) − L|
|g(x)| + |L||M − g(x)|

|g(x)||M|

<
|M|ε

4
· 2
|M| + |L|

|M| · |M|2ε
4|L| · 2

|M| = ε

2
+ ε

2
= ε.

Now, with the aid of Theorems 14.23, 14.25, 14.27 and a few other general results,
it is possible to give simpler arguments for some of the limits we have discussed. First,
we present some additional results, beginning with an observation concerning constant
functions and followed by limits of polynomial functions defined by f (x) = xn for some
n ∈ N.

Theorem 14.28 Let a, c ∈ R. If f (x) = c for all x ∈ R, then lim
x→a

f (x) = c.

Proof Let ε > 0 be given and choose δ to be any positive number. Let x ∈ R such that 0 <

|x − a| < δ. Since f (x) = c for all x ∈ R, it follows that | f (x) − c| = |c − c| = 0 < ε.

Theorem 14.29 Let f (x) = x for all x ∈ R. For each a ∈ R, lim
x→a

f (x) = a.

Proof Let ε > 0 be given and choose δ = ε. Let x ∈ R such that 0 < |x − a| < δ. Then | f (x) −
a| = |x − a| < δ = ε.

We now extend the result in Theorem 14.29.

Theorem 14.30 Let n ∈ N and let f (x) = xn for all x ∈ R. Then for each a ∈ R, lim
x→a

f (x) = an.

Proof We proceed by induction. The statement is true for n = 1 since if f (x) = x, then
lim
x→a

f (x) = a by Theorem 14.29. Assume that lim
x→a

xk = ak, where k ∈ N. We show that

lim
x→a

xk+1 = ak+1. Observe that lim
x→a

xk+1 = lim
x→a

(
xk · x

)
. By Theorems 14.25 and 14.29

and the induction hypothesis,

lim
x→a

xk+1 = lim
x→a

(
xk · x

) =
(

lim
x→a

xk
) (

lim
x→a

x
)

= (
ak) (a) = ak+1.

By the Principle of Mathematical Induction, lim
x→a

xn = an for every n ∈ N.

It is possible to prove the following theorem by induction as well. We leave its proof
as an exercise (Exercise 14.32).

Theorem 14.31 Let f1, f2, · · · , fn be functions (n ∈ N) such that lim
x→a

fi(x) = Li for 1 ≤ i ≤ n. Then

lim
x→a

( f1(x) + f2(x) + · · · + fn(x)) = L1 + L2 + · · · + Ln.
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With the results we have now presented, it is possible to prove that if p(x) = cnxn +
cn−1xn−1 + · · · + c1x + c0 is a polynomial, then

lim
x→a

p(x) = cnan + cn−1an−1 + · · · + c1a + c0 = p(a). (14.1)

For example, applying this to Result 14.13, we have

lim
x→4

(3x − 7) = 3 · 4 − 7.

Similarly, Result 14.14 can be established. Result 14.15 cannot be established directly
since lim

x→ 3
2

(2x − 3) = 0. Applying what we now know to Result 14.16, we have lim
x→3

x2 =
32 = 9 and in Result 14.17,

lim
x→2

(x5 − 2x3 − 3x − 7) = 25 − 2 · 23 − 3 · 2 − 7 = 3.

Also, if r is a rational function, that is, if r(x) is the ratio p(x)/q(x) of two polyno-
mials p(x) and q(x) such that q(a) �= 0 for a ∈ R, then by Theorem 14.27,

lim
x→a

r(x) = lim
x→a

p(x)
q(x)

= limx→a p(x)
limx→a q(x)

= p(a)
q(a)

= r(a). (14.2)

So, in Result 14.18, we have

lim
x→1

x2 + 1
x2 + 4

= 12 + 1
12 + 4

= 2
5
.

Although it is simpler and certainly less time-consuming to verify certain limits
with the aid of these theorems, we should also know how to verify limits by the ε − δ

definition.

SECTION 14.4 EXERCISES

14.31. Use limit theorems to determine the following:

(a) limx→1(x3 − 2x2 − 5x + 8)
(b) limx→1(4x + 7)(3x2 − 2)
(c) limx→2

2x2−1
3x3+1

14.32. Use induction to prove Theorem 14.31: For every integer n ≥ 2 and every n functions f1, f2, · · · , fn such
that lim

x→a
fi(x) = Li for 1 ≤ i ≤ n,

lim
x→a

( f1(x) + f2(x) + · · · + fn(x)) = L1 + L2 + · · · + Ln.

14.33. Use Exercise 14.32 to prove that limx→a p(x) = p(a) for every polynomial p(x) = cnxn + cn−1xn−1 + · · · +
c1x + c0.

14.34. Prove that if f1, f2, . . . , fn are any n ≥ 2 functions such that limx→a fi(x) = Li for 1 ≤ i ≤ n, then

lim
x→a

( f1(x) · f2(x) · · · fn(x)) = L1 · L2 · · · Ln.
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14.5 CONTINUITY

Once again, let f : X → R be a function, where X ⊆ R, and let a be a real number such
that f is defined in some deleted neighborhood of a. Recall that lim

x→a
f (x) = L for some

real number L if for every ε > 0, there exists δ > 0 such that if x ∈ (a − δ, a + δ) and
x �= a, then | f (x) − L| < ε. If f is defined at a and f (a) = L, then f is said to be con-
tinuous at a. That is, f is continuous at a if lim

x→a
f (x) = f (a). Therefore, a function f

is continuous at a if for every ε > 0, there exists δ > 0 such that if |x − a| < δ, then
| f (x) − f (a)| < ε. (Notice that in this instance, 0 < |x − a| < δ is being replaced by
|x − a| < δ.) Thus, for f to be continuous at a, three conditions must be satisfied:

(1) f is defined at a; (2) lim
x→a

f (x) exists; (3) lim
x→a

f (x) = f (a).

We now illustrate this.

Example 14.32 A function f is defined by f (x) = (x2 − 3x + 2)/(x2 − 1) for all x ∈ R − {−1, 1}. Is
f continuous at 1 under any of the following circumstances: (a) f is not defined at 1;
(b) f (1) = 0; (c) f (1) = −1/2?

Solution For f to be continuous at 1, the function f must be defined at 1. So, we can answer
question (a) immediately. The answer is no. In order to answer questions (b) and (c), we
must first determine whether lim

x→1
f (x) exists. Observe that

f (x) = x2 − 3x + 2
x2 − 1

= (x − 1)(x − 2)
(x − 1)(x + 1)

= x − 2
x + 1

since x �= 1. Because f (x) = x − 2
x + 1

is a rational function, we can apply (14.2) to obtain

lim
x→1

x − 2
x + 1

= limx→1(x − 2)
limx→1(x + 1)

= −1
2

= −1
2
.

Hence, if f (1) = −1/2, then f is continuous at 1. Therefore, the answer to question (b)
is no and the answer to (c) is yes. �

For additional practice, we present an ε − δ proof that lim
x→1

x2 − 3x + 2
x2 − 1

= −1
2

.

Result to Prove lim
x→1

x2 − 3x + 2
x2 − 1

= −1
2
.

PROOF STRATEGY Observe that∣∣∣∣x2 − 3x + 2
x2 − 1

−
(

−1
2

)∣∣∣∣ =
∣∣∣∣ (x − 1)(x − 2)
(x − 1)(x + 1)

+ 1
2

∣∣∣∣ =
∣∣∣∣ (x − 2)
(x + 1)

+ 1
2

∣∣∣∣
=

∣∣∣∣2(x − 2) + (x + 1)
2(x + 1)

∣∣∣∣ =
∣∣∣∣ 3x − 3
2(x + 1)

∣∣∣∣ = 3
2

|x − 1|
|x + 1| .
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If |x − 1| < 1, then 0 < x < 2 and |x + 1| > 1, so 1/|x + 1| < 1. We are now prepared
to prove that lim

x→1
f (x) = −1/2. �

Result 14.33 lim
x→1

x2 − 3x + 2
x2 − 1

= −1
2
.

Proof Let ε > 0 and choose δ = min(1, 2ε/3). Let x ∈ R such that |x − 1| < δ. Since
|x − 1| < 1, it follows that 0 < x < 2. So, |x + 1| > 1 and 1/|x + 1| < 1. Hence,∣∣∣∣x2 − 3x + 2

x2 − 1
−

(
−1

2

)∣∣∣∣ =
∣∣∣∣ (x − 1)(x − 2)
(x − 1)(x + 1)

+ 1
2

∣∣∣∣ =
∣∣∣∣ (x − 2)
(x + 1)

+ 1
2

∣∣∣∣

=
∣∣∣∣ 3x − 3
2(x + 1)

∣∣∣∣ = 3
2

|x − 1|
|x + 1| <

3
2

· 2ε

3
= ε.

Indeed, (14.2) states that if a rational function r is defined by r(x) = p(x)/q(x),
where p(x) and q(x) are polynomials such that q(a) �= 0, then r is continuous at a. Also,
(14.1) implies that if p is a polynomial function defined by p(x) = cnxn + cn−1xn−1 +
· · · + c1x + c0, then p is continuous at every real number a.

We now present some examples concerning continuity for functions that are neither
polynomials nor rational functions.

Result to Prove The function f defined by f (x) = √
x for x ≥ 0 is continuous at 4.

PROOF STRATEGY Because f (4) = 2, it suffices to show that lim
x→4

√
x = 2. Thus, | f (x) − L| = |√x − 2|.

To work x − 4 into the expression
√

x − 2, we multiply
√

x − 2 by (
√

x + 2)/(
√

x + 2),
obtaining

|√x − 2| =
∣∣∣∣ (

√
x − 2)(

√
x + 2)√

x + 2

∣∣∣∣ = |x − 4|√
x + 2

.

First we require that δ ≤ 1, that is, |x − 4| < 1, so 3 < x < 5. Since
√

x + 2 > 3, it fol-
lows that 1/(

√
x + 2) < 1/3. Hence,

|√x − 2| = |x − 4|√
x + 2

<
|x − 4|

3
.

This suggests an appropriate choice for δ. �

Result 14.34 The function f defined by f (x) = √
x for x ≥ 0 is continuous at 4.

Proof Let ε > 0 be given and choose δ = min(1, 3ε). Let x ∈ R such that |x − 4| < δ. Since
|x − 4| < 1, it follows that 3 < x < 5 and so

√
x + 2 > 3. Therefore, 1/(

√
x + 2) <

1/3. Hence,

|√x − 2| =
∣∣∣∣ (

√
x − 2)(

√
x + 2)√

x + 2

∣∣∣∣ = |x − 4|√
x + 2

<
1
3

(3ε) = ε.

Figure 14.5 gives the graph of the ceiling function f : R → Z defined by
f (x) = �x	. This function is not continuous at any integer but is continuous at all other
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real numbers. We verify the first of these remarks and leave the proof of the second
remark as an exercise (Exercise 14.37).

................................
......

1 2−1 3−2−3
−1

−2

−3

2

1

3

........
........
......................

x

y

.............................

.............................

.............................

.............................

.............................

.............................

Figure 14.5 The graph of the ceiling function f (x) = �x	

Result 14.35 The ceiling function f : R → Z defined by f (x) = �x	 is not continuous at any integer.

Proof Assume, to the contrary, that there is some integer k such that f is continuous at k.
Therefore, lim

x→k
f (x) = f (k) = �k	 = k. Hence, for ε = 1, there exists δ > 0 such that

if |x − k| < δ, then | f (x) − f (k)| = | f (x) − k| < ε = 1. Let δ1 = min(δ, 1) and let x1 ∈
(k, k + δ1). Thus, k < x1 < k + δ and k < x1 < k + 1. Hence, f (x1) = �x1	 = k + 1 and
| f (x1) − k| = |(k + 1) − k| = 1 < 1, a contradiction.

SECTION 14.5 EXERCISES

14.35. The function f : R − {0, 2} → R is defined by f (x) = x2−4
x3−2x2 . Use limit theorems to determine whether f

can be defined at 2 such that f is continuous at 2.

14.36. The function f defined by f (x) = x2−9
x2−3x is not defined at 3. Is it possible to define f at 3 such that f is

continuous there? Verify your answer with an ε − δ proof.

14.37. Let f : R → Z be the ceiling function defined by f (x) = �x	. Give an ε − δ proof that if a is a real
number that is not an integer, then f is continuous at a.

14.38. Show that Exercise 14.33 implies that every polynomial is continuous at every real number.

14.39. Prove that the function f : [1,∞) → [0,∞) defined by f (x) = √
x − 1 is continuous at x = 10.

14.40. (a) Let f : R → R be defined by

f (x) =
{

0 if x is rational
1 if x is irrational.

In particular, f (0) = 0. Prove or disprove: f is continuous at x = 0.
(b) The problem in (a) should suggest another problem to you. State and solve such a problem.
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14.6 DIFFERENTIABILITY

We have discussed the existence and nonexistence of limits lim
x→a

f (x) for functions f :

X → R with X ⊆ R, where f is defined in a deleted neighborhood of the real number a
and, in the case of continuity at a, investigated whether lim

x→a
f (x) = f (a) if f is defined

in a neighborhood of a. If f is defined in a neighborhood of a, then there is an important
limit that concerns the ratio of the differences f (x) − f (a) and x − a.

A function f : X → R, where X ⊆ R, that is defined in a neighborhood of a real

number a is said to be differentiable at a if lim
x→a

f (x) − f (a)
x − a

exists. This limit is called

the derivative of f at a and is denoted by f ′(a). Therefore,

f ′(a) = lim
x→a

f (x) − f (a)
x − a

.

You probably already know that f ′(a) is the slope of the tangent line to the graph of
y = f (x) at the point (a, f (a)). Indeed, if f ′(a) = m, then the equation of this line is
y − f (a) = m(x − a). See Figure 14.6.

We illustrate derivatives with an example.

equation of tangent line:

f (a)
where m = f ′(a)

y − f (a) = m(x − a),

a

y

x
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Figure 14.6 Derivatives and slopes of tangent lines

Example 14.36 Show that the function f defined by f (x) = 1/x2 for x �= 0 is differentiable at 1 and
determine f ′(1).

Solution Thus, we need to show that lim
x→1

f (x) − f (1)
x − 1

= lim
x→1

1
x2 − 1

x − 1
exists. In a deleted neigh-

borhood of 1,

1
x2 − 1

x − 1
=

1−x2

x2

x − 1
= 1 − x2

x2(x − 1)
= (1 − x)(1 + x)

x2(x − 1)
= −1 + x

x2
. (14.3)
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Since
1 + x
−x2

is a rational function, we can once again use (14.2) to see that

lim
x→1

1 + x
−x2

= limx→1(1 + x)
limx→1(−x2)

= 2
−1

= −2

and so f ′(1) = −2. �

We also present an ε − δ proof of the limit encountered in Example 14.36.

PROOF STRATEGY For a given ε > 0, we are required to find δ > 0 such that if x ∈ R with 0 < |x − 1| < δ,

then

∣∣∣∣∣
1
x2 − 1

x − 1
− (−2)

∣∣∣∣∣ < ε. Observe that

∣∣∣∣∣
1
x2 − 1

x − 1
− (−2)

∣∣∣∣∣ =
∣∣∣∣−1 + x

x2
+ 2

∣∣∣∣ =
∣∣∣∣2x2 − x − 1

x2

∣∣∣∣ = |x − 1||2x + 1|
x2

.

If we restrict δ so that δ ≤ 1/2, then |x − 1| < 1/2 and so 1/2 < x < 3/2. Since x > 1/2,
it follows that x2 > 1/4 and 1/x2 < 4. Also, since x < 3/2, it follows that |2x + 1| < 4.
Hence, |x − 1||2x + 1|/x2 < 16|x − 1|. This shows us how to select δ. We now prove
that f ′(1) = −2. �

Result 14.37 Let f be the function defined by f (x) = 1/x2 for x �= 0. Then f ′(1) = −2.

Proof Let ε > 0 be given and choose δ = min(1/2, ε/16). Let x ∈ R such that 0 < |x − 1| < δ.

Since |x − 1| < 1/2, it follows that 1/2 < x < 3/2. Thus, x2 > 1/4 and so 1/x2 < 4.
Also, |2x + 1| < 4. Since |x − 1| < ε/16, it follows that

∣∣∣∣ f (x) − f (1)
x − 1

− (−2)

∣∣∣∣ =
∣∣∣∣∣

1
x2 − 1

x − 1
− (−2)

∣∣∣∣∣ =
∣∣∣∣−1 + x

x2
+ 2

∣∣∣∣ =
∣∣∣∣2x2 − x − 1

x2

∣∣∣∣
= |2x + 1|

x2
· |x − 1| < 4 · 4 · ε

16
= ε.

From Result 14.37, it now follows that the slope of the tangent line to the graph
of y = 1/x2 at the point (1, 1) is −2 and, consequently, that the equation of this tan-
gent line is y − 1 = −2(x − 1). Differentiability of a function at some number a implies
continuity at a as well, as we now show.

Theorem 14.38 If a function f is differentiable at a real number a, then f is continuous at a.

Proof Since f is differentiable at a, it follows that lim
x→a

f (x) − f (a)
x − a

exists and equals the real

number f ′(a). To show that f is continuous at a, we need to show that
lim
x→a

f (x) = f (a). We write f (x) as

f (x) = f (x) − f (a)
x − a

(x − a) + f (a).
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Now, using properties of limits, we have

lim
x→a

f (x) =
[

lim
x→a

f (x) − f (a)
x − a

]
lim
x→a

(x − a) + lim
x→a

f (a)

= f ′(a) · 0 + f (a) = f (a).

The converse of Theorem 14.38 is not true. For example, the functions f and g
defined by f (x) = |x| and g(x) = 3

√
x are continuous at 0 but neither is differentiable at 0.

That f is not differentiable at 0 is actually established in Result 14.22.

SECTION 14.6 EXERCISES

14.41. The function f : R → R is defined by f (x) = x2. Determine f ′(3) and verify that your answer is correct
with an ε − δ proof.

14.42. The function f : R − {−2} → R is defined by f (x) = 1
x+2 . Determine f ′(1) and verify that your answer is

correct with an ε − δ proof.

14.43. The function f : R → R is defined by f (x) = x3. Determine f ′(a) for a ∈ R+ and verify that your answer
is correct with an ε − δ proof.

14.44. The function f : R → R is defined by

f (x) =
{

x2 sin 1
x if x �= 0

0 if x = 0.

Determine f ′(0) and verify that your answer is correct with an ε − δ proof.

The Chapter
Presentation for
Chapter 14 can be
found at
goo.gl/mFGAZq

Chapter 14 Supplemental Exercises

14.45. Prove that the sequence
{

n+1
3n−1

}
converges to 1

3 .

14.46. Prove that limn→∞ 2n2

4n2+1 = 1
2 .

14.47. Prove that the sequence {1 + (−2)n} diverges.

14.48. Prove that limn→∞ (
√

n2 + 1 − n) = 0.

14.49. Prove that the sequence
{
(−1)n+1 n

2n+1

}
diverges.

14.50. Prove that lim
n→∞

n
3n + 1

= 1
3

.

14.51. Let a, c0, c1 ∈ R such that c1 �= 0. Give an ε − δ proof that limx→a (c1x + c0) =
c1a + c0.

14.52. Evaluate the proposed solution of the following problem.

Problem The function f : R → R is defined by

f (x) =
{

x2−4
x−2 if x �= 2

2 if x = 2.
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Determine whether lim
x→2

f (x) exists.

Solution Consider

lim
x→2

f (x) = lim
x→2

x2 − 4
x − 2

= lim
x→2

(x − 2)(x + 2)
x − 2

= lim
x→2

(x + 2) = 4.

However, since lim
x→2

f (x) = 4 �= 2 = f (2), the limit does not exist. �

14.53. Evaluate the proposed proof of the following result.

Result The sequence
{

2n
3n + 5

}
converges to

2
3
.

Proof Let ε > 0 be given. Choose N =
⌈

10
9ε

− 5
3

⌉
and let n > N. Then

n >
10
9ε

− 5
3

. Hence, 9n >
10
ε

− 15 and 9n + 15 >
10
ε

. Therefore,

9n + 15
10

>
1
ε

and
10

9n + 15
< ε.

Now ∣∣∣∣ 2n
3n + 5

− 2
3

∣∣∣∣ =
∣∣∣∣6n − 2(3n + 5)

3(3n + 5)

∣∣∣∣ = | − 10|
9n + 15

= 10
9n + 15

< ε.

14.54. Evaluate the proposed proof of the following result.

Result lim
x→1

1
2x − 3

= −1.

Proof Let ε > 0 and choose δ = min(1, 7ε
2 ). Let 0 < |x − 1| < δ = min(1, 7ε

2 ).
Since |x − 1| < 1, it follows that 0 < x < 2 and so

|2x − 3| ≤ |2x| + | − 3| = 2|x| + 3 < 4 + 3 = 7.

Since |x − 1| < 7ε/2, we have∣∣∣∣ 1
2x − 3

+ 1

∣∣∣∣ =
∣∣∣∣2x − 2
2x − 3

∣∣∣∣ = 2|x − 1|
|2x − 3| <

2
7

· 7ε

2
= ε.

14.55. Let {an}, {bn} and {cn} be sequences of real numbers such that an ≤ bn ≤ cn for
every positive integer n and lim

n→∞ an = lim
n→∞ cn = L.

(a) Prove that lim
n→∞(cn − an) = 0.

(b) Prove that lim
n→∞ bn = L.

14.56. In Chapter 11 it was shown that the set Q of rational numbers is denumerable and
consequently can be expressed as Q = {q1, q2, q3, . . .}. A function f : R → R is
defined by

f (x) =
{

1
n if x = qn (n = 1, 2, 3, . . .)
0 if x is irrational.

(a) Prove that f is continuous at each irrational number.
(b) Prove that f is not continuous at any rational number.
(c) If the function f were defined as above except that f (0) = 0, then prove that f

would be continuous at 0.
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14.57. Consider the sequence
{

1
n + (−1)n 1

n

}
.

(a) What are the first eight terms of this sequence?
(b) Does this sequence converge or diverge? Verify your answer.

14.58. Evaluate the proposed proof of the following.

Result The sequence
{
(−1)n+1n

}
diverges.

Proof Assume, to the contrary, that
{
(−1)n+1n

}
converges, say

lim
n→∞ (−1)n+1n = L. Let ε = 1. Then there exists a positive integer N such that if

n > N, then |(−1)n+1n − L| < ε = 1. Hence,

−1 < (−1)n+1n − L < 1 and so L − 1 < (−1)n+1n < L + 1.

If n ≥ 3 is odd, then L − 1 < n < L + 1 and so L > 2. If n ≥ 2 is even, then
L − 1 < −n < L + 1 and so L < −1, a contradiction.

14.59. Evaluate the proposed proof of the following.

Result The sequence
{

2n + 1
3n + 2

}
converges to 2/3.

Proof Let ε > 0 be given. Choose N =
⌈

1
9ε

− 2
3

⌉
and let n be any integer such

that n > N. Since n > N, it follows that n >
1
9ε

− 2
3

and so 9n >
1
ε

− 6. Hence,

1
ε

< 9n + 6 and so
1

9n + 6
< ε. Now,

∣∣∣∣2n + 1
3n + 2

− 2
3

∣∣∣∣ =
∣∣∣∣ −1
9n + 6

∣∣∣∣ = 1
9n + 6

< ε.

14.60. Evaluate the proposed proof of the following.

Result The sequence
{

1
en

}
converges to 0.

Proof Let ε > 0 be given. Choose N =
⌈

ln
(

1
ε

)⌉
and let n be any integer such

that n > N. Then n > ln
(

1
ε

)
and so en > 1

ε
. Thus, 1

en < ε. Therefore,∣∣∣∣ 1
en

− 0

∣∣∣∣ = 1
en

< ε.

14.61. Prove that if the series
∑∞

k=1 ak converges to L and
∑∞

k=1 bk converges to M, then∑∞
k=1(ak + bk ) converges to L + M.

14.62. Give an ε − δ proof that lim
x→1

x2 + 1
x3 + 1

= 1.

14.63. Give an ε − δ proof that lim
x→3

2x
x − 2

= 6.

14.64. Give an ε − δ proof that lim
x→−1

x2 − 1
|x| − 1

= 2.

14.65. The function f : R → R is defined by

f (x) =
{

x2 if x ∈ Q
0 if x ∈ R − Q.

Prove that f ′(0) = 0.
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15
Proofs in Group Theory

Many of the proofs that we have seen involve familiar sets of numbers (especially
integers, rational numbers and real numbers). Also, most of the theorems and ex-

amples that we have encountered concern additive properties of these numbers or mul-
tiplicative properties (or both). Many important properties of integers (or of rational or
real numbers) come not from the integers themselves, but from the addition and multipli-
cation of integers. This suggests a basic question in mathematics: For a given nonempty
set S, can we describe other, less familiar methods of associating an element of S with
each pair of elements of S in such a way that some interesting properties occur? The
mathematical subject that deals with questions such as these is abstract algebra (also
called modern algebra or simply algebra). In this chapter we will look at one of the
most familiar concepts in abstract algebra. First, however, we must have a clear under-
standing of what we mean by associating an element of a given set with each pair of
elements of that set and what properties may be considered interesting.

15.1 BINARY OPERATIONS

When we add two integers a and b, we perform an operation (namely addition) to pro-
duce an integer that we denote by a + b. Similarly, when we multiply these two integers,
we perform another operation (namely multiplication) to produce an integer that we de-
note by a · b (or ab). Both of these operations do something very similar. Each takes
a pair a, b of integers, actually an ordered pair (a, b) of integers, and associates with
this pair a unique integer. Therefore, these operations are actually functions, namely
functions from Z × Z to Z. These functions are examples of a concept called a binary
operation.

By a binary operation ∗ on a nonempty set S, we mean a function from S × S to S,
that is, ∗ is a function that maps every ordered pair of elements of S to an element of S.
Thus, ∗ : S × S → S. In particular, if the ordered pair (a, b) in S × S is mapped into the
element c in S by a binary operation ∗ (that is, c is the image of (a, b) under ∗), then we
write c = a ∗ b rather than the more awkward notation ∗((a, b)) = c.

Consequently, addition + and multiplication · are binary operations on Z. For ex-
ample, under addition, the ordered pair (3, 5) is mapped into 3 + 5 = 8; while under

400
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multiplication, (3, 5) is mapped into 3 · 5 = 15. Subtraction is also a binary operation
on Z but it is not a binary operation on N since, for example, subtraction maps the
ordered pair (3, 5) into 3 − 5 = −2, which does not belong to N. Therefore, subtrac-
tion is not a function from N × N to N since it is not defined at (3, 5), as well as at many
other ordered pairs of positive integers. Similarly, division is not a binary operation on
Z or on N because it is not defined for many ordered pairs, including (1, 0) ∈ Z × Z and
(2, 3) ∈ N × N because 1/0 /∈ Z and 2/3 /∈ N. However, division is a binary operation
on the set Q+ of positive rational numbers since the quotient of two positive rational
numbers is once again a positive rational number.

Not only are addition and multiplication binary operations on Z, they are binary
operations on Q and R, as well as on R+ (the positive real numbers) and Q+. For the
set R∗ of nonzero real numbers, multiplication is a binary operation but addition is not
(since 1 + (−1) = 0 /∈ R∗, for example).

If ∗ is a binary operation on a set S, then, by definition, a ∗ b ∈ S for all a, b ∈ S. If T
is a nonempty subset of S and a, b ∈ T , then certainly a ∗ b ∈ S; however, a ∗ b need not
belong to T . A nonempty subset T of S is said to be closed under ∗ if whenever, a, b ∈ T ,
then a ∗ b ∈ T as well. If ∗ is a binary operation on S, then certainly S is closed under ∗.
Although subtraction is a binary operation on Z, the subset N of Z is not closed under
subtraction.

Among familiar sets with familiar binary operations are:

(a) the set Zn = {[0], [1], · · · , [n − 1]} of the integers modulo n ≥ 2 under
addition [a] + [b] = [a + b] and under multiplication [a] · [b] = [ab] (as
defined in Chapter 9);

(b) the set M2(R) of all 2 × 2 matrices over R (that is, whose entries are real
numbers) under matrix addition

[
a b
c d

]
+

[
e f
g h

]
=

[
a + e b + f
c + g d + h

]

and under matrix multiplication

[
a b
c d

]
·
[

e f
g h

]
=

[
ae + bg a f + bh
ce + dg c f + dh

]
;

(c) the set FR = RR of functions from R to R under function addition
( f + g)(x) = f (x) + g(x), under function multiplication
( f · g)(x) = f (x) · g(x) and under function composition ( f ◦ g)(x) = f (g(x));

(d) the power set P (A) of a set A under set union, under set intersection and
under set difference.

For a more abstract example of a binary operation, let S = {a, b, c}. A binary
operation ∗ on S is illustrated in the table in Figure 15.1 where then, a ∗ a = b, a ∗ b = c,
a ∗ c = a, etc. Since every element in the table belongs to S, it follows that ∗ is indeed
a binary operation on S.

Although it may seem relatively clear that a binary operation is defined in each
example given above, not all binary operations are so immediate.



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M16_CHART6753_04_SE_C15 PH03348-Chartrand August 5, 2017 20:45 Char Count= 0

402 Chapter 15 Proofs in Group Theory

a cb∗

a

bac

a c

acba

c

b

Figure 15.1 A binary operation ∗ on S = {a, b, c}
Result 15.1 For a, b ∈ R − {−2}, define

a ∗ b = ab + 2a + 2b + 2,

where the operations indicated in ab + 2a + 2b + 2 are ordinary addition and multipli-
cation in R. Then ∗ is a binary operation on R − {−2}.

Proof We need to show that if a, b ∈ R − {−2}, then a ∗ b ∈ R − {−2}. Assume, to the con-
trary, that there exists some pair x, y ∈ R − {−2} such that x ∗ y /∈ R − {−2}. Thus,
x ∗ y = xy + 2x + 2y + 2 = −2. This equation is equivalent to (x + 2)(y + 2) = 0, so
either x = −2 or y = −2, which is impossible since x, y ∈ R − {−2}. Hence, ∗ is a
binary operation on R − {−2}.

A nonempty set S with a binary operation ∗ is often denoted by (S, ∗). We refer to
(S, ∗) as an algebraic structure. There are certain properties that (S, ∗) may possess
that will be of special interest to us. In particular,

G1 (S, ∗) is associative if a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S;

G2 (S, ∗) has an element e, called an identity element (or simply an identity), if a ∗ e =
e ∗ a = a for each a ∈ S;

G3 (S, ∗) has an identity e and, for each element a ∈ S, there is an element s ∈ S, called
an inverse for a, such that a ∗ s = s ∗ a = e;

G4 (S, ∗) is commutative if a ∗ b = b ∗ a for all a, b ∈ S.

Two elements a, b ∈ S are said to commute if a ∗ b = b ∗ a. If every two elements
of S commute, then (S, ∗) satisfies property G4. By property G2, an identity commutes
with every element of S; and by property G3, each element of S commutes with an inverse
of this element (assuming, of course, that it has an inverse).

An algebraic structure (S, ∗) may satisfy all, some or none of the properties G1 – G4;
however, (S, ∗) cannot satisfy G3 without first satisfying G2. For elements a, b, c ∈ S,
the expression a ∗ b ∗ c is, strictly speaking, not defined. Since ∗ is a binary operation,
it is only defined for pairs of elements of S. There are two standard interpretations of
a ∗ b ∗ c. Namely, does a ∗ b ∗ c mean a ∗ (b ∗ c) or does a ∗ b ∗ c mean (a ∗ b) ∗ c? On
the other hand, if (S, ∗) satisfies property G1 (the associative property), then a ∗ (b ∗ c) =
(a ∗ b) ∗ c and so either interpretation is acceptable in this case. For this reason, we often
write a ∗ b ∗ c (without any parentheses). Ordinarily, however, we will continue to write
a ∗ (b ∗ c) or (a ∗ b) ∗ c to emphasize the importance of parentheses, even when (S, ∗)
satisfies the associative property.
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Certainly (Z,+) satisfies properties G1 – G4, where 0 is an identity element and
−n is an inverse for the integer n. Moreover, (R, ·) satisfies properties G1, G2 and G4,
where the integer 1 is an identity element. Turning to property G3, we see that every
real number r has 1/r as an inverse, except 0, which has no inverse since there is no
real number s such that 0 · s = s · 0 = 1. Thus, (R, ·) does not satisfy G3. In the case
of (R∗, ·), where, recall, R∗ is the set of all nonzero real numbers, all four properties
G1 – G4 are satisfied.

The algebraic structure (Zn,+), n ≥ 2, also satisfies all of the properties G1 – G4,
where [0] is an identity and [−a] is an inverse of [a]. On the other hand, (Zn, ·) satisfies
only G1, G2 and G4, where [1] is an identity; however (Zn, ·) does not satisfy G3 since,
for example, there is no element [s] ∈ Zn such that [0][s] = [1] in Zn and so [0] does
not have an inverse.

The algebraic structure (M2(R),+) satisfies all of the properties G1 – G4, where[
0 0
0 0

]
is an identity and

[−a −b
−c −d

]
is an inverse of

[
a b
c d

]
. The algebraic struc-

ture (M2(R), ·) only satisfies G1 and G2, where I =
[

1 0
0 1

]
is an identity. For A =[

a b
c d

]
to have an inverse, the number ad − bc (the determinant of A) must be nonzero.

Thus, (M2(R), ·) does not satisfy G3. Also,[
1 0
0 0

] [
0 1
0 0

]
=

[
0 1
0 0

]
�=

[
0 0
0 0

]
=

[
0 1
0 0

] [
1 0
0 0

]

shows that (M2(R), ·) does not satisfy property G4.
The algebraic structure (S, ∗) shown in Figure 15.1 is not associative since, for ex-

ample, b ∗ (b ∗ c) = b ∗ a = a, while (b ∗ b) ∗ c = c ∗ c = b and so b ∗ (b ∗ c) �=
(b ∗ b) ∗ c. Since S contains no element e such that e ∗ x = x ∗ e = x for all x ∈ S, it
follows that (S, ∗) does not have an identity. Also, a ∗ c �= c ∗ a since a ∗ c = a and
c ∗ a = c. Consequently, (S, ∗) has none of the properties G1 – G4.

Let’s look at another binary operation defined on S = {a, b, c}.

Example 15.2 A binary operation ∗ is defined on the set S = {a, b, c} by x ∗ y = x for all x, y ∈ S.
Determine which of the properties G1 – G4 are satisfied by (S, ∗).

Solution Let x, y and z be any three elements of S (distinct or not). Then x ∗ (y ∗ z) = x ∗ y = x,
while (x ∗ y) ∗ z = x ∗ z = x. Thus, (S, ∗) is associative. Now (S, ∗) has no identity since
for every element e ∈ S, it follows that e ∗ a = e ∗ b = e and so it is impossible for e ∗
a = a and e ∗ b = b. Since (S, ∗) has no identity, the question of inverses does not apply
here. Certainly, (S, ∗) is not commutative since a ∗ b = a while b ∗ a = b. �

The verification of the associative law in Example 15.2 probably would have looked
better had we written

x ∗ (y ∗ z) = x ∗ y = x = x ∗ z = (x ∗ y) ∗ z.

Example 15.3 Let N0 be the set of nonnegative integers and consider (N0, ∗), where ∗ is the binary oper-
ation defined by a ∗ b = |a − b| for all a, b ∈ N0. Determine which of the four properties
G1 – G4 are satisfied by (N0, ∗).
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Solution Since 1 ∗ (2 ∗ 3) = 1 ∗ |2 − 3| = 1 ∗ 1 = |1 − 1| = 0 and (1 ∗ 2) ∗ 3 = |1 − 2| ∗ 3 =
1 ∗ 3 = |1 − 3| = 2, it follows that (1 ∗ 2) ∗ 3 �= 1 ∗ (2 ∗ 3) and so (N0, ∗) is not as-
sociative. Let a ∈ N0. Then a ∗ 0 = 0 ∗ a = |a| = a and so 0 is an identity for (N0, ∗).
Since a ∗ a = |a − a| = 0 for all a ∈ N0, it follows that a is an inverse of itself. Because
|a − b| = |b − a|, we have a ∗ b = b ∗ a and (N0, ∗) is commutative. Hence, (N0, ∗)
satisfies properties G2 – G4. �

Example 15.4 Let ∗ be the binary operation defined on Z by a ∗ b = a + b − 1 for a, b ∈ Z, where
the operations indicated in a + b − 1 are ordinary addition and subtraction. Determine
which of the four properties G1 – G4 are satisfied by (Z, ∗).

Solution For integers a, b and c,

a ∗ (b ∗ c) = a ∗ (b + c − 1) = a + (b + c − 1) − 1 = a + b + c − 2,

while

(a ∗ b) ∗ c = (a + b − 1) ∗ c = (a + b − 1) + c − 1 = a + b + c − 2.

Thus, a ∗ (b ∗ c) = (a ∗ b) ∗ c and (Z, ∗) is associative. Since a + b − 1 = b + a − 1, it
follows that a ∗ b = b ∗ a for all a, b ∈ Z and so (Z, ∗) is commutative.

Let a be an integer. Observe that a ∗ 1 = a + 1 − 1 = a. Thus, 1 is an identity for
(Z, ∗). For b = −a + 2 ∈ Z, we have

a ∗ b = a ∗ (−a + 2) = a + (−a + 2) − 1 = 1.

Hence, b is an inverse of a and every integer has an inverse. Therefore, (Z, ∗) satisfies
all four properties G1 – G4. �

Analysis Let’s discuss this example a bit more. It was shown that 1 is an identity for (Z, ∗). How
did we know to choose 1? Actually, this was a natural choice since we were looking
for an integer e such that a ∗ e = a for every integer a. Since a ∗ e = a + e − 1 = a, it
follows that e = 1. The choice of b = −a + 2 for an inverse of a comes from solving
a ∗ b = a + b − 1 = 1 for b. �

SECTION 15.1 EXERCISES

15.1. Consider the algebraic structure (S, ∗), where S = {x, y, z} and ∗ is described in the table in Figure 15.2.
Compute

(a) x ∗ (y ∗ z) and (x ∗ y) ∗ z.
(b) x ∗ (x ∗ x) and (x ∗ x) ∗ x.
(c) y ∗ (y ∗ y) and (y ∗ y) ∗ y.
(d) What conclusion can you draw from (a)–(c)?

15.2. For every pair a, b of elements in the indicated sets, the element a ∗ b is defined. Which of these are binary
operations? For those that are binary operations, determine which of the properties G1 – G4 are satisfied.

(a) a ∗ b = 1 on the set Z (b) a ∗ b = a/b on the set N
(c) a ∗ b = ab on the set N (d) a ∗ b = max{a, b} on the set N
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yzz

y xy x

z

x

x zy

y

∗
yz

Figure 15.2 A binary operation on the set S = {x, y, z}

(e) a ∗ b = a + b + ab on the set Z (f) a ∗ b = a + b − 1 on the set Z
(g) a ∗ b = ab + 2a on the set Z (h) a ∗ b = ab − a − b + 2 on the set R − {1}
(i) a ∗ b = √

ab on Q (j) a ∗ b = a + b on the set S of odd integers.

15.3. Let T =
{[

a −b
b a

]
: a, b ∈ R

}
. Is T closed under

(a) matrix addition? (b) matrix multiplication?

15.4. Suppose that ∗ is an associative binary operation on a set S. Let

T = {a ∈ S : a ∗ x = x ∗ a for all x ∈ S}.
Prove that T is closed under ∗.

15.5. Suppose that ∗ is an associative and commutative binary operation on a set S. Let

T = {a ∈ S : a ∗ a = a}.
Prove that T is closed under ∗.

15.6. For matrices A =
[

a b
c d

]
and B =

[
e f
g h

]
in M2(R), the binary operation ∗ is defined on M2(R) by

A ∗ B =
[

a b
c d

]
∗

[
e f
g h

]
=

[
a + e − 1 b + f

c + g d + h + 1

]
.

Which of the properties G1 – G4 are satisfied?

15.7. For n ≥ 2 and [a], [b] ∈ Zn, the binary operation ∗ is defined on Zn by [a] ∗ [b] = [a + b + 1]. Which of
the properties G1 – G4 are satisfied?

15.2 GROUPS

One of the most elementary, yet fundamental, characteristics of the algebraic structure
(Z,+) is the ability to solve linear equations, that is, equations of the type a + x = b.
By this, we mean that given integers a and b, we seek an integer x for which a + x = b.
How does one solve this equation? First, we are well aware that (Z,+) has an identity
element 0. Also, a has −a as an inverse. If we add −a to a + x, which is the same as
adding −a to b since a + x and b are the same integer, then we obtain

−a + (a + x) = −a + b. (15.1)
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Applying the associative law to (15.1), we now obtain

(−a + a) + x = −a + b

and so

0 + x = x = −a + b.

This tells us that if a + x = b has a solution, then the only possible solution is −a + b.
It doesn’t tell us that −a + b is actually a solution, but we can easily take care of this.
Letting x = −a + b, we have

a + x = a + (−a + b) = (a + (−a)) + b = 0 + b = b.

Of course, since (Z,+) also satisfies the commutative property, the solution −a + b can
also be written as b + (−a) = b − a.

Let’s look at the related linear equation when the operation is multiplication, say
in (R∗, ·). Here, for a, b ∈ R∗, we seek x ∈ R∗ such that a · x = b. Recall that 1 is an
identity element in (R∗, ·). Multiplying both sides of a · x = b by 1

a (which belongs
to R∗), we obtain

1
a

· (a · x) = 1
a

· b = b
a
. (15.2)

Applying the associative law to (15.2), we obtain

1
a

· (a · x) =
(

1
a

· a
)

· x = 1 · x = x.

Therefore, x = b/a. To show that b
a is, in fact, a solution of a · x = b, we let x = b

a and
obtain

a · x = a
(

b
a

)
= b.

The solutions of the two equations that we have just discussed should look very
familiar to you. However, these have been given to illustrate a more general situation.
Suppose that we have an algebraic structure (S, ∗) in which we would like to solve all
linear equations, that is, for a, b ∈ S, we wish to show that there exists an element x ∈ S
such that a ∗ x = b. If (S, ∗) is associative, has an identity e and a has an inverse s ∈ S,
then we have s ∗ (a ∗ x) = s ∗ b and so

s ∗ (a ∗ x) = (s ∗ a) ∗ x = e ∗ x = x = s ∗ b.

To show that s ∗ b is, in fact, a solution of the linear equation a ∗ x = b, we let x = s ∗ b
and obtain

a ∗ x = a ∗ (s ∗ b) = (a ∗ s) ∗ b = e ∗ b = b,

and so s ∗ b is a solution.
You might now have observed that in order to solve all linear equations in an al-

gebraic structure (S, ∗), it is necessary that (S, ∗) satisfy the three properties G1 – G3
(property G4 is not required). Algebraic structures that satisfy properties G1 – G3 are
so important in abstract algebra that they are given a special name and will be the major
emphasis of this chapter.
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A group is a nonempty set G together with a binary operation ∗ that satisfies the
following three properties:

G1 Associative Law: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G;

G2 Existence of Identity: There exists an element e ∈ G such that a ∗ e = e ∗ a = a
for every a ∈ G;

G3 Existence of Inverses: For each element a ∈ G, there exists an element s ∈ G such
that a ∗ s = s ∗ a = e.

Hence, a group is a special kind of algebraic structure (G, ∗), namely, one that satisfies
properties G1 – G3. If the operation ∗ is clear, then we often denote this group simply by
G rather than by (G, ∗). An element e ∈ G satisfying property G2 is called an identity
for the group G, while an element s satisfying property G3 is called an inverse of a.

If a group G also satisfies the commutative property G4, then G is called an abelian
group, a term named after the Norwegian mathematician Niels Henrik Abel. If a group
G does not satisfy G4, then G is called a nonabelian group. We have now seen several
abelian groups, namely, (Z,+), (Q,+), (R,+), (Zn,+), (Q+, ·), (R+, ·) and (R∗, ·), as
well as the algebraic structure (Z, ∗) described in Example 15.4.

The order of a group G, denoted by |G|, is the cardinality of G. If the order of G
is finite, then G is a finite group; while if G has an infinite number of elements, then
G is an infinite group. All of the groups given above are infinite groups except for
(Zn,+) which has order n. If a finite group G has relatively few elements, then we often
describe the operation ∗ by means of a table, called a group table (or operation table).
For example, the group tables for (Z3,+) and (Z4,+) are shown in Figure 15.3.

[1]

[2]

[3]

[0] [1] [2] [3]

[1] [2] [3] [0]

[2] [3] [0] [1]

[3] [0] [1] [2]

[0]

[1]

[2]

[1] [2] [3][2]

[0]

..............................................................................................................................................................................................................

...............................................................................................................................................................................................................................

...............................................................................................................................................................................................................................

...............................................................................................................................................................................................................................

+
[0]

[1]

[2]

[1]

[2]

[0]

[2]

[0]

[1]

[0] + [0][1]

Figure 15.3 The group tables for (Z3, +) and (Z4, +)

Although (Zn,+) is a group for every integer n ≥ 2, (Zn, ·) is not a group for any
n ≥ 2, since, as we have mentioned, the element [0] has no inverse. This suggests con-
sidering the set Z∗

n = Zn − {[0]} = {[1], [2], · · · , [n − 1]}, n ≥ 2, under multiplication.
For some integers n ≥ 2, multiplication is not a binary operation on Z∗

n. For example,
[2] ∈ Z∗

4 but [2] · [2] = [0] /∈ Z∗
4. On the other hand, multiplication is a binary operation

on Z∗
5. In fact, (Z∗

5, ·) satisfies properties G1, G2 and G4, where [1] is an identity. Since

[1] · [1] = [1], [2] · [3] = [3] · [2] = [1] and [4] · [4] = [1],

every element of (Z∗
5, ·) has an inverse. Therefore, (Z∗

5, ·) satisfies property G3 as well
and so is an abelian group. This, of course, brings up the question of which algebraic
structures (Z∗

n, ·) are groups. Perhaps the examples above suggest the answer.
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Theorem to
Prove

The set Z∗
n, n ≥ 2, is a group under multiplication if and only if n is a prime.

PROOF STRATEGY If n is a composite number, then there exist integers a and b such that 2 ≤ a, b ≤ n − 1
and n = ab. So, [a], [b] ∈ Z∗

n and [a][b] = [n] = [0] /∈ Z∗
n and multiplication is not a

binary operation. Therefore, the only possibility for (Z∗
n, ·) to be a group is when n is a

prime.
Suppose then that p is a prime. First, we need to verify that multiplication is in

fact a binary operation on Z∗
p, that is, if [a], [b] ∈ Z∗

p, then [a][b] ∈ Z∗
p. If [ab] /∈ Z∗

p,
then [ab] = [0]; so ab ≡ 0 (mod p), which implies that p | ab. By Corollary 12.14,
p | a or p | b and so [a] = [0] or [b] = [0]. That is, either [a] /∈ Z∗

p or [b] /∈ Z∗
p, a

contradiction.
To show that (Z∗

p, ·) is a group, it remains only to verify that property G3 is satisfied.
Let r be an integer with 1 ≤ r ≤ p − 1. We need to show that [r] has an inverse, that
is, there exists [s] ∈ Z∗

p such that [r][s] = [1]. Since p is a prime and 1 ≤ r ≤ p − 1,
the integers r and p are relatively prime. By Theorem 12.12, the integer 1 is a linear
combination of r and p. So, there exist integers x and y such that 1 = rx + py. Using the
definition of addition and multiplication in Zp and observing that [p] = [0] in Zp, we
have

[1] = [rx + py] = [rx] + [py] = [r] · [x] + [p] · [y]

= [r] · [x] + [0] · [y] = [r] · [x] + [0] = [r] · [x].

Hence, [x] is an inverse for [r]. �

We now give a concise proof of the theorem.

Theorem 15.5 The set Z∗
n, n ≥ 2, is a group under multiplication if and only if n is a prime.

Proof Assume that n is a composite number. Then there exist integers a and b such that
2 ≤ a, b ≤ n − 1 and n = ab. Hence, [a], [b] ∈ Z∗

n and [a][b] = [n] = [0] /∈ Z∗
n, which

implies that multiplication is not a binary operation on Z∗
n, and so Z∗

n is not a group under
multiplication.

For the converse, assume that p is a prime. First, we show that multiplication is a bi-
nary operation on Z∗

p. Assume, to the contrary, that it is not. Then there exist [a], [b] ∈ Z∗
p

such that [a][b] /∈ Z∗
p. Since [a][b] /∈ Z∗

p, it follows that [a][b] = [ab] = [0]. Thus, ab ≡
0 (mod p) and so p | ab. By Corollary 12.14, p | a or p | b. Therefore, [a] = [0] or
[b] = [0], which contradicts the fact that [a], [b] ∈ Z∗

p.
Hence, (Z∗

p, ·) is an algebraic structure that satisfies properties G1 and G2. It re-
mains to show that (Z∗

p, ·) satisfies property G3. Let [r] ∈ Z∗
p, where we can assume that

1 ≤ r ≤ p − 1. Since r and p are relatively prime, 1 is a linear combination of r and p
by Theorem 12.12. Thus, 1 = rx + py for some integers x and y. So,

[1] = [rx + py] = [rx] + [py] = [r] · [x] + [p] · [y]

= [r] · [x] + [0] · [y] = [r] · [x].

Thus, [x] is an inverse for [r] and (Z∗
p, ·) is a group.
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By Theorem 15.5, for every prime p, (Z∗
p, ·) is an abelian group of order p − 1.

Another example of an abelian group is (G, ∗), where G = {a, b, c} and ∗ is defined in
Figure 15.4. It is not difficult to see that a is an identity for (G, ∗) and that a, b and c are
inverses for a, c and b, respectively. Since a ∗ b = b ∗ a, a ∗ c = c ∗ a and b ∗ c = c ∗ b,
it follows that G is abelian. We have one additional property to verify to show that G is a
group, however, namely, the associative property. What we are required to show is that
x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ G. Since there are three choices for each of x, y
and z, we have 27 equalities to verify. Because b ∗ (c ∗ b) = b ∗ a = b and (b ∗ c) ∗ b =
a ∗ b = b, it follows that b ∗ (c ∗ b) = (b ∗ c) ∗ b. Since the remaining 26 equalities can
also be verified, G is, in fact, an abelian group.

a b c

bc

ab

b ca

∗

a

c

a

c

b

Figure 15.4 An abelian group with three elements

We mentioned earlier that the algebraic structure (M2(R), ·) does not satisfy prop-

erty G3 even though it does satisfy property G2. The matrix I =
[

1 0
0 1

]
is an identity

for (M2(R), ·). Furthermore, a matrix A =
[

a b
c d

]
∈ M2(R) has an inverse if and only

if its determinant det A = ad − bc �= 0. In this case,

B = 1
ad − bc

[
d −b
−c a

]

is an inverse for A and so AB = BA = I. Let

M∗
2 (R) = {A ∈ M2(R) : det A �= 0}.

Since det(AB) = det(A) · det(B) for all A, B ∈ M2(R), it follows that if A, B ∈ M∗
2 (R),

then AB ∈ M∗
2 (R) and so M∗

2 (R) is closed under matrix multiplication. This implies that
(M∗

2 (R), ·) is a group. On the other hand, since the matrices

A =
[

1 1
1 0

]
and B =

[
0 1
1 1

]

belong to M∗
2 (R) and

AB =
[

1 2
0 1

]
and BA =

[
1 0
2 1

]
,

it follows that (M∗
2 (R), ·) is a nonabelian group.
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SECTION 15.2 EXERCISES

15.8. Let S = {a, b, c, d}. Figure 15.5 shows a partially completed table for an associative binary operation ∗
defined on S.

(a) Complete the table.
(b) Is the algebraic structure (S, ∗) a group?

b

ad

a

c

dcb

a

d

c

b

a

a∗
.....................................................................................................................................................................................

.....................................................................................................................................................................................

.....................................................................................................................................................................................

Figure 15.5 A binary operation on the set S = {a, b, c, d} in Exercise 15.8

15.9. Let (G, ∗) be a group with G = {a, b, c, d}, where a partially completed table for (G, ∗) is given in
Figure 15.6. Complete the table.

a

cd

dcb

d

c

b

a

a∗
.....................................................................................................................................................................................

.....................................................................................................................................................................................

.....................................................................................................................................................................................

Figure 15.6 A partially completed table for (G, ∗) in Exercise 15.9

15.10. None of the following binary operations ∗ on the given set results in a group. Which is the first property
among G1, G2, G3 that fails?

(a) Let ∗ be defined on R+ by a ∗ b = √
ab.

(b) Let ∗ be defined on R∗ by a ∗ b = a/b.
(c) Let ∗ be defined on R+ by a ∗ b = a + b + ab.

15.11. (a) Determine whether for all [a], [b] ∈ Z∗
6 = {[1], [2], [3], [4], [5]}, there exists [x] ∈ Z∗

6 such that
[a][x] = [b].

(b) Why is the answer to the question posed in (a) not surprising?

15.12. Let G =
{[

a b
0 0

]
: a, b ∈ R and a �= 0

}
.

(a) Prove that G is closed under matrix multiplication.
(b) Prove that there exists E ∈ G such that E · A = A for all A ∈ G.
(c) Prove for each A ∈ G that there is A′ ∈ G such that A · A′ = E.
(d) Prove or disprove: (G, ·) is a group.
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15.13. Let ∗ be an associative binary operation on the set G such that the following hold:

(i) There exists e ∈ G such that g ∗ e = g for all g ∈ G.
(ii) For each g ∈ G, there exists g′ ∈ G such that g ∗ g′ = e.

Prove that (G, ∗) is a group.

15.3 PERMUTATION GROUPS

One of the most important classes of groups concerns a concept introduced in Chapter 10
and visited again in Chapter 13. Recall that a permutation of a nonempty set A is a
bijective function f : A → A, that is, f is one-to-one and onto. In Chapter 10, it was
shown that:

(1) the composition of every two permutations of A is a permutation of A;

(2) composition of permutations of A is an associative operation;

(3) the identity function iA : A → A defined by iA(a) = a for all a ∈ A is a
permutation of A;

(4) every permutation of A has an inverse, which is also a permutation of A.

By a permutation group we mean a group (G, ◦), where G is a set of permutations
of some set A and ◦ denotes composition. Let SA denote the set of all permutations of A.
Then by (1) – (4) above, we have the following result.

Theorem 15.6 For every nonempty set A, the algebraic structure (SA, ◦) is a permutation group.

The group (SA, ◦) is called the symmetric group on A. Therefore, every symmetric
group is a permutation group.

We have already noted that for the set FR of all functions from R to R, (FR, ◦) is an
algebraic structure, where ◦ denotes function composition. By Theorem 15.6, for the set
SR of bijective functions from R to R, the algebraic structure (SR, ◦) is a group, namely,
the symmetric group on R. The identity function iR in SR, defined by iR(x) = x for all
x ∈ R, is an identity in the group (SR, ◦).

The functions f and g defined by

f (x) = x + 1 and g(x) = 2x

for all x ∈ R belong to SR; however, since

( f ◦ g)(x) = f (g(x)) = f (2x) = 2x + 1 and
(g ◦ f )(x) = g( f (x)) = g(x + 1) = 2x + 2,

it follows that f ◦ g �= g ◦ f and so (SR, ◦) is a nonabelian group.
If A = {1, 2, · · · , n}, where n ∈ N, the group SA is commonly denoted by Sn. The

group (Sn, ◦) has n! elements and is commonly called the symmetric group (of
degree n). The symmetric group (Sn, ◦) is therefore a finite group of order n!. By the
notation introduced in Chapter 10, S3 = {α1, α2, α3, α4, α5, α6}, where
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α1 =
(

1 2 3
1 2 3

)
α2 =

(
1 2 3
1 3 2

)
α3 =

(
1 2 3
3 2 1

)

α4 =
(

1 2 3
2 1 3

)
α5 =

(
1 2 3
2 3 1

)
α6 =

(
1 2 3
3 1 2

)
.

Recall that with this notation for a permutation, an element of {1, 2, 3} listed in the first
row maps into the element in the second row directly below it. Thus, α1 is the identity
of S3. Let’s consider the composition α3 ◦ α6. For example,

(α3 ◦ α6)(1) = α3(α6(1)) = α3(3) = 1.

Also, (α3 ◦ α6)(2) = 3 and (α3 ◦ α6)(3) = 2. Therefore,

α3 ◦ α6 =
(

1 2 3
3 2 1

)
◦

(
1 2 3
3 1 2

)
=

(
1 2 3
1 3 2

)
= α2.

Similarly α6 ◦ α3 = α4. Hence, α3 ◦ α6 �= α6 ◦ α3. Therefore, (S3, ◦) is a nonabelian
group. This shows that there is a nonabelian group of order 6. There is no nonabelian
group having order less than 6, however.

When taking the composition of two elements α, β ∈ Sn, where n ∈ N, we often
write α ◦ β as αβ and say that we are “multiplying” α and β. With this notation, we
have α3α6 = α2, α6α3 = α4, α2

3 = α3α3 = α1 and α2
6 = α6α6 = α5. The group table for

(S3, ◦) is shown in Figure 15.7 (containing all 36 products!).

α4α5α1α6

α4α3α6α5

α6α5α4α3

α1

α2

α2

α5α1α2α4α3

α1α6α3α2α4

α3α2α1α6α5

α6

α1

α2

α3

α4

α5

α6

α2 α3

α1

α4

α3

α2

α5

α1

α6α5α4
..................................................................................................................................................................................................................................................................................

Figure 15.7 The group table for (S3, ◦)

A permutation group need not consist of all permutations of some set A. For exam-
ple, if we consider the subsets G1 = {α1, α2} and G2 = {α1, α5, α6} of S3, then (G1, ◦)
and (G2, ◦) are both permutation groups. Their group tables are shown in Figure 15.8.

Also, let

β1 =
(

1 2 3 4
1 2 3 4

)
β2 =

(
1 2 3 4
2 1 3 4

)

β3 =
(

1 2 3 4
1 2 4 3

)
β4 =

(
1 2 3 4
2 1 4 3

)

be permutations of the set {1, 2, 3, 4} and let G3 = {β1, β2, β3, β4}. Then (G3, ◦) is an
abelian permutation group, whose group table is shown in Figure 15.9.
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α1 α5 α6

α5 α6 α1

α6 α1 α5

α1 α5 α6

α6

α5

α1

α1

....................................................................................................................................

α1 α2

α1

α2

α1 α2

α2

Figure 15.8 The group tables for (G1, ◦) and (G2, ◦)

β2

β3

β4

β2 β3 β4

β1 β4 β3

β4 β1 β2

β3 β2 β1

β1

...............................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................

β4β2 β3β1

β1

β3

β4

β2

Figure 15.9 The group table for (G3, ◦)

During the latter part of the 18th century, a major problem in mathematics con-
cerned whether the roots of every fifth degree polynomial with real coefficients could
be expressed in terms of radicals and the usual operations of arithmetic. It was well
known that the roots of a quadratic polynomial ax2 + bx + c, where a, b, c ∈ R and
a �= 0, are (−b + √

b2 − 4ac)/2a and (−b − √
b2 − 4ac)/2a, which is a consequence

of the quadratic formula. Furthermore, it had been known since the 16th century, that
the roots of all third degree (cubic) and fourth degree (quartic) polynomials with real
coefficients could be described in terms of radicals and the standard operations of arith-
metic. But fifth degree polynomials proved to be another story. However, in 1824 Niels
Henrik Abel proved that the roots of fifth degree polynomials with real coefficients could
not, in general, be expressed in such a way. From this, it follows that for every integer
n ≥ 5, there exist polynomials of degree n with real coefficients whose roots cannot be
expressed in terms of radicals and the standard operations of arithmetic. His work went
unnoticed, however, until after his death at age 26.

Some time later the French mathematician Évariste Galois characterized those poly-
nomials of degree 5 and greater whose roots can be expressed in terms of radicals and
ordinary arithmetic. Like Abel, Galois died very early (at age 20), but in his case from
an unlikely cause: a duel. Galois’ work also was not recognized until eleven years after
his death when Joseph Liouville addressed the Academy of Sciences in Paris: “I hope
to interest the Academy in announcing that among the papers of Évariste Galois I have
found a solution, as precise as it is profound, of this beautiful problem: whether or not
it is solvable by radicals.”
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In developing his theory, Galois associated, with a given polynomial, a set G of
permutations of the roots of the polynomial. This set G had the property that whenever
s, t ∈ G, then the composition s ◦ t ∈ G, that is, G was closed under composition. He
referred to G as a “group,” a term that enjoys a permanent and prominent place in abstract
algebra.

SECTION 15.3 EXERCISES

15.14. For 1 ≤ i ≤ 6, each function fi is a permutation on the set Q − {0, 1}:
f1(x) = x f2(x) = 1 − x f3(x) = 1

x

f4(x) = x−1
x f5(x) = 1

1−x f6(x) = x
x−1 .

Show that the set F = { f1, f2, . . . , f6} is a group under composition.

15.15. Prove that if A is a set with at least three elements, then the symmetric group (SA, ◦) is nonabelian.

15.16. Give examples of the following (if they exist):

(a) a finite abelian group
(b) a finite nonabelian group
(c) an infinite abelian group
(d) an infinite nonabelian group.

15.17. Determine all elements x in the group S3 such that x2 = α1 and all those elements y in S3 such that y3 = α1.

15.18. For the permutations:

γ1 =
(

1 2 3 4
1 2 3 4

)
γ2 =

(
1 2 3 4
2 3 4 1

)

γ3 =
(

1 2 3 4
3 4 1 2

)
γ4 =

(
1 2 3 4
4 1 2 3

)

of the set {1, 2, 3, 4}, show that the set G = {γ1, γ2, γ3, γ4} under composition is an abelian group.

15.19. Consider the following permutations on the set A = {1, 2, 3, 4, 5}.
β1 =

(
1 2 3 4 5
1 2 3 4 5

)
β2 =

(
1 2 3 4 5
2 3 1 4 5

)
β3 =

(
1 2 3 4 5
3 1 2 4 5

)

β4 =
(

1 2 3 4 5
1 2 3 5 4

)
β5 =

(
1 2 3 4 5
2 3 1 5 4

)
β6 =

(
1 2 3 4 5
3 1 2 5 4

)
.

For G = {β1, β2, . . . , β6}, show that (G, ◦) is a group of permutations on A.

15.20. For a permutation group G on a set A, a relation R is defined on A by a R b if there exists g ∈ G such that
g(a) = b.

(a) Prove that R is an equivalence relation on A. (The equivalence classes resulting from this equivalence
relation R are called the orbits of A under G.)

(b) For the group G in Exercise 15.19, determine the orbits of A under G.

15.4 FUNDAMENTAL PROPERTIES OF GROUPS

We now consider some properties possessed by all groups. Of course, any property satis-
fied by all groups must be a consequence of properties G1 – G3. Unless stated otherwise,
the symbol e represents an identity in the group under consideration. One simple, but
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important, property satisfied by every group (G, ∗) allows us to cancel a in a ∗ b = a ∗ c
and conclude that b = c. Actually, since a group need not be abelian, there are two such
cancellation properties.

Theorem 15.7 Every group (G, ∗) satisfies:

(a) The Left Cancellation Law Let a, b, c ∈ G. If a ∗ b = a ∗ c, then b = c.

(b) The Right Cancellation Law Let a, b, c ∈ G. If b ∗ a = c ∗ a, then b = c.

Proof We prove (a) only since the proof of (b) is similar. (See Exercise 15.21.) Assume that
a ∗ b = a ∗ c and let s be an inverse for a. Then s ∗ (a ∗ b) = s ∗ (a ∗ c). So,

s ∗ (a ∗ b) = (s ∗ a) ∗ b = e ∗ b = b,

while

s ∗ (a ∗ c) = (s ∗ a) ∗ c = e ∗ c = c.

Therefore, b = c.

The last two sentences of this proof could have been replaced by: So,

b = e ∗ b = (s ∗ a) ∗ b = s ∗ (a ∗ b) = s ∗ (a ∗ c) = (s ∗ a) ∗ c = e ∗ c = c.

The next result will come as no surprise.

Theorem 15.8 Let (G, ∗) be a group and let a, b ∈ G. The linear equations a ∗ x = b and x ∗ a = b
have unique solutions in G.

Proof We prove only that a ∗ x = b has a unique solution. (The remaining proof is left as
Exercise 15.22.) Let e be an identity for G, let s be an inverse of a and let x = s ∗ b.
Then

a ∗ x = a ∗ (s ∗ b) = (a ∗ s) ∗ b = e ∗ b = b.

So x = s ∗ b is a solution of the equation a ∗ x = b.
It remains to show that s ∗ b is the only solution of a ∗ x = b. Suppose that x1 and

x2 are solutions of a ∗ x = b. Then a ∗ x1 = b and a ∗ x2 = b. Thus, a ∗ x1 = a ∗ x2. Ap-
plying the Left Cancellation Law (Theorem 15.7(a)), we have x1 = x2.

The preceding theorem provides some interesting information for us. Suppose that
we have a group table for a group G and we are looking at the row corresponding to
the element a. Then this row contains the elements a ∗ g for all g ∈ G. Let b ∈ G. By
Theorem 15.8, there exists x ∈ G such that a ∗ x = b. That is, the element b must appear
in the row corresponding to a. This is illustrated in Figure 15.10. On the other hand,
the element b cannot appear twice in this row since the equation a ∗ x = b has a unique
solution. Hence, we can conclude that every element of G appears exactly once in every
row in the group table of G. By considering the equation x ∗ a = b, we can likewise
conclude that every element of G appears exactly once in every column in the group
table of G.
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x

ba
�

���

��

Figure 15.10 The equation a ∗ x = b

As with composition in a symmetric group, it is customary in a group G to refer to
the binary operation ∗ as “multiplication” and to indicate the “product” of elements a and
b in G by ab rather than a ∗ b to simplify the notation. We thus write a ∗ a = aa = a2.
The lone exception to this practice is when we have a group whose operation is addition,
in which case we continue to use + as the operation. It is also common practice never
to use + as an operation when the group is nonabelian. Let’s use this newly adopted
notation to present a theorem that shows that every group G has a unique identity and
every element of G has a unique inverse, two facts that you may have already suspected
were true.

Theorem 15.9 Let G be a group. Then

(a) G has a unique identity and

(b) each element in G has a unique inverse.

Proof Assume that e and f are two identities in G. Since e is an identity, e f = f ; and since f
is an identity, e f = e. Thus, e = e f = f . This verifies (a).

Next let g ∈ G and suppose that s and t are both inverses of g. So, gs = sg = e and
gt = tg = e. Since gs = gt, it follows by the Left Cancellation Law (Theorem 15.7(a))
that s = t. This verifies (b).

It is customary to denote the (unique) inverse of an element a in a group by a−1.
If the operation in a group under consideration is addition, then we follow the standard
practice of denoting the identity by 0 and the inverse of a by −a. We now present two
theorems involving inverses in a group.

Theorem 15.10 Let G be a group. If a ∈ G, then

(
a−1)−1 = a.

Proof Since aa−1 = a−1a = e, the element a is the inverse of a−1, that is,
(
a−1

)−1 = a.

For elements a and b in a group, the next theorem establishes a connection among
the inverses a−1, b−1 and (ab)−1.

Theorem to
Prove

Let G be a group. For a, b ∈ G,

(ab)−1 = b−1a−1.
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PROOF STRATEGY The product of the elements a and b of G is ab. Since ab ∈ G, the element ab has
an inverse – indeed a unique inverse. The inverse of ab is denoted by (ab)−1. The
theorem claims that the inverse of ab is the element b−1a−1 in G. To show that an
element s ∈ G is an inverse of x ∈ G, we are required to show that sx = xs = e. There-
fore, to show that b−1a−1 is the inverse of ab, we need to show that (ab)

(
b−1a−1

) =(
b−1a−1

)
(ab) = e. �

Theorem 15.11 Let G be a group. If a, b ∈ G, then

(ab)−1 = b−1a−1.

Proof To show that b−1a−1 is the inverse of ab, it suffices to show that (ab)
(
b−1a−1

) = e and(
b−1a−1

)
(ab) = e. We verify the first of these as the proof of the second equality is

similar. Observe that

(ab)(b−1a−1) = ((ab)b−1)a−1 = (a(bb−1))a−1 = (ae)a−1 = aa−1 = e.

In words, what Theorem 15.11 states is that the inverse of the product of two ele-
ments in a group is the product of the inverses of these two elements in reverse order. Of
course, if G is an abelian group and a, b ∈ G, then the order of the product of a−1 and
b−1 doesn’t matter, that is, (ab)−1 = b−1a−1 = a−1b−1. (See Exercise 15.25.)

In general then, if g is an element of a group G, then g2 = gg, while for n ≥ 3, gn is
defined as gg · · · g (n elements g). As mentioned above, g−1 denotes the unique inverse
of g. The inverse of g2 is (g2)−1, which we write as g−2. Also, g−2 = g−1g−1 = (g−1)2.
More generally, for n ≥ 3,

g−n = (g−1)n = (gn)−1.

In addition, g0 is defined to be e, the identity of G. If G is abelian and g, h ∈ G, then

(gh)n = gnhn for each integer n. (15.3)

SECTION 15.4 EXERCISES

15.21. Prove Theorem 15.7(b) (The Right Cancellation Law): Let (G, ∗) be a group. If b ∗ a = c ∗ a, where
a, b, c ∈ G, then b = c.

15.22. Prove the following (see Theorem 15.8): Let (G, ∗) be a group and let a, b ∈ G. The linear equation
x ∗ a = b has a unique solution x in G.

15.23. Let (G, ∗) be a group and let a, b, c ∈ G. Prove that each of the following equations has a unique solution
for x in G and determine the solution.
(a) a ∗ x ∗ b = c (b) a ∗ b ∗ x = c.

15.24. Let a and b be two elements in a group G. Prove that if a and b commute, then a−1 and b−1 commute.

15.25. Let G be a group. Prove that G is abelian if and only if (ab)−1 = a−1b−1 for all a, b ∈ G.

15.26. Construct a table for the group (Z9,+) by listing the elements of Z9 across the top of the table in some
order and along the left side of the table in some order in such a way that every element of Z9 appears in
each of the nine 3 × 3 regions indicated in the table in Figure 15.11.
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Figure 15.11 Constructing a table for the group (Z9, +) in Exercise 15.26.

15.27. By Theorem 15.9, every group G has a unique identity. That is, G contains only one element e such that
ae = ea = a for all a ∈ G. Suppose that e′ is an element of G such that e′b = b for some element b ∈ G.
Prove or disprove: e′ is the identity of G.

15.28. Let (G, ∗) be a group. Prove that if g ∗ g = e for all g ∈ G, then G is abelian.

15.29. Let (G, ∗) be a finite group of even order. Prove that there exists g ∈ G such that g �= e and g ∗ g = e.

15.30. Suppose that G is a finite abelian group of order n, say G = {g1, g2, . . . , gn}. Let
g = g1g2 · · · gng1g2 · · · gn. What is g?

15.5 SUBGROUPS

There have been occasions when we were considering a group (G, ∗) and a subset H
of G such that H is a group under the same operation ∗, that is, (H, ∗) is also a group.
If (G, ∗) is a group and H is a subset of G such that (H, ∗) is a group, then (H, ∗) is
called a subgroup of G. For example, (Z,+) is a subgroup of (Q,+), which, in turn, is
a subgroup of (R,+). Also, the groups G1 and G2 in Figure 15.8 are subgroups of S3,
while the group G3 in Figure 15.9 is a subgroup of S4. If (G, ∗) is a group with identity e,
then ({e}, ∗) and (G, ∗) are always subgroups of (G, ∗). Hence, if G has at least two
elements, then G has at least two subgroups.

The group (2Z,+) of even integers under addition is a subgroup of (Z,+). To see
this, first observe that 2Z ⊆ Z. Since the sum of two even integers is an even integer,
2Z is closed under addition. Since the associative law of addition holds in Z, it holds in
2Z as well. The identity in (Z,+) is 0. Since 0 is an even integer, 0 ∈ 2Z. Finally, the
additive inverse (the negative) of an even integer is an even integer. Thus, (2Z,+) is a
group. Therefore, showing that (2Z,+) is a subgroup of (Z,+) is simpler than showing
that it is a group. This observation is true for every subgroup.

Theorem 15.12 (The Subgroup Test) A nonempty subset H of a group G is a subgroup of G if and
only if (1) ab ∈ H for all a, b ∈ H and (2) a−1 ∈ H for all a ∈ H.

Proof We first show that if H is a subgroup of G, then properties (1) and (2) are satisfied. Since
H is closed under multiplication, property (1) is certainly satisfied. We now show that
the identity e of G is also the identity of H. Let f be the identity of H. Thus, f · f = f .
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Since e is the identity of G, it follows that f · e = f . Therefore, f · f = f · e. By the
Left Cancellation Law (Theorem 15.7(a)), f = e. Hence, as claimed, the identity e of
G is also the identity of H. Next, let a ∈ H. Since a ∈ G, it follows that the inverse
a−1 of a belongs to G and so aa−1 = e. It remains to show that a−1 ∈ H. Since H is a
subgroup of G, a has an inverse a′ in H. Thus, aa′ = e in H and aa′ = e in G as well.
Therefore, aa′ = aa−1. By the Left Cancellation Law again, a′ = a−1 and so property
(2) is satisfied.

Next, we verify the converse, namely if H is a nonempty subset of G satisfying prop-
erties (1) and (2), then H is a subgroup of G. Let a, b, c ∈ H. Since H ⊆ G, it follows
that a, b, c ∈ G. Since G is a group, a(bc) = (ab)c by property G1. Thus, multiplication
is associative in H as well. From property (1), it follows that H is closed under multi-
plication and from property (2), every element of H has an inverse. It remains only to
show that H contains an identity. Since H �= ∅, there exists an element a ∈ H. By (2),
a−1 ∈ H, and by (1), aa−1 = e ∈ H. Since H contains the identity e of G, it follows that
xe = ex = x for all x ∈ H and so e is the identity of H as well.

We now illustrate the Subgroup Test.

Result to Prove Let H =
{[

a b
c 0

]
: a, b, c ∈ R

}
. Then (H,+) is a group.

PROOF STRATEGY The elements of H are matrices, in fact, matrices in M2(R). Indeed, a matrix in M2(R)
belongs to H if and only if the entry in row 2, column 2 is 0. We have already seen that
(M2(R),+) is a group. Since H uses the same operation as in M2(R), namely addition,
it is appropriate to prove that (H,+) is a group by the Subgroup Test (Theorem 15.12).

To use the Subgroup Test, we first need to know that the set H is nonempty. Since

the zero matrix
[

0 0
0 0

]
satisfies the requirement for it to belong to H, we need only

show that conditions (1) and (2) of Theorem 15.12 are satisfied, namely, that H is closed
under addition and that if A is a matrix in H, then its inverse (its negative in this case)
−A belongs to H as well. This will be relatively routine to show. �

Result 15.13 Let H =
{[

a b
c 0

]
: a, b, c ∈ R

}
. Then (H,+) is a group.

Proof We show in fact that (H,+) is a subgroup of (M2(R),+). Certainly, H is a nonempty

subset of M2(R) since the zero matrix
[

0 0
0 0

]
belongs to H. Let A, B ∈ H. Then

A =
[

a1 a2

a3 0

]
and B =

[
b1 b2

b3 0

]
,

where ai, bi ∈ R (1 ≤ i ≤ 3). Then A + B =
[

a1 + b1 a2 + b2

a3 + b3 0

]
∈ H and the inverse

of A is −A =
[−a1 −a2

−a3 0

]
∈ H. Consequently, by the Subgroup Test, H is a subgroup

of M2(R) and so (H,+) is a group.
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If G is an abelian group, then we know that every two elements of G commute. But
even if G is nonabelian, we know that its identity commutes with every element of G.
However, there may very well be other elements of G that commute with all elements of
G. The set of all elements in a group G that commute with every element in G is called
the center of G and, in fact, is always a subgroup of G. This subgroup is often denoted
by Z(G). Since Z(G) = G if and only if G is abelian, the center is most interesting when
G is nonabelian.

Result to Prove For a group G, the center

Z(G) = {a ∈ G : ga = ag for all g ∈ G}
is a subgroup of G.

PROOF STRATEGY To prove this result, it seems natural to use the Subgroup Test. Since e ∈ Z(G), it fol-
lows that Z(G) �= ∅. We are now required to show that Z(G) satisfies the two properties
required of the Subgroup Test.

First, we show that Z(G) is closed under multiplication; that is, if a, b ∈ Z(G), then
ab ∈ Z(G). We employ a direct proof. Let a, b ∈ Z(G). To show that ab ∈ Z(G), we need
to show that ab commutes with every element of G. So, let g ∈ G. We must show that
(ab)g = g(ab). This suggests starting with (ab)g. By the associative law, (ab)g = a(bg).
However, since b ∈ Z(G), it follows that a(bg) = a(gb). We can continue in this manner
to complete the proof of this property.

Second, we need to show that if a ∈ Z(G), then a−1 ∈ Z(G). Again, we use a di-
rect proof. Let a ∈ Z(G). Then a commutes with every element of G. To show that
a−1 ∈ Z(G), we need to verify that a−1 commutes with every element of G. Let g ∈ G.
We must show then that a−1g = ga−1 to complete the proof. But how do we do this?
Theorem 15.11, which deals with inverses of elements, may be helpful. We know that
(xy)−1 = y−1x−1 for all x, y ∈ G. So (ag)−1 = g−1a−1. This, however, involves g−1. But
if we start with ag−1 = g−1a, then we have

(
ag−1

)−1 = (
g−1a

)−1
. �

Result 15.14 For a group G, the center

Z(G) = {a ∈ G : ga = ag for all g ∈ G}
is a subgroup of G.

Proof Since eg = ge for all g ∈ G, it follows that e ∈ Z(G) and so Z(G) is nonempty. First,
we show that Z(G) is closed under multiplication. Let a, b ∈ Z(G). Thus, ag = ga and
bg = gb for all g ∈ G. We show that ab ∈ Z(G). Since

(ab) g = a (bg) = a (gb) = (ag)b = (ga)b = g (ab) ,

ab ∈ Z(G). Hence, Z(G) is closed under multiplication. Next we show that every ele-
ment of Z(G) has an inverse in Z(G). Let a ∈ Z(G) and g ∈ G. We show that a−1 ∈ Z(G),
that is, a−1 and g commute. Since a commutes with all elements of G, it follows that
a and g−1 commute and so ag−1 = g−1a. Since every element of G has a unique in-
verse, (ag−1)−1 = (g−1a)−1. By Theorem 15.11,

(
ag−1

)−1 = (
g−1

)−1
a−1 = ga−1 and(

g−1a
)−1 = a−1

(
g−1

)−1 = a−1g. Therefore, a−1g = ga−1.
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For A = {1, 2, · · · , n}, n ≥ 2 and k ∈ A, let Gk consist of those permutations α in the
symmetric group (Sn, ◦) such that α(k) = k (that is, Gk consists of all those permutations
of A that “stabilize” or fix k). The set Gk is called the stabilizer of k in Sn.

Result 15.15 For integers k and n with 1 ≤ k ≤ n and n ≥ 2, the stabilizer Gk of k in Sn is a subgroup
of Sn.

Proof We use the Subgroup Test. Surely, the identity α0 in Sn belongs to Gk, so Gk �= ∅. Let
α, β ∈ Gk. Thus, α(k) = β(k) = k. Hence, (α ◦ β )(k) = α(β(k)) = α(k) = k and so α ◦
β ∈ Gk. Consider the inverse α−1 of α. Thus, α−1 ◦ α = α0. Therefore, (α−1 ◦ α)(k) =
α0(k) = k. Hence, (α−1 ◦ α)(k) = α−1(α(k)) = α−1(k) = α0(k) = k. Thus, α−1 ∈ Gk.
By the Subgroup Test, Gk is a subgroup of Sn.

The group (G1, ◦) shown in Figure 15.8 is the stabilizer of 1 in (S3, ◦). However,
(G2, ◦) shown in Figure 15.8 is not the stabilizer of 2 in (S3, ◦).

We have already mentioned that the set 2Z of even integers is a subgroup of (Z,+).
In fact, for every integer n ≥ 2, the set nZ = {nk : k ∈ Z} of multiples of n is a subgroup
of (Z,+) (see Exercise 15.31). In Chapter 9, we saw that the relation R defined on Z by
a R b if a ≡ b (mod n) is an equivalence relation. This relation can also be described in
another manner, namely a R b if a − b ∈ nZ and so a − b = h for some element h ∈ nZ
or a = b + h. It turns out that this equivalence relation is a special case of a more general
situation. Suppose that H is a subgroup of a group (G, ·) and a relation R is defined on
G by a R b if a = bh for some h ∈ H. (Note that b + h in Z is replaced by bh here
since the operation in G is “multiplication.”) Then this relation is also an equivalence
relation.

Theorem 15.16 Let H be a subgroup of a group (G, ·). The relation R defined on G by a R b if a = bh
for some h ∈ H is an equivalence relation.

Proof First, we show that R is reflexive. Let a ∈ G. Since a = ae (where e is the identity of
G and therefore of H), a R a and so R is reflexive. Next, we show that R is symmetric.
Assume that a R b, where a, b ∈ G. Then a = bh for some h ∈ H. Since H is a group,
h−1 ∈ H and so ah−1 = (bh)h−1 = b(hh−1) = be = b, or b = ah−1. Therefore, b R a
and R is symmetric. Finally, we show that R is transitive. Assume that a R b and b R c,
where a, b, c ∈ G. Then a = bh1 and b = ch2 for elements h1 and h2 in H. Therefore,
a = bh1 = (ch2)h1 = c(h2h1). Since h2, h1 ∈ H, it follows that h2h1 ∈ H as well. Thus,
a R c and so R is transitive.

For a subgroup H of a group (G, ·), the equivalence relation defined in Theorem
15.16 gives rise to equivalence classes. For each element g ∈ G, the equivalence class
[g] is defined by

[g] = {x ∈ G : x R g} = {x ∈ G : x = gh for some h ∈ H}
= {gh : h ∈ H}.

The set {gh : h ∈ H} is often denoted by gH and is called a left coset of H in G, that is,
[g] = gH. We saw in Chapter 9 that for an equivalence relation defined on a set S, the
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distinct equivalence classes form a partition of S. Consequently, the equivalence relation
defined in Theorem 15.16 results in a partition of G into the distinct left cosets of H
in G.

An important characteristic of a left coset gH of H in G is that gH and H have
the same number of elements, that is, |gH| = |H|. In order to see this, we show for
an element g ∈ G that there is a bijection from H to gH. Let φ : H → gH be defined
by φ(h) = gh. First, we show that φ is one-to-one. Assume that φ(h1) = φ(h2). Then
gh1 = gh2. By the Left Cancellation Law, h1 = h2. Therefore, φ is one-to-one. Next, we
show that φ is onto. Let gh ∈ gH. Since φ(h) = gh, it follows that φ is onto and so φ

is a bijection and |gH| = |H|. Therefore, every two left cosets of H in G have the same
number of elements.

What we have just observed provides all the information that is needed to prove a
fundamental theorem of group theory, one due to Joseph-Louis Lagrange, probably the
greatest French mathematician of the 18th century.

Theorem 15.17 (Lagrange’s Theorem) If H is a subgroup of order m in a (finite) group G of order n,
then m | n.

Proof We have already seen that the distinct left cosets of H in G form a partition of G and
that every two left cosets have the same number of elements. Suppose that there are k
left cosets of G. Then n = mk and so m | n.

Lagrange’s theorem first appeared in 1770–1771 in connection with the problem of
solving the general polynomial of degree 5 or higher. While this theorem was not pre-
sented in this general form by Lagrange and in fact group theory had yet to be invented,
it is universally referred to as Lagrange’s theorem.

We have seen that the group consisting of the nonzero elements of Z7 forms a group
under multiplication, that is, G = Z∗

7 = {[1], [2], . . . , [6]}. Since H = {[1], [6]} is a sub-
group of order 2 in G, the distinct left cosets of H in G are

[1]H = H, [2]H = {[2], [5]} and [3]H = {[3], [4]}.

SECTION 15.5 EXERCISES

15.31. For an integer n ≥ 2, prove that the set nZ = {nk : k ∈ Z} of multiples of n is a subgroup of (Z,+).

15.32. Which of the following are subgroups of the given group?

(a) The subset N in (Z,+)
(b) The subset {[0], [2], [4]} in (Z7,+)
(c) The subset {[1], [2], [4]} in (Z∗

7, ·)
(d) The subset {2n : n ∈ Z} in (Q∗, ·).

15.33. Let H and K be two subgroups of a group G. Prove or disprove:

(a) H ∩ K is a subgroup of G. (b) H ∪ K is a subgroup of G.
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15.34. For each of the following subsets H of M∗
2 (R), prove or disprove that (H, ·) is a subgroup of (M∗

2 (R), ·).

(a) H =
{[

a b
c 0

]
: a, b, c ∈ R, bc �= 0

}

(b) H =
{[

a b
0 c

]
: a, b, c ∈ R, ac �= 0

}
.

15.35. Let H = {a + b
√

3 : a, b ∈ Q, a �= 0 or b �= 0}. Prove that H is a subgroup of (R∗, ·).
15.36. For n ∈ N, let T be a nonempty subset of {1, 2, · · · , n} and define

GT = {α ∈ Sn : α(t ) = t for all t ∈ T }.
Prove that GT is a subgroup of (Sn, ◦).

15.37. Recall that M∗
2 (R) = {A ∈ M2(R) : det(A) �= 0}. Let

H = {A ∈ M∗
2 (R) : det(A) = 1 or det(A) = −1}.

Prove that H is a subgroup of (M∗
2 (R), ·).

15.38. Let G be an abelian group and let H = {a2 : a ∈ G}. Prove that H is a subgroup of G.

15.39. Let G be an abelian group and let H = {a ∈ G : a2 = e}. Prove that H is a subgroup of G.

15.40. What are all the subgroups of a group of order p, where p is a prime?

15.41. Prove or disprove: There exists a group of order 372 containing a subgroup of order 22.

15.42. Prove that a nonempty subset H of a group G is a subgroup of G if and only if ab−1 ∈ H for all a, b ∈ H.

15.43. (a) Let (G, ∗) be a finite group. Prove that if H is a nonempty subset of G that is closed under ∗, then H is
a subgroup of G.

(b) Show that the result in (a) is false if (G, ∗) is an infinite group.

15.44. Let B be a nonempty subset of a set A, S = { f ∈ SA : f (B) = B} and T = { f ∈ SA : f (b) = b for each
b ∈ B}.
(a) Prove that (S, ◦) is a subgroup of (SA, ◦).
(b) Prove that (T, ◦) is a subgroup of (S, ◦).

15.45. A group G has order 48. If there are six distinct left cosets of a subgroup H in G, then what is the order
of H?

15.46. For the subgroup H = {α1, α2} of (S3, ◦), where α1 =
(

1 2 3
1 2 3

)
and α2 =

(
1 2 3
1 3 2

)
, determine

the distinct left cosets of H in G.

15.47. For a subgroup H of a group (G, ·), let gH be a left coset distinct from H. Prove or disprove: g2 ∈ gH.

15.6 ISOMORPHIC GROUPS

Suppose that we were asked to give examples of two groups of order 3. One possible ex-
ample is (Z3,+). On the other hand, we might try to construct two groups of order 3, say
G = {a, b, c} and H = {x, y, z}. Of course, we must also describe binary operations for
both G and H. Let us denote the binary operation for G by ∗ and the binary operation for
H by ◦. So, we have two groups (G, ∗) and (H, ◦), both of order 3. One of the elements
of G is the identity for G and one of the elements of H is the identity for H. Suppose that
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we decide on a as the identity for G and x as the identity for H. Hence, the operations ∗
and ◦ in G and H, respectively, satisfy the partial tables shown in Figure 15.12.

c

b

c

x

y

z

x y z

x y

y

z

z

◦∗

b

a b c

a a b c

Figure 15.12 Partial tables for groups (G, ∗) and (H, ◦)

Because every element in each of the groups G and H must occur exactly once in
every row and column in the tables shown in Figure 15.12, the complete tables for ∗ and
◦ must be those shown in Figure 15.13.

y

z

x y z

x y

y

z

z

◦∗

a

ac

b

z x

x y

x

a b c

a a b c

b

c

b

c

Figure 15.13 Complete tables for groups (G, ∗) and (H, ◦)

We can now readily see that in G we have a−1 = a, b−1 = c and c−1 = b, while in
H we have x−1 = x, y−1 = z and z−1 = y. Verifying the associative laws requires more
effort but it can be shown that the associative law holds in each case. Thus, (G, ∗) and
(H, ◦) are both groups and we have just given examples of two groups of order 3. Or have
we? There is something very similar about these two examples. They are not really two
different groups at all. Indeed, the group (H, ◦) is merely a disguised form of the group
(G, ∗). Let’s describe what we mean by this. If the elements a, b, c in G are replaced by
x, y, z, respectively, then we have the identical table. What’s important here is not only
that x, y and z in H are playing the roles of a, b and c in G but that the operations in the
two groups are doing the same thing. For example, if we multiply b and c in G (obtaining
the element a), then multiplying the corresponding elements y and z in H gives us the
element corresponding to a, namely x.

Although it may appear that this is the natural correspondence between the elements
of G and the elements of H, we should not be misled by the order in which the elements
of these two groups are listed. For example, suppose that we consider the two groups
(G, ∗) and (H, ◦) once again (in Figure 15.14), where the elements of H are listed in the
order x, z, y.

We can see that the elements a, b, c in G also correspond to x, z, y, respectively. We
consider the two groups (G, ∗) and (H, ◦) to be actually a single group, as these two
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x

x

◦∗

a

ac

b

x

z y

z y

z

y

z y

y zx

x

a b c

a a b c

b

c

b

c

Figure 15.14 Groups (G, ∗) and (H, ◦)

groups have the same order (though the sets are different) and their operations perform
the same functions (though different symbols are used for the operations). The technical
term for this is that they are “isomorphic” groups (groups having the same structure).

In general, two groups (G, ∗) and (H, ◦) are isomorphic if there exists a bijective
function φ : G → H satisfying the property

φ(a ∗ b) = φ(a) ◦ φ(b) (15.4)

for all a, b ∈ G. Any such function φ that satisfies the property in (15.4) is said to be
operation-preserving. Thus, for (G, ∗) and (H, ◦) to be isomorphic, there must be a
bijective, operation-preserving function φ : G → H. If φ has these properties, then φ

is called an isomorphism. If φ : G → H is an isomorphism, then φ is also a bijective
function. Thus, φ has an inverse function φ−1 : H → G, which is also an isomorphism
(see Exercise 15.51).

For isomorphic groups (G, ∗) and (H, ◦), there are certain properties that every iso-
morphism from G to H must have. Two of these properties are described in the following
theorem.

Theorem 15.18 Let (G, ∗) and (H, ◦) be isomorphic groups, where the identity of G is e and the identity
of H is f . If φ : G → H is an isomorphism, then

(a) φ(e) = f and

(b) φ
(
g−1

) = (φ(g))−1 for all g ∈ G.

Proof First, we prove (a). Let h ∈ H. Since φ is onto, there exists g ∈ G such that φ(g) = h.
Since e ∗ g = g ∗ e = g and φ is operation-preserving, it follows that

φ(e) ◦ φ(g) = φ(e ∗ g) = φ(g) = φ(g ∗ e) = φ(g) ◦ φ(e)

and so

φ(e) ◦ h = h ◦ φ(e) = h.

This implies that φ(e) is the identity of H and so φ(e) = f .
Next, we prove (b). Let g ∈ G. Since g ∗ g−1 = g−1 ∗ g = e, it follows that

φ
(
g ∗ g−1

) = φ
(
g−1 ∗ g

) = φ(e) and so φ(g) ◦ φ
(
g−1

) = φ
(
g−1

) ◦ φ(g) = φ(e) = f .
This says that φ

(
g−1

)
is the inverse of φ(g), that is, φ

(
g−1

) = (φ(g))−1.
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By definition, if two groups (G, ∗) and (H, ◦) are isomorphic, then there exists an
isomorphism φ : G → H. Since φ is a bijective function, it follows that |G| = |H|. Actu-
ally, it’s not surprising that isomorphic groups have the same number of elements since,
when we say that G and H are isomorphic, we are technically saying that these groups
are the same, except for what the elements and binary operations are called. On the other
hand, consider the group tables of two groups shown in Figure 15.15. You might notice
that the first group is (Z4,+). The second group G is abelian, has identity e and x−1 = x
for all x ∈ G. In addition, of course, G has order 4. So, Z4 and G both have order 4. Yet,
Z4 and G are not isomorphic. Suppose, however, that they are isomorphic. Then there
exists an isomorphism φ : Z4 → G. By Theorem 15.18, we know that φ([0]) = e. Let
φ([1]) = x ∈ G. So,

φ([2]) = φ([1 + 1]) = φ([1] + [1]) = φ([1]) · φ([1]) = x · x = x2 = e.

Thus, φ([2]) = φ([0]) = e but this contradicts the fact that φ is one-to-one. Conse-
quently, these two groups of order 4 are not isomorphic. Therefore, if two groups have
the same number of elements, they need not be isomorphic. However, it turns out that
any group of order 4 is isomorphic to one of the two groups of order 4 described in
Figure 15.15.

cbae

c

b

a

e

·

[2][1][0]

[0]

[1][0]

e

eabc

aecb

bcea

cba

[3]

+ [0]

[3][2]

[3]

[2]

[1]

[3][2][1][0]

[3]

[2]

[1]

[0]

[3][2][1]

Figure 15.15 Two groups of order 4

We saw in Chapter 11 that |Z| = |Q| even though Z is a proper subset of Q. How-
ever, (Z,+) and (Q,+) are not isomorphic.

Result 15.19 The groups (Z,+) and (Q,+) are not isomorphic.

Proof Assume, to the contrary, that (Z,+) and (Q,+) are isomorphic. Then there exists an iso-
morphism φ : Z → Q. Let φ(1) = a ∈ Q. Since φ(0) = 0, it follows that a �= 0. Thus,
a/2 ∈ Q and a/2 �= 0. Since φ is onto, there exists an integer n �= 0 such that φ(n) =
a/2. Then

φ(2n) = φ(n + n) = φ(n) + φ(n) = a
2

+ a
2

= a.

Since φ is one-to-one, 2n = 1. However then, n = 1/2 /∈ Z, which is a contradiction.

On the other hand, the set 2Z of even integers is a proper subset of Z; yet (2Z,+)
and (Z,+) are isomorphic.

Result 15.20 The groups (2Z,+) and (Z,+) are isomorphic.
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Proof Define the function φ : Z → 2Z by φ(n) = 2n for each n ∈ Z. First, we show that f is
one-to-one. Assume that φ(a) = φ(b). Then 2a = 2b. Dividing by 2, we obtain a = b
and so φ is one-to-one. Now, we show that φ is onto. Let n ∈ 2Z. Since n is even, n = 2k
for some integer k. Then φ(k) = 2k = n. This shows that φ is onto. Finally, we show that
φ is operation-preserving. Let a, b ∈ Z. Then

φ(a + b) = 2(a + b) = 2a + 2b = φ(a) + φ(b).

It should be obvious that every group G is isomorphic to itself. In fact, the identity
function iG : G → G defined by iG(g) = g for all g ∈ G is an isomorphism. However,
other permutations of G can be isomorphisms.

Result 15.21 Let G be a group and let g ∈ G. The function φ : G → G defined by φ(a) = gag−1 for
all a ∈ G is an isomorphism.

Proof First, we show that f is one-to-one. Assume that φ(a) = φ(b). Then gag−1 = gbg−1.
Canceling g on the left and g−1 on the right, we obtain a = b. Next, we show that φ is
onto. Let c ∈ G. Then

φ
(
g−1cg

) = g
(
g−1cg

)
g−1 = (

gg−1) c
(
g−1g

) = ece = c.

Finally, we show that φ is operation-preserving. Let a, b ∈ G. Then

φ(ab) = g(ab)g−1 = (
gag−1) (

gbg−1) = φ(a)φ(b).

SECTION 15.6 EXERCISES

15.48. Let H =
{[

1 n
0 1

]
: n ∈ Z

}
.

(a) Prove that H is a subgroup of (M∗
2 (R), ·).

(b) Prove that the function f : (Z,+) → (H, ·) given by f (n) =
[

1 n
0 1

]
is an isomorphism.

(c) Parts (a) and (b) should suggest another question to you. Ask and answer a related question.

15.49. In each of the following, determine whether the function φ is an isomorphism from the first group to the
second group.

(a) φ : (Z,+) → (Z,+) defined by φ(n) = 2n.
(b) φ : (Z,+) → (Z,+) defined by φ(n) = n + 1.
(c) φ : (R,+) → (R+, ·) defined by φ(r) = 2r.
(d) φ : (M∗

2 (R), ·) → (R∗, ·) defined by φ(A) = det(A).

15.50. Obviously, (R+, ·) and (R+, ·) are isomorphic groups. Consider the function φ : R+ → R+ defined by
φ(r) = r2 for all r ∈ R+. Is φ an isomorphism?

15.51. Let (G, ∗) and (H, ◦) be two groups. Prove that if φ : G → H is an isomorphism, then the inverse function
φ−1 of φ is an isomorphism from H to G.

15.52. Let G, H and K be three groups. Prove that if φ1 : G → H and φ2 : H → K are isomorphisms, then the
composition φ2 ◦ φ1 : G → K is an isomorphism.
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15.53. Let (G, ∗) be a group. Define a binary operation ◦ on G by a ◦ b = b ∗ a.

(a) Prove that (G, ◦) is a group.
(b) Prove that (G, ∗) and (G, ◦) are isomorphic. [Hint: Consider the function φ(g) = g−1.]

15.54. Explain why the groups (Q,+) and (R,+) are not isomorphic.

15.55. We saw in Example 15.4 that with the binary operation ∗ defined on Z by a ∗ b = a + b − 1, (Z, ∗) is an
abelian group. Prove that (Z, ∗) is isomorphic to (Z,+).

15.56. (a) Let G and H be isomorphic groups. Prove that if G is abelian, then H is abelian.
(b) Show that the groups (Z6,+) and (S3, ◦) are not isomorphic.

15.57. Let B = { 1
n : n ∈ Z − {0}} and let A = R − B.

(a) Prove for each n ∈ Z that the function fn : A → A defined by fn(x) = x
1+nx is bijective.

(b) Let P = { fn : n ∈ Z}. Prove that (P, ◦) is a group of permutations on A.
(c) Prove that the groups (Z,+) and (P, ◦) are isomorphic.

15.58. Let (G, ◦) and (H, ∗) be groups with identities e and e′, respectively. Suppose that f : G → H is a
function with the property that f (a ◦ b) = f (a) ∗ f (b) for all a, b ∈ G.

(a) Let M = range( f ). Prove that (M, ∗) is a subgroup of (H, ∗).
(b) Let K = {a ∈ G : f (a) = e′}. Prove that (K, ◦) is a subgroup of (G, ◦).

15.59. Let A = {m
n : m and n are odd integers, gcd(m, n) = 1 and n ≥ 1}. For a ∈ A, let fa : R∗ → R∗ be defined

by fa(x) = xa.

(a) Prove that (A, ·) is a subgroup of (Q∗, ·), where the product of every two elements of A is reduced to
lowest terms.

(b) Show for each a ∈ A that fa is a permutation on R∗.
(c) Let F = { fa : a ∈ A}. Prove that (F, ◦) is a subgroup of (SR∗ , ◦).
(d) Prove that (A, ·) and (F, ◦) are isomorphic groups.

The Chapter
Presentation for
Chapter 15 can be
found at
goo.gl/Zz65k4

Chapter 15 Supplemental Exercises

15.60. Let (G, ∗) be a group. An element g of G is an idempotent for ∗ if g ∗ g = g. Prove
that there exists exactly one idempotent in G.

15.61. Let G be a group and let a ∈ G. The set Z(a) = {g ∈ G : ga = ag} is called the
centralizer of a. Prove that the centralizer of a is a subgroup of G.

15.62. Let a, b ∈ Z, where a, b �= 0 and let H = {am + bn : m, n ∈ Z} be the set of all
linear combinations of a and b.

(a) Prove that H is a subgroup of (Z,+).
(b) Let d = gcd(a, b). Prove that H = dZ.

15.63. Define ∗ on R − {1} by a ∗ b = a + b − ab.

(a) Prove that (R − {1}, ∗) is an abelian group.
(b) Prove that (R − {1}, ∗) is isomorphic to (R∗, ·).

15.64. Let G be a group of order pq, where p and q are distinct primes. What are the
possible orders of a subgroup of G?

15.65. Let H be a subgroup of (Z,+) with at least two elements and let m be the smallest
positive integer in H. Prove that H = mZ. [Hint: Use the Division Algorithm.]
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15.66. Evaluate the proposed proof of the following statement.

Result There exists no group containing exactly two distinct elements that do not
commute.

Proof Assume, to the contrary, that there exists a group G containing exactly two
distinct elements, say x and y, that do not commute. Thus, xy �= yx. Since x and y are
the only two elements of G that do not commute, x−1 and y do commute. Thus,
x−1y = yx−1. Multiplying by x on both the left and right, we obtain
x
(
x−1y

)
x = x

(
yx−1

)
x. Simplifying, we have yx = xy. This is a contradiction.

15.67. A group G of order n ≥ 2 contains a subgroup H. In a left coset decomposition of H
in G, the number of distinct left cosets is the same as the order of H. If some left
coset contains p elements, where p is a prime, then what is n?

15.68. Evaluate the proposed proof of the following statement.

Result There exists no abelian group containing exactly three distinct elements x
such that x2 = e.

Proof Assume, to the contrary, that there exists an abelian group G such that
x2 = e for exactly three distinct elements x of G. Certainly, e2 = e, so there are two
non-identity elements a and b such that a2 = b2 = e. Observe that
(ab)2 = a2b2 = ee = e. Hence, either ab = a, ab = b or ab = e, which implies,
respectively, that b = e, a = e or a = b, producing a contradiction.

15.69. Prove or disprove the following: For each odd integer k ≥ 3, there exists no abelian
group containing exactly k elements x such that x2 = e.

15.70. For a function f : N → N, we let f 1 = f and f 2 = f ◦ f . More generally, for
k ≥ 2, the function f k is defined recursively by f k = f ◦ f k−1. Thus, f n : N → N
for each n ∈ N. Give an example of two elements f and g in SN such that
f 2 = g2 = iN but ( f ◦ g)m �= iN for all m ∈ N.

15.71. The nonabelian group S3 of order 6 (see Figure 15.7) has the property that it
contains only one element, namely the identity α1, that commutes with every
element of S3. Prove that no group G has the property that it contains only one
element that does not commute with at least one element of G.

15.72. It was mentioned in Section 15.6 that there are exactly two non-isomorphic groups
of order 4. Prove this by showing that there is only one group of order 4 having four
self-inverse elements and only one group of order 4 having exactly two self-inverse
elements.

15.73. Prove that the relation R defined on a group G by a R b if b = gag−1 for some
element g ∈ G is an equivalence relation.

15.74. (a) Prove for any element g in a finite group with identity e that gn = e for some
n ∈ N.

(b) Let (G, ·) be an abelian group (finite or infinite) with identity e. Prove that if
H = {g ∈ G : gn = e for some n ∈ N}, then (H, ·) is a subgroup.
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16
Proofs in Ring Theory

We have noted that many of the proofs we have seen thus far involve integers and
their properties. This was certainly the case in Chapter 12, where we were primar-

ily concerned with additive and multiplicative properties of integers. Many important
properties of integers follow from just a very few familiar additive and multiplicative
properties of integers. In particular, every three integers a, b and c satisfy the following:

(1) a + b = b + a (2) (a + b) + c = a + (b + c)
(3) a + 0 = a (4) a + (−a) = 0
(5) a(bc) = (ab)c (6) a(b + c) = ab + ac.

(16.1)

Properties (1) – (4) tell us that the integers form an abelian group under addition, a
fact we observed in Chapter 15. You can probably think of other familiar properties of
integers (such as ab = ba), but let’s concentrate on the six properties listed above. We
saw in Chapter 15 that some of these properties have names. For example, (1) is called
the commutative law of addition, while (2) and (5) are the associative laws of addition
and multiplication, respectively. Property (6) is called the distributive law. Property (3)
states that the integer 0 is the identity under addition, while property (4) tells us that
for an integer a, the integer −a is its inverse under addition. Properties (3) and (4) in
particular may seem as if they are such basic properties of the integers that they should
not even be mentioned. However, it is precisely that these six properties are so basic and
natural that makes them important and draws our attention to them.

A question now arises: Just what facts about the integers are consequences only of
these six properties? An even more basic question is: If we have a nonempty set S of
objects (not necessarily integers) for which it is possible to add and multiply every two
elements of S (and in each case obtain an element of S) such that properties (1) – (6) are
satisfied, then what additional properties must S possess? Of course, whatever properties
that can be deduced about the elements of S will be properties of the integers as well.

In fact, this is the essence of the area of abstract algebra that we are about to en-
counter (and often of all mathematics). While studying a familiar set of objects, we may
discover an interesting fact about this set. But what features of this set led us to this
conclusion? And if any other set had these same features, does this interesting fact hold
for these sets as well? We are now prepared to explore nonempty sets on which addition
and multiplication have been defined that satisfy properties (1) – (6).

1
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2 Chapter 16 Proofs in Ring Theory

16.1 RINGS

Addition and multiplication of integers are binary operations since each associates a
unique integer with each (ordered) pair of integers. Binary operations were discussed in
Chapter 15. In the current context, a nonempty set with one or more binary operations
that are required to satisfy certain prescribed properties is referred to as an algebraic
structure. Hence, we have already seen examples of algebraic structures. Indeed, ev-
ery group (see Chapter 15) is an algebraic structure. Studying algebraic structures is
fundamental to abstract algebra.

We mentioned that the familiar operations of addition and multiplication defined
on the integers satisfy the six properties listed in (16.1). Other familiar sets of numbers
with these operations also satisfy these six properties, including the rational numbers,
the real numbers and the complex numbers. The situation is different for the irrational
numbers, however, since addition and multiplication are not even binary operations. For
example,

√
2 and −√

2 are irrational numbers while
√

2 · √2 = 2 and
√

2 + (−√
2) = 0

are not.
These and other examples suggest a general concept. A set R (this is not the symbol

used for the set of real numbers) with two binary operations, one of which is called
addition and denoted by + and the other called multiplication and denoted by · (where
we often write ab rather than a · b for a, b ∈ R), is called a ring if it satisfies the following
six properties:

R1 Commutative Law of Addition: a + b = b + a for all a, b ∈ R;

R2 Associative Law of Addition: (a + b) + c = a + (b + c) for all a, b, c ∈ R;

R3 Existence of Additive Identity: There exists an element 0 ∈ R such that a + 0 = a
for all a ∈ R;

R4 Existence of Additive Inverse: For each a ∈ R, there exists an element −a ∈ R
such that a + (−a) = 0;

R5 Associative Law of Multiplication: a(bc) = (ab)c for all a, b, c ∈ R;

R6 Distributive Laws: a(b + c) = ab + ac and (a + b)c = ac + bc for all a, b, c ∈ R.

Notice that property R3 requires the existence of at least one element in R, which
implies that every ring is nonempty. Recall that if S is a set with a binary operation ∗
and e ∈ S is an identity for S under ∗, then e ∗ a = a ∗ e = a for all a ∈ S. Since a ring
R has two binary operations and an identity element is only required for the operation of
addition, we refer to an element 0 specified in property R3 as an additive identity. The
notation 0 for an additive identity is chosen because the integer 0 is an additive identity
in Z. In other words, an additive identity in a ring R has the same characteristic as the
integer 0 under addition in Z. It is important to realize that when we refer to an additive
identity 0 in a ring R, we are referring only to an element in R that we are denoting by 0
and that satisfies property R3, namely, a + 0 = a for all a ∈ R. Since property R1 holds
in every ring, we also have 0 + a = a.

Also, if an algebraic structure (S, ∗) has an identity e, then an element a ∈ S has an
inverse b ∈ S if a ∗ b = b ∗ a = e. Each element of a ring R is only required to have this
property for the operation of addition. Thus, an inverse of an element a ∈ R with respect
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to addition is called an additive inverse of a. In Z, an additive inverse of an integer m is
its negative −m. For this reason, we use −a to denote an additive inverse of an element a
in a ring R. We must keep in mind that an element −a in R stands only for some element
in R that satisfies property R4, namely, a + (−a) = 0. By property R1, we also know
that (−a) + a = 0. Since properties R1 – R4 are required of every ring R, it follows that
(R,+) is an abelian group.

A ring with binary operations + and · is commonly denoted by (R,+, ·). However,
if the two operations involved are clear, then we simply write R. In particular, if we are
dealing with a familiar set with standard operations of addition and multiplication (and
these are the operations we are using), then we write only the symbol for that set. Thus,
Z, Q, R and C (the complex numbers) are rings.

We now look at some other common examples of rings.

Result 16.1 The set 2Z of even integers is a ring under ordinary addition and multiplication.

Proof First we show that ordinary addition and multiplication are binary operations on 2Z.
Let a, b ∈ 2Z. Then a = 2x and b = 2y for x, y ∈ Z. Then a + b = 2x + 2y = 2(x + y)
and ab = (2x)(2y) = 2(2xy). Since x + y and 2xy are integers, a + b and ab belong
to 2Z.

Since 2Z ⊆ Z and the binary operations in 2Z are the same as those in Z, properties
R1, R2, R5 and R6 are automatically satisfied. Moreover, since the integer 0 is even,
0 ∈ 2Z and so 2Z has an additive identity. To show that property R4 is also satisfied, let
a ∈ 2Z. So a = 2x, where x ∈ Z. Then −a = −(2x) = 2(−x). Since −x ∈ Z, it follows
that −a ∈ 2Z.

Result 16.2 The set Zn = {[0], [1], [2], · · · , [n − 1]}, n ≥ 2, of the integers modulo n is a ring under
addition and multiplication defined in Zn. (See Section 9.6.)

Proof It was indicated in Section 9.6 that both the addition and multiplication defined by [a] +
[b] = [a + b] and [a] · [b] = [ab] are well-defined and so are binary operations in Zn.
That properties R1, R2, R5 and R6 are satisfied depends only on the corresponding
properties in the ring Z. For example, to see that R1 and R2 are satisfied, let [a], [b],
[c] ∈ Zn. Then

[a] + [b] = [a + b] = [b + a] = [b] + [a]

and

([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)]

= [a] + [b + c] = [a] + ([b] + [c]).

The proofs of properties R5 and R6 are similar. The element [0] of Zn is an addi-
tive identity in Zn, while [−a] is an additive inverse for [a] since [a] + [−a] = [a +
(−a)] = [0].

The ring (Zn,+, ·) described in Result 16.2 is commonly called the ring of integers
modulo n.
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4 Chapter 16 Proofs in Ring Theory

Result 16.3 The set M2(R) of 2 × 2 matrices over R is a ring under matrix addition and matrix
multiplication.

Proof Recall that for A =
[

a b
c d

]
and B =

[
e f
g h

]
in M2(R), addition and multiplication

are defined by

A + B =
[

a + e b + f
c + g d + h

]
and AB =

[
ae + bg a f + bh
ce + dg c f + dh

]
.

An additive identity for M2(R) is the zero matrix Z =
[

0 0
0 0

]
and an additive inverse

for the matrix A given above is the matrix −A =
[−a −b

−c −d

]
. The verification of prop-

erties R1, R2, R5 and R6 depends only on the properties of the ring R.

Not only is M2(R) a ring under matrix addition and matrix multiplication, so too is
Mn(R) for each integer n ≥ 2.

Result 16.4 The set FR = { f : f : R → R} of real-valued functions with domain R is a ring under
function addition and function multiplication.

Proof Recall that for f , g ∈ FR, addition and multiplication are defined by

( f + g)(x) = f (x) + g(x) and ( f · g)(x) = f (x) · g(x)

for all x ∈ R. The proofs of properties R1, R2, R5 and R6 depend only on properties of
the ring R. For example, property R1 follows because

( f + g)(x) = f (x) + g(x) = g(x) + f (x) = (g + f )(x)

for all x ∈ R and so f + g = g + f , while property R5 follows because

(( f · g) · h)(x) = ( f · g)(x) · h(x) = ( f (x) · g(x)) · h(x)

= f (x) · (g(x) · h(x)) = f (x) · (g · h)(x) = ( f · (g · h))(x)

for all x ∈ R and so ( f · g) · h = f · (g · h).
The zero function f0 : R → R defined by f0(x) = 0 for all x ∈ R is an additive

identity since for each f ∈ FR and all x ∈ R,

( f + f0)(x) = f (x) + f0(x) = f (x) + 0 = f (x)

and so f + f0 = f .
For f ∈ FR, the function − f ∈ FR defined by (− f )(x) = − ( f (x)) for all x ∈ R is

an additive inverse for f since for all x ∈ R,

( f + (− f ))(x) = f (x) + (− f )(x) = f (x) + (− f (x)) = 0 = f0(x)

and so f + (− f ) = f0.

A less common, though useful, example of a ring is given next.
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Result 16.5 The set R × R = R2 is a ring under the addition (a, b) + (c, d) = (a + c, b + d) and
multiplication (a, b) · (c, d) = (ac, bd).

Before proving this result, it is important to know that we are defining a new sum
(a, b) + (c, d) in terms of the familiar sums a + c and b + c of two real numbers. Hence,
+ has two different meanings here. A similar distinction exists between the product in
R2 and the standard product of real numbers.

Proof of
Result 16.5

Certainly the addition and multiplication defined here are binary operations on R2. That
R2 satisfies property R1 follows because addition in R is commutative. Let (a, b), (c, d) ∈
R2. Then

(a, b) + (c, d) = (a + c, b + d) = (c + a, d + b) = (c, d) + (a, b).

Let (a, b) ∈ R2. Observe that (0, 0) ∈ R2 and that

(a, b) + (0, 0) = (a + 0, b + 0) = (a, b).

Thus, (0, 0) is an additive identity in R2. Moreover, (−a,−b) ∈ R2 and

(a, b) + (−a,−b) = (a + (−a), b + (−b)) = (0, 0).

Hence (−a,−b) is an additive inverse of (a, b) and properties R3 and R4 hold.
We only verify one of the distributive laws R6 for a ring as the argument for the

remaining law is similar. Again, let (a, b), (c, d), (e, f ) ∈ R2. Applying the distributive
law for addition and multiplication in R, we have

(a, b)[(c, d) + (e, f )] = (a, b)(c + e, d + f ) = (a(c + e), b(d + f ))

= (ac + ae, bd + b f ) = (ac, bd) + (ae, b f )

= (a, b)(c, d) + (a, b)(e, f ),

establishing this distributive law in R2.
The associative properties R2 and R5 can be established in R2 in a similar manner.

Next we show that familiar sets, under unfamiliar binary operations, need not be
rings.

Example 16.6 For a, b ∈ R, define addition
⊕

and multiplication
⊙

by

a
⊕

b = a + b − 1 and a
⊙

b = ab,

where the operations indicated in a + b − 1 and ab are ordinary addition, subtraction
and multiplication. Then (R,

⊕
,
⊙

) is not a ring.

Solution It was shown in Example 15.4 that the binary operation
⊕

satisfies properties R1–R4,
that is, (R,

⊕
) is an abelian group. Because

⊙
is ordinary multiplication, property R5

holds as well. However, property R6 is not satisfied since for a = b = c = 0,

a
⊙

(b
⊕

c) = 0
⊙

(−1) = 0 and (a
⊙

b)
⊕

(a
⊙

c) = 0
⊕

0 = −1.

Thus, 0
⊙

(0
⊕

0) �= (0
⊙

0)
⊕

(0
⊙

0). Therefore, (R,
⊕

,
⊙

) is not a ring. �
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6 Chapter 16 Proofs in Ring Theory

Let’s see what happens when ordinary addition and multiplication of real numbers
are reversed.

Example 16.7 The set R of real numbers is not a ring when addition ∗ is defined as ordinary multipli-
cation and multiplication ◦ is defined as ordinary addition.

Solution We denote ordinary addition of real numbers by + and ordinary multiplication by ·
(though we write a · b as ab, as usual). We show that a distributive law fails in (R, ∗, ◦).
Let a = b = c = −1. Then

a ◦ (b ∗ c) = a + (bc) = (−1) + (−1)(−1) = (−1) + 1 = 0,

while

(a ◦ b) ∗ (a ◦ c) = (a + b)(a + c) = [(−1) + (−1)][(−1) + (−1)] = (−2)(−2) = 4.

Hence, (−1) ◦ ((−1) ∗ (−1)) �= ((−1) ◦ (−1)) ∗ ((−1) ◦ (−1)) and so property R6 is
not satisfied. Therefore, (R, ∗, ◦) is not a ring. �

Some rings satisfy properties beyond the six properties required of all rings. We have
already mentioned that the integers satisfy the familiar property: ab = ba for all a, b ∈ Z.
This, of course, is the commutative law of multiplication. Rings are not required to have
this property. However, when they do, we give these rings a special name. A ring (R,+, ·)
is called a commutative ring if it satisfies

R7 Commutative Law of Multiplication: ab = ba for all a, b ∈ R.

A ring (R,+, ·) that does not satisfy the Commutative Law of Multiplication is called
a noncommutative ring. While the rings Z, Q, R, C, 2Z, Zn,FR and R2 are commuta-
tive, the ring M2(R) is noncommutative. For example, if we let

A =
[

0 0
2 0

]
and B =

[
0 2
0 0

]
,

then

AB =
[

0 0
0 4

]
�=

[
4 0
0 0

]
= BA.

Another property that Z possesses, which is basic, yet important, is that it contains
an integer e with the property that a · e = e · a = a for every integer a. Of course, 1 has
this property in Z. In general, a ring (R,+, ·) is called a ring with unity (or a ring with
multiplicative identity) if it satisfies

R8 Existence of Multiplicative Identity: There exists an element 1 ∈ R such that
a · 1 = 1 · a = a for all a ∈ R.

If (R,+, ·) has an element 1 satisfying property R8, then 1 is called a unity for R. Again,
we stress that much care is needed here. When we write 1, we mean only an element
of R that satisfies property R8, namely, a · 1 = 1 · a = a for all a ∈ R. It does not imply
that 1 is the integer 1. Indeed, R itself could be a ring with unity that contains no integers
whatsoever. Also, if R is a commutative ring, then to show that some element 1 ∈ R is a
unity requires only to show that a · 1 = a for all a ∈ R since a · 1 = 1 · a for all a ∈ R.
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The rings Z, Q, R, C, Zn,FR and R2 are rings with unity. The number 1 is a unity
for Z, Q and R and 1 = 1 + 0i is a unity for C. The element [1] is a unity for Zn, while
the constant function f1 : R → R defined by f1(x) = 1 for all x ∈ R is a unity for FR.
Furthermore, the ordered pair (1, 1) is a unity for R2. The noncommutative ring M2(R)
has a unity as well. Indeed, the 2 × 2 identity matrix

I =
[

1 0
0 1

]

is a unity for M2(R) since[
a b
c d

] [
1 0
0 1

]
=

[
1 0
0 1

] [
a b
c d

]
=

[
a b
c d

]

for all a, b, c, d ∈ R. On the other hand, not all rings have a unity. In particular, the ring
2Z of even integers does not have a unity since the only integer e such that e · a = a for
every integer a is e = 1 but 1 /∈ 2Z.

16.2 ELEMENTARY PROPERTIES OF RINGS

Despite the fact that there are many different examples of rings of various types, there
are properties that all rings have in common. Necessarily, of course, any such properties
are consequences of the six defining properties of a ring. We now present some prop-
erties that all rings share, beginning with the uniqueness of certain types of elements in
rings.

The definition of a ring R guarantees that it contains an additive identity, that is, an
element 0 such that a + 0 = a for all a ∈ R. Although the definition does not specify that
there is only one such element, there is, in fact, only one. Also, the definition of R states
that for each a ∈ R, there is an element −a ∈ R such that a + (−a) = 0. Again, there is
no indication that each element of R has only one additive inverse, but, in fact, this is the
case. Actually, these are consequences of the fact that R is a group under addition (see
Theorem 15.9), but we verify these facts here.

Theorem 16.8 Let R be a ring. Then

(i) R has a unique additive identity, and
(ii) each element in R has a unique additive inverse.

Proof We first verify (i). Suppose that both 0 and 0′ are additive identities for R. Since 0 is an
additive identity, 0′ + 0 = 0′. Also, since 0′ is an additive identity, 0 + 0′ = 0. It then
follows by the commutative law that 0′ = 0′ + 0 = 0 + 0′ = 0 and so 0′ = 0. Therefore,
there is only one additive identity in R and (i) holds.

We now verify (ii). Suppose that −x and x′ are both additive inverses for the element
x ∈ R. Then x + (−x) = 0 and x + x′ = 0. Hence,

−x = −x + 0 = −x + (x + x′) = (−x + x) + x′ = (x + (−x)) + x′ = 0 + x′ = x′.

So, each element in R has a unique additive inverse.
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8 Chapter 16 Proofs in Ring Theory

PROOF ANALYSIS Let’s revisit the proof of the uniqueness of additive inverses in Theorem 16.8 to see
how this proof may have been constructed. We know that x + (−x) = 0 and x + x′ = 0.
Since x + (−x) = 0 = x + x′, it follows, by adding −x to the equal elements x + (−x)
and x + x′, that

−x + (x + (−x)) = −x + (x + x′). (16.2)

The left side of (16.2) is −x + 0 = −x. Our goal was to show that −x = x′, so this
suggests starting with −x = −x + 0 = −x + (x + x′). The remainder of the proof then
follows quite naturally. The resulting proof given in Theorem 16.8 is certainly much
clearer than giving a list of equalities, with no accompanying explanations:

x + (−x) = x + x′

−x + (x + (−x)) = −x + (x + x′)

(−x + x) + (−x) = (−x + x) + x′

0 + (−x) = 0 + x′

−x = x′. �

In view of Theorem 16.8, we can now refer to the additive identity of a ring and the
additive inverse of an element in a ring. The additive identity of a ring R is called the
zero element of R.

Not only are the additive identity and the additive inverse of every element in a ring
R unique, but if R has a unity, then this element is unique as well.

Theorem 16.9 If R is a ring with unity, then R has a unique unity.

Proof Let 1 and 1′ be unities in R. Since 1 is a unity, 1 · 1′ = 1′ · 1 = 1′; while since 1′ is a
unity, 1 · 1′ = 1′ · 1 = 1. Therefore, 1 = 1 · 1′ = 1′.

A basic fact concerning rings allows us to simplify certain algebraic expressions.
Although the next theorem is a consequence of the fact that R is an abelian group under
addition (see Theorem 15.7), we provide a proof of this theorem.

Theorem 16.10 (Cancellation Law of Addition) If a, b and c are elements in a ring (R,+, ·) such
that a + b = a + c, then b = c.

Proof Observe that

b = 0 + b = [(−a) + a] + b = (−a) + (a + b)

= (−a) + (a + c) = [(−a) + a] + c = 0 + c = c.

Therefore, the Cancellation Law of Addition holds in (R,+, ·).

PROOF ANALYSIS Another version of the preceding proof begins with a + b = a + c (that is, a + b and
a + c represent the same element in R). If the additive inverse −a of a is now added to
this element, we obtain

−a + (a + b) = −a + (a + c).
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By the associative law,

(−a + a) + b = (−a + a) + c;
so 0 + b = 0 + c and thus b = c. �

We have seen that the zero element 0 in a ring R has the property that 0 + 0 = 0.
Hence, R contains an element c such that c + c = c, namely, c = 0. However, as an
immediate consequence of the Cancellation Law of Addition, no other element of R has
this property.

Corollary 16.11 Let (R,+, ·) be a ring. If c is an element of R such that c + c = c, then c = 0.

Proof Since c + c = c, we also have c + c = c + 0. Now, canceling c, it follows by Theo-
rem 16.10 that c = 0.

Although the defining property of the zero element of a ring (R,+, ·) concerns only
one of the two operations, namely addition, it has a property involving multiplication
that is probably expected.

Theorem 16.12 For every element a in a ring (R,+, ·),
a · 0 = 0 · a = 0.

Proof Since the proofs that a · 0 = 0 and 0 · a = 0 are similar, we only verify the first of these.
Observe that

a · 0 = a · (0 + 0) = a · 0 + a · 0.

The result now follows from Corollary 16.11 (where c = a · 0).

We now turn our attention to properties of rings involving additive inverses. At
times, a very simple argument for some fact can be given by recognizing that −a rep-
resents the unique element which when added to a results in 0. Two examples of this
appear in the following theorem.

Theorem 16.13 Let (R,+, ·) be a ring and let a, b ∈ R. Then

(i) −(−a) = a
(ii) if a = −b, then b = −a.

Proof Since a + (−a) = 0, it follows that a is the additive inverse of −a, that is, a = −(−a).
This verifies (i).

To establish (ii), let a = −b. Hence, a is the additive inverse of b and so a + b = 0.
This, however, implies that b is the additive inverse of a and so b = −a.

We now consider some results concerning the product of two elements in a ring, at
least one of which is an additive inverse. Since the additive inverse is an element that
is defined only in terms of addition, it would seem natural that any property concerning
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such an element that involves multiplication must be a consequence of the distributive
laws. (This is exactly what occurred in Theorem 16.12.)

Theorem 16.14 Let (R,+, ·) be a ring and let a, b ∈ R. Then

(−a)b = a(−b) = −(ab).

Proof To show that (−a)b = −(ab), it suffices to verify that (−a)b is the additive inverse of
ab. This can be accomplished by showing that ab + (−a)b = 0. Observe that

ab + (−a)b = [a + (−a)]b = 0 · b = 0.

A proof that a(−b) = −(ab) is similar.

Corollary 16.15 Let (R,+, ·) be a ring and let a, b ∈ R. Then

(−a)(−b) = ab.

Proof By Theorem 16.14, (−a)(−b) = a[−(−b)], and by Theorem 16.13, −(−b) = b. Thus,
(−a)(−b) = ab.

In the ring Z of integers, we know that if a, b ∈ Z, then a + (−b) = a − b. We
follow this convention in an arbitrary ring. If (R,+, ·) is a ring and a, b ∈ R, then we
define the subtraction of b from a as a − b = a + (−b). In particular, if a = b in R,
then we arrive at the seemingly obvious fact that a − b = b − b = b + (−b) = 0.

The next result gives a basic fact concerning subtraction.

Result 16.16 Let (R,+, ·) be a ring and let a, b, c ∈ R. Then a(b − c) = ab − ac.

Proof Observe that a(b − c) = a[b + (−c)] = ab + a(−c). By Theorem 16.14, a(−c) =
−(ac), so a(b − c) = ab + [−(ac)] = ab − ac.

16.3 SUBRINGS

We have seen that the subset 2Z of Z is a ring when the operations of addition and
multiplication used in 2Z are the same as those of Z. Since Z is already a ring, we
found that it was relatively easy to prove that 2Z is a ring. We saw that 2Z inherits the
properties R1, R2, R5 and R6 of a ring from Z. What we didn’t know automatically, and
therefore had to verify, was that 2Z is closed under addition and multiplication, that the
zero element of Z is also in 2Z and that each element of 2Z has an additive inverse in
2Z. In general, then, it is much easier to prove that a subset S of a known ring R is a
ring under the same operations defined on R. This observation leads us to an important
concept in the study of rings.

Let R be a ring. If S is a subset of R such that S is a ring under the same operations
defined on R, then S is called a subring of R. If R contains at least two elements, then R
contains at least two subrings, namely R itself and the “zero subring” {0}. We now state
exactly what properties need to be verified to show that a subset of a known ring R is a
subring of R.
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Theorem 16.17 (The Subring Test) A nonempty subset S of a ring R is a subring of R if and only if S is
closed under subtraction and multiplication.

Proof If S is a subring of R, then certainly S is closed under subtraction and multiplication. For
the converse, let R be a ring and S a nonempty subset of R that is closed under subtraction
and multiplication. We show that S itself is a ring. Since S �= ∅, there is some element
s ∈ S. Because S is closed under subtraction, s − s = 0 ∈ S, that is, the zero element
of R belongs to S and so property R3 holds. Now let a ∈ S. Again, since S is closed
under subtraction, 0 − a = 0 + (−a) = −a ∈ S and so property R4 holds. This implies
that the additive inverse of an element of S also belongs to S. For a, b ∈ S, we know that
−b ∈ S and so a − (−b) = a + [−(−b)] = a + b ∈ S. Hence, S is closed under addition
as well.

Now it remains to show that addition is commutative, that addition and multiplica-
tion are associative and that distributive laws hold, namely, properties R1, R2, R5 and
R6 hold in S. But all these properties are inherited from R and so hold in S as well.

Consequently, to show that a subset S of a ring R is a subring, we need only show
that S is nonempty and that S is closed under subtraction and multiplication. We now
illustrate how the Subring Test is used by presenting several examples, beginning with
a new proof that 2Z is a ring under ordinary addition and multiplication.

Result 16.18 The subset 2Z of even integers is a subring of Z.

Proof Since 0 is an even integer, 2Z is nonempty. Let a, b ∈ 2Z. Then a = 2x and b = 2y,
where x, y ∈ Z. Observe that a − b = 2x − 2y = 2(x − y) and ab = (2x)(2y) = 2(2xy).
Since x − y and 2xy are integers, a − b and ab belong to 2Z. By the Subring Test, 2Z is
a subring of Z.

Result 16.19 The subset R × {0} = {(x, 0) : x ∈ R} of the ring R × R is a subring of R × R.

Proof Since (0, 0) ∈ R × {0}, the set R × {0} is nonempty. Let a, b ∈ R × {0}. Then a = (x, 0)
and b = (y, 0) for some x, y ∈ R. Thus, a − b = (x, 0) − (y, 0) = (x − y, 0 − 0) =
(x − y, 0) ∈ R × {0} and a · b = (x, 0) · (y, 0) = (xy, 0) ∈ R × {0}. By the Subring Test,
R × {0} is a subring of R × R.

The next example concerns a subring of the ring of complex numbers. A complex
number of the form a + bi, where a, b ∈ Z and i = √−1, is called a Gaussian integer.

Result 16.20 The set G = {a + bi : a, b ∈ Z} of Gaussian integers is a subring of the ring C of com-
plex numbers.

Proof Since 0 = 0 + 0i ∈ G, the set G is nonempty. Let x, y ∈ G. Then x = a + bi and
y = c + di, where a, b, c, d ∈ Z. Observe that

x − y = (a + bi) − (c + di) = (a − c) + (b − d)i
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12 Chapter 16 Proofs in Ring Theory

and

xy = (a + bi)(c + di) = (ac − bd) + (ad + bc)i.

Since a − c, b − d, ac − bd and ad + bc are integers, x − y and xy are Gaussian integers.
By the Subring Test, G is a subring of C.

The elements that belong to two subrings of a ring R also produce a subring of R.

Result 16.21 If S1 and S2 are subrings of a ring R, then S1 ∩ S2 is also a subring of R.

Proof Since 0 ∈ S1 and 0 ∈ S2, it follows that 0 ∈ S1 ∩ S2 and so S1 ∩ S2 is nonempty. Let
a, b ∈ S1 ∩ S2. Then a, b ∈ Si for i = 1, 2. Since S1 and S2 are subrings of R, it fol-
lows that a − b ∈ Si and ab ∈ Si for i = 1, 2. Hence, a − b ∈ S1 ∩ S2 and ab ∈ S1 ∩ S2.
Therefore, by the Subring Test, S1 ∩ S2 is a subring of R.

16.4 INTEGRAL DOMAINS

Properties possessed by the integers have led us to the concept of a ring as well as two
special kinds of rings, namely commutative rings and rings with unity. We have seen
that if R is a ring, then a · 0 = 0 · a = 0 for every a ∈ R. This property can be stated in
another way:

Let a, b ∈ R. If a = 0 or b = 0, then a · b = 0. (16.3)

Of course, the converse of (16.3) also holds in the ring Z:

Let a, b ∈ Z. If a · b = 0, then a = 0 or b = 0. (16.4)

The implication (16.4) also holds in the ring of real numbers. Indeed, (16.4) is the
critical property of real numbers needed for solving many equations. For example, if
(x − 3)(x + 2) = 0, where x ∈ R, then x = 3 or x = −2. This leads us to another im-
portant concept.

A nonzero element a in a ring R is called a zero divisor of R if there exists a nonzero
element b in R such that either ab = 0 or ba = 0. Of course, in this case, b is a zero divisor
of R as well.

Certainly then, the rings Z and R have no zero divisors. Furthermore, 2Z, Q and C
are also rings possessing no zero divisors. There are, however, some well-known rings
that do have zero divisors. In Z6, we have seen that [2][3] = [6] = [0]. Since [2] �= [0]
and [3] �= [0], it follows that [2] and [3] are zero divisors in Z6. The element [4] is also
a zero divisor in Z6 since [4][3] = [0].

For the sets Q and I of rational and irrational numbers, respectively, consider the
functions f and g in FR defined as:

f (x) =
{

1 if x ∈ Q
0 if x ∈ I g(x) =

{
0 if x ∈ Q
1 if x ∈ I

Then ( f · g)(x) = f (x) · g(x) = 0 = f0(x) for all x ∈ R. Hence, f · g = f0, the zero ele-
ment of FR, but f �= f0 and g �= f0. So, f and g are zero divisors in FR.
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In M2(R), let

A =
[

0 1
0 1

]
and B =

[
1 1
0 0

]
.

Then

AB =
[

0 0
0 0

]
while BA =

[
0 2
0 0

]
.

Hence, A and B are zero divisors in the noncommutative ring M2(R).
From what we have seen, it is not all that uncommon for a ring R to contain

nonzero elements whose product is the zero element of R. Thus, it is useful to distin-
guish those rings that contain zero divisors from those that do not. Before proceeding
further though, we need to address one special kind of ring. A ring R is called trivial
if it contains only one element – necessarily, then, the zero element. That is, R is trivial
if R = {0}. If R is nontrivial, then it contains at least two elements and consequently at
least one nonzero element. If R is a trivial ring, then certainly a · 0 = 0 · a = a for all
a ∈ R since a = 0 is the only element of R. Therefore, if R is trivial, then it contains a
unity (namely 0). Obviously, a trivial ring is commutative as well. On the other hand, if
R is a nontrivial ring with unity, then it cannot occur that the unity and zero elements are
the same.

Theorem 16.22 If R is a nontrivial ring with unity 1, then 1 �= 0.

Proof Assume, to the contrary, that 1 = 0. Since R is a nontrivial ring, there is an element a ∈ R
such that a �= 0. However, then

a = a · 1 = a · 0 = 0,

which is a contradiction.

A nontrivial commutative ring with unity that contains no zero divisors is called an
integral domain. Therefore, all of the rings Z, Q, R and C are integral domains.

Not all commutative rings with unity are integral domains, however. For example,
we saw that [2] and [3] are zero divisors in Z6. We also saw that FR possesses zero
divisors. Moreover, since (0, 1) · (1, 0) = (0, 0) in R2, it follows that (0, 1) and (1, 0)
are zero divisors in R2. Therefore, although each of Z6, FR and R2 is a commutative
ring with unity, none is an integral domain.

Since an integral domain is required to be a commutative ring with unity, 2Z is
not an integral domain despite the fact that it is both commutative and contains no zero
divisors, as it does not contain a unity.

We have seen that every ring satisfies the Cancellation Law of Addition. For mul-
tiplication, the situation can be quite different. There are two possible cancellation laws
in this case.

Cancellation
Laws of

Multiplication

Let R be a ring and let a, b, c ∈ R.

(1) If ab = ac, where a �= 0, then b = c.

(2) If ac = bc, where c �= 0, then a = b.
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14 Chapter 16 Proofs in Ring Theory

Of course, if R is a commutative ring, then (1) and (2) say the same thing. In a
noncommutative ring, (1) is referred to as the Left Cancellation Law of Multiplica-
tion and (2) as the Right Cancellation Law of Multiplication. In the ring Z6, [3] · [2] =
[3] · [4] but [2] �= [4]. So, the Cancellation Laws of Multiplication fail to hold in Z6.
The Cancellation Laws of Multiplication never fail to hold in rings without zero divisors,
however.

Theorem 16.23 Let R be a ring. Then the Cancellation Laws of Multiplication hold in R if and only if R
contains no zero divisors.

Proof Assume first that R is a ring without zero divisors. We only verify the Left Cancella-
tion Law (1) since the proof of (2) is similar. Let a, b, c ∈ R, where a �= 0 and ab = ac.
Since ab = ac, it follows that ab + (−(ac)) = ac + (−(ac)) and so ab − ac = 0. Thus,
a(b − c) = 0. Since R contains no zero divisors and a �= 0, it follows that b − c = 0 and
so b = c.

For the converse, assume that R is a ring in which the Cancellation Laws of Multipli-
cation hold. We show that R contains no zero divisors. Let a, b ∈ R such that ab = 0. We
show that a = 0 or b = 0. If a = 0, then we have the desired result. So, we may assume
that a �= 0. Hence, a · b = 0 = a · 0 and so a · b = a · 0. By the (Left) Cancellation Law
of Multiplication, the element a can be canceled in a · b = a · 0, arriving at b = 0. Thus,
R has no zero divisors.

Since a ring R satisfying the Cancellation Laws of Multiplication is equivalent to R
containing no zero divisors, we have an immediate consequence of Theorem 16.23.

Corollary 16.24 Let R be a nontrivial commutative ring with unity. Then R is an integral domain if and
only if the Cancellation Law of Multiplication holds in R.

While Z6 is not an integral domain, it is not difficult to show that Z5 is. This can be
seen by constructing the multiplication table for Z5 in the same manner as was done for
Z6 in Figure 9.2 of Chapter 9. Consequently, some rings Zn are integral domains while
others are not. You might have seen a difference between Z6 and Z5 already, namely, 5
is prime and 6 is not. We are about to see that this is the key observation. In the proof
of the next theorem, we will use the fact that if a and b are integers and p is a prime
such that p | ab, then p | a or p | b. (This theorem is discussed in detail in Chapter 12.
In particular, see Corollary 12.14.)

Theorem 16.25 For an integer n ≥ 2, the ring Zn is an integral domain if and only if n is a prime.

Proof First, we show that if Zn is an integral domain, then n is a prime. Assume, to the contrary,
that there exists an integral domain Zn such that n is not a prime. Then n = ab for some
integers a and b with 1 < a < n and 1 < b < n. Thus, [a] �= [0] and [b] �= [0] in Zn. On
the other hand, [a][b] = [ab] = [n] = [0] in Zn. Hence, [a] and [b] are zero divisors in
Zn, contradicting our assumption that Zn is an integral domain.

For the converse, assume that n is a prime. We show that Zn is an integral do-
main. Certainly, Zn is a nontrivial commutative ring with unity. So, it remains only
to show that Zn has no zero divisors. Let [a], [b] ∈ Zn such that [a] · [b] = [0]. Then
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[a] · [b] = [ab] = [0], which implies that ab ≡ 0 (mod n). Therefore, n | ab. Since n is
a prime, it follows by Corollary 12.14 that n | a or n | b; so [a] = [0] or [b] = [0]. Thus,
Zn contains no zero divisors.

16.5 FIELDS

Initially, we saw that many fundamental properties of integers are shared by other
algebraic structures. This led us to the concept of rings. Among the many rings we
encountered are Z, 2Z, Q, R, C, Zn, FR and M2(R). However, only some of these are
commutative rings with unity, namely, Z,Q, R, C, Zn and FR; and only some of these
are integral domains, namely, Z,Q, R, C and Zp, where p is a prime. There is a property
that Q, R, C and Zp possess that Z does not, however, which will finally allow us to
distinguish Z from these rings.

Let a be a nonzero integer. Unless a is 1 or −1, there is no integer b such that
ab = 1. On the other hand, if a is a nonzero rational number, then there is always a
rational number b such that ab = 1. Indeed, b = 1/a ∈ Q has this property.

This discussion leads us to another concept. Let R be a ring with unity 1. A nonzero
element a of R is called a unit if there is some element b in R such that ab = ba = 1.
In this case, b is called a multiplicative inverse of a. (Of course, b is also a unit with
multiplicative inverse a.) We must take care to distinguish between the terms “unit” and
“unity” in a ring R. A unity in R is an element 1 ∈ R such a · 1 = 1 · a = a for all a ∈ R.
On the other hand, if R is a nontrivial ring with unity 1, then a nonzero element a ∈ R
is a unit if a · b = b · a = 1 for some b ∈ R. The unity 1 is always a unit since 1 · 1 = 1.
As with additive inverses, multiplicative inverses in a ring are unique.

Theorem 16.26 Let R be a nontrivial ring with unity. Then each unit in R has a unique multiplicative
inverse.

Proof Let a be a unit in R and suppose that b and c are multiplicative inverses of a. Hence,
ab = ba = 1 and ac = ca = 1. It then follows that

b = b · 1 = b(ac) = (ba)c = 1 · c = c.

Therefore, a has a unique multiplicative inverse.

For a unit a in a nontrivial ring with unity, we write a−1 for the (unique) multiplica-
tive inverse of a. The only units in Z are 1 and −1 since these are the only integers a
for which there is an integer b such that ab = 1. In Q and R, however, all nonzero ele-
ments are units. In Z6, [5] · [5] = [25] = [1], so both [1] and [5] are units. Furthermore,
there are no other units in Z6, as can be seen from the multiplication table (Figure 9.2 in
Chapter 9).

A nontrivial commutative ring with unity in which every nonzero element is a unit
is called a field. In addition to Q and R, the ring C of complex numbers is a field.

Result 16.27 The ring C of complex numbers is a field.
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Proof We have already noted that C is a commutative ring with unity, so we are only required
to show that every nonzero complex number is a unit. Let x be a nonzero complex num-
ber. Hence, x = a + bi, where a, b ∈ R and either a �= 0 or b �= 0. Thus, a2 + b2 �= 0.
We show that there exists a complex number y = c + di, where c, d ∈ R, such that

xy = 1 = 1 + 0i. Let c = a
a2 + b2

and d = −b
a2 + b2

and observe that

xy = (a + bi)(c + di) = (a + bi)
(

a
a2 + b2

+ −b
a2 + b2

i
)

= 1
a2 + b2

(a + bi)(a − bi) = 1
a2 + b2

(
a2 − b2i2

)

= a2 + b2

a2 + b2
= 1 = 1 + 0i.

Hence, x has a multiplicative inverse, namely, x−1 = a
a2 + b2

+ −b
a2 + b2

i.

PROOF ANALYSIS In the proof of the preceding result, for the nonzero complex number x = a + bi, how
did we know to choose y = c + di so that xy = 1 = 1 + 0i? That is, how did we know
what the multiplicative inverse of x was? Actually, that was not so difficult.

Since xy = (a + bi)(c + di) = 1 + 0i, it follows that (ac − bd) + (ad + bc)i =
1 + 0i. Hence,

ac − bd = 1 (16.5)

and

ad + bc = 0. (16.6)

Multiplying equation (16.5) by a, equation (16.6) by b and adding, we obtain

(a2 + b2)c = a; (16.7)

while multiplying equation (16.5) by −b, equation (16.6) by a and adding, we obtain

(a2 + b2)d = −b. (16.8)

Solving (16.7) for c and (16.8) for d, we find that

c = a
a2 + b2

and d = −b
a2 + b2

.

Hence, a
a2+b2 + −b

a2+b2 i is the logical choice for x−1. That c + di is actually x−1 was, of
course, verified in the proof of Result 16.27. �

Fields are actually special kinds of integral domains, as we now show.

Theorem 16.28 Every field is an integral domain.

Proof Let F be a field. To verify that F is also an integral domain, we need only show that
F contains no zero divisors. Let a be a nonzero element of F and let b ∈ F such that
ab = 0. Then 0 = a−1 · 0 = a−1(ab) = (

a−1a
)

b = 1b = b. Since b = 0, it follows that
a is not a zero divisor.
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Certainly, the converse of Theorem 16.28 is not true since Z is an integral domain
that is not a field. However, under a certain restriction, an integral domain is a field as
well.

Theorem 16.29 Every finite integral domain is a field.

Proof Let D be a finite integral domain, say D = {a1, a2, · · · , an}. To show that D is a field, we
need only show that every nonzero element of D has a multiplicative inverse. Let a ∈ D,
where a �= 0, and consider the elements aa1, aa2, · · · , aan. If aai = aa j, where 1 ≤ i ≤ n
and 1 ≤ j ≤ n, then ai = a j by the Cancellation Law of Multiplication. This implies
that the elements aa1, aa2, · · · , aan are distinct and are, in fact, all n elements of D.
Thus, one of these elements is 1 and so aak = 1 for some integer k with 1 ≤ k ≤ n.
Hence, ak = a−1 and a has a multiplicative inverse.

We have seen in Theorem 16.25 that Zn is an integral domain if and only if n is a
prime. Theorem 16.29 now gives us the following result.

Corollary 16.30 The ring Zn is a field if and only if n is prime.

EXERCISES FOR CHAPTER 16

16.1 Verify that each of the following is a ring by showing that (1) the indicated addition and multiplication are
binary operations and (2) the required six properties are satisfied. (You may assume that both Z and R are
rings under ordinary addition and multiplication.)

(a) The set kZ, where k ∈ Z and k ≥ 2, under ordinary addition and multiplication.
(b) The set Z[

√
2] = {a + b

√
2 : a, b ∈ Z} under ordinary addition and multiplication.

16.2 Verify that each of the following is not a ring.

(a) The set FR under function addition and function composition.
(b) The set Z under the addition defined by a ∗ b = a and ordinary multiplication.
(c) The set Z under ordinary addition and the multiplication defined by a ∗ b = a.
(d) The set Z under the addition defined by a ∗ b = min{a, b} and ordinary multiplication.
(e) The set Z under ordinary addition and the multiplication defined by a ∗ b = min{a, b}.

16.3 For a given set S and binary operations ∗ and ◦, determine whether (S, ∗, ◦) is a ring.

(a) S = R, a ∗ b = a + b + 1, a ◦ b = ab.
(b) S = R+, the set of positive real numbers, a ∗ b = ab and a ◦ b = ab.

16.4 Let a be an element in a ring (R,+, ·). Complete the proof of Theorem 16.12 by proving that 0 · a = 0.

16.5 Let a and b be elements in a ring (R,+, ·). Complete the proof of Theorem 16.14 by proving that
a(−b) = −(ab).

16.6 Let R be a ring with unity 1. Use Theorem 16.14 to prove that (−1)a = −a for all a ∈ R.

16.7 Let (R,+, ·) be a ring with the property that a2 = a · a = a for every a ∈ R.

(a) Prove that every element in R is its own additive inverse, that is, prove that −a = a for every a ∈ R.
[Hint: Consider (a + a)2.]

(b) Prove that R is a commutative ring. [Hint: Consider (a + b)2.]
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16.8 Does there exist an example of a nontrivial ring (R,+, ·) such that addition and multiplication in R are the
same, namely, a + b = ab for all a, b ∈ R? Justify your answer.

16.9 Verify that each of the following subsets is a subring of the given ring.

(a) S =
{[

a 0
0 b

]
: a, b ∈ R

}
in the ring M2(R).

(b) S = {a + b 3
√

2 + c 3
√

4 : a, b, c ∈ Q} in the ring R.

16.10 Prove that the subset S = {[0], [2], [4]} is a subring of Z6.

16.11 Recall that a Gaussian integer is a complex number of the type a + bi, where a, b ∈ Z and i = √−1, and
that the set G of Gaussian integers is a subring of the ring C of complex numbers. Define an even Gaussian
integer to be a complex number of the type a + bi, where a, b ∈ 2Z. Is the set 2G of even Gaussian integers
a subring of G? Justify your answer.

16.12 By Result 16.21, if S1 and S2 are subrings of a ring R, then S1 ∩ S2 is a subring of R. Both 2Z and 3Z are
subrings of the ring Z. Give a simple description of the subring 2Z ∩ 3Z in Z. Justify your answer.

16.13 Let S =
{[

a b
0 0

]
: a, b ∈ R

}
.

(a) Prove that S is a subring of M2(R).
(b) Prove that there is an element E ∈ S such that EA = A for all A ∈ S, but there is an element C ∈ S

such that CE �= C.
(c) Prove that S does not possess a unity.

16.14 Use Theorem 16.23 to prove Corollary 16.24.

16.15 Define multiplication ◦ on 2Z by a ◦ b = ab/2. Prove that (2Z,+, ◦) is an integral domain, where + is
ordinary addition.

16.16 Let R be a commutative ring with unity.

(a) Prove that a unit of R is not a zero divisor in R.
(b) Determine whether the converse of (a) is true.
(c) Prove that if R is a finite ring and a is not a zero divisor of R, then a has a multiplicative inverse in R.

16.17 Define addition ∗ and multiplication ◦ on Z as follows:

a ∗ b = a + b − 1 and a ◦ b = a + b + ab.

Prove or disprove: The algebraic structure (Z, ∗, ◦) is a ring.

16.18 Show that Z[
√

2] = {a + b
√

2 : a, b ∈ Z} is not a field.

16.19 Give an example of a ring that is not a field but has a subring that is a field.

16.20 Let R be a nontrivial commutative ring with unity. Prove that R is a field if and only if for every a, b ∈ R
with a �= 0, the equation ax = b has a solution x ∈ R.

16.21 Prove that Q[i] = {a + bi : a, b ∈ Q} is a field.

16.22 Let (F,+, ·) be a field and let a, b ∈ F with a �= 0. Show that the equation a · x = b has a unique solution
x ∈ F .

16.23 Give examples of the following (if they exist):

(a) a finite ring
(b) an infinite ring
(c) a noncommutative finite ring
(d) a noncommutative infinite ring
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(e) a ring with unity
(f) a ring without unity
(g) a noncommutative ring with unity
(h) a noncommutative ring without unity
(i) a ring that is not an integral domain
(j) a finite integral domain
(k) an infinite integral domain
(�) an integral domain that is not a field
(m) a finite field
(n) an infinite field

16.24 For the following statement S and proposed proof, either (1) S is true and the proof is correct, (2) S is true
and the proof is incorrect or (3) S is false and the proof is incorrect. Explain which of these occurs.

S: Let A = {n ∈ N : n = 0}. Then A is a subring of (Z,+, ·).
Proof Let a, b ∈ S. Then a = 0 and b = 0. Since a − b = 0 − 0 = 0 ∈ A and a · b = 0 · 0 = 0 ∈ A, it
follows that A is closed under subtraction and multiplication. By the Subring Test, (A,+, ·) is a subring of
(Z,+, ·).

16.25 For the following statement S and proposed proof, either (1) S is true and the proof is correct, (2) S is true
and the proof is incorrect or (3) S is false and the proof is incorrect. Explain which of these occurs.

S: Let R be a ring with unity containing at least two elements and let

R′ = {a ∈ R : a − r is a unit for each r ∈ R}.
Then R′ is a subring of R.

Proof Let a, b ∈ R′. First, consider a − b and r ∈ R. Then (a − b) − r = a − (b + r). Since a ∈ R′ and
b + r ∈ R, it follows that (a − b) − r is a unit and so a − b ∈ R′. Next, consider ab and r′ ∈ R. Then
ab − r′ = a − (a − ab + r′). Since a ∈ R′ and a − ab + r′ ∈ R, it follows that ab − r′ is a unit. Thus,
ab ∈ R′. By the Subring Test, R′ is a subring of R.
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17
Proofs in Linear Algebra

Atopic you may very well have studied in geometry, calculus or physics is vec-
tors. You might recall vectors both in the plane R2 = R × R and in 3-space R3 =

R × R × R. Often one thinks of a vector as a directed line segment from the origin to
some other point. Examples of these (both in the plane and in 3-space) are shown in
Figure 17.1.

�. . . . . . . . . . . . . . . . . . . . . . . . . .
(4, 3)

4

y
z

x

3

(a)

3

4

(b)x

y

2

(2, 3, 4)

Figure 17.1 Vectors in the plane and 3-space

The vector u in the plane (it is customary to print vectors in bold) shown in
Figure 17.1(a) can be expressed as u = (4, 3), while the vector v in 3-space shown in
Figure 17.1(b) can be expressed as v = (2, 3, 4). The vectors i = (1, 0) and j = (0, 1)
in the plane and i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1) in 3-space will be of special
interest to us.

1
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2 Chapter 17 Proofs in Linear Algebra

17.1 PROPERTIES OF VECTORS IN 3-SPACE

One important feature of vectors is that they can be added (to produce another vec-
tor), while another is that a vector can be multiplied by an element of some set, usu-
ally a real number (again to produce another vector). In this context, these elements are
called scalars. Let’s focus on vectors in 3-space for the present. Let u = (a1, b1, c1) and
v = (a2, b2, c2), where ai, bi, ci (i = 1, 2) are real numbers. The sum of u and v is
defined by

u + v = (a1 + a2, b1 + b2, c1 + c2)

and the scalar multiple of u by a scalar (real number) α is defined by

αu = (αa1, αb1, αc1).

From these definitions, it follows that

u = (a1, b1, c1) = (a1, 0, 0) + (0, b1, 0) + (0, 0, c1)

= a1(1, 0, 0) + b1(0, 1, 0) + c1(0, 0, 1) = a1i + b1j + c1k.

That is, it is possible to express a vector u in 3-space in terms of the vectors i, j and k
in 3-space (called a linear combination of i, j and k). Listed below are eight simple, yet
fundamental, properties that follow from these definitions of vector addition and scalar
multiplication in R3:

1. u + v = v + u for all u, v ∈ R3.

2. (u + v) + w = u + (v + w) for all u, v, w ∈ R3.

3. For z = (0, 0, 0), u + z = u for all u ∈ R3.

4. For each u ∈ R3, there exists a vector in R3 which we denote by −u such that
u + (−u) = z = (0, 0, 0).

5. α(u + v) = αu + αv for all α ∈ R and all u, v ∈ R3.

6. (α + β )u = αu + βu for all α, β ∈ R and all u ∈ R3.

7. (αβ )u = α(βu) for all α, β ∈ R and all u ∈ R3.

8. 1u = u for all u ∈ R3.

These properties are rather straightforward to verify, as we illustrate with properties
1, 4 and 6. To verify property 1, observe that

u + v = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3)

= (b1 + a1, b2 + a2, b3 + a3) = v + u.

Here, we used only the definition of addition of vectors in R3 and the fact that addition
of real numbers is commutative.

To verify property 4, we begin with a vector v = (b1, b2, b3) ∈ R3 and show that
there is some vector in R3, which we denote by −v, such that v + (−v) = z = (0, 0, 0).
There is an obvious choice for −v, however, namely (−b1,−b2,−b3). Observe that

v + (−b1,−b2,−b3) = (b1, b2, b3) + (−b1,−b2,−b3)

= (b1 + (−b1), b2 + (−b2), b3 + (−b3)) = (0, 0, 0).
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Hence, −v = (−b1,−b2,−b3) has the desired property. We note also that, according to
the definition of scalar multiplication in R3,

(−1)v = ((−1)b1, (−1)b2, (−1)b3) = (−b1,−b2,−b3) = −v.

We will revisit this observation later.
To establish property 6, observe that

(α + β )u = (α + β )(a1, b1, c1)

= ((α + β )a1, (α + β )b1, (α + β )c1))

= (αa1 + βa1, αb1 + βb1, αc1 + βc1)

= (αa1, αb1, αc1) + (βa1, βb1, βc1)

= α(a1, b1, c1) + β(a1, b1, c1)

= αu + βu.

Thus, showing that (α + β )u = αu + βu also depends only on some familiar properties
of addition and multiplication of real numbers. Vectors in the plane can be added and
multiplied by scalars in the expected manner and, in fact, satisfy properties 1–8 as well.

17.2 VECTOR SPACES

In addition to vectors in the plane and 3-space, there are other mathematical objects that
can be added and multiplied by scalars so that properties 1–8 are satisfied. Indeed, these
objects provide a generalization of vectors in the plane and 3-space. For this reason,
these more abstract objects are referred to as vectors as well. The study of vectors is a
major topic in the area of mathematics called linear algebra.

A set V every two elements of which can be added (that is, if u, v ∈ V , then u + v is
a unique element of V ) and each element of which can be multiplied by any real number
(that is, if α ∈ R and v ∈ V , then αv is a unique element in V ) is called a vector space
(in fact, a vector space over R) if it satisfies the following eight properties:

1. u + v = v + u for all u, v ∈ V . (Commutative Property)

2. (u + v) + w = u + (v + w) for all u, v, w ∈ V . (Associative Property)

3. There exists an element z ∈ V such that v + z = v for all v ∈ V .

4. For each v ∈ V , there exists an element −v ∈ V such that v + (−v) = z.

5. α(u + v) = αu + αv for all α ∈ R and all u, v ∈ V .

6. (α + β )v = αv + βv for all α, β ∈ R and all v ∈ V .

7. (αβ )v = α(βv) for all α, β ∈ R and all v ∈ V .

8. 1v = v for all v ∈ V .

The elements of such a set V are called vectors and the real numbers in this context
are called scalars. Hence, if u, v ∈ V and α, β ∈ R, then both αu and βv belong to V .
Therefore, αu + βv ∈ V . The vector αu + βv is called a linear combination of u and v.
We can also discuss linear combinations of more than two vectors. Let u, v, w be three
vectors in V and let α, β, γ be three scalars (real numbers). Therefore, αu, βv and γ w
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4 Chapter 17 Proofs in Linear Algebra

are three vectors in V and αu + βv + γ w is a linear combination of u, v and w. We’ve
now encountered a familiar situation in mathematics. Since addition in V is only defined
for two vectors, what exactly is meant by αu + βv + γ w? There are two obvious in-
terpretations of αu + βv + γ w, namely, (αu + βv) + γ w (where αu and βv are added
first, producing the vector αu + βv, which is then added to γ w) and αu + (βv + γ w).
However, property 2 (the associative law of addition of vectors) guarantees that both
interpretations give us the same vector and, consequently, there is nothing ambigu-
ous about writing αu + βv + γ w without parentheses. In fact, if v1, v2, . . . , vn ∈ V
and α1, α2, . . . , αn ∈ R, then α1v1 + α2v2 + · · · + αnvn is a linear combination of the
vectors v1, v2, . . . , vn.

The element z ∈ V described in property 3 (and used in property 4) is called a zero
vector and an element −v in property 4 is called a negative of v. By the commutative
property, we also know that z + v = v and (−v) + v = z for every vector v ∈ V . Since V
satisfies properties 1–4, the set V forms an abelian group under addition (see Chapter 15).

Although we have only defined a vector space over the set R of real numbers (and
this is all we will deal with), it is not always required that the scalars be real numbers.
Indeed, there are certain situations when complex numbers are not only suitable scalars
but, in fact, the preferred scalars. (Real and complex numbers are discussed in some
detail in the online Chapter 18.) Other possibilities exist as well.

Of course, we have seen two examples of vector spaces, namely, R2 and R3 (with
addition and scalar multiplication defined previously). More generally, n-space Rn =
R × R × · · · × R (n factors) is a vector space where addition of two vectors u = (a1, a2,

. . . , an) and v = (b1, b2, . . . , bn) is defined, as expected, by

u + v = (a1 + b1, a2 + b2, . . . , an + bn)

and scalar multiplication αu, where α ∈ R, is defined by

αu = (αa1, αa2, . . . , αan).

We now describe two vector spaces of a very different nature. Recall that FR is the
set of all functions from R to R, that is,

FR = { f : f : R → R}.
Therefore, the well-known trigonometric function f1 : R → R defined by f1(x) = sin x
for all x ∈ R belongs to FR. The function f2 : R → R defined by f2(x) = 3x + x/
(x2 + 1) for all x ∈ R also belongs to FR.

For f , g ∈ FR and a scalar (real number) α, addition and scalar multiplication are
defined by

( f + g)(x) = f (x) + g(x) for all x ∈ R,

(α f )(x) = α( f (x)) for all x ∈ R.

For the functions f1 and f2 defined above,

( f1 + f2)(x) = sin x + 3x + x
x2 + 1

and (5 f2)(x) = 15x + 5x
x2 + 1

.

Under these definitions of addition and scalar multiplication, FR is a vector space,
the verification of which depends only on ordinary addition and multiplication of real
numbers. As an illustration, we verify that FR satisfies properties 2–5 of a vector space.
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First we verify property 2. Let f , g, h ∈ FR. Then

(( f + g) + h)(x) = ( f + g)(x) + h(x) = ( f (x) + g(x)) + h(x)

= f (x) + (g(x) + h(x)) = f (x) + (g + h)(x)

= ( f + (g + h))(x)

for all x ∈ R. Therefore, ( f + g) + h = f + (g + h).
Second we show that FR satisfies property 3 of a vector space. Define the (constant)

function f0 : R → R by f0(x) = 0 for all x ∈ R. We show that f0 is a zero vector for FR.
For f ∈ FR,

( f + f0)(x) = f (x) + f0(x) = f (x) + 0 = f (x)

for all x ∈ R. Therefore, f + f0 = f . The function f0 is called the zero function in FR.
Next, we show that FR satisfies property 4 of a vector space. For each function

f ∈ FR, define the function − f : R → R by (− f )(x) = −( f (x)) for all x ∈ R. Since

( f + (− f ))(x) = f (x) + (− f )(x) = f (x) + (− f (x)) = 0 = f0(x)

for all x ∈ R, it follows that f + (− f ) = f0 and so − f is a negative of f .
Finally, we show that FR satisfies property 5 of a vector space. Let f , g ∈ FR and

α ∈ R. Then, for each x ∈ R,

(α( f + g))(x) = α (( f + g)(x)) = α ( f (x) + g(x))

= α f (x) + αg(x) = (α f )(x) + (αg)(x) = (α f + αg)(x)

and so α( f + g) = α f + αg.
We now consider a special class of real-valued functions defined on R. These func-

tions are important in many areas of mathematics, not only linear algebra. A function
p : R → R is called a polynomial function (actually a polynomial function over R) if

p(x) = a0 + a1x + · · · + anxn

for all x ∈ R, where n is a nonnegative integer and a0, a1, . . . , an are real numbers. The
expression p(x) itself is called a polynomial in x. You may recall that if an �= 0, then n
is the degree of p(x). The zero function f0 is a polynomial function. It is assigned no
degree, however. We denote the set of all polynomial functions over R by R[x]. Hence,
R[x] ⊆ FR.

Let f , g ∈ R[x] and let α ∈ R. Then

f (x) = a0 + a1x + · · · + anxn and g(x) = b0 + b1x + · · · + bmxm,

where n and m are nonnegative integers and ai, b j ∈ R for 0 ≤ i ≤ n and 0 ≤ j ≤ m. If
we assume, say, that m ≥ n, then the sum f + g is the polynomial function defined by

( f + g)(x) = f (x) + g(x)

= (a0 + b0) + (a1 + b1)x + · · · + (an + bn)xn + bn+1xn+1 + · · · + bmxm,

while the scalar multiple α f of f by α is the polynomial function defined by

(α f )(x) = α( f (x)) = (αa0) + (αa1)x + · · · + (αan)xn.

These definitions are, of course, exactly the same as the sum of two elements of FR and
the scalar product of an element of FR by a real number.
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6 Chapter 17 Proofs in Linear Algebra

Actually, R[x] is itself a vector space over R under the addition and scalar mul-
tiplication we have just defined. For example, let f , g ∈ R[x]. Since R[x] ⊆ FR and
addition in R[x] is defined exactly the same as in FR, it follows that f + g = g + f ,
that is, property 1 of a vector space is satisfied. By the same reasoning, property 2 and
properties 5–8 are satisfied as well. The zero function f0 is in R[x] and we know that
f + f0 = f for all f ∈ FR. Hence, p + f0 = p for all p ∈ R[x]. So, f0 is a zero vector
for R[x]. For f ∈ R[x] defined by f (x) = a0 + a1x + · · · + anxn, we know that − f is
given by (− f )(x) = −( f (x)) = (−a0) + (−a1)x + · · · + (−an)xn. Thus, − f ∈ R[x] is
a negative of f . Hence, properties 3 and 4 are satisfied as well and so R[x] is a vector
space over R.

17.3 MATRICES

Among the best known and most important examples of vector spaces are those con-
cerning matrices. A rectangular array of real numbers is called a matrix. The plural of
“matrix” is “matrices.” (In general, a matrix need not be an array of real numbers — it
can be a rectangular array of elements from any prescribed set. However, we will deal
only with real numbers.) Thus, a matrix has m rows and n columns for some pair m, n of
positive integers and contains mn real numbers, each of which is located in some row i
and column j for integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. A matrix with m rows
and n columns is said to have size m × n and is called an m × n matrix (read as “m by
n matrix”). Hence,

B =
[

1
√

2 −3/2
0 −.8 4

]

is a 2 × 3 matrix, while

C =
⎡
⎣ 4 1 9

0 3 2
7 −1 1

⎤
⎦

is a 3 × 3 matrix. A general m × n matrix A is commonly written as

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

⎤
⎥⎥⎥⎦ .

Therefore, ai j represents the element located in row i and column j of A. This is referred
to as the (i, j)-entry of A. In fact, it is convenient shorthand notation to represent the
matrix A by [ai j] and to write A = [ai j]. The ith row of A is [ai1 ai2 . . . ain] and the jth
column is ⎡

⎢⎢⎢⎣
a1 j

a2 j
...
am j

⎤
⎥⎥⎥⎦ .
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For two matrices to be equal, they must have the same size. Furthermore, two m × n
matrices A = [ai j] and B = [bi j] are equal, written as A = B, if ai j = bi j for all integers
i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. That is, A = B if A and B have the same size and
corresponding entries are equal. Hence, in order for

A =
[

2 x −3
1/2 4 0

]
and B =

[
2 4/5 −3
y 4 0

]

to be equal, we must have x = 4/5 and y = 1/2.
For positive integers m and n, let Mmn[R] denote the set of all m × n matrices whose

entries are real numbers. If m = n, then the matrices are called square matrices. The
set of all m × m (square) matrices whose entries are real numbers is also denoted by
Mm[R].

We now define addition and scalar multiplication in Mmn[R]. Let A, B ∈ Mmn[R],
where A = [ai j] and B = [bi j]. The sum A + B of A and B is defined as that m × n matrix
[ci j], where ci j = ai j + bi j for all integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. For
α ∈ R, the scalar multiple αA of A by α is defined as αA = [di j], where di j = αai j for
all integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. For example, if

A =
[

2 −1 −3
0 4 0

]
and B =

[
3 −9 2

−2 5 0

]
,

then

A + B =
[

5 −10 −1
−2 9 0

]
and (−2)A =

[−4 2 6
0 −8 0

]
.

Under this addition and scalar multiplication, Mmn[R] is a vector space. As an illustra-
tion, we verify that properties 1 and 3–5 of a vector space are satisfied in M2[R]. Let
α ∈ R and let

A =
[

a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
.

Then

A + B =
[

a11 a12

a21 a22

]
+

[
b11 b12

b21 b22

]
=

[
a11 + b11 a12 + b12

a21 + b21 a22 + b22

]

=
[

b11 + a11 b12 + a12

b21 + a21 b22 + a22

]
=

[
b11 b12

b21 b22

]
+

[
a11 a12

a21 a22

]
= B + A.

This verifies property 1 of a vector space. We see here that verifying property 1 depends
only on the definition of addition of matrices and the fact that real numbers are commu-
tative under addition.

Let Z =
[

0 0
0 0

]
, often called the 2 × 2 zero matrix. Then

A + Z =
[

a11 a12

a21 a22

]
+

[
0 0
0 0

]
=

[
a11 + 0 a12 + 0
a21 + 0 a22 + 0

]

=
[

a11 a12

a21 a22

]
= A
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8 Chapter 17 Proofs in Linear Algebra

and so Z is a zero element of M2[R], thereby verifying property 3.

Next, let −A =
[−a11 −a12

−a21 −a22

]
. Consequently,

A + (−A) =
[

a11 a12

a21 a22

]
+

[−a11 −a12

−a21 −a22

]
=

[
0 0
0 0

]
= Z,

and so −A is a negative of A. Therefore, property 4 is satisfied. We note also that if A is
multiplied by the scalar −1, then we obtain

(−1)A = (−1)
[

a11 a12

a21 a22

]
=

[−a11 −a12

−a21 −a22

]
= −A.

Finally,

α(A + B) = α

[
a11 + b11 a12 + b12

a21 + b21 a22 + b22

]
=

[
α(a11 + b11) α(a12 + b12)
α(a21 + b21) α(a22 + b22)

]

=
[

αa11 + αb11 αa12 + αb12

αa21 + αb21 αa22 + αb22

]
=

[
αa11 αa12

αa21 αa22

]
+

[
αb11 αb12

αb21 αb22

]

= α

[
a11 a12

a21 a22

]
+ α

[
b11 b12

b21 b22

]
= αA + αB.

Under the right set of circumstances, matrices can also be multiplied — although
this, of course, is not a requirement for a vector space.

Let A = [ai j] be an m × n matrix and B = [bi j] be an n × r matrix, that is, let A
and B be two matrices, where the number of columns in A equals the number of rows
in B. In this case, we define the product AB of A and B as that m × r matrix [ci j],
where

ci j = ai1b1 j + ai2b2 j + · · · + ainbn j =
n∑

k=1

aikbk j (17.1)

for all integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ r. Hence, the (i, j)-entry of AB is
obtained from the ith row of A and jth column of B, namely,

[ai1 ai2 . . . ain] and

⎡
⎢⎢⎢⎣

b1 j

b2 j
...
bn j

⎤
⎥⎥⎥⎦,

by multiplying corresponding terms of this row and column and then adding all n prod-
ucts. The expression (17.1) is referred to as the inner product of the ith row of A and
the jth column of B. For example, let

A =
[

1 −3 5 0
−1 0 6 2

]
and B =

⎡
⎢⎢⎣

1 −6 5
2 0 1
3 3 2

−6 9 0

⎤
⎥⎥⎦ .



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M18_CHART6753_04_SE_C17_ONLINE PH03348-Chartrand August 17, 2017 15:13 Char Count= 0
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Since A is a 2 × 4 matrix and B is a 4 × 3 matrix, the product AB is defined and, in fact,
AB = [ci j] is the 2 × 3 matrix, where the six inner products are

c11 = 1 · 1 + (−3) · 2 + 5 · 3 + 0 · (−6) = 10

c12 = 1 · (−6) + (−3) · 0 + 5 · 3 + 0 · 9 = 9

c13 = 1 · 5 + (−3) · 1 + 5 · 2 + 0 · 0 = 12

c21 = (−1) · 1 + 0 · 2 + 6 · 3 + 2 · (−6) = 5

c22 = (−1) · (−6) + 0 · 0 + 6 · 3 + 2 · 9 = 42

c23 = (−1) · 5 + 0 · 1 + 6 · 2 + 2 · 0 = 7.

Hence,

AB =
[

10 9 12
5 42 7

]
.

On the other hand, since the matrix B is a 4 × 3 matrix and A is a 2 × 4 matrix, the
product BA is not defined. Certainly, however, if A and B are any two square matrices
of the same size, then AB and BA are both defined though they need not be equal. For
example, if

A =
[

1 2
1 2

]
and B =

[
0 1
1 0

]
,

then

AB =
[

2 1
2 1

]
, while BA =

[
1 2
1 2

]
.

17.4 SOME PROPERTIES OF VECTOR SPACES

Although we have now seen several different vector spaces, there are a number of prop-
erties that these and all vector spaces have in common (in addition to the eight defining
properties). Since vector spaces are defined by eight properties, one might expect, and
rightfully so, that any other properties they have in common are consequences of these
eight properties.

According to property 3, every vector space contains at least one zero vector and
by property 4, every vector has at least one negative. We show that “at least one” can
be replaced by “exactly one” in both instances. Actually, these are consequences of the
fact that every vector space is a group under addition (Chapter 15). We verify these
nevertheless.

Theorem 17.1 Every vector space has a unique zero vector.

Proof Let V be a vector space and assume that z and z′ are both zero vectors in V . Since z
is a zero vector, z′ + z = z′. Moreover, since z′ is a zero vector, z + z′ = z. Therefore,
z = z + z′ = z′ + z = z′.
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10 Chapter 17 Proofs in Linear Algebra

As a consequence of Theorem 17.1, we now know that a vector space V possesses
only one zero vector z that satisfies property 3 of a vector space. Hence, we can now
refer to z as the zero vector of V .

Theorem 17.2 Let V be a vector space. Then every vector in V has a unique negative.

Proof Let v ∈ V and assume that v1 and v2 are both negatives of v. Thus, v + v1 = z and
v + v2 = z. Hence,

v1 = v1 + z = v1 + (v + v2) = (v1 + v) + v2 = z + v2 = v2.

It is also possible to give a proof of this theorem using the cancellation law in
Exercise 17.6(a). In this case, if v1 and v2 are both negatives of a vector v in the vector
space V , then v + v1 = z and v + v2 = z, and so v + v1 = v + v2. Applying the cancel-
lation law gives us v1 = v2.

As a consequence of Theorem 17.2, we can now refer to −v as the negative of v. Of
course, the zero vector z has the property that z + z = z. However, no other vector has
this property.

Theorem 17.3 Let V be a vector space. If v is a vector such that v + v = v, then v = z.

Proof Since v + (−v) = z, it follows that

z = v + (−v) = (v + v) + (−v) = v + (v + (−v)) = v + z = v.

A proof like that given for Theorem 17.3 can be obtained by adding −v to the equal
vectors v + v and v and proceeding as we did in the discussion following the proof of
Theorem 17.2. Also, see Exercise 17.6(b).

We now describe two other properties concerning the zero vector that are conse-
quences of Theorem 17.3.

Corollary 17.4 Let V be a vector space. Then

(i) 0v = z for every vector v in V and
(ii) αz = z for every scalar α ∈ R.

Proof First, we prove (i). Observe that

0v = (0 + 0)v = 0v + 0v.

By Theorem 17.3, 0v = z.
Next we verify (ii). Observe that

αz = α(z + z) = αz + αz.

Again, by Theorem 17.3, αz = z.

Hence, by Corollary 17.4, 0v = z for every vector v in a vector space and αz = z
for every scalar α. That is, if either α = 0 or v = z, then αv = z. We now show that the
converse of this statement is true as well.
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Theorem 17.5 Let V be a vector space. If αv = z, then either α = 0 or v = z.

Proof Suppose that αv = z and that α �= 0. It then follows that

v = 1v =
(

1
α

α

)
v =

(
1
α

)
(αv) =

(
1
α

)
z = z,

a contradiction.

Another useful property is that the scalar multiple of a vector by −1 is the negative
of that vector. Actually, we have observed this earlier with two particular vector spaces
but this is true in general.

Theorem to
Prove

If v is a vector in a vector space, then (−1)v = −v.

PROOF STRATEGY Since v has a unique negative, to show that (−1)v = −v, we need only verify that the
sum of v and (−1)v is z. �

Theorem 17.6 If v is a vector in a vector space, then (−1)v = −v.

Proof Observe that

v + (−1)v = 1v + (−1)v = (1 + (−1))v = 0v = z.

Hence, (−1)v = −v.

17.5 SUBSPACES

Earlier we saw that FR = { f : f : R → R} is a vector space (under function addition
and scalar multiplication). Since the set R[x] of all polynomial functions over R is a
subset of FR and the addition and scalar multiplication defined in R[x] are exactly the
same as those defined in FR, it was considerably easier to show that R[x] is a vector
space. This idea can be made more general.

For a vector space V , a subset W of V is called a subspace of V if W is vector space
under the same addition and scalar multiplication defined on V . Hence, if W is a subspace
of a known vector space V , then W itself is a vector space. Since every subspace contains
a zero vector, W must be nonempty.

As we study vector spaces further, we will see that certain subspaces appear regu-
larly and consequently it is beneficial to have an understanding of subspaces. Further-
more, some sets having an addition and scalar multiplication defined on them are subsets
of known vector spaces and can be shown to be vector spaces more easily by verifying
that they are subspaces.

If W is a subset of a vector space V , what is required to show that W is a subspace
of V ? Of course, W must satisfy the eight properties required of all vector spaces. In
addition, if u, v ∈ W , then u + v must belong to W . This property is expressed by saying
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that W is closed under addition. Also, if α is a scalar (a real number) and v ∈ W , then
αv must belong to W . We express this property by saying that W is closed under scalar
multiplication.

Property 1 (the commutative property) requires that u + v = v + u for every two
vectors u and v in W . However, V is a vector space and satisfies property 1. Thus,
u + v = v + u in W and so W satisfies property 1. By the same reasoning, property 2 and
properties 5–8 are satisfied by W . These properties of W are said to be inherited from V .
Hence, for a nonempty subset W of a vector space V to be a subspace of V , it is necessary
that W be closed under addition and scalar multiplication. Perhaps surprisingly, these
requirements are sufficient as well for a nonempty subset W of V to be a subspace of V .

Theorem 17.7 (The Subspace Test) A nonempty subset W of a vector space V is a subspace of V if
and only if W is closed under addition and scalar multiplication.

Proof First, let W be a subspace of V . Certainly, W is closed under addition and scalar multipli-
cation. For the converse, let W be a nonempty subset of V that is closed under addition
and scalar multiplication. As we noted earlier, W inherits properties 1, 2 and 5–8 of a
vector space from V . Since W is nonempty and is closed under addition and scalar multi-
plication, only properties 3 and 4 remain to be verified. Since W �= ∅, there is some vec-
tor v in W . Since W is closed under scalar multiplication, it follows by Corollary 17.4(i)
that 0v = z ∈ W . Hence, W contains a zero vector (namely the zero vector of V ) and
property 3 is satisfied. Now let w be any vector of W . Again, (−1)w ∈ W . However, by
Theorem 17.6, (−1)w = −w ∈ W , and so w has a negative in W (namely the negative
of w in V ). Thus, property 4 is satisfied in W as well.

The proof of Theorem 17.7 brings out two important facts. Namely, if W is a sub-
space of a vector space V , then W contains a zero vector (namely, the zero vector of V )
and for every vector w ∈ W , its negative −w belongs to W as well.

Every vector space V (containing at least two elements) always contains two sub-
spaces, namely V itself and the subspace consisting only of the zero vector of V . We
now present several examples to illustrate how the Subspace Test (Theorem 17.7) can
be applied to show that certain subsets of a vector space are (or are not) subspaces of
that vector space. The first two examples concern the vector space R3.

Result 17.8 The set

W = {(a, b, 2a − b) : a, b ∈ R}
is a subspace of R3.

First, observe that W is defined as the collection of vectors of R3 whose 3rd co-
ordinate is twice the first coordinate minus the second coordinate. So, for example, W
contains (3, 2, 4), taking a = 3 and b = 2, as well as (0, 0, 0), taking a = b = 0. Of
course, if W is to be a subspace of R3, then it is essential that W contains the zero vector
of R3.

Proof of
Result 17.8

Since W contains the zero vector of R3, it follows that W �= ∅. To show that W is a
subspace of V , we need only show that W is closed under addition (that is, if u, v ∈
W , then u + v ∈ W ) and that W is closed under scalar multiplication (that is, if u ∈ W
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and α ∈ R, then αu ∈ W ). Let u, v ∈ W and α ∈ R. Then u = (a, b, 2a − b) and v =
(c, d, 2c − d), where a, b, c, d ∈ R. Therefore,

u + v = (a + c, b + d, 2(a + c) − (b + d)) ∈ W and

αu = (αa, αb, 2(αa) − (αb)) ∈ W.

By the Subspace Test, W is a subspace of R3.

Example 17.9 Determine whether

W = {(a, b, a2 + b) : a, b ∈ R}
is a subspace of R3.

Solution Taking a = b = 1, we see that u = (1, 1, 2) ∈ W . Then 2u = (2, 2, 4). Since 4 �=
22 + 2, it follows that 2u /∈ W . Since W is not closed under scalar multiplication, W
is not a subspace of R3. (The subset W of R3 is not closed under addition either since
u + u /∈ W .) �

We next consider the vector space FR. We have already mentioned that R[x] is a
subspace of FR. Also, the set CR = { f ∈ FR : f is continuous} is a subspace of FR.
Indeed, R[x] is a subspace of CR as well.

Result 17.10 Let F0 = { f ∈ FR : f (1) = 0}. Then F0 is a subspace of FR.

Hence, the function f1 : R → R defined by f1(x) = x − 1 belongs to F0, as does
the zero function f0 : R → R defined by f0(x) = 0 for all x ∈ R.

Proof of
Result 17.10

Since F0 contains the zero function, F0 �= ∅. Let f , g ∈ F0 and α ∈ R. Then

( f + g)(1) = f (1) + g(1) = 0 + 0 = 0 and (α f )(1) = α f (1) = α · 0 = 0.

Thus, f + g ∈ F0 and α f ∈ F0. By the Subspace Test, F0 is a subspace of FR.

Example 17.11 Determine whether

F1 = { f ∈ FR : f (0) = 1}
is a subspace of FR.

Solution Observe that the functions g, h ∈ FR defined by g(x) = x + 1 and h(x) = x2 + 1 be-
long toF1. However, (g + h)(x) = g(x) + h(x) = x2 + x + 2 and (g + h)(0) = 2, so g +
h /∈ F1. Therefore, F1 is not closed under addition and so F1 is not a subspace of FR. �

The next example concerns the vector space M2(R) of 2 × 2 matrices with real
entries.

Result 17.12 The set

W =
{[

a 0
b c

]
: a, b, c ∈ R

}

is a subspace of M2(R).
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Hence, W consists of all those 2 × 2 matrices whose (1, 2)-entry is 0. Thus, the zero
matrix, all of whose entries are 0, belongs to W .

Proof of
Result 17.12

Since W contains the zero matrix, W �= ∅. Let A, B ∈ W and α ∈ R. So,

A =
[

a 0
b c

]
and B =

[
d 0
e f

]
,

where a, b, c, d, e, f ∈ R. Then

A + B =
[

a + d 0
b + e c + f

]
and αA =

[
αa 0
αb αc

]
.

Therefore, A + B and αA belong to W and by the Subspace Test, W is a subspace
of M2(R).

17.6 SPANS OF VECTORS

In Result 17.12 we showed that the set

W =
{[

a 0
b c

]
: a, b, c ∈ R

}

is a subspace of M2(R). Thus, if A ∈ W , then A =
[

a 0
b c

]
for some a, b, c ∈ R. Ob-

serve, also, that

A =
[

a 0
b c

]
=

[
a 0
0 0

]
+

[
0 0
b 0

]
+

[
0 0
0 c

]

= a
[

1 0
0 0

]
+ b

[
0 0
1 0

]
+ c

[
0 0
0 1

]
.

In other words, A (and, consequently, every matrix in W ) is a linear combination of[
1 0
0 0

]
,

[
0 0
1 0

]
and

[
0 0
0 1

]
. Therefore, W is the set of all linear combinations of

these three matrices. This observation illustrates a more general situation.
Recall that if V is a vector space, v1, v2, . . . , vn ∈ V and α1, α2, . . . , αn ∈ R, then

every vector of the form α1v1 + α2v2 + · · · + αnvn is a linear combination of the vec-
tors v1, v2, . . . , vn. Thus, by taking α1 = α2 = · · · = αn = 0, we see that the zero vec-
tor is a linear combination of v1, v2, . . . , vn. Also, by taking αi = 1 for a fixed integer i
(1 ≤ i ≤ n) and all other scalars 0, we see that each vector vi is a linear combination of
v1, v2, . . . , vn. We have noted that every linear combination of vectors in V is a vector
in V and, of course, the set of all such linear combinations is a subset of V . In fact, more
can be said of this subset.

Theorem 17.13 Let V be a vector space containing the vectors v1, v2, . . . , vn. Then the set W of all linear
combinations of v1, v2, . . . , vn is a subspace of V .

Proof Since W contains the zero vector of V , it follows that W �= ∅. Let u, w ∈ W and let
α ∈ R. Then u = α1v1 + α2v2 + · · · + αnvn and w = β1v1 + β2v2 + · · · + βnvn, where
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αi, βi ∈ R for 1 ≤ i ≤ n. Then

u + w = (α1 + β1)v1 + (α2 + β2)v2 + · · · + (αn + βn)vn and

αu = (αα1)v1 + (αα2)v2 + · · · + (ααn)vn.

So, both u + w and αu are linear combinations of v1, v2, . . . , vn and, hence, belong toW .
Thus, by the Subspace Test, W is a subspace of V .

For vectors v1, v2, . . . , vn in a vector space V , the subspace W of V consisting
of all linear combinations of v1, v2, . . . , vn is called the span of v1, v2, . . . , vn and is
denoted by 〈v1, v2, . . . , vn〉. Also, W is referred to as the subspace of V spanned by
v1, v2, . . . , vn.

By Result 17.12,

W =
{[

a 0
b c

]
: a, b, c ∈ R

}
=

〈[
1 0
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]〉
.

We saw in Result 17.8 that W = {(a, b, 2a − b) : a, b ∈ R} is a subspace of R3. Since
(a, b, 2a − b) = a(1, 0, 2) + b(0, 1,−1), it follows that W is spanned by the vectors
(1, 0, 2) and (0, 1,−1), that is, W = 〈(1, 0, 2), (0, 1,−1)〉.

We consider another illustration of spans of vectors.

Result 17.14 Let f1, f2, f3, g2, g3 be five functions in R[x] defined by f1(x) = 1, f2(x) = 1 + x2,
f3(x) = 1 + x2 + x4, g2(x) = x2 and g3(x) = x4 for all x ∈ R, and let W = 〈 f1, f2, f3〉
and W ′ = 〈 f1, g2, g3〉. Then W = W ′.

PROOF STRATEGY Since W and W ′ are sets of vectors (polynomial functions) and our goal is to show that
W = W ′, we proceed in the standard manner by showing that each of W and W ′ is a
subset of the other. �

Proof of
Result 17.14

First, we show that W ⊆ W ′. Let f ∈ W . Then f = a f1 + b f2 + c f3 for some a, b, c ∈
R. Hence, for each x ∈ R,

f (x) = a · 1 + b · (1 + x2) + c · (
1 + x2 + x4)

= (a + b + c) · 1 + (b + c) · x2 + c · x4.

Thus, f is also a linear combination of f1, g2 and g3. Consequently, W ⊆ W ′. It remains
to show that W ′ ⊆ W . Let g ∈ W ′. Then

g = a f1 + bg2 + cg3 for some a, b, c ∈ R.

So, for each x ∈ R,

g(x) = a · 1 + b · x2 + c · x4 = (a − b) · 1 + b · (
1 + x2) + c · x4

= (a − b) · 1 + (b − c) · (
1 + x2) + c · (

1 + x2 + x4) .

Hence, g is also a linear combination of f1, f2, f3 as well and so W ′ ⊆ W .

From what we have seen, if V is a vector space containing the vectors v1, v2, . . . , vn,
then W = 〈v1, v2, . . . , vn〉 is a subspace of V (that contains v1, v2, . . . , vn). Quite possi-
bly other subspaces of V contain v1, v2, . . . , vn as well. Of course, V itself is a subspace
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of V containing v1, v2, . . . , vn. In a certain sense though, W is the smallest subspace of
V containing v1, v2, . . . , vn.

Theorem 17.15 LetV be a vector space containing the vectors v1, v2, . . ., vn and letW = 〈v1, v2, . . . , vn〉.
If W ′ is a subspace of V containing v1, v2, . . ., vn, then W is a subspace of W ′.

Proof Since W and W ′ are subspaces of V , we need only show that W ⊆ W ′. Let v ∈ W . Thus,
v = α1v1 + α2v2 + · · · + αnvn, where αi ∈ R for 1 ≤ i ≤ n. Since vi ∈ W ′ for 1 ≤ i ≤ n
and W ′ is a subspace of V , it follows that v ∈ W ′. Hence, W ⊆ W ′.

There is a consequence of Theorem 17.15 that is especially useful.

Corollary 17.16 Let V be a vector space spanned by the vectors v1, v2, . . ., vn. If W is a subspace of V
containing v1, v2, . . ., vn, then W = V .

Proof Since W is a subspace of V , certainly W ⊆ V . By Theorem 17.15, V ⊆ W . Thus,
W = V .

To illustrate a number of the concepts and results introduced thus far, we consider
an example concerning 3-space.

Result 17.17 (i) For the vectors i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1), R3 = 〈i, j, k〉.
(ii) If w1 = (1, 1, 0), w2 = (0, 1, 1) and w3 = (1, 1, 1), then R3 = 〈w1, w2, w3〉.

(iii) Let u1 = (1, 1, 1), u2 = (1, 1, 0) and u3 = (0, 0, 1). Then
〈u1, u2, u3〉 = 〈u1, u2〉.

Proof Let W1 = 〈i, j, k〉. Since W1 is a subspace of R3, it follows that W1 ⊆ R3. We now show
that R3 ⊆ W1. Let v ∈ R3. So, v = (a, b, c), where a, b, c ∈ R. Then v = (a, 0, 0) +
(0, b, 0) + (0, 0, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = ai + bj + ck. Hence, v is a
linear combination of i, j and k and so v ∈ W1. Hence, R3 ⊆ W1. This implies that
R3 = 〈i, j, k〉 and (i) is verified.

Next, we verify (ii). Let W2 = 〈w1, w2, w3〉. To verify that R3 = W2, it suffices to
show by Corollary 17.16 and part (i) of this result that each of the vectors i, j and k
belongs to W2. To show that i, j and k belong to W2, we are then required to show
that each of i, j and k is a linear combination of w1, w2 and w3. Since i = (1, 0, 0) =
(1, 1, 1) + (−1)(0, 1, 1), it follows that i = 0 · w1 + (−1)w2 + 1 · w3. Now j =
(0, 1, 0) = (1, 1, 0) + (0, 1, 1) + (−1)(1, 1, 1); so, j = 1 · w1 + 1 · w2 + (−1)w3.
Finally, k = (0, 0, 1) = (1, 1, 1) + (−1)(1, 1, 0) and so k = (−1)w1 + 0 · w2 + 1 · w3.
Hence, R3 = W2 and (ii) is established.

Finally, we verify (iii). Let W = 〈u1, u2〉 and W ′ = 〈u1, u2, u3〉. Since W ′ contains
the vectors u1 and u2, it follows by Theorem 17.15 that W ⊆ W ′.

By Corollary 17.16, to prove that W ′ ⊆ W , we need only show that each of the vec-
tors u1, u2 and u3 in W ′ belongs to W , that is, each of these three vectors is a linear com-
bination of u1 and u2. This is obvious for u1 and u2 as u1 = 1 · u1 + 0 · u2 and u2 = 0 ·
u1 + 1 · u2. Thus, it remains only to show that u3 is a linear combination of u1 and
u2. However, u3 = (0, 0, 1) = (1, 1, 1) + (−1)(1, 1, 0) = 1 · u1 + (−1)u2, completing
the proof.
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17.7 LINEAR DEPENDENCE AND INDEPENDENCE

For the vectors u1 = (1, 1, 0) and u2 = (0, 1, 1) in R3, the vector u3 = (−1, 1, 2) ∈ R3

is a linear combination of u1 and u2 since

u3 = (−1, 1, 2) = (−1) · u1 + 2 · u2 = (−1) · (1, 1, 0) + 2 · (0, 1, 1).

Therefore, in a certain sense, the vector u3 depends on u1 and u2 in a linear manner.
This linear dependence can be restated as

(−1) · u1 + 2 · u2 + (−1) · u3 = (0, 0, 0).

This kind of dependence plays an important role in linear algebra.
Let S = {u1, u2, . . . , um} be a nonempty set of vectors in a vector space V . The set

S is called linearly dependent if there exist scalars c1, c2, . . . , cm, not all 0, such that
c1u1 + c2u2 + · · · + cmum = z. If S is not linearly dependent, then S is said to be linearly
independent. For S = {u1, u2, . . . , um}, we also say that the vectors u1, u2, . . . , um are
linearly dependent or linearly independent according to whether the set S is linearly de-
pendent or linearly independent, respectively. Consequently, the vectors u1, u2, . . . , um

are linearly independent if whenever c1u1 + c2u2 + · · · + cmum = z, then ci = 0 for
each i (1 ≤ i ≤ m).

We now consider some examples.

Example 17.18 Determine whether S = {(1, 1, 1), (1, 1, 0), (0, 1, 1)} is a linearly independent set of
vectors in R3.

Solution Let a, b and c be scalars such that

a · (1, 1, 1) + b · (1, 1, 0) + c · (0, 1, 1) = (0, 0, 0).

By scalar multiplication and vector addition, we have (a + b, a + b + c, a + c) =
(0, 0, 0), arriving at the following system of equations:

a + b = 0

a + b + c = 0

a + c = 0.

Subtracting the first equation from the second, we obtain c = 0. Substituting c = 0 into
the third equation, we obtain a = 0. Substituting a = 0 and c = 0 into the second equa-
tion, we obtain b = 0. Hence, a = b = c = 0 and S is linearly independent. �

Example 17.19 Determine whether

S =
{[

2 1
1 0

]
,

[
0 1
1 2

]
,

[
1 1
1 1

]}

is a linearly independent set of vectors in M2(R).

Solution Again, let a, b and c be scalars such that

a
[

2 1
1 0

]
+ b

[
0 1
1 2

]
+ c

[
1 1
1 1

]
=

[
0 0
0 0

]
.
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By scalar multiplication and matrix addition, we have[
2a + c a + b + c

a + b + c 2b + c

]
=

[
0 0
0 0

]
.

This results in the system of equations:

2a + c = 0

a + b + c = 0

2b + c = 0

where the second equation actually occurs twice. From the first and third equations,
it follows that c = −2a and c = −2b and so a = b = −c/2. Substituting these values
for a and b in the second equation gives (−c/2) + (−c/2) + c = −c + c = 0, that is,
the second equation is satisfied for every value of c. Hence, if we let c = −2, say, then
a = b = 1 and

1 ·
[

2 1
1 0

]
+ 1 ·

[
0 1
1 2

]
+ (−2) ·

[
1 1
1 1

]
=

[
0 0
0 0

]
.

Consequently, S is a linearly dependent set of vectors. �

We now show that a familiar set of polynomial functions is linearly independent.

Theorem to
Prove

For every nonnegative integer n, the set Sn = {1, x, x2, . . . , xn} is linearly independent
in R[x].

PROOF STRATEGY The elements of Sn are actually functions, say Sn = { f0, f1, f2, . . . , fn}, where fi :
R → R is defined by fi(x) = xi for 0 ≤ i ≤ n and for all x ∈ R. To show that Sn is lin-
early independent, we are required to show that if c0 · 1 + c1x + c2x2 + · · · + cnxn = 0,
where ci ∈ R for 0 ≤ i ≤ n, then ci = 0 for all i. Of course, the question is how to do this.
By choosing various values of x, we could arrive at a system of equations to solve. For
example, we could begin by letting x = 0, obtaining c0 · 1 + c1 · 0 + c2 · 0 + · · · + cn ·
0 = 0, and so c0 = 0. Therefore, c1x + c2x2 + · · · + cnxn = 0. Letting x = 1 and x = 2,
we have c1 + c2 + · · · + cn = 0 and 2c1 + 22c2 + · · · + 2ncn = 0. We could actually
arrive at a system of n equations and n unknowns, but perhaps this is sounding
complicated.

On the other hand, from the statement of the theorem, another approach is sug-
gested. Quite often when we see a theorem stated as “for every nonnegative integer n,”
we think of applying induction. The main challenge to such a proof would be to show
that if {1, x, x2, . . . , xk} is linearly independent, where k ≥ 0, then {1, x, x2, . . . , xk+1}
is linearly independent. Hence, we would be dealing with the equation c0 · 1 + c1x +
c2x2 + · · · + ck+1xk+1 = 0 for ci ∈ R, 0 ≤ i ≤ k + 1, attempting to show that ci = 0
for all i (0 ≤ i ≤ k + 1). We already mentioned that showing c0 = 0 is not difficult.
In order to make use of the induction hypothesis, we need a linear combination of
the polynomials 1, x, x2, . . . , xk. One idea for doing this is to take the derivative of
c0 · 1 + c1x + c2x2 + · · · + ck+1xk+1. �

Theorem 17.20 For every nonnegative integer n, the set Sn = {1, x, x2, . . . , xn} is linearly independent
in R[x].
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Proof We proceed by induction. For n = 0, we are required to show that S0 = {1} is linearly
independent in R[x]. Let c be a scalar such that c · 1 = 0. Then surely c = 0 and so S0

is linearly independent.
Assume that Sk = {1, x, x2, . . . , xk} is linearly independent in R[x], where k is a

nonnegative integer. We show that Sk+1 = {1, x, x2, . . . , xk+1} is linearly independent in
R[x]. Let c0, c1, . . . , ck+1 be scalars such that

c0 · 1 + c1x + c2x2 + · · · + ck+1xk+1 = 0, (17.2)

for all x ∈ R. Letting x = 0 in (17.2), we see that c0 = 0. Now taking the derivatives of
both sides of (17.2), we see that

c1 · 1 + 2c2x + 3c3x2 + · · · + (k + 1)ck+1xk = 0

for all x ∈ R. By the induction hypothesis, Sk is a linearly independent set of vectors
in R[x] and so c1 = 2c2 = 3c3 = · · · = (k + 1)ck+1 = 0, which implies that c1 = c2 =
c3 = · · · = ck+1 = 0. Since c0 = 0 as well, it follows that Sk+1 is linearly independent.

PROOF ANALYSIS Before proceeding further, it is important that we understand the proof we have just
given. The proof began by showing that S0 = {1} is linearly independent. What this
means is that S0 consists of the single constant polynomial function f defined by
f (x) = 1 for all x ∈ R. Let c be a scalar (real number) such that c · f = f0, where f0 is
the zero polynomial function defined by f0(x) = 0 for all x ∈ R. Thus, for each x ∈ R,
(c f )(x) = f0(x) = 0, that is,

(c f )(x) = c · f (x) = c · 1 = 0 = f0(x)

and so c = 0. �

We now consider a result for a general vector space.

Result 17.21 If v1, v2 and v3 are linearly independent vectors in a vector space V , then v1, v1 + v2

and v1 + v2 + v3 are also linearly independent in V .

Proof Let a, b and c be scalars such that

a · v1 + b · (v1 + v2) + c · (v1 + v2 + v3) = z.

From this, we have

(a + b + c) · v1 + (b + c) · v2 + c · v3 = z.

Since v1, v2 and v3 are linearly independent, a + b + c = b + c = c = 0, from which it
follows that a = b = c = 0 and so v1, v1 + v2 and v1 + v2 + v3 are linearly
independent.

Let S = {v1, v2, . . . , vn} be a set of n vectors, where n ∈ N, and let S′ be a nonempty
subset of S. Then |S′| = m for some integer m with 1 ≤ m ≤ n. Since the order in which
the elements of S are listed is irrelevant, these elements can be rearranged and relabeled
if necessary so that S′ = {v1, v2, . . . , vm}. This fact is quite useful at times.

Theorem 17.22 Let S be a finite nonempty set of vectors in a vector space V . If S is linearly independent
in V and S′ is a nonempty subset of S, then S′ is also linearly independent in V .
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Proof We may assume that S′ = {v1, v2, . . . , vm} and S = {v1, v2, . . . , vm, vm+1, . . . , vn},
where then 1 ≤ m ≤ n. If m = n, then S′ = S and surely S′ is linearly independent. Thus,
we can assume that m < n. Let c1, c2, . . . , cm be scalars such that

c1v1 + c2v2 + · · · + cmvm = z.

However, then,

c1v1 + c2v2 + · · · + cmvm + 0vm+1 + 0vm+2 + · · · + 0vn = z. (17.3)

Since S is linearly independent, all scalars in (17.3) are 0. In particular, c1 = c2 = · · · =
cm = 0, which implies that S′ is linearly independent.

We can restate Theorem 17.22 as follows: Let V be a vector space and let S and S′

be finite nonempty subsets of V such that S′ ⊆ S. If S is linearly independent, then S′

is linearly independent. The contrapositive of this implication gives us: If S′ is linearly
dependent, then S is linearly dependent.

Although we have only discussed linear independence and linear dependence in
connection with finite sets of vectors, these concepts exist for infinite sets of vectors as
well. An infinite set of vectors in a vector space V is linearly independent if every finite
nonempty subset of S is linearly independent. Equivalently, an infinite set S of vectors
in a vector space V is linearly dependent if some finite nonempty subset of S is linearly
dependent. Every example we have seen of a (finite) set S of linearly dependent vectors in
some vector space V gives rise to an infinite set T of linearly dependent vectors, namely,
any infinite subset T of V such that S ⊆ T is linearly dependent. But what is an example
of a vector space that contains infinitely many linearly independent vectors? We provide
such an example now.

Result 17.23 The set T = {1, x, x2, . . .} is linearly independent in R[x].

Proof Let S be a finite nonempty subset of T . Then there is a largest nonnegative integer m such
that xm ∈ S. Therefore, S ⊆ Sm = {1, x, x2, . . . , xm}. By Theorem 17.20, Sm is linearly
independent in R[x] and by Theorem 17.22, S is linearly independent. Consequently, T
is linearly independent in R[x].

17.8 LINEAR TRANSFORMATIONS

We have seen that many properties of a vector space V , of subspaces of V , of the span
of a set of vectors in V and of linear independence and linear dependence of vectors
in V deal with a common concept: linear combinations of vectors. Perhaps this is not
unexpected in an area of mathematics called linear algebra. There are occasions when
two vectors spaces V and V ′ are so closely linked that with each vector w ∈ V , there
is an associated vector w′ ∈ V ′ such that the vector associated with αu + βv in V is
αu′ + βv′ in V ′. Such an association describes a function from V to V ′. In particular,
a function f : V → V ′ is said to preserve linear combinations of vectors if f (αu +
βv) = α f (u) + β f (v) for all u, v ∈ V and every two scalars α and β. If f : V → V ′ has
the property that f (u + v) = f (u) + f (v) for all u, v ∈ V , then f is said to preserve
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addition. If f (αu) = α f (u) for all u ∈ V and every scalar α, then f is said to preserve
scalar multiplication.

Let z′ be the zero vector of V ′. If f : V → V ′ preserves linear combinations and
u, v ∈ V , then

f (u + v) = f (1 · u + 1 · v) = 1 · f (u) + 1 · f (v) = f (u) + f (v)

and f (αu) = f (αu + 0v) = α f (u) + 0 f (v) = α f (u) + z′ = α f (u). Hence, if f :
V → V ′ is a function that preserves linear combinations, then f preserves addition and
scalar multiplication as well.

Conversely, suppose that f : V → V ′ is a function that preserves both addition and
scalar multiplication. Then for u, v ∈ V and scalars α and β,

f (αu + βv) = f (αu) + f (βv) = α f (u) + β f (v),

that is, f preserves linear combinations. Because functions that preserve linear combi-
nations are so important in linear algebra, they are given a special name.

Let V and V ′ be vector spaces. A function T : V → V ′ is called a linear transfor-
mation if T preserves both addition and scalar multiplication, that is, if T satisfies the
following conditions:

1. T (u + v) = T (u) + T (v)

2. T (αv) = αT (v)

for all u, v ∈ V and all α ∈ R. There are some points in connection with these condi-
tions that need to be addressed and that may not be self-evident. Condition 1 states that
T (u + v) = T (u) + T (v) for every two vectors u and v of V . Hence, the addition indi-
cated in T (u + v) takes place in V , while, on the other hand, since T (u) and T (v) are
vectors in V ′, the addition indicated in T (u) + T (v) takes place in V ′. Also, condition
2 states that T (αv) = αT (v) for every vector v in V and every scalar α. By the same
reasoning, the scalar multiplication indicated in T (αv) takes place in V , while the scalar
multiplication in αT (v) takes place in V ′. From what we have already seen, every linear
transformation preserves linear combinations of vectors (hence, the name).

Let’s consider an example of a linear transformation.

Result 17.24 The function T : R3 → R2 defined by

T ((a, b, c)) = T (a, b, c) = (2a + c, 3c − b)

is a linear transformation.

Before we prove Result 17.24, let’s be certain that we understand what this function
does. For example, T (1, 2, 3) = (5, 7) and T (1,−6,−2) = (0, 0), while T (0, 0, 0) =
(0, 0). We now show that T is a linear transformation.

Proof of
Result 17.24

Let u, v ∈ R3. Then u = (a, b, c) and v = (d, e, f ) for a, b, c, d, e, f ∈ R. Then

T (u + v) = T (a + d, b + e, c + f ) = (2(a + d) + c + f , 3(c + f ) − (b + e))

= (2a + c, 3c − b) + (2d + f , 3 f − e)

= T (a, b, c) + T (d, e, f ) = T (u) + T (v)
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and

T (αu) = T (α(a, b, c)) = T (αa, αb, αc)

= (2αa + αc, 3αc − αb) = α(2a + c, 3c − b) = αT (u),

as desired.

Sometimes the vectors in R3 are written as “column vectors,” that is, as

⎡
⎣ a

b
c

⎤
⎦ rather

than (a, b, c) or the “row vector” [a b c]. In this case, notice that the linear transformation
T : R3 → R2 defined by T (a, b, c) = (2a + c, 3c − b) can be described as

T (a, b, c) = T

⎛
⎝

⎡
⎣ a

b
c

⎤
⎦

⎞
⎠ =

[
2 0 1
0 −1 3

] ⎡
⎣ a

b
c

⎤
⎦ =

[
2a + c
−b + 3c

]
,

that is, if we let v =
⎡
⎣ a

b
c

⎤
⎦ and A =

[
2 0 1
0 −1 3

]
, then this linear transformation can

be defined in terms of the matrix A, namely,

T (v) = Av.

In general, if A is an m × n matrix, then the function T : Rn → Rm defined by
T (u) = Au for an n × 1 column vector u ∈ Rn is a linear transformation. For example,

consider the 3 × 2 matrix A =
⎡
⎣ 1 −2

3 −1
2 5

⎤
⎦. For u =

[
a
b

]
, v =

[
c
d

]
and α ∈ R,

T (u + v) = T
([

a + c
b + d

])
=

⎡
⎣ 1 −2

3 −1
2 5

⎤
⎦[

a + c
b + d

]
=

⎡
⎣ a + c − 2b − 2d

3a + 3c − b − d
2a + 2c + 5b + 5d

⎤
⎦

=
⎡
⎣ a − 2b

3a − b
2a + 5b

⎤
⎦ +

⎡
⎣ c − 2d

3c − d
2c + 5d

⎤
⎦ = T

([
a
b

])
+ T

([
c
d

])

= T (u) + T (v)

and

T (αu) = T
([

αa
αb

])
=

⎡
⎣ 1 −2

3 −1
2 5

⎤
⎦ [

αa
αb

]
=

⎡
⎣αa − 2αb

3αa − αb
2αa + 5αb

⎤
⎦

= α

⎡
⎣ a − 2b

3a − b
2a + 5b

⎤
⎦ = αT

([
a
b

])
= αT (u).

Thus, T : R2 → R3 is a linear transformation. The proof for a general m × n matrix
is similar. As another illustration of a linear transformation, we consider a well-known
function from R[x] to itself.
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Result 17.25 The function D (for differentiation) from R[x] to R[x] defined by

D(c0 + c1x + c2x2 + · · · + cnxn) = c1 + 2c2x + · · · + ncnxn−1

is a linear transformation.

Proof Let f , g ∈ R[x], where f (x) = a0 + a1x + a2x2 + · · · + arxr and g(x) = b0 + b1x +
b2x2 + · · · + bsxs and, say, r ≤ s. Then

D( f (x) + g(x)) = D ((a0 + a1x + · · · + arxr ) + (b0 + b1x + · · · + bsxs))

= D
(
(a0 + b0) + (a1 + b1)x + · · · + (ar + br )xr + br+1xr+1 + · · · + bsxs

)
= (a1 + b1) + · · · + r(ar + br )xr−1 + (r + 1)br+1xr + · · · + sbsxs−1

= (
a1 + 2a2x + · · · + rarxr−1

) + (
b1 + 2b2x + · · · + sbsxs−1

)
= D( f (x)) + D(g(x))

and

D(α f (x)) = D
(
αa0 + αa1x + αa2x2 + · · · + αarxr)

= αa1 + 2αa2x + · · · + rαarxr−1

= α(a1 + 2a2x + · · · + rarxr−1) = αD( f (x)).

Since D preserves both addition and scalar multiplication, it is a linear transformation.

There is a special kind a function from a vector space to itself that is always a linear
transformation.

Result 17.26 Let V be a vector space over the set R of real numbers. For c ∈ R, the function T :
V → V defined by T (v) = cv is a linear transformation.

Proof Let u, w ∈ V . Then

T (u + w) = c(u + w) = cu + cw = T (u) + T (w);
while, for α ∈ R,

T (αu) = c(αu) = (cα)(u) = (αc)(u) = α(cu) = αT (u).

Therefore, T is a linear transformation.

For c = 1, the function T defined in Result 17.26 is the identity function, while for
c = 0, the function T maps every vector into the zero vector. Consequently, both of these
functions are linear transformations.

We now look at functions involving other vector spaces. For a function f ∈ FR and
a real number r, we define the function f + r by ( f + r)(x) = f (x) + r for all x ∈ R.

Example 17.27 Let r be a nonzero real number. Prove or disprove: The function T : FR → FR defined
by T ( f ) = f + r is a linear transformation.

Solution Let f , g ∈ FR. Observe that

T ( f + g) = ( f + g) + r,
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while

T ( f ) + T (g) = ( f + r) + (g + r) = ( f + g) + 2r.

Since r �= 0, it follows that T ( f + g) �= T ( f ) + T (g). Therefore, T is not a linear
transformation. �

Example 17.28 Let T : M2(R) → M2(R) be a function defined by

T
([

a b
c d

])
=

[
ad 0
0 bc

]
.

Prove or disprove: T is a linear transformation.

Solution Since

T
(

2
[

1 1
1 1

])
= T

([
2 2
2 2

])
=

[
4 0
0 4

]

and

2T
([

1 1
1 1

])
= 2

[
1 0
0 1

]
=

[
2 0
0 2

]
,

T is not a linear transformation. �

Example 17.29 The function T : M2(R) → M2(R) is defined by

T
([

a b
c d

])
=

[
a a
c c

]
.

Prove or disprove: T is a linear transformation.

Solution Let
[

a1 b1

c1 d1

]
,

[
a2 b2

c2 d2

]
∈ M2(R) and α ∈ R. Then

T
([

a1 b1

c1 d1

]
+

[
a2 b2

c2 d2

])
= T

([
a1 + a2 b1 + b2

c1 + c2 d1 + d2

])

=
[

a1 + a2 a1 + a2

c1 + c2 c1 + c2

]
=

[
a1 a1

c1 c1

]
+

[
a2 a2

c2 c2

]

= T
([

a1 b1

c1 d1

])
+ T

([
a2 b2

c2 d2

])
,

while

T
(

α

[
a1 b1

c1 d1

])
= T

([
αa1 αb1

αc1 αd1

])
=

[
αa1 αa1

αc1 αc1

]

= α

[
a1 a1

c1 c1

]
= αT

([
a1 b1

c1 d1

])
.

Since T preserves both addition and scalar multiplication, T is a linear transformation. �
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17.9 PROPERTIES OF LINEAR TRANSFORMATIONS

An important property of linear transformations is that the composition of any two linear
transformations (when the composition is defined) is also a linear transformation. This
fact has an interesting consequence, as we shall see.

Theorem 17.30 Let V,V ′ and V ′′ be vector spaces. If T1 : V → V ′ and T2 : V ′ → V ′′ are linear transfor-
mations, then the composition T2 ◦ T1 : V → V ′′ is a linear transformation as well.

Proof For u, v ∈ V and a scalar α, observe that

(T2 ◦ T1)(u + v) = T2(T1(u + v)) = T2(T1(u) + T1(v))

= T2(T1(u)) + T2(T1(v)) = (T2 ◦ T1)(u) + (T2 ◦ T1)(v)

and

(T2 ◦ T1)(αv) = T2(T1(αv)) = T2(αT1(v))

= αT2(T1(v)) = α(T2 ◦ T1)(v).

Therefore, T2 ◦ T1 is a linear transformation.

As an example of the preceding theorem, let T1 : R3 → R2 and T2 : R2 → R3 be
linear transformations defined by

T1(a, b, c) = (a + 2b − c, 3b + 2c) and T2(a, b) = (b, 2a, a + b).

Then T2 ◦ T1 : R3 → R3 is given by

(T2 ◦ T1)(a, b, c) = T2(T1(a, b, c))

= T2(a + 2b − c, 3b + 2c)

= (3b + 2c, 2a + 4b − 2c, a + 5b + c).

From what we mentioned earlier, T1 and T2 can also be defined by

T1

⎛
⎝

⎡
⎣ a

b
c

⎤
⎦

⎞
⎠ =

[
1 2 −1
0 3 2

] ⎡
⎣ a

b
c

⎤
⎦ and T2

([
a
b

])
=

⎡
⎣ 0 1

2 0
1 1

⎤
⎦

[
a
b

]
.

Interestingly enough,

(T2 ◦ T1)

⎛
⎝

⎡
⎣ a

b
c

⎤
⎦

⎞
⎠ =

⎡
⎣ 0 1

2 0
1 1

⎤
⎦[

1 2 −1
0 3 2

]⎡
⎣ a

b
c

⎤
⎦ ;

that is, the composition T2 ◦ T1 can be obtained by multiplying the matrices that describe
T1 and T2. Therefore, if we represent the linear transformations T1 and T2 by matrices
A1 and A2, respectively, then the matrix that represents T2 ◦ T1 is A2A1. This also ex-
plains why the definition of matrix multiplication, though curious at first, is actually quite
logical.

Two fundamental properties of a linear transformation are given in the next theorem.
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Theorem 17.31 Let V and V ′ be vector spaces with respective zero vectors z and z′. If T : V → V ′ is a
linear transformation, then

(i) T (z) = z′ and
(ii) T (−v) = −T (v) for all v ∈ V .

Proof We first verify (i). Since T preserves scalar multiplication,

T (z) = T (0z) = 0T (z) = z′.

Next we verify (ii). Let v ∈ V . Then

T (v) + T (−v) = T (v + (−v)) = T (z) = z′,

the last equality following by (i). Since the vector T (v) in V ′ has a unique negative,
namely −T (v), we conclude that T (−v) = −T (v).

If T : V → V ′ is a linear transformation, then it is often of interest to know how T
acts on subspaces of V . Let’s recall some terminology and notation from functions. In
a linear transformation T : V → V ′, the set V is the domain of T and the set V ′ is the
codomain of T . If W is a subset of V , then T (W ) = {T (w) : w ∈ W } is the image of
W under T . In particular, T (V ) is the range of T .

Theorem 17.32 Let V and V ′ be vector spaces and let T : V → V ′ be a linear transformation. If W is a
subspace of V , then T (W ) is a subspace of V ′.

Proof Let z and z′ be the zero vectors in V and V ′, respectively. Since z ∈ W and T (z) = z′ by
Theorem 17.31, it follows that z′ ∈ T (W ) and so T (W ) �= ∅. Thus, we need only show
that T (W ) is closed under addition and scalar multiplication. Let x and y be two vectors
in T (W ). Hence, there exist vectors u and v in W such that T (u) = x and T (v) = y. Then

x + y = T (u) + T (v) = T (u + v).

Since u, v ∈ W and W is a subspace of V , it follows that u + v ∈ W . Hence, x + y =
T (u + v) ∈ T (W ).

Next let α be a scalar and x ∈ T (W ). We show that αx ∈ T (W ). Since x ∈ T (W ),
there exists u ∈ W such that T (u) = x. Now,

αx = αT (u) = T (αu).

Since αu ∈ W , it follows that αx = T (αu) ∈ T (W ). By the Subspace Test, T (W ) is a
subspace of V ′.

To illustrate Theorem 17.32, let’s return to the linear transformation T : R3 → R2

defined in Result 17.24 by T (a, b, c) = (2a + c, 3c − b). Let W = {(a, b, 0) : a, b ∈
R}. We use the Subspace Test to show that W is a subspace of R3. Since (0, 0, 0) ∈ W ,
it follows that W �= ∅. Let (a1, b1, 0), (a2, b2, 0) ∈ W and let α ∈ R. Then

(a1, b1, 0) + (a2, b2, 0) = (a1 + a2, b1 + b2, 0) ∈ W and
α(a1, b1, 0) = (αa1, αb1, 0) ∈ W.

Since W is closed under addition and scalar multiplication, W is a subspace of R3. By
Theorem 17.32, T (W ) = {(2a,−b) : a, b ∈ R} is a subspace of R2. We show in fact
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that T (W ) = R2. Certainly, R2 = 〈(1, 0), (0, 1)〉. Hence, to show that T (W ) = R2, it
suffices, by Corollary 17.16, to show that (1, 0) and (0, 1) belong to T (W ). Letting
a = 1/2 and b = 0, we see that (1, 0) ∈ T (W ); while letting a = 0 and b = −1, we
see that (0, 1) ∈ T (W ).

For this same linear transformation T , we saw that T (1,−6,−2) = (0, 0) and
T (0, 0, 0) = (0, 0). Hence, both (1,−6,−2) and (0, 0, 0) map into the zero vector of R2.
The fact that (0, 0, 0) maps into (0, 0) is not surprising, of course, since Theorem 17.31
guarantees this.

If T : V → V ′ is a linear transformation and W ′ is a subset of V ′, then

T −1(W ′) = {v ∈ V : T (v) ∈ W ′}
is called the inverse image of W ′ under T . If W ′ = {z′}, where z′ is the zero vector of V ′,
then T −1(W ′) is called the kernel of T and is denoted by ker(T ). That is, the kernel of
T : V → V ′ is the set

ker(T ) = T −1({z′}) = {v ∈ V : T (v) = z′}.
An interesting feature of the kernel lies in the following theorem.

Theorem 17.33 Let V and V ′ be vector spaces and let T : V → V ′ be a linear transformation. Then the
kernel of T is a subspace of V .

Proof Let z and z′ be the zero vectors of V and V ′, respectively. Since T (z) = z′, it follows that
z ∈ ker(T ) and so ker(T ) �= ∅. Now let u, v ∈ ker(T ) and α ∈ R. Then

T (u + v) = T (u) + T (v) = z′ + z′ = z′

and

T (αu) = αT (u) = αz′ = z′.

This implies that u + v ∈ ker(T ) and αu ∈ ker(T ). By the Subspace Test, ker(T ) is a
subspace of V .

Returning once again to the linear transformation T : R3 → R2 in Result 17.24 de-
fined by T (a, b, c) = (2a + c, 3c − b), we see that

ker(T ) = {(a, b, c) : 2a + c = 0 and 3c − b = 0}
is a subspace of R3. Since 2a + c = 0 and 3c − b = 0, it follows that a = −c/2 and
b = 3c. Thus, ker(T ) = {(−c/2, 3c, c) : c ∈ R}. In other words, ker(T ) is the subspace
of R3 consisting of all scalar multiples of (−1/2, 3, 1).

EXERCISES FOR CHAPTER 17

17.1. Prove that the set C = {a + bi : a, b ∈ R} of complex numbers is a vector space under the addition
(a + bi) + (c + di) = (a + c) + (b + d)i and scalar multiplication α(a + bi) = αa + αbi, where α ∈ R.

17.2. Although we have taken R to be the set of scalars in a vector space, this need not always be the case. Let
V = {([a], [b]) : [a], [b] ∈ Z3} and let Z3 be the set of scalars.
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(a) Show that V is a vector space over the set Z3 of scalars under the addition ([a], [b]) + ([c], [d]) =
([a + c], [b + d]) and scalar multiplication [k]([a], [b]) = ([ka], [kb]).

(b) Write out precisely the elements of V . (Hence, a vector space can have more than one vector and be
finite.)

17.3. Addition or scalar multiplication is defined in R3 in each of the following. (Each operation not defined is
taken as the standard one.) Under these operations, determine whether R3 is a vector space.

(a) (a, b, c) + (d, e, f ) = (a, b, c)
(b) (a, b, c) + (d, e, f ) = (a − d, b − e, c − f )
(c) (a, b, c) + (d, e, f ) = (0, 0, 0)
(d) α(a, b, c) = (a, b, c)
(e) α(a, b, c) = (b, c, a)
(f) α(a, b, c) = (0, 0, 0)
(g) α(a, b, c) = (αa, 3αb, αc)

17.4. Let V be a vector space, where u, v ∈ V . Prove that there exists a unique vector x in V such that u + x = v.

17.5. Let V be a vector space with v ∈ V and α ∈ R. Prove that α(−v) = (−α)v = −(αv).

17.6. (a) Let V be a vector space and u, v, w ∈ V . Prove that if u + v = u + w, then v = w. (This is the
cancellation property for addition of vectors.)

(b) Use (a) to prove Theorem 17.3.

17.7. Prove or disprove:

(a) No vector is its own negative.
(b) Every vector is the negative of some vector.
(c) Every vector space has at least two vectors.

17.8. Let V be a vector space containing nonzero vectors u and v. Prove that if u �= αv for each α ∈ R, then
u �= β(u + v) for each β ∈ R.

17.9. Determine which of following subsets of R4 are subspaces of R4.

(a) W1 = {(a, a, a, a) : a ∈ R}
(b) W2 = {(a, 2b, 3a, 4b) : a, b ∈ R}
(c) W3 = {(a, 0, 0, 1) : a ∈ R}
(d) W4 = {(a, a2, 0, 0) : a ∈ R}
(e) W5 = {(a, b, a + b, b) : a, b ∈ R}

17.10. Let FR be the vector space of all functions from R to R. Determine which of the following subsets of FR
are subspaces of FR.

(a) W1 consists of all functions f such that f (1) = 0 = f (2).
(b) W2 consists of all functions f such that f (1) = 0 or f (2) = 0.
(c) W3 consists of all functions f such that f (2) = 2 f (1).
(d) W4 consists of all functions f such that f (1) �= f (2).
(e) W5 consists of all functions f such that f (1) �= 0.

17.11. Recall that the set R[x] of polynomial functions is a subspace of FR. Now determine which of the
following subsets of R[x] are subspaces of R[x].

(a) U1 = { f : f (x) = a for a fixed real number a} (The set of all constant polynomials)
(b) U2 = { f : f (x) = a + bx + cx2 + dx3, a, b, c, d ∈ R, d �= 0}
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(c) U3 = { f : f (x) = a + bx + cx2 + dx3, a, b, c, d ∈ R}
(d) U4 = { f : f (x) = a0 + a2x2 + a4x4 + · · · + a2mx2m, m ≥ 0, and ai ∈ R for 0 ≤ i ≤ m}
(e) U5 = { f : f (x) = (x3 + 1)g(x) for some g ∈ R[x]}

17.12. Let M2(R) be the vector space of 2 × 2 matrices whose entries are real numbers. Determine which of the
following subsets of M2(R) are subspaces of M2(R).

(a) W =
{[

a b
c d

]
: ad − bc = 0

}

(b) W =
{[

a b
c d

]
: α1a + α2b + α3c + α4d = 0

}
, where α1, α2, α3, α4 are fixed real numbers.

17.13. Prove that

W =
⎧⎨
⎩

⎡
⎣ a1 a2 a3

0 a4 a5

0 0 a6

⎤
⎦ : ai ∈ R for 1 ≤ i ≤ 6

⎫⎬
⎭

is a subspace of the vector space M3[R].

17.14. Let U and W be subspaces of a vector space V . Prove that U ∩ W is a subspace of V .

17.15. The graph of the function f : R → R defined by f (x) = 3
5 x is a straight line in R2 passing through the

origin. Each point (x, y) on this graph is a solution of the equation 3x − 5y = 0. Prove that the set S of
solutions of this equation is a subspace of R2.

17.16. Determine the following linear combinations:

(a) 4 · (1,−2, 3) + (−2) · (1,−1, 0)

(b) (−1)
[

3 −2
1 −3

]
+ 2

[
1 1
1 2

]
+ 5

[−1 −1
−1 −1

]

17.17. In R3, write i = (1, 0, 0) as a linear combination of u1 = (0, 1, 1), u2 = (1, 0, 1) and u3 = (1, 1, 0).

17.18. Let u = (1, 2, 3), v = (0, 1, 2) and w = (3, 1,−1) be vectors in R3.

(a) Show that w can be expressed as a linear combination of u and v.
(b) Show that the vector x = (8, 5, 2) can be expressed as a linear combination of u, v and w in more than

one way.

17.19. Let V be a vector space containing the vectors v1, v2, . . . , vn and the vectors w1, w2, . . ., wm. Let
W = 〈v1, v2, . . . , vn〉 and W ′ = 〈w1, w2, . . . , wm〉. Prove that if each vector vi (1 ≤ i ≤ n) is a linear
combination of the vectors w1, w2, . . . , wm, then W ⊆ W ′.

17.20. Prove that 〈(1, 2, 3), (0, 4, 1)〉 = 〈(1, 6, 4), (1,−2, 2)〉 in R3.

17.21. Let V be a vector space containing the vectors u and v. Prove that

(a) 〈u, v〉 = 〈u, 2u + v〉.
(b) 〈u, v〉 = 〈u + v, u − v〉.

17.22. Determine which sets S of vectors are linearly independent in the indicated vector space V .

(a) S = {(1, 1, 1), (1,−2, 3), (2, 5,−1)};V = R3.

(b) S = {(1, 0,−1), (2, 1, 1), (0, 1, 3)};V = R3.

(c) S =
{[

1 1
0 0

]
,

[
1 2
1 1

]
,

[
0 1
0 1

]}
;V = M2(R).
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17.23. For the vectors u = (1, 1, 1) and v = (1, 0, 2), find a vector w such that u, v, w are linearly independent
in R3. Verify that u, v, w are linearly independent.

17.24. Prove or disprove: If u1, u2, u3 are linearly independent vectors in a vector space V , then
u1 + u2, u1 + u3, 2u3 are linearly independent vectors in V .

17.25. Determine which sets S of vectors in FR are linearly independent.

(a) S = {1, sin2 x, cos2 x}
(b) S = {1, sin x, cos x}
(c) S = {1, ex, e−x}
(d) S = {1, x, x/(x2 + 1)}.

17.26. Let S = {u1, u2, . . . , un} be a linearly dependent set of n ≥ 2 vectors in a vector space V . Prove that if
each subset of S consisting of n − 1 vectors is linearly independent, then there exist nonzero scalars
c1, c2, . . . , cn such that c1u1 + c2u2 + · · · + cnun = z.

17.27. Prove that if T : V → V ′ is a linear transformation, then

T (α1v1 + α2v2 + · · · + αnvn) = α1T (v1) + α2T (v2) + · · · + αnT (vn),

where v1, v2, . . . , vn ∈ V and α1, α2, . . . , αn ∈ R.

17.28. Let V and V ′ be vector spaces and let T : V → V ′ be a linear transformation. Prove that if W ′ is a subspace
of V ′, then T −1(W ′) is a subspace of V .

17.29. Prove that there exists a bijective linear transformation T : R2 → C, where C = {a + bi : a, b ∈ R} is the
set of complex numbers.

17.30. For vector spaces V and V ′, let T1 and T2 be linear transformations from V to V ′. Define T1 + T2 : V → V ′
as

(T1 + T2)(v) = T1(v) + T2(v).

Prove that T1 + T2 is also a linear transformation.

17.31. Let W =
{[

a b
0 a + b

]
: a, b ∈ R

}
.

(a) Prove that W is a subspace of M2(R).
(b) Prove that there exists a bijective linear transformation T : R2 → W .

17.32. For the 2 × 3 matrix A =
[

3 1 −1
2 −5 2

]
, a function T : R3 → R2 is defined by T (u) = Au, where u is

a 3 × 1 column vector in R3.

(a) Determine T (u) for u =
⎡
⎣ 4

−1
−2

⎤
⎦.

(b) Prove that T is a linear transformation.

17.33. Let D : R[x] → R[x] be the differentiation linear transformation defined by

D(c0 + c1x + · · · + cnxn) = c1 + 2c2x + · · · + ncnxn−1.

Determine each of the following.

(a) D(W ), where W = {a + bx : a, b ∈ R}.
(b) D(W ), where W = R.
(c) ker(D).
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17.34. Let T : M2(R) → M2(R) be the linear transformation defined by

T
([

a b
c d

])
=

[
a a
c c

]

and consider the subset W =
{[

a 0
0 d

]
: a, d ∈ R

}
of M2(R).

(a) Prove that W is a subspace of M2(R).
(b) Determine the subspace T (W ) of M2(R).
(c) Determine the subspace ker(T ) of M2(R).

17.35. For the following statement S and proposed proof, either (1) S is true and the proof is correct, (2) S is true
and the proof is incorrect or (3) S is false and the proof is incorrect. Explain which of these occurs.

S: Let V be a vector space. If u is a vector of V such that u + v = v for some v ∈ V , then u + v = v for
all v ∈ V .

Proof Assume that u + v = v for some v ∈ V . Then we also know that z + v = v, where z is the zero
vector of V . Hence, u + v = z + v. By Exercise 17.6, u = z and so u + v = v for all v ∈ V .
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18
Proofs with Real and
Complex Numbers

While we have encountered the integers and rational numbers often throughout our
discussions and the real numbers to a somewhat lesser degree, there are many

areas of mathematics for which it is the real numbers that are of primary interest to
us. There are properties possessed by the real numbers that the integers and rational
numbers do not have. However, as we will see, the rational and real numbers have many
properties in common. Many properties of the real numbers were described and verified
in Section 4.3. In fact, it was the real numbers we encountered most often in Chapter 14
when studying proofs in calculus. In this chapter, we will describe properties possessed
by the real numbers – and only by the real numbers.

Real numbers have been encountered in more elementary mathematics as roots of
polynomials with real coefficients. However, we have seen polynomial equations with
real number coefficients that have no real number roots. This characteristic of the real
numbers does not occur with the complex numbers; that is, every polynomial equation
with complex number coefficients has only roots that are real or complex numbers.

Our goal in this chapter then is to discuss these two important classes of numbers –
the real numbers and the complex numbers.

18.1 THE REAL NUMBERS AS AN ORDERED FIELD

Interest in real numbers can no doubt be traced back many centuries to measurement,
magnitude and distance as these numbers were needed to answer questions of the type
“How much . . .”, “How many . . .” and “How far . . ..” In mathematics, however, our
interest in real numbers relies more on certain properties they possess. First, we recall
some of the basic properties of real numbers.

A fundamental characteristic of real numbers concerns the fact that they can be
added and multiplied, always resulting in a real number, and that these two operations
lead to several basic properties possessed by this important set of numbers. That is,
addition + and multiplication · are binary operations (if a, b ∈ R, then a + b ∈ R and
ab = a · b ∈ R). In particular, the real numbers satisfy the following properties.

1
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For all a, b, c ∈ R,
Properties of Addition Name of Property

1. a + b = b + a Addition is commutative.

2. a + (b + c) = (a + b) + c Addition is associative.

3. The real number 0 has the property The real number 0 is
that a + 0 = a for all a ∈ R. an additive identity.

4. For each a ∈ R, the real number −a Every real number has
has the property that a + (−a) = 0. an additive inverse.

Properties of Multiplication

5. ab = ba Multiplication is commutative.

6. a(bc) = (ab)c Multiplication is associative.

7. The real number 1 has the property The real number 1 is
that a1 = a for all a ∈ R. a multiplicative identity.

8. For each a ∈ R with a �= 0, Every nonzero real number
the real number 1/a has the has a multiplicative inverse.
property that a(1/a) = 1.

Distributive Property

9. a(b + c) = ab + ac Multiplication distributes
over addition.

The fact that R satisfies properties 1–9 above means that R is a field (an algebraic
structure described in Chapter 16). There are fields distinct from the real numbers, how-
ever. For example, the set Q of rational numbers and the set Zp of integers modulo a
prime p are fields. The field Zp is finite, of course, since it consists of p elements, while
the field Q is denumerable and the field R is uncountable (see Section 11.3). Unlike the
field Zp of integers modulo a prime p, the real numbers (and rational numbers as well)
have two properties (called properties of order) that allow us to talk about positive real
numbers and negative real numbers.

Properties of Order

10. Every real number a satisfies exactly one of the following: a > 0, a = 0,
a < 0.

11. If a, b ∈ R such that a > 0 and b > 0, then a + b > 0 and ab > 0.

Of course, a ≥ 0 tells us that a > 0 or a = 0, and b ≤ 0 tells us that b < 0 or b = 0.
For two real numbers a and b, we write a > b, as expected, to mean a − b > 0. We may
also write a > b as b < a.

That the field R satisfies properties 10 and 11 means that R is an ordered field.
The set Q of rational numbers is also an ordered field. The field Z2, consisting only of
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the two elements [0] and [1], is not an ordered field. If Z2 were an ordered field, then
by property 10, either [1] > [0] or [1] < [0]. If [1] > [0], then [1] + [1] = [0] > [0] by
property 11, which is impossible. On the other hand, if [1] < [0], then [0] > [1] and so
[0] − [1] = [0] + (−[1]) = [0] + [1] = [1] > [0], again impossible.

Result 18.1 If a, b, c and d are real numbers such that a > b and c > d, then ac + bd > ad + bc.

Proof Since a > b and c > d, it follows that a − b > 0 and c − d > 0. Therefore, by prop-
erty 11,

(a − b)(c − d) = ac + bd − (ad + bc) > 0.

Hence, ac + bd > ad + bc.

While we have seen that the set R of real numbers is an ordered field, this property
of R is not enough to distinguish it from all other fields since Q as well is an ordered
field. We now consider an additional property possessed by real numbers that no other
ordered field has.

18.2 THE REAL NUMBERS AND THE COMPLETENESS AXIOM

Let S be a nonempty subset of R. A real number b is said to be an upper bound for S
if x ≤ b for all x ∈ S. A real number a is said to be a lower bound for S if a ≤ x for all
x ∈ S. A set of real numbers having both an upper and lower bound is called a bounded
set. A set that is not bounded is called an unbounded set. For example, the interval (0, 1)
is a bounded set. Every number b ≥ 1 is an upper bound. The set N has lower bounds.
In fact, any number a ≤ 1 is a lower bound for N.

A real number d is a least upper bound or supremum for S if d is an upper bound
of S and d ≤ b for every upper bound b of S. A real number c is a greatest lower bound
or infimum for S if c is a lower bound of S and c ≥ a for every lower bound a of S.
While a set of real numbers with an upper bound has infinitely many upper bounds, this
is not the case with least upper bounds. The same is true for lower bounds and greatest
lower bounds.

Theorem 18.2 Every subset S of real numbers having a least upper bound has a unique least upper
bound. Also, if S has a greatest lower bound, then it is unique as well.

Proof Assume that some subset S of real numbers has two least upper bounds, say b1 and b2.
Since b1 is a least upper bound, b1 ≤ b2; while since b2 is a least upper bound, b2 ≤ b1.
Therefore, b1 = b2.

The proof of the uniqueness of a greatest lower bound is similar.

The unique least upper bound (unique supremum) for a set S of real numbers is
denoted by lub(S) or sup(S). Furthermore, the unique greatest lower bound (unique in-
fimum) for a set S of real numbers is denoted by glb(S) or inf(S).

If an upper bound b for a set S of real numbers belongs to S, then b = sup(S) and b
is the greatest or maximum element of S. If a lower bound a for S belongs to S, then
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a = inf(S) and a is the least or minimum element of S. Should S have these elements,
then the maximum element of S is denoted by max(S) and the minimum element of S is
denoted by min(S). Certainly, if S is a finite nonempty set of real numbers, then S has
both a maximum element and minimum element. The contrapositive of this statement
then says: If S is a nonempty set of real numbers having either no maximum element or
no minimum element, then S is an infinite set.

Example 18.3 (a) The set S = {x ∈ R : 0 ≤ x < 1} = [0, 1) has 1 as an upper bound and 0 as a lower
bound. In fact, 1 is the supremum of S (and so sup(S) = 1) while 0 is the infimum
(and so inf(S) = 0). In addition, min(S) = 0, while S has no maximum element.

(b) The set R+ of positive real numbers has no upper bound and 0 is the infimum of
R+ (and so inf(R+) = 0). This set has no maximum or minimum element.

(c) The set S = {x ∈ Q :
√

2 < x <
√

3} has the rational number 2 as an upper bound
and 1 as a lower bound. It turns out for any M ∈ Q that is an upper bound for S,
there is an upper bound M′ ∈ Q for S such that M′ < M and so S has no least upper
bound in Q. Also, S has no greatest lower bound in Q. �

Example 18.4 For each of the following sets S of real numbers, determine sup(S) and inf(S) should
these exist. Also determine max(S) and min(S) if these exist.

(a) S = {−1, 3, 5, π2, 8}
(b) S = {

1
n : n ∈ {1, 2, . . . , 100}}

(c) S = {x ∈ R : x < 3}
(d) S = {x ∈ Q : −1 ≤ x ≤ √

2}.

Solution (a) sup(S) = max(S) = π2, inf(S) = min(S) = −1.
(b) sup(S) = max(S) = 1, inf(S) = min(S) = 1/100.
(c) sup(S) = 3 while max(S) does not exist. The set S has no lower bound.
(d) sup(S) = √

2 but max(S) does not exist, while inf(S) = min(S) = −1. �

There is another important property possessed by the real numbers. While this prop-
erty may seem self-evident, it cannot, however, be proved by means of the definitions
and properties we have stated. Consequently, we accept this as an axiom for the real
numbers.

The Completeness Axiom Every nonempty set of real numbers having an upper bound
in R has a least upper bound in R.

With this additional axiom, R now takes on the added structure of a complete
ordered field. As with other algebraic structures, there is a concept of isomorphism for
complete ordered fields. Here, it turns out that every complete ordered field is isomor-
phic to R. Consequently, there is essentially only one complete ordered field, namely
the real numbers. Therefore, the defining properties of a complete ordered field pro-
vide a characterization of the real numbers. We observed in Example 18.3(c) that the
set S = {x ∈ Q :

√
2 < x <

√
3} has upper bounds in Q but no least upper bound in Q.

Therefore, the set Q of rational numbers is an example of an ordered field that is not a
complete ordered field.
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18.2 The Real Numbers and the Completeness Axiom 5

We saw in Theorem 5.16 that the number
√

2 is not rational; that is, there is no
rational number r for which r2 = 2. This, however, brings up an even more fundamental
question – one that may not even have occurred to us. How do we know that there is any
real number r, rational or not, such that r2 = 2? We are now in a position to verify this.

Theorem 18.5 The real number
√

2 exists, that is, there is a real number r for which r2 = 2.

Proof Let S = {x ∈ (0,∞) : x2 < 2}. Since 1, for example, belongs to S, the set S is nonempty.
Also, since every real number x ∈ S has the property that x2 < 4 = 22, it follows that
x < 2 for each x ∈ S and so 2 is an upper bound for S. By the Completeness Axiom, S
has a least upper bound, say sup(S) = a. We claim that a2 = 2. Assume, to the contrary,
that a2 �= 2. There are then two possibilities for a.

Case 1. a2 < 2. Let b = 2/a and so ab = 2. Since a2 < 2, it follows that a = a2/a <

2/a = b. We show that there is a real number greater than a that belongs to S, which will
contradict the fact that a is a least upper bound of S.

Let c be the arithmetic mean (average) of a and b, that is, c = (a + b)/2. Thus, a <

c < b. Since a �= b, it follows that (a − b)2 > 0 and so (a − b)2 = a2 − 2ab + b2 > 0.
Thus, a2 + 2ab + b2 > 4ab and so (a + b)2 > 4ab. Hence,

c2 =
(

a + b
2

)2

> ab = 2 and so
( c

2

)2
>

1
2
.

Therefore, (
2
c

)2

< 2

and so 2
c ∈ S. Since c

2 < b
2 , it follows that 2

c > 2
b = a, which is impossible since a is an

upper bound of S.

Case 2. a2 > 2. As in Case 1, we let b = 2/a and c = (a + b)/2. Here, we have
a = a2/a > 2/a = b and so b < c < a. Applying the same argument as in Case 1, we
have c2 > 2 again. For each x ∈ S, it follows that x2 < 2 < c2, which implies that x < c.
That is, c is an upper bound for S. Since c < a and sup(S) = a, we have a contradiction
here as well.

Since R satisfies the Completeness Axiom, it not only follows that every set of real
numbers having an upper bound in R has a least upper bound in R but it has the analogous
property for lower bounds.

Theorem 18.6 Every nonempty set of real numbers having a lower bound in R has a greatest lower
bound in R.

Proof Let S be a nonempty set of real numbers having a ∈ R as a lower bound for S. Therefore,
a ≤ x for every x ∈ S. Let T = {−x : x ∈ S}. Since a ≤ x, it follows that −a ≥ −x for
every element −x ∈ T . Therefore, −a is an upper bound for T . By the Completeness
Axiom, T has a least upper bound b. Therefore, −a ≥ b ≥ −x and so a ≤ −b ≤ x. That
is, −b is a lower bound for S and is at least as large as every lower bound for S. Hence,
−b is the greatest lower bound for S.
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6 Chapter 18 Proofs with Real and Complex Numbers

Among the many properties of the real numbers is a simple-sounding, yet neverthe-
less useful, property called the Archimedean Principle. This is named for the ancient
Greek geometer and physicist Archimedes of Syracuse. This principle appears in Book V
of Euclid’s classic Elements. It is sometimes referred to as the Axiom of Archimedes,
but this is doubly misleading, as it is not an axiom since it is a consequence of the Com-
pleteness Axiom and is not due to Archimedes (in fact, Archimedes credits it to Eudoxus
of Cnidus).

Theorem 18.7 (The Archimedean Principle) For every real number x, there exists a positive integer
n such that x < n.

Proof If x ≤ 0, then n = 1 has the desired property. Hence, we may assume that x is positive.
Let S = {k ∈ Z : k ≤ x}. Then x is an upper bound for S and so S has a least upper
bound b. Consequently, k ≤ b for all k ∈ S. Since b − 1 is not an upper bound for S, it
follows that there is an integer m ∈ S for which b − 1 < m. Let n = m + 1. Then n ∈ N
and n > b. Since n /∈ S, it follows that n > x.

We now present two consequences of the Archimedean Principle.

Corollary 18.8 For every two real numbers x and y with x > 0, there exists a positive integer n such that
nx > y.

Proof Consider the real number y/x. By Theorem 18.7, there exists a positive integer n such
that n > y/x. Thus, nx > y.

Corollary 18.9 For every positive real number ε, there exists a positive integer n such that 1
n < ε.

Proof By Corollary 18.8, there exists a positive integer n such that nε > 1. Thus, 1
n < ε.

We are now in a position to establish two important properties of real numbers,
namely that both the rational numbers and the irrational numbers are dense in the real
numbers; that is, for every two real numbers a and b with a < b, there is a rational
number r and an irrational number t such that a < r < b and a < t < b. If a and b are
rational numbers with a < b, then a+b

2 is rational and a < a+b
2 < b. Also, if a and b are

both rational with a < b, then so is b − a, while a + b−a√
2n

is irrational for every positive

integer n. Since b−a√
2n

< b − a, it follows that a < a + b−a√
2n

< b. More generally, we have
the following two theorems.

Theorem 18.10 (The Rational Numbers are Dense in R) For every two real numbers a and b with
a < b, there exists a rational number r such that a < r < b.

Proof First, if a < 0 and b > 0, then r = 0 has the desired property. If a = 0, then there is a
positive integer n such that 1

n < b (by Corollary 18.9) and r = 1
n has the desired property.

If b = 0, then −a > 0 and there is a positive integer n such that 1
n < −a and r = − 1

n
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18.3 Open and Closed Sets of Real Numbers 7

has the desired property. Hence, we may assume that a and b are both positive or both
negative. We consider these two cases.

Case 1. 0 < a < b. By Corollary 18.9, then there is a positive integer n such that 1
n <

b − a. Hence, a < b − 1
n . For such a positive integer n, there exists a positive integer m

such that 1
m < 1

nb (again by Corollary 18.9). Thus, m > nb. Therefore, there are positive
integers m such that m ≥ nb. By the Well-Ordering Principle (see Section 6.1), the set
S = {m ∈ N : m ≥ nb} has a least element m0. Therefore, m0 ∈ S but m0 − 1 /∈ S and so
m0 ≥ nb while m0 − 1 < nb. Therefore, m0−1

n < b. However, m0 ≥ nb, so b ≤ m0
n . Thus,

a < b − 1
n

≤ m0

n
− 1

n
= m0 − 1

n
< b.

Letting r = m0−1
n , we have a < r < b.

Case 2. a < b < 0. Thus, 0 < −b < −a. By Case 1, there is a rational number r
such that −b < r < −a and so the rational number −r satisfies a < −r < b.

Theorem 18.11 (The Irrational Numbers are Dense in R) For every two real numbers a and b with
a < b, there exists an irrational number t such that a < t < b.

Proof If 0 ≤ a < b or a < b ≤ 0, then by Theorem 18.10, there is a nonzero rational number
r such that a√

2
< r < b√

2
. If a < 0 and b > 0, then there is a rational number r such that

0 < r < b√
2
. In either case, a <

√
2r < b. Since

√
2r is an irrational number, t = √

2r
has the desired property.

18.3 OPEN AND CLOSED SETS OF REAL NUMBERS

For a real number x and a positive real number ε, the ε-neighborhood Nε (x) of x is the
open interval

Nε (x) = {y ∈ R : |y − x| < ε} = (x − ε, x + ε).

By the deleted ε-neighborhood N∗
ε (x) of x is meant the set

N∗
ε (x) = {y ∈ R : 0 < |y − x| < ε} = (x − ε, x) ∪ (x, x + ε).

That is, N∗
ε (x) = Nε (x) − {x}. A neighborhood of a real number x is an ε-neighborhood

of x for some ε > 0, while a deleted neighborhood of x is a deleted ε-neighborhood
of x for some ε > 0. Therefore, a neighborhood of x is an open interval centered at x.
A neighborhood of x is often denoted by N(x), or more simply by N, and a deleted
neighborhood of x is commonly denoted by N∗(x).

A point x belonging to a set S of real numbers is an interior point of S if there exists
some neighborhood N of x for which N ⊆ S. In particular, every point of a neighborhood
or deleted neighborhood of any real number is an interior point. The set of all interior
points of S is called the interior of S and is denoted by Int(S).
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8 Chapter 18 Proofs with Real and Complex Numbers

Example 18.12 Determine the interior of each of the following sets of real numbers.

(a) S = (0, 1] (b) S = [−1, 0) ∪ (0, 1] (c) S = {x ∈ R : x ≥ 0}
(d) S = R (e) S = {

1
n : n ∈ N

}
( f ) S = ⋂

n∈N

[− 1
n , 1

n

]
(g) S = ∅.

Solution (a) Int(S) = (0, 1) = N 1
2
( 1

2 ) (b) Int(S) = (−1, 0) ∪ (0, 1) = N∗
1 (0)

(c) Int(S) = R+ (d) Int(S) = R (e) Int(S) = ∅
( f ) Int(S) = ∅ (g) Int(S) = ∅.

A set S of real numbers is called an open set if every point of S is an interior point
of S. Hence, Int(S) = S if and only if S is an open set. Thus, every open interval of real
numbers is an open set. Furthermore, since Int(R) = R and Int(∅) = ∅ (as seen above),
both R and ∅ are open sets. Not only is Int(S) an open set for all those sets S mentioned
in Example 18.12, the interior of every set is an open set (see Exercise 18.22). Since
Int(S) is always a subset of S, it suffices to show that S ⊆ Int(S) when establishing that
a set S is open. That is, to show that a set S is open, it suffices to show that every point
of S is an interior point of S.

A set S of real numbers is called a closed set if its complement S is open. Conse-
quently, every closed interval of real numbers is a closed set, as are both R and ∅.

Example 18.13 Determine which of the following sets of real numbers are open, which are closed and
which are neither.

(a) S = [0,∞) (b) S = (0,∞) (c) S = [0, 1] ∪ [2, 3)

(d) S = {1, 2, 3} (e) S = {
1
n : n ∈ N

}
( f ) S = ⋂

n∈N

(
n, n + 1

n

)
.

Solution First, the set S in (b) is open. Since the set S in (f) is ∅, this set is both open and closed.
The sets S in (a) and (d) are both closed. The sets S in (c) and (e) are neither

For a set S of real numbers, a point x ∈ R is called a boundary point of S if every
neighborhood N of x contains both a point in S and a point not in S, that is, N ∩ S �= ∅
and N ∩ S �= ∅. The set of all boundary points of S is called the boundary of S and is
denoted by Bd(S). Therefore, for every set S of real numbers, Bd(S) = Bd(S).

Example 18.14 Determine the boundary of each of the following sets of real numbers.

(a) S = (0, 1] (b) S = [−1, 0) ∪ (0, 1] (c) S = {x ∈ R : x ≥ 0}
(d) S = R (e) S = {

1
n : n ∈ N

}
( f ) S = ⋂

n∈N

[− 1
n , 1

n

]
.

Solution (a) Bd(S) = {0, 1} (b) Bd(S) = {−1, 0, 1} (c) Bd(S) = {0}
(d) Bd(S) = ∅ (e) Bd(S) = S ∪ {0} ( f ) Bd(S) = {0}.
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18.3 Open and Closed Sets of Real Numbers 9

The following theorem gives a characterization of sets S of real numbers that are
closed in terms of the boundary of S.

Theorem 18.15 A set S of real numbers is closed if and only if Bd(S) ⊆ S.

Proof First, suppose that S is a closed set. Then S is an open set. Assume, to the contrary, that
Bd(S) �⊆ S. Then there exists some real number x ∈ Bd(S) such that x /∈ S. Then x ∈ S.
Since S is an open set, there is a neighborhood N of x such that N ⊆ S, contradicting the
fact that x is a boundary point of S.

For the converse, assume that S is a set such that Bd(S) ⊆ S. We show that S is a
closed set or, equivalently, that S is an open set. Let x ∈ S. Thus, x /∈ S. Since Bd(S) ⊆ S,
it follows that x /∈ Bd(S). Hence, there is a neighborhood N of x such that N ∩ S = ∅.
Therefore, N ⊆ S and so S is open.

Some open sets can be constructed from certain collections of open sets.

Theorem 18.16 (a) The union of any collection of open sets of real numbers is an open set.
(b) The intersection of any finite collection of open sets of real numbers is an open set.

Proof (a) Let {Sα}α∈I be a collection of open sets of real numbers (where I is an index set)
and let x ∈

⋃
α∈I

Sα . Then x ∈ Sα for some α ∈ I. Since Sα is an open set, there is a

neighborhood N of x such that N ⊆ Sα . Consequently, N ⊆
⋃
α∈I

Sα and so
⋃
α∈I

Sα is

open.
(b) Let {S1, S2, . . . , Sn} be a (finite) collection of open sets of real numbers and let

x ∈
n⋂

i=1

Si. Thus, x ∈ Si for each i with 1 ≤ i ≤ n. Since Si is an open set for

1 ≤ i ≤ n, there is an εi-neighborhood Ni of x, where εi > 0, such that Ni ⊆ Si. Let
ε = min{εi : 1 ≤ i ≤ n} and let N = Nε (x). Since N ⊆ Ni for i = 1, 2, . . . , n, it

follows that N ⊆ Si for i = 1, 2, . . . , n. Therefore, N ⊆
n⋂

i=1

Si and so
n⋂

i=1

Si is

open.

Example 18.17 For each positive integer n, the open interval
(− 1

n , 1
n

)
is an open set. Since

⋂
n∈N

Sn = {0}
is not an open set, it follows that Theorem 18.16(b) cannot be extended to say that the
intersection of any collection of open sets of real numbers is open.

In Theorem 6.15, we saw (by one of De Morgan’s laws) that for any finite number
A1, A2, . . . , An of sets,

n⋃
i=1

Ai =
n⋂

i=1

Ai.
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10 Chapter 18 Proofs with Real and Complex Numbers

By Exercise 6.29, the following is also true:

n⋂
i=1

Ai =
n⋃

i=1

Ai.

In fact, there is a De Morgan’s law in both cases for any collection {Sα}α∈I of sets being
considered. From this result and Theorem 18.16, we have the following.

Corollary 18.18 (a) The intersection of any collection of closed sets of real numbers is a closed set.
(b) The union of any finite collection of closed sets of real numbers is a closed set.

Let S be a set of real numbers. A real number x is an accumulation point of S if
every deleted neighborhood of x contains a point of S. The set of accumulation points
of S is denoted by Acc(S). Thus, every interior point of S is an accumulation point of S
and so Int(S) ⊆ Acc(S).

A real number x ∈ S is called an isolated point of S if there exists some deleted
neighborhood of x containing no point of S. Therefore, a point x ∈ S is an isolated point
of S if and only if x is not an accumulation point of S.

The closure of a set S of real numbers is the set Cl(S) = S ∪ Acc(S).

Theorem 18.19 Let S be a set of real numbers. Then a real number x belongs to Cl(S) if and only if every
neighborhood of x contains an element of S.

Proof Let x ∈ Cl(S). Then x ∈ S or x is an accumulation point of S. In either case, every neigh-
borhood of x contains an element of S.

For the converse, suppose that x is a real number having the property that every
neighborhood of x contains an element of S. If x /∈ S, then every deleted neighborhood
of x contains an element of S. Thus, either x ∈ S or x is an accumulation point of S and
so x ∈ Cl(S).

While Theorem 18.15 states that a set S of real numbers is closed if and only if
Bd(S) ⊆ S, the same can be said if Bd(S) is replaced by Acc(S).

Theorem 18.20 A set S of real numbers is closed if and only if Acc(S) ⊆ S.

Proof First, let S be a closed set and assume, to the contrary, that there is an accumulation
point x of S that does not belong to S. Therefore, x ∈ S. Since S is closed, S is open.
Consequently, there is a neighborhood N of x such that N ⊆ S. However then,
N ∩ S = ∅, which contradicts the fact that x is an accumulation point of S.

We now verify the converse. Assume that Acc(S) ⊆ S. We show that S is a closed
set or, equivalently, that S is an open set. Let x ∈ S. Since Acc(S) ⊆ S, it follows that x is
not an accumulation point of S. Consequently, there is a neighborhood N of x such that
N ∩ S = ∅ and so N ⊆ S. Hence, S is open.

Employing the concept of accumulation point, we can show that all nonempty closed
sets of real numbers which are bounded have an interesting property.
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Theorem 18.21 Every nonempty, closed, bounded set of real numbers has both a maximum element and
a minimum element.

Proof Let S be a nonempty, closed, bounded set of real numbers. Since S has an upper bound,
sup(S) exists, say sup(S) = b. We claim that b ∈ S. Suppose that b /∈ S. Then for a pos-
itive integer ε, there exists y ∈ S such that b − ε < y < b, so N∗

ε (b) ∩ S �= ∅. Hence,
b ∈ Acc(S). Since S is closed, it follows by Theorem 18.20 that b ∈ S, which is a contra-
diction. Consequently, max(S) exists and max(S) = b. Similarly, S contains a minimum
element.

Example 18.22 Determine the set of accumulation points and the closure of each of the following sets
of real numbers as well as identify any isolated points in the set.

(a) S = {
1
n : n ∈ N

}
(b) S = ⋂

n∈N

(− 1
n , 1

n

)
(c) S = (1, 2] (d) S = Q ∩ [0, 1]

(e) S = {1, 2, 3} ( f ) S = R

Solution (a) Acc(S) = {0}, Cl(S) = S ∪ {0}. All points of S are isolated points.

(b) S = {0}, Acc(S) = ∅, Cl(S) = {0}. The point 0 is an isolated point.

(c) Cl(S) = Acc(S) = [1, 2].

(d) Cl(S) = Acc(S) = [0, 1].

(e) Acc(S) = ∅, Cl(S) = S. Each point of S is an isolated point.

( f ) Cl(S) = Acc(S) = R.

Not surprisingly, the closure of every set of real numbers is a closed set.

Theorem 18.23 If S is a set of real numbers, then Cl(S) is a closed set.

Proof By Theorem 18.20, it suffices to show that Acc(Cl(S)) ⊆ Cl(S). Let x ∈ Acc(Cl(S)).
Thus, x is an accumulation point of Cl(S). Let N = N(x) be a neighborhood of x. Thus,
N contains a point y ∈ Cl(S) that is distinct from x. Since y ∈ Cl(S) = S ∪ Acc(S), it
follows that y ∈ S or y ∈ Acc(S).

First, suppose that y ∈ S. Then N∗(x) ∩ S �= ∅. Next, suppose that y ∈ Acc(S). Since
N∗(x) is an open set, there is a neighborhood N ′(y) such that N ′(y) ⊆ N∗(x). Since
y ∈ Acc(S), there is a point z ∈ S ∩ N ′(y) such that z is different from both y and x.
Consequently, each deleted neighborhood of x contains a point of S, which implies that
x ∈ Acc(S) and so x ∈ Cl(S).

Theorem 18.24 Let S be a set of real numbers. Then Cl(S) = S if and only if S is a closed set.

Proof First, suppose that Cl(S) = S. Then S is a closed set by Theorem 18.23. For the con-
verse, suppose that S is a closed set. By Theorem 18.20, Acc(S) ⊆ S. Then Cl(S) =
S ∪ Acc(S) = S.
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12 Chapter 18 Proofs with Real and Complex Numbers

18.4 COMPACT SETS OF REAL NUMBERS

A collection {Sα}α∈I of sets of real numbers is called a cover of a set S of real numbers
if S ⊆

⋃
α∈I

Sα . If every set Sα , α ∈ I, is an open set, then {Sα}α∈I is called an open cover

of S. If {Sα}α∈I is a cover (or open cover) of S and J ⊆ I such that {Sα}α∈J is also a cover
of S, then {Sα}α∈J is called a subcover (or open subcover) of S.

Example 18.25 (a) Let S = Z and let Sn = (n − 1, n + 1) for each n ∈ Z. Then {Sn}n∈Z is an open
cover of S.

(b) Let S = [2, 3] and let Sα = (
α − 1

α
, α + 1

α

)
for each α ∈ S. Then {Sα}α∈S is an

open cover of S.
(c) Let S = {

1
n : n ∈ N

}
and let I = N ∪ {0}. Furthermore, let S0 = (−1, 1),

S1 = (
1
2 , 2

)
and Sn = (−1, 1

n

)
for each n ∈ N − {1}. Then {Sα}α∈I is an open cover

of S. For J = {0, 1}, {Sα}α∈J = {S0, S1} is an open subcover of S. �

A set S of real numbers is called compact if every open cover of S contains a finite
subcover. That is, S is compact if for every open cover {Sα}α∈I of S, there is a finite subset
J of I such that {Sα}α∈J is also a cover of S.

A major theorem concerning properties of real numbers is the Heine–Borel
Theorem, which characterizes compact sets of real numbers as those sets that are closed
and bounded. This theorem was initially proved and used by the mathematician Peter
Gustav Lejeune Dirichlet in the 1860s, although only published in 1904. Similar tech-
niques were later used by Eduard Heine, Karl Weierstrass and Salvatore Pincherle. The
first mathematician to state and prove the theorem in the form usually presented was
Émile Borel, which occurred in 1895. First, we state and prove a lemma that turns out
to be a special case of the Heine–Borel Theorem.

Lemma 18.26 Let S = [a, b] be a closed interval, where a, b ∈ R and a ≤ b. Then every open cover of
S has a finite open subcover.

Proof Let {Sα}α∈I be an open cover of S. Certainly, {a} is covered by one of these open sets.
Let

X = {x ∈ [a, b] : [a, x] has a finite subcover}.
Since a ∈ X , it follows that X �= ∅. Furthermore, because b is an upper bound for X , the
set X has a least upper bound c. Since c ∈ [a, b], there exists β ∈ I such that c ∈ Sβ . Since
Sβ is an open set, there exists an ε-neighborhood Nε (c) of c such that Nε (c) ⊆ Sβ , that is,
(c − ε, c + ε) ⊆ Sβ . Because c − ε is not an upper bound for X , there is x ∈ X for which
x > c − ε. There is a finite open subcover of [a, x], which we denote by {S1, S2, . . . , Sn}.
Then {S1, S2, . . . , Sn, Sβ} is a finite subcover of [a, c + ε). If b ∈ [a, c + ε), then c = b,
completing the proof. Otherwise, b /∈ [a, c + ε) and so c + ε

2 ∈ X , contradicting the fact
that c is an upper bound for X .

By Lemma 18.26, every closed interval is a compact set. Of course, every closed in-
terval is a closed and bounded set. The Heine–Borel Theorem states that sets possessing
these two properties are the only sets that are compact.
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18.4 Compact Sets of Real Numbers 13

Theorem 18.27 (The Heine–Borel Theorem) A set S of real numbers is compact if and only if S is
closed and bounded.

Proof First, assume that S is a compact set of real numbers. We begin by showing that S
is bounded. Let Tn = (−n, n) for each n ∈ N. Since

⋃
n∈N Tn = R, it follows that S ⊆⋃

n∈N Tn and so {Tn}n∈N is an open cover of S. Because S is compact, this open cover has
a finite subcover, say {Tn}n∈J where J is a finite subset of N. Let M be the largest integer
in J. Then ⋃

n∈J

Tn = TM = (−M, M)

and so M is an upper bound and −M a lower bound for S. That is, S is bounded.
Next, we show that S is closed. By Theorem 18.20, it suffices to show that every ac-

cumulation point of S belongs to S. Assume, to the contrary, that there is an accumulation
point x of S that does not belong to S. That is, x ∈ S. For each n ∈ N, let

Sn =
[

x − 1
n
, x + 1

n

]
=

(
−∞, x − 1

n

) ⋃(
x + 1

n
,∞

)
.

Thus, each set Sn is open. Since x /∈ S, it follows that S ⊆ ⋃
n∈N Sn and so {Sn}n∈N is an

open cover of S. Because S is compact, this open cover has a finite subcover, say {Sn}n∈J

where J is a finite subset of N. Let M be the largest integer in J. Then

S ⊆
(

−∞, x − 1
M

) ⋃ (
x + 1

M
,∞

)
.

However then,
[
x − 1

M , x + 1
M

]
contains no point of S and so

(
x − 1

M , x + 1
M

)
also con-

tains no point of S, contradicting the fact that x is an accumulation point of S.
We now verify the converse. Let S be a set of real numbers that is closed and

bounded. We show that S is compact. Let {Sα}α∈I be an open cover of S. Since S is a
bounded set, there is a closed interval [a, b] such that S ⊆ [a, b]. Because S is closed, S
is open. Then {S} ∪ {Sα}α∈I is a collection of open sets. Since S ⊆ ⋃

α∈I Sα , it follows
that (⋃

α∈I

Sα

)
∪ S = R.

Thus, {S} ∪ {Sα}α∈I is an open cover of R and of [a, b] as well. By Lemma 18.26, there
is a finite subcover of [a, b] and hence, of S as well. We consider two cases.

Case 1. The finite subcover does not contain S. Then this is a finite subcollection of
{Sα}α∈I that is an open cover of S.

Case 2. The finite subcover contains S. Suppose that the subcover is {S1, S2, . . . ,

Sn, S}. Since S and S are disjoint, S ⊆ ⋃n
i=1 Si and so {S1, S2, . . . , Sn} is an open cover

of S.

The Heine–Borel Theorem implies that every compact set of real numbers possesses
an interesting and useful property.
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14 Chapter 18 Proofs with Real and Complex Numbers

Corollary 18.28 Every nonempty compact set of real numbers contains both a maximum and minimum
element.

Proof Let S be a nonempty compact set of real numbers. By Theorem 18.27, the set S is closed
and bounded and so by Theorem 18.21, S contains both a maximum and minimum
element.

A theorem closely related to the Heine–Borel Theorem is the Bolzano–Weierstrass
Theorem. This theorem is named for the two mathematicians Bernard Bolzano and Karl
Weierstrass, but was first proved by Bolzano in 1817 as a lemma used in proving the
Intermediate Value Theorem of Calculus. Some 50 years later, this theorem was recog-
nized as important in itself and proved again – this time by Weierstrass.

Theorem 18.29 (The Bolzano–Weierstrass Theorem) Every bounded infinite set of real numbers has
at least one accumulation point.

Proof Assume, to the contrary, that there is a bounded infinite set S of real numbers that has no
accumulation points. Since Acc(S) = ∅, it follows by Theorem 18.20 that S is a closed
set. Because S is closed and bounded, it follows by the Heine–Borel Theorem that S is
compact. Since Acc(S) = ∅, it follows that for each x ∈ S, there is a neighborhood Nx of
x such that Nx ∩ S = {x}. Then {Nx}x∈S is an open cover of S. Since S is compact, there
is a finite subcover {Nx1 , Nx2 , . . . , Nxn}. However, since

S
⋂(

n⋃
i=1

Nxi

)
= {x1, x2, . . . , xn},

it follows that S is finite, a contradiction.

18.5 COMPLEX NUMBERS

A linear equation with integer coefficients is an equation of the type ax + b = 0 where
a, b ∈ Z and a �= 0. Many such equations do not have integer roots. For example,
2x + 1 = 0 has no integer roots. In fact, it is equations such as these that suggest the
necessity of introducing rational numbers so that equations ax + b = 0, where a, b ∈ Z
and a �= 0, always have a rational root, namely x = −b/a ∈ Q. Indeed, if ax + b = 0
where a, b ∈ Q and a �= 0, then this equation has the rational root −b/a. Furthermore, if
a, b ∈ R and a �= 0, then ax + b = 0 has the real number root x = −b/a. Consequently,
linear equations with real coefficients always have a real root, while linear equations
with rational coefficients always have a rational root. As we saw, linear equations with
integer coefficients do not in general have an integer root.

In the case of quadratic equations ax2 + bx + c = 0 with a, b, c ∈ R and a �= 0,
the situation is quite different. There is no guarantee of real number roots for such
an equation. For example, the equation x2 + 1 = 0, or equivalently x2 = −1, has no
real number root since the square of every real number is a nonnegative real number.
This suggests extending the set R of real numbers to include a new number i for which
i2 = −1, that is, i = √−1. The equation x2 = −1 then has two roots, namely i and −i.
This brings us to another important class of numbers.
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18.5 Complex Numbers 15

A complex number z is a number of the form a + bi, where a, b ∈ R and i = √−1.
While complex numbers can be represented in other ways, a + bi is the most common
way of representing a complex number z and is referred to as the rectangular repre-
sentation or rectangular form of z. Recall that C denotes the set of complex numbers.

While
√

a
√

b = √
ab for every two nonnegative real numbers a and b, such is not

the case for negative real numbers. For example,
√−1

√−1 = (
√−1)2 = i2 = −1 but√

(−1)(−1) = √
1 = 1. Thus,

√−1
√−1 �= √

(−1)(−1).
For the complex number z = a + bi, the real number a is called the real part of z

and denoted by Re(z) and b is called the imaginary part of z and denoted by Im(z).
Thus, if z = 3 + (−1)i = 3 − i, then the real part of z is 3 and its imaginary part is −1.
Two complex numbers z1 and z2 are equal if Re(z1) = Re(z2) and Im(z1) = Im(z2); that
is, a + bi = c + di, where a, b, c, d ∈ R, if a = c and b = d. If the imaginary part of a
complex number z is 0, then z is a real number and so R ⊆ C. According to the quadratic
formula, the roots of the quadratic equation az2 + bz + c = 0, where a, b, c ∈ R and
a �= 0, are

z = −b ± √
b2 − 4ac

2a
;

that is, there are two roots, namely

−b + √
b2 − 4ac

2a
and

−b − √
b2 − 4ac

2a
.

The real number b2 − 4ac is referred to as the discriminant of the quadratic polyno-
mial p(z) = az2 + bz + c. The roots of p(z) are real numbers if the discriminant b2 −
4ac ≥ 0 and the roots are equal if and only if b2 − 4ac = 0. On the other hand, these
roots are complex numbers that are not real if b2 − 4ac < 0. Long ago, such equations
were declared unsolvable. However, complex numbers allow us to solve every quadratic
equation with the quadratic formula. Not only does every quadratic equation with real
coefficients have two (not necessarily distinct) complex number roots, but it turns out
that every quadratic equation with complex coefficients has two complex number roots
as well. While we’ll discuss this in more detail soon, let’s look at an example.

Example 18.30 Determine the roots of the quadratic equation 5z2 + 6z + 5 = 0.

Solution Applying the quadratic formula to this equation (with a = c = 5 and b = 6), we have

z = −b ± √
b2 − 4ac

2a
= −6 ± √

36 − 100
10

= −6 ± √−64
10

= −3
5

± 4
5

i. �

Not only are complex numbers the roots of this and every quadratic equation but a
classic theorem in mathematics tells us that something much more general is true. This
theorem provides one of many reasons as to why complex numbers are so important in
the study of mathematics.

The Fundamental Theorem of Algebra Every polynomial equation

anzn + an−1zn−1 + · · · + a1z + a0 = 0
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16 Chapter 18 Proofs with Real and Complex Numbers

where n ≥ 1, ai ∈ C for 0 ≤ i ≤ n and an �= 0 has n (not necessarily distinct) roots, all
of which are complex numbers.

As is the case with integers, rational numbers and real numbers, it is possible to add,
subtract, multiply and divide two complex numbers, provided we are not dividing by the
zero complex number 0 = 0 + 0i.

For two complex numbers z1 = a + bi and z2 = c + di, where a, b, c, d ∈ R, the
sum z1 + z2 and product z1z2 of z1 and z2 are defined by

z1 + z2 = (a + bi) + (c + di) = (a + c) + (b + d)i

z1z2 = (a + bi)(c + di) = (ac − bd) + (ad + bc)i.

The difference z1 − z2 of z1 and z2 is then

z1 − z2 = (a + bi) − (c + di) = (a − c) + (b − d)i.

The conjugate of the complex number z1 = a + bi is the complex number

z1 = a − bi = a + (−b)i.

Consequently,

z1 = z1, z1 + z2 = z1 + z2, z1z2 = z1 · z2 and z1z1 = (a + bi)(a − bi) = a2 + b2.

The quotient z1/z2, where z2 �= 0 (that is, c �= 0 or d �= 0), can be written as

z1

z2
= a + bi

c + di
= z1

z2
· z2

z2
= a + bi

c + di
· c − di

c − di

= (ac + bd) + (bc − ad)i
c2 + d2

= ac + bd
c2 + d2

+ bc − ad
c2 + d2

i.

Hence, the sum, difference, product and quotient of two complex numbers (where the
denominator is nonzero in the case of division) is once again a complex number. With
these definitions of addition, subtraction, multiplication and division, together with the
unity (multiplicative identity) 1 = 1 + 0i and zero element (additive identity) 0 =
0 + 0i, the set C of complex numbers forms a field (see Section 16.5). The complex
numbers are not an ordered field, however. If this were the case, then either i > 0 or
i < 0. If i > 0, then i2 = (−i)2 = −1 > 0, which is impossible. If i < 0 or equivalently,
0 > i, then since 1 > 0, it follows that 0 · 1 > i · 0, or 0 > 0, which is also impossible.

The complex number z = a + bi is sometimes represented by the ordered pair (a, b)
of real numbers a and b and further represented as a point in the plane (referred to as
the complex plane in this case). This observation was first made by the famous British
mathematician Sir William Rowan Hamilton. The geometric representation of a complex
number z = a + bi is shown in Figure 18.1, where in this example a and b are positive
real numbers. The x-axis in the complex plane is referred to as the real axis and the
y-axis in the complex plane is also referred to as the imaginary axis. The directed line
segment from the origin (0, 0) to the point (a, b) results in the vector �z.

The modulus of a complex number z = a + bi, denoted by |z|, is defined by |z| =√
a2 + b2. (The plural of modulus is moduli.) Equivalently, the modulus of z is the dis-

tance between the points (0, 0) and (a, b) and is the length of the vector �z. Some of
the fundamental properties of the modulus of a complex number are listed below (see
Exercise 18.85).
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complex number z = a + bi

Figure 18.1 The geometric representation of a complex number

Theorem 18.31 For complex numbers z1 = a + bi and z2 = c + di, where a, b, c, d ∈ R,

(a) |z1|2 = z1 · z1 = a2 + b2.

(b) |Re(z1)| ≤ |z1| and |Im(z1)| ≤ |z1|.
(c) |z2

1| = |z1|2, |z1| = | − z1| and |z1| = |z1|.

(d) |z1z2| = |z1||z2| and for z2 �= 0,

∣∣∣∣ z1

z2

∣∣∣∣ = |z1|
|z2| .

Another well-known property involving the modulus of a complex number is pre-
sented next.

Theorem 18.32 (The Triangle Inequality) For complex numbers z1 and z2,

|z1 + z2| ≤ |z1| + |z2|.

Proof Observe that

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)

= z1z1 + z1z2 + z1z2 + z2z2 = |z1|2 + z1z2 + z1z2 + |z2|2

= |z1|2 + 2Re(z1z2) + |z2|2 ≤ |z1|2 + 2|Re(z1z2)| + |z2|2

≤ |z1|2 + 2|z1z2| + |z2|2 = |z1|2 + 2|z1||z2| + |z2|2

= (|z1| + |z2|)2,

producing the desired property.

A point P in the plane with rectangular coordinates (x, y) can also be described in
terms of polar coordinates. In this system, the origin is called the pole, denoted by
O, and the positive x-axis is called the polar axis. Here, the polar coordinates of P are
(r, θ ), where r =

√
x2 + y2 is the distance between O and P, which is also the length of

the vector
−→
OP from O to P. The number θ is the angle (in radians) measured from the
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18 Chapter 18 Proofs with Real and Complex Numbers

polar axis to the line OP. The angle θ is positive if it is measured counterclockwise and
negative if it is measured clockwise. While r is unique, there are infinitely many choices
for θ and so the polar coordinates of P are not unique either.

The rectangular coordinates (x, y) and the polar coordinates (r, θ ) of a point in the
plane are related by the equations

x = r cos θ and y = r sin θ .

Therefore, a complex number z = x + yi can also be expressed as z = r cos θ + i(r sin θ )
or

z = r(cos θ + i sin θ ),

which is referred to as the polar representation or polar form of the complex number z.
(See Figure 18.2.)
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r

θ

x = r cos θ

pole
O

P = (x, y) = (r, θ )

r =
√

x2 + y2

y = r sin θ

Figure 18.2 Determining the polar representation of a complex number

The angle θ in the polar representation of a complex number z is called an argu-
ment of z. Consequently, any argument θ of z must satisfy the equations cos θ = x/r and
sin θ = y/r. Since cos θ and sin θ are periodic of period 2π , an argument is not unique.
Indeed, if θ0 is an argument of a complex number z, so are θ0 ± 2π and θ0 ± 4π , for
example. Since tan θ = y/x, an argument for z can be found if we know its rectangular
form. However, since tan θ has period π , we must be a bit careful in determining θ when
using tan θ = y/x only. In fact, the inverse tangent tan−1(y/x) of y/x produces a solution
for θ . Because −π

2 < tan−1(y/x) < π
2 , it follows that tan−1(y/x) only gives a value of θ

in the first or fourth quadrant regardless of the quadrant in which P is located.
While arg(z) represents a set of numbers θ such that x = r cos θ and y = r sin θ , an

argument θ satisfying −π < θ ≤ π is called the principal argument of z. The principal
argument of z is unique and is often denoted by Arg(z). In particular,

(1) if x > 0, then Arg(z) = tan−1
( y

x

)
(2) if x < 0 and y ≥ 0, then Arg(z) = tan−1

( y
x

) + π

(3) if x < 0 and y < 0, then Arg(z) = tan−1
( y

x

) − π .

Example 18.33 Find a polar form of the complex number z = −1 + i.

Solution Since x = −1 and y = 1, it follows that r = √
2. Therefore, cos θ = x/r = −1/

√
2 and

sin θ = y/r = 1/
√

2, while tan θ = y/x = −1. Since θ is an angle in the second quad-
rant, all of the angles 3π/4, 3π/4 + 2π = 11π/4, −5π/4 and −5π/4 − 2π = −13π/4
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18.6 De Moivre’s Theorem and Euler’s Formula 19

are arguments of z, while 3π/4 is the principal argument of z. Therefore, the point
P(−1, 1) has polar coordinates (

√
2, 3π/4), (

√
2, 11π/4), (

√
2,−5π/4) and

(
√

2,−13π/4), for example. A polar form of z is
√

2(cos 3π
4 + i sin 3π

4 ).
Since tan−1(y/x) = tan−1(−1) = −π/4, this does not provide an argument for z, how-
ever. In particular, Arg(−1 + i) = −π

4 + π = 3π
4 . �

18.6 DE MOIVRE’S THEOREM AND EULER’S FORMULA

An important theorem concerning complex numbers is due to the French mathematician
Abraham De Moivre. To prove this theorem, two identities from trigonometry will be
useful. For real numbers A and B,

sin(A + B) = sin A cos B + cos A sin B

cos(A + B) = cos A cos B − sin A sin B.

For complex numbers z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2), their prod-
uct can therefore be expressed as

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

The following theorem was proved early in the 18th century.

Theorem 18.34 (De Moivre’s Theorem) For every positive integer n,

(cos θ + i sin θ )n = cos nθ + i sin nθ.

Proof We proceed by induction. Certainly the result holds for n = 1. Assume that

(cos θ + i sin θ )k = cos kθ + i sin kθ

for a positive integer k. Then

(cos θ + i sin θ )k+1 = (cos θ + i sin θ )(cos θ + i sin θ )k

= (cos θ + i sin θ )(cos kθ + i sin kθ )

= cos(k + 1)θ + i sin(k + 1)θ.

The result then follows by the Principle of Mathematical Induction.

Let’s see how De Moivre’s theorem can be used to determine a power of a complex
number.
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Example 18.35 Determine

(√
3

2
+ 1

2
i

)6

.

Solution First, we express z =
√

3
2 + 1

2 i in polar form. Since x =
√

3
2 and y = 1

2 , it follows that

r =
√

x2 + y2 = 1. Therefore, cos θ = x/r = √
3/2 and sin θ = y/r = 1/2. Furthermore,

tan θ = y/x = 1/
√

3. Since θ is an angle in the first quadrant, we can choose θ = π/6,
which is Arg(z), and so z = cos π

6 + i sin π
6 . By De Moivre’s Theorem,

z6 =
(

cos
π

6
+ i sin

π

6

)6
= cos π + i sin π = −1.

This also says that
√

3
2 + 1

2 i is a root (one of the six roots) of the equation z6 = −1. �

The solutions of the equation z2 = 1 are 1 and −1, of course. This equation can be
solved by first rewriting it as z2 − 1 = 0 and then factoring z2 − 1, obtaining z2 − 1 =
(z + 1)(z − 1) = 0. To solve the equation z3 = 1, we can write it as z3 − 1 = 0 and then
factor, obtaining

z3 − 1 = (z − 1)(z2 + z + 1) = 0.

Applying the quadratic formula to z2 + z + 1 = 0, we have

z = −1 ± √−3
2

= −1 ± i
√

3
2

= −1
2

±
√

3
2

i.

Therefore, the three roots of z3 = 1 are 1, (−1 + i
√

3)/2 and (−1 − i
√

3)/2. The roots
of the equation z4 = 1 or, equivalently, z4 − 1 = 0 are 1,−1, i,−i. Observe that the so-
lutions of all three of these equations are equally spaced points on the circle x2 + y2 = 1
in the complex plane (see Figure 18.3).
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Figure 18.3 Location of roots of the equations zn = 1 for n = 2, 3, 4

For a complex number α, we now consider finding the n roots of the equation zn = α,
where n is a positive integer. That is, we seek the nth roots of α. As we have seen, α

can be expressed as α = r(cos θ + i sin θ ) or as α = r(cos(θ + 2kπ ) + i sin(θ + 2kπ ))
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for some integer k. If z1 is a root of the equation zn = α, then zn
1 = α. It follows by

De Moivre’s theorem that z1 can be expressed as z1 = n
√

r
(
cos( θ+2kπ

n ) + i sin( θ+2kπ
n )

)
for some integer k. Since the numbers n

√
r
(
cos( θ+2kπ

n ) + i sin( θ+2kπ
n )

)
are distinct when

k ∈ {0, 1, 2, . . . , n − 1}, it follows that these are the n distinct roots of zn = α. We may
therefore express the n roots of zn = α as z0, z1, . . . , zn−1, where

zk = n
√

r
(

cos
(

θ + 2kπ
n

)
+ i sin

(
θ + 2kπ

n

))

for k ∈ {0, 1, 2, . . . , n − 1}.

Example 18.36 Find the three solutions of the equation z3 = i.

Solution First, observe that i = r(cos θ + i sin θ ) where r = 1 and θ = π
2 . Hence, the three roots

z0, z1, z2 of this equation are

zk = 3
√

1
(

cos
( π

2 + 2kπ

3

)
+ i sin

( π
2 + 2kπ

3

))

for k = 0, 1, 2. Therefore,

z0 = cos
π

6
+ i sin

π

6
=

√
3

2
+ 1

2
i

z1 = cos
5π

6
+ i sin

5π

6
= −

√
3

2
+ 1

2
i

z2 = cos
3π

2
+ i sin

3π

2
= −i,

which are then the three cube roots of i. These three complex numbers are displayed in
the complex plane in Figure 18.4. �

..

..
..
..

..
..

..
..

..
...

................................................. . . . . . . . . . . . . . . . . . . . . . . . .
. .

. .
. .

..
..
..
..
..
..
.

�

��

................................
......

........
........
......................

...............
...............

..............
...............

...............
...............

...............
...............

...............
...............

...............
..............

...................................................................................................................................................................................................... x

y

π
6

π
6

z1 z0

z2

Figure 18.4 Location of the three roots of the equation z3 = i
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Example 18.37 Determine the roots of the quadratic equation z2 + 2iz + (2 − 4i) = 0.

Solution Applying the quadratic formula to this equation, where then a = 1, b = 2i and
c = 2 − 4i, we see that the roots are

z = 1
2

(
−2i ±

√
(2i)2 − 4 · 1 · (2 − 4i)

)
= 1

2

(
−2i ± √−12 + 16i

)

= 1
2

(
−2i ± 2

√−3 + 4i
)

= −i ± √−3 + 4i.

To express the roots in the rectangular form of a complex number, we seek real numbers
a and b for which (a + bi)2 = −3 + 4i and so

a2 + 2abi − b2 = −3 + 4i.

Therefore, a2 − b2 = −3 and 2ab = 4. Substituting b = 2/a into a2 − b2 = −3, we
obtain

a4 + 3a2 − 4 = 0 or (a2 − 1)(a2 + 4) = 0.

Since a ∈ R, either a = 1 or a = −1. If a = 1, then b = 2; while if a = −1, then
b = −2. In either case,

±√−3 + 4i = ±(1 + 2i)

and so the solutions of this equation are

z1 = −i + (1 + 2i) = 1 + i and z2 = −i − (1 + 2i) = −1 − 3i.

Furthermore, z2 + 2iz + (2 − 4i) = [z − (1 + i)][z − (−1 − 3i)].

Recall from calculus that the power series

1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · ·

converges to ex for every real number x. Therefore, for every real number θ ,

eθ = 1 + θ + θ2

2!
+ θ3

3!
+ θ4

4!
+ · · · .

Also, for every real number θ , the following are convergent series:

cos θ = 1 − θ2

2!
+ θ4

4!
− θ6

6!
+ · · ·

sin θ = θ − θ3

3!
+ θ5

5!
− θ7

7!
+ · · · .

Therefore, for every real number θ ,

eiθ = 1 + (iθ ) + (iθ )2

2!
+ (iθ )3

3!
+ (iθ )4

4!
+ · · ·

=
(

1 − θ2

2!
+ θ4

4!
− θ6

6!
+ · · ·

)
+ i

(
θ − θ3

3!
+ θ5

5!
− θ7

7!
+ · · ·

)

= cos θ + i sin θ.
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This gives us the following formula named for the famous mathematician Leonhard
Euler.

Theorem 18.38 (Euler’s Formula) For every real number θ ,

eiθ = cos θ + i sin θ.

When θ = π , Euler’s Formula results in eiπ = cos π + i sin π = −1 + i0 = −1 or

The Euler Identity eiπ + 1 = 0.

This amazing identity discovered by Euler ties together in a very basic way what might
be considered the five most important numbers in mathematics:

0 : the additive identity: 0 + r = r for every r ∈ R

1 : the multiplicative identity: 1 · r = r for every r ∈ R

i : the fundamental imaginary number

π : the fundamental circular constant from geometry

e : the base of natural logarithms.

In 1988 the British mathematician and mathematics educator David Wells wrote an
article in the journal The Mathematical Intelligencer discussing mathematical theorems
and which of these are the most beautiful. He asked the readers to vote on this question
as well. In 1990 he wrote another article giving the results of the vote. The Euler Identity
came out on top.

Since the polar representation of a complex number z is r(cos θ + i sin θ ), it follows
by Euler’s Formula that z can be expressed as z = reiθ .

EXERCISES FOR CHAPTER 18

18.1. Let a, b, c ∈ R. Prove each of the following.

(a) Exactly one of the following holds: (i) a > b, (ii) a = b, (iii) a < b.
(b) If a > b and b > c, then a > c.
(c) If a > b, then a + c > b + c.
(d) If a > b and c > 0, then ac > bc.
(e) If a �= 0, then a2 = a · a > 0.

18.2. Let a, b, c, d ∈ R. Prove or disprove the following: If a > b and c > d, then ac > bd.

18.3. We know, for every a ∈ R, that a > 0, a = 0 or a < 0 and that for a, b ∈ R for which a > 0 and b > 0
that a + b > 0 and ab > 0. Determine all nonnegative real numbers c for which the following two
properties are satisfied:

(1) If a ∈ R, then exactly one of the following holds: a > c, a = c, a < c.
(2) If a, b ∈ R such that a > c and b > c, then a + b > c and ab > c.

18.4. Let F = {a + b
√

2 : a, b ∈ Q}.
(a) Show that Q ⊂ F ⊂ R.
(b) Show that F is an ordered field.
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18.5. We saw that the field Z2 is not an ordered field. Show, for every odd prime p, that Zp is also not an
ordered field.

18.6. Show that the set Z of integers is not an ordered field.

18.7. Prove that if F is an ordered field such that F ⊆ R, then Q ⊆ F .

18.8. For each of the following sets S of real numbers, determine sup(S) and inf(S) if these exist. Also,
determine max(S) and min(S) if these exist.

(a) S = {4, 4.9, 4.99, 4.999, . . .}
(b) S = {

r ∈ Q : r2 ≤ 9
}

(c) S =
{

1 + (−1)n

n : n ∈ N
}

(d) S =
{

(−1)nn
n+1 : n ∈ N

}
(e) S = {

x ∈ R : x2 − 5x < 6
}

(f) S =
{

1
x2+1 : x ∈ R

}
(g) S = {∑n

k=1
1
2k : n ∈ N

}
(h) S = ⋃

n∈N An, where An = (
1
n , 1 + 1

n

)
for n ∈ N

(i) S = {
1
m + 1

n : m, n ∈ N
}
.

18.9. Let S be a nonempty set of real numbers for which inf(S) and sup(S) exist.

(a) Prove that inf(S) ≤ sup(S).
(b) State and prove a necessary and sufficient condition for S to have the property that inf(S) = sup(S).

18.10. Give an example of a bounded infinite set S of irrational numbers such that both inf(S) and sup(S) are
rational numbers.

18.11. Let S be a nonempty set of real numbers such that both inf(S) and sup(S) exist and let T be a nonempty
subset of S.

(a) Prove that inf(T ) and sup(T ) exist.
(b) Prove that inf(S) ≤ inf(T ) ≤ sup(T ) ≤ sup(S).

18.12. Let A and B be nonempty sets of real numbers such that both sup(A) and sup(B) exist.

(a) Does sup(A ∩ B) exist?
(b) Prove that if sup(A ∩ B) exists, then sup(A ∩ B) ≤ min(sup(A), sup(B)).
(c) Prove or disprove: sup(A ∩ B) = min(sup(A), sup(B)).

18.13. Let S be a nonempty set of real numbers. Prove that a = inf(S) if and only if a is a lower bound for S and
for every real number y > a, there exists x ∈ S such that a ≤ x < y.

18.14. Let A be a nonempty subset of R and let f : A → R and g : A → R be functions such that both f (A) and
g(A) are bounded sets.

(a) Prove that sup(( f + g)(A)) ≤ sup( f (A)) + sup(g(A)).
(b) Prove that inf(( f + g)(A)) ≥ inf( f (A)) + inf(g(A)).
(c) Give an example of a nonempty set A of real numbers and functions f : A → R and g : A → R such

that the inequalities in (a) and (b) are strict.

18.15. Without using the Archimedean Principle or the Completeness Axiom, prove that if r is a positive
rational number, then there exists a positive integer n such that n >

√
r.

18.16. For an irrational number a, let S = {x ∈ Q : x > a}. Prove that inf(S) = a.

18.17. Let a, b ∈ R such that a < b. Show that S = {r ∈ Q : r ∈ (a, b)} is an infinite set.
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18.18. Let S be a nonempty bounded set of real numbers having no maximum element. Prove that if s ∈ S, then
sup(S) = sup(S − {s}).

18.19. Let S = {√2r : r ∈ Q}. Is the set S dense in R?

18.20. Let x be a real number.

(a) Prove that there exists a unique least integer n such that n ≥ x. (Recall that n is called the ceiling of x
and is denoted by �x�.)

(b) Prove that there exists a unique greatest integer � such that � ≤ x. (Recall that � is called the floor of
x and is denoted by�x�.)

18.21. (a) Prove that the union of a finite number of bounded sets is bounded.
(b) Prove that if A1, A2, . . . , An are bounded sets, then

sup(A1 ∪ A2 ∪ · · · ∪ An) = max(sup(A1), sup(A2), . . . , sup(An)) and
inf(A1 ∪ A2 ∪ · · · ∪ An) = min(inf(A1), inf(A2), . . . , inf(An)).

18.22. Prove that the interior of every set of real numbers is open.

18.23. (a) Prove that if S and T are open sets of real numbers that are dense in R, then S ∩ T is dense in R.
(b) Is the result in (a) true if only one of S and T is an open set?
(c) Is the result in (a) true if neither S nor T is an open set?

18.24. Show that a set S of real numbers is closed if and only if S ⊆ Int(S).

18.25. Prove that if S and T are sets of real numbers, then Int(S) ∩ Int(T ) = Int(S ∩ T ).

18.26. Give an example of nonempty sets A and B of real numbers such that R = A ∪ B and Int(A) ∩ Int(B) = ∅.

18.27. (a) Prove that if A and B are two nonempty disjoint open sets of real numbers, then A ∪ B �= R.
(b) Prove that the only sets of real numbers that are both open and closed are R and ∅.

18.28. Let An = [an, bn] be a closed interval of real numbers for each n ∈ N where then an ≤ bn. Prove that if
An+1 ⊆ An for each n ∈ N, then

⋂∞
n=1 An �= ∅.

18.29. For each subset S of R given below, classify S as either (1) open, (2) closed, (3) both open and closed or
(4) neither open nor closed. Also, determine Bd(S) and Int(S) in each case.

(a) S = [1, 2] ∪ [3, 4] ∪ [5, 6] ∪ · · · ∪ [2001, 2002]
(b) S = {x ∈ R : |x − 3| < 5}
(c) S = {x ∈ R : 0 < x2 < 9}
(d) S = ⋂∞

n=1

(
1 − 1

n , 1 + 1
n

)
(e) S = ⋂∞

n=1

(
0, 1 + 1

n

)
.

18.30. For the subset S = {a + b
√

2 : a, b ∈ Q} of R, prove that Bd(S) = R.

18.31. In each part below, give an example of a set S of real numbers satisfying the specified condition.

(a) Acc(S) ∩ Acc(S) = [1, 2]
(b) Bd(S) ∩ Bd(S) = {0}
(c) Cl(S) ∩ Cl(S) = {1}.

18.32. Classify each set S of real numbers below as either (1) open, (2) closed, (3) both open and closed or
(4) neither open nor closed. Also, determine Bd(S), Cl(S), Int(Cl(S)) and Cl(Int(S)) in each case.

(a) S = (−2, 5) ∪ (3, 6) (b) S = Z (c) S = (−1, 1] ∪ [2, 5)
(d) S = {x ∈ Q : |x − 5| ≥ 2} (e) S = ⋃∞

n=1

(
1 − 1

n , 1
)

(f) S = ⋃∞
n=1

[
1
n , 1

]
.

18.33. Give an example of a set S of real numbers such that Acc(S) is an infinite set that is disjoint from S.
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18.34. Give an example of the following.

(a) A nonempty set S of real numbers such that Bd(S) = ∅.
(b) A nonempty set S of real numbers such that Bd(S) = Cl(S).
(c) A collection F = {An}n∈N of nonempty open sets such that

⋂∞
n=1 An is not open.

(d) A collection F = {An}n∈N of nonempty closed sets such that
⋃∞

n=1 An is not closed.

18.35. (a) Prove that if S and T are sets of real numbers, then Cl(S ∩ T ) ⊆ Cl(S) ∩ Cl(T ).
(b) Give an example of sets A and B of real numbers such that Cl(A ∩ B) �= Cl(A) ∩ Cl(B).

18.36. Let S be a set of real numbers for which inf(S) exists. Let inf(S) = c.

(a) Prove, for every real number ε > 0, that S ∩ Nε (c) �= ∅.
(b) Prove that if S is a closed set, min(S) exists and min(S) = c.

18.37. For each part below, give an example of a set S of real numbers such that Bd(S) �= ∅ and Acc(S) �= ∅ that
satisfies the condition.

(a) Bd(S) ⊂ Acc(S)
(b) Acc(S) ⊂ Bd(S)
(c) Bd(S) = Acc(S).

18.38. Prove that Acc(S) is a closed set for every set S of real numbers.

18.39. (a) Let S be a set of real numbers such that Bd(S) �= ∅ and Bd(S) ∩ Acc(S) = ∅. Show that (1) S is a
closed set, (2) S = Int(S) ∪ Bd(S) and (3) Int(S) = Acc(S).

(b) Prove that there exists no set S of real numbers for which Bd(S) �= ∅, Acc(S) �= ∅ and
Bd(S) ∩ Acc(S) = ∅.

18.40. Let S be a set of real numbers. Prove that c ∈ S is an accumulation point of S if and only if each
neighborhood of c contains infinitely many points of S.

18.41. For each of the following sets S of real numbers, determine Bd(S), Cl(S), Int(S) and Cl(S) − Int(S).

(a) S = [0, 1) ∪ (2, 3) (b) S = {
1
n : n ∈ N

}
(c) S = (−∞, 0) ∪ N.

18.42. Exercise 18.41 may suggest that Bd(S) = Cl(S) − Int(S) for every set S of real numbers. Prove that this
is, in fact, the case.

18.43. For each of the following, either give an example of a set S of real numbers that satisfies the given
condition or show that no such example exists.

(a) Acc(Acc(S)) �= Acc(S)
(b) Bd(Bd(S)) �= Bd(S)
(c) Cl(Cl(S)) �= Cl(S)
(d) Int(Int(S)) �= Int(S).

18.44. Give an example of a set S of real numbers such that Acc(Acc(Acc(S))) �= Acc(Acc(S)).

18.45. Prove, for every set S of real numbers, that R = Int(S) ∪ Bd(S) ∪ Int(S).

18.46. Prove that Cl(S) = Int(S) for every set S of real numbers.

18.47. Let S be a set of real numbers and let T = {L : L is an open set with L ⊆ S}. Prove that Int(S) = ⋃
L∈T L.

18.48. Let S be a set of real numbers and let T = {K : K is a closed set with S ⊆ K}. Prove that
Cl(S) = ⋂

K∈T K.

18.49. Let S be a nonempty compact set of real numbers with the property that every open cover of S contains a
subcover consisting of a single set belonging to the open cover. What is S?
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18.50. Prove that a set S of real numbers is compact if and only if for every collection {Tα}α∈I of closed sets for
which

⋂
α∈I Tα ⊆ S, there exists a finite subcollection {Tα}α∈J of these sets for which

⋂
α∈J Tα ⊆ S.

18.51. Determine which of the following sets are compact.

(a) S = [−1000, 1000].
(b) S = f ([0, 2]), where f : R → R is defined by f (x) = x2 + 2.
(c) S = {

1
n : n ∈ N

} ∪ {0}.
(d) S = f ([1,∞)), where f : [1,∞) → R is defined by f (x) = 1

x .
(e) S = {11} ∪ (∪10

n=1[n, n + 1)
)
.

18.52. Let S be the open interval (0, 2) and let Sn = (
1
n , 2

)
for n ∈ N.

(a) Prove that C = {Sn}n∈N is an open cover of S.
(b) Prove that C contains no finite subcover of S.

18.53. Let S = {
1
n : n ∈ N

}
. Give an example of an open cover of S that contains no finite subcover.

18.54. Use the definition of compact sets to show that the set S = [0,∞) is not compact.

18.55. Show that the set S = {x ∈ Q : 0 ≤ x ≤ 2} is not compact

(a) by applying Theorem 18.27.
(b) by using the definition of a compact set.

18.56. Prove or disprove the following.

(a) If S is a set of real numbers and K is a compact set of real numbers, then S ∩ K is compact.
(b) Every finite set of real numbers is compact.
(c) Let S be a set of real numbers and let C be an open cover of S consisting of an infinite number of

open sets, no one of which contains S. If C contains a finite subcover of S, then S is compact.
(d) If the intersection of an infinite collection of open sets is nonempty, then this intersection is not a

compact set.

18.57. (a) Prove that every closed subset of a compact set of real numbers is compact.
(b) Prove that if S is a compact set of real numbers and K is a nonempty closed subset of S, then K has

both a maximum and a minimum element.

18.58. Let S be a set of real numbers and let {Sα}α∈I be an open cover of S. Prove that a set S of real numbers is
compact if and only if every cover C of S of the form C = {Sα ∩ S : Sα is an open set for each α in an
index set I} contains a finite subcover of S.

18.59. Prove that a set S of real numbers is bounded if and only if Cl(S) is compact.

18.60. (a) Prove that the union of a finite number of nonempty compact sets of real numbers is compact.
(b) Show that the union of an infinite number of nonempty compact sets of real numbers may not be

compact.

18.61. Prove that the intersection of an infinite number of nonempty compact sets of real numbers is compact.

18.62. Prove, for every real number r and every compact set S, that the set T = {x + r : x ∈ S} is also compact.

18.63. (a) Prove that if A and B are open sets of real numbers such that A ∩ B is a compact set, then A ∩ B = ∅.
(b) Prove or disprove: There exists an infinite collection of open sets of real numbers whose intersection

is a nonempty compact set.

18.64. (a) Prove or disprove: Every bounded set of real numbers consisting of isolated points is finite.
(b) Prove or disprove: Every closed, bounded set of real numbers consisting of isolated points is finite.

18.65. Prove, for every compact set S of real numbers and every real number r /∈ S, that there exist disjoint open
sets U and V such that S ⊆ U and r ∈ V .
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18.66. Prove, for every two disjoint compact sets S and T of real numbers, that there exist disjoint open sets U
and V such that S ⊆ U and T ⊆ V .

18.67. Prove that a set S of real numbers is compact if and only if every infinite subset of S has an accumulation
point belonging to S.

18.68. Express the sum, difference, product and quotient of the following pairs of complex numbers in
rectangular form.

(a) 1 + i, 1 + 2i (b) 2 − i, 3 − 4i (c) 4i, 1/(3 − i)
(d) 3 + 7i, 3 − 7i (e) i3, 1 + i4.

18.69. Express each of the following complex numbers in rectangular form.

(a) (3 − i)2 (b) (1 + 2i)3 (c) i5(3 + 2i)2

(d) 2−2i
1+i (e) (2 + i)(1 − 3i)(4 − 5i) (f) (1+i)6

(1−i)6 .

18.70. Express each of the following complex numbers in rectangular form.

(a) 12√
3+i

(b) 4
1+√

3i
(c) 5

3+4i (d) 25
4−3i .

18.71. Show that
√

2 + i is a cube root of −√
2 + 5i.

18.72. Determine in for every positive integer n.

18.73. Prove the following for complex numbers z, z1 and z2.

(a) z = z (b) z1 + z2 = z1 + z2 (c) z1z2 = z1 · z2.

18.74. Prove, for every n complex numbers α1, α2, . . . , αn where n ∈ N, that

α1 + α2 + · · · + αn = α1 + α2 + · · · + αn.

18.75. (a) Prove, for every n complex numbers α1, α2, . . . , αn where n ∈ N, that

α1 · α2 · · · αn = α1α2 · · · αn.

(b) Prove for each α ∈ C that αn = αn for every n ∈ N.

18.76. Find two positive real numbers a and b such that the product of the four complex numbers z = a + bi,
z, −z and −z is 4.

18.77. For a positive real number a, determine the roots of the quadratic equation z2 + 2az + 5a2 = 0.

18.78. Find the solutions of the quadratic equation z2 + √
5z + 3i = 0.

18.79. Use the fact that (
√

3 + √
3i)2 = 6i to find the solutions of the equation z2 − 6z + 9 = 6i.

18.80. Let z1, z2 ∈ C. Prove that z1z2 = 0 if and only if z1 = 0 or z2 = 0.

18.81. Solve the following equations.

(a) z2 − 2z + 2 = 0 (b) z4 − 16 = 0
(c) z3 − 3z2 + z − 3 = 0 (d) z4 + 3z2 + 2 = 0.

18.82. Given that i is a root of the equation z7 + 6z6 − cz3 + dz2 − 1 = 0, determine the real numbers c and d.

18.83. Let p(z) = a0 + a1z + a2z2 + · · · + anzn where ai ∈ R for 0 ≤ i ≤ n. Use Exercises 18.74 and 18.75 to
prove that if p(α) = 0 for some α ∈ C, then p(α) = 0.

18.84. Determine all complex numbers z satisfying each of the following.

(a) z2 = −8i (b) z(2 + 3i) = 5 + i (c) z2 + 2z = −1.
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18.85. Prove Theorem 18.31: For complex numbers z1 = a + bi and z2 = c + di, where a, b, c, d ∈ R,

(a) |z1|2 = z1 · z1 = a2 + b2.
(b) |Re(z1)| ≤ |z1| and |Im(z1)| ≤ |z1|.
(c) |z1| = | − z1| and |z1| = |z1|.
(d) |z1z2| = |z1||z2| and for z2 �= 0,

∣∣∣ z1
z2

∣∣∣ = |z1|
|z2| .

18.86. (a) Prove, for every n complex numbers α1, α2, . . . , αn where n ∈ N, that

|α1 · α2 · · · αn| = |α1||α2| · · · |αn|.
(b) Prove, for every complex number α, that |αn| = |α|n for every positive integer n.

18.87. Use Exercise 18.86 to determine |z| for each of the following.

(a) z = (1 − √
3i)(4 + 3i)(12 − 5i) (b) z = (3 − i)6.

18.88. Prove, for every n ≥ 2 complex numbers z1, z2, . . . , zn, that

|z1 + z2 + · · · + zn| ≤ |z1| + |z2| + · · · + |zn|.
18.89. Use Exercise 18.88 to show for complex numbers z1 and z2 that |z1 − z2| ≥ |z1| − |z2|.
18.90. Prove, for the complex number z = a + bi where a, b ∈ R, that

|a| + |b|√
2

≤ |z| ≤ |a| + |b|.

18.91. Express each of the following complex numbers in polar form.

(a)
√

3 + i (b) −√
3 − i (c) 1 − √

3i
(d) 5 (e) 4 − 4i (f) 2

√
3 − 2i.

18.92. Find the principal argument of each of the following complex numbers.

(a) −3 − 3i (b) −5 (c) −1 + √
3i (d) −i.

18.93. Find the rectangular form of the complex numbers having the following polar representations.

(a)
√

2
(
cos π

4 + i sin π
4

)
(b) 2

(
cos(− π

3 ) + i sin(− π
3 )

)
(c) 2

(
cos 5π

6 + i sin 5π
6

)
(d) 4 (cos π + i sin π ).

18.94. Determine (1 + i)10.

18.95. Determine (−1 − √
3i)12.

18.96. Express each of the following complex numbers in rectangular form.

(a) (1 − i)15 (b) (1 − √
3i)10 (c) (2 + 2i)9 (d)

[
5

(
cos π

3 + i sin π
3

)]7

(e)
[
3

(
cos 3π

4 + i sin 3π
4

)]5
(f)

[
2

(
cos

(− 3π
2

) + i sin
(− 3π

2

))]8
.

18.97. Use the fact that the roots of the equation z6 − 1 = 0 are equally spaced points on a circle in the complex
plane to obtain the roots of this equation.

18.98. Find the roots of the equation z4 = −1 and plot these roots in the complex plane.

18.99. Determine α if
(

1√
2

+ 1√
2
i
)8

= α. Then determine the roots of the equation z8 − α = 0.

18.100. Use De Moivre’s theorem to verify the following trigonometric identities.

(a) cos(3θ ) = cos3 θ − 3 cos θ sin2 θ (b) sin(3θ ) = 3 cos2 θ sin θ − sin3 θ .
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30 Chapter 18 Proofs with Real and Complex Numbers

18.101. Express each of the following complex numbers as reiθ for real numbers r and θ .

(a) 3 + 4i (b) 2 − 2i (c) −√
3 + i.

18.102. Express the complex number arctan(1)ei arctan(1) in rectangular form.

18.103. Determine the two complex numbers (expressed in rectangular form) whose square is 3e
π
3 i.

18.104. (a) Determine the roots of the quadratic equation (1 + i)z2 − (1 + 3i)z − (2 − 2i) = 0.
(b) Prove that if p(z) is a quadratic polynomial all of whose nonzero coefficients are complex numbers

that are not real numbers and whose two roots are real numbers, then there exists a complex
number α such that αp(z) is a quadratic polynomial all of whose nonzero coefficients are real
numbers.
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19
Proofs in Topology

Recall from calculus that a function f : X → R, where X ⊆ R, is continuous at
a ∈ X if for every ε > 0, there exists δ > 0 such that if |x − a| < δ, then | f (x) −

f (a)| < ε. When we write |x − a|, we are referring to how far apart x and a are, that
is, the distance between them. Similarly, | f (x) − f (a)| is the distance between f (x) and
f (a). It is not surprising that distance enters the picture here since when we say that f
is continuous at a, we mean that if x is a number that is close to a, then f (x) is close
to f (a). The term “close” only has meaning once we understand how we are measuring
the distances between the two pairs of numbers involved. It might seem obvious that
the distance between two real numbers x and y is |x − y|; however, it turns out that the
distance between x and y need not be defined as |x − y|, although it is certainly the most
common definition. Furthermore, when the continuity of a function f : A → B is being
considered, it is not essential that A and B be sets of real numbers. That is, it is possible
to place these concepts of calculus in a more general setting. The area of mathematics
that deals with this is topology.

19.1 METRIC SPACES

We have already mentioned that the distance between two real numbers x and y is given
by |x − y|. There are four properties that this distance has, which will turn out to be
especially interesting to us:

(1) |x − y| ≥ 0 for all x, y ∈ R;

(2) |x − y| = 0 if and only if x = y for all x, y ∈ R; (19.1)

(3) |x − y| = |y − x| for all x, y ∈ R;

(4) |x − z| ≤ |x − y| + |y − z| for all x, y, z ∈ R.

Many of the fundamental results from calculus depend on these four properties.
Using these properties as our guide, we now define distance in a more general manner.

Let X be a nonempty set and let d : X × X → R be a function from the Cartesian
product X × X to the set R of real numbers. Hence, for each ordered pair (x, y) ∈ X × X ,
it follows that d((x, y)) is a real number. Once again, for simplicity, we write d(x, y)

1



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M20_CHART6753_04_SE_C19_ONLINE PH03348-Chartrand August 9, 2017 15:20 Char Count= 0

2 Chapter 19 Proofs in Topology

rather than d((x, y)) and refer to d(x, y) as the distance from x to y. The distance d is
called a metric on X if it satisfies the following properties:

(1) d(x, y) ≥ 0 for all x, y ∈ X ;

(2) d(x, y) = 0 if and only if x = y for all x, y ∈ R;

(3) d(x, y) = d(y, x) for all x, y ∈ X (symmetric property);

(4) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangle inequality).

A set X together with a metric d defined on X is called a metric space and is denoted
by (X, d). Since the set R of real numbers together with the distance d defined on R by
d(x, y) = |x − y| satisfies the properties listed in (19.1), it follows that (R, d) is a metric
space.

We now consider two other ways of defining distance between two real numbers.

Example 19.1 For X = R, let the distance d : X × X → R be defined by d(x, y) = x − y. Determine
which of the four properties of a metric are satisfied by this distance.

Solution Since d(1, 2) = −1, property 1 is not satisfied. On the other hand, since d(x, y) =
x − y = 0 if and only if x = y, property 2 is satisfied. Because d(2, 1) = 1, it follows that
d(1, 2) �= d(2, 1) and so the symmetric property (property 3) is not satisfied. Finally,

d(x, z) = x − z = (x − y) + (y − z) = d(x, y) + d(y, z),

and the triangle inequality (property 4) holds. �

In our next example, we present a distance function that is actually a metric on R.

Result 19.2 For X = R, let d : X × X → R be defined by

d(x, y) = |2x − 2y|.
Then (X, d) is a metric space.

Proof Clearly, d(x, y) = |2x − 2y| ≥ 0 and d(x, y) = 0 if and only if 2x = 2y. Certainly, if
x = y, then 2x = 2y. Since the function f : R → R defined by f (x) = 2x is one-to-one, it
follows that if 2x = 2y, then x = y. Thus, d(x, y) = 0 if and only if x = y. Since d(x, y) =
|2x − 2y| = |2y − 2x| = d(y, x), it follows that d satisfies the symmetric property.
Finally, by property 4 in (19.1),

d(x, z) = |2x−2z| = |(2x−2y) + (2y−2z)| ≤ |2x−2y| + |2y−2z| = d(x, y) + d(y, z)

and the triangle inequality holds.

Another set on which you have undoubtedly seen a distance defined is R × R = R2.
Hence, an element P ∈ R2 can be expressed as (x, y), where x, y ∈ R. Here we are dis-
cussing points in the Cartesian plane, as you saw in the study of analytic geometry. In
the Cartesian plane, the (Euclidean) distance d(P1, P2) between two points P1 = (x1, y1)
and P2 = (x2, y2) is given by

d(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2.
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19.1 Metric Spaces 3

This distance is actually a metric on R2. That the first three properties are satisfied de-
pends only on the following facts for real numbers a and b: (1) a2 ≥ 0, (2) a2 + b2 = 0 if
and only if a = b = 0, (3) a2 = (−a)2. The triangle inequality is more difficult to verify,
however, and its proof depends on the following lemma, which is a special case of a
result commonly called Schwarz’s Inequality.

Lemma 19.3 If a, b, c, d ∈ R, then

ab + cd ≤
√

(a2 + c2)(b2 + d2).

Proof Certainly, (ab + cd)2 + (ad − bc)2 ≥ (ab + cd)2. Since

(ab + cd)2 + (ad − bc)2 = (a2b2 + 2abcd + c2d2) + (a2d2 − 2abcd + b2c2)

= a2b2 + a2d2 + b2c2 + c2d2

= (a2 + c2)(b2 + d2),

the desired inequality follows.

We can now show that this distance is a metric.

Result 19.4 For X = R2, let P1 = (x1, y1) and P2 = (x2, y2) be two points in R2 and let d :
X × X → R be defined by

d(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2.

Then (X, d) is a metric space.

Proof We have already mentioned that the first three properties of a metric are satisfied, so
only the triangle inequality remains to be verified. Let P1 = (x1, y1), P2 = (x2, y2) and
P3 = (x3, y3). Thus, using Lemma 19.3, where a = x1 − x2, b = x2 − x3, c = y1 − y2

and d = y2 − y3, we have

[d(P1, P3)]2 = (x1 − x3)2 + (y1 − y3)2

= [(x1 − x2) + (x2 − x3)]2 + [(y1 − y2) + (y2 − y3)]2

= (x1 − x2)2 + (x2 − x3)2 + 2(x1 − x2)(x2 − x3) +
2(y1 − y2)(y2 − y3) + (y1 − y2)2 + (y2 − y3)2

≤ (x1 − x2)2 + (x2 − x3)2 +
2
√

(x1 − x2)2 + (y1 − y2)2
√

(x2 − x3)2 + (y2 − y3)2 +
(y1 − y2)2 + (y2 − y3)2

=
(√

(x1 − x2)2 + (y1 − y2)2 +
√

(x2 − x3)2 + (y2 − y3)2
)2

= [d(P1, P2) + d(P2, P3)]2 ,

which gives us the desired result.

There is a metric defined on N × N = N2 which goes by the name of the Manhattan
metric or taxicab metric. For points P1 = (x1, y1) and P2 = (x2, y2) in N2, the distance
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d(P1, P2) is defined by

d(P1, P2) = |x1 − x2| + |y1 − y2|.
For example, consider the points P1 = (2, 2) and P2 = (4, 6) shown in Figure 19.1 (a).
The taxicab distance between these two points is d(P1, P2) = |2 − 4| + |2 − 6| = 6.

Thinking of the points (x, y) as street intersections in a certain city (Manhattan), we
have a minimum of 6 blocks to travel (by taxicab). Two such routes are shown in Fig-
ure 19.1 (b), (c).

3

5
6
7 7

6
5
4

3
2

(b)(a)

P2

P1

7

P1

P2P2

P1

7

7

4

6

5
4
3

2

654321

2

1 2 3 54 6 71 2 3 54 6

�

�

(c)

Figure 19.1 The Manhattan metric

Not only is the Manhattan metric a metric on N2, it is also a metric on Z2 and on
R2. A proof of the following result is left as an exercise (Exercise 19.2).

Result 19.5 For points P1 = (x1, y1) and P2 = (x2, y2) in R2, the distance d(P1, P2) defined by

d(P1, P2) = |x1 − x2| + |y1 − y2|
is a metric on R2 (the Manhattan metric).

We have seen that there is more than one metric on both R and R2. The metric spaces
(R, d), where d(x, y) = |x − y|, and (R2, d), where

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2,

are called Euclidean spaces and the associated metrics are the Euclidean metrics.
These are certainly the most familiar metrics on R and R2.

For every nonempty set A, it is always possible to define a distance d : A × A → R
that is a metric.

Result 19.6 Let A be a nonempty set. For x, y ∈ A, the distance d(x, y) defined by

d(x, y) =
{

0 if x = y
1 if x �= y

is a metric on A.
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19.2 Open Sets in Metric Spaces 5

Proof By definition, d(x, y) ≥ 0 for all x, y ∈ A and d(x, y) = 0 if and only if x = y. Also, by
the definition of this distance, d(x, y) = d(y, x) for all x, y ∈ A. Now let x, y, z ∈ A. If
x = z, then certainly 0 = d(x, z) ≤ d(x, y) + d(y, z). If x �= z, then d(x, z) = 1. Since
x �= y or y �= z, it follows that d(x, y) + d(y, z) ≥ 1 = d(x, z). In any case, the triangle
inequality holds.

For a nonempty set A, the distance d defined on A as described in Result 19.6 is
called the discrete metric on A.

19.2 OPEN SETS IN METRIC SPACES

Returning to our discussion of real-valued functions f from calculus, we said that f
is continuous at a real number a in the domain of f if for every ε > 0, there exists a
number δ > 0 such that if |x − a| < δ, then | f (x) − f (a)| < ε. This, of course, is what
led us to rethink what we meant by distance and which then led us to metric spaces.
However, continuity itself can be described in a somewhat different manner. A function
f is continuous at a if for every ε > 0, there exists a number δ > 0 such that if x is a
number in the open interval (a − δ, a + δ), then f (x) is a number in the open interval
( f (a) − ε, f (a) + ε). That is, continuity can be defined in terms of open intervals. What
are some properties of open intervals? Of course, an open interval is a certain kind of
subset of the set of real numbers. But each open interval has a property that can be gen-
eralized in a very useful manner. An open interval I of real numbers has the property
that for every x ∈ I, there exists a real number r > 0 such that (x − r, x + r) ⊆ I, that is,
for every x ∈ I, there is an open interval I1 centered at x that is contained in I.

Let (X, d) be a metric space. Also, let a ∈ X and let a real number r > 0 be given.
The subset of X consisting of those points (elements) x ∈ X such that d(x, a) < r is
called the open sphere with center a and radius r and is denoted by Sr(a). Thus, x ∈
Sr(a) if and only if d(x, a) < r. For example, the open sphere Sr(a) in the Euclidean space
(R, d) is the open interval (a − r, a + r) with mid-point a and length 2r. Conversely,
each open interval in (R, d) is an open sphere according to this definition. So, the open
spheres in (R, d) are precisely the open intervals of the form (a, b), where a, b ∈ R and
a < b. In the Euclidean space (R2, d), the open sphere Sr(P) is the interior of the circle
with center P and radius r. In the Manhattan metric space (R2, d), where the distance
between two points P1 = (x1, y1) and P2 = (x2, y2) is defined by d(P1, P2) = |x1 − x2| +
|y1 − y2|, the open sphere S3(P) for P = (5, 4) is the interior of the square shown in
Figure 19.2.

Since every point in a metric space (X, d) belongs to an open sphere in X (indeed,
it is the center of an open sphere), it is immediate that every two distinct points of X
belong to distinct open spheres. In fact, they belong to disjoint open spheres.

Theorem 19.7 Every two distinct points in a metric space belong to disjoint open spheres.

Proof Let a and b be distinct points in a metric space (X, d) and suppose that d(a, b) = r. Nec-
essarily, r > 0. Consider the open spheres S r

2
(a) and S r

2
(b) having radius r/2 centered

at a and b, respectively. We claim that S r
2
(a) ∩ S r

2
(b) = ∅. Assume, to the contrary,



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M20_CHART6753_04_SE_C19_ONLINE PH03348-Chartrand August 9, 2017 15:20 Char Count= 0

6 Chapter 19 Proofs in Topology
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Figure 19.2 An open sphere S3(P) for P = (5, 4)

that S r
2
(a) ∩ S r

2
(b) �= ∅. Then there exists c ∈ S r

2
(a) ∩ S r

2
(b). Thus, d(c, a) < r/2 and

d(c, b) < r/2. By the triangle inequality, r = d(a, b) ≤ d(a, c) + d(c, b) < r/2 +
r/2 = r, which is a contradiction.

A subset O of a metric space (X, d) is defined to be open in (X, d) if for every
point a of O, there exists a positive real number r such that Sr(a) ⊆ O, that is, each
point of O is the center of an open sphere contained in O. In the Euclidean space (R, d),
each open interval (a, b), where a < b, is an open set. To see this, for each x ∈ (a, b),
let r = min(x − a, b − x). Then the open sphere Sr(x) = (x − r, x + r) is contained in
(a, b). In fact, the set (−∞, a) ∪ (a,∞) is open in (R, d) for each a ∈ R. On the other
hand, the half-open interval (or half-closed interval) (a, b] is not open since there exists
no open sphere centered at b and contained in (a, b]. Similarly, the sets [a, b], [a, b),
(−∞, a] and [a,∞) are also not open in (R, d).

Every metric space contains some open sets, as we now show.

Theorem to
Prove

In a metric space (X, d),

(i) the empty set ∅ and the set X are open, and
(ii) every open sphere is an open set.

PROOF STRATEGY To show that a subset A of X is open, it is required to show that if a is a point of A, then
a is the center of an open sphere contained in A. The empty set satisfies this condition
vacuously and X satisfies this condition trivially, so we concentrate on verifying (ii).

We begin with an open sphere Sr(a) having center a and radius r. For an arbitrary
element x ∈ Sr(a), we need to show that there is an open sphere centered at x and with
an appropriate radius that is contained in Sr(a). Since the theorem concerns an arbitrary
metric space (X, d), there is not necessarily any geometric appearance to the open sphere
Sr(a). On the other hand, it is helpful to visualize Sr(a) as the interior of a circle (see
Figure 19.3).
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�

�

r

a
d(x, a)

r′ = r − d(x, a)

x

Figure 19.3 A diagram indicating an open sphere Sr(a) in a metric space (X, d)

Since d(x, a) < r, it follows that r′ = r − d(x, a) is a positive real number. It ap-
pears likely that Sr′ (x) ⊆ Sr(a). We must show that if y ∈ Sr′ (x), then y ∈ Sr(a); that is,
if d(y, x) < r′, then d(y, a) < r. It is natural to use the triangle inequality in an attempt
to verify this. �

Theorem 19.8 In a metric space (X, d),

(i) the empty set ∅ and the set X are open, and
(ii) every open sphere is an open set.

Proof Since there is no point in ∅, the statement that ∅ is open is true vacuously. For each point
a ∈ X , every open sphere centered at a is contained in X . Thus, X is open and (i) is
verified.

To verify (ii), let Sr(a) be an open sphere in (X, d) and let x ∈ Sr(a). We show
that there exists an open sphere centered at x and contained in Sr(a). Since d(x, a) < r,
it follows that r′ = r − d(x, a) > 0. We show that Sr′ (x) ⊆ Sr(a). Let y ∈ Sr′ (x). Since
d(y, x) < r′ and d(x, a) = r − r′, it follows by the triangle inequality that

d(y, a) ≤ d(y, x) + d(x, a) < r′ + (r − r′) = r.

Therefore, y ∈ Sr(a) and so Sr′ (x) ⊆ Sr(a).

To illustrate Theorem 19.8, we turn to the metric space (X, d) described in Re-
sult 19.2, namely, X = R with d(x, y) = |2x − 2y| for x, y ∈ R. Thus, ∅ and X = R
are open sets as are all open spheres Sr(a), where a ∈ R and r > 0. One such open
sphere is S1(0) = {x ∈ R : |2x − 20| < 1}. The inequality |2x − 20| < 1 is equivalent
to the inequalities −1 < 2x − 1 < 1 and 0 < 2x < 2. Since 2x > 0 for all x, it follows
that 0 < 2x < 2 is satisfied for all real numbers in the infinite interval (−∞, 1), and so
(−∞, 1) is the open sphere with center 0 and radius 1 (according to the given metric).
We also consider the open sphere S6(1) = {x ∈ R : |2x − 21| < 6}. Here, |2x − 21| < 6
is equivalent to the inequalities −6 < 2x − 2 < 6 and −4 < 2x < 8 and so S6(1) is the
open sphere (−∞, 3) with center 1 and radius 6.

We are now prepared to present a characterization of open sets in any metric space.

Theorem 19.9 A subset O of a metric space is open if and only if it is a (finite or infinite) union of open
spheres.

Proof Let (X, d) be a metric space. First let O be an open set in (X, d). We show that O
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is a union of open spheres. If O = ∅, then O is the union of zero open spheres. So,
we may assume that O �= ∅. Let x ∈ O. Since O is open, there exists a positive num-
ber rx such that Srx (x) ⊆ O. This implies that

⋃
x∈O Srx (x) ⊆ O. On the other hand,

if x ∈ O, then x ∈ Srx (x) ⊆ ⋃
x∈O Srx (x), implying that O ⊆ ⋃

x∈O Srx (x). Therefore,
O = ⋃

x∈O Srx (x).
Next we show that if O is a subset of (X, d) that is a union of open spheres, then

O is open. If O = ∅, then O is open. Hence, we may assume that O �= ∅. Let x ∈ O.
Since O is a union of open spheres, x belongs to some open sphere, say Sr(a). Since
Sr(a) is open, there exists r′ > 0 (as we saw in the proof of Theorem 19.8) such that
Sr′ (x) ⊆ Sr(a) ⊆ O. Therefore, O is open.

Two important properties of open sets are established in the next theorem.

Theorem 19.10 Let (X, d) be a metric space. Then

(i) the intersection of any finite number of open sets in X is open, and
(ii) the union of any number of open sets in X is open.

Proof We first verify (i). Let O1, O2, · · · , Ok be k open sets in X , and let O = ∩k
i=1Oi. If O is

empty, then O is open by Theorem 19.8(i). Thus, we may assume that O is nonempty and
let x ∈ O. We show that x is the center of an open sphere that is contained in O. Since
x ∈ O, it follows that x ∈ Oi for all i (1 ≤ i ≤ k). Because each set Oi is open, there
exists an open sphere Sri (x) ⊆ Oi, where 1 ≤ i ≤ k. Let r = min{r1, r2, · · · , rk}. Then
r > 0 and Sr(x) ⊆ Sri (x) ⊆ Oi for each i (1 ≤ i ≤ k). Therefore, Sr(x) ⊆ ∩k

i=1Oi = O.
Thus, O is open.

Next we verify (ii). Let {Oα}α∈I be an indexed collection of open sets in X and
let O = ∪α∈IOα . We show that O is open. If O = ∅, then again O is open. So, we as-
sume that O �= ∅. By Theorem 19.9, each open set Oα (α ∈ I) is the union of open
spheres. Thus, O is a union of open spheres. It again follows by Theorem 19.9 that O is
open.

For the Euclidean space (R, d), each open interval In =
(

−1 − 1
n
, 1 + 1

n

)
, n ∈ N,

is an open set. By Theorem 19.10,
∞⋃

n=1

In = (−2, 2) is an open set, as is
100⋂
n=1

In =
(

−101
100

,
101
100

)
. However, Theorem 19.10 does not guarantee that

∞⋂
n=1

In is open. In-

deed,
∞⋂

n=1

In is the closed interval [−1, 1], which is not an open set. The open interval

Jn =
(

0,
1
n

)
, n ∈ N, is an open set as well. Thus,

∞⋃
n=1

Jn = (0, 1) is an open set. In this

case,
∞⋂

n=1

Jn = ∅, which is also an open set.

We now turn to the Euclidean space (R2, d). Let P0 = (0, 0). For n ∈ N, the open



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M20_CHART6753_04_SE_C19_ONLINE PH03348-Chartrand August 9, 2017 15:20 Char Count= 0

19.2 Open Sets in Metric Spaces 9

sphere Sn(P0) centered at (0, 0) and having radius n is an open set. Here,
∞⋃

n=1

Sn(P0) = R2,

which is open, while
∞⋂

n=1

Sn(P0) = S1(P0), which is open. In (R2, d), where d is the dis-

crete metric, S1(P0) = {P0}, while S2(P0) = R2. Of course, all sets are open in a discrete
metric space.

There is another important class of sets in metric spaces that arise naturally from
open sets. Let (X, d) be a metric space. A subset F of X is called closed if its complement
F is open. For example, in the Euclidean space (R, d), each closed interval [a, b] where
a < b, is closed since its complement (−∞, a) ∪ (b,∞) is open. Let a be a point in a
metric space and let Sr[a] consist of those points x ∈ X such that d(x, a) ≤ r. The set
Sr[a] is called a closed sphere with center a and radius r. Not surprisingly, Sr[a] is
closed, as we show next. Moreover, ∅ and X are both open and closed.

Theorem 19.11 In a metric space (X, d),

(i) ∅ and X are closed, and
(ii) every closed sphere is closed.

Proof Since ∅ and X are complements of each other and each is open, it follows that each
is closed. To verify (ii), let Sr[a] be a closed sphere in (X, d), where a ∈ X . We show
that its complement Sr[a] is open. We may assume that Sr[a] is nonempty and a proper
subset of X . Let x ∈ Sr[a]. Thus, d(x, a) > r and r∗ = d(x, a) − r > 0. We show that
Sr∗ (x) ⊆ Sr[a], that is, if y ∈ Sr∗ (x), then y /∈ Sr[a]. Let y ∈ Sr∗ (x). Since d(x, y) < r∗ =
d(x, a) − r, it then follows by the triangle inequality that

d(y, a) ≥ d(x, a) − d(x, y) > d(x, a) − r∗ = r

and so d(y, a) > r. Hence, y ∈ Sr[a], which implies that Sr∗ (x) ⊆ Sr[a].

Some other useful facts about closed sets follow immediately from Theorem 19.10.
First, it is useful to recall from Theorem 6.15 and Exercise 6.29 that if A1, A2, . . . , An

are n ≥ 2 sets, then

n⋃
i=1

Ai =
n⋂

i=1

Ai and
n⋂

i=1

Ai =
n⋃

i=1

Ai.

These are De Morgan’s Laws for any finite number of sets. There is a more general form
of De Morgan’s Laws.

Theorem 19.12 (Extended De Morgan’s Laws) For an indexed collection {Aα}α∈I of sets,

(a)
⋃
α∈I

Aα =
⋂
α∈I

Aα and (b)
⋂
α∈I

Aα =
⋃
α∈I

Aα.

We present the proof of (a) only, leaving the proof of (b) as an exercise (Exercise 19.14).
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Proof of
Theorem 19.12 (a)

First we show that
⋃
α∈I

Aα ⊆
⋂
α∈I

Aα . Let x ∈
⋃
α∈I

Aα . Then x /∈
⋃
α∈I

Aα . Hence, x /∈ Aα for

each α ∈ I, which implies that x ∈ Aα for all α ∈ I. Consequently, x ∈
⋂
α∈I

Aα and so

⋃
α∈I

Aα ⊆
⋂
α∈I

Aα .

Next we show that
⋂
α∈I

Aα ⊆
⋃
α∈I

Aα . Let x ∈
⋂
α∈I

Aα . Then x ∈ Aα for each α ∈ I.

Thus, x /∈ Aα for all α ∈ I. This implies, however, that x /∈
⋃
α∈I

Aα and, hence, that

x ∈
⋃
α∈I

Aα . Therefore,
⋂
α∈I

Aα ⊆
⋃
α∈I

Aα .

Corollary 19.13 Let (X, d) be a metric space. Then

(i) the union of any finite collection of closed sets in X is closed, and
(ii) the intersection of any collection of closed sets in X is closed.

Proof Let F1, F2, · · · , Fk be k closed sets in X and let F =
k⋃

i=1

Fi. Then F =
k⋃

i=1

Fi =
k⋂

i=1

Fi.

Since each set Fi (1 ≤ i ≤ k) is closed, each set Fi is open. By Theorem 19.10, F is open
and so F is closed. This verifies (i).

Next we verify (ii). Let {Fα}α∈I be an indexed collection of closed sets in X , and let

F =
⋂
α∈I

Fα . Then F =
⋂
α∈I

Fα =
⋃
α∈I

Fα by Theorem 19.12. Since each set Fα (α ∈ I) is

closed, each set Fα is open. By Theorem 19.10, F is open and so F is closed.

19.3 CONTINUITY IN METRIC SPACES

In calculus, we saw that defining a function f to be continuous at a real number can
be formulated in terms of distance or in terms of open intervals, each of which can be
generalized. Now we generalize the concept of continuity itself.

Let (X, d) and (Y, d′) be metric spaces, and let a ∈ X . A function f : X → Y is said
to be continuous at the point a if for every positive real number ε, there exists a positive
real number δ such that if x ∈ X and d(x, a) < δ, then d′( f (x), f (a)) < ε. The function
f : X → Y is continuous on X if it is continuous at each point of X . If X = Y = R and
d = d′ is defined by d(x, y) = |x − y| for all x, y ∈ R, then we are giving the standard
definition of continuity in calculus.

We now consider some examples of continuous functions in this more general
setting.

Result 19.14 Let (R2, d) be the Manhattan metric space whose distance d(P1, P2) between two points
P1 = (x1, y1) and P2 = (x2, y2) in R2 is defined by d(P1, P2) = |x1 − x2| + |y1 − y2|, and
let (R, d′) be the Euclidean space, where d′(a, b) = |a − b|. Then
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(i) the function f : R2 → R defined by f ((x, y)) = f (x, y) = x + y is
continuous.

(ii) the function g : R2 → R defined by g(x, y) = d′(x, y) = |x − y| is continuous.

Proof We first verify (i). Let ε > 0 be given and let P0 = (x0, y0) ∈ R2. We choose δ = ε. Now
let P = (x, y) ∈ R2 such that d(P, P0) = |x − x0| + |y − y0| < δ. Then

d′( f (x, y), f (x0, y0)) = d′(x + y, x0 + y0) = |(x + y) − (x0 + y0)|
= |(x − x0) + (y − y0)| ≤ |x − x0| + |y − y0| < δ = ε.

Therefore, f is continuous.
We now verify (ii). Again, let ε > 0 be given and let P0 = (x0, y0) ∈ R2. For a given

ε > 0, choose δ = ε. Let P = (x, y) ∈ R2 such that d(P, P0) = |x − x0| + |y − y0| < δ.

We show that

d′(g(P), g(P0)) = d′(|x − y|, |x0 − y0|) = ||x − y| − |x0 − y0|| < ε,

which is equivalent to −ε < |x − y| − |x0 − y0| < ε. Observe, by the triangle inequality,
that

|x − y| − |x0 − y0| = |(x − x0) + (x0 − y0) + (y0 − y)| − |x0 − y0|
≤ |x − x0| + |x0 − y0| + |y0 − y| − |x0 − y0|
= |x − x0| + |y0 − y| < δ = ε.

Similarly, |x0 − y0| − |x − y| ≤ |x − x0| + |x − y| + |y0 − y| − |x − y| = |x − x0| +
|y0 − y| < ε.

PROOF ANALYSIS Let’s review how Theorem 19.14(ii) was proved. The main goal was to show that
||x − y| − |x0 − y0|| < ε given that |x − x0| + |y0 − y| < δ. Letting a = |x − y| and b =
|x0 − y0|, we have the inequality |a − b| < ε to verify, which is equivalent to −ε <

a − b < ε, which, in turn, is equivalent to

a − b < ε and b − a < ε.

Thus, one of the inequalities we wish to establish is |x − y| − |x0 − y0| < ε. Since we
know that |x − x0| + |y0 − y| < δ, this suggests working the expression |x − x0| + |y0 −
y| into the expression |x − y| − |x0 − y0|. This can be accomplished by adding and sub-
tracting the appropriate quantities. Observe that

|x − y| − |x0 − y0| = |(x − x0) + (x0 − y0) + (y0 − y)| − |x0 − y0|
≤ |x − x0| + |x0 − y0| + |y0 − y| − |x0 − y0|
= |x − x0| + |y0 − y| < δ.

This suggests choosing δ = ε. Of course, we must be certain that with this choice of δ,
we can also show that |x0 − y0| − |x − y| < ε. �

The function i : R → R defined by i(x) = x for all x ∈ R is, of course, the identity
function. It would probably seem that this function must surely be continuous. However,
this depends on the metric being used.
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Example 19.15 Let (R, d) be the discrete metric space and (R, d′) the Euclidean space with d′(x, y) =
|x − y| for all x, y ∈ R. Then

(i) the function f : (R, d) → (R, d′) defined by f (x) = x for all x ∈ R is
continuous, and

(ii) the function g : (R, d′) → (R, d) defined by g(x) = x for all x ∈ R is not
continuous.

Solution First we verify (i). Let a ∈ R and let ε > 0 be given. Choose δ = 1/2. Let x ∈ R such that
d(x, a) < δ = 1/2. We show that d′( f (x), f (a)) < ε. Since d is the discrete metric and
d(x, a) < 1/2, it follows that x = a. Hence, d′( f (x), f (a)) = | f (x) − f (a)| = |x − a| =
|a − a| = 0 < ε.

Next we verify (ii). Let a ∈ R and choose ε = 1/2. Let δ be any positive real num-
ber. Let x = a + δ/2 ∈ R. Then d′(x, a) = |x − a| = |(a + δ/2) − a| = δ/2 < δ. Since
x �= a, d(g(x), g(a)) = d(x, a) = 1 > ε. Hence, for ε = 1/2, there is no δ > 0 such that
if d′(x, a) < δ, then d(g(x), g(a)) < ε. Therefore, g is not continuous at a. �

Continuity of functions defined from one metric space to another can also be de-
scribed by means of open sets. To do this, we need additional definitions and notation.
Let (X, d) and (Y, d′) be metric spaces and let f : X → Y . If A is a subset of X , then its
image f (A) is that subset of Y defined by

f (A) = { f (x) : x ∈ A}.
Similarly, if B is a subset of Y , then its inverse image f −1(B) is defined by

f −1(B) = {x ∈ X : f (x) ∈ B}.
To illustrate these concepts, consider a function f : R → R for some metric d on

R, where f is defined by f (x) = x2 for all x ∈ R. Then f (x) is a polynomial (whose
graph is a parabola). Let A = (−1, 2], B = [−2, 2] and C = [0, 4]. Then f (A) = C,
while f −1(C) = B.

Now let (X, d) and (Y, d′) be metric spaces, let f : X → Y and let a ∈ X . Sup-
pose that for each ε > 0, there exists δ > 0 such that if x ∈ X and d(x, a) < δ, then
d′( f (x), f (a)) < ε. Then f is continuous at a. Equivalently, f is continuous at a if when-
ever x ∈ Sδ (a), then f (x) ∈ Sε ( f (a)). Hence, f is continuous at a if for each ε > 0, there
exists δ > 0 such that f (Sδ (a)) ⊆ Sε ( f (a)). We now present a characterization of those
functions f that are continuous on the entire set X .

Theorem to
Prove

Let (X, d) and (Y, d′) be metric spaces and let f : X → Y . Then f is continuous on X if
and only if for each open set O in Y , the inverse image f −1(O) is an open set in X .

PROOF STRATEGY Let’s begin with the implication: If f is continuous on X , then for each open set O in
Y , the inverse image f −1(O) is an open set in X . Using a direct proof, we would begin
by assuming that f is continuous and that O is an open set in Y . If f −1(O) = ∅, then
f −1(O) is an open set in X ; while if f −1(O) �= ∅, then we are required to show that
every element x ∈ f −1(O) is the center of an open sphere contained in f −1(O). So, let
x ∈ f −1(O). Therefore, f (x) ∈ O. We know that O is open, so there is some open sphere
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Sε ( f (x)) contained in O. However, f is continuous at x, so there exists δ > 0 such that
f (Sδ (x)) ⊆ Sε ( f (x)). Hence, Sδ (x) ⊆ f −1(O).

We also attempt a direct proof to verify the converse. We begin then by assum-
ing that for each open set O in Y , the set f −1(O) is open in X . Our goal is to show
that f is continuous on X . We let a ∈ X and ε > 0 be given. The open sphere Sε ( f (a))
is an open set in Y . By hypothesis, f −1 (Sε ( f (a))) is an open set in X . Furthermore,
a ∈ f −1 (Sε ( f (a))). Therefore, there exists δ > 0 such that f (Sδ (a)) ⊆ Sε ( f (a)) and f
is continuous on X . �

We now give a more concise proof.

Theorem 19.16 Let (X, d) and (Y, d′) be metric spaces and let f : X → Y . Then f is continuous on X if
and only if for each open set O in Y , the inverse image f −1(O) is an open set in X.

Proof Assume first that f is continuous on X . Let O be an open set in Y . We show that f −1(O) is
open in X . If f −1(O) = ∅, then f −1(O) is open, so we may assume that f −1(O) �= ∅. Let
x ∈ f −1(O). Since x ∈ f −1(O), it follows that f (x) ∈ O. Because O is open, there exists
an open sphere Sε ( f (x)) that is contained in O. Since f is continuous at x, there exists
δ > 0 such that f (Sδ (x)) ⊆ Sε ( f (x)) ⊆ O. Thus, Sδ (x) ⊆ f −1(O) and, hence, f −1(O) is
open, as desired.

For the converse, assume that for each open set O of Y , the inverse image f −1(O)
is an open set of X . We show that f is continuous on X . Let a be an arbitrary point in X .
Let ε > 0 be given. The set Sε ( f (a)) is open in Y and so its inverse image f −1(Sε ( f (a)))
is open in X and contains a. Then there exists δ > 0 such that the open sphere Sδ (a) ⊆
f −1(Sε ( f (a))). Therefore, f (Sδ (a)) ⊆ Sε ( f (a)) and so f is continuous at a. Hence, f is
continuous on X .

With the aid of Theorem 19.16, it can now be shown that any constant function from
one metric space to another is continuous.

Result 19.17 Let (X, d) and (Y, d′) be metric spaces and let f : X → Y be a constant function, that is,
f (x) = c for some fixed element c ∈ Y for all x ∈ X . Then f is continuous.

Proof Let O be an open set in Y . Then f −1(O) = ∅ if c /∈ O; otherwise f −1(O) = X . In any
case, f −1(O) is open. By Theorem 19.16, f is continuous on X .

19.4 TOPOLOGICAL SPACES

In the previous section, we introduced the concept of a continuous function from one
metric space to another, and the definition was formulated in terms of the metrics on the
spaces involved. However, Theorem 19.16 shows that the continuity of a function on a
metric space can be established in terms of open sets only, without any direct reference
to metrics. This suggests the possibility of discarding metrics altogether, replacing them
by open sets, and describing continuity in an even more general setting. This gives rise
to another mathematical structure, called a topological space.
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Let X be a nonempty set and let τ (the Greek letter “tau”) be a collection of subsets
of X . Then (X, τ ) is called a topological space and τ itself is called a topology on X if
the following properties are satisfied:

(1) X ∈ τ and ∅ ∈ τ .

(2) If O1, O2, · · · , On ∈ τ , where n ∈ N, then ∩n
i=1Oi ∈ τ.

(3) If, for an index set I, Oα ∈ τ for each α ∈ I, then ∪α∈IOα ∈ τ .

In a topological space (X, τ ), we refer to each element of τ as an open set of X . Property
(1) states that X and the empty set are open. Property (2) states that the intersection of
any finite collection of open sets is open, while property (3) states the union of any
collection of open sets is open. For example, for a nonempty set X , let τ1 = {∅, X} and
τ2 = P (X ), the set of all subsets of X . Then (X, τ1) and (X, τ2) are topological spaces.
The topology τ1 is called the trivial topology on X , while τ2 is the discrete topology
on X . In (X, τ1), the only open sets are X and ∅; while in (X, τ2), every subset of X is
open.

It follows immediately from the definition of a topological space and the properties
of open sets in a metric space that every metric space is a topological space. The converse
is not true, however. When we say that a topological space (X, τ ) is a metric space, we
mean that it is possible to define a metric d on X such that the set of open sets of (X, d)
is τ .

Example 19.18 Let X = {a, b, c} and τ = {∅, X, {a}, {a, b}, {a, c}}. Then (X, τ ) is a topological space
that is not a metric space.

Solution To see that (X, τ ) is a topological space, it suffices to observe that the union or intersec-
tion of any elements of τ also belongs to τ .

We now show that (X, τ ) is not a metric space, that is, there is no way to define a
metric on X such that the resulting open sets are precisely the elements of τ . We verify
this by contradiction. Assume, to the contrary, that there exists a metric d such that the
open sets in (X, d) are the elements of τ . Let r = min{d(a, b), d(b, c)}. Necessarily,
r > 0. Then

Sr(b) = {x ∈ X : d(x, b) < r} = {b},
which, however, does not belong to τ , a contradiction. �

We now present two other examples of topological spaces, the first of which is sug-
gested by the preceding result.

Result 19.19 Let X be a nonempty set. For a ∈ X , let τ consist of ∅ and each subset of X containing a.
Then (X, τ ) is a topological space.

Proof Since a ∈ X , it follows that X ∈ τ . Furthermore, ∅ ∈ τ , so property (1) is satisfied. Let
O1, O2, · · · , On be n elements of τ . If Oi = ∅ for some i (1 ≤ i ≤ n), then ∩n

i=1Oi =
∅ and so ∩n

i=1Oi ∈ τ. Otherwise, a ∈ Oi for all i with 1 ≤ i ≤ n. Thus, a ∈ ∩n
i=1Oi,

implying that ∩n
i=1Oi ∈ τ. Finally, for an index set I, let {Oα}α∈I be a collection of
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elements of τ . If Oα = ∅ for all α ∈ I, then ∪α∈IOα = ∅ and so ∪α∈IOα ∈ τ . Other-
wise, a ∈ Oα for some α ∈ I and so a ∈ ∪α∈IOα . Therefore, ∪α∈IOα ∈ τ . Hence, (X, τ )
is a topological space.

Our next example of a topological space uses the Extended De Morgan’s Laws
(Theorem 19.12).

Result to Prove Let X be a nonempty set, and let τ be the set consisting of ∅ and each subset of X whose
complement is finite. Then (X, τ ) is a topological space.

PROOF STRATEGY If X is a finite set, then τ consists of all subsets of X . In this case, τ is the discrete topology
on X and (X, τ ) is a topological space. Hence, we need only be concerned with the case
when X is infinite. We already know that ∅ ∈ τ . Also X = ∅, which is finite, so X ∈ τ

as well. So, (X, τ ) satisfies property (1) required of a topological space.
In order to show that (X, τ ) satisfies property (2), we let O1, O2, · · · , On ∈ τ for

n ∈ N. We are required to show that ∩n
i=1Oi ∈ τ . If any of the open sets O1, O2, · · · , On

is empty, then ∩n
i=1Oi = ∅ and so ∩n

i=1Oi belongs to τ . Hence, it suffices to assume
that Oi �= ∅ for all i (1 ≤ i ≤ n). It is necessary to show that ∩n

i=1Oi is finite. However,
∩n

i=1Oi = ∪n
i=1Oi by De Morgan’s law. Since each set Oi is finite (1 ≤ i ≤ n), the union

of these sets is finite as well. Therefore, ∩n
i=1Oi ∈ τ and property (2) is satisfied.

To show that property (3) is satisfied, we begin with an indexed family {Oα}a∈I of
open sets in X and are required to show that ∪a∈IOα ∈ τ . We can proceed in a manner
similar to the verification of property (2). �

Result 19.20 Let X be a nonempty set and let τ be the set consisting of ∅ and each subset of X whose
complement is finite. Then (X, τ ) is a topological space.

Proof If X is finite, then τ is the discrete topology. Hence, we may assume that X is infinite.
Since the complement of X is ∅, it follows that X ∈ τ . Since ∅ ∈ τ as well, (1) holds.
Let O1, O2, · · · , On be n elements of τ . If Oi = ∅ for some i (1 ≤ i ≤ n), then ∩n

i=1Oi =
∅ ∈ τ . Hence, we may assume that Oi �= ∅ for all i (1 ≤ i ≤ n). Then each set Oi is finite.
By De Morgan’s law, ∩n

i=1Oi = ∪n
i=1Oi. Since ∩n

i=1Oi is a finite union of finite sets, it is
finite. Thus, ∩n

i=1Oi ∈ τ and so (2) is satisfied. To verify (3), let {Oα}α∈I be any collection
of elements of τ . Again, by De Morgan’s law,

⋃
α∈I

Oα =
⋂
α∈I

Oα.

If Oα = ∅ for all α ∈ I, then
⋃

α∈I Oα = ∅ ∈ τ . Thus, we may assume that there is some
β ∈ I such that Oβ �= ∅. Hence, Oβ is finite and

⋂
α∈I Oα ⊆ Oβ. So,

⋂
α∈I Oα is finite as

well. Therefore, ∪α∈IOα ∈ τ and (3) is satisfied.

We saw in Theorem 19.7 that every two distinct points in a metric space (X, d)
belong to disjoint open spheres in X . Since open spheres are open sets in X , it follows
that two distinct points in X belong to disjoint open sets. This is often a useful property
for a topological space to have.
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16 Chapter 19 Proofs in Topology

A topological space (X, τ ) is called a Hausdorff space (named for the mathemati-
cian Felix Hausdorff) if for each pair a, b of distinct points of X , there exist disjoint
open sets Oa and Ob of X containing a and b, respectively. The following result is a
consequence of Theorem 19.7.

Corollary 19.21 Every metric space is a Hausdorff space.

On the other hand, not every topological space is a Hausdorff space and not every
Hausdorff space is a metric space. We verify the first of these. The second of these is a
deeper question in topology.

Example 19.22 Let X be an infinite set and let τ be the set consisting of ∅ and every subset of X whose
complement is finite. Then (X, τ ) is a topological space that is not a Hausdorff space.

Solution We saw in Result 19.20 that (X, τ ) is a topological space, so it remains only to show
that (X, τ ) is not a Hausdorff space. Let a and b be any two distinct elements of X . We
claim that there do not exist two disjoint open sets, one containing a and the other b.
Assume, to the contrary, that there exist (nonempty) open sets Oa and Ob containing a
and b, respectively, such that Oa ∩ Ob = ∅. Then, by De Morgan’s law, Oa ∩ Ob = X =
Oa ∪ Ob. Since X is infinite, at least one of Oa and Ob is infinite. This implies that at
least one of Oa and Ob is not open, which is a contradiction. �

19.5 CONTINUITY IN TOPOLOGICAL SPACES

By Theorem 19.16, if (X, d) and (Y, d′) are metric spaces, then a function f : X → Y is
continuous if and only if f −1(O) is an open set in X for each open set O in Y . Hence,
instead of defining a function f to be continuous in terms of distances in the two metric
spaces (as we did), we could have defined f to be continuous in terms of open sets. Since
it would be meaningless to define a function from one topological space to another to be
continuous in terms of distance, we have a logical alternative.

Let (X, τ ) and (Y, τ ′) be two topological spaces. A function f : X → Y is defined
to be continuous if f −1(O) is an open set in X for every open set O in Y . Let’s see how
this definition works in practice.

Result 19.23 Let (X, τ ) and (Y, τ ′) be two topological spaces.

(i) If τ is the discrete topology on X , then every function f : X → Y is
continuous.

(ii) Let τ be the trivial topology on X and let f : X → Y be a surjective function.
Then f is continuous if and only if τ ′ is the trivial topology on Y.

Proof First we verify (i). Let O be an open set in Y . Since f −1(O) is a subset of X , it follows
that f −1(O) is an open set in X and so f is continuous.

Next we verify (ii). Assume first that τ ′ is the trivial topology on Y . Then Y and
∅ are the only open sets in Y . Since f −1(Y ) = X and f −1(∅) = ∅ are open sets in X , it
follows that f is continuous. For the converse, assume that τ ′ is a topology on Y that is
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not the trivial topology. Then there exists some open set O in Y distinct from Y and ∅.
Since f is surjective, f −1(O) is distinct from X and ∅. Thus, f −1(O) is not an open set
in X , implying that f is not continuous.

Result 19.24 Let (X, τ ) and (Y, τ ′) be topological spaces.

(i) The identity function i : X → X (defined by i(x) = x for all x ∈ X ) is
continuous.

(ii) If g : X → Y is a constant function, that is, if g(x) = c for all x ∈ X , where
c ∈ Y , then g is continuous.

Proof We first verify (i). Let O be an open set in X . Since i−1(O) = O is an open set in X , the
function i is continuous.

Next we verify (ii). Let O be an open set in Y . If c ∈ O, then g−1(O) = X ; while
if c /∈ O, then g−1(O) = ∅. In either case, g−1(O) is an open set in X and so g is
continuous.

Example 19.25 Let X = {a, b, c} with the topology τ = {∅, X, {a}, {a, b}, {a, c}} and let f : X → X be
defined by f (a) = b, f (b) = c and f (c) = a. Determine whether f is continuous.

Solution Since O = {a} is an open set in X and f −1(O) = {c} is not an open set in X , the function
f is not continuous. �

Based on the definition given of a continuous function from one metric space to
another, it might appear more natural, for topological spaces (X, τ ) and (Y, τ ′), to define
a function f : X → Y to be continuous if, for every x ∈ X and every open set O of Y
containing f (x), there exists an open set U of X containing x such that f (U ) ⊆ O. This,
however, turns out to be equivalent to our definition, as we are about to see. First, a
lemma is useful.

Lemma 19.26 Let X and Y be nonempty sets and let f : X → Y be a function. For every subset B of Y ,

f
(

f −1(B)
) ⊆ B.

Proof Let y ∈ f
(

f −1(B)
)
. Then there is x ∈ f −1(B) such that f (x) = y. This implies that

y ∈ B.

Result to Prove Let (X, τ ) and (Y, τ ′) be topological spaces. Then f : X → Y is continuous if and only
if for every x ∈ X and every open set O of Y containing f (x), there exists an open set U
of X containing x such that f (U ) ⊆ O.

PROOF STRATEGY Assume first that f is continuous. Let x ∈ X and let O be an open set in Y containing
y = f (x). What we are required to do is to find an open set U of X containing x such that
f (U ) ⊆ O. There is an obvious choice for U , however, namely, f −1(O). An application
of Lemma 19.26 will complete the proof of this implication.

Next, we consider the converse. Assume that for every x ∈ X and every open set O
of Y containing f (x), there is an open set U of X containing x such that f (U ) ⊆ O. Since
our goal is to show that f is continuous, we need to show that for every open set B of



P1: SCF/OVY P2: SCF/OVY QC: UKS/SCF T1: UKS

M20_CHART6753_04_SE_C19_ONLINE PH03348-Chartrand August 9, 2017 15:20 Char Count= 0

18 Chapter 19 Proofs in Topology

Y , the set f −1(B) is open in X . Of course, if f −1(B) = ∅, then f −1(B) is an open set; so
we assume that f −1(B) �= ∅. If we can show that f −1(B) is the union of open sets, then
f −1(B) is open. Let x ∈ f −1(B). Then f (x) ∈ B. By hypothesis, there is an open set Ux

in X containing x such that f (Ux) ⊆ B. This implies that f −1(B) is a union of open sets
in X . �

Result 19.27 Let (X, τ ) and (Y, τ ′) be topological spaces. Then f : X → Y is continuous if and only
if for every x ∈ X and every open set O of Y containing f (x), there exists an open set U
of X containing x such that f (U ) ⊆ O.

Proof Assume first that f is continuous. Let x ∈ X and let O be an open set in Y that contains
f (x). Since f is continuous, f −1(O) is an open set in X containing x. Let U = f −1(O).
By Lemma 19.26, f (U ) = f

(
f −1(O)

) ⊆ O.
For the converse, assume that for every x ∈ X and every open set O of Y containing

f (x), there is an open set U of X containing x such that f (U ) ⊆ O. Let B be an open set
in Y . We show that f −1(B) is an open set in X . If f −1(B) = ∅, then f −1(B) is open in X .
So, we may assume that f −1(B) �= ∅. For each x ∈ f −1(B), the set B is an open set in
Y containing f (x). By assumption, there is an open set Ux in X containing x such that
f (Ux) ⊆ B. Thus, Ux ⊆ f −1(B). However, then, f −1(B) = ⋃

x∈ f −1(B) Ux and so f −1(B)
is an open set in X as well.

EXERCISES FOR CHAPTER 19

19.1. In each of the following, a distance is defined on the set R of real numbers. Determine which of the four
properties of a metric space are satisfied by d. Verify your answers.

(a) d(x, y) = y − x (b) d(x, y) = (x − y) + (y − x)
(c) d(x, y) = |x − y| + |y − x| (d) d(x, y) = x2 + y2

(e) d(x, y) = |x2 − y2| ( f ) d(x, y) = |x3 − y3|
19.2. Prove Result 19.5, that is, the Manhattan metric is, in fact, a metric on R2.

19.3. Let (X, d) be a metric space. For two points P1 = (x1, y1) and P2 = (x2, y2) in X × X , define
d′ : X × X → R by d′(P1, P2) = d(x1, x2) + d(y1, y2). Which of the four properties of a metric space are
satisfied by d′?

19.4. Let (X, d) be a metric space. For two points P1 = (x1, y1) and P2 = (x2, y2) in X × X , define
d∗ : X × X → R by d∗(P1, P2) =

√
[d(x1, x2)]2 + [d(y1, y2)]2. Which of the four properties of a metric

space are satisfied by d∗?

19.5. Let A be a set and let a and b be two distinct elements of A. A distance d : A × A → R is defined as
follows:

d(x, y) =
⎧⎨
⎩

0 if x = y
1 if {x, y} = {a, b}
2 if x �= y and {x, y} �= {a, b}.

Which of the four properties of a metric space are satisfied by this distance?

19.6. Let (X, d) be a metric space.

(a) Define d1(x, y) = d(x, y)/[1 + d(x, y)]. Prove that d1 is a metric for X .
(b) Define d2(x, y) = min{1, d(x, y)}. Prove that d2 is a metric for X .
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19.7. In each part that follows, a distance d(P1, P2) between two points P1 = (x1, y1) and P2 = (x2, y2) is
defined on the Cartesian product R2. Determine which of the four properties of a metric space is satisfied
by each distance d. For those distances that are metrics, describe the associated open spheres.

(a) d(P1, P2) = min {|x1 − x2|, |y1 − y2|}
(b) d(P1, P2) = max {|x1 − x2|, |y1 − y2|}
(c) d(P1, P2) = (|x1 − x2| + |y1 − y2|) /2

19.8. Let (R2, d) be the metric space whose distance d(P1, P2) between two points P1 = (x1, y1) and
P2 = (x2, y2) is given by d(P1, P2) =

√
(x1 − x2)2 + (y1 − y2)2. Prove that the set

S = {(x, y) : −1 < x < 1 and − 1 < y < 1} is open in (R2, d).

19.9. Let (R2, d) and (R2, d′) be metric spaces, where for two points P1 = (x1, y1) and P2 = (x2, y2) in R2,
d(P1, P2) =

√
(x1 − x2)2 + (y1 − y2)2 and d′(P1, P2) = |x1 − x2| + |y1 − y2|. Prove each of the following.

(a) Every open set in (R2, d) is open in (R2, d′).
(b) Every open set in (R2, d′) is open in (R2, d).

19.10. In the metric space (R, d), where d(x, y) = |x − y|, determine which of the following sets are open, closed
or neither and verify your answers.
(a) (0, 1] (b) [0, 1] (c) (−∞, 1]
(d) (0,∞) (e) (0, 2) − {1} ( f ) Q
(g) I (h) { 1

n | n ∈ N} (i) { 1
n | n ∈ N} ∪ {0}

19.11. Let (R2, d) be the metric space whose distance d(P1, P2) between two points P1 = (x1, y1) and
P2 = (x2, y2) in R2 is defined by d(P1, P2) = |x1 − x2| + |y1 − y2| and let (R, d′) be the metric space with
d′(a, b) = |a − b|.
Verify each of the following.

(a) The function f : (R2, d) → (R, d′) defined by f (x, y) = 1
2 (x − y) is continuous.

(b) The function g : (R2, d) → (R, d′) defined by g(x, y) = x is continuous.

19.12. Let (R2, d) be the metric space whose distance d(P1, P2) between two points P1 = (x1, y1) and
P2 = (x2, y2) in R2 is defined by d(P1, P2) =

√
(x1 − x2)2 + (y1 − y2)2 and let d′ be the discrete metric,

that is,

d′(P1, P2) =
{

0 if P1 = P2

1 if P1 �= P2.

Verify each of the following.

(a) The function f : (R2, d) → (R2, d′) defined by f (x, y) = (x, y) is continuous.
(b) The function g : (R2, d′) → (R2, d) defined by g(x, y) = (x, y) is not continuous.

19.13. Let X = {a, b, c, d}. Determine which of the following collections of subsets of X are topologies on X .
Verify your answers.

(a) S1 = {∅, {a}, {a, b}, {a, c}}
(b) S2 = {∅, X, {a, b}, {a, c}}
(c) S3 = {∅, X, {a}, {a, b}, {a, d}, {a, b, d}}

19.14. Prove the Extended De Morgan’s Law in Theorem 19.12(b).

19.15. Let X be a nonempty set and let S ⊆ X . Let τ consist of ∅ and each subset of X containing S. Prove that
(X, τ ) is a topological space.

19.16. Let (X, τ ) be a topological space. Prove that if {x} is an open set for every x ∈ X , then τ is the discrete
topology.
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19.17. Let (X, τ ) be a topological space, where X is finite. Prove that (X, τ ) is a metric space if and only if τ is
the discrete topology on X .

19.18. (a) For a set X with a ∈ X , let τ consist of X together with all sets S such that a /∈ S. Prove that (X, τ ) is a
topological space.

(b) State and prove a generalization of the result in (a).

19.19. Let X be a nonempty set and let τ be the set consisting of ∅ and each subset of X whose complement is
countable. Prove that (X, τ ) is a topological space.

19.20. Let a, b, c be three distinct elements in a Hausdorff space (X, τ ). Prove that there exist pairwise disjoint
open sets Oa, Ob and Oc containing a, b and c, respectively.

19.21. Let τ be the set consisting of ∅, R and each interval (a,∞), where a ∈ R. It is known that (R, τ ) is a
topological space. (Don’t attempt to prove this.) Show that (R, τ ) is not a Hausdorff space.

19.22. Prove that if (X, τ ) is a topological space with the discrete topology, then (X, τ ) is a Hausdorff space.

19.23. Let (N, τ ) be a topological space, where τ consists of ∅ and {S : S ⊆ N, 1 ∈ S}, and let f : N → N be a
continuous permutation. Determine f (1).

19.24. Let X = {a, b, c} with the topology τ = {∅, X, {a}, {a, b}, {a, c}}. Determine all continuous functions from
X to X .

19.25. Let (X, τ1), (Y, τ2) and (Z, τ3) be topological spaces and let f : X → Y and g : Y → Z be functions. Prove
that if f and g are continuous, then the composition g ◦ f is a continuous function from X to Z.

19.26. Let τ be the trivial topology on a nonempty set X . Prove that if f : X → X is continuous, then f is a
constant function.

19.27. For the following statement S and proposed proof, either (1) S is true and the proof is correct, (2) S is true
and the proof is incorrect or (3) S is false and the proof is incorrect. Explain which of these occurs.

S: Let X be an infinite set and let τ consist of ∅ and all infinite subsets of X . Then (X, τ ) is a
topological space.

Proof Since X is an infinite subset of X , it follows that X ∈ τ . Since ∅ ∈ τ , property (1) of a topological
space is satisfied. Let O1, O2, . . . , On be elements of τ for n ∈ N. We show that ∩n

i=1Oi ∈ τ . If Oi = ∅ for
some i with 1 ≤ i ≤ n, then ∩n

i=1Oi = ∅ and ∩n
i=1Oi ∈ τ . Otherwise, Oi is infinite for all i (≤ i ≤ n).

Hence, ∩n
i=1Oi is infinite and so ∩n

i=1Oi ∈ τ . Thus, property (2) is satisfied. Next, let {Oα}α∈I be an indexed
family of open sets. If Oα = ∅ for each α ∈ I, then ∪α∈IOα = ∅ and so ∪α∈IOα ∈ τ . Otherwise, Oα is
infinite for some α ∈ I and so ∪α∈IOα is infinite. Hence, ∪α∈IOα ∈ τ . Therefore, τ is a topology on X .

19.28. Let (X, τ ) and (Y, τ ′) be two topological spaces. According to Result 19.23(i), if τ is the discrete topology
on X , then every function f : X → Y is continuous. The converse of Result 19.23(i) is stated as follows
together with a “proof.”

Converse of Result 19.23(i): Let (X, τ ) and (Y, τ ′) be two topological spaces. If every function from X
to Y is continuous, then τ is the discrete topology on X .

Proof Suppose that every function f : X → Y is continuous and assume, to the contrary, that τ is not
the discrete topology on X . Then there exists some subset S of X such that S is not open in X . So, S is
distinct from X and ∅. Let T be an open set in Y and let a, b ∈ Y such that a ∈ T and b /∈ T . Define a
function f : X → Y by

f (x) =
{

a if x ∈ S
b if x /∈ S.

Since T is open in Y and f −1(T ) = S is not open in X , it follows that f is not continuous, which is a
contradiction.
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(a) Is the proposed proof of the converse correct?
(b) If the answer to (a) is yes, then state Result 19.23(i) and its converse using “if and only if.” If the

answer to (a) is no, then revise the hypothesis of the converse so that it is true (with attached proof).

19.29. Let X be a set with at least two elements and let a ∈ X . Prove or disprove:

(a) If (X, d) is a metric space, then X − {a} is an open set.
(b) If (X, d) is a topological space, then X − {a} is an open set.

19.30. For the following statement S and proposed proof, either (1) S is true and the proof is correct, (2) S is true
and the proof is incorrect or (3) S is false and the proof is incorrect. Explain which of these occurs.

S: Let (X, d) be a metric space. For every open set O in X such that O �= ∅ and every element b ∈ O,
there exists an open sphere Sr(b) in X such that Sr(b) and O are disjoint.

Proof Let r = min{d(b, x) : x ∈ O}. Consider the open sphere Sr(b). We claim that Sr(b) ∩ O = ∅.
Assume, to the contrary, that Sr(b) ∩ O �= ∅. Then there exists y ∈ Sr(b) ∩ O. Since y ∈ Sr(b), it follows
that d(b, y) < r. However, since y ∈ O, this contradicts the fact that r is the minimum distance between b
and an element of O.

19.31. Prove or disprove: Let (X, d) be a metric space. For every open set O in X such that O �= ∅, there exist
b ∈ O and an open sphere Sr(b) in X such that Sr(b) and O are disjoint.
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Answers to Odd-Numbered
Section Exercises

EXERCISES FOR CHAPTER 1

Section 1.1: Describing a Set
1.1 Only (d) and (e).
1.3 (a) |A| = 5, (b) |B| = 11, (c) |C| = 51, (d) |D| = 2, (e) |E| = 1, (f) |F| = 2
1.5 (a) A = {−1, −2, −3, . . .} = {x ∈ Z : x ≤ −1}

(b) B = {−3, −2, . . . , 3} = {x ∈ Z : −3 ≤ x ≤ 3} = {x ∈ Z : |x| ≤ 3}
(c) C = {−2, −1, 1, 2} = {x ∈ Z : −2 ≤ x ≤ 2, x �= 0} = {x ∈ Z : 0 < |x| ≤ 2}

1.7 (a) A = {· · · ,−4, −1, 2, 5, 8, · · ·} = {3x + 2 : x ∈ Z}
(b) B = {· · · ,−10, −5, 0, 5, 10, · · ·} = {5x : x ∈ Z}
(c) C = {1, 8, 27, 64, 125, · · ·} = {x3 : x ∈ N}

1.9 A = {2, 3, 5, 7, 8, 10, 13}
B = {x ∈ A : x = y + z, where y, z ∈ A} = {5, 7, 8, 10, 13}.
C = {r ∈ B : r + s ∈ B for some s ∈ B} = {5, 8}.

Section 1.2: Subsets
1.11 Let r = min(c − a, b − c) and let I = (c − r, c + r). Then I is centered at c and I ⊆ (a, b).
1.13 See Figure 1.1.
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Figure 1.1 Answer for Exercise 1.13

1.15 P (A) = {∅, {0}, {{0}}, A}
1.17 P (A) = {∅, {0}, {∅}, {{∅}}, {0,∅}, {0, {∅}}, {∅, {∅}}, A}; |P (A)| = 8
1.19 (a) S = {∅, {1}}. (b) S = {1}.

(c) S = {∅, {1}, {2}, {3}, {4, 5}}. (d) S = {1, 2, 3, 4, 5}.
1.21 B = {1, 4, 5}.

Section 1.3: Set Operations
1.23 Let A = {1, 2, . . . , 6} and B = {4, 5, . . . , 9}. Then A − B = {1, 2, 3}, B − A = {7, 8, 9} and A ∩ B = {4, 5, 6}.

Thus, |A − B| = |A ∩ B| = |B − A| = 3. See Figure 1.2.

430
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Figure 1.2 Answer for Exercise 1.23

1.25 (a) A = {1}, B = {{1}}, C = {1, 2}.
(b) A = {{1}, 1}, B = {1}, C = {1, 2}.
(c) A = {1}, B = {{1}}, C = {{1}, 2}.

1.27 Let U = {1, 2, . . . , 8} be a universal set, A = {1, 2, 3, 4} and B = {3, 4, 5, 6}. Then A − B = {1, 2},
B − A = {5, 6}, A ∩ B = {3, 4} and A ∪ B = {7, 8}. See Figure 1.3.

�

�

�

�
........
.........
.........

...........
..............

.....................
...........................................................................................................................................................................................................................................................

................
............

..........
.........
........
... ........

.........
.........

...........
..............

.....................
...........................................................................................................................................................................................................................................................

................
............

..........
.........
........
...

�
�

��

5

U

1 4

3 6

8

7

BA

2

Figure 1.3 Answer for Exercise 1.27

1.29 (a) The sets ∅ and {∅} are elements of A. (b) |A| = 3.
(c) All of ∅, {∅} and {∅, {∅}} are subsets of A. (d) ∅ ∩ A = ∅.
(e) {∅} ∩ A = {∅}. (f) {∅, {∅}} ∩ A = {∅, {∅}}.
(g) ∅ ∪ A = A. (h) {∅} ∪ A = A. (i) {∅, {∅}} ∪ A = A.

1.31 A = {1, 2}, B = {2}, C = {1, 2, 3}, D = {2, 3}.
1.33 A = {1}, B = {2}. Then {A ∪ B, A ∩ B, A − B, B − A} is the power set of {1, 2}.
1.35 Let U = {1, 2, . . . , 8}, A = {1, 2, 3, 5}, B = {1, 2, 4, 6} and C = {1, 3, 4, 7}. See Figure 1.4.
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Figure 1.4 Answer for Exercise 1.35
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Section 1.4: Indexed Collections of Sets
1.37

⋃
X∈S X = A ∪ B ∪ C = {0, 1, 2, . . . , 5} and

⋂
X∈S X = A ∩ B ∩ C = {2}.

1.39 Since |A| = 26 and |Aα| = 3 for each α ∈ A, we need to have at least nine sets of cardinality 3 for their union to
be A; that is, in order for

⋃
α∈S Aα = A, we must have |S| ≥ 9. However, if we let S = {a, d, g, j, m, p, s, v, y},

then
⋃

α∈S Aα = A. Hence, the smallest cardinality of a set S with
⋃

α∈S Aα = A is 9.
1.41 (a) {An}n∈N, where An = {x ∈ R : 0 ≤ x ≤ 1/n} = [0, 1/n].

(b) {An}n∈N, where An = {a ∈ Z : |a| ≤ n} = {−n,−(n − 1), . . . , (n − 1), n}.
1.43

⋃
r∈R+ Ar = ⋃

r∈R+ (−r, r) = R;
⋂

r∈R+ Ar = ⋂
r∈R+ (−r, r) = {0}.

1.45
⋃

n∈N An = ⋃
n∈N(− 1

n , 2 − 1
n ) = (−1, 2);

⋂
n∈N An = ⋂

n∈N(− 1
n , 2 − 1

n ) = [0, 1].
1.47 (a) {1} and {1} (b) {−1, 1} and ∅.

Section 1.5: Partitions of Sets
1.49 (a) S1 is not a partition of A since 4 belongs to no element of S1.

(b) S2 is a partition of A.
(c) S3 is not a partition of A because 2, for example, belongs to two elements of S3.
(d) S4 is not a partition of A since S4 is not a set of subsets of A.

1.51 A = {1, 2, 3, 4}. S1 = {{1}, {2}, {3, 4}} and S2 = {{1, 2}, {3}, {4}}.
1.53 Let S = {A1, A2, A3}, where A1 = {x ∈ Q : x > 1}, A2 = {x ∈ Q : x < 1} and A3 = {1}.
1.55 Let S = {A1, A2, A3, A4}, where A1 = {x ∈ Z : x is odd and x is positive},

A2 = {x ∈ Z : x is odd and x is negative}, A3 = {x ∈ Z : x is even and x is nonnegative},
A4 = {x ∈ Z : x is even and x is negative}.

1.57 |P1| = 2, |P2| = 3, |P3| = 5, |P4| = 8, |P5| = 13, |P6| = 21.

Section 1.6: Cartesian Products of Sets
1.59 A × B = {(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)}.
1.61 P (A) = {∅, {a}, {b}, A}, A × P (A) = {(a, ∅), (a, {a}), (a, {b}), (a, A), (b, ∅), (b, {a}), (b, {b}), (b, A)}.
1.63 P (A) = {∅, {1}, {2}, A}, P (B) = {∅, B}, A × B = {(1, ∅), (2, ∅)},

P (A) × P (B) = {(∅,∅), (∅, B), ({1},∅), ({1}, B), ({2},∅), ({2}, B), (A,∅), (A, B)}.
1.65 S = {(3, 0), (2, 1), (1, 2), (0, 3), (−3, 0), (−2, 1), (−1, 2), (2,−1), (1,−2), (0, −3), (−2, −1), (−1,−2)}.

See Figure 1.5.
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Figure 1.5 Answer for Exercise 1.63
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1.67 A × B = [−1, 3] × [2, 6], which is the set of all points on and within the square bounded by x = −1, x = 3,
y = 2 and y = 6.

1.69 (a)–(b) (A × B) ∩ (B × A) = (A ∩ B) × (B ∩ A) = {(2, 2), (2, 3), (3, 2), (3, 3)}.
1.71

∣∣∪3
i=1(Ai × Ai)

∣∣ = 10.

EXERCISES FOR CHAPTER 2

Section 2.1: Statements
2.1 (a) A false statement (b) A true statement (c) Not a statement (d) Not a statement (an open sentence)

(e) Not a statement (f) Not a statement (an open sentence) (g) Not a statement
2.3 (a) False. ∅ has no elements. (b) True (c) True

(d) False. {∅} has ∅ as its only element. (e) True (f) False. 1 is not a set.
2.5 (a) {x ∈ Z : x > 2} (b) {x ∈ Z : x ≤ 2}
2.7 3, 5, 11, 17, 41, 59
2.9 P(n) : n−1

2 is even. P(n) is true only for n = 5 and n = 9.

Section 2.2: Negations
2.11 (a)

√
2 is not a rational number.

(b) 0 is a negative integer.
(c) 111 is not a prime number.

2.13 (a) The real number r is greater than
√

2.
(b) The absolute value of the real number a is at least 3.
(c) At most one angle of the triangle is 45◦.
(d) The area of the circle is less than 9π .
(e) The sides of the triangle have different lengths.
(f) The point P lies on or within the circle C.

Section 2.3: Disjunctions and Conjunctions
2.15 See Figure 2.6.

P Q

TT T

T

T

F
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F F

F

T

F

T

F

T

F

F

P ∧ (∼ Q)∼ Q

Figure 2.6 Answer for Exercise 2.15

2.17 (a) P ∨ Q: 15 is odd or 21 is prime. (True)
(b) P ∧ Q: 15 is odd and 21 is prime. (False)
(c) (∼ P) ∨ Q: 15 is not odd or 21 is prime. (False)
(d) P ∧ (∼ Q): 15 is odd and 21 is not prime. (True)

Section 2.4: Implications
2.19 (a) ∼ P: 17 is not even (or 17 is odd). (True)

(b) P ∨ Q: 17 is even or 19 is prime. (True)
(c) P ∧ Q: 17 is even and 19 is prime. (False)
(d) P ⇒ Q: If 17 is even, then 19 is prime. (True)
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2.21 (a) P ⇒ Q: If
√

2 is rational, then 22/7 is rational. (True)
(b) Q ⇒ P: If 22/7 is rational, then

√
2 is rational. (False)

(c) (∼ P) ⇒ (∼ Q): If
√

2 is not rational, then 22/7 is not rational. (False)
(d) (∼ Q) ⇒ (∼ P): If 22/7 is not rational, then

√
2 is not rational. (True)

2.23 (a), (c), (d) are true.
2.25 (a) True. (b) False. (c) True. (d) True. (e) True.
2.27 Cindy and Don attended the talk.
2.29 Only (c) implies that P ∨ Q is false.

Section 2.5: More on Implications
2.31 (a) P(x) ⇒ Q(x): If |x| = 4, then x = 4.

P(−4) ⇒ Q(−4) is false. P(−3) ⇒ Q(−3) is true.
P(1) ⇒ Q(1) is true. P(4) ⇒ Q(4) is true. P(5) ⇒ Q(5) is true.

(b) P(x) ⇒ Q(x): If x2 = 16, then |x| = 4. True for all x ∈ S.
(c) P(x) ⇒ Q(x): If x > 3, then 4x − 1 > 12. True for all x ∈ S.

2.33 (a) True for (x, y) = (3, 4) and (x, y) = (5, 5), false for (x, y) = (1,−1).
(b) True for (x, y) = (1, 2) and (x, y) = (6, 6), false for (x, y) = (2,−2).
(c) True for (x, y) ∈ {(1, −1), (−3, 4), (1, 0)} and false for (x, y) = (0, −1).

Section 2.6: Biconditionals
2.35 P ⇔ Q: The integer 18 is odd if and only if 25 is even. (True)
2.37 Let x ∈ R. Then |x − 3| < 1 if and only if x ∈ (2, 4).

For x ∈ R, |x − 3| < 1 is a necessary and sufficient condition for x ∈ (2, 4).
2.39 (a) True for all x ∈ S − {−4}. (b) True for x ∈ S − {3}. (c) True for x ∈ S − {−4, 0}.
2.41 True if n = 3.
2.43 P(1) ⇒ Q(1) is false (since P(1) is true and Q(1) is false).

Q(3) ⇒ P(3) is false (since Q(3) is true and P(3) is false).
P(2) ⇔ Q(2) is true (since P(2) and Q(2) are both true).

2.45 True for all n ∈ S.

Section 2.7: Tautologies and Contradictions
2.47 The compound statements (P ∧ (∼ Q)) ∧ (P ∧ Q) and (P ⇒∼ Q) ∧ (P ∧ Q) are contradictions. See the truth

table below.

P Q ∼ Q P ∧ Q P ∧ (∼ Q) (P ∧ (∼ Q)) ∧ (P ∧ Q) P ⇒∼ Q (P ⇒∼ Q) ∧ (P ∧ Q)
T T F T F F F F
T F T F T F T F
F T F F F F T F
F F T F F F T F

2.49 The compound statement ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R) is a tautology since it is true for all combinations
of truth values for the component statements P, Q and R. See the truth table below.

P Q R P ⇒ Q Q ⇒ R (P ⇒ Q) ∧ (Q ⇒ R) P ⇒ R ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R)
T T T T T T T T
T F T F T F T T
F T T T T T T T
F F T T T T T T
T T F T F F F T
T F F F T F F T
F T F T F F T T
F F F T T T T T

((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R): If P implies Q and Q implies R, then P implies R.
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2.51 The compound statement (P ∨ Q) ∨ (Q ⇒ P) is a tautology. See the truth table below.

P Q P ∨ Q Q ⇒ P (P ∨ Q) ∨ (Q ⇒ P)
T T T T T
T F T T T
F T T F T
F F F T T

Section 2.8: Logical Equivalence
2.53 (a) See the truth table below.

P Q ∼ P ∼ Q P ⇒ Q (∼ P) ⇒ (∼ Q)
T T F F T T
T F F T F T
F T T F T F
F F T T T T

Since P ⇒ Q and (∼ P) ⇒ (∼ Q) do not have the same truth values for all combinations of truth values
for the component statements P and Q, the compound statements P ⇒ Q and (∼ P) ⇒ (∼ Q) are not
logically equivalent. Note that the last two columns in the truth table are not the same.

(b) The implication Q ⇒ P is logically equivalent to (∼ P) ⇒ (∼ Q).
2.55 (a) The statements P ⇒ Q and (P ∧ Q) ⇔ P are logically equivalent since they have the same truth values for

all combinations of truth values for the component statements P and Q. See the truth table.

P Q P ⇒ Q P ∧ Q (P ∧ Q) ⇔ P
T T T T T
T F F F F
F T T F T
F F T F T

(b) The statements P ⇒ (Q ∨ R) and (∼ Q) ⇒ ((∼ P) ∨ R) are logically equivalent since they have the same
truth values for all combinations of truth values for the component statements P, Q and R. See the truth
table.

P Q R ∼ P ∼ Q Q ∨ R P ⇒ (Q ∨ R) (∼ P) ∨ R (∼ Q) ⇒ ((∼ P) ∨ R)
T T T F F T T T T
T F T F T T T T T
F T T T F T T T T
F F T T T T T T T
T T F F F T T F T
T F F F T F F F F
F T F T F T T T T
F F F T T F T T T

2.57 The statements (P ∨ Q) ⇒ R and (P ⇒ R) ∧ (Q ⇒ R) are logically equivalent since they have the same truth
values for all combinations of truth values for the component statements P, Q and R. See the truth table.

P Q R P ∨ Q (P ∨ Q) ⇒ R P ⇒ R Q ⇒ R (P ⇒ R) ∧ (Q ⇒ R)
T T T T T T T T
T F T T T T T T
F T T T T T T T
F F T F T T T T
T T F T F F F F
T F F T F F T F
F T F T F T F F
F F F F T T T T

2.59 Since there are only four different combinations of truth values of P and Q for the second and third rows of the
statements S1, S2, S3, S4 and S5, at least two of these must have identical truth tables and so are logically
equivalent.
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Section 2.9: Some Fundamental Properties of Logical Equivalence
2.61 (a) Both x �= 0 and y �= 0.

(b) Either the integer a is odd or the integer b is odd.
2.63 Either x2 = 2 and x �= √

2 or x = √
2 and x2 �= 2.

2.65 If 3n + 4 is odd, then 5n − 6 is odd.

Section 2.10: Quantified Statements
2.67 ∀x ∈ S, P(x): For every odd integer x, the integer x2 + 1 is even.

∃x ∈ S, Q(x): There exists an odd integer x such that x2 is even.
2.69 (a) There exists a set A such that A ∩ A �= ∅.

(b) For every set A, we have A �⊆ A.
2.71 (a) False, since P(1) is false. (b) True, for example, P(3) is true.
2.73 (a) ∃a, b ∈ Z, ab < 0 and a + b > 0.

(b) ∀x, y ∈ R, x �= y implies that x2 + y2 > 0.
(c) For all integers a and b either ab ≥ 0 or a + b ≤ 0.

There exist real numbers x and y such that x �= y and x2 + y2 ≤ 0.
(d) ∀a, b ∈ Z, ab ≥ 0 or a + b ≤ 0. ∃x, y ∈ R, x �= y and x2 + y2 ≤ 0.

2.75 (b) and (c) imply that P(x) ⇒ Q(x) is true for all x ∈ T .
2.77 Let S = {3, 5, 11} and P(s, t ) : st − 2 is prime.

(a) ∀s, t ∈ S, P(s, t ).
(b) False since P(11, 11) is false.
(c) ∃s, t ∈ S, ∼ P(s, t ).
(d) There exist s, t ∈ S such that st − 2 is not prime.
(e) True since the statement in (a) is false.

2.79 (a) There exists a triangle T1 such that for every triangle T2, r(T2) ≥ r(T1).
(b) ∀T1 ∈ A, ∃T2 ∈ B, ∼ P(T1, T2).
(c) For every triangle T1, there exists a triangle T2 such that r(T2) < r(T1).

2.81 (a) There exists b ∈ B such that for every a ∈ A, a − b < 0.
(b) Let b = 10. Then 3 − 10 = −7 < 0, 5 − 10 = −5 < 0 and 8 − 10 = −2 < 0.

Section 2.11: Characterizations
2.83 An integer n is odd if and only if n2 is odd.
2.85 (a) A characterization. (b) A characterization. (c) A characterization.

(d) A characterization. (Pythagorean theorem) (e) Not a characterization. (Every positive number is the area of
some rectangle.)

EXERCISES FOR CHAPTER 3

Section 3.1: Trivial and Vacuous Proofs
3.1 Proof Since x2 − 2x + 2 = (x − 1)2 + 1 ≥ 1, it follows that x2 − 2x + 2 �= 0 for all x ∈ R. Hence, the

statement is true trivially.
3.3 Proof Note that r2+1

r = r + 1
r . If r ≥ 1, then r + 1

r > 1; while if 0 < r < 1, then 1
r > 1 and so r + 1

r > 1.

Thus, r2+1
r ≤ 1 is false for all r ∈ Q+ and so the statement is true vacuously.

3.5 Proof Since n2 − 2n + 1 = (n − 1)2 ≥ 0, it follows that n2 + 1 ≥ 2n and so n + 1
n ≥ 2. Thus, the statement

is true vacuously.
3.7 Proof Since (x − y)2 + (x − z)2 + (y − z)2 ≥ 0, it follows that 2x2 + 2y2 + 2z2 − 2xy − 2xz − 2yz ≥ 0 and

so x2 + y2 + z2 ≥ xy + xz + yz. Thus, the statement is true vacuously.
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Section 3.2: Direct Proofs
3.9 Proof Let x be an even integer. Then x = 2a for some integer a. Thus,

5x − 3 = 5(2a) − 3 = 10a − 4 + 1 = 2(5a − 2) + 1.

Since 5a − 2 is an integer, 5x − 3 is odd.
3.11 Proof Let 1 − n2 > 0. Then n = 0. Thus, 3n − 2 = 3 · 0 − 2 = −2 is an even integer.
3.13 Proof Assume that (n + 1)2(n + 2)2/4 is even, where n ∈ S. Then n = 2 and (n + 2)2(n + 3)2/4 = 100,

which is even.
3.15 Proof Let n ∈ A ∩ B = {3, 5, 7, 9}. Then 32 − 2 = 7, 52 − 2 = 23, 72 − 2 = 47 and 92 − 2 = 79 are all

primes.

Section 3.3: Proof by Contrapositive
3.17 First, we prove a lemma. Lemma Let n ∈ Z. If 15n is even, then n is even.

(Use a proof by contrapositive to verify this lemma.) Then use this lemma to prove the result.
Proof of Result Assume that 15n is even. By the lemma, n is even and so n = 2a for some integer a. Hence,
9n = 9(2a) = 2(9a). Since 9a is an integer, 9n is even.
[Note: This result could also be proved by assuming that 15n is even (and so 15n = 2a for some integer a) and
observing that 9n = 15n − 6n = 2a − 6n.]

3.19 Lemma Let x ∈ Z. If 7x + 4 is even, then x is even. (Use a proof by contrapositive to verify this lemma.)
Proof of Result Assume that 7x + 4 is even. Then by the lemma, x is even and so x = 2a for some integer a.
Hence,

3x − 11 = 3(2a) − 11 = 6a − 12 + 1 = 2(3a − 6) + 1.

Since 3a − 6 is an integer, 3x − 11 is odd.
3.21 To verify the implication “If n is even, then (n + 1)2 − 1 is even.”, use a direct proof. For the converse, “If

(n + 1)2 − 1 is even, then n is even.”, use a proof by contrapositive.
3.23 Proof Assume that n /∈ A ∪ B. Then n = 3 and n(n − 1)(n − 2)/6 = 1 is odd.
3.25 Proof Assume that n /∈ A. Then n ∈ B = {2, 3, 6, 7}. If n = 2, then (n2 + 3n − 4)/2 = 3 is odd. If n = 3,

then (n2 + 3n − 4)/2 = 7 is odd. If n = 6, then (n2 + 3n − 4)/2 = 25 is odd. If n = 7, then
(n2 + 3n − 4)/2 = 33 is odd.

Section 3.4: Proof by Cases
3.27 Let n ∈ Z. We consider two cases.

Case 1. n is even. Then n = 2a for some integer a. Thus, n3 − n = 8a3 − 2a = 2(4a3 − a). Since 4a3 − a is
an integer, n3 − n is even.
Case 2. n is odd. Then n = 2b + 1 for some integer b. The remainder of the proof is similar to that of Case 1.
[Another possibility is to use Theorem 3.12 to observe that n2 is odd and write n2 = 2c + 1 for some integer c
and so n3 = n(n2) = (2b + 1)(2c + 1) = 2(2bc + b + c) + 1.]

3.29 Assume that a, b ∈ Z such that ab is odd. By Exercise 3.28, a and b are both odd and so a2 and b2 are both odd
by Theorem 3.12. Thus, a2 + b2 is even.

3.31 Proof Assume that a or b is odd, say a is odd. Then a = 2x + 1 for some integer x. We consider two cases.
Case 1. b is even. Then b = 2y for some integer y. Thus, ab = a(2y) = 2(ay). Since ay is an integer, ab is even.
Also,

a + b = (2x + 1) + 2y = 2(x + y) + 1.

Since x + y is an integer, a + b is odd. Hence, ab and a + b are of opposite parity.
Case 2. b is odd. Then b = 2y + 1 for some integer y. Thus,

a + b = (2x + 1) + (2y + 1) = 2x + 2y + 2 = 2(x + y + 1).
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Since x + y + 1 is an integer, a + b is even. Furthermore,

ab = (2x + 1)(2y + 1) = 4xy + 2x + 2y + 1 = 2(2xy + x + y) + 1.

Since 2xy + x + y is an integer, ab is odd. Hence, ab and a + b are of opposite parity.
3.33 Proof Assume that n �∈ A ∩ B. Then n = 1 or n = 4. If n = 1, then 2n2 − 5n = −3 is negative and odd; while

if n = 4, then 2n2 − 5n = 12 is positive and even.
For the converse, assume that n ∈ A ∩ B. Then n = 2 or n = 3. If n = 2, then 2n2 − 5n = −2 is negative and
even; while if n = 3, then 2n2 − 5n = 3 is positive and odd. Thus, if n ∈ A ∩ B, then neither (a) nor (b) occurs.

3.35 Proof Let n be a nonnegative integer. We consider two cases.
Case 1. n = 0. Then 2n + 6n = 20 + 60 = 2, which is even.
Case 2. n is a positive integer. Then n − 1 is a nonnegative integer. Therefore,

2n + 6n = 2n + (2 · 3)n = 2n + 2n · 3n = 2(2n−1 + 2n−1 · 3n).

Since 2n−1 + 2n−1 · 3n is an integer, 2n + 6n is even.
3.37 Suppose that exactly two of the three integers x, y, z are even. We consider three cases.

Case 1. x and y are even and z is odd. Then x = 2a, y = 2b and z = 2c + 1, where a, b, c ∈ Z. Thus,
3x + 5y + 7z = 3(2a) + 5(2b) + 7(2c + 1) = 6a + 10b + 14c + 7 = 2(3a + 5b + 7c + 3) + 1. Since
3a + 5b + 7c + 3 is an integer, 3x + 5y + 7z is odd.
The proofs of the following two cases are similar to that of Case 1.
Case 2. x and z are even and y is odd.
Case 3. y and z are even and x is odd.

3.39 Use a proof by contrapositive and consider two cases.

Section 3.5: Proof Evaluations
3.41 (3) is proved.
3.43 The converse of the result has been proved. No proof has been given of the result itself.
3.45 From the first sentence of the proposed proof and the final sentence, it appears that the result in question is the

following: Let x, y ∈ Z. If x or y is even, then xy2 is even. If this, in fact, is the result, then the proof is not
correct. A proof by cases should be given, namely Case 1. x is even. and Case 2. y is even.

3.47 Result Let x ∈ Z. If 7x − 3 is even, then 3x + 8 is odd.
A direct proof of the result is given with the aid of the lemma: Let x ∈ Z. If 7x − 3 is even, then x is odd.

EXERCISES FOR CHAPTER 4

Section 4.1: Proofs Involving Divisibility of Integers
4.1 Proof Assume that a | b. Then b = ac for some integer c. Then b2 = (ac)2 = a2c2. Since c2 is an integer,

a2 | b2.
4.3 Proof First, assume that 3 divides one of x, y and z, say 3 | x. Then x = 3a, where a ∈ Z. Then

xyz = (3a)yz = 3(ayz). Since ayz ∈ Z, it follows that 3 | xyz.
For the converse, assume that 3 | xyz. Let w = yz. Then 3 | xw. By Result 4.8, 3 | x or 3 | w. If 3 | x, then we
have the desired conclusion. If 3 | w, then 3 | yz. Again, by Result 4.8, 3 | y or 3 | z. Therefore, 3 divides one of
x, y and z.

4.5 Proof Assume that a | b or a | c, say the latter. Then c = ak for some integer k. Thus, bc = b(ak) = a(bk).
Since bk is an integer, a | bc.

4.7 Proof First, assume that 3 � n. By Result 4.6(a), 3 | (n2 − 1) and so n2 − 1 = 3a for some integer a. Hence,
n2 = 3a + 1. Therefore, 2n2 + 1 = 2(3a + 1) + 1 = 6a + 3 = 3(2a + 1). Since 2a + 1 is an integer,
3 | (2n2 + 1).
For the converse, assume that 3 | n. Then 3 | n2 by Result 4.6(a). Hence, n2 = 3a, where a ∈ Z. Thus,
2n2 + 1 = 2(3a) + 1 = 3(2a) + 1. Since there is a remainder of 1 when 2n2 + 1 is divided by 3, it follows that
3 � (2n2 + 1).

4.9 x = 3.
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4.11 Proof Let n be an odd integer such that 3 � n. Then 3 | (n2 − 1) by Result 4.6(a) and so n2 − 1 = 3a, where
a ∈ Z. By Result 4.6(b), 8 | (n2 − 1) and so n2 − 1 = 8b, where b ∈ Z. Thus, 3a = 8b and so 3 | 8b. By
Result 4.8, 3 | 8 or 3 | b. Since 3 � 8, it follows that 3 | b. Therefore, b = 3c for some integer c. Hence,
n2 − 1 = 8b = 8(3c) = 24c. Since c is an integer, 24 | (n2 − 1).

4.13 Proof First, assume that 3 � ab. By Result 4.8, 3 � a and 3 � b. By Result 4.6(a), 3 | (a2 − 1) and 3 | (b2 − 1).
Hence, a2 − 1 = 3p and b2 − 1 = 3q where p, q ∈ Z and so a2 = 3p + 1 and b2 = 3q + 1. Therefore,
a2 + b2 = (3p + 1) + (3q + 1) = 3(p + q) + 2. Thus, there is a remainder of 2 when a2 + b2 is divided by 3.
According to Theorem 4.6(a), the square of no integer has a remainder of 2 when divided by 3 and so
c2 �= a2 + b2 for every integer c.

Section 4.2: Proofs Involving Congruence of Integers
4.15 Proof Assume that a ≡ b (mod n) and a ≡ c (mod n). Then n | (a − b) and n | (a − c). Hence, a − b = nx

and a − c = ny, where x, y ∈ Z. Thus, b = a − nx and c = a − ny. Therefore,
b − c = (a − nx) − (a − ny) = ny − nx = n(y − x). Since y − x is an integer, n | (b − c) and so
b ≡ c (mod n).

4.17 (a) Proof Assume that a ≡ 1 (mod 5). Then 5 | (a − 1). So, a − 1 = 5k for some integer k. Thus,
a = 5k + 1 and so

a2 = (5k + 1)2 = 25k2 + 10k + 1 = 5(5k2 + 2k) + 1.

Thus,

a2 − 1 = 5(5k2 + 2k).

Since 5k2 + 2k is an integer, 5 | (a2 − 1) and so a2 ≡ 1 (mod 5).
(b) We can conclude that b2 ≡ 1 (mod 5).

4.19 Proof Assume that a ≡ 5 (mod 6) and b ≡ 3 (mod 4). Then 6 | (a − 5) and 4 | (b − 3). Thus, a − 5 = 6x
and b − 3 = 4y, where x, y ∈ Z. So, a = 6x + 5 and b = 4y + 3. Observe that

4a + 6b = 4(6x + 5) + 6(4y + 3) = 24x + 20 + 24y + 18 = 24x + 24y + 38 = 8(3x + 3y + 4) + 6.

Since 3x + 3y + 4 is an integer, 8|(4a + 6b − 6) and so 4a + 6b ≡ 6 (mod 8).
4.21 Either a = 3q, a = 3q + 1 or a = 3q + 2 for some integer q. We consider these three cases.

Case 1. a = 3q. Then

a3 − a = (3q)3 − (3q) = 27q3 − 3q = 3(9q3 − q).

Since 9q3 − q is an integer, 3 | (a3 − a) and so a3 ≡ a (mod 3).
The other cases are handled in a similar manner.

4.23 Proof Since 6 | a, it follows that a ≡ 0 (mod 6) and so a = 6q for some q ∈ Z. Therefore, a + i ≡ i (mod 6)
for i = 1, 2, . . . , 5. First, assume that x, y ∈ S = {a, a + 1, . . . , a + 5}, where one of x and y is congruent to 1
modulo 6 and the other is congruent to 5 modulo 6. We may assume that x = a + 5 and y = a + 1. Then
x = 6q + 5 and y = 6q + 1. Thus,

x2 − y2 = (6q + 5)2 − (6q + 1)2 = (36q2 + 60q + 25) − (36q2 + 12q + 1)

= 48q + 24 = 24(2q + 1).

Since 2q + 1 is an integer, 24 | (x2 − y2).
For the converse, assume that x and y are distinct odd integers in S such that one of x and y is not congruent

to 1 or 5 modulo 6. Since a is even, either x or y is a + 3. There are two cases.
Case 1. x = a + 5 and y = a + 3. Thus, x = 6q + 5 and y = 6q + 3. Now

x2 − y2 = (6q + 5)2 − (6q + 3)2 = (36q2 + 60q + 25) − (36q2 + 36q + 9)

= 24q + 16.

Since q is an integer, 24 � (x2 − y2).
Case 2. x = a + 3 and y = a + 1. (The proof here is similar to the proof of Case 1.)
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Section 4.3: Proofs Involving Real Numbers
4.25 Proof Assume that x2 − 4x = y2 − 4y and x �= y. Thus, x2 − y2 − 4(x − y) = 0 and so

(x − y)[(x + y) − 4] = 0. Since x �= y, it follows that (x + y) − 4 = 0 and so x + y = 4.
4.27 A proof by contrapositive can be used: Assume that x ≤ 0. Then 3x4 + 1 ≥ 1 and x7 + x3 ≤ 0. Thus,

3x4 + 1 ≥ 1 > 0 ≥ x7 + x3.
4.29 Proof Let r ∈ R such that |r − 1| < 1. Since |r − 1| < 1, it follows that 0 < r < 2. Because (r − 2)2 ≥ 0,

we have

r2 − 4r + 4 ≥ 0.

Thus, 4 ≥ 4r − r2 = r(4 − r). Since 0 < r < 2, it follows that r(4 − r) > 0. Dividing both sides by r(4 − r),
we obtain 4

r(4−r) ≥ 1.
4.31 Proof Since

|x| = |(x + y) + (−y)| ≤ |x + y| + | − y| = |x + y| + |y|,
it follows that |x + y| ≥ |x| − |y|.

4.33 Observe that r3 + s3 + t3 − 3rst = 1
2 (r + s + t )[(r − s)2 + (s − t )2 + (t − r)2].

4.35 Proof Assume that x(x + 1) > 2. Then x2 + x > 2 and so x2 + x − 2 > 0. Thus, (x + 2)(x − 1) > 0.
Therefore, either (a) x + 2 and x − 1 are both positive or (b) x + 2 and x − 1 are both negative. If (a) occurs,
then x > 1; while if (b) occurs, then x < −2.

4.37 Proof Since (x − y)2 + (x − z)2 + (y − z)2 ≥ 0, it follows that 2x2 + 2y2 + 2z2 ≥ 2xy + 2xz + 2yz. Dividing
by 2 produces the desired inequality.

4.39 Proof Observe that

(a2 + c2)(b2 + d2) = a2b2 + a2d2 + b2c2 + c2d2

= (ab + cd)2 + (ad − bc)2 ≥ (ab + cd)2.

Section 4.4: Proofs Involving Sets
4.41 First, we show that if A ∪ B = A, then B ⊆ A. Assume that A ∪ B = A. Let x ∈ B. Then x ∈ A ∪ B. Since

A ∪ B = A, it follows that x ∈ A. Thus, B ⊆ A. Next we show that if B ⊆ A, then A ∪ B = A. A proof by
contrapositive begins by assuming that A ∪ B �= A.

4.43 (a) Consider A = {1, 2}, B = {2, 3} and C = {2, 4}.
(b) Consider A = {1, 2}, B = {1} and C = {2}.
(c) Suppose that B �= C. We show that either A ∩ B �= A ∩ C or A ∪ B �= A ∪ C. Since B �= C, it follows that

B �⊆ C or C �⊆ B, say the former. Thus, there exists b ∈ B such that b /∈ C. We consider two cases,
according to whether b ∈ A or b /∈ A.
Case 1. b ∈ A. Since b ∈ B and b ∈ A, it follows that b ∈ A ∩ B. On the other hand, b /∈ C and so b /∈ A ∩ C.
Thus, A ∩ B �= A ∩ C.
Case 2. b /∈ A. Then show that A ∪ B �= A ∪ C.

4.45 Proof Let n ∈ B. Then n ∈ Z and n ≡ 3 (mod 4). So, n = 4q + 3 for some integer q. Therefore,
n = 2(2q + 1) + 1. Since 2q + 1 ∈ Z, it follows that 2 | (n − 1) and so n ≡ 1 (mod 2). Thus, n ∈ A.

4.47 (a) Each element n ∈ A − B can be written as n = 3a + 2 for some integer a, where n is even. This implies that
a is even, say a = 2b for some integer b. Thus, n = 3a + 2 = 3(2b) + 2 = 6b + 2.

(b) Proof Let n ∈ A ∩ B. Then n = 3a + 2 for some integer a and n is odd. Thus, a is odd, say a = 2b + 1
for some integer b. Thus, n = 3a + 2 = 3(2b + 1) + 2 = 6b + 5. Therefore,

n2 − 1 = (6b + 5)2 − 1 = 36b2 + 60b + 24 = 12(3b2 + 5b + 2).

Since 3b2 + 5b + 2 is an integer, 12 | (n2 − 1) and so n2 ≡ 1 (mod 12).
4.49 First, we show that A ⊆ (A − B) ∪ (A ∩ B). Let x ∈ A. Then x /∈ B or x ∈ B. If x /∈ B, then x ∈ A − B and

x ∈ (A − B) ∪ (A ∩ B). If x ∈ B, then x ∈ A ∩ B and so x ∈ (A − B) ∪ (A ∩ B). Therefore,
A ⊆ (A − B) ∪ (A ∩ B). Next, show that (A − B) ∪ (A ∩ B) ⊆ A.

4.51 (e) is a necessary condition for A and B to be disjoint.
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Section 4.5: Fundamental Properties of Set Operations
4.53 First, we show that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C). Let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C. Since

x ∈ B ∪ C, it follows that x ∈ B or x ∈ C, say x ∈ B. Because x ∈ A and x ∈ B, it follows that x ∈ A ∩ B. Hence,
x ∈ (A ∩ B) ∪ (A ∩ C). Next, show that (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

4.55 We first show that (A − B) ∩ (A − C) ⊆ A − (B ∪ C). Let x ∈ (A − B) ∩ (A − C). Then x ∈ A − B and
x ∈ A − C. Since x ∈ A − B, it follows that x ∈ A and x /∈ B. Because x ∈ A − C, we have x ∈ A and x /∈ C.
Since x /∈ B and x /∈ C, we have x /∈ B ∪ C. Thus, x ∈ A − (B ∪ C). Next, show that
A − (B ∪ C) ⊆ (A − B) ∩ (A − C).

4.57 Proof By Theorem 4.22,

A ∪ (B ∩ C) = A ∩ (B ∩ C) = A ∩ (B ∪ C)

= A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

= (A ∩ B) ∪ (A − C),

as desired.
4.59 First, we show that A − (B − C) ⊆ (A ∩ C) ∪ (A − B). Let x ∈ A − (B − C). Then x ∈ A and x /∈ B − C. Since

x /∈ B − C, it is not the case that x ∈ B and x /∈ C. Thus, either x /∈ B or x ∈ C. Since x ∈ A, either x ∈ A − B or
x ∈ A ∩ C. Thus, x ∈ (A ∩ C) ∪ (A − B). Therefore, A − (B − C) ⊆ (A ∩ C) ∪ (A − B). Next, show that
(A ∩ C) ∪ (A − B) ⊆ A − (B − C).

Section 4.6: Proofs Involving Cartesian Products of Sets
4.61 For A = {1} and B = {2}, P (A) = {∅, A} and P (B) = {∅, B}. Thus,

P (A) × P (B) = {(∅,∅), (∅, B), (A,∅), (A, B)}.
Since A × B = {(1, 2)}, it follows that P (A × B) = {∅, A × B}.

4.63 Let A and B be sets. Then A × B = B × A if and only if A = B or one of A and B is empty.
Proof First, we show that if A = B or one of A and B is empty, then A × B = B × A. If A = B, then certainly
A × B = B × A; while if one of A and B is empty, say A = ∅, then A × B = ∅ × B = ∅ = B × ∅ = B × A.

For the converse, assume that A and B are nonempty sets with A �= B. Since A �= B, at least one of A and B
is not a subset of the other, say A �⊆ B. Then there is an element a ∈ A such that a /∈ B. Since B �= ∅, there exists
an element b ∈ B. Then (a, b) ∈ A × B but (a, b) /∈ B × A. Hence, A × B �= B × A.

4.65 First, assume that A × C ⊆ B × C. Show that A ⊆ B. For the converse, assume that A ⊆ B. Show that
A × C ⊆ B × C.

4.67 We first show that A × (B ∩ C) ⊆ (A × B) ∩ (A × C). Let (x, y) ∈ A × (B ∩ C). Then x ∈ A and y ∈ B ∩ C.
Thus, y ∈ B and y ∈ C. Thus, (x, y) ∈ A × B and (x, y) ∈ A × C. Therefore, (x, y) ∈ (A × B) ∩ (A × C). It
remains to show that (A × B) ∩ (A × C) ⊆ A × (B ∩ C).

4.69 Proof Let (x, y) ∈ (A × B) ∪ (C × D). Then (x, y) ∈ A × B or (x, y) ∈ C × D. Assume, without loss of
generality, that (x, y) ∈ A × B. Thus, x ∈ A and y ∈ B. This implies that x ∈ A ∪ C and y ∈ B ∪ D. Therefore,
(x, y) ∈ (A ∪ C) × (B ∪ D).

EXERCISES FOR CHAPTER 5

Section 5.1: Counterexamples
5.1 Let a = b = −1. Then log(ab) = log 1 = 0 but log(a) and log(b) are not defined. Thus, a = b = −1 is a

counterexample.
5.3 If n = 3, then 2n2 + 1 = 19. Since 3 � 19, it follows that n = 3 is a counterexample.
5.5 If a = 1 and b = 2, then (a + b)3 = 33 = 27, but a3 + 2a2b + 2ab + 2ab2 + b3 = 1 + 4 + 4 + 8 + 8 = 25.

Thus, a = 1 and b = 2 form a counterexample.
5.7 (a) Observe that (a + b)

(
1
a + 1

b

) = 2 + a
b + b

a ≥ 2 + 2 = 4. (b) The converse is true.
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5.9 Let x = 3 and n = 2. Then xn + (x + 1)n = 32 + 42 = 25 = 52 = (x + 2)n. Then x = 3, n = 2 is a
counterexample.

5.11 If {n1, n2, n3} = {1, 2, 3}, then 2n1 + 2n2 + 2n3 = 2 + 4 + 8 = 14 and 3 � 14. Thus, {n1, n2, n3} = {1, 2, 3} is a
counterexample.

Section 5.2: Proof by Contradiction
5.13 Assume, to the contrary, that there exists a smallest positive irrational number r. Then r/2 is a positive irrational

number and r/2 < r.
5.15 Let a and b be odd integers and assume, to the contrary, that 4 | (a2 + b2). Then a2 + b2 = 4x for some integer

x. Starting with this, a contradiction can be obtained.
5.17 Assume, to the contrary, that 1000 can be expressed as the sum of three integers a, b and c, an even number of

which are even. There are two cases.
Case 1. None of a, b and c is even. Then a = 2x + 1, b = 2y + 1 and c = 2z + 1, where x, y, z ∈ Z. Thus,

1000 = (2x + 1) + (2y + 1) + (2z + 1) = 2(x + y + z + 1) + 1.

Since x + y + z + 1 is an integer, 1000 is odd, which is a contradiction.
Case 2. Exactly two of a, b and c are even, say a and b are even and c is odd. (The argument is similar to that in
Case 1.)

5.19 Proof Assume, to the contrary, that there exist an irrational number a and a nonzero rational number b such
that a/b is a rational number. Then a/b = p/q, where p, q ∈ Z and p, q �= 0. Since b is a nonzero rational
number, b = r/s, where r, s ∈ Z and r, s �= 0. Thus, a = (bp)/q = (rp)/(sq). Since rp, sq ∈ Z and sq �= 0, it
follows that a is a rational number, which is a contradiction.

5.21 Proof Assume to the contrary, that
√

3 is rational. Then
√

3 = p/q, where p, q ∈ Z and q �= 0. We may
assume that p/q has been reduced to lowest terms. Thus, 3 = p2/q2 and so p2 = 3q2. Since 3 | p2, it follows
that 3 | p. Thus, p = 3x for some integer x. Therefore, p2 = (3x)2 = 9x2 = 3q2. So 3x2 = q2. Since x2 is an
integer, 3 | q2. Thus, 3 | q and so q = 3y, where y ∈ Z. Hence, p = 3x and q = 3y, which contradicts our
assumption that p/q has been reduced to lowest terms.

5.23 (a) One possible way to prove this is to use the fact that for integers a and b, the product ab is even if and only
if a is even or b is even.
Proof Assume, to the contrary, that

√
6 is rational. Then

√
6 = a/b for nonzero integers a and b. We can

further assume that a/b has been reduced to lowest terms. Thus, 6 = a2/b2; so a2 = 6b2 = 2(3b2). Because
3b2 is an integer, a2 is even. By Theorem 3.12, a is even. So, a = 2c, where c ∈ Z. Thus, (2c)2 = 6b2 and
so 4c2 = 6b2. Therefore, 3b2 = 2c2. Because c2 is an integer, 3b2 is even. By Theorem 3.17, either 3 is even
or b2 is even. Since 3 is not even, b2 is even and so b is even by Theorem 3.12. However, since a and b are
both even, each has 2 as a divisor, contradicting the fact that a/b has been reduced to lowest terms.

(b) We can use an argument similar to that employed in (a) to prove that
√

2k is irrational for every odd
positive integer k.

5.25 Proof Assume to the contrary, that there is some integer a such that a ≡ 5 (mod 14) and a ≡ 3 (mod 21).
Then 14 | (a − 5) and 21 | (a − 3); so a = 5 + 14x and a = 3 + 21y for some integers x and y. Therefore,
5 + 14x = 3 + 21y, which implies that 2 = 21y − 14x = 7(3y − 2x). Since 3y − 2x is an integer, 7 | 2, which
is a contradiction.

5.27 Proof Suppose that there exist three distinct positive integers a, b and c such that each divides the difference
of the other two. We may assume that a < b < c. Thus, c | (b − a). Since 0 < b − a < c, this is a
contradiction.

5.29 Proof Assume, to the contrary, that there exist positive real numbers x and y such that
√

x + y = √
x + √

y.
Squaring both sides, we obtain x + y = x + 2

√
x
√

y + y and so 2
√

x
√

y = 2
√

xy = 0. This implies that xy = 0.
Thus, x = 0 or y = 0, which is a contradiction.

5.31 Assume, to the contrary, that there exist positive integers x and y such that x2 − y2 = m = 2s. Then
(x + y)(x − y) = 2s, where s is an odd integer. We consider two cases, according to whether x and y are of the
same parity or of opposite parity. Note that if x and y are of the same parity, then both x + y and x − y are even,
while if x and y are of opposite parity, then both x + y and x − y are odd. Produce a contradiction in each case.
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5.33 Proof Suppose that 5 � xy and assume, to the contrary, that 5 | x or 5 | y, say the former. Then x = 5a for
some integer a. Thus, xy = (5a)y = 5(ay). Since ay is an integer, 5 | xy, contradicting the assumption that
5 � xy.

5.35 (a) Proof Assume, to the contrary, that x2 − 3x + 1 = 0 has a rational number solution p/q, where p, q ∈ Z
and q �= 0. We may assume that p/q is expressed in lowest terms. Thus, p2

q2 − 3p
q + 1 = 0 and so

p2 − 3pq + q2 = 0. We consider two cases.
Case 1. Exactly one of p and q is even, say p is even and q is odd. Then p = 2r and q = 2s + 1, where
r, s ∈ Z. Hence,

p2 − 3pq + q2 = (2r)2 − 3(2r)(2s + 1) + (2s + 1)2

= 4r2 − 12rs − 6r + 4s2 + 4s + 1

= 2(2r2 − 6rs − 3r + 2s2 + 2s) + 1 = 0.

Since 2r2 − 6rs − 3r + 2s2 + 2s ∈ Z, it follows that p2 − 3pq + q2 is odd and equals 0, which is a
contradiction.
Case 2. Both p and q are odd. (The proof in this case is similar to the proof of Case 1.)

(b) For positive integers k and n with k < n and odd integers a, b and c, the equation axn + bxk + c = 0 has no
rational number solution.

Section 5.3: A Review of Three Proof Techniques
5.37 (a) Proof Assume that x − 2

x > 1. Since x > 0, it follows, by multiplying by x, that x2 − 2 > x and so
x2 − x − 2 > 0. Hence, (x − 2)(x + 1) > 0. Dividing by the positive number x + 1, we have x − 2 > 0 and
so x > 2.

(b) Proof Assume that 0 < x ≤ 2. Thus, x2 − x − 2 = (x − 2)(x + 1) ≤ 0 and so x2 − 2 ≤ x. Dividing by
the positive number x, we have x − 2

x ≤ 1.
(c) Proof Assume, to the contrary, that there exists a positive number x such that x − 2

x > 1 and x ≤ 2. Thus,
x2 − x − 2 = (x − 2)(x + 1) ≤ 0 and so x2 − 2 ≤ x. Dividing by the positive number x, we have
x − 2

x ≤ 1, producing a contradiction.
5.39 (a) Proof Let x, y ∈ R+ such that x ≤ y. Multiplying both sides by x and y, respectively, we obtain x2 ≤ xy

and xy ≤ y2. Therefore, x2 ≤ xy ≤ y2 and so x2 ≤ y2.
(b) Proof Assume that x2 > y2. Thus, x2 − y2 > 0 and so (x + y)(x − y) > 0. Dividing by the positive

number x + y, we obtain x − y > 0 and x > y.
(c) Proof Assume, to the contrary, that there exist positive numbers x and y such that x ≤ y and x2 > y2.

Since x ≤ y, it follows that x2 ≤ xy and xy ≤ y2. Thus, x2 ≤ y2, producing a contradiction.
5.41 Proof (Direct Proof) Let a, b, c ∈ Z. We show that exactly two of ab, ac and bc cannot be odd. If all of a, b

and c are odd, then ab, ac and bc are all odd; otherwise, at least one of a, b and c is even, say a is even. Then ab
and ac are even.
Proof (Proof by Contradiction) Let a, b, c ∈ Z and assume, to the contrary, that exactly two of ab, ac and bc
are odd, say ab and ac are odd. Then a, b and c are odd, which implies that bc is odd, a contradiction.

Section 5.4: Existence Proofs
5.43 Proof Consider the rational number 2 and the irrational number 1

2
√

2
. If 2

1
2
√

2 is irrational, then a = 2 and

b = 1
2
√

2
have the desired properties. If, on the other hand, 2

1
2
√

2 is rational, then

(
2

1
2
√

2

)√
2

= 2
√

2
2
√

2 = 2
1
2 =

√
2

is irrational and so a = 2
1

2
√

2 and b = √
2 have the desired properties.
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5.45 Proof Assume, to the contrary, that there exist nonzero real numbers a and b such that
√

a2 + b2 = 3
√

a3 + b3.
Raising both sides to the 6th power, we obtain

a6 + 3a4b2 + 3a2b4 + b6 = a6 + 2a3b3 + b6.

Thus,

3a2 − 2ab + 3b2 = (a − b)2 + 2a2 + 2b2 = 0.

Since this can only occur when a = b = 0, we have a contradiction.
5.47 Let W = S − T . Since T is a proper subset of S, it follows that ∅ �= W ⊆ S. Then R(x) is true for every x ∈ W ,

that is, ∀x ∈ W, R(x) is true.
5.49 Proof Suppose that S = {a, b, c}. The nonempty subsets of S are {a}, {b}, {c}, {a, b}, {a, c}, {b, c} and {a, b, c}.

For each such subset A of S, σA is congruent to 0, 1, 2, 3, 4 or 5 modulo 6. Since there are seven nonempty
subsets of S, there must be two of these seven subsets, say B and C, such that σB ≡ σC (mod 6).

5.51 Proof Let n ∈ Z with n ≥ 8. Then n = 3q where q ≥ 3, n = 3q + 1 where q ≥ 3 or n = 3q + 2 where q ≥ 2.
We consider these three cases.
Case 1. n = 3q, where q ≥ 3. Then n = 3a + 5b, where a = q ≥ 3 and b = 0.
Case 2. n = 3q + 1, where q ≥ 3. Then n = 3(q − 3) + 10, where q − 3 ≥ 0. Thus, n = 3a + 5b, where
a = q − 3 ≥ 0 and b = 2.
Case 3. n = 3q + 2, where q ≥ 2. Then n = 3(q − 1) + 5, where q − 1 ≥ 1. Thus, n = 3a + 5b, where
a = q − 1 ≥ 1 and b = 1.

5.53. Let S = {7, 13, 17, 23}.

Section 5.5: Disproving Existence Statements
5.55 We show that if a and b are odd integers, then 4 � (3a2 + 7b2). Let a and b be odd integers. Then a = 2x + 1 and

b = 2y + 1 for integers x and y. Then 3a2 + 7b2 = 4(3x2 + 3x + 7y2 + 7y + 2) + 2. Since 2 is the remainder
when 3a2 + 7b2 is divided by 4, it follows that 4 � (3a2 + 7b2).

5.57 Show that if n is an integer, then n4 + n3 + n2 + n is even. Let n ∈ Z. Then n is even or n is odd. We consider
these two cases.
Case 1. n is even. Then n = 2a for some integer a. Then

n4 + n3 + n2 + n = n(n + 1)(n2 + 1) = 2a(n + 1)(n2 + 1) = 2[a(n + 1)(n2 + 1)].
Since a(n + 1)(n2 + 1) is an integer, n4 + n3 + n2 + n is even.
Case 2. n is odd. (The argument is similar here.)

5.59. Proof Assume, to the contrary, that exists a positive integer m such that ∀n ∈ (m,∞), P(n) is true. Thus,
P(n) is true for each integer n > m. Since ∀n ∈ N, P(n) has an infinite number of counterexamples, there is a
counterexample k such that k > m. However then, k ∈ (m,∞) and P(k) is false, which is a contradiction.

EXERCISES FOR CHAPTER 6

Section 6.1: The Principle of Mathematical Induction
6.1 The sets in (b) and (d) are well-ordered.
6.3 Proof Let S be a nonempty set of negative integers. Let T = {n : −n ∈ S}. Hence, T is a nonempty set of

positive integers. By the Well-Ordering Principle, T has a least element m. Hence, m ≤ n for all n ∈ T .
Therefore, −m ∈ S and −m ≥ −n for all −n ∈ S. Thus, −m is the largest element of S.

6.5 Proof We use induction. Since 1 = 2 · 12 − 1, the formula holds for n = 1. Assume that the formula holds
for some integer k ≥ 1, that is,

1 + 5 + 9 + · · · + (4k − 3) = 2k2 − k.

We show that

1 + 5 + 9 + · · · + [4(k + 1) − 3] = 2(k + 1)2 − (k + 1).
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Observe that

1 + 5 + 9 + · · · + [4(k + 1) − 3] = [1 + 5 + 9 + · · · + (4k − 3)] + 4(k + 1) − 3

= (2k2 − k) + (4k + 1) = 2k2 + 3k + 1

= 2(k + 1)2 − (k + 1).

The result then follows by the Principle of Mathematical Induction.
6.7 One possibility: 1 + 7 + 13 + · · · + (6n − 5) = 3n2 − 2n for every positive integer n.
6.9 Proof We proceed by induction. For n = 1, we have 1 · 3 = 3 = 1·(1+1)(2·+7)

6 , which is true. Assume that
1 · 3 + 2 · 4 + 3 · 5 + · · · + k(k + 2) = k(k+1)(2k+7)

6 where k ∈ N. We then show that

1 · 3 + 2 · 4 + 3 · 5 + · · · + (k + 1)(k + 3) = (k + 1)(k + 2)[2(k + 1) + 7]
6

= (k + 1)(k + 2)(2k + 9)
6

.

Observe that

1 · 3 + 2 · 4 + 3 · 5 + · · · + (k + 1)(k + 3)

= [1 · 3 + 2 · 4 + 3 · 5 + · · · + k(k + 2)] + (k + 1)(k + 3)

= k(k + 1)(2k + 7)
6

+ (k + 1)(k + 3)

= k(k + 1)(2k + 7) + 6(k + 1)(k + 3)
6

= (k + 1)(2k2 + 7k + 6k + 18)
6

= (k + 1)(2k2 + 13k + 18)
6

= (k + 1)(k + 2)(2k + 9)
6

.

By the Principle of Mathematical Induction,

1 · 3 + 2 · 4 + 3 · 5 + · · · + n(n + 2) = n(n + 1)(2n + 7)
6

for every positive integer n.
6.11 We proceed by induction. Since 1

3·4 = 1
3+9 , the formula holds for n = 1. Assume that

1
3 · 4

+ 1
4 · 5

+ · · · + 1
(k + 2)(k + 3)

= k
3k + 9

where k is a positive integer. Then show that

1
3 · 4

+ 1
4 · 5

+ · · · + 1
(k + 3)(k + 4)

= k + 1
3(k + 1) + 9

= k + 1
3(k + 4)

.

6.13 Proof We proceed by induction. Since 1 · 1! = 2! − 1, the statement is true for n = 1. Assume that

1 · 1! + 2 · 2! + · · · + k · k! = (k + 1)! − 1,

where k ∈ N. We show that

1 · 1! + 2 · 2! + · · · + (k + 1) · (k + 1)! = (k + 2)! − 1.

Now

1 · 1! + 2 · 2! + · · · + (k + 1) · (k + 1)! = (1 · 1! + 2 · 2! + · · · + k · k!) + (k + 1) · (k + 1)!

= (k + 1)! − 1 + (k + 1) · (k + 1)!

= (k + 1)!(k + 2) − 1 = (k + 2)! − 1.

By the Principle of Mathematical Induction, 1 · 1! + 2 · 2! + · · · + n · n! = (n + 1)! − 1 for all n ∈ N.
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6.15 Proof We proceed by induction. Since 1√
1

≤ 2
√

1 − 1, the inequality holds for n = 1. Assume that

1√
1

+ 1√
2

+ 1√
3

+ · · · + 1√
k

≤ 2
√

k − 1

for a positive integer k. We show that

1√
1

+ 1√
2

+ 1√
3

+ · · · + 1√
k + 1

≤ 2
√

k + 1 − 1.

Observe that

1√
1

+ 1√
2

+ 1√
3

+ · · · + 1√
k + 1

=
(

1√
1

+ 1√
2

+ 1√
3

+ · · · + 1√
k

)
+ 1√

k + 1

≤ (2
√

k − 1) + 1√
k + 1

= 2
√

k2 + k + 1√
k + 1

− 1.

Since 4(k2 + k) ≤ (2k + 1)2, it follows that 2
√

k2 + k ≤ 2k + 1 and so 2
√

k2 + k + 1 ≤ 2(k + 1) =
2(

√
k + 1)2. Therefore,

2
√

k2 + k + 1√
k + 1

≤ 2
√

k + 1.

Thus,

1√
1

+ 1√
2

+ 1√
3

+ · · · + 1√
k + 1

≤ 2
√

k + 1 − 1.

By the Principle of Mathematical Induction, 1√
1

+ 1√
2

+ 1√
3

+ · · · + 1√
n ≤ 2

√
n − 1 for every positive

integer n.

Section 6.2: A More General Principle of Mathematical Induction
6.17 Proof We need only show that every nonempty subset of S has a least element. So, let T be a nonempty

subset of S. If T is a subset of N, then, by the Well-Ordering Principle, T has a least element. Hence, we may
assume that T is not a subset of N. Thus, T − N is a finite nonempty set and so contains a least element t.
Since t ≤ 0, it follows that t ≤ x for all x ∈ T ; so t is a least element of T .

6.19 Proof We use induction. We know that if a and b are two real numbers such that ab = 0, then a = 0 or b = 0.
Thus, the statement is true for n = 2. Assume that:

If a1, a2, . . . , ak are any k ≥ 2 real numbers whose product is 0, then ai = 0 for some integer i with
1 ≤ i ≤ k.

We wish to show the statement is true in the case of k + 1 numbers, that is:

If b1, b2, . . . , bk+1 are k + 1 real numbers such that b1b2 · · · bk+1 = 0, then bi = 0 for some integer i
(1 ≤ i ≤ k + 1).

Let b1, b2, . . . , bk+1 be k + 1 real numbers such that b1b2 · · · bk+1 = 0. We show that bi = 0 for some integer
i (1 ≤ i ≤ k + 1). Let b = b1b2 · · · bk. Then

b1b2 · · · bk+1 = (b1b2 · · · bk )bk+1 = bbk+1 = 0.

Therefore, either b = 0 or bk+1 = 0. If bk+1 = 0, then we have the desired conclusion. On the other hand, if
b = b1b2 · · · bk = 0, then, since b is the product of k real numbers, it follows by the inductive hypothesis that
bi = 0 for some integer i (1 ≤ i ≤ k). In any case, bi = 0 for some integer i (1 ≤ i ≤ k + 1). The result then
follows by the Principle of Mathematical Induction.
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6.21 Proof We proceed by induction. Since 4 | (50 − 1), the statement is true for n = 0. Assume that 4 | (5k − 1),
where k is a nonnegative integer. We show that 4 | (5k+1 − 1). Since 4 | (5k − 1), it follows that 5k = 4a + 1 for
some integer a. Observe that

5k+1 − 1 = 5 · 5k − 1 = 5(4a + 1) − 1 = 20a + 4 = 4(5a + 1).

Since (5a + 1) ∈ Z, it follows that 4 | (5k+1 − 1). By the Principle of Mathematical Induction, 4 | (5n − 1) for
every nonnegative integer n.

6.23 We employ mathematical induction. For n = 0, we have 7 | 0, which is true. Assume that 7 | (
32k − 2k

)
for

some integer k ≥ 0. We show that 7 | (
32(k+1) − 2(k+1)

)
. Since 7 | (

32k − 2k
)
, it follows that 32k − 2k = 7a for

some integer a. Thus, 32k = 2k + 7a. Then show that 32(k+1) − 2(k+1) = 7(2k + 9a).
6.25 Proof We use induction. Since 4! = 24 > 16 = 24, the inequality holds for n = 4. Suppose that k! > 2k for

an arbitrary integer k ≥ 4. We show that (k + 1)! > 2k+1. Observe that

(k + 1)! = (k + 1)k! > (k + 1) · 2k ≥ (4 + 1)2k = 5 · 2k > 2 · 2k = 2k+1.

Therefore, (k + 1)! > 2k+1. By the Principle of Mathematical Induction, n! > 2n for every integer n ≥ 4.
6.27 Proof We proceed by induction. Since 1 ≤ 2 − 1

1 , the inequality holds for n = 1. Assume that
1 + 1

4 + 1
9 + · · · + 1

k2 ≤ 2 − 1
k for some positive integer k. We show that 1 + 1

4 + 1
9 + · · · + 1

(k+1)2 ≤ 2 − 1
k+1 .

Observe that

1 + 1
4

+ 1
9

+ · · · + 1
(k + 1)2

=
(

1 + 1
4

+ 1
9

+ · · · + 1
k2

)
+ 1

(k + 1)2

≤ 2 + −1
k

+ 1
(k + 1)2

= 2 + −(k + 1)2 + k
k(k + 1)2

= 2 − k2 + k + 1
k(k + 1)2

< 2 − k2 + k
k(k + 1)2

= 2 − 1
k + 1

.

By the Principle of Mathematical Induction, 1 + 1
4 + 1

9 + · · · + 1
n2 ≤ 2 − 1

n for every positive integer n.
6.29 Proof We proceed by induction. By De Morgan’s law, if A and B are any two sets, then A ∩ B = A ∪ B.

Hence, the statement is true for n = 2. Assume, for any k sets A1, A2, . . . , Ak, where k ≥ 2, that

A1 ∩ A2 ∩ · · · ∩ Ak = A1 ∪ A2 ∪ · · · ∪ Ak.

Now consider any k + 1 sets, say B1, B2, . . . , Bk+1. We show that

B1 ∩ B2 ∩ · · · ∩ Bk+1 = B1 ∪ B2 ∪ · · · ∪ Bk+1.

Let B = B1 ∩ B2 ∩ · · · ∩ Bk. Observe that

B1 ∩ B2 ∩ · · · ∩ Bk+1 = (B1 ∩ B2 ∩ · · · ∩ Bk ) ∩ Bk+1 = B ∩ Bk+1

= B ∪ Bk+1 = (
B1 ∪ B2 ∪ · · · ∪ Bk

) ∪ Bk+1

= B1 ∪ B2 ∪ · · · ∪ Bk+1.

The result then follows by the Principle of Mathematical Induction.
6.31 Proof We proceed by induction. Since a

(
1
a

) = 12 for every positive real number a, the inequality is true for
n = 1. Assume for each k positive real numbers a1, a2, . . . , ak that(

k∑
i=1

ai

) (
k∑

i=1

1
ai

)
≥ k2.

Let b1, b2, . . . , bk+1 be k + 1 positive real numbers. We show that(
k+1∑
i=1

bi

) (
k+1∑
i=1

1
bi

)
≥ (k + 1)2.
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Observe that(
k+1∑
i=1

bi

)(
k+1∑
i=1

1
bi

)
=

(
k∑

i=1

bi

)(
k∑

i=1

1
bi

)
+ bk+1

(
k∑

i=1

1
bi

)
+ 1

bk+1

(
k∑

i=1

bi

)
+ bk+1 · 1

bk+1

≥ k2 +
k∑

i=1

(
bk+1

bi
+ bi

bk+1

)
+ 1.

Since bk+1
bi

+ bi
bk+1

≥ 2 (see Exercise 4.78), it follows that

(
k+1∑
i=1

bi

) (
k+1∑
i=1

1
bi

)
≥ k2 + 2k + 1 = (k + 1)2.

By the Principle of Mathematical Induction,
(∑n

i=1 ai

) (∑n
i=1

1
ai

)
≥ n2 for every n positive real numbers

a1, a2, . . . , an.

Section 6.3: The Strong Principle of Mathematical Induction
6.33 Conjecture A sequence {an} is defined recursively by a1 = 1 and an = 2an−1 for n ≥ 2. Then an = 2n−1 for all

n ≥ 1.
Proof We proceed by mathematical induction. Since a1 = 21−1 = 20 = 1, it follows that an = 2n−1 when
n = 1. Assume that ak = 2k−1 for some positive integer k. We show that ak+1 = 2k. Since k ≥ 1, it follows that
k + 1 ≥ 2. Therefore,

ak+1 = 2ak = 2 · 2k−1 = 2k.

The result follows by the Principle of Mathematical Induction.
6.35 Conjecture A sequence {an} is defined recursively by a1 = 1, a2 = 4, a3 = 9 and

an = an−1 − an−2 + an−3 + 2(2n − 3)

for n ≥ 4. Then an = n2 for all n ≥ 1.
Proof We proceed by the Strong Principle of Mathematical Induction. Since a1 = 12 = 1, it follows that
an = n2 when n = 1. Assume that ai = i2, where 1 ≤ i ≤ k for some positive integer k. We show that
ak+1 = (k + 1)2. Since a2 = a1+1 = (1 + 1)2 = 4 and a3 = a2+1 = (2 + 1)2 = 9, it follows that
ak+1 = (k + 1)2 for k = 1, 2. Hence, we may assume that k ≥ 3. Since k + 1 ≥ 4,

ak+1 = ak − ak−1 + ak−2 + 2[2(k + 1) − 3]

= k2 − (k − 1)2 + (k − 2)2 + (4k − 2)

= k2 − (k2 − 2k + 1) + (k2 − 4k + 4) + (4k − 2)

= k2 + 2k + 1 = (k + 1)2.

The result then follows by the Strong Principle of Mathematical Induction.
6.37 Proof We use the Strong Principle of Mathematical Induction. Since 12 = 3 · 4 + 7 · 0, the statement is true

when n = 12. Assume for an integer k ≥ 12 that for every integer i with 12 ≤ i ≤ k, there exist nonnegative
integers a and b such that i = 3a + 7b. We show that there exist nonnegative integers x and y such that
k + 1 = 3x + 7y. Since 13 = 3 · 2 + 7 · 1 and 14 = 3 · 0 + 7 · 2, we may assume that k ≥ 14. Since
k − 2 ≥ 12, there exist nonnegative integers c and d such that k − 2 = 3c + 7d. Hence, k + 1 = 3(c + 1) + 7d.
By the Strong Principle of Mathematical Induction, for each integer n ≥ 12, there are nonnegative integers a
and b such that n = 3a + 7b.

6.39 We show that every odd integer n ≥ 15 can be expressed as 3a + 11b or as 5c + 7d for nonnegative integers
a, b, c and d.
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Proof We use the Strong Principle of Mathematical Induction. First, observe that 15 = 3 · 5 + 11 · 0 =
5 · 3 + 7 · 0, 17 = 3 · 2 + 11 · 1, 19 = 5 · 1 + 7 · 2, 21 = 3 · 7 + 11 · 0 and 23 = 3 · 4 + 11 · 1. Thus, the
statement is true for 15, 17, 19, 21 and 23. Assume that the statement is true for every odd integer i with
15 ≤ i ≤ k, where k ≥ 23 is an odd integer. We show that the statement is true for the integer k + 2. Suppose
that k = 3a + 11b for some nonnegative integers a and b. Since k ≥ 23, either a ≥ 3 or b ≥ 2. If a ≥ 3, then
k + 2 = 3(a − 3) + 11(b + 1); while if b ≥ 2, then k + 2 = 3(a + 8) + 11(b − 2). Hence, we may assume that
k = 5c + 7d for some nonnegative integers c and d. If c ≥ 1, then k + 2 = 5(c − 1) + 7(d + 1). The remaining
situation is where c = 0 and so k ≥ 23 is an odd integer multiple of 7. So, k = 7d, where d ≥ 5. In this case,
k + 2 = 5 · 6 + 7(d − 4). The result then follows by the Strong Principle of Mathematical Induction.

Section 6.4: Proof by Minimum Counterexample
6.41 Proof Assume, to the contrary, that there is a positive integer n such that 1 + 3 + 5 + · · · + (2n − 1) �= n2.

Let m be the smallest such integer. Since 2 · 1 − 1 = 12, it follows that m ≥ 2. Thus, m can be expressed as
m = k + 1, where 1 ≤ k < m. Therefore, 1 + 3 + 5 + · · · + (2k − 1) = k2. Then

1 + 3 + 5 + · · · + (2m − 1) = 1 + 3 + 5 + · · · + (2k + 1)

= [1 + 3 + 5 + · · · + (2k − 1)] + (2k + 1)

= k2 + (2k + 1) = (k + 1)2 = m2,

which is a contradiction.
6.43 Assume, to the contrary, that there is some nonnegative integer n such that 3 �

(
2n + 2n+1

)
. Then there is a

smallest nonnegative integer n such that 3 �
(
2n + 2n+1

)
. Let m be this integer. Since 20 + 21 = 3, we have

m ≥ 1. So, we can write m = k + 1, where 0 ≤ k < m. Thus, 3 | (2k + 2k+1) and so 2k + 2k+1 = 3x for some
integer x. Then show that 2m + 2m+1 = 3(2x).

6.45 Assume, to the contrary, that there is some positive integer n such that 12 � (n4 − n2). Then there is a smallest
positive integer n such that 12 � (n4 − n2). Let m be this integer. It can be shown that if 1 ≤ n ≤ 6, then
12 | (n4 − n2). Therefore m ≥ 7. So, we can write m = k + 6, where 1 ≤ k < m. Consider (k + 6)4 − (k + 6)2.

6.47 Assume, to the contrary, that there is a positive integer n such that 6 � 7n
(
n2 − 1

)
. Then there is a smallest

positive integer n such that 6 � 7n
(
n2 − 1

)
. Let m be this integer. Since 6 | 0 and 6 | 42, it follows that

6 | 7n
(
n2 − 1

)
when n = 1 and n = 2. So, m ≥ 3 and we can write m = k + 2, where 1 ≤ k < m.

Consequently, 6 | 7k
(
k2 − 1

)
and so 7k

(
k2 − 1

) = 6x for some integer x. Then show that
7m

(
m2 − 1

) = 6(x + 7k2 + 14k + 7).

EXERCISES FOR CHAPTER 7

7.1 Proof Assume that m is an integer such that 10 | m and 12 | m. Then m = 10c and m = 12d where c, d ∈ Z.
Thus, 10c = 12d = 3(4d). Since 4d is an integer, 3 | 10c. By Result 4.8, 3 | 10 or 3 | c. Since 3 � 10, it follows
that 3 | c and so c = 3e for some integer e. Therefore, m = 10c = 30e = 12d and so 5e = 2d. Since d is an
integer, it follows that 5e is an even integer. Since 5 is odd, it follows by Theorem 3.17 that e is even and so
e = 2 f for some integer f . Hence, m = 30e = 30(2 f ) = 60 f and so 60 | m.

7.3 (a) Proof Since m is the product of four consecutive integers, we may assume that
m = (k − 1)k(k + 1)(k + 2) for some integer k. Thus,

m + 1 = [k(k + 1)][(k − 1)(k + 2)] + 1 = (k2 + k)(k2 + k − 2) + 1

= (k2 + k)2 − 2(k2 + k) + 1 = (k2 + k − 1)2.

[Note: Although m could be expressed as k(k + 1)(k + 2)(k + 3) for some integer k, writing
m = (k − 1)k(k + 1)(k + 2) simplifies the algebra.]

(b) Proof Since n2 < n(n + 1) < (n + 1)2 and n2 < n(n + 2) < (n + 1)2, neither n(n + 1) nor n(n + 2) is a
perfect square.
[Note: For n = 1, however, n(n + 3) = 1 · 4 = 22.]
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(c) Proof For an integer m, either m or m + 1 is even and so 2 | m(m + 1). Since 3 divides one of m, m + 1
and m + 2, it follows that 3 | m(m + 1)(m + 2). Thus, m(m + 1)(m + 2) = 3k for some k ∈ Z. Since 2 | 3k
and 2 � 3, it follows that 2 | k and so k = 2� for some integer �. Hence, m(m + 1)(m + 2) = 3k = 6�. The
product 3 · 4 · 5 = 60 is not divisible by 9. If m is even, then m + 2 is even and so m(m + 1)(m + 2) is a
multiple of 12. If m + 1 is a multiple of 4, then m(m + 1)(m + 2) is a multiple of 12. If, however, m + 1 is
even but not a multiple of 4, then m + 1 = 4k + 2 for some integer k. Hence, m(m + 1)(m + 2) = 2t for
some odd integer t and m(m + 1)(m + 2) is not a multiple of 12 in this case. Therefore, m(m + 1)(m + 2)
is a multiple of 12 if and only if m + 1 �= 4k + 2 for any integer k.

7.5 First, we state the result in Result 4.6(b) as a lemma.
Lemma If a is an odd integer, then a2 ≡ 1 (mod 8).
Result If b is an odd integer, then b2n ≡ 1 (mod 2n+2) for every positive integer n.
Proof We use induction. Let b be an odd integer. When n = 1, it follows by the lemma that b2 ≡ 1 (mod 8).
Assume for a positive integer k that b2k ≡ 1 (mod 2k+2). Since b2k ≡ 1 (mod 2k+2), it follows that
2k+2 | (b2k − 1) and so b2k − 1 = 2k+2x for some integer x. Thus, b2k = 2k+2x + 1. We show that b2k+1 ≡ 1
(mod 2k+3). Observe that

b2k+1 = b2·2k =
(

b2k
)2

= (
2k+2x + 1

)2

= (
2k+2x

)2 + 2 · 2k+2x + 1 = 22k+4x2 + 2k+3x + 1

= 2k+3(2k+1x2 + x) + 1.

Since 2k+1x2 + x is an integer, 2k+3 |
(

b2k+1 − 1
)

and so b2k+1 ≡ 1 (mod 2k+3). By the Principle of

Mathematical Induction, b2n ≡ 1 (mod 2n+2) for every positive integer n.
7.7 (a) Proof Assume, to the contrary, that a < k and b < k + 1. Since a and b are integers, it follows that

a ≤ k − 1 and b ≤ k. Thus, a + b ≤ 2k − 1 < m, which is a contradiction.
(b) Proof Let a, b, c ∈ N such that a + b + c ≥ m = 3k where k ∈ N and assume, to the contrary, that a < k,

b < k and c < k + 2. Thus, a ≤ k − 1, b ≤ k − 1 and c ≤ k + 1. Hence, a + b + c ≤ 3k − 1 = m − 1,
which is a contradiction.
[Note: This might make one wonder what can be said about a, b, c, d if a + b + c + d ≥ 4k for some
k ∈ N.]

(c) Proof Let S be a set of 20 positive integers whose sum is an even integer and assume, to the contrary, that
at most 3 elements of S are congruent to 0 modulo 4, at most 4 are congruent to 1 modulo 4, at most 6 are
congruent to 2 modulo 4, and at most 7 are congruent to 3 modulo 4. Since S has 20 elements, it follows
that exactly 3 elements of S are congruent to 0 modulo 4, exactly 4 are congruent to 1 modulo 4, exactly 6
are congruent to 2 modulo 4, and exactly 7 are congruent to 3 modulo 4. Therefore, the sum of the elements
in S is congruent to 1 modulo 4 and so is odd. This is a contradiction.

7.9 Proof Let m ∈ N such that 8 | m. Then m = 8k for some positive integer k. Let a = (2k + 1)2 and
b = (2k − 1)2. Then

ab = (2k + 1)2(2k − 1)2 = (4k2 − 1)2

is a perfect square. Furthermore,

a − b = (2k + 1)2 − (2k − 1)2 = (4k2 + 4k + 1) − (4k2 − 4k + 1) = 8k = m.

Alternate Proof Let m ∈ N such that 8 | m. Then m = 8k for some positive integer k. Thus a = 9k and b = k
have the property that a − b = 8k = m and ab = 9k · k = 9k2 = (3k)2.

[Note: This problem might suggest a more general problem, namely that of replacing 8 by 4r for some integer
r ≥ 2.]

7.11 (a) Proof Let a ≥ 3 be an odd integer. Then a = 2n + 1 for some positive integer n. We seek a positive even
integer b such that (a, b, b + 1) is a Pythagorean triple. Then

a2 + b2 = 4n2 + 4n + 1 + b2 = b2 + 2b + 1.

Therefore, 2b = 4n2 + 4n and so b = 2n2 + 2n. Letting b = 2n2 + 2n, we see that a2 + b2 = (b + 1)2 and
so (a, b, b + 1) is a Pythagorean triple.
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(b) Proof We proceed by induction on n. By (a), the statement is true for n = 1. Assume for a positive
integer k that there exist k positive even integers b1, b2, . . . , bk such that

a2 + b2
1 + b2

2 + · · · + b2
k = d2

for some positive integer d. Since a is odd and b1, b2, . . . , bk are even, d is odd. By (a), there exists an even
integer bk+1 such that d2 + b2

k+1 = c2 where c = bk+1 + 1. Therefore,

a2 + b2
1 + b2

2 + · · · + b2
k + b2

k+1 = d2 + b2
k+1 = c2.

The result then follows by the Principle of Mathematical Induction.
7.13 Proof Assume, to the contrary, that an odd number of the integers a + b, a + c and b + c are odd. Then

(a + b) + (a + c) + (b + c) is odd. However, (a + b) + (a + c) + (b + c) = 2(a + b + c). Since a + b + c is
an integer, (a + b) + (a + c) + (b + c) is even, which is a contradiction.

7.15 Proof Evaluation This proposed proof by contradiction is incorrect. To begin a proof by contradiction, we
should begin a proof by assuming that x, y, z ∈ Z such that 3x + 5y = 7z and at least one of x, y and z is odd but
none of x, y and z is even. Then all of x, y and z are odd. In this case, x = 2a + 1, y = 2b + 1 and z = 2c + 1 for
a, b, c ∈ Z. Then

3x + 5y = 3(2a + 1) + 5(2b + 1) = 6a + 10b + 8

= 2(3a + 5b + 4)

and

7z = 7(2c + 1) = 14c + 7 = 2(7c + 3) + 1.

Since 3a + 5b + 4 and 7c + 3 are integers, 3x + 5y is even and 7z is odd. Hence, 3x + 5y �= 7z, which is a
contradiction. �

7.17 Proof Evaluation Strictly speaking, the proposed proof is not a proof by contradiction as it was never stated
in the proof that a /∈ S. What was shown instead was that if log2 a is rational, then a ∈ S. This is a proof by
contrapositive. �

7.19 Proof Evaluation The logic is incorrect in the proposed proof. To prove the given statement, which is a
biconditional, the following two implications must be verified.
(1) If ab + ac + bc is even, then at most one of a, b and c is odd.
(2) If at most one of a, b and c is odd, then ab + ac + bc is even.
A proof of (1) can be accomplished by means of a proof by contrapositive. To do this, we show: If at least two
of a, b and c are odd, then ab + ac + bc is odd. The arguments employed in Cases 3 and 4 in the proposed
proof will verify this. A proof of (2) can be accomplished by means of a direct proof using two cases, namely
Cases 1 and 2. �

7.21 Proof First, suppose that A × B = B × A. We show that P (A) = P (B). Let X ∈ P (A). Then X ⊆ A. We
show that X ⊆ B. Let x ∈ X . Then x ∈ A. Since A × B = B × A, it follows that x ∈ B. Thus, X ⊆ B and so
P (A) ⊆ P (B). Similarly, P (B) ⊆ P (A). Therefore, P (A) = P (B).
For the converse, assume that P (A) = P (B). We show that A × B = B × A. Let (x, y) ∈ A × B. Thus, x ∈ A and
y ∈ B. Hence, {x} ∈ P (A) and {y} ∈ P (B). Since P (A) = P (B), it follows that {x} ∈ P (B) and {y} ∈ P (A).
Therefore, x ∈ B and y ∈ A and so (x, y) ∈ B × A. Thus, A × B ⊆ B × A. Similarly, B × A ⊆ A × B and so
A × B = B × A.

7.23 Proof Suppose that r is a root of a polynomial with integer coefficients, say

p(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where ai ∈ Z for 0 ≤ i ≤ n. Then

p(r) = anrn + an−1rn−1 + · · · + a1r + a0 = 0.

Therefore,

2n(anrn + an−1rn−1 + · · · + a1r + a0)

= an(2r)n + 2an−1(2r)n−1 + · · · + 2n−1a1(2r) + 2na0 = 0.
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Hence, 2r is a root of the polynomial

q(x) = anxn + 2an−1xn−1 + · · · + 2n−1a1x + 2na0,

where each coefficient is an integer.
7.25 First, we verify the following lemma.

Lemma For every nonnegative integer n, 52n ≡ 22n (mod 21).
Proof We proceed by induction. Since 50 ≡ 20 (mod 21), the statement is true when n = 0. Assume that
52k ≡ 22k (mod 21) for some nonnegative integer k. By Result 4.11, 52k · 52 ≡ 22k · 22 (mod 21) and so
52(k+1) ≡ 22(k+1) (mod 21). By the Principle of Mathematical Induction, 52n ≡ 22n (mod 21) for every
nonnegative integer n.
We now verify the result.
Proof Let n be a nonnegative integer. Clearly, 22n ≡ 22n (mod 21). By the lemma, 52n ≡ 22n (mod 21). By
Result 4.10,

52n + 22n ≡ 22n + 22n (mod 21).

Since 22n + 22n = 22n+1, it follows that 52n + 22n ≡ 22n+1 (mod 21).
7.27 Proof First, assume that m = n(n + 1)/2 for some n ∈ N. Then 8m + 1 = 4n(n + 1) + 1 = 4n2 + 4n + 1 =

(2n + 1)2, that is, 8m + 1 is a perfect square.
For the converse, suppose that 8m + 1 is a perfect square for some positive integer m. Thus, 8m + 1 = t2 for
some t ∈ N. Since 8m + 1 is odd, t2 is odd and by (the contrapositive of) Theorem 3.12, t is odd. So, t = 2n + 1
for some n ∈ N. Hence, t − 1 = 2n and t + 1 = 2n + 2. Thus,

m = t2 − 1
8

= (t − 1)(t + 1)
8

= 2n(2n + 2)
8

= n(n + 1)
2

.

7.29 Proof Assume, to the contrary, that there exist two odd integers a and b with a �≡ b(mod 4) such that
4 | (3a + 5b). Since a and b are odd, each of a and b is either congruent to 1 modulo 4 or congruent to 3
modulo 4. However, since a �≡ b(mod 4), one of these is congruent to 1 modulo 4 and the other is congruent
to 3 modulo 4. We consider these two cases.
Case 1. a ≡ 1(mod 4) and b ≡ 3(mod 4). Hence, a = 4x + 1 and b = 4y + 3 for some integers x and y. Then

3a + 5b = 3(4x + 1) + 5(4y + 3) = 12x + 20y + 18 = 4(3x + 5y + 4) + 2.

Since 3a + 5b ≡ 2(mod 4), it follows that 4 � (3a + 5b), which is a contradiction.
Case 2. a ≡ 3(mod 4) and b ≡ 1(mod 4). Hence, a = 4w + 3 and b = 4z + 1 for some integers w and z.
Then

3a + 5b = 3(4w + 3) + 5(4z + 1) = 12w + 9 + 20z + 5 = 4(3w + 5z + 3) + 2.

Since 3a + 5b ≡ 2(mod 4), it follows that 4 � (3a + 5b), a contradiction.
7.31 (a) Proof The integer a = 9,768,345,120 has the desired properties.

(b) Proof The integer b = 3,816,547,290 has the desired properties.
(c) Proof Yes, m = 48360.

[Note: This suggests the question of whether there is a 6-digit number with distinct digits having
corresponding properties.]

7.33 Proof First, assume that either every two integers in {a, b, c} are congruent modulo 3 or no two integers in
{a, b, c} are congruent modulo 3. We consider these two cases.
Case 1. Every two integers in {a, b, c} are congruent modulo 3. Thus, a = 3k1 + r, b = 3k2 + r and c = 3k3 + r
for integers k1, k2, k3 and r ∈ {0, 1, 2}. Hence,

a + b + c = (3k1 + r) + (3k2 + r) + (3k2 + r) = 3(k1 + k2 + k3 + r).

Since k1 + k2 + k3 + r ∈ Z, it follows that a + b + c ≡ 0(mod 3).
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Case 2. No two integers in {a, b, c} are congruent modulo 3. Hence, we may assume that a = 3k1, b = 3k2 + 1
and c = 3k3 + 2, where k1, k2, k3 ∈ Z. Hence,

a + b + c = (3k1) + (3k2 + 1) + (3k2 + 2) = 3(k1 + k2 + k3 + 1).

Since k1 + k2 + k3 + 1 ∈ Z, it follows that a + b + c ≡ 0(mod 3).
For the converse, suppose that it is not the case that every two integers in {a, b, c} are congruent modulo 3 or
every two integers in {a, b, c} are not congruent modulo 3. Thus, exactly two integers in {a, b, c} are congruent
modulo 3, say

a ≡ b(mod 3), a �≡ c(mod 3) and b �≡ c(mod 3).

Hence, there are integers x, y, z, r, s, where r, s ∈ {0, 1, 2} and s �= r, such that a = 3x + r, b = 3y + r and
c = 3z + s. Thus,

a + b + c = (3x + r) + (3y + r) + (3z + s) = 3(x + y + z + r) + (s − r).

Since x + y + z + r ∈ Z and s − r ∈ {−2,−1, 1, 2}, it follows that a + b + c �≡ 0(mod 3).
7.35 Proof We proceed by induction. Since 4! = 24 > 16 = 42, the inequality holds for n = 4. Assume that

k! > k2 for an integer k ≥ 4. Next, we show that (k + 1)! > (k + 1)2. Observe that

(k + 1)! = k!(k + 1) > k2(k + 1) = k3 + k2 = k2 + k2 · k ≥ k2 + 16k

= k2 + 2k + 14k > k2 + 2k + 1 = (k + 1)2.

By the Principle of Mathematical Induction, n! > n2 for every integer n ≥ 4.
7.37 Solution The following result is being proved.

Result Let x, y ∈ Z. Then 3x + 5y is odd if and only if 7x − 11y is odd.
For both implications, a direct proof is used.

7.39 Proof Let p(x) = x3 − 3x + 1. Then p(x) is a continuous function on R. Since p(−2) = −1, p(0) = 1,
p(1) = −1 and p(2) = 3, it follows by the Intermediate Value Theorem that there exist real numbers
a ∈ (−2, 0), b ∈ (0, 1) and c ∈ (1, 2) such that p(a) = p(b) = p(c) = 0.

7.41 Since the proposed formula (2n+1)2

8 for
∑n

i=1 i is incorrect, the proposed proof must be incorrect and it is. The
second sentence of the proposed proof (First, observe that the statement is true for n = 1.) is incorrect. Clearly,∑1

i=1 i = 1, while (2n+1)2

8 = 9
8 when n = 1. The proof of the inductive step is correct, however. This illustrates

the importance of the basis step of an induction proof.
7.43 Since the statement is false, the proposed proof is incorrect. In the proposed proof, it is assumed for a

nonnegative integer k that ei = 1 for every integer i with 0 ≤ i ≤ k. We are asked to observe that

ek+1 = ek · ek

ek−1
= 1 · 1

1
= 1.

Clearly, ek+1 = ek ·ek

ek−1 . However, when k = 0, this states that e1 = e0·e0

e−1 . While e0 = 1, it is not the case that
e−1 = 1. This was never assumed. Hence, we have no value for ek+1 when k = 0. What is written is incorrect. �

7.45 Solution The following result is being proved.
Result For every nonnegative integer n, 3n + 1 ≥ (n + 1)2.
A proof by induction is being used. However, it would have been good to begin the proof by saying that
induction is being used and to end the proof by stating that it follows that 3n + 1 ≥ (n + 1)2 for every
nonnegative integer n by the Principle of Mathematical Induction.
[Note: The necessity of treating k = 0 separately in the inductive step is important here.]

7.47 The proposed proof is difficult to follow. The proof below is better. First, we could refer to the result in
Exercise 4.90 as a lemma.
Lemma Let a, b, c, d ∈ R. If a ≥ b ≥ 0 and c ≥ d ≥ 0, then ac ≥ bd.
Proof Since n ≥ 10, it follows that n2 ≥ 100 and n − 9 ≥ 1. By the lemma, n2(n − 9) ≥ 100 and so
n3 − 9n2 ≥ 100. Hence, n3 ≥ 100 + 9n2.
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7.49 Proof We proceed by induction. Since a1 = 1 = 1
1 , the formula holds for n = 1. Assume that ak = 1

k for a
positive integer k. Since

ak+1 = k
k + 1

ak =
(

k
k + 1

) (
1
k

)
= 1

k + 1
,

the formula holds for k + 1. By the Principle of Mathematical Induction, an = 1
n for every positive integer n.

EXERCISES FOR CHAPTER 8

Section 8.1: Conjectures in Mathematics
8.1 (a) 17 + 18 + · · · + 25 = 64 + 125.

(b) Conjecture For every nonnegative integer n,

(n2 + 1) + (n2 + 2) + · · · + (n + 1)2 = n3 + (n + 1)3.

We use induction. Since 1 = 03 + 13, the statement is true for n = 0. Assume that

(k2 + 1) + (k2 + 2) + · · · + (k + 1)2 = k3 + (k + 1)3

for some nonnegative integer k. We show that

[(k + 1)2 + 1] + [(k + 1)2 + 2] + · · · + [(k + 1) + 1]2 = (k + 1)3 + (k + 2)3

With the aid of Result 6.4, which states that 1 + 2 + · · · + n = n(n + 1)/2 for each positive integer n, we
obtain

[(k + 1)2 + 1] + [(k + 1)2 + 2] + · · · + [(k + 1) + 1]2

= (2k + 3)(k + 1)2 + [1 + 2 + · · · + (2k + 3)]

= (2k + 3)(k + 1)2 + (k + 2)(2k + 3)

= (k + 1)(k + 1)2 + (k + 2)(k + 1)2 + (k + 2)(2k + 3)

= (k + 1)3 + (k + 2)(k2 + 4k + 4) = (k + 1)3 + (k + 2)3.

By the Principle of Mathematical Induction,

(n2 + 1) + (n2 + 2) + · · · + (n + 1)2 = n3 + (n + 1)3

for every nonnegative integer n.
8.3 (a) a2 = 3, a3 = 8, a4 = 54.

(b) For each n ∈ N, an is an integer.
8.5 (a) The ordered partitions of 4 are 4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2 and 1 + 1 + 1 + 1.

So, there are 8 ordered partitions of 4.
(b) Conjecture For each positive integer n, there are 2n−1 ordered partitions of n. [This conjecture is true.]

8.7 (a) 4 · 2 · 1 · 1 = 4 + 2 + 1 + 1.
(b) 3 · 3 · 1 · 1 · 1 = 3 + 3 + 1 + 1 + 1.
(c) Conjecture For every integer n ≥ 3, there exist n positive integers whose sum equals their product. [This

conjecture is true.]
8.9 (a) a3 = 1 + 1

2 + 1
3 = 11

6 ; a4 = 1 + 1
2 + 1

3 + 1
4 = 25

12 .

(b) Conjecture For each integer n ≥ 2, an is not an integer. [The conjecture is true.]

Section 8.2: Revisiting Quantified Statements
8.11 (a) Let S be the set of all positive even integers and let P(n) : 3n + 2n−2 is odd.

∃n ∈ S, P(n).
(b) Proof For n = 2 ∈ S, 3n + 2n−2 = 7 is odd.
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8.13 (a) Let P(n) : 3n2 − 5n + 1 is an even integer.
∃n ∈ Z, P(n).

(b) We show the following: For all n ∈ Z, 3n2 − 5n + 1 is odd.
This can be proved by a direct proof with two cases, namely n even and n odd.

8.15 (a) Let P(m, n): m(n − 3) < 1.
∃n ∈ Z,∀m ∈ Z, P(m, n).

(b) Proof Let n = 3. Then m(n − 3) = m · 0 = 0 < 1.
8.17 (a) Let P(m, n): −nm < 0. ∃n ∈ N, ∀m ∈ Z, P(m, n).

(b) ∀n ∈ N, ∃m ∈ Z, ∼ P(m, n).
(c) Let n be a positive integer. For m = 0, we have −nm = −n · 0 = 0.

8.19 (a) Let P(a, b, x): a ≤ x ≤ b and b − a = 1.
∀x ∈ R, ∃a, b ∈ Z, P(a, b, x).

(b) Proof Let x ∈ R. If x is an integer, then let a = x and b = x + 1. Then a ≤ x ≤ b and b − a = 1. Thus,
we may assume that x is not an integer. Then there exists an integer a such that a < x < a + 1. Let
b = a + 1.

8.21 (a) Let S be the set of even integers, let T be the set of odd integers and let P(a, b, c): a < c < b or b < c < a.
∀a ∈ S, ∀b ∈ T , ∃c ∈ Q, P(a, b, c).

(b) Proof For a ∈ S and b ∈ T , let c = (a + b)/2. If a < b, then a < c < b; while if b < a, then b < c < a.
8.23 (a) Let S be the set of odd integers and P(a, b, c): a + b + c = 1.

∃a, b, c ∈ S, P(a, b, c).
(b) Proof Let a = 3 and b = c = −1. Then a + b + c = 1.

8.25 (a) ∃L ∈ R, ∀e ∈ R+, ∃d ∈ R+, ∀x ∈ R, P(x, d) ⇒ Q(x, L, e).
(b) Proof Let L = 0 and let e be any positive real number. Let d = e/3. Let x ∈ R such that |x| < e/3. Then

|3x − L| = |3x| = 3|x| < 3(e/3) = e.
8.27 Proof Let a ∈ Z. Then b = a − 1 and c = 0 are integers such that |a − b| = 1 > cd = 0 · d = 0 for every

integer d.

Section 8.3: Testing Statements
8.29 (a) The statement is true. Proof Assume that k2 + 3k + 1 is even where k ∈ N. Then k2 + 3k + 1 = 2x for

some integer x. Observe that

(k + 1)2 + 3(k + 1) + 1 = k2 + 2k + 1 + 3k + 3 + 1

= (k2 + 3k + 1) + 2k + 4

= 2x + 2k + 4 = 2(x + k + 2).

Since x + k + 2 is an integer, (k + 1)2 + 3(k + 1) + 1 is even.
(b) The statement is false since P(1) is false.

8.31 This statement is false. Let n = 0 and let k be any nonnegative integer. Since k ≥ 0 = n, the integer n = 0 is a
counterexample.

8.33 This statement is false. Let x = 99 and y = z = 1. Then x + y + z = 101, while no two of x, y and z are of
opposite parity. Thus, x = 99, y = 1, z = 1 is a counterexample.

8.35 The statement is true. Proof Assume that A �= ∅. Since A �= ∅, there is an element a ∈ A. Let B = {a}. Then
A ∩ B �= ∅.

8.37 The statement is false. Let A = {1}, which is nonempty, and let B be an arbitrary set. Since 1 ∈ A ∪ B, it follows
that A ∪ B �= ∅.

8.39 The statement is true. Proof Let A be a proper subset of S and let B = S − A. Then B �= ∅, A ∪ B = S and
A ∩ B = ∅.

8.41 The statement is true. Observe that 0 · c = 0 for every integer c.
8.43 The statement is false. Let x = 1 and y = −2. Then x2 < y2 but x > y.
8.45 The statement is true. Proof Let a be an odd integer. Then a = a + 1 + (−1) is a sum of three odd integers.
8.47 The statement is true. Let b = c − a.
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8.49 The statement is true. Consider r = (a + b)/2.
8.51 The statement is false. Let A �= ∅ and B = ∅. Then A ∪ B �= ∅.
8.53 The statement is true. Proof Let a be an odd integer. Then a + 0 = a, where b = 0 is even and c = a is odd.
8.55 The statement is true. Let f (x) = x3 + x2 − 1. Observe that f (0) = −1 and f (1) = 1. Now apply the

Intermediate Value Theorem of Calculus.
8.57 The statement is true. Proof Assume that A − B �= ∅. Then there exists x ∈ A − B. Thus, x ∈ A and x /∈ B.

Since x /∈ B, it follows that x /∈ B − A. Therefore, A − B �= B − A.
8.59 The statement is true. Proof Let b ∈ Q+. Then a = b/

√
2 is irrational and 0 < a < b.

8.61 The statement is false. For A = ∅, B = {1} and C = {1, 2}, we have A ∩ B = A ∩ C = ∅, but B �= C. Thus, A, B
and C form a counterexample.

8.63 The statement is true. Consider B = ∅. Since A ∪ B �= ∅, this requires that A �= ∅.
8.65 The statement is false. Note that x2 + x + 1 = (

x + 1
2

)2 + 3
4 ≥ 3

4 > 0 for every x ∈ R.
8.67 The statement is true. For a nonzero rational number r, observe that r = (r

√
2) · 1√

2
.

8.69 The statement is false. The sets S = {1, 2, 3} and T = {{1, 2}, {1, 3}, {2, 3}} form a counterexample.
8.71 The statement is false. The numbers a = b = 0 and c = 1 form a counterexample.
8.73 The statement is true. Let a = 2, b = 16 and c = 4.
8.75 The statement is true. Proof Let n ∈ Z. If n �= 0, then n = n + 0 has the desired properties. If n = 0, then

n = 0 = 1 + (−1).
8.77 The statement is false. For n = 11, n2 − n + 11 = 112.
8.79 The statement is true. Proof Let a and b be two consecutive integers such that 3 � ab. Since 3 � ab, it follows

by Result 4.8 that 3 � a and 3 � b. Therefore, a �≡ 0 (mod 3) and b �≡ 0 (mod 3). Thus, a = 3q + 1 and
b = 3q + 2 for some integer q and so a + b = (3q + 1) + (3q + 2) = 6q + 3 = 3(2q + 1). Since 2q + 1 is an
integer, 3 | (a + b).

8.81 The statement is true. Proof Let a = 6/5, b = 10/3 and c = 15/2. Then ab = 4, ac = 9, bc = 25 and
abc = 30.

EXERCISES FOR CHAPTER 9

Section 9.1: Relations
9.1 dom(R) = {a, b} and range(R) = {s, t}.
9.3 Since A × A = {(0, 0), (0, 1), (1, 0), (1, 1)} and |A × A| = 4, the number of subsets of A × A is 24 = 16.

Hence, the number of relations on A is also 16. Four of these 16 relations are ∅, A × A, {(0, 0)} and
{(0, 0), (0, 1), (1, 0)}.

9.5 R−1 = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}.
9.7 For a, b ∈ N, a R−1 b if and only if b R a, while b R a if b + 4a is odd. That is, R−1 = {(x, y) : y + 4x is odd}.
9.9 (a) The statement is false. Let A = {1, 2, 3, 4}, B = {1, 2, 3, 5} and C = {1, 2, 3}. Then |A| = |B| = 4. Then

R = C × C is a relation from A to B with |R| = 9 and R = R−1 but A �= B. Thus, A, B and R constitute a
counterexample.

(b) Suppose that |R| = 9 is replaced by |R| = 10. Then the statement would be true.
Proof Let A and B be sets with |A| = |B| = 4. Assume, to the contrary, that there exists a relation from A
to B with |R| = 10 and R = R−1 but A �= B. Since A and B have the same number 4 of elements, there is an
element x ∈ A − B and an element y ∈ B − A. Since R = R−1, it follows that x is not related to any element
of B by R and no element of A is related to y. This implies that R ⊆ (A − {x}) × (B − {y}). Since
|A − {x}| · |B − {y}| = 3 · 3 = 9, this is a contradiction.

Section 9.2: Properties of Relations
9.11 The relation R is reflexive and transitive. Since (a, d) ∈ R and (d, a) /∈ R, it follows that R is not symmetric.
9.13 The relation R is transitive but neither reflexive nor symmetric.
9.15 The relation R is reflexive and symmetric. Observe that 3 R 1 and 1 R 0 but 3 �R 0. Thus, R is not transitive.
9.17 The relation R is symmetric and transitive but not reflexive.
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9.19 The relation R is reflexive and symmetric. Observe that −1 R 0 and 0 R 2 but −1 �R 2. Thus, R is not transitive.
9.21 The statement is true. Proof Let A = {a1, a2} and suppose that R is a relation on A that has none of the

properties reflexive, symmetric and transitive. Since R is not symmetric, we may assume that a1 R a2 but
a2 �R a1. Since at most one of (a1, a1) and (a2, a2) belongs to R, it follows that R is transitive, which is a
contradiction.
Since the hypothesis of the implication is false, the statement is true vacuously.

9.23 Since a | a for every a ∈ N, the relation R is reflexive. The relation R is symmetric. To see this, suppose that
a R b. Then a | b or b | a. This, however, says that b R a. The relation R is not transitive since for a = 2, b = 1
and c = 3, a R b and b R c but a �R c.

Section 9.3: Equivalence Relations
9.25 There are three distinct equivalence classes, namely [1] = {1, 5}, [2] = {2, 3, 6} and [4] = {4}.
9.27 Proof Since a3 = a3 for each a ∈ Z, it follows that a R a and R is reflexive. Let a, b ∈ Z such that a R b.

Then a3 = b3 and so b3 = a3. Thus, b R a and R is symmetric. Let a, b, c ∈ Z such that a R b and b R c. Thus,
a3 = b3 and b3 = c3. Hence, a3 = c3 and so a R c and R is transitive.

Let a, b ∈ Z. Note that a3 = b3 if and only if a = b. Thus, [a] = {a} for every a ∈ Z.
9.29 Proof Assume that a R b, c R d and a R d. Since a R b and R is symmetric, b R a. Similarly, d R c. Because

b R a, a R d and R is transitive, b R d. Finally, since b R d and d R c, it follows that b R c, as desired.
9.31 Proof First assume that R is an equivalence relation on A. Thus, R is reflexive. It remains only to show that

R is circular. Assume that x R y and y R z. Since R is transitive, x R z. Since R is symmetric, z R x. Thus, R is
circular.

For the converse, assume that R is a reflexive, circular relation on A. Since R is reflexive, it remains only to
show that R is symmetric and transitive. Let x, y ∈ A such that x R y. Since R is reflexive, y R y. Because (1)
x R y and y R y and (2) R is circular, it follows that y R x and so R is symmetric. Let x, y, z ∈ A such that x R y
and y R z. Since R is circular, z R x. Now because R is symmetric, we have x R z. Thus, R is transitive.
Therefore, R is an equivalence relation on A.

9.33 (a) Proof Let a ∈ Z. Since a − a = 4 · 0 ∈ H, it follows that a R a and R is reflexive. Next, assume that
a R b, where a, b ∈ Z. Then a − b ∈ H and so a − b = 4k, where k ∈ Z. Then b − a = 4(−k). Since
−k ∈ Z, it follows that b − a ∈ H and b R a. Therefore, R is symmetric. Finally, assume that a R b and
b R c where a, b, c ∈ Z. Then a − b ∈ H and b − c ∈ H. So, a − b = 4k and b − c = 4� for k, � ∈ Z.
Therefore, a − c = (a − b) + (b − c) = 4k + 4� = 4(k + �). Since k + � ∈ Z, it follows that a − c ∈ H
and so a R c. Thus, R is transitive and R is an equivalence relation.

(b) Let a ∈ Z. Then

[a] = {x ∈ Z : x R a} = {x ∈ Z : x − a ∈ H}
= {x ∈ Z : x − a = 4k for some integer k} = {a + 4k : k ∈ Z}.

Since every integer can be expressed as 4k + r where r is an integer with 0 ≤ r ≤ 3, it follows that the distinct
equivalence classes are [0], [1], [2] and [3], where [r] = {4k + r : k ∈ Z} for r = 0, 1, 2, 3.

9.35 The statement is false. Suppose that there are equivalence relations R1 and R2 on S = {a, b, c} such that
R1 �⊆ R2, R2 �⊆ R1 and R1 ∪ R2 = S × S. Since R1 and R2 are both reflexive, it follows that
(a, a), (b, b), (c, c) ∈ R1 ∩ R2. Because R1 �⊆ R2, there exists some element of R1 that is not in R2, say
(a, b) ∈ R1 − R2. Necessarily then, (b, a) ∈ R1 − R2 as well. Because R2 �⊆ R1, there exists some element of R2

that is not in R1. We may assume that (b, c) ∈ R2 − R1. Thus, (c, b) ∈ R2 − R1. Since R1 ∪ R2 = S × S, it
follows that (a, c) ∈ R1 ∪ R2. We may assume that (a, c) ∈ R1. Since (b, a) ∈ R1, it follows by the transitive
property that (b, c) ∈ R1, which is not true.

Section 9.4: Properties of Equivalence Classes
9.37 Let a ∈ N. Then a2 + a2 = 2(a2) is an even integer and so a R a. Thus, R is reflexive. Assume that a R b, where

a, b ∈ N. Then a2 + b2 is even. Since b2 + a2 = a2 + b2, it follows that b2 + a2 is even. Therefore, b R a and R
is symmetric. Finally, show that R is transitive.



P1: HFA

Z01_CHART6753_04_SE_ANS PH03348-Chartrand August 16, 2017 21:46 Char Count= 0

458 Answers to Odd-Numbered Section Exercises

There are two distinct equivalence classes:
[1] = {x ∈ N : x2 + 1 is even} = {x ∈ N : x2 is odd} = {x ∈ N : x is odd}
[2] = {x ∈ N : x2 + 4 is even} = {x ∈ N : x2 is even} = {x ∈ N : x is even}.

9.39 (a) Proof First, we show that R is reflexive. Let x ∈ S. Then x + 2x = 3x. Since 3 | (x + 2x), it follows that
x R x and R is reflexive. Next, we show that R is symmetric. Let x R y, where x, y ∈ S. Then 3 | (x + 2y) and
so x + 2y = 3a, where a ∈ Z and so x = 3a − 2y. Thus, y + 2x = y + 2(3a − 2y) = 6a − 3y = 3(2a − y).
Since 2a − y is an integer, 3 | (y + 2x). Thus, y R x and R is symmetric.

Finally, we show that R is transitive. Let x R y and y R z, where x, y, z ∈ S. Then 3 | (x + 2y) and
3 | (y + 2z). So, x + 2y = 3a and y + 2z = 3b, where a, b ∈ Z. Thus, (x + 2y) + (y + 2z) = 3a + 3b and
so x + 2z = 3a + 3b − 3y = 3(a + b − y). Since a + b − y is an integer, 3 | (x + 2z) and so x R z.
Therefore, R is transitive.

(b) There are three distinct equivalence classes:
[0] = {0,−6}, [1] = {1,−2, 4, 7} and [−7] = {−7, 5}.

9.41 (a) Suppose that R1 and R2 are two equivalence relations defined on a set S. Let R = R1 ∩ R2. First, we show
that R is reflexive. Let a ∈ S. Since R1 and R2 are equivalence relations on S, it follows that (a, a) ∈ R1 and
(a, a) ∈ R2. Thus, (a, a) ∈ R and so R is reflexive. Assume that a R b, where a, b ∈ S. Then
(a, b) ∈ R = R1 ∩ R2. Thus, (a, b) ∈ R1 and (a, b) ∈ R2. Since R1 and R2 are symmetric, (b, a) ∈ R1 and
(b, a) ∈ R2. Thus, (b, a) ∈ R and so b R a. Hence, R is symmetric. Finally, show that R is transitive.

(b) Let a ∈ Z. For x ∈ Z, it follows that x R1 a if and only if x R2 a and x R3 a. That is, x R1 a if and only if
x ≡ a (mod 2) and x ≡ a (mod 3). First, suppose that x ≡ a (mod 2) and x ≡ a (mod 3). Hence,
x = a + 2k and x = a + 3� for some integers k and �. Therefore, 2k = 3� and so � is even. Thus, � = 2m
for some integer m, implying that x = a + 3� = a + 3(2m) = a + 6m and so x − a = 6m. Hence,
x ≡ a (mod 6). If x ≡ a (mod 6), then x ≡ a (mod 2) and x ≡ a (mod 3). Thus,
[a] = {x ∈ Z : x ≡ a (mod 6)}.
[0] = {. . . ,−12, −6, 0, 6, 12, . . .}, [1] = {. . . , −11, −5, 1, 7, 13, . . .},
[2] = {. . . ,−10, −4, 2, 8, 14, . . .}, [3] = {. . . , −9, −3, 3, 9, 15, . . .},
[4] = {. . . ,−8, −2, 4, 10, 16, . . .}, [5] = {. . . , −7, −1, 5, 11, 17, . . .}.

9.43 Proof For ai ∈ A, [ai] = {x ∈ A : x R ai} = {x ∈ A : (x, ai) ∈ R}. Therefore, |[ai]| counts all those ordered
pairs in R for which ai is the second coordinate and so

∑n
i=1 |[ai]| counts all ordered pairs in R, that is,∑n

i=1 |[ai]| = |R|. Since R is reflexive, (ai, ai) ∈ R for i = 1, 2, . . . , n and for each pair i, j of distinct integers,
either (ai, aj ) and (aj, ai) both belong to R or neither belongs to R. Suppose that there are k ordered pairs
(ai, aj ) in R with 1 ≤ i < j ≤ n. Then |R| = n + 2k and so

∑n
i=1 |[ai]| is even if and only if n is even.

Section 9.5: Congruence Modulo n
9.45 Let a ∈ Z. Since 3a + 5a = 8a, it follows that 8 | (3a + 5a) and so 3a + 5a ≡ 0 (mod 8). Hence, a R a and

R is reflexive. Next, we show that R is symmetric. Assume that a R b, where a, b ∈ Z. Then 3a + 5b ≡ 0
(mod 8), that is, 3a + 5b = 8k for some integer k. Observe that (3a + 5b) + (3b + 5a) = 8a + 8b. Thus,

3b + 5a = 8a + 8b − (3a + 5b) = 8a + 8b − 8k = 8(a + b − k).

Since a + b − k is an integer, 8 | (3b + 5a) and so 3b + 5a ≡ 0 (mod 8). Hence, b R a and R is symmetric.
Finally, show that R is transitive.

9.47 There are two distinct equivalence classes, namely,
[0] = {0, ±2, ±4, . . .} and [1] ={±1, ±3, ±5, . . .}.

9.49 Proof Let a ∈ Z. Since 5a − 2a = 3a, it follows that 3 | (5a − 2a) and so 5a ≡ 2a (mod 3). Hence, a R a
and R is reflexive.

Next, we show that R is symmetric. Assume that a R b, where a, b ∈ Z. Then 5a ≡ 2b (mod 3), that is,
5a − 2b = 3k for some integer k. Observe that (5a − 2b) + (5b − 2a) = 3a + 3b. Thus,

5b − 2a = 3a + 3b − (5a − 2b) = 3a + 3b − 3k = 3(a + b − k).

Since a + b − k is an integer, 3 | (5b − 2a) and so 5b ≡ 2a (mod 3). Hence, b R a and R is symmetric.
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Finally, we show that R is transitive. Assume that a R b and b R c, where a, b, c ∈ Z. Thus,
5a ≡ 2b (mod 3) and 5b ≡ 2c (mod 3). So, 5a − 2b = 3x and 5b − 2c = 3y, where x, y ∈ Z. Observe that

(5a − 2b) + (5b − 2c) = (5a − 2c) + 3b = 3x + 3y.

Thus, 5a − 2c = 3x + 3y − 3b = 3(x + y − b). Since x + y − b is an integer, 3 | (5a − 2c) and
5a ≡ 2c (mod 3). Therefore, a R c and R is transitive.

There are three distinct equivalence classes, namely,
[0] = {0, ±3, ±6, . . .}, [1] = { . . ., −5, −2, 1, 4, . . .} and [2] = { . . ., −4, −1, 2, 5, . . .}.

9.51 First, we show that R is reflexive. Let a ∈ Z. Since 2a + 3a = 5a, it follows that 5 | (2a + 3a) and so a R a.
Hence, R is reflexive. Next, we show that R is symmetric. Assume that a R b, where a, b ∈ Z. Then
2a + 3b ≡ 0 (mod 5). Hence, 2a + 3b = 5k for some integer k. Observe that
(2a + 3b) + (2b + 3a) = 5a + 5b. Thus,

2b + 3a = 5a + 5b − (2a + 3b) = 5a + 5b − 5k = 5(a + b − k).

Since a + b − k is an integer, 5 | (2b + 3a) and so 2b + 3a ≡ 0 (mod 5). Hence, b R a and R is symmetric.
Finally, show that R is transitive.

The distinct equivalence classes are [0], [1], [2], [3] and [4], where, for 0 ≤ r ≤ 4, [r] = {5q + r : q ∈ Z}.
9.53 The relation R is an equivalence relation. Proof Let a ∈ R. Since a − a = 0 = 0 · π , it follows that a R a and

R is reflexive. Next, suppose that a R b, where a, b ∈ R. Then a − b = kπ for some k ∈ Z. Since
b − a = (−k)π and −k ∈ Z, it follows that b R a and so R is symmetric. Finally, suppose that a R b and b R c,
where a, b, c ∈ R. Then a − b = kπ and b − c = �π for k, � ∈ Z. Thus, a − c = (a − b) + (b − c) = (k + �)π .
Because k + � ∈ Z, a R c and R is transitive. Therefore, R is an equivalence relation.
[0] = {x ∈ R : x R 0} = {x ∈ R : x = kπ, where k ∈ Z} = {kπ : k ∈ Z}.
[π ] = {x ∈ R : x R π} = {x ∈ R : x − π = kπ, where k ∈ Z} = {(k + 1)π : k ∈ Z} = {kπ : k ∈ Z} = [0].
[
√

2] = {√2 + kπ : k ∈ Z}.

Section 9.6: The Integers Modulo n
9.55 (a) [2] + [6] = [8] = [0]. (b) [2] · [6] = [12] = [4].

(c) [−13] + [138] = [125] = [5]. (d) [−13] · [138] = [3][2] = [6].
9.57 (a) Proof Let a, b ∈ T . Then a = 4k and b = 4� for k, � ∈ Z. Thus, a + b = 4(k + �) and ab = 4(4k�).

Since k + �, 4k� ∈ Z, it follows that T is closed under addition and multiplication.
(b) Yes. Let a ∈ S − T and b ∈ T . Then b = 4� for � ∈ Z. Thus, ab = 4(a�). Since a� ∈ Z, it follows that

ab ∈ T .
(c) No. For example, a = 1 ∈ S − T and b = 4 ∈ T but a + b = 5 /∈ T .
(d) Yes. For example, a = 2 and b = 6 belong to S − T and ab = 12 = 4 · 3 ∈ T .
(e) Yes. For example, a = 2 and b = 6 belong to S − T and a + b = 8 = 4 · 2 ∈ T .

9.59 (a) No. Consider [a] = [2] and [b] = [4]. Then [a] �= [0] and [b] �= [0], but [a] · [b] = [8] = [0].
(b) If Z8 is replaced by Z9 or Z10, then the answer is no; while if Z8 is replaced by Z11, then the answer is yes.
(c) Let a, b ∈ Zn, where n ≥ 2 is prime. If [a] · [b] = [0], then [a] = [0] or [b] = [0].

9.61 (a) Suppose that an element [a] ∈ Zm also belongs to Zn. That is, [a] in Zm is the same set as [b] in Zn. Since
a, a + m ∈ [a] ∈ Zm, it follows that a, a + m ∈ [b] ∈ Zn. Therefore, n | [(a + m) − a] or n | m. Similarly,
m | n and so n = m, that is, Zm = Zn.

(b) If m, n ≥ 2 and m �= n, then Zm ∩ Zn = ∅. For example, Z2 ∩ Z3 = ∅.

EXERCISES FOR CHAPTER 10

Section 10.1: The Definition of Function
10.1 dom( f ) = {a, b, c, d} and range( f ) = {y, z}.
10.3 Since R is an equivalence relation, R is reflexive. So, (a, a) ∈ R for every a ∈ A. Since R is also a function from

A to A, we must have R = {(a, a) : a ∈ A} and so R is the identity function on A.
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10.5 Let A′ = {a ∈ A : (a, b) ∈ R for some b ∈ B}. Furthermore, for each element a′ ∈ A′, select exactly one element
b′ ∈ {b ∈ B : (a′, b) ∈ R}. Then f = {(a′, b′) : a′ ∈ A′} is a function from A′ to B.

10.7 R = {(3, 4), (17, 6), (29, 60), (45, 22)} and so R is a function from A to B.
10.9 (a) Since 0 R1 1 and 0 R1 (−1), R1 is not a function.

(b) Since 0 R2 ( 1√
3

) and 0 R2 (− 1√
3

), R2 is not a function.
(c) For each a ∈ N, b = (1 − 3a)/5 ∈ Q is the unique element such that 3a + 5b = 1. So, R3 defines a

function.
(d) For each x ∈ R, y = 4 − |x − 2| is a unique element of R. So, R4 defines a function.
(e) Since 0 R5 1 and 0 R5 (−1), R5 is not a function.

10.11 (a) f (C) = C, f −1(C) = C ∪ {x ∈ R : −x ∈ C}, f −1(D) = R − {0}, f −1({1}) = {1,−1}.
(b) f (C) = [0, ∞), f −1(C) = [e, ∞), f −1(D) = (1,∞), f −1({1}) = {e}.
(c) f (C) = [e, ∞), f −1(C) = [0,∞), f −1(D) = R, f −1({1}) = {0}.
(d) f (C) = [−1, 1], f −1(C) = { π

2 + 2nπ : n ∈ Z}, f −1(D) = ∪n∈Z(2nπ, (2n + 1)π ),
f −1({1}) = { π

2 + 2nπ : n ∈ Z}.
(e) f (C) = (−∞, 1], f −1(C) = {1}, f −1(D) = (0, 2), f −1({1}) = {1}.

10.13 BA = { f1, f2, . . . , f8}, where f1 = {(1, x), (2, x), (3, x)}, f2 = {(1, x), (2, x), (3, y)}, f3 = {(1, x), (2, y), (3, x)},
f4 = {(1, x), (2, y), (3, y)}. By interchanging x and y in f1, f2, f3, f4, we obtain f5, f6, f7, f8.

10.15 For A = {a, b, c} and B = {0, 1}, there are 8 different functions from A to B, namely
f1 = {(a, 0), (b, 0), (c, 0)}, f2 = {(a, 0), (b, 0), (c, 1)},
f3 = {(a, 0), (b, 1), (c, 0)}, f4 = {(a, 0), (b, 1), (c, 1)},
f5 = {(a, 1), (b, 0), (c, 0)}, f6 = {(a, 1), (b, 0), (c, 1)},
f7 = {(a, 1), (b, 1), (c, 0)}, f8 = {(a, 1), (b, 1), (c, 1)}.

10.17 (a) A reasonable interpretation of CBA
is { f : f : BA → C}.

(b) For A = {0, 1} and B = {a, b}, BA = { f1, f2, f3, f4}, where
f1 = {(0, a), (1, a)}, f2 = {(0, a), (1, b)},
f3 = {(0, b), (1, a)} and f4 = {(0, b), (1, b)}.
Then for C = {x, y}, CBA = {g1, g2, . . . , g16}, where
g1 = {( f1, x), ( f2, x), ( f3, x), ( f4, x)}, g2 = {( f1, x), ( f2, x), ( f3, x), ( f4, y)}, . . .,
g16 = {( f1, y), ( f2, y), ( f3, y), ( f4, y)}.

Section 10.2: One-to-one and Onto Functions
10.19 Let A = {1, 2} and B = {3, 4, 5}. Then f = {(1, 3), (2, 4)} and g = {(3, 1), (4, 2), (5, 2)} have the desired

properties.
10.21 (a) The function f is injective. Proof Assume that f (a) = f (b), where a, b ∈ Z. Then a − 3 = b − 3.

Adding 3 to both sides,we obtain a = b.
(b) The function f is surjective. Proof Let n ∈ Z. Then n + 3 ∈ Z and f (n + 3) = (n + 3) − 3 = n.

10.23 The statement is true. The function f : A → P (A) defined by f (a) = {a} has the desired property.
10.25 Consider the function f : R → R defined by f (x) = x3 − x = (x + 1)x(x − 1). Since f (0) = f (1), it follows

that f is not one-to-one. One way to show that f is onto is to use the Intermediate Value Theorem.
Method #1. Let r ∈ R. Since

limx→∞(x3 − x) = ∞ and limx→−∞(x3 − x) = −∞,

there exist real numbers a and b such that f (a) < r < f (b). Since f is continuous on the closed interval [a, b],
there exists c such that a < c < b and f (c) = r.

Method #2. Let r ∈ R. If r = 0, then f (0) = 0 = r. Suppose that r > 0. Then r + 1 > 1 and r + 2 > 1; so
f (r + 1) = r(r + 1)(r + 2) > r. Since f (0) < r < f (r + 1), it follows by the Intermediate Value Theorem that
there exists c ∈ (0, r + 1) such that f (c) = r. If r < 0, then s = −r > 0 and, as we just saw, there exists
c ∈ (0, s + 1) such that f (c) = s. Then f (−c) = −s = r.

10.27 (a) R = {(2, 8), (3, 6), (4, 8), (5, 10)}. The relation R is a function from A to B.
(b) Since range(R) = B, the function R is onto. However, since 2 R 8 and 4 R 8, R is not one-to-one.
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10.29 Proof By Exercise 10.12(b), f (C ∩ D) ⊆ f (C) ∩ f (D). So, it remains to show that f (C) ∩ f (D) ⊆ f (C ∩ D)
under the added hypothesis that f is one-to-one. Let y ∈ f (C) ∩ f (D). Then y ∈ f (C) and y ∈ f (D). Since
y ∈ f (C), there exists x ∈ C such that y = f (x). Furthermore, since y ∈ f (D), there exists z ∈ D such that
y = f (z). Since f is one-to-one, z = x. Thus, x ∈ C ∩ D and so y ∈ f (C ∩ D). Therefore,
f (C) ∩ f (D) ⊆ f (C ∩ D) and so f (C ∩ D) = f (C) ∩ f (D).

Section 10.3: Bijective Functions
10.31 (a) Proof Let [a], [b] ∈ Z5 such that [a] = [b]. We show that f ([a]) = f ([b]), that is, [2a + 3] = [2b + 3].

Since [a] = [b], it follows that a ≡ b (mod 5) and so a − b = 5x for some integer x. Observe that

(2a + 3) − (2b + 3) = 2(a − b) = 2(5x) = 5(2x).

Since 2x is an integer, 5 | [(2a + 3) − (2b + 3)]. Therefore, 2a + 3 ≡ 2b + 3 (mod 5) and so
[2a + 3] = [2b + 3].

(b) Since f ([0]) = [3], f ([1]) = [0], f ([2]) = [2], f ([3]) = [4] and f ([4]) = [1], it follows that f is
one-to-one and onto and so f is bijective.

10.33 Define f1(x) = x2 for x ∈ A and f2(x) = √
x for x ∈ A. ( f3(x) = 1 − x is another example.)

10.35 (a) Consider S = {2, 5, 6}. Observe that for each y ∈ B, there exists x ∈ S such that x is related to y. This says
that γ (R) ≤ 3. On the other hand, let S′ ⊆ A such that for every element y of B, there is an element x ∈ S′

such that x is related to y. Observe that S′ must contain 6, at least one of 2 and 3 and at least one of 4, 5
and 7. Thus, |S′| ≥ 3. Therefore, γ (R) = 3.

(b) If R is an equivalence relation defined on a finite nonempty set A, then γ (R) is the number of distinct
equivalence classes of R.

(c) If f is a bijective function from A to B, then γ ( f ) = |A|.

Section 10.4: Composition of Functions
10.37 g ◦ f = {(1, y), (2, x), (3, x), (4, x)}.
10.39 (a) (g ◦ f )([a]) = g( f ([a])) = g([3a]) = [21a] = [a]. ( f ◦ g)([a]) = f (g([a])) = f ([7a]) = [21a] = [a].

(b) Each of g ◦ f and f ◦ g is the identity function on Z10.
10.41 Proof We first show that f is one-to-one. Let a, b ∈ A such that f (a) = f (b). Now

a = iA(a) = ( f ◦ f )(a) = f ( f (a)) = f ( f (b))

= ( f ◦ f )(b) = iA(b) = b.

Thus, f is one-to-one.
Next, we show that f is onto. Let c ∈ A. We show that there exists x ∈ A such that f (x) = c. Suppose that

f (c) = d ∈ A. Observe that

f (d) = f ( f (c)) = ( f ◦ f )(c) = iA(c) = c.

Thus, f is onto.
10.43 (a) (i) Direct Proof. Assume that g ◦ f is one-to-one. We show that f is one-to-one. Let f (x) = f (y), where

x, y ∈ A. Since g( f (x)) = g( f (y)), it follows that (g ◦ f )(x) = (g ◦ f )(y). Since g ◦ f is one-to-one,
x = y.

(ii) Proof by Contrapositive. Assume that f is not one-to-one. Hence, there exist distinct elements a, b ∈ A
such that f (a) = f (b). Since

(g ◦ f )(a) = g( f (a)) = g( f (b)) = (g ◦ f )(b),

it follows that g ◦ f is not one-to-one.
(iii) Proof by Contradiction. Assume, to the contrary, that there exist functions f : A → B and g : B → C

such that g ◦ f is one-to-one and f is not one-to-one. Since f is not one-to-one, there exist distinct
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elements a, b ∈ A such that f (a) = f (b). However then,

(g ◦ f )(a) = g( f (a)) = g( f (b)) = (g ◦ f )(b),

contradicting our assumption that g ◦ f is one-to-one.
(b) Let A = {1, 2, 3}, B = {w, x, y, z} and C = {a, b, c}. Define f : A → B by

f = {(1, w), (2, x), (3, y)}
and g : B → C by

g = {(w, a), (x, b), (y, c), (z, c)}.
Then g ◦ f = {(1, a), (2, b), (3, c)} is one-to-one, but g is not one-to-one.

10.45 (a) (g ◦ f )(18, 11) = g( f (18, 11)) = g(29, 18) = (47, 29).
(b) The function g ◦ f : A × B → B × B is one-to-one. Proof Assume that (g ◦ f )(a, b) = (g ◦ f )(c, d),

where (a, b), (c, d) ∈ A × B. Then g( f (a, b)) = g( f (c, d)) and so g(a + b, a) = g(c + d, c). Therefore,
(2a + b, a + b) = (2c + d, c + d), which implies that 2a + b = 2c + d and a + b = c + d. Solving these
equations, we find that a = c and b = d; so (a, b) = (c, d). Thus, g ◦ f is one-to-one.

(c) The function g ◦ f : A × B → B × B is onto. Proof Let (m, n) ∈ B × B. Then m and n are odd integers.
Therefore, a = m − n ∈ A and b = 2n − m ∈ B. Hence, (g ◦ f )(a, b) = g( f (a, b)) =
g( f (m − n, 2n − m)) = g(n, m − n) = (m, n). Thus, g ◦ f is onto.

10.47 (a) The statement is true. Proof Let a ∈ R. Suppose that f (a) = b, g(b) = c and h(b) = d. Then
((g + h) ◦ f )(a) = (g + h)( f (a)) = (g + h)(b) = g(b) + h(b) = c + d; while [(g ◦ f ) + (h ◦ f )](a) =
(g ◦ f )(a) + (h ◦ f )(a) = g( f (a)) + h( f (a)) = g(b) + h(b) = c + d. Therefore, (g + h) ◦ f = (g ◦ f ) +
(h ◦ f ).

(b) The statement is false. For example, suppose that f (x) = x2, g(x) = x and h(x) = x for x ∈ R. So,
(g + h)(x) = 2x. Then [ f ◦ (g + h)](1) = f ((g + h)(1)) = f (2) = 4; while [( f ◦ g) + ( f ◦ h)](1) =
( f ◦ g)(1) + ( f ◦ h)(1) = f (g(1)) + f (h(1)) = f (1) + f (1) = 1 + 1 = 2. Thus, f ◦ (g + h) �= ( f ◦ g) +
( f ◦ h) in general.

Section 10.5: Inverse Functions
10.49 Let f = {(a, a), (b, a), (c, b)}. Then f is a function from A to A. But the inverse relation f −1 = {(a, a), (a, b),

(b, c)} is not a function.
10.51 Proof First, we show that f is one-to-one. Assume that f (a) = f (b), where a, b ∈ R − {3}. Then

5a
a − 3

= 5b
b − 3

. Multiplying both sides by (a − 3)(b − 3), we obtain 5a(b − 3) = 5b(a − 3). Simplifying, we

have 5ab − 15a = 5ab − 15b. Adding −5ab to both sides and dividing by −15, we obtain a = b. Thus, f is
one-to-one.

To show that f is onto, let r ∈ R − {5}. We show that there exists x ∈ R − {3} such that f (x) = r. Consider

x = 3r
r − 5

. (Since
3r

r − 5
�= 3, it follows that x ∈ R − {3}.) Then

f (x) = f
(

3r
r − 5

)
= 5

(
3r

r−5

)
3r

r−5 − 3
= 15r

3r − 3(r − 5)
= 15r

15
= r,

implying that f is onto. Therefore f is bijective.
Since

(
f ◦ f −1

)
(x) = x for all x ∈ R − {5}, it follows that

(
f ◦ f −1

)
(x) = f

(
f −1(x)

) = 5 f −1(x)
f −1(x) − 3

= x.

Thus, 5 f −1(x) = x( f −1(x) − 3) and 5 f −1(x) = x f −1(x) − 3x. Collecting the terms involving f −1(x) on the
same side of the equation and then factoring f −1(x) from this expression, we have x f −1(x) − 5 f −1(x) = 3x; so
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f −1(x)(x − 5) = 3x. Solving for f −1(x), we obtain

f −1(x) = 3x
x − 5

.

10.53 Since there are 6 = 3! bijective functions from A to B, there are 6 functions A to B that have inverses.
10.55 (a) The proof is similar to that in Exercise 10.51.

(b) f = f −1.
(c) f ◦ f ◦ f = f .

10.57 (a) Proof Observe that f (x) ≥ 0 if and only if x ≥ 1 and that f (x) < 0 if and only if x < 1. First, we show
that f is one-to-one. Assume that f (a) = f (b). We consider two cases.

Case 1. f (a) = f (b) ≥ 0. Then
√

a − 1 = √
b − 1. Squaring both sides, we get a − 1 = b − 1 and so

a = b.

Case 2. f (a) = f (b) < 0. Then 1
a−1 = 1

b−1 . Therefore, a − 1 = b − 1 and so a = b.
Hence, f is one-to-one. Next, we show that f is onto. Let r ∈ R. We consider two cases.

Case 1. r ≥ 0. Then f (r2 + 1) =
√

(r2 + 1) − 1 = r.

Case 2. r < 0. Then f ( r+1
r ) = 1

r+1
r −1

= r. Therefore, f is onto and so is a bijection.

(b) f −1(x) =
{ x+1

x if x < 0

x2 + 1 if x ≥ 0.

10.59 Proof First, observe that g ◦ f : A → C and h ◦ f : A → C. Let b ∈ B. Since f is bijective, there is a unique
element a ∈ A such that f (a) = b. Since g ◦ f = h ◦ f , it follows that (g ◦ f )(a) = (h ◦ f )(a) and so
g( f (a)) = h( f (a)). Therefore, g(b) = h(b) and so g = h.

10.61 (a) α−1 =
(

1 2 3 4 5 6
4 1 6 3 5 2

)
and β−1 =

(
1 2 3 4 5 6
5 4 2 6 1 3

)
.

(b) α ◦ β =
(

1 2 3 4 5 6
5 4 3 6 2 1

)
and β ◦ α =

(
1 2 3 4 5 6
3 4 2 5 1 6

)
.

EXERCISES FOR CHAPTER 11

Section 11.1: Numerically Equivalent Sets
11.1 Since A1 = {−3,−2, 2, 3}, A2 = {−5,−4, −3, 5}, A3 = {−2, −1, 0, 1, 2, 3}, A4 = {−1, 0, 1} and

A5 = {−4, 0, 4}, it follows that |A1| = |A2| = 4, |A3| = 6 and |A4| = |A5| = 3. So, the distinct equivalence
classes for R are [A1] = {A1, A2}, [A3] = {A3} and [A4] = {A4, A5}.

Section 11.2: Denumerable Sets
11.3 Proof Since A and B are denumerable, the sets A and B can be expressed as

A = {a1, a2, a3, . . .} and B = {b1, b2, b3, . . .}.
The function f : N → A ∪ B defined by

1 2 3 4 5 6 · · ·
↓ ↓ ↓ ↓ ↓ ↓ · · ·
a1 b1 a2 b2 a3 b3 · · ·

is bijective. Therefore, A ∪ B is denumerable.
11.5 Proof Since Z − {2} is an infinite subset of the denumerable set Z, it follows by Theorem 11.4 that Z − {2} is

denumerable and so |Z| = |Z − {2}|.
11.7 (a) 1 + √

2, (4 + √
2)/2, (9 + √

2)/3.
(b) Proof Assume that f (a) = f (b), where a, b ∈ N. Then a2+√

2
a = b2+√

2
b . Multiplying by ab, we obtain

a2b + √
2b = ab2 + √

2a. Thus, a2b − ab2 + √
2b − √

2a = ab(a − b) − √
2(a − b) =

(a − b)(ab − √
2) = 0. Thus, a = b or ab = √

2. Since ab ∈ N and
√

2 is irrational, ab �= √
2. Therefore,

a = b and f is one-to-one.



P1: HFA

Z01_CHART6753_04_SE_ANS PH03348-Chartrand August 16, 2017 21:46 Char Count= 0

464 Answers to Odd-Numbered Section Exercises

(c) Proof Let x ∈ S. Then x = (n2 + √
2)/n for some n ∈ N. Then f (n) = x.

(d) Yes, since N is denumerable and f : N → S is a bijection by (b) and (c).
11.9 Let A be a denumerable set. Then we can write A = {a1, a2, a3, . . .}. Since A1 = {a1, a3, a5, . . .} and

A2 = {a2, a4, a6, . . .} are denumerable sets, {A1, A2} is a partition of A.
11.11 Either |A| = |B| and A is denumerable or |A| is finite. Therefore, the set A is countable.
11.13 Define f : G → Z × Z by f (a + bi) = (a, b). Then f is bijective and so |G| = |Z × Z|. Since Z × Z is

denumerable, G is denumerable.
11.15 Note that S is an infinite subset of the set N × N. The result follows by Theorem 11.4 and Result 11.6.
11.17 Since A is denumerable and B is an infinite subset of A, it follows that B is denumerable by Theorem 11.4.
11.19 Let A = {a1, a2, a3, . . .} be a denumerable set and place the elements of A in a table, as shown below. For i ∈ N,

let Ai be the set of elements in the ith row of the table. In particular,
A1 = {a1, a3, a6, a10, . . .},
A2 = {a2, a5, a9, a14, . . .},
A3 = {a4, a8, a13, a19, . . .}.
Then each set Ai is a denumerable set and {A1, A2, A3, . . .} is a partition of A into a denumerable number of
denumerable sets.

A1 a1 a3 a6 a10 a15 a21 · · ·
A2 a2 a5 a9 a14 a20 · · ·
A3 a4 a8 a13 a19 · · ·
A4 a7 a12 a18 · · ·
A5 a11 a17 · · ·
A6 a16 · · ·
...

...
...

Section 11.3: Uncountable Sets
11.21 Proof Since the set C of complex numbers contains R as a subset and R is uncountable, it follows by

Theorem 11.10 that C is uncountable.
11.23 (a) Proof Assume that f (a) = f (b), where a, b ∈ (0, 1). Then 2a = 2b and so a = b. Hence, f is one-to-one.

For each r ∈ (0, 2), x = r/2 ∈ (0, 1) and f (x) = r. Therefore, f is onto. Thus, f is a bijective function
from (0, 1) to (0, 2).

(b) This follows from (a).
(c) Define the function g : (0, 1) → (a, b) by g(x) = (b − a)x + a. Then g is bijective and so (0, 1) and (a, b)

have the same cardinality.
11.25 (a) Proof Let r ∈ R. We show that there is x ∈ (−1, 1) such that g(x) = r. If r = 0, then g(0) = 0. Hence,

we may assume that r �= 0. [Solving g(x) = x
1−x2 = r for x, we find that x = (−1 ± √

1 + 4r2)/2r.] If

r > 0, then 0 < −1 + √
1 + 4r2 < 2r and so (−1 + √

1 + 4r2)/2r ∈ (0, 1). If r < 0, then
0 < −1 + √

1 + 4r2 < −2r and so −1 < (−1 + √
1 + 4r2)/2r < 0. Thus,

(−1 + √
1 + 4r2)/2r ∈ (−1, 0). Since g((−1 + √

1 + 4r2)/2r) = r, the function g is onto.
(b) Proof Assume that g(a) = g(b). Then a

1−a2 = b
1−b2 and so a(1 − b2) = b(1 − a2). Simplifying this

equation and then factoring, we have (a − b)(ab + 1) = 0. In order for ab = −1, one of a and b is at least 1
or at most −1. In either case, this is impossible. Therefore, ab �= −1 and so a = b. Hence, f is one-to-one.

(c) Since f is one-to-one and onto, f is a bijective function, which implies that |(−1, 1)| = |R|. Since R is
uncountable, so is (−1, 1).

Section 11.4: Comparing Cardinalities of Sets
11.27 Let b ∈ B. Then the function f : A → A × B defined by f (a) = (a, b) for each a ∈ A is one-to-one. Thus,

|A| ≤ |A × B|.
11.29 The cardinalities of these sets are the same. Consider f : [0, 1] → [1, 3] defined by f (x) = 2x + 1 for all

x ∈ [0, 1].
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11.31 The statement is true. Proof Let A be a set. Then A is finite, denumerable or uncountable. If A is finite, say
|A| = n ∈ Z, n ≥ 0, then |2A| = 2n and so 2A is a finite set. If A is denumerable, then since |2A| > |A|, 2A is not
denumerable. If A is uncountable, then since |2A| > |A|, 2A is also an uncountable set.

Section 11.5: The Schröder–Bernstein Theorem
11.33 Proof Since (0, 1) ⊆ [0, 1], the function i : (0, 1) → [0, 1] defined by i(x) = x is an injective function. The

function f : [0, 1] → (0, 1) defined by f (x) = 1
2 x + 1

4 is also injective. It then follows by the
Schröder-Bernstein Theorem that |(0, 1)| = |[0, 1]|.

11.35 Proof Since the function f : R∗ → R defined by f (x) = x is one-to-one, it follows that |R∗| ≤ |R|. By
Corollary 11.15, the sets (0, 1) and R are numerically equivalent and so there exists a bijective function
g : R → (0, 1). This function can be used to define a one-to-one function h : R → R∗ where h(x) = g(x) for
each x ∈ R. Thus, |R| ≤ |R∗|. By Theorem 11.20, |R∗| = |R|.

11.37 (a) Proof Assume that f (m/n) = f (r/s). Since f (m/n) has 2k digits for some integer k ≥ 2, the integer
f (m/n) contains at least k consecutive 0’s. Then the digits to the rightmost block of k consecutive 0’s make
up n while the digits to the left of this block make up m. Since f (r/s) = f (m/n), it follows by the same
argument that r = m and s = n. So, m/n = r/s.

(b) Proof The function g : N → Q+ defined by g(n) = n is injective. Combining this with the function f in
(a) gives us, by the Schröder-Bernstein Theorem, |Q+| = |N| and so Q+ is denumerable.

EXERCISES FOR CHAPTER 12

Section 12.1: Divisibility Properties of Integers
12.1 Proof Assume that a | b and c | d. Then b = ax and d = cy for integers x and y. Then ad + bc = a(cy) +

(ax)c = ac(y + x). Since y + x is an integer, ac | (ad + bc).
12.3 Proof Assume that ac | bc. Then bc = (ac)x = c(ax) for some integer x. Since c �= 0, we can divide by c,

obtaining b = ax. So, a | b.
12.5 Proof Assume, to the contrary, that there exists a prime n ≥ 3 that can be expressed as k3 + 1 ≥ 3 for some

integer k. Since n = k3 + 1 = (k + 1)(k2 − k + 1), it follows that k + 1 = 1 or k2 − k + 1 = 1, which implies
that k = 0 or k = 1. Thus, n = 1 or n = 2, which is a contradiction.

12.7 Proof We employ induction. For n = 1, we have 52·1 + 7 = 32 and 8 | 32. Thus, the result is true for n = 1.
Assume that

8 | (
52k + 7

)
for some positive integer k. We show that

8 | (
52(k+1) + 7

)
.

Since 8 | (
52k + 7

)
, it follows that 52k + 7 = 8a for some integer a and so 52k = 8a − 7. Thus,

52(k+1) + 7 = 52 · 52k + 7 = 25(8a − 7) + 7

= 200a − 175 + 7 = 200a − 168 = 8(25a − 21).

Since 25a − 21 is an integer, 8 | (
52(k+1) + 7

)
. The result then follows by the Principle of Mathematical

Induction.
12.9 Consider the n numbers 2 + (n + 1)!, 3 + (n + 1)!, . . . , n + (n + 1)!, (n + 1) + (n + 1)!. Observe for each

integer k with 2 ≤ k ≤ n + 1 that k divides k + (n + 1)!. Thus, these n numbers are composite.
12.11 Proof Since d | ai for i = 1, 2, . . . , n, there exist integers di (1 ≤ i ≤ n) such that ai = ddi. Thus,

n∑
i=1

aixi =
n∑

i=1

(ddi)xi = d
n∑

i=1

dixi.

Since
∑n

i=1 dixi is an integer, d | ∑n
i=1 aixi.
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12.13 (a) Let a1, a2, . . . , ak be the distinct positive integers that divide n. Then a1, a2, . . ., ak, 2a1, 2a2, . . ., 2ak

divide 2n. So, 2k integers divide 2n. In addition to these 2k integers, 4a1, 4a2, . . . , 4ak also divide 4n. So,
3k integers divide 4n.

(b) Let a1, a2, . . . , ak be the distinct positive integers that divide n. Then a1, a2, . . ., ak, 3a1, 3a2, . . ., 3ak

divide 3n. In addition to these 2k integers, 9a1, 9a2, . . . , 9ak also divide 9n. So, 3k integers divide 9n.
(c) Let n be a positive integer and let p be a prime such that p � n. If k integers divide n, how many integers

divide pn? How many integers divide pan, where a ∈ N? Answer: (a + 1)k.

Section 12.2: The Division Algorithm
12.15 (a) 125 = 17 · 7 + 6 (q = 7, r = 6)

(b) 125 = (−17) · (−7) + 6 (q = −7, r = 6)
(c) 96 = 8 · 12 + 0 (q = 12, r = 0)
(d) 96 = (−8) · (−12) + 0 (q = −12, r = 0)
(e) −17 = 22 · (−1) + 5 (q = −1, r = 5)
(f) −17 = (−22) · 1 + 5 (q = 1, r = 5)
(g) 0 = 15 · 0 + 0 (q = 0, r = 0)
(h) 0 = (−15) · 0 + 0 (q = 0, r = 0)

12.17 (a) Proof Let p be an odd prime. Then p = 2a + 1 for some integer a. We consider two cases, depending on
whether a is even or a is odd.
Case 1. a is even. Then a = 2k, where k ∈ Z. Thus, p = 2a + 1 = 2(2k) + 1 = 4k + 1.

Case 2. a is odd. Then a = 2k + 1, where k ∈ Z. Thus, p = 2a + 1 = 2(2k + 1) + 1 = 4k + 3.

(b) Proof Let p ≥ 5 be an odd prime. Then p = 2a + 1 for some integer a. We consider three cases,
depending on whether a = 3k, a = 3k + 1 or a = 3k + 2 for some integer k.
Case 1. a = 3k. Then p = 2a + 1 = 2(3k) + 1 = 6k + 1.
Case 2. a = 3k + 1. Then p = 2a + 1 = 2(3k + 1) + 1 = 6k + 3 = 3(2k + 1). Since 2k + 1 is an integer,
3 | p, which is impossible as p ≥ 5 is a prime. Thus, this case cannot occur.
Case 3. a = 3k + 2. Then p = 2a + 1 = 2(3k + 2) + 1 = 6k + 5.

12.19 (a) Observe that n = 6q + 5 = 3(2q) + 3 + 2 = 3(2q + 1) + 2. Letting k = 2q + 1, we see that n = 3k + 2.
(b) The converse is false. The integer 2 = 3 · 0 + 2 is of the form 3k + 2, but 2 is not of the form 6q + 5 since

6q + 5 = 2(3q + 2) + 1 is always odd.
12.21 Proof Let a be an odd integer. Then a = 2b + 1 for some integer b. Thus,

a2 = (2b + 1)2 = 4b2 + 4b + 1 = 4(b2 + b) + 1.

Since k = b2 + b is an integer, a = 4k + 1.
12.23 Result The square of an integer that is not a multiple of 5 is either of the form 5k + 1 or 5k + 4 for some

integer k.
Proof Let n be an integer that is not a multiple of 5. Then n = 5q + r for some integers q and r with
1 ≤ r ≤ 4. We consider these four cases.
Case 1. n = 5q + 1. Then

n2 = (5q + 1)2 = 25q2 + 10q + 1 = 5(5q2 + 2q) + 1,

where k = 5q2 + 2q ∈ Z.
(The other three cases are handled similarly.)

12.25 Proof We proceed by induction. By Result 4.11, the statement is true for n = 2. Assume that if a1, a2, . . . , ak

are k ≥ 2 integers such that ai ≡ 1 (mod 3) for each i (1 ≤ i ≤ k), then a1a2 · · · ak ≡ 1 (mod 3). Now let
b1, b2, . . . , bk+1 be k + 1 integers such that bi ≡ 1 (mod 3) for all i (1 ≤ i ≤ k + 1). We show that
b1b2 · · · bk+1 ≡ 1 (mod 3). Let b = b1b2 · · · bk. By the induction hypothesis, b ≡ 1 (mod 3). Since
b ≡ 1 (mod 3) and bk+1 ≡ 1 (mod 3), it follows by Result 4.11 that b1b2 · · · bk+1 = bbk+1 ≡ 1 (mod 3). The
result then follows by the Principle of Mathematical Induction.

12.27 The statement is true. Proof Since a and b are odd integers, a = 2x + 1 and b = 2y + 1, where x, y ∈ Z. If
4 | (a − b), then we have the desired result. Thus, we may assume that 4 � (a − b). Then a − b = 2(x − y),
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where x − y is an odd integer. Let x − y = 2z + 1, where z ∈ Z. Thus, a = b + 2(x − y) = b + 4z + 2 and

a + b = 2b + 4z + 2 = 2(2y + 1) + 4z + 2

= 4(y + z + 1).

Since y + z + 1 ∈ Z, it follows that 4 | (a + b).
12.29 (a) Proof Let x, y ∈ N and let a = 2x2 + y2, b = 2x2, c = 2xy and d = y2. Then

a2 = (2x2 + y2)2 = 4x4 + 4x2y2 + y4 = b2 + c2 + d2.
(b) Proof Let x ∈ N and let a = 2x and b = c = d = e = x. Then

a2 = 4x2 = x2 + x2 + x2 + x2 = b2 + c2 + d2 + e2.
[Note: Observe that for x ∈ N, (4x)2 = (x)2 + (x)2 + (x)2 + (2x)2 + (3x)2,
(5x)2 = (x)2 + (x)2 + (x)2 + (2x)2 + (3x)2 + (3x)2 and
(6x)2 = (x)2 + (x)2 + (x)2 + (2x)2 + (2x)2 + (3x)2 + (4x)2.]

12.31 (a) S2 is a set of positive odd integers.
(b) 14 ∈ S13.
(c) 16 ∈ S3.
(d) The statement is true. Proof Let n ≥ 2 be an integer. Since n ≥ 2, the integer n is either prime or

composite. We consider these two cases.
Case 1. n is prime. Consider the set S = {nk + 1 : k ∈ N}. Since n is a prime, n is the smallest positive
integer such that when any element of S is divided by n, a remainder of 1 results. Since S is an infinite set
and S ⊆ Sn, it follows that Sn is infinite.
Case 2. n is composite. Let m be any integer that results in a remainder of 1 when divided by n. Then
m = nq + 1 for some integer q. Since n is composite, it follows by Lemma 12.1 that there are integers a
and b with 1 < a < n and 1 < b < n such that n = ab. Then m = a(bq) + 1. Hence, when m is divided by
a, a remainder 1 results and so m /∈ Sn. Consequently, Sn = ∅.

Section 12.3: Greatest Common Divisors
12.33 S = {2 · 3 · 5, 2 · 3 · 7, 2 · 5 · 7, 3 · 5 · 7}.
12.35 Proof Let gcd(ka, kb) = e. We show that e = kd. Since d | a and d | b, it follows that a = dr and b = ds for

integers r and s. Then ka = (kd)r and kb = (kd)s. Since r and s are integers, kd | ka and kd | kb. Because e is
the greatest positive integer that divides both ka and kb, we have kd ≤ e. Also, there exist integers x and y such
that d = ax + by and so kd = (ka)x + (kb)y. Since e | ka and e | kb, it follows that e | kd and so e ≤ kd.
Therefore, e = kd.

Section 12.4: The Euclidean Algorithm
12.37 (a) gcd(51, 288) = 3. (b) gcd(357, 629) = 17. (c) gcd(180, 252) = 36.
12.39 Observe that if d = as + bt and k ∈ Z, then d = a(s + kb) + b(t − ka).
12.41 Since n | (7m + 3), it follows that n | 5(7m + 3). Hence, n | [(35m + 26) − (35m + 15)]. Thus, n = 11.
12.43 Proof Since a ≡ b (mod m) and a ≡ c (mod n), it follows that a = b + mx and a = c + ny for some integers

x and y. Hence, b + mx = c + ny and so b − c = ny − mx. Since d = gcd(m, n), it follows that d | m and d | n.
Thus, m = dr and n = ds, where r, s ∈ Z. Therefore,

b − c = ny − mx = (ds)y − (dr)x = d(sy − rx).

Since sy − rx is an integer, d | (b − c) and so b ≡ c (mod d).
12.45 Since gcd(a, b) = gcd(ri−1, ri) and ri is a prime number, gcd(a, b) | ri and so gcd(a, b) is either ri or 1.

Section 12.5: Relatively Prime Integers
12.47 Proof Assume, to the contrary, that

√
3 is rational. Then

√
3 = a/b, where a and b are nonzero integers. We

may assume that a/b has been reduced to lowest terms. Thus, a2 = 3b2. Since b2 is an integer, 3 | a2. It then
follows by Corollary 12.14 that 3 | a. Thus, a = 3x for some integer x. So, a2 = (3x)2 = 3(3x2) = 3b2 and so
3x2 = b2. Since x2 is an integer, 3 | b2 and so 3 | b by Corollary 12.14. However, 3 is a common factor of a and
b, contradicting the fact that a/b has been reduced to lowest terms.
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12.49 Proof Assume, to the contrary, that p1/n is rational. Then p1/n = a/b, where a and b are nonzero integers. We
may assume that a/b has been reduced to lowest terms. Thus, an/bn = p and so an = pbn. Since bn is an integer,
p | an. Since p is a prime, it follows by Corollary 12.15 that p | a. Since p | a, it follows that a = pc for some
integer c. Thus, an = (pc)n = pncn = pbn. Hence, bn = pn−1cn = p(pn−2cn). Since n ≥ 2, we have that pn−2cn

is an integer and so p | bn. By Corollary 12.15, p | b. This contradicts our assumption that a/b has been reduced
to lowest terms.

12.51 (a) Proof Let a and b be two consecutive odd positive integers. Then a = 2k + 1 and b = 2k + 3 for some
integer k. Since

1 = (2k + 1) · (k + 1) + (2k + 3) · (−k)

is a linear combination of 2k + 1 and 2k + 3, the integers 2k + 1 and 2k + 3 are relatively prime.
(b) One possibility: Every two consecutive integers k and k + 1 are relatively prime since 1 can be expressed as

a linear combination of k and k + 1, namely, 1 = (k + 1) · 1 + k · (−1). In part (a), we saw that every two
consecutive odd positive integers a = 2k + 1 and b = 2k + 3 are relatively prime by writing 1 = ax + by,
where x = k + 1 and y = −k. (Note the values of x and y.) The integers a = 3k + 2 and b = 3k + 5 are
relatively prime as well since we can write 1 = ax + by, where x = 2k + 3 and y = −(2k + 1). (Again,
note the values of x and y.) More generally, we have:
Result For every positive integer n and every integer k, the integers a = nk + (n − 1) and
b = nk + (2n − 1) are relatively prime.
Proof Observe that 1 = ax + by, where x = (n − 1)k + (2n − 3) and y = −[(n − 1)k + (n − 2)].

12.53 Let p and q be primes with p ≥ q ≥ 5. By Exercise 12.17(b), p and q are of the from 6k + 1 or 6k + 5 for
k ∈ Z. Equivalently, p = 6a ± 1 and q = 6b ± 1 for some integers a and b. Hence,

p2 − q2 = (36a2 ± 12a + 1) − (36b2 ± 12b + 1) = 12(3a2 ± a) − 12(3b2 ± b).

By Theorem 3.12, a2 and a (and b2 and b) are of the same parity. Thus, 3a2 ± a and 3b2 ± b are both even and
we can write p2 − q2 = 24k for some integer k.

12.55 Proof Assume that a ≡ b (mod m) and a ≡ b (mod n), where gcd(m, n) = 1. Thus, m | (a − b) and
n | (a − b). By Theorem 12.16, mn | (a − b). Hence, a ≡ b (mod mn).

12.57 Claim: gcd(x, y) = d if and only if d = 1.
Proof Let d = gcd(a, b). Then there exist integers x and y such that d = ax + by. We show that
gcd(x, y) = 1. Suppose that gcd(x, y) = e. Since d | a and d | b, there exist integers r and s such that a = dr
and b = ds. Because e | x and e | y, there exist integers w and z such that x = ew and y = ez. Therefore,
d = ax + by = (dr)(ew) + (ds)(ez) = de(rw) + de(sz). So, 1 = e(rw + sz). Since rw + sz is an integer,
e = 1.

12.59 (a) Proof Assume that a | c and b | c, where gcd(a, b) = d. Then there exist integers x and y such that
d = ax + by. Hence, cd = acx + bcy. Because a | c and b | c, there exist integers r and s such that c = ar
and c = bs. Hence, cd = a(bs)x + b(ar)y = ab(sx) + ab(ry) = ab(sx + ry). Since sx + ry is an integer,
ab | cd.

(b) Let a, b, c ∈ Z such that a | c and b | c and a and b are relatively prime. Then gcd(a, b) = 1. Letting d = 1
in (a), we obtain Theorem 12.16.

12.61 (a) m = 5, n = 6.
(b) Consider the pairs {m, n} = {4, 9}, {4, 6}, {9, 15}.

Section 12.6: The Fundamental Theorem of Arithmetic
12.63 (a) 4725 = 33 · 52 · 7 (b) 9702 = 2 · 32 · 72 · 11 (c) 180625 = 54 · 172.
12.65 (a) 4278 = 2 · 3 · 23 · 31 and 71929 = 11 · 13 · 503.

(b) gcd(4278, 71929) = 1
12.67 Proof Assume, to the contrary, that the number of primes is finite. Let P = {p1, p2, . . . , pn} be the set of all

primes, where p1 < p2 < · · · < pn. Let m = pn! + 1. Then m ≥ pn + 1 and so m is not a prime. Since m has a
prime factor and every prime belongs to P, there is a prime pi (1 ≤ i ≤ n) such that pi | m. Hence, m = pik for
some integer k. Since pi is a factor of pn! and 1 = m − pn!, it follows that pi | 1, which is a contradiction.
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12.69 Proof Let d = pc1
1 pc2

2 · · · pcr
r . We show that gcd(m, n) = d. Since ci ≤ ai and ci ≤ bi for each i (1 ≤ i ≤ r), it

follows that d | m and d | n. We claim that gcd(m, n) can be expressed as pk1
1 pk2

2 · · · pkr
r for nonnegative integers

ki (1 ≤ i ≤ r). Suppose that some prime p distinct from p1, p2, . . . , pr divides d. Then p | m and p | n, which is
impossible. Thus, as claimed, gcd(m, n) can be expressed as pk1

1 pk2
2 · · · pkr

r for nonnegative integers ki

(1 ≤ i ≤ r). If d �= pk1
1 pk2

2 · · · pkr
r , then pk1

1 pk2
2 · · · pkr

r > pc1
1 pc2

2 · · · pcr
r , which implies that pks

s > pcs
s for some s

(1 ≤ s ≤ r). Then ks > cs and so pks
s � m or pks

s � n, a contradiction.

Section 12.7: Concepts Involving Sums of Divisors
12.71 Proof Let k be the maximum number of distinct positive integers whose sum is n. Since the k smallest distinct

positive integers are 1, 2, . . . , k, it follows that 1 + 2 + · · · + k ≤ n. Therefore, k is the largest integer such that
k(k + 1)/2 ≤ n and so k2 + k − 2n ≤ 0. Hence, k is the largest integer that is at most (

√
1 + 8n − 1)/2. That is,

k = ⌊
(
√

1 + 8n − 1)/2
⌋

.

EXERCISES FOR CHAPTER 13

Section 13.1: The Multiplication and Addition Principles
13.1 By the Multiplication Principle, there are 5 · 4 · 2 · 3 = 120 ways to travel from A to F by passing through B, C

and D in that order.
13.3 (a) Proof We proceed by induction. We have already seen for two finite sets A and B that |A × B| = |A| · |B|.

Assume for an integer k ≥ 2 that for any k finite sets B1, B2, . . . , Bk, we have
|B1 × B2 × · · · × Bk| = |B1| · |B2| · · · · · |Bk|. Let A1, A2, . . . , Ak+1 be k + 1 finite sets and let
A = A1 × A2 × · · · × Ak. Applying the induction hypothesis, we have

|A1 × A2 × · · · × Ak+1| = |(A1 × A2 × · · · Ak ) × Ak+1|
= |A × Ak+1| = |A| · |Ak+1|
= |A1| · |A2| · · · · · |Ak| · |Ak+1|.

The result then follows by the Principle of Mathematical Induction.
(b) m!.

13.5 Assume that A = {a1, a2, . . . , am}.
(a) For a function f : A → B, there are n choices for f (ai) for i = 1, 2, . . . , m. Thus, the total number of such

functions is n · n · · · · · n (m terms in the product) or nm.
(b) For a one-to-one function f : A → B, there are n choices for f (a1). Once the value of f (a1) has been

chosen, there are n − 1 choices for f (a2). In general, for 1 ≤ i ≤ m, there are n − i + 1 choices for f (ai).
Thus, the total number of one-to-one functions from A to B is n(n − 1)(n − 2) · · · (n − m + 1).

(c) If m > n, then |A| > |B| and there are no one-to-one functions from A to B.
13.7 Since the sets Ai j, 1 ≤ i, j ≤ 5, are pairwise disjoint, it follows by the Addition Principle that

|A| =
5∑

j=1

(
5∑

i=1

|Ai j|
)

=
5∑

j=1

(
5∑

i=1

(i + j)

)

=
5∑

j=1

(15 + 5 j) = 5 · 15 + 5
5∑

j=1

j = 5 · 15 + 5 · 15 = 150.

13.9 The proof is similar to that given in Exercise 13.3.
13.11 (a) Since there are two possible outcomes for each term of the sequence, there are 2n possible sequences.

(b) Since heads must occur in exactly one of n terms (with tails in all other terms), there are n ways in which
heads can occur exactly once.

(c) Since heads occurring exactly n − 1 times is equivalent to tails occurring exactly once, by an argument
similar to (b), it follows that there are n ways in which heads can occur exactly n − 1 times.
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(d) For heads to occur at most once, it must occur exactly once or not at all. By (b), there are n ways in which
heads can occur exactly once. There is only one way for heads not to occur. By the Addition Principle,
there are n + 1 ways in which heads can occur at most once.

Section 13.2: The Principle of Inclusion-Exclusion
13.13 (a) Let A be the set of (2n)-bit strings beginning with n 0s and let B be the set of (2n)-bit strings ending

with n 0s. There is only one (2n)-bit string beginning and ending with n 0s and so |A ∩ B| = 1. Then
|A ∪ B| = |A| + |B| − |A ∩ B| = 2n + 2n − 1 = 2 · 2n − 1 = 2n+1 − 1.

(b) These are all (2n)-bit strings except those occurring in (a). Hence, this number is 22n − (2n+1 − 1) =
22n − 2n+1 + 1 = (2n − 1)2.

13.15 Let S be the set of bijective functions from {1, 2, 3} to {1, 2, 3}. Then |S| = 3! = 6. For i = 1, 2, 3, let Si be the
set of bijective functions f : {1, 2, 3} → {1, 2, 3} for which f (i) = i. Thus, Si is the set of bijective functions
f : {1, 2, 3} → {1, 2, 3} for which f (i) �= i. Then the number of bijective functions f : {1, 2, 3} → {1, 2, 3} for
which f (i) �= i for i = 1, 2, 3 is S1 ∩ S2 ∩ S3 = S1 ∪ S2 ∪ S3 = |S| − |S1 ∪ S2 ∪ S3|. Since |Si| = 2 for
i = 1, 2, 3 and |Si ∩ Sj| = |S1 ∩ S2 ∩ S3| = 1 for i, j ∈ {1, 2, 3} and i �= j, it follows by the Principle of
Inclusion-Exclusion that |S1 ∪ S2 ∪ S3| = 3 · 2 − 3 · 1 + 1 = 4 and so |S| − |S1 ∪ S2 ∪ S3| = 2.

13.17 By the Principle of Inclusion-Exclusion,

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|
+|A1 ∩ A2 ∩ A3|

= 3 · 99100 − 3 · 98100 + 97100.

13.19 First, observe that 1030 = (2 · 5)30 = 230530. Let

A = {n ∈ Z : 1 ≤ n ≤ 1030 and n is a perfect square}
B = {n ∈ Z : 1 ≤ n ≤ 1030 and n is a perfect cube}
C = {n ∈ Z : 1 ≤ n ≤ 1030 and n is a perfect fifth power}.

Then

A ∩ B = {n ∈ Z : 1 ≤ n ≤ 1030 and n is a perfect 6th power}
A ∩ C = {n ∈ Z : 1 ≤ n ≤ 1030 and n is a perfect 10th power}
B ∩ C = {n ∈ Z : 1 ≤ n ≤ 1030 and n is a perfect 15th power}

A ∩ B ∩ C = {n ∈ Z : 1 ≤ n ≤ 1030 and n is a perfect 30th power}.
Observe that since 1030 = (

1015
)2

, it follows that A = {n2 ∈ Z : 1 ≤ n ≤ 1015}, that is, |A| = 1015. Similarly,
|B| = 1010, |C| = 106, |A ∩ B| = 105, |A ∩ C| = 103, |B ∩ C| = 102 and |A ∩ B ∩ C| = 101. Thus,

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|
+|A ∩ B ∩ C|

= 1015 + 1010 + 106 − 105 − 103 − 102 + 101

and so the number of integers n with 1 ≤ n ≤ 1030 such that n is neither a perfect square, perfect cube nor a
perfect fifth power is
1030 − (1015 + 1010 + 106 − 105 − 103 − 102 + 101) = 1030 − 1015 − 1010 − 106 + 105 + 103 + 102 − 101.

13.21 The task T1 can be performed in eight ways, T2 can be performed in four ways and T3 can be performed in four
ways. Furthermore, T1 and T2 can be performed simultaneously in one way, T1 and T3 in four ways and T2 and T3

in one way. Finally, all tasks T1, T2 and T3 can be performed simultaneously in one way. By the Principle of
Inclusion-Exclusion, the number of ways to perform P is 8 + 4 + 4 − 1 − 4 − 1 + 1 = 11.
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Section 13.3: The Pigeonhole Principle
13.23 Let N be the population of New York City. Then N > 7,000,000. By the Pigeonhole Principle, there are at least⌈

N
1,000,000

⌉
≥ 8 people in the city with the same number of hairs on their heads.

13.25 (a) Proof Let T = {n1, n2, . . . , n51} be a set of 51 integers selected from S. Then we can write ni = 2ai bi,
where ai is a nonnegative integer and bi is odd for each i (1 ≤ i ≤ 51). Since 1 ≤ bi ≤ ni for each integer i
(1 ≤ i ≤ 51), it follows that bi ∈ S for each i. Because S contains only 50 odd integers, it follows by the
Pigeonhole Principle that there are integers r and s with r �= s such that br = bs. Since ar �= as, we may
assume that ar < as. Then nr = 2ar br and ns = 2as br and so nr | ns.

(b) For every two integers in {51, 52, . . . , 100}, neither is divisible by the other.
13.27 Since there are six pairs of these cities, it follows by the Pigeonhole Principle that there is at least one pair

where the distance between these two cities is at least �103/6� = 18 miles.
13.29 Proof Let B = {b1, b2, . . . , bn}. Then m = | f −1({b1})| + | f −1({b2})| + · · · + | f −1({bn})| ≥ kn + 1. By the

Pigeonhole Principle, | f −1({bi})| ≥ �(nk + 1)/n� = k + 1 for some i (1 ≤ i ≤ n).
13.31 Proof For k = 1, 2, . . . , n, let sk = x1 + x2 + · · · + xk. By the Division Algorithm (Theorem 12.4), there

exist integers qk and rk with 0 ≤ rk ≤ n − 1 such that sk = nqk + rk. If rk = 0 for some k ∈ {1, 2, . . . , n}, then
sk = x1 + x2 + · · · + xk ≡ 0 (mod n). On the other hand, if rk �= 0 for all k ∈ {1, 2, . . . , n}, then, by the
Pigeonhole Principle, there exist integers i, j ∈ {1, 2, . . . , n} with i < j such that ri = r j. Then

s j − si = (nqj + r j ) − (nqi + ri) = n(qj − qi).

Therefore, xi+1 + xi+2 + · · · + x j ≡ 0 (mod n).
13.33 Proof Consider the first 1100 such integers R1, R2, . . . , R1100. Since there are 1099 possible remainders when

these 1100 integers are divided by 1099, it follows by the Pigeonhole Principle that there exist integers i and j
with 1 ≤ i < j ≤ 100 such that Ri and Rj have the same remainder when divided by 1099. Thus,
Rj − Ri = 1099q for some positive integer q. Now Rj − Ri = 11 · · · 10 · · · 0 where j − i digits are 1s and i
digits are 0s. Thus, Rj − Ri = 10iR j−i = 1099q. Since gcd(1099, 10i) = 1, it follows by Theorem 12.13 that
1099 | Rj−i.

13.35 (a) Proof There exist two distinct powers 7m and 7n that have the same remainder when divided by 1000,
where m > n. Then 7m ≡ 7n (mod 1000) and so 7n(7m−n − 1) ≡ 0 (mod 1000). Thus,
1000 | 7n(7m−n − 1). Since gcd(7n, 1000) = 1, it follows by Theorem 12.13 that 1000 | (7m−n − 1). Thus,
7m−n − 1 is an integer whose digits end with 000 and so 7m−n is an integer whose digits end with 001.

(b) This follows by an argument similar to that in (a).
13.37 Proof Suppose that there is no subsequence of n + 1 numbers in s that is increasing. For each k with

1 ≤ k ≤ n2 + 1, let tk denote the length of a longest increasing subsequence of s that begins with ak. Therefore,
tk ≤ n for all such k. Since t1, t2, . . . , tn2+1 are n2 + 1 positive integers between 1 and n, it follows by the
Pigeonhole Principle that at least �(n2 + 1)/n� = n + 1 of these integers are equal, say tk1 = tk2 = · · · = tkn+1 ,
where say k1 < k2 < · · · < kn+1. If aki < aki+1 for some i with 1 ≤ i ≤ n, then any increasing subsequence of
length tki+1 beginning with aki+1 will result in an increasing subsequence of length tki+1 + 1 beginning with aki ,
contradicting the fact that tki = tki+1 . Thus, ak1 > ak2 > · · · > akn+1 , resulting in a decreasing subsequence of
length n + 1.

13.39 Since the drawer contains n1 = 5 nickels, n2 = 10 dimes and n3 = 25 quarters, it follows by the Strong
Pigeonhole Principle that 1 + (n1 − 1) + (n2 − 1) + (n3 − 1) = 1 + 4 + 9 + 24 = 38 coins must be removed
from the drawer to be certain that all coins of the same denomination have been selected.

Section 13.4: Permutations and Combinations
13.41 (a) This is the number of 8-permutations of {1, 2, . . . , 12} − {7, 8}, which is P(10, 8) = 10!/(10 − 8)! =

10!/2.
(b) First, we determine the number of 8-permutations of S in which 7 and 8 appear consecutively. If 7 is the

first term (and 8 is the second term) of the permutation, then the number of such 8-permutations is
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P(10, 6) = 10!/(10 − 6)! = 10!/4! = 10!/24. There are also 10!/24 such permutations if 8 is the first term
and 7 is the second. Thus, the number of 8-permutations in which 7 and 8 are the first two terms is
2(10!/24) = 10!/12. Since there are seven pairs of consecutive terms in a sequence of length 8, the total
number of 8-permutations of S in which 7 and 8 appear consecutively (in either order) is 7(10!)/12. Since
there are P(12, 8) = 12!/4! = 12!/24 8-permutations of S, there are 12!/24 − 7(10!)/12 8-permutations of
S in which 7 and 8 do not appear consecutively in either order.

(c) There are nine possible positions for 6. Since the number of 9-permutations of S in each case is
P(11, 8) = 11!/3! = 11!/6, there are 9(11!/6) such 9-permutations of S.

13.43 Let Ai (i = 2, 3, 5) be the set of 15-letter words containing exactly i distinct vowels. We seek |A2 ∪ A3 ∪ A5|.
Since these sets are pairwise disjoint, it follows by the Addition Principle that |A2 ∪ A3 ∪ A5| = |A2| +
|A3| + |A5|. First, we compute |A2|. There are

(5
2

) = 10 possible locations for two vowels. There are 15 possible
locations for one of these vowels and 14 for the other. For each of these pairs of locations, there are 2113

possibilities for the consonants or 10 · 15 · 14 · 2113 = 2100 · 2113 such 15-letter words in total. Similarly,
|A3| = (5

3

)
P(15, 3)2112 and |A5| = (5

5

)
P(15, 5)2110. Therefore, |A2 ∪ A3 ∪ A5| = 2100 · 2113+ 27,300 ·2112+

360,360 ·2110.
13.45 (a) The number of 4-element subsets of S containing n is

(n−1
3

)
. Therefore,

(n−1
3

) = 1
5

(n
4

)
. Solving for n, we

obtain n = 20.
(b) The number of 4-element subsets of S containing 1 and 2 is

(n−2
2

)
. Therefore,

(n−2
2

) = 1
11

(n
4

)
. Solving for n,

we obtain n = 12.
13.47 Each such m-permutation of S consists of the elements of A and m − r elements of S − A. There are

(n−r
m−r

)
possibilities for each of these m − r elements. Since there are m! permutations of the m-element subset
obtained, the total number of m-permutations of S containing all elements of A is m!

(n−r
m−r

)
.

13.49 (a) This equals the number of ways that k terms of the sequence can be selected for the occurrence of heads,
which is

(n
k

)
.

(b)
(n

1

) + (n
2

) + · · · + (n
k

)
.

(c)
( n

k+1

) + ( n
k+2

) + · · · + (n
n

)
.

13.51 Proof Using Results 6.4 and 6.5, observe that
(

2
2

)
+

(
4
2

)
+

(
6
2

)
+ · · · +

(
2n
2

)
=

n∑
k=1

(
2k
2

)
=

n∑
k=1

(2k2 − k) = 2
n∑

k=1

k2 −
n∑

k=1

k

= 2
(

n(n + 1)(2n + 1)
6

)
− n(n + 1)

2

= 2n(n + 1)(2n + 1) − 3n(n + 1)
6

= n(n + 1)(4n − 1)
6

.

13.53 A 10-permutation of A ∪ B ∪ C containing exactly eight elements of A has two elements from B ∪ C. There are
C(10, 8)C(14, 2) such sets and 10! permutations of each such set, resulting in a total of 10!C(10, 8)C(14, 2)
10-permutations that contain exactly eight elements of A.

13.55 (a) Proof We determine the number of ways to choose two disjoint r-element subsets in an (n + r)-element
set A. One way to obtain two such subsets is to begin with an r-element subset B of A followed by selecting
an r-element subset C of A − B. The number of ways of doing this is

(n+r
r

)(n
r

)
. Equivalently, we could select

a 2r-element subset D of A, followed by selecting an r-element subset E of D. The number of ways of
doing this is

(n+r
2r

)(2r
r

) = (n+r
n−r

)(2r
r

)
.

(b) Proof We determine the number of ways to choose two disjoint subsets, one with r elements and the
other with k elements in an n-element set A. One way to do this is to select a (k + r)-element subset B of A
and then select an r-element subset C of B. The number of ways of doing this is

( n
k+r

)(k+r
r

)
. Equivalently, we

could select an r-element subset D of A followed by selecting a k-element subset E of A − D. The number
of ways of doing this is

(n
r

)(n−r
k

)
.
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Section 13.5: The Pascal Triangle
13.57 (a)

(2
2

) + (3
2

) = 22,
(3

2

) + (4
2

) = 32 and
(4

2

) + (5
2

) = 42.
(b) Observe that

(n
2

) + (n+1
2

) = n(n−1)
2 + (n+1)n

2 = n2.
(c) Let S = {1, 2, · · · , 2n + 1}. Suppose we wish to determine the number of 2-element subsets of S that consist

of two integers of the same parity. The number of 2-element subsets of S consisting of two even integers is(n
2

)
, while the number of 2-element subsets of S consisting of two odd integers is

(n+1
2

)
. Since the the

number of 2-element subsets of opposite parity is n(n + 1), it follows that
(n

2

) + (n+1
2

) = (2n+1
2

) − n(n + 1).
13.59 Proof Since k(k − 1)(k − 2) = 3!

(k
3

)
, it follows that

n∑
k=3

k(k − 1)(k − 2) =
n∑

k=3

3!
(

k
3

)
= 3!

(
n + 1

4

)

by the Hockey Stick Theorem.
13.61 (a) a = b = 6 and c = 1.

(b) Observe that
n∑

k=1

k3 =
n∑

k=1

[
6
(

k
3

)
+ 6

(
k
2

)
+

(
k
1

)]

=
n∑

k=3

6
(

k
3

)
+

n∑
k=2

6
(

k
2

)
+

n∑
k=1

(
k
1

)
.

By the Hockey Stick Theorem, we have

n∑
k=1

k3 = 6
(

n + 1
4

)
+ 6

(
n + 1

3

)
+

(
n + 1

2

)
= n2(n + 1)2

4
.

(c) Since
(n+1

4

) + (n+1
3

) = (n+2
4

)
, it follows by (b) that

6
(

n + 2
4

)
= 6

(
n + 1

4

)
+ 6

(
n + 1

3

)
= n2(n + 1)2

4
−

(
n + 1

2

)

=
(

n + 1
2

)2

−
(

n + 1
2

)
.

Section 13.6: The Binomial Theorem
13.63 (a) (3x)4 + 4(3x)3(−5y) + (4

2

)
(3x)2(−5y)2 + 4(3x)(−5y)3 + (−5y)4 = 81x4 − 540x3y + 1350x2y2 −

1500xy3 + 625y4.
(b)

(6
4

)
25 − (6

3

)
23 + (6

2

)
22 = 480 − 160 + 60 = 380.

(c) 5 · 24 · 38 · 5 + 8 · 27 · 37 = 24 · 37(75 + 64) = 24 · 37 · 139.
(d)

(8
6

)
46 = 28 · 46 = 214 · 7.

13.65 By the Binomial Theorem, (1 + r)n = ∑n
k=0

(n
k

)
rk.

13.67 Note that

(1.1)4 = (1 + .1)4 = 14 + 4(13)(.1) + 6(12)(.1)2 + 4(1)(.1)3 + (.1)4

= 1 + .4 + .06 + .004 + .0001 = 1.4641.

13.69 (a) Proof Differentiating (1 + x)n = ∑n
k=0

(n
k

)
xk, we obtain

n(1 + x)n−1 =
n∑

k=1

k
(

n
k

)
xk−1. (1.1)

Substituting x = 1 in the expression in (1.1) produces n2n−1 = ∑n
k=1 k

(n
k

)
.



P1: HFA

Z01_CHART6753_04_SE_ANS PH03348-Chartrand August 16, 2017 21:46 Char Count= 0

474 Answers to Odd-Numbered Section Exercises

(b) Proof Substituting x = −1 in the expression in (1.1) produces∑n
k=1(−1)k−1k

(n
k

) = 0.
(c) Proof From part (b),

∑n
k=1(−1)k−1k

(n
k

) = 0. Therefore,
(

n
1

)
− 2

(
n
2

)
+ 3

(
n
3

)
− 4

(
n
4

)
+ · · · + (−1)n−1n

(
n
n

)
= 0

and so
(n

1

) + 3
(n

3

) + · · · = 2
(n

2

) + 4
(n

4

) + · · ·.
(d) From part (a),

n∑
k=0

(2k + 1)
(

n
k

)
= 2

n∑
k=1

k
(

n
k

)
+

n∑
k=0

(
n
k

)

= 2(n2n−1) + 2n = (n + 1)2n.

13.71 Proof By the Binomial Theorem,

(a + b)p =
p∑

k=0

(
p
k

)
ap−kbk.

By Exercise 13.70, it follows that p | (p
k

)
for every integer k with 1 ≤ k ≤ p − 1 and so

(p
k

) ≡ 0(mod p).
Therefore, (a + b)p ≡ ap + bp (mod p).

13.73 (a) Letting r = m = n in (13.8), we have
∑n

k=0

(n
k

)( n
n−k

) = (2n
n

)
.

(b) Proof Since
(n

k

) = ( n
n−k

)
for every integer k (0 ≤ k ≤ n), it follows that∑n

k=0

(n
k

)( n
n−k

) = ∑n
k=0

(n
k

)2 = (2n
n

)
.

(c) Proof First, recall that
(a

b

) = 0 for integers a and b with 0 ≤ a < b. Letting m = 1 in (13.7), we have(n+1
r

) = ∑r
k=0

(1
k

)( n
r−k

) = (n
r

) + ( n
r−1

)
.

13.75 Proof Suppose first that a + b = n and so b = n − a. By Theorem 13.22,
(n

a

) = ( n
n−a

) = (n
b

)
. For the converse,

assume that
(n

a

) = (n
b

)
where a < b. We consider two cases.

Case 1. n is odd and so n = 2r + 1 for some integer r. By Exercise 13.74(d),(n
0

)
<

(n
1

)
< · · · <

(n
r

) = ( n
r+1

)
> · · · >

(n
n

)
.

Since a < b and
(n

a

) = (n
b

)
, it follows that 0 ≤ a ≤ r and b ≥ r + 1. Hence, n − b ≤ r, which implies that(n

a

) = ( n
n−b

)
and so a = n − b or a + b = n.

Case 2. n is even and so n = 2s for some integer s. The proof is similar to that in Case 1.

Section 13.7: Permutations and Combinations with Repetition
13.77 (a) 13!

3! 3! 2! 2! . (b) 10!
3! 2! 2! .

(c) 2 · 12!
3! 2! 2! 2! + 2 · 12!

3! 3! 2! + 3 · 12!
3! 3! 2! 2! = 13!

3! 3! 2! 2! .

13.79 1 + 6!
5! + 7!

5! 2! + 8!
5! 3! = 1 + 6 + 21 + 56 = 84.

13.81 Using the symbol � to represent 1, we determine the number of ways to distribute s = m symbols � and n − 1
vertical separator lines | for the n variables x1, x, . . . , xn. Each such sequence of symbols � and separator lines |
represents a solution of this equation. By Theorem 13.40, the number of ways to do this is

(m+n−1
m

)
.

13.83 The number of ways to place three gold coins in the boxes is
(3+4−1

3

) = (6
3

) = 20, while the number of ways to

place ten silver coins in the boxes is
(10+4−1

10

) = (13
10

) = 286. By the Multiplication Principle, the number of ways

to make both placements is (20)(286) = 5720.
13.85 (a) (x + y + z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz.

(b) (x + y + z)3 = x3 + y3 + z3 + 3x2y + 3x2z + 3y2z + 3xy2 + 3xz2 + 3yz2 + 6xyz.
13.87 (a) The number |S| of elements in S is the number of triples (i, j, k) of nonnegative integers such that

i + j + k = n. Applying Theorem 13.40 with s = n and t = 3, we see that

|S| = (s+t−1
s

) = (n+2
n

) = (n+2
2

) = (n+2)(n+1)
2 .
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(b) Since (x + y + z)n is the product of n trinomials, each of which is x + y + z, the term involving xiy jzk is
obtained by selecting x in i of the n trinomials, y in j of the remaining n − i trinomials and z in k of the
remaining n − i − j trinomials. Thus, the number of ways of doing this is

(
n
i

)(
n − i

j

)(
n − i − j

k

)
= n!

i!(n − i)!
· (n − i)!

j!(n − i − j)!
· (n − i − j)!

k! 0!

= n!
i! j! k!

.

[Notice that this is the number of permutations of n objects, i of which are x, j of which are y and k of
which are z. By Theorem 13.36, this number is n!

i! j! k! .]
(c) The number of terms in the expansion of (x + y + z)n is the number of distinct expressions of the type

xiy jzk with i + j + k = n. This is |S|, which is
(n+2

n

)
.

(d) (x + y + z)n = ∑
(i, j,k)∈S

n!
i! j! k! xiy jzk.

(e) Letting x = y = z = 1, we have
∑

(i, j,k)∈S
n!

i! j! k! = 3n.

13.89 The number of integer solutions of this equation satisfying the given conditions equals the number of
nonnegative integer solutions of the equation x1 + x2 + · · · + xn = m − (n+1

2

)
, which is(m−(n+1

2 )+n−1
n−1

) = (m−(n
2)−1

n−1

)
.

13.91 (a) 1, 3; 1, 4; 1, 5; 1, 6; 2, 4; 2, 5; 2, 6; 3, 5; 3, 6; 4, 6 (ten pairs in all).
(b) Once six integers have been selected to remove from this sequence, a new sequence of eight integers with
six gaps is produced. There are nine possible locations for these six gaps, namely between two of the remaining
eight integers or at each end of this new sequence. Since selecting six integers from the original sequence is
equivalent to choosing six of the nine locations for gaps, this can be done in

(9
6

) = 84 ways.

EXERCISES FOR CHAPTER 14

Section 14.1: Limits of Sequences
14.1 Since cos nπ = −1 when n is odd and cos nπ = 1 when n is even, the terms of the sequence {(−1)n} are

exactly the same as {cos nπ}.
14.3 Proof Let ε > 0 be given. Choose N = � 1

2ε
� and let n > N. Thus, n > 1

2ε
and so

∣∣ 1
2n − 0

∣∣ = 1
2n < ε.

14.5 Proof Let ε > 0 be given. Choose N = max
(
1, �log2

(
1
ε

)�) and let n > N. Thus, n > log2

(
1
ε

)
and so

2n > 1/ε and 1/2n < ε. Therefore,
∣∣(1 + 1

2n

) − 1
∣∣ = 1

2n < ε.
14.7 There exists a real number ε > 0 such that for each positive integer N, there exists an integer n > N such that

|an − L| ≥ ε.
For each real number L, there exists ε > 0 such that for each positive integer N, there exists n > N such that
|an − L| ≥ ε.
Let P(L, ε, n) : |an − L| ≥ ε.
∃ε ∈ R+, ∀N ∈ N, ∃n ∈ N, n > N, P(L, ε, n).

14.9 Proof Let M be a positive number. Choose N =
⌈

3
√

M
⌉

and let n be any integer such that n > N. Hence,

n >
3
√

M and so n3 > M. Thus,
n5 + 2n

n2
= n3 + 2

n
> n3 > M.

14.11 Proof Let ε > 0 be given. Since limn→∞ sn = L, there is a positive integer N such that |sn − L| < ε for each
integer n > N. Since n2 ≥ n for each n ∈ N, it follows that |sn2 − L| < ε for all n2 > N.

Section 14.2: Infinite Series
14.13 Let sn = ∑n

i=1
1
2i for each integer n ≥ 1.

(a) s1 = 1
2 , s2 = 1

2 + 1
22 = 1

2 + 1
4 = 3

4 , s3 = 1
2 + 1

22 + 1
23 = 1

2 + 1
4 + 1

8 = 7
8 .

Conjecture sn = 1 − 1
2n for all n ∈ N.
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(b) Proof We proceed by induction. Since s1 = 1
2 = 1 − 1

21 , the formula sn holds for n = 1. Thus, the
statement is true for n = 1. Assume that sk = 1 − 1

2k for a positive integer k. We show that sk+1 = 1 − 1
2k+1 .

Observe that
k+1∑
i=1

1
2i

=
(

k∑
i=1

1
2i

)
+ 1

2k+1
= 1 − 1

2k
+ 1

2k+1

= 1 −
(

1
2k

− 1
2k+1

)
= 1 − 2 − 1

2k+1
= 1 − 1

2k+1
.

By the Principle of Mathematical Induction, sn = 1 − 1
2n for all n ∈ N.

(c) The proof that limn→∞(1 − 1
2n ) = 1 is similar to the one in Exercise 14.5.

14.15 Proof Let M be a positive integer. By Result 14.12, there exists a positive integer N such that if n > N, then
1 + 1

2 + 1
3 + · · · + 1

n > M. Since n2 + 3n ≥ n2 + 2n + 1 for every positive integer n, it follows that n+3
(n+1)2 ≥ 1

n .
Hence,

4
22

+ 5
32

+ · · · + n + 3
(n + 1)2

≥ 1 + 1
2

+ 1
3

+ · · · + 1
n

> M

and so
∑∞

k=1
k+3

(k+1)2 diverges to infinity.

14.17 (a) Since sn = 3n
4n+2 , it follows that sn−1 = 3n−3

4n−2 and so

an = sn − sn−1 = 3n
4n + 2

− 3n − 3
4n − 2

= 6
16n2 − 4

= 3
8n2 − 2

.

Therefore, the series is
∑∞

k=1
3

8k2−2
.

(b) The sum s of the series is s = limn→∞ 3n
4n+2 . We claim that limn→∞ 3n

4n+2 = 3
4 .

Proof Let ε > 0 be given. Let N = max{1, � 3
8ε

− 1
2 �} and let n > N. Then n > 3

8ε
− 1

2 and so 3
8n+4 < ε.

Thus, ∣∣∣∣ 3n
4n + 2

− 3
4

∣∣∣∣ =
∣∣∣∣ −6
16n + 8

∣∣∣∣ = 3
8n + 4

< ε,

completing the proof.

Section 14.3: Limits of Functions
14.19 Proof Let ε > 0 be given. Choose δ = ε/3. Let x ∈ R such that 0 < |x + 1| < δ = ε/3. Then

|(3x − 5) − (−8)| = |3x + 3| = 3|x + 1| < 3δ = 3(ε/3) = ε,

as desired.
14.21 Proof Let ε > 0 be given and choose δ = min(1, ε/19). Let x ∈ R such that 0 < |x − 2| < δ = min(1, ε/19).

Since |x − 2| < 1, it follows that −1 < x − 2 < 1 and so 1 < x < 3. Thus, |x2 + 2x + 4| < 19. Because
|x − 2| < ε/19, it follows that |x3 − 8| = |x − 2||x2 + 2x + 4| < |x − 2| · 19 < (ε/19) · 19 = ε.

14.23 Proof Let ε > 0 be given. Choose δ = min(1, 33ε). Let x ∈ R such that 0 < |x − 3| < δ. Since
|x − 3| < δ ≤ 1, it follows that 2 < x < 4. Thus, 11 < 4x + 3 < 19 and so |4x + 3| > 11. Hence, 1

|4x+3| < 1
11 .

Therefore, ∣∣∣∣3x + 1
4x + 3

− 2
3

∣∣∣∣ =
∣∣∣∣ x − 3
12x + 9

∣∣∣∣ = |x − 3|
3|4x + 3| <

|x − 3|
3 · 11

<
δ

33
≤ 1

33
(33ε) = ε,

as desired.

14.25 Proof Assume, to the contrary, that lim
x→0

1
x2

exists. Then there exists a real number L such that lim
x→0

1
x2

= L.

Let ε = 1. There exists δ > 0 such that if 0 < |x| < δ, then

∣∣∣∣ 1
x2

− L

∣∣∣∣ < ε = 1. Let n be an integer such that
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n >
⌈

1/δ2
⌉

. So, n > 1/δ2 and
√

n > 1/δ. Let x = 1/
√

n < δ. Then∣∣∣∣ 1
x2

− L

∣∣∣∣ = |n − L| = |L − n| < 1

and so −1 < L − n < 1. Thus, n − 1 < L < n + 1. Now, let y = 1√
n + 2

< x < δ. Then

∣∣∣∣ 1
y2

− L

∣∣∣∣ = |L − (n + 2)| < 1.

Hence, n + 1 < L < n + 3. Therefore, n + 1 < L < n + 1, which is a contradiction.
14.27 (a) Proof Let ε > 0 be given. Since g is bounded, there exists a positive real number B such that |g(x)| < B

for each x ∈ R. Then ε/B > 0. Since limx→a f (x) = 0, there exists δ > 0 such that if 0 < |x − a| < δ, then
| f (x) − 0| < ε

B and so | f (x)| < ε/B. Therefore, | f (x)g(x) − 0| = | f (x)||g(x)| < ε

B · B = ε.
(b) Since limx→0 x2 = 0 and | sin

(
1
x2

) | ≤ 1 for all x ∈ R − {0}, it follows from (a) that

lim
x→0

x2 sin
(

1
x2

)
= 0.

14.29 (a) Proof Let ε > 0 be given. Since limx→0 f (x) = L, there exists δ > 0 such that if 0 < |x − 0| < δ, then
| f (x) − L| < ε. Let y = x − c. Because limy→0 f (y) = L, given ε > 0, there exists δ > 0 such that if
0 < |y − 0| < δ, then | f (y) − L| < ε. Thus, if 0 < |x − c| < δ, then | f (x − c) − L| < ε. Therefore,
limx→c f (x − c) = L.

(b) Proof By assumption, f (x) = f (x − c + c) = f (x − c) + f (c). Since limx→0 f (x) = L, it follows by (a)
that limx−c→0 f (x − c) = limx→c f (x − c) = L. Thus,

lim
x→c

f (x) = lim
x→c

[ f (x − c) + f (c)] = lim
x→c

f (x − c) + lim
x→c

f (c) = L + f (c)

and so limx→c f (x) exists for each x ∈ R.

Section 14.4: Fundamental Properties of Limits of Functions
14.31 (a) limx→1(x3 − 2x2 − 5x + 8) = 13 − 2(1)2 − 5 · 1 + 8 = 2.

(b) limx→1(4x + 7)(3x2 − 2) = (4 · 1 + 7)(3 · (1)2 − 2) = 11 · 1 = 11.
(c) limx→2

2x2−1
3x3+1

= 2·22−1
3·23+1

= 7
25 .

14.33 Proof First, by Theorem 14.28, limx→a c0 = c0. For 1 ≤ k ≤ n, it follows by Theorems 14.25, 14.28 and
14.30 that limx→a (ckxk ) = (limx→a ck )(limx→a xk ) = ckak. By Exercise 14.32,
limx→a(cnxn + cn−1xn−1 + · · · + c1x + c0) = cnan + cn−1an−1 + · · · + c1a + c0 = p(a).

Section 14.5: Continuity
14.35 Observe that f is not defined at x = 2 and

lim
x→2

x2 − 4
x3 − 2x2

= 1.

(Use an argument similar to that in Result 14.15.) Thus, if we define f (2) = 1, then limx→2 f (x) = 1 = f (2)
and so f is continuous at 2.

14.37 Proof Let a be a real number that is not an integer. Then n < a < n + 1 for some n ∈ Z and
f (a) = �a� = n + 1. We show that lim

x→a
f (x) = f (a) = n + 1. Let ε > 0 be given and choose

δ = min(a − n, (n + 1) − a).

Let x ∈ R such that 0 < |x − a| < δ. Thus, n ≤ a − δ < x < a + δ ≤ n + 1 and so f (x) = �x� = n + 1.

Therefore,

| f (x) − f (a)| = |(n + 1) − (n + 1)| = 0 < ε,

completing the proof.
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14.39 We show that limx→10

√
x − 1 = f (10) = 3. Proof Let ε > 0 be given and choose δ = min(1, 5ε). Let x ∈ R

such that 0 < |x − 10| < δ. Since |x − 10| < 1, it follows that 9 < x < 11 and so
√

x − 1 + 3 > 5. Therefore,
1/(

√
x − 1 + 3) < 1/5. Hence,

|√x − 1 − 3| =
∣∣∣∣∣
(
√

x − 1 − 3)(
√

x − 1 + 3)√
x − 1 + 3

∣∣∣∣∣ = |x − 10|√
x − 1 + 3

<
1
5

(5ε) = ε,

completing the proof.

Section 14.6: Differentiability
14.41 f ′(3) = 6. Proof Let ε > 0 be given and choose δ = ε. Let x ∈ R such that 0 < |x − 3| < δ = ε. Then∣∣∣∣ f (x) − f (3)

x − 3
− 6

∣∣∣∣ =
∣∣∣∣ x2 − 9

x − 3
− 6

∣∣∣∣ =
∣∣∣∣ (x − 3)(x + 3)

x − 3
− 6

∣∣∣∣
= |(x + 3) − 6| = |x − 3| < ε.

Thus, f ′(3) = 6.
14.43 Claim: f ′(a) = 3a2. Proof Let ε > 0 be given and choose δ = min

{
ε

1+3a , 1
}
. Let x ∈ R such that

0 < |x − a| < δ. Then

|x + 2a| = |(x − a) + 3a| ≤ |x − a| + 3|a| < 1 + 3a.

Observe that ∣∣∣∣ f (x) − f (a)
x − a

− 3a2

∣∣∣∣ =
∣∣∣∣ (x − a)(x2 + ax + a2)

x − a
− 3a2

∣∣∣∣ = |x2 + ax + a2 − 3a2|

= |x2 + ax − 2a2| = |x − a||x + 2a| < δ(1 + 3a)

≤
(

ε

1 + 3a

)
(1 + 3a) = ε.

Thus, f ′(a) = 3a2.

EXERCISES FOR CHAPTER 15

Section 15.1: Binary Operations
15.1 (a) x ∗ (y ∗ z) = x ∗ x = y and (x ∗ y) ∗ z = z ∗ z = y. So, x ∗ (y ∗ z) = (x ∗ y) ∗ z.

(b) x ∗ (x ∗ x) = x ∗ y = z and (x ∗ x) ∗ x = y ∗ x = y.
(c) y ∗ (y ∗ y) = y ∗ x = y and (y ∗ y) ∗ y = x ∗ y = z.
(d) The binary operation ∗ is neither associative nor commutative.

15.3 (a) Let A1, A2 ∈ T . Then A1 =
[

a1 −b1

b1 a1

]
and A2 =

[
a2 −b2

b2 a2

]
for some a1, b1, a2, b2 ∈ R. Then

A1 + A2 =
[

a1 + a2 −(b1 + b2)
b1 + b2 a1 + a2

]
. Since A1 + A2 ∈ T , it follows that T is closed under matrix addition.

(b) Since A1A2 =
[

a1 −b1

b1 a1

] [
a2 −b2

b2 a2

]
=

[
a1a2 − b1b2 −(a1b2 + b1a2)
a1b2 + b1a2 a1a2 − b1b2

]
∈ T , it follows that T is closed

under matrix multiplication.
15.5 Proof Let a, b ∈ T . Thus, a ∗ a = a and b ∗ b = b. Hence,

(a ∗ b) ∗ (a ∗ b) = (a ∗ b) ∗ (b ∗ a) = a ∗ (b ∗ (b ∗ a)) = a ∗ ((b ∗ b) ∗ a)

= a ∗ (b ∗ a) = a ∗ (a ∗ b) = (a ∗ a) ∗ b = a ∗ b,

as desired.



P1: HFA

Z01_CHART6753_04_SE_ANS PH03348-Chartrand August 16, 2017 21:46 Char Count= 0

Exercises for Chapter 15 479

15.7 All four properties G1 – G4 are satisfied. In this case, [−1] = [n − 1] is an identity element and [−a − 2] is an
inverse for [a].

Section 15.2: Groups

15.9 See the table.

∗ a b c d
a d c b a
b c d a b
c b a d c
d a b c d

15.11 (a) First, observe that [1][b] = [b] for each [b] ∈ Z∗
6 and that [5][−b] = [b] for each [b] ∈ Z∗

6. There is no
[x] ∈ Z∗

6 such that [2][x] = [1] or that [3][x] = [1] or that [4][x] = [1].
(b) Because of Theorem 15.5, the answer to (a) is not surprising.

15.13 Proof First, we show that if g is any element of G such that g ∗ g = g, then g = e. Suppose then that
g ∗ g = g. By (ii), there exists g′ ∈ G such that g ∗ g′ = e. Thus,

e = g ∗ g′ = (g ∗ g) ∗ g′ = g ∗ (g ∗ g′) = g ∗ e = g

by (i). We now show that g′ ∗ g = e. Since

(g′ ∗ g) ∗ (g′ ∗ g) = ((g′ ∗ g) ∗ g′) ∗ g = (g′ ∗ (g ∗ g′)) ∗ g

= (g′ ∗ e) ∗ g = g′ ∗ g,

it follows that g′ ∗ g = e.
Next, we show that e ∗ g = g for every g ∈ G. Let g ∈ G. Then, as we just showed, there is g′ ∈ G such that

g′ ∗ g = e. Thus, e ∗ g = (g ∗ g′) ∗ g = g ∗ (g′ ∗ g) = g ∗ e = g by (i).

Section 15.3: Permutation Groups
15.15 Let a, b, c ∈ A. Let α, β ∈ SA such that α(a) = b, α(b) = a and α(x) = x for x �= a, b; while β(b) = c,

β(c) = b and β(x) = x for x �= b, c. Then (α ◦ β )(b) = α(β(b)) = α(c) = c; while
(β ◦ α)(b) = β(α(b)) = β(a) = a. Thus, α ◦ β �= β ◦ α.

15.17 x2 = α1 for all x ∈ {α1, α2, α3, α4}, x3 = α1 for all x ∈ {α1, α5, α6}.
15.19 Consider the operation table shown below. Thus, ◦ is a binary operation on G. Since composition of

permutations on A is associative, property G1 is satisfied. In addition, β1 is an identity and the elements
β1, β2, β3, β4, β5, β6 are inverses of β1, β3, β2, β4, β6, β5, respectively. Therefore, properties G2 and G3 are
satisfied and so (G, ◦) is a group.

◦ β1 β2 β3 β4 β5 β6

β1 β1 β2 β3 β4 β5 β6

β2 β2 β3 β1 β5 β6 β4

β3 β3 β1 β2 β6 β4 β5

β4 β4 β5 β6 β1 β2 β3

β5 β5 β6 β4 β2 β3 β1

β6 β6 β4 β5 β3 β1 β2

Section 15.4: Fundamental Properties of Groups
15.21 Proof Assume that b ∗ a = c ∗ a. Let s be an inverse for a. Then (b ∗ a) ∗ s = (c ∗ a) ∗ s. Thus,

b = b ∗ e = b ∗ (a ∗ s) = (b ∗ a) ∗ s = (c ∗ a) ∗ s = c ∗ (a ∗ s) = c ∗ e = c

and so b = c.
15.23 (a) x = a−1 ∗ c ∗ b−1. (If x1 and x2 are two solutions, then a ∗ x1 ∗ b = a ∗ x2 ∗ b = c. An application of the

Left and Right Cancellation Laws yields x1 = x2.)
(b) x = b−1 ∗ a−1 ∗ c. (Verifying the uniqueness is similar to (a).)
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15.25 Proof Assume that G is abelian. Let a, b ∈ G. By Theorem 15.11, (ab)−1 = b−1a−1. Since G is abelian,
b−1a−1 = a−1b−1. For the converse, assume that G is a group such that (ab)−1 = a−1b−1 for every pair a, b
of elements of G. We show that G is abelian. Let x, y ∈ G. Then (xy)−1 = x−1y−1. Since x−1y−1 = (yx)−1,
it follows that (xy)−1 = (yx)−1. Since every element of a group has a unique inverse, xy = yx. Thus, G is
abelian.

15.27 Claim: e′ is the identity of G. Proof Since e′b = b and eb = b, it follows that e′b = eb. Applying the Right
Cancellation Law in Theorem 15.7, we have e′ = e.

15.29 Proof Since G has even order, G − {e} has an odd number of elements. Consider those elements g ∈ G for
which g �= g−1 and let Sg = {g, g−1}. Hence, Sg = Sg−1 . If we take the union of all such sets Sg for which
g �= g−1, then ∪Sg ⊂ G − {e}. Hence, there exists an element h ∈ G − {e} such that h /∈ ∪Sg and so h = h−1.
Thus, h2 = e.

Section 15.5: Subgroups
15.31 Proof Let a, b ∈ nZ. Then a = nk and b = n� for k, � ∈ Z. Since a + b = nk + n� = n(k + �) and

k + � ∈ Z, it follows that a + b ∈ nZ. The identity of nZ is 0 = 0n. For a = nk, the integer −a = (−k)n is the
inverse of a since a + (−a) = kn + (−k)n = 0. Since −k ∈ Z, −a ∈ nZ. By the Subgroup Test, (nZ,+) is a
subgroup of (Z,+).

15.33 (a) The statement is true. Proof Since H and K are subgroups of G, it follows that e ∈ H and e ∈ K. So,
e ∈ H ∩ K and H ∩ K �= ∅. Let a, b ∈ H ∩ K. Then a, b ∈ H and a, b ∈ K. Since H and K are subgroups of
G, it follows that ab ∈ H and ab ∈ K. So, ab ∈ H ∩ K. Let a ∈ H ∩ K. It remains to show that
a−1 ∈ H ∩ K. Since a ∈ H, a ∈ K, and H and K are subgroups of G, it follows that a−1 ∈ H and a−1 ∈ K.
So, a−1 ∈ H ∩ K. By the Subgroup Test, H ∩ K is a subgroup of G.

(b) The statement is false. For example, H = {[0], [3]} and K = {[0], [2], [4]} are subgroups of (Z6, +), but
H ∪ K is not a subgroup of (Z6, +).

15.35 Proof Since
√

3 ∈ H, it follows that H �= ∅. First, we show that H is closed under multiplication. Let
r = a + b

√
3 and s = c + d

√
3 be elements of H, where at least one of a and b is nonzero and at least one of c

and d is nonzero. Therefore, r �= 0 and s �= 0. Hence, rs �= 0 and

rs = (ac + 3bd) + (ad + bc)
√

3.

Thus, at least one of ac + 3bd and ad + bc is nonzero. Since ac + 3bd, ad + bc ∈ Q, it follows that rs ∈ H,
and so H is closed under multiplication.

Next, we show that every element of H has an inverse in H. Let r = a + b
√

3 ∈ H, where at least one of a
and b is nonzero. Then

1
r

= 1

a + b
√

3
= 1

a + b
√

3
· a − b

√
3

a − b
√

3

= − a
3b2 − a2

+ b
3b2 − a2

√
3.

Observe that 3b2 − a2 �= 0; for if 3b2 − a2 = 0, then a/b = ±√
3, which is impossible since a/b ∈ Q and

√
3 is

irrational. Hence, 1/r ∈ H.
By the Subgroup Test, H is a subgroup.

15.37 Proof Let A1, A2 ∈ H. Then each of det(A1) and det(A2) is 1 or −1. Since the determinant of A1A2 is the
product of the determinants of A1 and A2, it follows that det(A1A2) is 1 or −1. Thus, A1A2 ∈ H. Next, let A ∈ H.
So, det(A) is 1 or −1. Since det(A) �= 0, it follows that A−1 exists. We show that A−1 ∈ H. Since AA−1 = I (the
identity in M∗

2 (R)) and det(I) = 1, it follows that det(A−1) det(A) = 1. Because det(A) is 1 or −1, so is
det(A−1). Thus, A−1 ∈ H. By the Subgroup Test, (H, ·) is a subgroup of (M∗

2 (R), ·).
15.39 Proof For the identity e of G, it follows that e2 = e ∈ H and so H �= ∅. Let a, b ∈ H. Then a2 = b2 = e.

Then (ab)2 = a2b2 = e · e = e and so ab ∈ H. Therefore, H is closed under multiplication. Let a ∈ H. Then
a2 = e. Thus,

(
a2

)−1 = e. However,
(
a2

)−1 = (
a−1

)2 = e and so a−1 ∈ H. By the Subgroup Test, H is a
subgroup of G.
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15.41 The statement is false. Since 22 � 372, no group of order 372 contains a subgroup of order 22.
15.43 (a) Proof Since H is closed under ∗, it suffices to show g−1 ∈ H for each g ∈ H. Let H = {g1, g2, . . . , gk}

and let g ∈ H. We claim that g ∗ g1, g ∗ g2, . . . , g ∗ gk are k distinct elements in H. Suppose this is not the
case. Then g ∗ gs = g ∗ gt for distinct elements gs, gt ∈ H. By the Left Cancellation Law, gs = gt , which is
impossible. Thus, as claimed, g ∗ g1, g ∗ g2, . . . , g ∗ gk are k distinct elements in H and so

H = {g ∗ g1, g ∗ g2, . . . , g ∗ gk}.
Since g ∈ H, it follows that g = g ∗ gi for some integer i with 1 ≤ i ≤ k. Hence, g = g ∗ gi = g ∗ e for the
identity e of G. By the Left Cancellation Law, gi = e and so e ∈ H. Therefore, g ∗ gj = e for some integer j
with 1 ≤ j ≤ k and so gj = g−1, implying that g−1 ∈ H. By the Subgroup Test, H is a subgroup of G.

(b) The set N is a subset of the infinite group (Z,+). Note that N is closed under +, but N is not a subgroup of
(Z,+) by Exercise 15.32(a).

15.45 Since there are six distinct left cosets of H in G, one of which is H and every two left cosets have the same
number of elements, it follows that the order of H is 48/6 = 8.

15.47 The statement is false. Suppose that g2 ∈ gH. Then g2 = gh for some h ∈ H. Thus, g = h, contradicting the fact
that gH �= H.

Section 15.6: Isomorphic Groups
15.49 (a) Since 1 is not the image of any integer under φ, the function φ is not onto and so φ is not an isomorphism.

(b) Since φ(0) = 1, the image of the identity 0 in (Z,+) is not the identity in (Z,+). By Theorem 15.18(a), φ

is not an isomorphism.
(c) The function φ is an isomorphism.

Proof First, we show that φ is one-to-one. Suppose that φ(a) = φ(b), where a, b ∈ R. Then 2a = 2b.
Thus, a = log2 2a = log2 2b = b and so φ is one-to-one. Next, we show that φ is onto. Let r ∈ R+. Then
log2 r ∈ R. Hence, φ(log2 r) = 2log2 r = r and so φ is onto. Finally, we show that φ is operation-preserving.
For a, b ∈ R,

φ(a + b) = 2a+b = 2a · 2b = φ(a) · φ(b).

Therefore, φ is an isomorphism.

(d) Let A =
[

1 0
0 1

]
and B =

[
2 0

0 1
2

]
. Then φ(A) = φ(B) = 1, but A �= B. Thus, φ is not one-to-one and so φ is

not an isomorphism.
15.51 Proof Assume that φ : G → H is an isomorphism. Since φ is a bijection, φ−1 is a bijection by

Theorem 10.15. It remains to show that φ−1 is operation-preserving. Let h1, h2 ∈ H. Then there exist g1, g2 ∈ G
such that φ(g1) = h1 and φ(g2) = h2. Thus, φ−1(h1) = g1 and φ−1(h2) = g2. Furthermore,

φ(g1 ∗ g2) = φ(g1) ◦ φ(g2) = h1 ◦ h2. Hence, φ−1(h1 ◦ h2) = g1 ∗ g2 = φ−1(h1) ∗ φ−1(h2). Thus, φ−1 is
operation-preserving and so φ−1 is an isomorphism.

15.53 (a) Proof Let a, b ∈ G. Since a ◦ b = b ∗ a ∈ G, it follows that ◦ is a binary operation on G. Let a, b, c ∈ G.
Then (a ◦ b) ◦ c = c ∗ (a ◦ b) = c ∗ (b ∗ a) = (c ∗ b) ∗ a = (b ◦ c) ∗ a = a ◦ (b ◦ c). Thus, ◦ is an
associative operation. Let e be the identity of (G, ∗). Then

a ◦ e = e ∗ a = a = a ∗ e = e ◦ a

and so e is the identity of (G, ◦). Let g ∈ (G, ◦) and let g−1 be the inverse of g in (G, ∗). Then

g ◦ g−1 = g−1 ∗ g = e = g ∗ g−1 = g−1 ◦ g.

Thus, g−1 is the inverse of g in (G, ◦). Therefore, (G, ◦) is a group.
(b) Proof Consider the function φ : (G, ∗) → (G, ◦) defined by φ(g) = g−1 for each g ∈ G. We show that

φ is an isomorphism. First, we show that φ is bijective. Let φ(g1) = φ(g2), where g1, g2 ∈ (G, ∗). Then
g−1

1 = g−1
2 . Since

(
g−1

1

)−1 = (
g−1

2

)−1
in (G, ◦), it follows that g1 = g2 in (G, ∗). Thus, φ is one-to-one.
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Let h ∈ (G, ◦). Then φ(h−1) = (
h−1

)−1 = h and so φ is onto. It remains to show φ is operation-preserving.
Let g1, g2 ∈ (G, ∗). Then φ(g1 ∗ g2) = (g1 ∗ g2)−1 = (g2 ◦ g1)−1 = g−1

1 ◦ g−1
2 = φ(g1) ◦ φ(g2) and so φ is

operation-preserving. Therefore, φ is an isomorphism, implying that (G, ∗) and (G, ◦) are isomorphic.
15.55 Proof Define φ : Z → Z by φ(n) = n + 1 for each n ∈ Z. Then φ is bijective. We show that φ is an

isomorphism from (Z,+) to (Z, ∗). For m, n ∈ Z, φ(m + n) = m + n + 1. Since φ(m) ∗ φ(n) = (m + 1) ∗
(n + 1) = (m + 1) + (n + 1) − 1 = m + n + 1, it follows that φ(m + n) = φ(m) ∗ φ(n). Thus, φ is an
isomorphism.

15.57 (a) Proof First, we show that each fn, n ∈ Z, is one-to-one. Suppose that fn(a) = fn(b), where a, b ∈ A.
Hence, a

1+na = b
1+nb . Then a(1 + nb) = b(1 + na) and so a = b. Thus, fn is one-to-one. Next, we show that

each fn, n ∈ Z, is onto. Let c ∈ A. Then c
1−nc ∈ A and fn( c

1−nc ) = c. Hence, fn is onto. Since fn is
one-to-one and onto, it is bijective.

(b) Proof Let fn, fm ∈ P. For a ∈ A, ( fn ◦ fm)(a) = fn( fm(a)) = fn( a
1+ma ) = a

1+(m+n)a . Thus, fn ◦ fm ∈ P.
Let fn ∈ P. Then f −1

n exists and f −1
n (x) = x

1−nx for x ∈ A. Thus, f −1
n ∈ P. By the Subgroup Test, (P, ◦) is a

subgroup of (SA, ◦).
(c) Proof Define φ : Z → P by φ(n) = fn for each n ∈ Z. Thus, φ is a bijection. For n, m ∈ Z,

φ(n + m) = fn+m. For each a ∈ A, ( fn ◦ fm)(a) = fn( fm(a)) = fn( a
1+ma ) = a

1+(m+n)a and so fn ◦ fm = fn+m.
Thus, φ(n + m) = φ(n) ◦ φ(m) and so φ is an isomorphism.

15.59 (a) Proof Let x, y ∈ A. Then x = m
n and y = p

q , where m, n, p, q are odd integers. Then xy = mp
nq , where mp

and nq are odd integers. Reducing mp
nq to lowest terms results in an element of A. Next, let x ∈ A. Then

x = m
n , where m and n are odd integers. Then x−1 = n

m ∈ A. By the Subgroup Test, (A, ·) is a subgroup of
(Q∗, ·).

(b) Proof Let a ∈ A. Then a = m
n , where m and n are odd integers. We show that fa is one-to-one. Assume

that fa(x) = fa(y), where x, y ∈ R∗. Then xa = ya and so x
m
n = y

m
n . Thus, (x

m
n )n = (y

m
n )n and xm = ym.

Hence, x = (xm)
1
m = (ym)

1
m = y. Hence, fa is one-to-one. Next, we show that fa is onto. Let r ∈ R∗.

Then f (r
n
m ) = (r

n
m )a = (r

n
m )

m
n = r. Hence, fa is onto. Since fa is one-to-one and onto, it is a permutation.

(c) Proof Let fa, fb ∈ F . For x ∈ R∗, ( fb ◦ fa)(x) = fb( fa(x)) = fb(xa) = (xa)b = xab = fba(x). Since a = m
n

and b = p
q , where m, n, p, q are odd integers, ab = mp

nq , where mp and nq are odd integers, and ab = mp
nq

(reduced to lowest terms), it follows that fb ◦ fa ∈ F . Next, let fa ∈ F . So, a = m
n where m and n are odd

integers. Since f −1
a (x) = x

n
m , it follows that f −1

a ∈ F . By the Subgroup Test, (F, ◦) is a subgroup of
(SR∗ , ◦).

(d) Proof Define φ : A → F by φ(a) = fa for each a ∈ A. Thus, φ is a bijection. Also, for a, b ∈ A,
φ(ab) = fab and φ(a) ◦ φ(b) = fa ◦ fb. Since ( fa ◦ fb)(x) = fa( fb(x)) = fa(xb) = (xb)a = xab, φ is an
isomorphism.
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Answers and Hints to Selected
Odd-Numbered Exercises in
Chapters 16–19

EXERCISES FOR CHAPTER 16

16.1 (a) Proof Let a, b ∈ kZ. Then a = kx and b = ky for some x, y ∈ Z. Note that a + b = kx + ky = k(x + y)
and ab = (kx)(ky) = k(kxy). Since x + y, kxy ∈ Z, it follows that a + b, ab ∈ kZ; so the addition and
multiplication defined are binary operations on kZ. Since kZ ⊆ Z and the binary operations in kZ are the same
as those in Z, properties R1, R2, R5 and R6 are automatically satisfied. Moreover, since 0 = k · 0 and 0 ∈ Z, it
follows that kZ has an additive identity. To show that property R4 is also satisfied, let a ∈ kZ. So a = kx, where
x ∈ Z. Then −a = −(kx) = k(−x). Since −x ∈ Z, it follows that −a ∈ kZ.

16.3 (a) Solution We show that (R, ∗, ◦) is not a ring. Certainly, ∗ and ◦ are binary operations on S. However,
property R6 is not satisfied. To see this, let a = b = c = 0. Then a ◦ (b ∗ c) = 0 ◦ 1 = 0 and
(a ◦ b) ∗ (a ◦ c) = 0 ∗ 0 = 1. �

16.7 (a) Proof Let a ∈ R. Then a2 = a. Thus, (a + a)2 = (a + a)(a + a) = a(a + a) + a(a + a) = (a2 + a2) +
(a2 + a2) = (a + a) + (a + a). Since (a + a)2 = a + a, it follows that (a + a) + (a + a) = (a + a) + 0.
Applying the Cancellation Law of Addition (Theorem 16.10), we obtain a + a = 0. Therefore, −a = a.

16.9 (a) Since the zero matrix
[

0 0
0 0

]
belongs to S, it follows that S �= ∅. Let M1, M2 ∈ S. Thus, M1 =

[
a1 0
0 b1

]

and M2 =
[

a2 0
0 b2

]
, where ai, bi ∈ R for i = 1, 2. Then M1 − M2 =

[
a1 − a2 0
0 b1 − b2

]
and

M1M2 =
[

a1a2 0
0 b1b2

]
belong to S. By the Subring Test, S is a subring of M2(R).

16.11 Solution The set 2G of even Gaussian integers is a subring of G.
Proof Since 0 ∈ 2Z, it follows that 0 = 0 + 0i ∈ 2G and so 2G �= ∅. Let x, y ∈ 2G. Then x = a1 + b1i and
y = a2 + b2i, where ai, bi ∈ 2Z for i = 1, 2. Then x − y = (a1 − a2) + (b1 − b2)i and
xy = (a1a2 − b1b2) + (a1b2 + a2b1)i. Since a1 − a2, b1 − b2, a1a2 − b1b2, a1b2 + a2b1 ∈ 2Z, it follows by the
Subring Test that 2G is a subring of G.

16.13 (a) Proof Since the zero matrix
[

0 0
0 0

]
belongs to S, it follows that S �= ∅. Let M1, M2 ∈ S. Thus,

M1 =
[

a1 b1

0 0

]
and M2 =

[
a2 b2

0 0

]
, where ai, bi ∈ R for 1 ≤ i ≤ 2. Then

M1 − M2 =
[

a1 − a2 b1 − b2

0 0

]
and M1M2 =

[
a1a2 a1b2

0 0

]
belong to S. By the Subring Test, S is a

subring of M2(R).

1
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(b) Proof Let E =
[

1 1
0 0

]
and let A =

[
a b
0 0

]
be an arbitrary element of S. Then

EA =
[

1 1
0 0

] [
a b
0 0

]
=

[
a b
0 0

]
. Let C =

[
2 3
0 0

]
∈ S. Then

CE =
[

2 3
0 0

] [
1 1
0 0

]
=

[
2 2
0 0

]
�= C.

16.15 Proof First we show that (2Z,+, ◦) is a ring. Certainly, 2Z is closed under addition. Let a, b, c ∈ 2Z. Then
a = 2x, b = 2y and c = 2z, where x, y, z ∈ 2Z. So, a ◦ b = (2x)(2y)/2 = 2(xy). Since xy is an integer, 2Z is
closed under this multiplication. Because (2Z,+, ·) is a ring, where · is ordinary multiplication, (2Z,+, ◦)
satisfies properties R1–R4 and the integer 0 is the zero element. Now a ◦ (b ◦ c) = a ◦ (bc/2) = a(bc)/4 =
(ab)c/4 = (ab/2) ◦ c = (a ◦ b) ◦ c, so (2Z,+, ◦) satisfies property R5. Finally, a ◦ (b + c) = a(b + c)/2 =
(ab/2) + (ac/2) = (a ◦ b) + (a ◦ c) and so (2Z,+, ◦) satisfies property R6. Therefore, (2Z,+, ◦) is a ring.
Since a ◦ b = ab/2 = ba/2 = b ◦ a, the ring (2Z,+, ◦) is commutative. Because a ◦ 2 = (a · 2)/2 = a and
2 ∈ 2Z, the integer 2 is a unity for (2Z,+, ◦). Next, suppose that a ◦ b = 0, where a, b ∈ Z. Then ab/2 = 0
and so ab = 0, implying that a = 0 or b = 0. Therefore, (2Z,+, ◦) is an integral domain.

16.17 Solution The algebraic structure (Z, ∗, ◦) is not a ring. Since

1 ◦ (0 ∗ 0) = 1 ◦ (−1) = 1 + (−1) + (−1) = −1

and

(1 ◦ 0) ∗ (1 ◦ 0) = (1 + 0 + 0) ∗ (1 + 0 + 0) = 1 ∗ 1 = 1 + 1 − 1 = 1,

property R6 is not satisfied and so (Z, ∗, ◦) is not a ring. �

16.19 The ring R = M2(R) and the subring S =
{[

a 0
0 a

]
: a ∈ R

}
of M2(R) have the desired properties.

16.21 Hint: First show that Q[i] is a subring of C. Then show that every nonzero element of Q[i] is a unit.
16.23 (a) Zn (n ≥ 2)

(b) Z
(c) M2(Z2)

(d) M2(R)
16.25 (3) occurs. Now explain your answer with justification.

EXERCISES FOR CHAPTER 17

17.1 Proof Let u, v ∈ C and α, β ∈ R. Then u = a + bi and v = c + di, where a, b, c, d ∈ R. Then
u + v = (a + bi) + (c + di) = (a + c) + (b + d)i and αu = α(a + bi) = αa + αbi. Since
a + c, b + d, αa, αb ∈ R, it follows that u + v ∈ C and αu ∈ C. Now
u + v = (a + c) + (b + d)i = (c + a) + (d + b)i = v + u and property 1 is satisfied. Let w = e + f i, where
e, f ∈ R. Then (u + v) + w = [(a + c) + (b + d)i] + (e + f i) = [(a + c) + e] + [(b + d) + f ]i = [a +
(c + e)] + [b + (d + f )]i = (a + bi) + [(c + e) + (d + f )i] = (a + bi) + [(c + di) + (e + f i)] =
u + (v + w); so property 2 is satisfied.

Let z = 0 + 0i. Since u + z = (a + bi) + (0 + 0i) = a + bi = u, property 3 is satisfied. Let
−u = (−a) + (−b)i. Then u + (−u) = (a + bi) + [(−a) + (−b)i] = 0 + 0i = z and property 4 is satisfied.
Because α(u + v) = α[(a + bi) + (c + di)] = α[(a + c) + (b + d)i] = (αa + αc) + (αb + αd)i =
(αa + αbi) + (αc + αdi) = α(a + bi) + α(c + di) = αu + αv, property 5 is satisfied. Now,
(α + β )u = (α + β )(a + bi) = (α + β )a + (α + β )bi = αa + βa + αbi + βbi = (αa + αbi) + (βa + βbi) =
α(a + bi) + β(a + bi) = αu + βu. Thus, property 6 is satisfied. Since (αβ )u = (αβ )(a + bi) = (αβ )a +
(αβ )bi = α(βa) + α(βbi) = α(βa + βbi) = α(β(a + bi)) = α(βu), property 7 is satisfied. Finally, 1 · u =
1 · (a + bi) = 1 · a + 1 · bi = a + bi = u, and so property 8 is satisfied.
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17.3 (a) Since (1, 0, 0) + (0, 1, 0) = (1, 0, 0) and (0, 1, 0) + (1, 0, 0) = (0, 1, 0), property 1 is not satisfied and so
R3 is not a vector space.

(c) Let v = (1, 0, 0) and let z = (a, b, c) be the zero vector, where a, b, c ∈ R. Then v + z = (0, 0, 0) �= v; so
property 3 is not satisfied and R3 is not a vector space.

(e) Let v = (1, 0, 0). Since 1v = (0, 0, 1) �= v, property 8 is not satisfied and R3 is not a vector space.
17.5 Proof Observe that α(−v) = α((−1)v) = (α(−1))v = (−α)v = ((−1)α)v = (−1)(αv) = −(αv).
17.7 (a) The statement is false. Since z + z = z, it follows that −z = z.
17.9 (a) The set W1 is a subspace of R4. Proof Since (0, 0, 0, 0) ∈ W1, it follows that W1 �= ∅. Let u, v ∈ W1 and

α ∈ R. Then u = (a, a, a, a) and v = (b, b, b, b) for some a, b ∈ R. Then
u + v = (a + b, a + b, a + b, a + b) and αu = (αa, αa, αa, αa). Because u + v, αu ∈ W1, it follows that
W1 is a subspace of R4 by the Subspace Test.

(c) Since (0, 0, 0, 1) ∈ W3 but 2(0, 0, 0, 1) /∈ W3, it follows that W1 is not closed under scalar multiplication
and so W3 is not a subspace of R4.

17.11 (a) The set U1 is a subspace of R[x]. Proof Since the zero function f0 defined by f0(x) = 0 for all x ∈ R
belongs to R[x], it follows that U1 �= ∅. Let f , g ∈ U1 and α ∈ R. Then there exist constants a and b such
that f (x) = a and g(x) = b for all x ∈ R. Then ( f + g)(x) = f (x) + g(x) = a + b and
(α f )(x) = α f (x) = αa. Since f + g, α f ∈ U1, it follows by the Subspace Test that U1 is a subspace of
R[x].

(b) Since the function h defined by h(x) = x3 for all x ∈ R belongs to U2, but (0 · h)(x) = 0 · h(x) = 0 · x3 = 0
does not belong to U2, it follows that U2 is not closed under scalar multiplication and so U2 is not a
subspace of R[x].

17.15 Proof Since (0, 0), that is, x = 0 and y = 0, is a solution of the equation, (0, 0) ∈ S and so S �= ∅. Let
(x1, y1), (x2, y2) ∈ S and α ∈ R. Then 3x1 − 5y1 = 0 and 3x2 − 5y2 = 0. However,
3(x1 + x2) − 5(y1 + y2) = (3x1 − 5y1) + (3x2 − 5y2) = 0. Thus, (x1 + x2, y1 + y2) ∈ S. Furthermore,
3(αx1) − 5(αy1) = α(3x1 − 5y1) = α · 0 = 0, and so α(x1, y1) = (αx1, αy1) ∈ S. Therefore, S is a subspace of
R2 by the Subspace Test.

17.17 i = − 1
2 u1 + 1

2 u2 + 1
2 u3.

17.19 Proof Let v ∈ W . Thus, v = c1v1 + c2v2 + · · · + cnvn, where ci ∈ R for 1 ≤ i ≤ n. Furthermore, let
vi = ai1w1 + ai2w2 + · · · + aimwm, where ai j ∈ R for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then

v = [c1 c2 . . . cn]

⎡
⎢⎢⎢⎣

v1

v2

...
vn

⎤
⎥⎥⎥⎦ = [c1 c2 . . . cn] A

⎡
⎢⎢⎢⎣

w1

w2

...
wm

⎤
⎥⎥⎥⎦ ,

where A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

...
...

an1 an2 . . . anm

⎤
⎥⎥⎥⎦. Hence, v is a linear combination of w1, w2, . . . , wm and so v ∈ W ′.

17.21 (a) Proof We first show that 〈u, v〉 ⊆ 〈u, 2u + v〉. Observe that u ∈ 〈u, 2u + v〉 and v = (−2)u + 1 ·
(2u + v) ∈ 〈u, 2u + v〉. By Exercise 17.19, 〈u, v〉 ⊆ 〈u, 2u + v〉.
Next, we show that 〈u, 2u + v〉 ⊆ 〈u, v〉. Since u ∈ 〈u, v〉 and 2u + v is a linear combination of u and v, it
follows that 〈u, 2u + v〉 ⊆ 〈u, v〉, again by Exercise 17.19.

17.23 Hint: One possibility is to choose w = (1, 0, 0). Now consider au + bv + cw = (0, 0, 0), where a, b, c ∈ R.
17.25 (a) The set S is not linearly independent since 1 + (−1) sin2 x + (−1) cos2 x = 0 for all x ∈ R.

(b) The set S is linearly independent. Proof Let a, b, c ∈ R such that a · 1 + b · sin x + c · cos x = 0. We
show that a = b = c = 0. Letting x = 0, x = π/2 and x = −π/2, we obtain a + c = 0, a + b = 0 and
a − b = 0, respectively. Solving these equations simultaneously, we obtain a = b = c = 0.

17.27 Hint: Consider a proof by mathematical induction.
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17.29 Proof Define the mapping T : R2 → C by T (a, b) = a + bi. Assume that T (a, b) = T (c, d). Then
a + bi = c + di, which implies that a = c and b = d. Thus, (a, b) = (c, d). Hence, T is one-to-one. Next let
a + bi ∈ C. Since T (a, b) = a + bi, the mapping T is onto. Therefore, T is bijective. Let u = (a, b) and
v = (c, d) be vectors in R2 and let α ∈ R. Then T (u + v) = T (a + c, b + d) = (a + c) + (b + d)i =
(a + bi) + (c + di) = T (u) + T (v). Also, T (αu) = T (αa, αb) = (αa) + (αb)i = α(a + bi) = αT (u). Since T
preserves both addition and scalar multiplication, T is a linear transformation.

17.33 (a) D(W ) = R
(b) D(W ) = {0}
(c) ker(T ) = R.

17.35 (1) occurs.

EXERCISES FOR CHAPTER 18

18.1 Proof

(a) For the real number a − b, exactly one of the following holds: a − b > 0, a − b = 0, a − b < 0.
Therefore, exactly one of the following holds: a > b, a = b, a < b.

(b) Let a > b and b > c. Then a − b > 0 and b − c > 0. Thus (a − b) + (b − c) = a − c > 0 and so a > c.

(c) Let a > b. Then a − b > 0. Since a − b = (a + c) − (b + c), it follows that a + c > b + c.

(d) Let a > b and c > 0. Then a − b > 0. So (a − b)c = ac − bc > 0. Hence, ac > bc.

(e) Let a �= 0. Then a > 0 or a < 0. If a > 0, then a2 = a · a > 0. If a < 0, then 0 > a and so
0 − a = −a > 0. Thus, (−a)(−a) = a2 > 0.

18.3 Claim: Properties (1) and (2) are satisfied if and only if c = 0 or c ≥ 1.
Proof We already know that properties (1) and (2) are satisfied if c = 0. Suppose then that c ≥ 1. If a > c
and b > c, then a + b > b + c > c + c > c and ab > bc > c · c ≥ c · 1 = c. Therefore, properties (1) and (2)
are satisfied. We now verify the converse. Let c ∈ R such that 0 < c < 1 and let a = b = √

c. Then
c = 1 · c > c · c = c2 and so c > c2. Therefore,

√
c > c and so a > c and b > c. However, ab = √

c
√

c = c
and so property (2) is not satisfied.

18.5 Proof Assume, to the contrary, that Zp is an ordered field. For the nonzero element [1] ∈ Zp, either
[1] > [0] or [1] < [0]. If [1] < [0], then [0] > [1] and so [0] − [1] = [−1] > [0]. Thus,
[−1][−1] = [1] > [0], which is a contradiction. Thus, [1] > [0]. However, if p terms [1] are added, then we
obtain [1] + [1] + · · · + [1] = [p] > [0]. Since [p] = [0], this is also a contradiction.

18.7 Proof Since F is an ordered field and F ⊆ R, it follows that 0, 1 ∈ F . Let n ∈ N. Since F is a field, the sum
of n terms 1 is n ∈ F . Also, −n ∈ F . Consequently, Z ⊆ F . Let b ∈ Z where b �= 0. By property 8, 1/b ∈ F .
Let a/b ∈ Q, where a, b ∈ Z. Then a, 1/b ∈ F and so a(1/b) = a/b ∈ F .

18.9 (a) Proof Let a ∈ S. Then inf(S) ≤ a ≤ sup(S) and so inf(S) ≤ sup(S).

(b) Claim: The set S has the property that inf(S) = sup(S) if and only if S consists of a single real number.
Proof First, if S consists of a single real number s, then max(S) = min(S) = s and so
inf(S) = sup(S) = s. We now verify the converse using a proof by contrapositive. Suppose that inf(S) and
sup(S) exist and S does not consist of a single real number. Let r1, r2 ∈ S, where r1 < r2 say. Then
inf(S) ≤ r1 < r2 ≤ sup(S) and so inf(S) < sup(S). Hence, inf(S) �= sup(S).

18.11 Proof

(a) Let x ∈ T . Since T ⊆ S, it follows that x ∈ S. Thus, inf(S) ≤ x ≤ sup(S). Therefore, sup(S) is an upper
bound for T and inf(S) is a lower bound for T . By the Completeness Axiom, inf(T ) and sup(T ) exist.

(b) Since x ≤ sup(S) for each x ∈ S, it follows that x ≤ sup(S) for each x ∈ T . Therefore, sup(S) is an upper
bound for T and so sup(T ) ≤ sup(S). Similarly, inf(S) ≤ inf(T ).

18.13 Proof First, suppose that inf(S) = a. Then a is a lower bound for S. Furthermore, each real number y with
y > a is not a lower bound for S. Hence, there exists x ∈ S such that x < y and so a ≤ x < y.
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For the converse, assume that a is a lower bound for S and for every real number y > a, there exists x ∈ S
such that a ≤ x < y. Since a is a lower bound for S, it follows that inf(S) exists and a ≤ inf(S). Assume, to the
contrary, that a < inf(S). Therefore, there exists x ∈ S such that a ≤ x < inf(S). This, however, contradicts the
fact that inf(S) is a lower bound for S.

18.15 Proof Since r is a positive rational number, r = a/b, where a, b ∈ N. Since a ≥ 1 and b ≥ 1, it follows that
4a2 ≥ 4a > a ≥ a/b and so

√
4a2 >

√
a/b. Let n = 2a. Then n >

√
r.

18.17 Proof Suppose that S is a finite set. Then S = {r1, r2, . . . , rn}, where a < r1 < r2 < · · · < rn < b and ri ∈ Q
for each i (1 ≤ i ≤ n). By Theorem 18.10, there exists a rational number r such that r1 < r < r2. Thus, r ∈ S,
which is a contradiction

18.19 Claim: The set S is dense in R.
Proof Let a, b ∈ R such that a < b. Then a/

√
2 < b/

√
2. By Theorem 18.10, there exists a rational number

r such that a/
√

2 < r < b/
√

2. Therefore, a < r
√

2 < b.
18.21 Proof

(a) Let A1, A2, . . . , An be bounded sets. Then for each i (1 ≤ i ≤ n), let ai be a lower bound and bi an upper
bound for Ai. Thus, ai ≤ x ≤ bi for each x ∈ Ai. Let a = min(a1, a2, . . . , an) and b = max(b1, b2, . . . , bn).
Then a ≤ x ≤ b for each x ∈ ⋃n

i=1 Ai.

(b) Let B = max(sup(A1), sup(A2), . . . , sup(An)), say sup(A1) = B. Then sup(Ai) ≤ sup(A1) = B for
1 ≤ i ≤ n. Let x ∈ ⋃n

i=1 Ai. Then x ∈ Ai for some i (1 ≤ i ≤ n). Thus, x ≤ sup(Ai) ≤ B. Therefore,

sup(A1 ∪ A2 ∪ · · · ∪ An) ≤ max(sup(A1), sup(A2), . . . , sup(An)).

Assume, to the contrary, that

b = sup(A1 ∪ A2 ∪ · · · ∪ An) < max(sup(A1), sup(A2), . . . , sup(An)) = B.

Since b < B = sup(A1), it follows that b is not an upper bound for A1; so there exists x ∈ A1 such that
b < x ≤ B. However, x ∈ ⋃n

i=1 Ai, contradicting the fact that b = sup(
⋃n

i=1 Ai).
Similarly, inf(A1 ∪ A2 ∪ · · · ∪ An) = min(inf(A1), inf(A2), . . . , inf(An)).

18.23 (a) Proof Let a, b ∈ R with a < b. Since S is dense in R, there exists c ∈ S such that c ∈ (a, b). Let
r = min(b − c, c − a). Since S is an open set, there exists an ε-neighborhood Nε (c) of c for which ε ≤ r
such that Nε (c) ⊆ S. Since T is dense in R, there exists d ∈ T such that d ∈ (c − ε, c + ε). Therefore,
d ∈ S ∩ T and d ∈ (a, b) and so S ∩ T is dense in R.

(b) Yes. The proof in (a) does not require T to be an open set.

(c) No. Let S = Q be the set of rational numbers and T = R − Q the set of irrational numbers. Then neither
S nor T is open but both are dense in R. The set S ∩ T = ∅ is not dense in R.

18.25 Proof First, we show that Int(S) ∩ Int(T ) ⊆ Int(S ∩ T ). Let x ∈ Int(S) ∩ Int(T ). Then x ∈ Int(S) and
x ∈ Int(T ). Since x is an interior point of S, there is a neighborhood N1 of x such that N1 ⊆ S. Similarly, there
is a neighborhood N2 of x such that N2 ⊆ T . Then N = N1 ∩ N2 is an open set and a neighborhood of x such
that N ⊆ S ∩ T . Hence, x ∈ Int(S ∩ T ).

Next, we show that Int(S ∩ T ) ⊆ Int(S) ∩ Int(T ). Let x ∈ Int(S ∩ T ). Since x is an interior point of S ∩ T ,
there is a neighborhood N of x such that N ⊆ S ∩ T . Thus, N ⊆ S and N ⊆ T ; so x is an interior point of S and
an interior point of T . Therefore, x ∈ Int(S) ∩ Int(T ).

18.27 Proof

(a) Assume, to the contrary, that there exist two nonempty open sets A and B of real numbers with A ∩ B = ∅
such that A ∪ B = R. Let a ∈ A and b ∈ B. We may assume that a < b. Let I = [a, b] and let
S = {x ∈ I : x ∈ B}. Hence, b ∈ S and a is a lower bound of S. Thus, inf(S) exists, say inf(S) = c. Since a
is an interior point of A, there exists ε > 0 such that Nε (a) ⊆ A. Thus, c /∈ Nε (a) and so a < c < b. Since
c ∈ R = A ∪ B, either c ∈ A or c ∈ B. Suppose that c ∈ A. Since A is an open set, there exists an ε > 0
such that Nε (c) ⊆ A. However then, each x ∈ Nε (c) with x > c is a lower bound of S, which is a
contradiction. Thus, c ∈ B. Since B is an open set, there exists an ε ′ > 0 such that Nε′ (c) ⊆ B. Then each
x ∈ (c − ε ′, c) is a point of S, contradicting the fact that c is a lower bound of S.
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(b) Assume, to the contrary, that there is a nonempty proper subset A of R that is both open and closed. Then
B = A is also a nonempty proper subset of R that is both open and closed. However then, A and B would
be a counterexample to (a), which is impossible.

18.29 Solution

(a) S is closed, Bd(S) = {x ∈ N : x ≤ 2002} and
Int(S) = (1, 2) ∪ (3, 4) ∪ (5, 6) ∪ · · · ∪ (2001, 2002).

(b) S is open, Bd(S) = {−2, 8} and Int(S) = (−2, 8).

(c) S is open, Bd(S) = {−3, 0, 3} and Int(S) = (−3, 0) ∪ (0, 3).

(d) S = {1} is closed, Bd(S) = {1} and Int(S) = ∅.

(e) S = (0, 1] is neither open nor closed, Bd(S) = {0, 1} and Int(S) = (0, 1). �
18.31 Solution

(a) Let S = (Q ∩ [1, 2]) ∪ (2, ∞). Then S = (−∞, 1) ∪ ((R − Q) ∩ [1, 2]). Thus, Acc(S) = [1,∞) and
Acc(S) = (−∞, 2]; so Acc(S) ∩ Acc(S) = [1, 2].

(b) Let S = {x ∈ R : x ≥ 0}. Then S = {x ∈ R : x < 0}. Thus, Bd(S) = Bd(S) = {0}; so
Bd(S) ∩ Bd(S) = {0}.

(c) Let S = {x ∈ R : x ≥ 1}. Then S = {x ∈ R : x < 1}. Then Cl(S) = [1, ∞) and Cl(S) = (−∞, 1]; so
Cl(S) ∩ Cl(S) = {1}.

18.33 Solution For k ∈ N, let Ak = {
k + 1

n+1 : n ∈ N
}

and let S = ⋃
k∈N Ak. Then Acc(S) = N and

Acc(S) ∩ S = ∅. �
18.35 (a) Proof Let x ∈ Cl(S ∩ T ). Then x ∈ S ∩ T or x ∈ Acc(S ∩ T ). If x ∈ S ∩ T , then x ∈ S and x ∈ T ; so

x ∈ Cl(S) and x ∈ Cl(T ). Thus, x ∈ Cl(S) ∩ Cl(T ). Next, suppose that x ∈ Acc(S ∩ T ). Then every
deleted neighborhood of x contains a point in S ∩ T . Consequently, every deleted neighborhood of x
contains a point in S and a point in T and so x ∈ Acc(S) and x ∈ Acc(T ). Therefore,
x ∈ Acc(S) ∩ Acc(T ), which implies that x ∈ Cl(S) ∩ Cl(T ) in this case as well.

(b) Solution Let A = Q ∩ [0, 1] and B = [0, 1] − Q. Then Cl(A ∩ B) = ∅ and Cl(A) ∩ Cl(B) = [0, 1]. �
18.37 Solution

(a) S = [1, 2]. Here, Bd(S) = {1, 2} and Acc(S) = S = [1, 2].

(b) S = {0} ∪ {
1
n : n ∈ N

}
. Here, Acc(S) = {0} and Bd(S) = S.

(c) S = Q. Here, Bd(S) = Acc(S) = R.

18.39 Proof

(a) Let b ∈ Bd(S). We claim that b ∈ S. If this were not the case, then since N∗
ε (b) ∩ S �= ∅ for each ε > 0, it

follows that b ∈ Acc(S), which is impossible. Thus, b ∈ S and so Bd(S) ⊆ S. Hence, S is a closed set by
Theorem 18.15. This establishes (1).

Since Int(S) ⊆ S and Bd(S) ⊆ S, it follows that Int(S) ∪ Bd(S) ⊆ S. Next, we show that
S ⊆ Int(S) ∪ Bd(S). Suppose that x ∈ S and x /∈ Bd(S), that is, x ∈ S − Bd(S). Since x is not a boundary
point of S, there is a neighborhood N(x) of x such that N(x) ∩ S = ∅. Thus, N(x) ⊆ S and so x ∈ Int(S).
Therefore, S ⊆ Int(S) ∪ Bd(S) and so S = Int(S) ∪ Bd(S). This establishes (2).

Since Int(S) ⊆ Acc(S), it remains to show that Acc(S) ⊆ Int(S). Let y ∈ Acc(S). Since S is closed, it
follows by Theorem 18.20 that Acc(S) ⊆ S and so y ∈ S. Since Acc(S) ∩ Bd(S) = ∅ and
S = Int(S) ∪ Bd(S), it follows that y ∈ Int(S). Therefore, Acc(S) ⊆ Int(S) and so Int(S) = Acc(S). This
establishes (3).

(b) Assume, to the contrary, that there exists a set S of real numbers such that Bd(S) �= ∅, Acc(S) �= ∅ and
Bd(S) ∩ Acc(S) = ∅. By (a), Int(S) = Acc(S). Since Int(S) is an open set by Exercise 18.22 and Acc(S) is
a closed set by Exercise 18.38, it follows that Acc(S) is both open and closed. By Exercise 18.27,
Acc(S) = R. By Theorem 18.20, S = R and so Bd(S) = ∅, which produces a contradiction.
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18.41 Solution

(a) Bd(S) = {0, 1, 2, 3}, Cl(S) = [0, 1] ∪ [2, 3], Int(S) = (0, 1) ∪ (2, 3) and
Cl(S) − Int(S) = {0, 1, 2, 3}.

(b) Bd(S) = Cl(S) = S ∪ {0}, Int(S) = ∅ and Cl(S) − Int(S) = S ∪ {0}.
(c) Bd(S) = N ∪ {0}, Cl(S) = (−∞, 0] ∪ N, Int(S) = (−∞, 0) and

Cl(S) − Int(S) = N ∪ {0}. �
18.43 Solution

(a) Let S = {
1
n : n ∈ N

}
. Then Acc(S) = {0} and Acc(Acc(S)) = ∅.

(b) Let S = {x ∈ Q : 0 ≤ x ≤ 1}. Then Bd(S) = [0, 1] and Bd(Bd(S)) = {0, 1}.
(c) No such example exists. For every set S of real numbers, it follows by Theorem 18.23 that Cl(S) is a

closed set. Thus, Cl(Cl(S)) = Cl(S).

(d) No such example exists. For every set S of real numbers, it follows by Exercise 18.22(a) that Int(S) is an
open set. Thus, Int(Int(S)) = Int(S). �

18.45 Proof Since Int(S) ∪ Bd(S) ∪ Int(S) ⊆ R, it remains only to show that R ⊆ Int(S) ∪ Bd(S) ∪ Int(S) or that
every real number belongs to at least one of Int(S), Bd(S) and Int(S). Let x ∈ R. If x ∈ Int(S) or x ∈ Int(S),
then we have the desired result. Thus, we may assume that x /∈ Int(S) and x /∈ Int(S). Let N(x) be any
neighborhood of x. Since x /∈ Int(S), it follows that N(x) �⊆ S and so N(x) contains a point of S. Similarly,
since x /∈ Int(S), it follows that N(x) �⊆ S and so N(x) contains a point of S. Therefore, every neighborhood of
x contains a point of S and a point of S. Thus, x is a boundary point of S and so x ∈ Bd(S). Therefore,
R ⊆ Int(S) ∪ Bd(S) ∪ Int(S).

18.47 Proof First, we show that Int(S) ⊆ ⋃
L∈T L. Let x ∈ Int(S). Since x is an interior point of S, there exists a

neighborhood N(x) such that N(x) ⊆ S. Because N(x) is an open set with N(x) ⊆ S, it follows that N(x) ∈ T
and so x ∈ ⋃

L∈T L. Therefore, Int(S) ⊆ ⋃
L∈T L.

Next, we show that
⋃

L∈T L ⊆ Int(S). Let y ∈ ⋃
L∈T L. Thus, y ∈ L for some L ∈ T . Because L is an open

set, there exists a neighborhood N(y) of y such that N(y) ⊆ L. However, L ⊆ S and so N(y) ⊆ S. Hence, y is an
interior point of S and so y ∈ Int(S). Therefore,

⋃
L∈T L ⊆ Int(S).

18.49 Claim: The set S consists of a single element.
Proof Assume, to the contrary, that S is a nonempty compact set of real numbers such that every open cover
of S contains a subcover consisting of a single set belonging to the open cover but S contains two or more
elements. Let a, b ∈ S, where a < b say. Let ε = b − a. Now, let S1 = (−∞, a), S2 = Nε (a), S3 = Nε (b) and
S4 = (b, ∞). Since C = {S1, S2, S3, S4} is an open cover of R, it follows that C is an open cover of S. Since S2

is the only open set in C containing a and S3 is the only open set in C containing b, there is no single set in C
that covers S, a contradiction.

18.51 Solution

(a) The set S is compact since it’s closed and bounded.

(b) The set S = [2, 6] is compact since it’s closed and bounded.

(c) The set S is compact since it’s closed and bounded.

(d) The set S = (0, 1] is not compact since it’s not closed. It does not contain the accumulation point 0.

(e) The set S = [1, 11] is compact since it’s closed and bounded. �
18.53 Solution For each positive integer n, let Sn = (

1
n+1 , 2

n − 1
n+1

)
. Thus, S1 = (

1
2 , 3

2

)
, S2 = (

1
3 , 2

3

)
and

S3 = (
1
4 , 5

12

)
. Hence, Sn contains the element 1

n of S but no other element of S. Therefore, S ⊆ ∪n∈NSn and so
C = {Sn}n∈N is an open cover of S. Since S is infinite and each element of S belongs to only one open set Sn,
the only subcover of S is C itself. �

18.55 Proof

(a) Since Acc(S) = [0, 2] is not a subset of S, it follows that S is not closed. By Theorem 18.27, S is not
compact.
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(b) Let y be an irrational number such that 0 < y < 2. For example, we could choose y = √
2. For each n ∈ N,

let Sn = (−1, y − 1
n

) ∪ (
y + 1

n , 3
)
. Then S ⊆ ∪n∈NSn. Hence, C = {Sn}n∈N is an open cover of S. Suppose

that C contains a finite open subcover of S. Then there exists a finite set J of positive integers such that
{Sα}α∈J is an open cover of S. Let m be a largest element of J. Then ∪α∈JSα = (−1, y − 1

m

) ∪ (
y + 1

m , 3
)
.

Since the rational numbers are dense in R (Theorem 18.10), it follows that there is a rational number r
with y − 1

m < r < y. Hence, r ∈ S but r /∈ ∪α∈JSα , a contradiction.

18.57 Proof

(a) Let S be a compact set of real numbers. Then S is bounded. Furthermore, since K ⊆ S, it follows that K is
bounded. Since K is closed and bounded, K is compact.

(b) Since K is a compact set by (a), it follows by Corollary 18.28 that K has both a maximum and a minimum
element.

18.59 Proof First, assume that Cl(S) is compact. Then Cl(S) is bounded. Since S ⊆ Cl(S), it follows that S is
bounded.

Next, assume that S is bounded. Then there exist real numbers a and b with a < b such that S ⊆ [a, b]. Now
Acc(S) ⊆ Acc([a, b]) = [a, b] and so Cl(S) is a bounded set. Since Cl(S) is closed by Theorem 18.23, it
follows that Cl(S) is compact.

18.61 Proof Let {Sα}α∈I be an infinite collection of nonempty compact sets of real numbers and let S = ⋂
α∈I Sα . If

S = ∅, then S is compact. So, we may assume that S �= ∅. By Corollary 18.18, S is closed. Let Sβ ∈ {Sα}α∈I .
Since Sβ is compact, Sβ is bounded and so Sβ has a lower bound a and upper bound b. Let x ∈ S. Then x ∈ Sβ

and so a ≤ x ≤ b. Therefore, S is bounded and so S is compact.

18.63 (a) Proof Since A ∩ B is compact, A ∩ B is closed. Since A and B are open sets, A ∩ B is open by
Theorem 18.16. Thus, A ∩ B is both open and closed. By Exercise 18.27(b), it follows that A ∩ B = R or
A ∩ B = ∅. Since A ∩ B is compact, A ∩ B is bounded and so A ∩ B = ∅ .

(b) The statement is true. Proof Let Sn = (
1
n ,− 1

n

)
for n ∈ N. Then each set Sn is open. Let S = ∩n∈NSn.

Then S = {0}, which is a nonempty compact set. �
18.65 Proof Let x ∈ S and let εx = |r − x|/2. Then Nεx (x) and Nεx (r) are disjoint open sets containing x and r,

respectively. Then C = {Nεx (x)}x∈S is an open cover of S. Since S is compact, C has a finite subcover
C′ = {Nεx1

(x1), Nεx2
(x2), . . . , Nεxn

(xn)}. Let ε = min1≤i≤n{εxi }. Then U = ∪n
i=1Nεxi

(xi) and V = Nε (r) are
disjoint open sets such that S ⊆ U and r ∈ V .

18.67 Proof Assume first that S is a compact set of real numbers. Since S is bounded, it follows by the
Bolzano–Weierstrass Theorem that every infinite subset of S has an accumulation point. Since S is closed,
every accumulation point of S belongs to S.

We now verify the converse. Let S be a set of real numbers having the property that every infinite subset of S
has an accumulation point belonging to S. We show that S is compact, that is, that S is bounded and closed.

First, we show that S is bounded. Assume, to the contrary, that S is unbounded. Then S contains an unbounded
set of positive real numbers or an unbounded set of negative real numbers, say the former. Therefore, for each
n ∈ N, there exists xn ∈ S such that xn > n. Let X = {x1, x2, . . .}. Since X is infinite, X has an accumulation
point a ∈ S. Certainly a > 0, for otherwise, ε1 = 1 − a > 0 and the deleted neighborhood N∗

ε1
(a) of a contains

no point of X , which is impossible. Hence, a > 0. By the Archimedean Principle, there is a positive integer n
such that n > a and by the Principle of Well-Ordering, there is a smallest positive integer m such that m > a.
Thus, m − 1 ≤ a < m. Let

ε2 = min{|xi − a| : a �= xi and 1 ≤ i ≤ m − 1}.
Then the deleted neighborhood N∗

ε2
(a) of a contains no points of X and so a /∈ Acc(X ), a contradiction. Hence,

S is bounded.
Next, we show that S is closed. Assume, to the contrary, that a is an accumulation point of S but a /∈ S. Then
for each n ∈ N, there exists yn ∈ S such that |yn − a| < 1/n. Let Y = {yn : n ∈ N}, which is an infinite subset
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of S. By assumption, Y has an accumulation point b belonging to S. So, for each ε > 0, there exists a positive
integer K such that if k is an integer with k > K, then both 1/k < ε/2 and |yk − b| < ε/2. Hence,

|a − b| ≤ |a − yk| + |yk − b| < ε/2 + ε/2 = ε,

which implies that a = b and so a ∈ S, which is a contradiction. Therefore, S is closed.
18.69 Solution (a) 8 − 6i (b) −11 − 2i (c) −12 + 5i

(d) 2 (e) 31 + 33i (f) −1.
18.71 Solution (

√
2 + i)3 = 2

√
2 + 3 · 2i − 3

√
2 − i = −√

2 + 5i.
18.73 Proof

(a) Let z = a + bi, where a, b ∈ R. Then z = a − bi = a + bi = z.

(b) Let z1 = a + bi and z2 = c + di, where a, b, c, d ∈ R. Then

z1 + z2 = (a + bi) + (c + di) = (a + c) + (b + d)i = (a + c) − (b + d)i.

Also,

z1 + z2 = a + bi + c + di = (a − bi) + (c − di) = (a + c) − (b + d)i = z1 + z2.

(c) Let z1 = a + bi and z2 = c + di, where a, b, c, d ∈ R. Then

z1z2 = (a + bi)(c + di) = (ac − bd) + (ad + bc)i = (ac − bd) − (ad + bc)i.

Also,

z1 · z2 = (
a + bi

) (
c + di

) = (a − bi)(c − di)

= (ac − bd) − (ad + bc)i = z1z2.

18.75 Proof

(a) We proceed by induction. The statement is trivially true for n = 1. Assume, for every k complex numbers
β1, β2, . . . , βk, where k ∈ N, that

β1 · β2 · · · βk = β1β2 · · · βk.

Let α1, α2, . . . , αk+1 be k + 1 complex numbers. By the induction hypothesis and Exercise 18.73(c),

α1 · α2 · · · αk+1 = (α1 · α2 · · · αk ) · αk+1

= α1 · α2 · · · αk · αk+1

= α1α2 · · · αk+1.

By the Principle of Mathematical Induction, the statement is true for every positive integer n.

(b) Letting αi = α for i = 1, 2, . . . , n in (a), we have αn = αn.

18.77 Solution By the quadratic formula,

z = −2a ± √
4a2 − 20a2

2
= −2a ± √−16a2

2

= −2a ± 4ai
2

= −a ± 2ai. �

18.79 Solution Since z2 − 6z + 9 = (z − 3)2 = 6i, it follows that z − 3 = ±√
6i and so z = 3 ± (

√
3 + √

3i). The
two roots of the equation are therefore (3 + √

3) + √
3i and (3 − √

3) − √
3i. �

Alternate Solution By the quadratic formula,

z = 6 ± √
36 − 4(9 − 6i)

2
= 6 ± √

24i
2

= 3 ±
√

6i.

Since (
√

3 + √
3i)2 = 6i, the two roots of the equation are 3 + (

√
3 + √

3i) = (3 + √
3) + √

3i and
3 − (

√
3 + √

3i) = (3 − √
3) − √

3i. �
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18.81 Solution

(a) By the quadratic formula, z = (2 ± √
4 − 8)/2 = (2 ± 2i)/2 = 1 ± i.

(b) Since z4 − 16 = (z2 − 4)(z2 + 4) = (z − 2)(z + 2)(z2 + 4) = 0, this equation has the four roots
2, −2, 2i, −2i.

(c) Since z3 − 3z2 + z − 3 = z2(z − 3) + (z − 3) = (z − 3)(z2 + 1) = 0, this equation has the three roots
3, i,−i.

(d) Since z4 + 3z2 + 2 = (z2 + 1)(z2 + 2) = 0, this equation has the four roots i, −i,
√

2i,−√
2i. �

18.83 Proof Assume that p(α) = 0 for some α ∈ C. Since p(z) = a0 + a1z + a2z2 + · · · + anzn, where ai ∈ R for
0 ≤ i ≤ n, it follows that

a0 + a1α + a2α
2 + · · · + anα

n = 0.

Since ai ∈ R for 0 ≤ i ≤ n, it follows by Exercises 18.74 and 18.75 that

p(α) = a0 + a1α + a2α
2 + · · · + anα

n

= a0 + a1α + a2α2 + · · · + anαn

= a0 + a1α + a2α2 + · · · + anαn

= a0 + a1α + a2α2 + · · · + anαn = p(α) = 0 = 0.

18.85 Proof

(a) Observe that |z1|2 = |a + bi|2 = (
√

a2 + b2)2 = a2 + b2 and
z1 · z1 = (a + bi)(a − bi) = a2 − b2i2 = a2 + b2.

(b) Observe that |Re(z1)| = |a| = √
a2 ≤ √

a2 + b2 = |z1| and
|Im(z1)| = |b| = √

b2 ≤ √
a2 + b2 = |z1|.

(c) Observe that |z1| = √
a2 + b2 =

√
(−a)2 + (−b)2 = | − z1| and

|z1| = √
a2 + b2 =

√
a2 + (−b)2 = |z1|.

(d) Observe that

|z1z2| = |(a + bi)(c + di)| = |(ac − bd) + (ad + bc)i|

=
√

(ac − bd)2 + (ad + bc)2 =
√

(a2 + b2)(c2 + d2)

= |z1||z2|.
Also,∣∣∣∣ z1

z2

∣∣∣∣ =
∣∣∣∣a + bi
c + di

∣∣∣∣ =
∣∣∣∣ (a + bi)(c − di)
(c + di)(c − di)

∣∣∣∣

=
∣∣∣∣ (ac + bd) + (bc − ad)i

c2 + d2

∣∣∣∣ =
√

(a2 + b2)(c2 + d2)
c2 + d2

=
√

a2 + b2

√
c2 + d2

= |z1|
|z2| .

18.87 Solution

(a) By Exercise 18.86(a),

|z| = |(1 −
√

3i)(4 + 3i)(12 − 5i)|
= |1 −

√
3i||4 + 3i||12 − 5i| = 2 · 5 · 13 = 130.

(b) By Exercise 18.86(b), |z| = |(3 − i)6| = |3 − i|6 = √
10

6 = 1000. �
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18.89 Proof Let z1, z2 ∈ C. By Exercise 18.88, when n = 2,
|z1| = |(z1 − z2) + z2| ≤ |z1 − z2| + |z2|.

Therefore, |z1 − z2| ≥ |z1| − |z2|.
18.91 Solution

(a) For the complex number
√

3 + i, x = √
3, y = 1 and r = √

x2 + y2 = 2. Also, cos θ = x/r = √
3/2,

sin θ = y/r = 1/2 and tan θ = y/x = 1/
√

3. Since θ is an angle in the first quadrant, θ = π

6 . Therefore,√
3 + i = r(cos θ + i sin θ ) = 2

(
cos π

6 + i sin π

6

)
.

(b) For −√
3 − i, x = −√

3, y = −1 and r = 2. Also, cos θ = −√
3/2, sin θ = −1/2 and tan θ = 1/

√
3.

Since θ is in the 3rd quadrant, θ = 7π

6 . Therefore, −√
3 − i = 2

(
cos 7π

6 + i sin 7π

6

)
.

(c) For 1 − √
3i, x = 1, y = −√

3 and r = 2. Also, cos θ = 1/2, sin θ = −√
3/2 and tan θ = −√

3. Since θ

is in the 4th quadrant, θ = − π

3 . Therefore, 1 − √
3i = 2

(
cos(− π

3 ) + i sin(− π

3 )
)
.

(d) 5 = 5(cos 0 + i sin 0).

(e) For 4 − 4i, x = 4, y = −4 and r = 4
√

2. Also, cos θ = 1/
√

2, sin θ = −1/
√

2 and tan θ = −1. Since θ is
in the 4th quadrant, θ = − π

4 . Therefore, 4 − 4i = 4
√

2
(
cos(− π

4 ) + i sin(− π

4 )
)
.

(f) For 2
√

3 − 2i, x = 2
√

3, y = −2 and r = 4. Thus, cos θ = √
3/2, sin θ = −1/2 and tan θ = −1/

√
3.

Since θ is in the 4th quadrant, θ = − π

6 . So 2
√

3 − 2i = 4
(
cos(− π

6 ) + i sin(− π

6 )
)
. �

18.93 Solution

(a)
√

2
(
cos π

4 + i sin π

4

) = √
2

(
1√
2

+ 1√
2
i
)

= 1 + i

(b) 2
(
cos(− π

3 ) + i sin(− π

3 )
) = 2

(
1
2 −

√
3

2 i
)

= 1 − √
3i

(c) 2
(
cos 5π

6 + i sin 5π

6

) = 2
(
−

√
3

2 + 1
2 i

)
= −√

3 + i

(d) 4 (cos π + i sin π ) = 4(−1) = −4. �

18.95 Solution Here x = −1, y = −√
3 and r = √

x2 + y2 = 2. Thus, cos θ = −1/2, sin θ = −√
3/2 and

tan θ = √
3. Since θ is an angle in the 3rd quadrant, θ = 4π

3 . Therefore, −1 − √
3i = 2

(
cos 4π

3 + i sin 4π

3

)
.

Hence,

(−1 −
√

3i)12 =
[

2(cos
4π

3
+ i sin

4π

3
)
]12

= 212(cos 16π + i sin 16π )

= 4096. �

18.97 Solution The roots of z6 − 1 = 0 are cos 0 + i sin 0 = 1, cos π

3 + i sin π

3 = 1
2 +

√
3

2 i,

cos 2π

3 + i sin 2π

3 = − 1
2 +

√
3

2 i, cos π + i sin π = −1, cos 4π

3 + i sin 4π

3 = − 1
2 −

√
3

2 i and

cos 5π

3 + i sin 5π

3 = 1
2 −

√
3

2 i. �
18.99 Solution Since 1√

2
+ 1√

2
i = cos π

4 + i sin π

4 , it follows that

α =
(

cos
π

4
+ i sin

π

4

)8
= cos 2π + i sin 2π = 1.

We therefore seek the eight roots of z8 − α = z8 − 1 = 0 or equivalently of z8 = 1. Since 1 = cos 0 + i sin 0,
the roots are

zk = cos
(

0 + 2kπ
8

)
+ i sin

(
0 + 2kπ

8

)
for k ∈ {0, 1, 2 . . . , 7}.

Hence z0 = 1, z1 = 1√
2

+ 1√
2
i, z2 = i, z3 = − 1√

2
+ 1√

2
i, z4 = −1, z5 = − 1√

2
− 1√

2
i, z6 = −i and

z7 = 1√
2

− 1√
2
i. �
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12 Answers and Hints to Selected Odd-Numbered Exercises in Chapters 16–19

18.101 Solution

(a) For the complex number 3 + 4i, it follows that x = 3, y = 4 and r = √
x2 + y2 = 5. Thus,

cos θ = x/r = 3/5, sin θ = y/r = 4/5 and tan θ = y/x = 4/3. So θ = arctan( 4
3 ). Therefore,

3 + 4i = 5ei arctan(4/3).

(b) For the complex number 2 − 2i, it follows that x = 2, y = −2 and r = 2
√

2. So θ = − π

4 . Therefore,

2 − 2i = 2
√

2e− iπ
4 .

(c) For the complex number −√
3 + i, it follows that x = −√

3, y = 1 and r = 2. Hence,
tan θ = y/x = −1/

√
3 and so θ = 5π

6 . Therefore, −√
3 + i = 2ei 5π

6 . �

18.103 Solution We seek the two roots of the equation

z2 = 3e
π
3 i = 3

(
cos

π

3
+ i sin

π

3

)

= 3

(
1
2

+
√

3
2

i

)
= 3

2
+ 3

√
3

2
i.

The two roots are

zk =
√

3
(

cos
π

3 + 2kπ

2
+ i sin

π

3 + 2kπ

2

)
for k = 0, 1.

Hence,

z0 =
√

3
(

cos
π

6
+ i sin

π

6

)
=

√
3

(√
3

2
+ 1

2
i

)
= 3

2
+

√
3

2
i

z1 =
√

3
(

cos
7π

6
+ i sin

7π

6

)
=

√
3

(
−

√
3

2
− 1

2
i

)
= −3

2
−

√
3

2
i �

EXERCISES FOR CHAPTER 19

19.1 (a) Property (1) is not satisfied. For example, d(2, 1) = −1 < 0.
Property (2) is satisfied since d(x, y) = y − x = 0 if and only if x = y.
Property (3) is not satisfied. For example, d(2, 1) = −1 and d(1, 2) = 1.
Property (4) is satisfied since d(x, y) + d(y, z) = (y − x) + (z − y) = z − x = d(x, z).

(b) Since d(x, y) = (x − y) + (y − x) = 0, property (1) is satisfied.
Since d(1, 2) = 0 and 1 �= 2, property (2) is not satisfied.
Since d(x, y) = d(y, x) = 0, property (3) is satisfied.
Since d(x, y) + d(y, z) = d(x, z) = 0, property (4) is satisfied.

19.3 Hint: For P1 = (x1, y1) and P2 = (x2, y2), d′(P1, P2) = d(x1, x2) + d(y1, y2) ≥ 0 + 0 = 0, so (1) is satisfied. If
P1 = P2, then x1 = x2 and y1 = y2. Thus, d′(P1, P2) = d(x1, x2) + d(y1, y2) = 0 + 0 = 0. Conversely, if
d′(P1, P2) = 0, then d(x1, x2) + d(y1, y2) = 0. Since d(x1, x2) ≥ 0 and d(y1, y2) ≥ 0, it follows that
d(x1, x2) = 0 and d(y1, y2) = 0. So, x1 = x2 and y1 = y2 and it follows that P1 = P2; so (2) is satisfied. Now
properties (3) and (4) remain to be considered.

19.5 Hint: It is straightforward to show that properties (1)–(3) are satisfied. So, only property (4) needs to be
investigated. Consider d(x, y) for various pairs x, y of elements of A.

19.7 (a) Let P1 = (1, 2) and P2 = (1, 3). Since d(P1, P2) = 0 and P1 �= P2, it follows that (R2, d) is not a metric
space.

19.9 (a) Hint: Consider beginning a proof as follows: Let O be an open set in (R2, d). To show that O is open in
(R2, d′), we show that every point P0 = (x0, y0) is the center of an open sphere in (R2, d′) that is contained in O.
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Exercises for Chapter 19 13

Since O is open in (R2, d), there exists a real number r > 0 such that Sr(P0) ⊆ O. It remains to show that
S′

r(P0) = {P ∈ R2 : d′(P, P0) < r} is contained in Sr(P0).
19.11 (a) Hint: Consider beginning a proof as follows: Let P0 = (x0, y0) ∈ R2, and let ε > 0 be given. We show that

there exists δ > 0 such that if d(P, P0) < δ, where P = (x, y), then d′( f (P), f (P0)) < ε. Notice that
d(P, P0) = |x − x0| + |y − y0| and d′( f (P), f (P0)) = ∣∣ 1

2 (x − y) − 1
2 (x0 − y0)

∣∣.
19.13 (a) No, since X /∈ S1.

(b) No, since {a, b} ∩ {a, c} = {a} /∈ S2.
(c) Yes.

19.17 Hint: Consider beginning a proof as follows: Observe that the result is true if |X | ≤ 1. So we may assume that
|X | ≥ 2. Assume that (X, τ ) is a metric space, say (X, d). First we show that {a} is open for every a ∈ X . Let
r = min{d(x, a) : x ∈ X − {a}}. Since X − {a} is finite, r > 0. Then Sr(a) = {a} is open. Now complete the
proof of this implication.

For the converse, assume that (X, τ ) is a discrete topological space. Then τ = P (X ). Define the “discrete”
metric d on X by d(x, y) = 1 if x �= y and d(x, y) = 0 if x = y.

19.19 Hint: It is useful to prove the following Lemma: If O1, O1, . . . , On are countable sets, where n ∈ N, then
∪n

i=1Oi is countable.
19.21 Let a and b be distinct real numbers, where, say a < b, and let Oa and Ob be open sets containing a and b,

respectively. Since (a, ∞) ⊂ Oa and (b,∞) ⊂ Ob, it follows that (b, ∞) ⊂ Oa ∩ Ob. So, Oa ∩ Ob �= ∅.
19.23 We claim that f (1) = 1.

Proof Let f (a) = 1. Since {1} is an open set and f is continuous, it follows that f −1({1}) = {a} is open.
Since 1 ∈ {a}, it follows that a = 1. Thus, f (1) = 1.

19.27 (3) occurs. The fact that O1, O2, . . . , On (n ∈ N) are infinite sets does not imply that ∩α∈IOα is infinite. For
example, let X = Z, n = 2, O1 = {k ∈ Z : k ≥ 0} and O2 = {k ∈ Z : k ≤ 0}. Then O1 and O2 are infinite, but
O1 ∩ O2 = {0}.

19.29 (a) Solution The statement is true.
Proof Let b ∈ X − {a}, and let d(b, a) = r. Then the open sphere Sr(b) is contained in X − {a}.

19.31 The statement is false. Now a counterexample must be found.
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Index of Symbols

a ∈ A, a /∈ A, 14
∅, 15
�, 15, 86
{x : p(x)}, 15
|x|, 15, 115
N, Z, Q, I, R, R+, C, 16–17
|S|, 16, 279
A ⊆ B, C �⊆ D, 18–19
(a, b), [a, b], [a, b), (a, b], (−∞, a)

(−∞, a], (a, ∞), [a, ∞),
(−∞,∞), 20

A = B, A �= B, 20–21
S ⊂ T , 21
P (A), 21, 293
A ∪ B, 23
A ∩ B, 23
A − B, 24
A, 24

n⋃
i=1

Ai, 27

n⋂
i=1

Ai, 28

{Sα}α∈I , 28⋃
α∈I

Sα , 29

⋂
α∈I

Sα , 29

A × B, 33
T , F , 38

∼ P, 42
P ∨ Q, P ∧ Q, 43–44
P ⇒ Q, 45–46
P ⇔ Q, 53–54
R ≡ S, 60
∀, ∃, 65–66, 205
, 83

a | b, a � b, 105, 240
a ≡ b (mod n), 110, 240
a �≡ b (mod n), 110
n!, 165, 341
�, 207
�x�, 208, 336, 367
a R b, a �R b, 224
dom(R), range(R), 225
R−1, 225, 267–268
[a], 230
Zn, 245
f : A → B, 251
dom( f ), range( f ), 251
f (a), 251
f (C), 253
f −1(b), f −1(D), 253
BA, 254
2A, 254
iA, 260
f + g, f g, 263
g ◦ f , 263
f −1, 268–269
Sn, 273

kZ, kN, 283
Q+, 284
|A| < |B|, |A| ≤ |B|, 294
ℵo, 294
c, 294
f n, 297
�x�, 301
(a, b), gcd(a, b), 310
P(n, r), 343
C(n, r),

(n
r

)
, 344

{an}, 365
lim

n→∞
an = L, 367

lim
n→∞

an = ∞, 372
∞∑

k=1

ak, 373

lim
x→a

f (x) = L, 379

f ′(a), 395
R∗, 401
M2(R), 401
FR, 401
(S, ∗), 402
e, 406
Z∗

n, 407
M∗

2 (R), 409
SA, 411
a−1, 416
Z(G), 420
Z(a), 428

486
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Index

Aaron, Hank, 323
Abel, Niels Henrik, 407, 413
Abelian group, 407
Absolute value, 15, 115
Abstract algebra, 400
Addition

closed under, 245
Principle, 330
well-defined, 246
in Zn, 245

Aleph null, 294
Algebra, 400

abstract, 400
modern, 400

Algebraic structure, 402
Algorithm

Division, 241, 305–308
Division (general form), 307
Euclidean, 312–315

Alternate Form of Mathematical
Induction, 170

Analysis, proof, 86
Anchor (of induction), 154
And, 44
Appel, Kenneth, 202
Arithmetic mean, 116
Asch, Scholem, 4
Associative

algebraic structure, 402
composition of functions, 266

Associative laws
in a group, 407
set operations, 121
statements, 62

Associative properties
addition in Zn, 247
multiplication in Zn, 247

Assumption, overriding, 91
Average, 116
Axiom, 81

of choice, 299

Bacon, Francis, 5
Base step (of induction), 154
Basis step (of induction), 154
Bernoulli, Johann, 253
Bernstein, Felix, 299

Biconditional, 53–55, 182
Bijective functions, 259–262
Binary digit, 328
Binary operation, 400–404

closed under a, 401
Binomial Theorem, 352–355
Bit, 328
Bit string, n-, 329
Bolzano, Bernhard, 278
Bounded function, 386

Calculus,
continuity, 392–394
differentiability, 395–397
infinite series, 373–377
limits of functions, 378–391
limits of sequences, 365–372

Cancellation Law (in groups), 415
Left, 415
Right, 415

Canonical factorization, 319–320
Cantor, Georg, 294, 298
Cardinal number, 16
Cardinalities of sets, 16, 278–300

comparing, 293–295
countable sets, 281
denumerable sets, 280–287
numerically equivalent sets,

279–280
Schröder-Bernstein Theorem,

296–300
uncountable sets, 281, 288–292

Cartesian product of sets, 33–34,
122–123

Cases, 94
proof by, 94–97, 184

Cauchy, Augustin-Louis, 373
Ceiling (of a real number), 208, 367
Center (of a group), 420
Centralizer (of a group element), 428
Characterization, 76–77
Characterized by, 76
n Choose r, 344
Circular relation, 235
Class

equivalence, 230, 235–239
residue, 245

Closed
interval, 20
under addition, 245
under a binary operation, 401
under multiplication, 245

Codomain of a function, 251
Cohen, Paul, 294
Combination, linear, 310
Combination(s), 344–346

r-, 344
with repetition, 360–362

Combinatorial proof, 345
Combinatorics, 327–362
Common divisor, 310

greatest, 310–312
Commutative algebraic structure,

402
Commutative laws

set operations, 120
statements, 62

Commutative properties
addition in Zn, 247
multiplication in Zn, 247

Commute, 402
Comparing cardinalities of sets,

293–295
Complement, 24, 117

relative, 25, 117
Complex number, 17
Component statement, 57
Composite number, 303
Composition (of functions), 263–266
Compound statement, 57
Conclusion, 50
Conditional statement, 45
Congruence modulo n, 110–112,

239–244
Congruent modulo n, 110, 240
Conjecture, 200–203
Conjunction (of two statements), 44
Connective, logical, 57
Continuous functions, 392–394
Continuum, 294

Hypothesis, 294
Contradiction, 58

proof by, 131–137, 185
Contrapositive, 89

proof by, 89–94, 182

487
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488 Index

Convergent
sequence, 367–369
series, 373

Converse, 53
Corollary, 81
Correspondence, one-to-one, 259
Coset, left, 421
Countable set, 281
Countably infinite set, 281
Counterexample, 127–131

minimum, 175
proof by minimum, 174–177

Cover, 98

Declarative sentence, 38
Decreasing sequence, 340
Dedekind, Richard, 254, 278
de Giere, Carol, 2–3
Deleted neighborhood, 378
De Morgan’s laws

set operations, 121, 167–168
statements, 62

Denumerable sets, 280–287
Derangement, 364
Derivative, 395
Diagram

tree, 328
Venn, 20

Difference (of two sets), 24, 117
Differentiable functions, 395–397
Direct proof, 85–88, 182
Dirichlet, Johann, 337
Dirichlet, Peter, 254
Disjoint sets, 24

pairwise, 31
Disjunction (of two statements),

43–44
Display, 8–9
Disproof of existence statements,

146–148
Disraeli, Benjamin, 4
Distance (between two numbers),

228–229, 366
Distributive laws

set operations, 121
statements, 62

Distributive property
in Zn, 247

Divergent
sequence, 367
series, 373

Diverges to infinity, 372
Divides, 105, 240
Divisibility

by 2 and powers of 2, 320
by 3 and 9, 320
by 5, 320
by 11, 320

properties of integers, 105–109,
303–304

Division Algorithm, 241, 305–308
general form, 307

Divisor(s), 105
common, 310
greatest common, 310–312
proper, 322
sums of, 322–323

Domain
of a function, 251
of a relation, 225
of a variable in an open sentence,

39
Domination number, 263
Dummy variables, 29

Einstein, Albert, 5
Element

identity (in an algebraic structure),
402

identity (in a group), 407
least, 152
minimum, 152
of a set, 14
smallest, 152
unique, 143

Ellipsis, 15
Empty set, 15
End of proof, 83
Equal

functions, 252
sets, 20

Equilateral triangle, 50
Equivalence

class, 230, 235–239
relations, 230–234

Equivalent, 54
logically, 60–64
statements, 54

Equivalent sets
numerically, 279–280

Erdős, Paul, 323
Euclid, 323
Euclidean Algorithm, 312–315
Euclid’s Lemma, 316
Euler, Leonhard, 203, 253–254, 323
Euler’s Theorem, 203
Evaluations, proof, 98–100, 189–193
Even integer, 85
Existence

proofs, 141–145, 187
theorem, 141

Existential quantifier, 66
Extending results, 215

Fact, 81
Factorial, 165

Factorization, canonical, 319–320
False (truth value), 38
Faulkner, William, 4
Fermat, Pierre, 202
Fermat numbers, 202
Fermat’s Conjecture, 203
Fermat’s Last Theorem, 202
Fibonacci

numbers 174
sequence 189, 195

Finite
group, 407
set, 16, 279

Finite Induction
Principle of, 178–179

Fitzgerald, F. Scott, 4
Floor (of a real number), 301
Four Color

Conjecture, 202
Theorem, 202

Franklin, Benjamin, 4
Function(s), 251–273

bijective, 259–262
bounded, 386
composition of, 263–266
continuous, 392–394
definition of, 251–254
differentiable, 395–397
equal, 252
identity, 260
injective, 256
inverse, 267–273
limits of, 378–391
one-to-one, 256–257
one-to-one correspondence, 259
onto, 257
restriction of, 296
surjective, 257
well-defined, 262

Fundamental Theorem of
Arithmetic, 318–321

Galilei, Galileo, 278, 281
Galois, Évariste, 413–414
Gauss, Carl Friedrich, 156, 278
Gaussian integer, 287
General Addition Principle, 330–331
General Multiplication Principle,

328–330
Generality, without loss of, 96
Generalization, 215
Geometric mean, 116
Gödel, Kurt, 294
Goldbach, Christian, 203–204
Goldbach’s Conjecture, 203
Greatest common divisor, 310–312
Group(s), 405–417

abelian, 407
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center of, 420
finite, 407
infinite, 407
isomorphic, 423–427
nonabelian, 407
order of, 407
permutation, 411–414
symmetric, 411
table, 407

Guthrie, Francis, 201–202

Haken, Wolfgang, 202
Half-closed interval, 20
Half-open interval, 20
Halmos, Paul, 4
Harary, Frank, 4
Harmonic series, 376
Hawthorne, Nathaniel, 4
Hemingway, Ernest, 5
Hilbert, David, 4, 141
Hockey Stick Theorem, 350
Hypothesis, 50

Continuum, 294
induction, 154
inductive, 154

Idempotent element (of a group),
428

Identity
in an algebraic structure, 402
function, 260
in a group, 407

If and only if, 54, 76–77
If, then, 45–47
Iff, 76
Image

inverse, 253
of an element, 251
of a set, 253

Implication, 45–47
contrapositive of, 89
converse of, 53
inverse of, 61

Implies, 45
Inclusion-Exclusion, Principle of,

333–335
Increasing sequence, 340
Index set, 28
Indexed collection of sets, 27–30
Induction

Alternate Form of, 170
Finite, Principle of, 178–179
hypothesis, 154
mathematical, 152–174, 188
Principle of Mathematical,

152–169, 188
proof, 154, 188–189
Second Principle of, 170

Strong Form of, 170
Strong Principle of Mathematical,

170–174, 189
Inductive

hypothesis, 154
step, 154

Infinite
group, 407
series, 373–377

Infinite set, 16, 279
countably, 281

Infinity, diverges to, 372
Initial value, 171
Injective function, 256
Integer, 16

even, 85
Gaussian, 287
lucky, 324
odd, 86
perfect, 322

Integers modulo n, 245–247
Intermediate Value Theorem, 143
Intersection

of indexed collection of sets,
29

of two sets, 23, 117
Interval

closed, 20
half-closed interval, 20
half-open interval, 20
open, 20

Inverse
in an algebraic structure, 402
functions, 267–273
in a group, 407
of an implication, 61
relation, 225, 267

Inverse image of an element, 253
Irrational number, 16
Isomorphic groups, 423–427
Isomorphism, 425
Isosceles triangle, 50

Johnson, Samuel, 4

Kazin, Alfred, 4
Knuth, Donald E., 5

Lagrange, Joseph-Louis, 422
Lagrange’s Theorem, 422
Lamport, Leslie, 5
Lattice point, 339
Least element, 152
Left Cancellation Law in Groups,

415
Left coset, 421
Lemma, 81

Length of a string, 328
n-Letter word, 347
Limits

of functions, 378–391
of sequences, 365–372

Linear combination (of two
integers), 310

Liouville, Joseph, 413
Logic, 38–77
Logical connective, 57
Logically equivalent, 60–64
Lucky integer, 324

Map, 251
Mapping, 251
Mathematical Induction, 152–169,

189
Principle of, 152–169, 188
Strong Principle of, 170–174, 189

Maugham, W. Somerset, 5
Mean

arithmetic, 116
geometric, 116

Member (of a set), 14
Mersenne prime, 323
Midpoint, 339
Minimum counterexample, 175

proof by, 174–177
Minimum element, 152
Modern algebra, 400
Modulo n, congruent to, 110, 240
Modus Ponens, 59
Multiple, 105
Multiplication

closed under, 245
General, Principle, 328–330
Principle, 327–328
well-defined, 246
in Zn, 245

Multiset, 359

Natural number, 16
n-Bit, 329
n-Bit string, 329
n Choose r, 344
Necessary, 47

and sufficient, 54
Negation (of a statement), 41–42
Neighborhood, deleted, 378
Nonabelian group, 407
Not, 41
Null set, 15
Number

cardinal, 16
complex, 17
composite, 303
irrational, 16
natural, 16
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Number (Continued)
prime, 202, 303
rational, 16
real, 16

Number theory, 303–323
Numerically equivalent sets,

279–280

Observation, 81
Odd integer, 86
One-to-one

correspondence, 259
function, 256–257

Only if, 47
Onto function, 257
Open interval, 20
Open sentence, 39

over domain, 39
Operation(s)

binary, 400–404
-preserving, 425
sets, 23–26, 117–121
table, 407

Opposite parity, 95
Or, 43
Orbit, 414
Order (of a group), 407
Ordered pair, 33
Ordered partition, 361
Overriding assumption, 91

Pairwise disjoint sets, 31
Palindrome, 200
Parity

opposite, 95
same, 95

Partial sums
sequence of, 373

Partition of a set, 31–32, 236
ordered, 361

Pascal, Blaise, 4, 202, 348
Pascal triangle, 348–349
Pascal’s Identity, 349–350, 356
Perfect integer, 322
Permutation, 272–273, 340–344, 411

group, 411–414
r-, 343
with repetition, 357–359

Pigeonhole Principle, 336–339
Strong, 338–339

Positive integer, 16
Power set (of a set), 21
Premise, 50
Prime(s), 202, 303

Mersenne, 323
relatively, 315–317
twin, 41, 321

Primitive Pythagorean triple, 318

Principle
Addition, 330
Finite Induction, 178–179
General Addition, 330–331
General Multiplication, 328–330
Inclusion-Exclusion, 333–335
Mathematical Induction, 152–169,

188
Multiplication, 327–328
Pigeonhole, 336–339
Strong, Mathematical Induction,

170–174, 189
Strong Pigeonhole, 338
Well-Ordering, 153

Prisoners Problem, Three, 136–137
Product, Cartesian, 33–34, 122–123
Proof

analysis, 86
by cases, 94–97, 184
by contradiction, 131–137, 185
by contrapositive, 89–94, 182
by finite induction, 178–179
by induction, 152–169, 188
by mathematical induction,

152–169, 188
by minimum counterexample,

174–177
combinatorial, 345
direct, 85–88, 182
evaluations, 98–100, 189–193
existence, 141–145, 187
strategy, 86
trivial, 82–83
vacuous, 83–84

Proof techniques review, 138–140
Proper

divisor, 322
subset, 21

Proposition, 81
Pythagorean triple, 194, 202, 318

primitive, 318

Q.E.D., 83
Quantification, 65
Quantified statement, 65–73,

205–209
Quantifier

existential, 66
universal, 65

Quotient, 305

Range
of a function, 251
of a relation, 225

Rational number, 16
Real number, 16
Recurrence relation, 171
Recursively defined sequence, 171

Reflexive relation, 226
Related, 224
Relation(s), 224–229

circular, 235
equivalence, 230–234
from one set to another, 224
inverse, 225, 267
on a set, 225
recurrence, 171
reflexive, 226
sequential, 250
symmetric, 226
transitive, 227

Relative complement, 25, 117
Relatively prime (integers), 315–317
Remainder, 305
Residue class, 245
Restriction (of a function), 296
Result, 81
Right Cancellation Law in Groups,

415
Root of a tree, 328
Rowling, J. K., 2
Ruth, Babe, 323
Ruth-Aaron Pairs (of positive

integers), 323

Same cardinality, 279
Same parity, 95
Schlossberg, Edwin, 4
Schröder, Ernst, 299
Schröder-Bernstein Theorem,

296–300
Schwartz, Stephen, 2–3
Second Principle of Mathematical

Induction, 170
Selection, r-, 344
Sentence(s)

declarative, 38
open, 39

Sequence(s)
convergent, 367–369
decreasing, 340
divergent, 367
Fibonacci, 189, 195–196
increasing, 340
limits of, 365–372
of partial sums (of a series), 373
of real numbers, 365
recursively defined, 171
terms of, 365
unimodal, 357

Sequential relation 250
Series, 373

convergent, 373
divergent, 373
harmonic, 376
infinite, 373–377
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sum of, 373
terms of, 373

Set(s), 14–34
cardinalities of, 16, 278–300
Cartesian product of, 33–34,

122–123
complement of, 24, 117
countable, 281
countably infinite, 281
denumerable, 280–287
describing of, 14–17
difference of, 24, 117
disjoint, 24
element of, 14
empty, 15
equal, 20
finite, 16, 279
index, 28
indexed collection of, 27–30
infinite, 16, 279
intersection of, 23, 117
member of, 14
null, 15
numerically equivalent, 279–280
operations on, 23–26, 117–121
pairwise disjoint, 31
partition of, 31–32, 236
power, 21
relative complement, 25, 117
uncountable, 281, 288–292
union of, 23, 117
universal, 20
void, 15
well-ordered, 153

Smaller cardinality, 294
Smallest element, 152
Stabilizer, 421
Statement(s), 38–40

biconditional, 53–55
characterization of, 76–77
component, 57
compound, 57
conditional, 45
conjunction of, 44
disjunction of, 43
equivalent, 54
implication of, 45–52
logically equivalent, 60–64
negation of, 41–42
quantified, 65–73, 205–209
testing, 211–218
truth value of, 38

Strategy
proof, 86
for a solution, 211–214

String, 328
bit string, n-, 329
length of, 328

Strong Form of Induction, 170
Strong Pigeonhole Principle,

338–339
Strong Principle of Mathematical

Induction, 170–174, 189
Subcases, 94
Subgroup, 418–422
Subgroup Test, 418–419
Subsequence, 340
Subset(s), 18–21

proper, 21
Such that, 207
Sufficient, 47

necessary and, 54
Sum (of a series), 373
Surjective function, 257
Syllogism, 59
Symbols

consistent, 8
frozen, 8
meaning of, 8
proper use of, 6–8
sentence structure with, 6–7
words separated from, 7

Symmetric
group, 411
relation, 226

Table
group, 407
operation, 407
truth, 40

Tautology, 57
Terms

of a sequence, 365
of a series, 373

Testing statements, 211–218
Theorem, 81

existence, 141
Three Prisoners Problem, 136–137
Transitive relation, 227
Tree diagram, 328

root, 328
Triangle

equilateral, 50

isosceles, 50
Pascal, 348–349

Triangle inequality, 115–116
Trivial proof, 82–83
True (truth value), 38
Truth

table, 40
value, 38

Twain, Mark, 4
Twin primes, 41, 321

Uncountable set, 281, 288–292
Unimodal sequence, 357
Union

of indexed collection of sets,
29

of two sets, 23, 117
Unique element, 143
Uniqueness, 143
Universal

quantifier, 65
set, 20

Vacuous proof, 83–84
Vacuously, 84
Variables, dummy, 29
Venn diagram, 20–21
Void set, 15

Well-defined
addition in Zn, 246
function, 262
multiplication in Zn, 246

Well-ordered set, 153
Well-Ordering Principle, 153
Wiles, Andrew, 202
Without loss of generality, 96
WLOG, 96
WOLOG, 96
Word, n-letter, 347
Writing

common words and phrases,
10–12

displays, 8–9
mathematical, 5–12
mathematical expressions, 8–9
symbols, 6–8

Zermelo, Ernst, 299
Zhang, Yitang, 321
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