
Random Walks on Context Spaces: Towards an Explanation of the

Mysteries of Semantic Word Embeddings

Sanjeev Arora ∗ Yuanzhi Li † Yingyu Liang ‡ Tengyu Ma § Andrej Risteski ¶

February 13, 2015

Abstract

The papers of Mikolov et al. 2013 as well as subsequent works have led to dramatic progress in
solving word analogy tasks using semantic word embeddings. This leverages linear structure that is
often found in the word embeddings, which is surprising since the training method is usually nonlinear.
There were attempts —notably by Levy and Goldberg and Pennington et al.— to explain how this
linear structure arises. The current paper points out the gaps in these explanations and provides a more
complete explanation using a loglinear generative model for the corpus that directly models the latent
semantic structure in words. The novel methodological twist is that instead of trying to fit the best model
parameters to the data, a rigorous mathematical analysis is performed using the model priors to arrive at
a simple closed form expression that approximately relates co-occurrence statistics and word embeddings.
This expression closely corresponds to —and a bit simpler than— the existing training methods, and
leads to good solutions to analogy tasks. Empirical support is provided also for the validity of the
modeling assumptions.

This methodology of letting some mathematical analysis substitute for some of the computational
difficulty may be useful in other settings with generative models.

1 Introduction

Embeddings of words as vectors in a relatively low-dimensional space go back several decades in linguis-
tics (Deerwester et al., 1990; Hinton, 1984). Building such representations follows the well-known philosophy
that the meaning of a word is defined by “the company it keeps,” namely, co-occurrence statistics (Firth,
1957) (see (Rohde et al., 2006) for a survey). Past methods to obtain word embeddings include matrix
factorization methods (e.g., (Deerwester et al., 1990)) neural networks (e.g., (Rumelhart et al., 1988; Bengio
et al., 2006; Collobert and Weston, 2008)) and energy-based models.

A surprising discovery of Mikolov et al. (2013a;b) was that word embeddings created by a recursive
neural net (RNN) as well as by a related energy-based model called word2vec exhibit additional linear
structure, which allows easy solutions to analogy questions of the form “man:woman::king:??.” Specifically,
queen happens to be the word whose vector vqueen is most similar to the vector vking − vman + vwoman.
(Note that the two vectors may only make an angle of say 45 degrees, but that is still a significant overlap
in 300-dimensional space.)

A flurry of subsequent work exhibited similar linear structure in embeddings obtained from other methods:
noise-contrastive estimation (Mnih and Kavukcuoglu, 2013), a specific weighted least squares model that
trains on the logarithm of word-word co-occurrence counts (Pennington et al., 2014), and large-dimensional
embeddings that explicitly encode co-occurrence statistics (Levy and Goldberg, 2014a).

∗Princeton University, Computer Science Department. Email: arora@cs.princeton.edu.
†Princeton University, Computer Science Department. Email: yuanzhil@cs.princeton.edu
‡Princeton University, Computer Science Department. Email: yingyul@cs.princeton.edu
§Princeton University, Computer Science Department. Email: tengyu@cs.princeton.edu
¶Princeton University, Computer Science Department. Email: risteski@cs.princeton.edu

1

ar
X

iv
:1

50
2.

03
52

0v
1

 [
cs

.L
G

]
 1

2
Fe

b
20

15

This phenomenon is mysterious at several levels. First, linear relationships emerge organically in radically
different embedding methods, including highly nonlinear ones. Second, different methods yield fairly similar
success rates on analogy tasks. Together, these suggest that the linear structure must be somehow inherent in
the data itself. Levy and Goldberg (2014a) and Pennington et al. (2014) provide some intuitive justification
but these explanations are incomplete, as we will see. We give a new explanation that is also supported using
a new loglinear generative model for text data. While the model is interesting in itself (since all past work was
in the discriminative setting), the more important contribution is our analysis technique. Instead of following
the usual method of fitting the best model parameters to the data by bayesian methods, we do first a rigorous
mathematical analysis using the model priors to arrive at a simple closed form expression that approximately
relates co-occurrence statistics and word embeddings. This expression exactly corresponds to the training
methods suggested –with heuristic justifications—in (Levy and Goldberg, 2014a) and (Pennington et al.,
2014).

This generative model and its rigorous analysis may be useful in other domains where loglinear models are
used. As a side product our generative model also suggests perhaps the simplest method thus far for finding
word embeddings —related to but slightly simpler than the GLOVE model (Pennington et al., 2014)—that
also solves analogy tasks pretty well (as reported in Section 5 and 6). The notable feature here is that this
training provably finds the near-optimum fit to the generative model.

2 Semantic embeddings: the mysteries and the explanation

A sequence of papers by Mikolov et al. (2011; 2013a;b) culminated in the skip-gram with negative-sampling
(SGNS) method, which we describe in the simplified formulation of (Goldberg and Levy, 2014). It utilizes
co-occurence statistics of words and contexts. A simple example of context for occurrence of a word w is a
pair (w′, k) where word w′ occurs with offset k ∈ {−2,−1, 1, 2} from w. (Other types of contexts can be
considered.) Their distribution is given a discriminative model:

Pr(D = 1|w,χ) =
1

1 + exp (−〈vw, vc〉)
(2.1)

where vw is the vector for word w and vχ for context χ and the event D = 1 means the pair (w,χ) is observed
in the corpus and D = 0 means it is not.

SGNS tries to maximize Pr(D = 1|w,χ) for observed (w,χ) pairs while maximizing Pr(D = 0|w,χ) for
randomly sampled “negative” examples, under the assumption that randomly selecting a context for a given
word is likely to result in an unobserved (w,χ) pair. The objective is the log likelihood.

The GloVe method (Pennington et al., 2014) does a more direct fit. If Xw,w′ denotes the co-occurrence
count for a pair of words w and w′, GloVe finds for each word w two low dimensional vectors vw, ṽw and
scalar bw, b̃w so as to minimize:

∑

w,w′

f(Xw,w′)(〈vw, ṽw′〉 − bw − b̃w′ − logXw,w′)2 (2.2)

where f(x) = min{(x/xmax)0.75, 1} with xmax = 100.
Once word vectors have been produced, the query to find solution d for the analogy task “a:b::c:??” is

the following, where vectors have been normalized so vd is a unit vector:

d = argmax
d
〈vd, vc + vb − va〉 (2.3)

= argmin
d
‖va − vb − vc + vd‖22 (2.4)

where the equality follows from ‖va − vb − vc + vd‖22 = ‖va − vb − vc‖22 + ‖vd‖22 + 2 〈va − vb − vc, vd〉 and

‖vd‖22 = 1.

2

We note that in the experiments essentially the same performance is achieved by (2.4) with unnormalized
vectors, which is more convenient for our analysis. Therefore, we will focus on this query in the following
discussions.

Intuitive justification: Both Pennington et al. (2014) and Levy and Goldberg (2014a) describe the
statistics intuition why the answer to the analogy “man:woman::king:??” must be queen. The reason is that
most contexts χ satisfy

p(χ | king)

p(χ | queen)
≈ p(χ | man)

p(χ | woman)
.

where p(w,χ) is the co-occurrence frequency of the pair (w,χ). Indeed, both ratios will be around 1 for most
contexts, e.g., walks or food, but will deviate from 1 when χ involves, say, dress, he, she, Elizabeth, Henry,
etc. Therefore, a reasonable strategy to solve the analogy is to find a word w that minimizes

∑

χ

(
log

(
p(χ | king)

p(χ | queen)

)
− log

(
p(χ | man)

p(χ | woman)

))2

(2.5)

Levy and Goldberg (2014a) therefore proposed a simple but high-dimensional embedding (introduced by
Church and Hanks (1990)) that explicitly encodes correlation statistics between words and contexts. The
vector for word w is indexed by all possible contexts, and the entry in coordinate χ is PMI(w,χ), which is

defined as log p(w,χ)
p(w)p(χ) . With this word embedding, the query expression (2.4) is easily verified to be equivalent

to (2.5). Thus explicit word embeddings should indeed solve analogies via linear algebraic queries, and they
do empirically.

The attempted unification: The above intuition only applies to a very high-dimensional embeddings
that explicitly encode correlations. Subsequently Levy and Goldberg (2014b) suggested that even methods
for producing low-dimensional embeddings must be capturing the essence of the above structure. Concretely,
they suggested that current methods yield vector embeddings for context χ and word w satisfying

〈vw, vχ〉 ≈ PMI(w,χ). (2.6)

(Similar postulates for cooccurence data occured in (Globerson et al., 2007), and of course in GloVe; see (2.2).)
They gave a heuristic argument that methods such as SGNS are implicitly doing this matrix factorization.
But mathematically their argument is quite incomplete since they were unable to argue about the actual
gradient and Hessian.

Even if Levy and Goldberg’s intuitive argument about SGNS (Levy and Goldberg, 2014b) could be made
rigorous (namely, that it does amount to low-rank matrix factorization) Mystery 1 would still remain: why
does this low-rank approximation help solve analogy tasks via the above linear algebraic queries? The inner
product of Levy and Goldberg’s explicit vectors for w,w′ is

∑
χ PMI(w,χ)PMI(w′, χ), which seems to

have no connection to inner product of word vectors obtained by the matrix approximation in (2.6). Thus
the matrix approximation does not seem to imply the hoped-for equivalence between the actual query (2.4)
and (2.5). A further Mystery 2 is that low-rank approximation to a matrix can in principle have high
entry-wise error —our experiments show it is 5% or even higher per entry in (2.6)—and the query (2.4)
involves 3 such inner products. A total error of 15% could in principle cripple the method but in practice
it doesn’t (Section 6 shows that the gap between the best and the second-best solution is not very large).
We will try to explain this as well as the mysterious shifts used in previous training objectives—presumably
discovered through trial and error—as in (2.2).

2.1 Our explanation of Mysteries 1 and 2

For ease of exposition we simplify the notion of context so that a context is just any word w′ appearing in
a small window around w. (Using more complicated notions of context provides only a small improvement
on analogy tasks.) This simplifies the PMI matrix proposed by Levy and Goldberg (2014b) and makes it
symmetric: each entry is indexed by pairs of words (w,w′) and contains PMI(w,w′). Let n denotes the
total number of words. We postulate the following.

3

Property A. Similar to (2.6), the PMI matrix is close to a positive semidefinite matrix of fairly low rank,
closer to log n than to n. This postulate yields natural word embeddings that are implicit in the
cooccurence data itself: PMI(w,w′) ≈ 〈vw, vw′〉.

Property B: The word vectors implicit in property A are approximately isotropic, meaning they have a
fairly uniform spatial distribution. We will use the standard mathematical formalization of spatial
uniformity, namely, that Ew[vwv

>
w] is approximately like the identity matrix I, in that every one of its

eigenvalues lies in [1, 1 + δ] for some small δ > 0.

Section 3 gives a plausible generative model for text corpora using log linear distributions, under which
both properties hold. Theorem 1 shows that (up to a constant shift logZ and a some small error)

log p(w,w′) ∝ ‖vw + v′w‖
2 − 2 logZ

and log p(w) ∝ ‖vw‖2 − logZ (2.7)

so we conclude that up to some error PMI(w,w′) ∝ 〈vw, vw′〉. (This is the basis for our training method in
Section 6.) The vectors vw are isotropic by model assumptions, so Property B holds.

The explanation to Mystery 1 uses Property B, specifically the following mathematical consequence of
isotropy: denoting Σ = Ew[vwv

T
w] we have for every vector v

‖v‖2 ≈ vTΣv (up to error 1 + δ)

= Ew[〈v, vw〉2].

Thus the query in (2.4) for solving analogy tasks turns into

argmin
d
‖va − vb − vc + vd‖22 (2.8)

≈ argmin
d

Ew (〈va, vw〉 − 〈vb, vw〉 − 〈vc, vw〉+ 〈vd, vw〉)2 (2.9)

The right hand side of the last expression is in turn close to (2.5) (where word w acts as context χ) since
matrix approximation tries to ensure 〈va, vw〉 ≈ PMI(a,w). This explains Mystery 1. Of course, (2.8)
only has to hold for the query vectors and not all vectors v, so weaker forms of isotropy could also suffice.
(Empirically, we find the Isotropy as defined holds with fairly small δ see Section 6.)

The above explanation also helps explain Mystery 2 since it shows that the query is effectively an
average over many contexts w’s, and this averaging helps lower error. Specifically, our training is using the
empirical value of PMI() whereas the model applies to some “ground truth ”value in an infinitely large
corpus. Thus each inner product on the right hand side of (2.9) has an inherent error due to sampling even
if the matrix approximation error were perfect. A simple argument (assuming sampling errors in entries
are pairwise independent and expectation 0) shows that the above averaging should reduce this error. Thus
isotropy of word vectors accounts for the stability of the entire setup.

The above description also clarifies the possible sources of overtraining that we actually observe: (i)
Theorem (2.7) only predicts an approximate low rank factorization of the PMI matrix so trying to fit
too closely doesn’t help and may hurt. (ii) If the word vectors are not low dimensional, they may not be
isotropic and hence linear algebraic queries like (2.4) no longer have an interpretation as approximate queries
like (2.9) to the word distribution. (iii) even if the model were exact, the empirical PMI matrix is only an
approximation to the ground truth PMI matrix, and the smaller a probability, the noisier the empirical
estimate. This means that instead of a low rank symmetric factorization (in other words, SVD) one needs
a weighted analog similar to (2.2). (See Section 5.) Technically this is NP-hard, but in this setting gradient
descent methods seem to do well. We further note that the Johnson-Lindenstrauss transform can also be
used to project the explicit vectors to low dimension while approximately preserving the inner product.
However, it has a quadratic dependence on the accuracy paparameter, so will not lead to vectors with as low
a dimension as low rank matrix factorization approaches will. Furthermore, it does not take into account
the weights.

4

3 Generative model

Markovian models with loglinear distributions are ubiquitous in language processing. Usually they express
observables in terms of past observables, such as expressing the probability of the next word as a function
of the previous two words. The intuition underlying semantic vector embeddings is that correlation among
observables captures underlying semantics. Here we try to capture this intuition more directly using a
generative model for text corpora that directly models latent semantic structure. Semantics is captured by a
real-valued vector called context, denoted c ∈ <d. The context vector ct at time t determines the probability
of generating various words at that time. The context vector undergoes continuous drift as the corpus
gets generated, and furthermore, this drift is a random walk in <d. The coordinates of the context vector
represent topics. If the ith coordinate of the context corresponds to gender, its value represents the extent
to which gender is being talked about at the moment. A positive value of this coordinate could correspond
to maleness —leading to an increase in the probability of producing words like he, king, man— and negative
value could correspond to femaleness —causing a probability increase for words like she, queen, woman.

To capture this word production behavior we use a log linear model: every word has a (time-invariant)
vector representation that captures its correlations with topics. Thus king could have a positive value in
the coordinate corresponding to gender and queen could have a negative value. If vw is a vector for a word
w and ct is the current context vector, the probability of generating word w at time t is proportional to
exp(〈ct, vw〉). Since the context vector only drifts slowly with time, this distribution is fairly stable in a
small window of text. Thus words w′, w that both overlap well with ct will tend to co-occur at time t.
If vw, vw′ overlap well with many contexts then this suggests some overlap between vw′ , vw as well. Thus
intuitively, cooccurence in the corpus captures some semantic similarity, though the precise relationship has
to be worked out.

CtCt−1 Ct+1

Wt−1 Wt Wt+1· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

Figure 1: Illustration of the HMM.

Combining familiar elements like HMMs and loglinear distribution, the above model is not surprising per
se. The dynamic topic model of (Blei and Lafferty, 2006) uses a similar notion of drift of topics, except the
word production model is linear in the context vector instead of loglinear. Lafferty’s linear chain CRF is a
more general loglinear model.

In fact we suspect others must have considered this model and discarded it for the following reasons: (a)
computational cost for such large corpora (b) the number of latent context vectors needs to be larger than
the corpus size (our model even allows them to be infinite) so the training would not be meaningful.

The novel twist here is what we do with the model. Instead of fitting using usual bayesian optimization,
we start with a specific prior for the markov chain (how the context vector drifts over time) and the model
parameters (how the word vectors are distributed in context space). We then analytically compute a simpler
closed form expression that approximately connects the model parameters to the observable statistics. This
simpler relation makes it much easier to solve the model on very large datasets. (This is reminiscent of
analyses of similar random walk models in finance such as Black-Scholes.) The analysis in some sense does
the heavy lifting by doing away with the partition function. Recall that in a loglinear model Pr[w|c] ∝
exp(〈vw, c〉) the actual probability is given by

Pr[w|c] =
exp(〈vw, c〉)∑
w exp(〈vw, c〉)

=
1

Zc
exp(〈vw, c〉); (3.1)

5

where Zc is the partition function, the usual source of much computational difficulty. Our analysis will
show that Zc does not vary much at all over time as the context shifts, which will simplify the rest of the
calculation, allowing us to conclude the simple properties of Theorem 1.
Model details: If the number of words is n, the ambient dimension of the space is d, say > log2 n and less
than

√
n. The set of context vectors is continuous and the random walk has a stationary distribution on it

that is a product distribution on coordinates. Concretely, say each coordinate is uniformly distributed in
[− 1√

d
, 1√

d
]. The walk can move in any direction with a probability that preserves the uniform distribution,

but at each step the drift in the context vector1 is much less than 1/ log n in `1 norm. This is still fast
enough to let the walk explore the space quickly.

Word vectors need to have noticeably varying lengths, to fit the empirical fact that word probabilities
satisfy a power law. We assume that word vectors are i.i.d generated by v = s · v̂ where v̂ is from spherical
gaussian distribution and s is a random scalar that has expectation and standard deviation less than

√
d

and is bounded by κ
√
d for constant κ. Basically, exp(κ2) turns out to be the dynamic range (i.e. max to

min ratio) between the word probabilities, so κ is some constant, say, 10.

4 Co-occurrence probability

Notation For this section, w is a word, vw its semantic vector, c is the context vector and T denotes the
entire corpus, with |T | as bigger than n and d.

As mentioned, we use a very simple notion of context, which is any word appearing in a small window
around w. Thus we are interested in understanding say p(w,w′), the probability that two words w,w′ occur
as a consecutive pair of words in the corpus (the same analysis works for pairs that appear in a small window).
Also let p(w) be the probability that w occurs at a certain time. Since the random walk on context vectors
is in its stationary distribution, these probabilities don’t depend on time t.

The following theorem characterizes this probability in terms of the underlying word vectors, and directly
leads to our training method in Section 6.

Theorem 1 With high probability (over the choices of vw’s), we have that for any two different words w
and w′

log p(w,w′) =
1

2d
‖vw + vw′‖2 − 2 logZ ± o(1) (4.1)

for some fixed constant Z. Moreover,

log(p(w)) =
1

2d
‖vw‖22 − logZ ± o(1). (4.2)

Note that since the word vectors have `2 norm roughly
√
d, for two typical word vectors vw, vw′ , ‖vw+vw′‖2

is of the order of Θ(d). Therefore the noise level o(1) is dominated by the leading term 1
2d‖vw +vw′‖2, which

is what we are going to fit.
Let c be the hidden context that determines the probability of word w, and c′ be the next one that

determines w′. We use p(c′|c) to denote the Markov kernel (transition matrix) of the markov chain. Let C
be the stationary distribution of context vector c.

Towards deriving the expression (4.1) for p(w,w′), we marginalize over the contexts c, c′ and then use
the independence of w,w′ conditioned on c, c′,

p(w,w′) =

∫

c,c′
p(w|c)p(w′|c′)p(c, c′)dcdc′

=

∫

c,c′

exp(〈vw, c〉)
Zc

exp(〈vw′ , c′〉)
Zc′

p(c)p(c′|c)dcdc′

(4.3)

1 The proof extends to any a symmetric product distribution over the coordinates satisfying, and Ec∼C
[
|ci|2

]
= 1

d
, and |ci| ≤

2√
d
a.s., the steps are such that for all ct, Ep(ct+1|ct)[exp(4κ|ct+1 − ct|1 logn)] ≤ 1 + ε2

6

The main difficulty here is dealing with the notorious partition function Zc which is a sum of exponential
functions

Zc =
∑

w

exp(〈vw, c〉).

We circumvent this issue by showing that the partition functions Zc’s should be all 1 + o(1) close to each
other for most of contexts c. (The rest of the proof could go through if the Zc’s were allowed to vary a bit
more, say within a factor 2.)

Theorem 2 There exists Z such that with high probability (1− 4 exp(−d0.2)) over the choice of vw’s and c,

(1− o(1))Z ≤ Zc ≤ (1 + o(1))Z.

The proof of Theorem 2 uses the fact that word vectors are evenly spread out in space, being scaled
multiples of vectors from a Normal distribution. Thus concentration of measure will be used to show that
Zc is close to its mean. Furthermore, the means of Zc’s are close to each other because they mainly depend
on the norms of c’s, which are also fairly concentrated around 1. However, this is actually non-trivial: the
random variable exp(〈vw, c〉) is not subguassian nor bounded, since the scaling of w and c is such that 〈vw, c〉
is Θ(1), and therefore exp(〈vw, c〉) is at the non-linear regime.

In fact, the same concentration phenomenon doesn’t happen for w (and it had better not!). The occur-
rence probability of word w, which is also a weighted sum of exponential forms, is not necessarily concentrated
because the `2 norm of vw can vary a lot in our model.

Equipped with Theorem 2, we give in the rest of the section a non-rigorous sketch of the proof of equation
(4.1) of Theorem 1. (More rigorous proof appears in supplementary material.) We start by getting rid of
the partition function in the expression (4.3) using Theorem 2:

RHS of (4.3)

=
(1± o(1))2

Z2

∫

c,c′
exp(〈vw + vw′ , c〉)p(c)p(c′|c)dcdc′

For the sake of demonstration of ideas, we assume that the context drifts extremely slowly: with probability
extremely close to 1, context c′ is equal to c. In this special case, we can further simplify the expression
above by basically assuming c = c′,

p(w,w′) = RHS of (4.3)

=
(1± o(1))2

Z2

∫

c

exp(〈vw + vw′ , c〉)p(c)dc

=
(1± o(1))2

Z2 E
c∼C

[exp(〈vw + vw′ , c〉)] (4.4)

Then using the assumption that the stationary distribution C is a product distribution under which c has
norm expected to be 1, we can show that

E
c∼C

[exp(〈vw + vw′ , c〉)] ≈ exp(‖vw + vw′‖2/(2d)) (4.5)

Hence, by connecting (4.4) and (4.5), we have the desired result. In an analogous way, we can prove that
log occurrence probability of word w is proportional to ‖w‖2 up to an o(1) shift.

5 Optimization objectives

In this section, we design objective functions for constructing word vectors according to our theory. The-
orem 1 says that after proper scaling, log p(w,w′) is roughly ‖vw + vw′‖22 + C where C = −2 logZ is
an unknown constant. The ground truth p(w,w′) is approximated by the empirical co-occurrence count

7

Xw,w′ in the corpus T . This suggests minimizing the sum of the differences between log(Xw,w′/|T |) and

‖vw + vw′‖22 + C over word vectors vw’s and C.
However, the sampling noise in Xw,w′ is significant (especially after taking logs), and therefore we need

to weight w,w′ with some fw,w′ to compensate the noise in Xw,w′ , where fw,w′ should be increasing in
Xw,w′ since for larger pw,w′ , log(Xw,w′) actually have smaller variance, even though Xw,w′ have larger

one. Though we omit the easy calculation, one can use maximum likelihood weight fw,w′ =
Xw,w′

|T |−Xw,w′ , by

assuming that Xw,w′ is generated from the Binomial distribution (see supplementary). We arrive at the
following optimization named SN (Squared Norm):

min
{vw},C

∑

w,w′

fw,w′

(
log(Xw,w′)− ‖vw + vw′‖22 − C

)2
.

Note that GloVE also used a similar weighting (though not explained) where fw,w′ is chosen to be linear
or sublinear in Xw,w′ . (The sublinear value can theoretically arise if the frequency distribution of the subset
of words that actually arise in analogy tasks is not representative.) In experiment, we adopt the weights
fw,w′ used in GloVe (2.2).

We also introduce two similar objectives for comparison. Since ‖vw + vw′‖22 = 2 〈vw, vw′〉+‖vw′‖2+‖vw′‖2,

we can introduce bias terms bw to capture ‖vw‖2 + C/2, resulting in the objective named BIAS:

min
{vw,bw}

∑

w,w′

fw,w′ (logXw,w′ − 〈vw, vw′〉 − bw − bw′)
2
.

Note that although this looks similar to GloVe’s objective, we uses only one set of word vectors to fit the

data, without the context vectors used in GloVe. Finally, Theorem 1 implies the PMI log p(w,w′)
p(w′)p(w′) is roughly

〈vw, vw′〉+ C for some constant C, leading to the following objective named PMI:

min
{vw},C

∑

w,w′

fw,w′

(
log

Xw,w′ |T |
XwXw′

− 〈vw, vw′〉 − C
)2

where Xw =
∑
w′ Xw,w′ and log

Xw,w′ |T |
XwXw′ is the empirical PMI.

6 Experiment

We present a selected subset of experimental results here, while the complete details can be found in the
appendix.

Training method We used the English Wikipedia data2, and preprocessed it by standard approach,
resulting in about 3 billion tokens. We ignored words that appeared less than 1000 times in the corpus and
obtained a vocabulary of 68, 430. The co-occurrence is then computed by using GloVe’s code, on which all
the methods are trained by AdaGrad (Duchi et al., 2011).

Evaluation method The constructed vectors are evaluated on two standard testbeds for word analogy
tasks (GOOGLE3, MSR4) and a more challenging testbed. GOOGLE and MSR questions are answered
correctly only if the correct missing term is ranked top 1; in our testbed if the missing term is among the
top 10. GOOGLE contains semantic questions such as “man:woman::king:?” and syntactic ones such as
“run:runs::walk:?.” MSR includes syntactic questions for adjectives, nouns and verbs. Our testbed includes
semantic questions collected from English courses, such as “lettuce:vegetable::apples:?.” This testbed will be

2http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
3code.google.com/p/word2vec/source/browse/trunk/questions-words.txt
4research.microsoft.com/en-us/projects/rnn/

8

http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
code.google.com/p/word2vec/source/browse/trunk/questions-words.txt
research.microsoft.com/en-us/projects/rnn/

Relations GloVe SN BIAS PMI

G
semantic 84.54 81.13 83.77 80.98
syntactic 64.62 61.15 61.66 61.19
total 73.32 69.87 71.31 69.82

M
adjective 54.01 50.00 51.81 49.24
noun 73.10 69.70 70.50 68.60
verb 59.43 47.70 48.73 48.33
total 61.01 52.54 53.68 52.54

ours total(@top10) 35.09 35.67 35.09 30.41

Table 1: Accuracy on the word analogy tasks. G: GOOGLE; M: MSR.
se
co
n
d
b
es
t
sc
or
e

best score

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 2: The scatter plot showing the small gap between the best score and the second best for questions
in GOOGLE. The red line is x = y.

released with the public version of the paper. Our vocabulary covers about 92% of the GOOGLE questions,
63% of MSR, and 95% of our testbed. To solve these tasks, we use linear algebraic query (2.3), i.e., rank d
according to 〈vd, vc + vb − va〉. We compare to GloVe, since it is the state-of-the-art and since our objectives
look similar to theirs but has an important difference: we fit the data without context vectors. It is a prior
unclear we can do so but our theory implies its validity, so the comparison provides support for the analysis.

6.1 Performance

The performance of different methods is presented in Table 1. All our three methods achieve performance
comparable to the state-of-the-art approach, especially on semantic tasks. Our methods achieve accuracy
3% lower than the competitor on syntatic tasks in GOOGLE, 8% lower on those in MSR. This is because
our model is built explicitly for modeling semantic meanings; some specific features of the syntactic relations
are not reflected, e.g., a word “she” can affect the context by a lot and can determine if the next word is
“thinks” rather than “think”.

The Mystery 2 described in the introduction stems from the two seemingly contradictory facts that
there is high entrywise error in the optimization, and that the best score only have a small margin over the
second best. The first can be observed in the training error. For the second fact, we present in Figure 6.1
a scatter plot of the best and second best scores for the questions in GOOGLE when solved by our method
SN. It can be seen that for a significant portion of the questions, the two scores are close to each other.

9

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

(a) SN

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

40

45

(b) BIAS

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

(c) PMI

Figure 3: Isotropy property. The figure shows the histogram of v>wE
[
vw′v>w′

]
v/v>wvw for 1000 random word

vector w. x-axis is normalized by the mean of the values.

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0

1000

2000

3000

4000

5000

6000

7000

(a) SN

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

(b) BIAS

2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

(c) PMI

Figure 4: Illustration of the norms of the word vectors. The figure shows the histogram of the norms.

6.2 Model verification

We also run experiments to provide positive support for the validity of our assumptions. More precisely, we
test assumptions: 1) the isotropy property, 2) the distributions of the norms of the word vectors, and 3) the
partition function Zc is roughly the same for different c.

Isotropy We randomly pick a word w, and compute v>wE
[
vw′v>w′

]
vw/v

>
wvw. Figure 3 shows the histogram

for 1000 random w. For all methods, the values are all reasonably concentrated, mostly in the range [0.5, 1.5]
times the mean.

Norm Figure 4 shows the histogram of the norms of the word vectors. It agrees with our assumptions in
Section 3: they center around mean with roughly the same standard deviation, and the maximum is bounded
by a constant times the mean.

The partition function Zc. Not knowing the vectors for the contexts, we approximately verified this by
computing Zc =

∑
w′ exp(c>w′) for a random unit vector c. Figure 5 shows the histogram for 1000 random

c. The values are concentrated in a range [0.8, 1.2] times the mean.

References

Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-Luc Gauvain. Neural
probabilistic language models. In Innovations in Machine Learning, pages 137–186. Springer, 2006.

10

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

(a) SN

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

(b) BIAS

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

(c) PMI

Figure 5: The partition function Zc. The figure shows the histogram of Zc for 1000 random unit vector c.
x-axis is normalized by the mean of the values.

David M Blei and John D Lafferty. Dynamic topic models. In Proceedings of the 23rd international conference
on Machine learning, pages 113–120. ACM, 2006.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th international conference on Machine learning,
pages 160–167. ACM, 2008.

Scott C. Deerwester, Susan T Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman.
Indexing by latent semantic analysis. JASIS, 41(6):391–407, 1990.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

John Rupert Firth. A synopsis of linguistic theory. 1957.

Amir Globerson, Gal Chechik, Fernando Pereira, and Naftali Tishby. Euclidean embedding of co-occurrence
data. Journal of Machine Learning Research, 8:2265–2295, 2007.

Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-sampling word-
embedding method. arXiv preprint arXiv:1402.3722, 2014.

Geoffrey E Hinton. Distributed representations. 1984.

Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit word representations. In Pro-
ceedings of the Eighteenth Conference on Computational Natural Language Learning, Baltimore, Maryland,
USA, June. Association for Computational Linguistics, 2014a.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In Advances in
Neural Information Processing Systems, pages 2177–2185, 2014b.

Tomas Mikolov, Stefan Kombrink, Lukas Burget, JH Cernocky, and Sanjeev Khudanpur. Extensions of
recurrent neural network language model. In Acoustics, Speech and Signal Processing (ICASSP), 2011
IEEE International Conference on, pages 5528–5531. IEEE, 2011.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In Advances in Neural Information Processing Systems,
pages 3111–3119, 2013a.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word repre-
sentations. In HLT-NAACL, pages 746–751. Citeseer, 2013b.

11

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive estima-
tion. In Advances in Neural Information Processing Systems, pages 2265–2273, 2013.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word repre-
sentation. Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), 12,
2014.

Douglas L. T. Rohde, Laura M. Gonnerman, and David C. Plaut. An improved model of semantic similarity
based on lexical co-occurence. CACM 2006, 2006.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. Cognitive modeling, 1988.

12

Supplementary Material: Proofs and Experiment Details

A Proofs of Theorem 1 and 2

In this section we prove Theorem 1 and 2 (restated below) .

Theorem 1 Assume that the hidden contexts are at stationary distribution, with high probability over the
choice of vw’s, we have that for any two different words w and w′

log p(w,w′) =
1

2d
‖vw + vw′‖2 − 2 logZ ± o(1) (A.1)

for some fixed constant Z. Moreover,

log(p(w)) =
1

2d
‖vw‖22 − logZ ± o(1). (A.2)

Theorem 2 There exists Z such that for any context c with |‖c‖ − 1| ≤ d−0.4 , with high probability (1 −
2e−2n

0.4

)) over the choice of vw’s,

(1− o(1))Z ≤ Zc ≤ (1 + o(1))Z.

We first prove Theorem 1 using Theorem 2, and Theorem 2 will be proved in Section A.1. For the intuition
of the proof, please see Section 4 of the main paper.
Proof [Proof of Theorem 1]
Let c be the hidden context that determines the probability of word w, and c′ be the next one that de-
termines w′. We use p(c′|c) to denote the Markov kernel (transition matrix) of the markov chain. Let C
be the stationary distribution of context vector c. We marginalize over the contexts c, c′ and then use the
independence of w,w′ conditioned on c, c′,

p(w,w′) =

∫

c,c′
p(w|c)p(w′|c′)p(c, c′)dcdc′

=

∫

c,c′

exp(〈vw, c〉)
Zc

exp(〈vw′ , c′〉)
Zc′

p(c)p(c′|c)dcdc′

(A.3)

We first get rid of the partition function Zc using Theorem 2, which says that there exists Z such that, with
probability 1− 4 exp(−d0.2),

(1− εz)Z ≤ Zc ≤ (1 + εz)Z. (A.4)

where εz = o(1).
Let F be the event that both c and c′ satisfy (A.4)and F be its negation, and let 1F be the indicator function
for the event F . Therefore we have Pr[F] ≥ 1− 4 exp(−d0.8).
We first decompose the integral (A.3) into the two parts according to whether event F happens,

13

p(w,w′) =

∫

c,c′

1

ZcZc′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′

+

∫

c,c′

1

ZcZc′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′ (A.5)

We bound the first quantity on RHS by using (A.4) and the definition of F .

∫

c,c′

1

ZcZc′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′

≤ (1 + εz)2
1

Z2

∫

c,c′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′ (A.6)

and for the second one we use the fact that Zc ≥ n and exp(〈vw, c〉) ≤ exp(2κ
√
d) (by assumption ‖vw‖ ≤ κ

√
d

and ‖c‖ ≤ 2), and conclude

∫

c,c′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′

≤ Pr[F] · exp(4κ
√
d) ≤ exp(−d0.7) (A.7)

For the last inequality we use Pr[F] ≤ 4 exp(−d0.2). Combining (A.5), (A.6) and (A.7), we obtain

p(w,w′) ≤ (1 + εz)2
1

Z2

∫

c,c′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′ + exp(−d0.2)

≤ (1 + εz)2
1

Z2

(∫

c,c′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)dcdc′ + δ0

)

where δ0 = exp(−d0.2)Z2 ≤ exp(−d0.1). This is because Z ≤ exp(2κ)n and d = ω(log2 n), and κ is a
constant.
On the other hand, we can lowerbound similarly

p(w,w′) ≥ (1− εz)2
1

Z2

∫

c,c′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′

≥ (1− εz)2
1

Z2

(∫

c,c′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)dcdc′ − exp(−d0.7)

)

≥ (1− εz)2
1

Z2

(∫

c,c′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)dcdc′ − δ0

)

Taking logarithm, the multiplicative error translates to a additive error

log p(w,w′) = log

(∫

c,c′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)dcdc′ ± δ0

)
− 2 logZ + 2 log(1± εz)

For the purpose of exploiting the fact that c, c′ should be close to each other, we further rewrite log p(w,w′)
by re-organizing the integrals,

14

log p(w,w′) = log

(∫

c

exp(〈vw, c〉)p(c)dc
∫

c′
exp(〈vw′ , c′〉)p(c′|c)dc′ ± δ0

)
− 2 logZ + 2 log(1± εz)

= log

(∫

c

exp(〈vw, c〉)p(c)A(c, c′)dc± δ0
)
− 2 logZ + 2 log(1± εz) (A.8)

where the inner integral which is denoted by A(c, c′),

A(c, c′) :=

∫

c′
exp(〈vw′ , c′〉)p(c′|c)dc′

Note that by Lemma 3, we have that for any w ∈W , ‖vw‖∞ ≤ 4κ log n. Therefore we have that 〈vw, c−c′〉 ≤
‖vw‖∞‖c− c′‖1 ≤ 4κ log n‖c− c′‖1.
Then we can bound A(c, c′) by

A(c, c′) =

∫

c′
exp(〈vw′ , c′〉)p(c′|c)dc′

= exp(〈vw′ , c〉)
∫

c′
exp(〈vw′ , c′ − c〉)p(c′|c)dc′

≤ exp(〈vw′ , c〉)
∫

c′
exp(4κ|c′ − c|1 log n)p(c′|c)

= exp(〈vw′ , c〉) E
p(c′|c)

[exp(4κ|c′ − c|1 log n)]

≤ (1 + ε2) exp(〈vw′ , c〉)

For the lower bound of A(c, c′), we first observe that

E
p(c′|c)

[exp(4κ|c′ − c|1 log n)] + E
p(c′|c)

[exp(−4κ|c′ − c|1 log n)] ≥ 2

Therefore it follows model assumption that

E
p(c′|c)

[exp(−4κ|c′ − c|1 log n)] ≥ 1− ε2

Therefore,

A(c, c′) = exp(〈vw′ , c〉)
∫

c′
exp(〈vw′ , c′ − c〉)p(c′|c)dc′

≥ exp(〈vw′ , c〉)
∫

c′
exp(−4κ‖c′ − c‖ log n)p(c′|c)dc′

= exp(〈vw′ , c〉) E
p(c′|c)

[exp(−4κ‖c′ − c‖ log n)]

≥ (1− ε2) exp(〈vw′ , c〉)

Therefore, we obtain that A(c, c′) = (1 ± ε2) exp(〈vw′ , c〉). Plugging the estimation of A(c, c′) into the
equation A.8, we obtain that

15

log p(w,w′) = log

(∫

c

exp(〈vw, c〉)p(c)A(c, c′)dc± δ0
)
− 2 logZ + 2 log(1± εz)

= log

(∫

c

exp(〈vw, c〉)p(c)(1± ε2) exp(〈vw′ , c〉)dc± δ0
)
− 2 logZ + 2 log(1± εz)

= log

(∫

c

exp(〈vw, c〉)p(c) exp(〈vw′ , c〉)dc± δ0
)
− 2 logZ + 2 log(1± εz) + log(1± ε2)

= log

(∫

c

exp(〈vw + vw′ , c〉)p(c)dc± δ0
)
− 2 logZ + 2 log(1± εz) + log(1± ε2)

= log

(
E

c∼C
[exp(〈vw + vw′ , c〉)]± δ0

)
− 2 logZ + 2 log(1± εz) + log(1± ε2)

Now it suffices to compute Ec∼C [exp(〈vw + vw′ , c〉)]. Let t = vw + vw′ . By our assumption, C is a product
distribution across the coordinates. Therefore we can write

E
c∼C

[exp(〈vw + vw′ , c〉)] =
d∏

i=1

E
ci

exp(tici)

Using lemma 4 for tici ≤ 1(we used the fact that ti ≤ 8κ log n for all t = vw + vw′ , ci ≤ 2√
d

(see Lemma 3);

In our setting κ is a constant, d = ω((log n)2)), we can estimate Eci exp(tici) by

E
ci

exp(tici) = 1 +
t2i
2d

+O(t4i /d
2)

Using the fact that x− x2

2 ≤ ln(1 + x) ≤ x.

logE
c

[exp(〈vw + vw′ , c〉)] =
d∑

i=1

logE
ci

exp(tici) =
d∑

i=1

log

(
1 +

t2i
2d

+O(t4i /d
2)

)

=
d∑

i=1

t2i
2d

+O(t4i /d
2)

= ‖t‖2/(2d) +O(‖t‖44/d2)

Putting altogether, we have that

log p(w,w′) = log

(
E

c∼C
[exp(〈vw + vw′ , c〉)]± δ0

)
− 2 logZ + 2 log(1± εz) + log(1± ε2)

= ‖vw + vw′‖2/(2d) +O(‖vw + vw′‖44/d2) +O(δ′0)− 2 logZ ± 2εz ± ε2
= (1 + δ)‖vw + vw′‖2/(2d)− 2 logZ ± 2εz ± ε2

where δ′0 = δ0 · (Ec∼C [exp(〈vw + vw′ , c〉)])−1 = o(1) and δ = d−0.4, where in the last step we used Lemma 3
that ‖vw + vw′‖44/d2 < ‖vw + vw′‖2/d1.6.
Note that εz, ε2 are on the order of o(1), and δ(‖vw + vw′‖2/(2d)) = o(1) for all w and w′ by Lemma 3, we
obtain the desired bound,

log p(w,w′) =
1

2d
‖vw + vw′‖2 − 2 logZ ± o(1)

16

Lemma 3 With high probability over the choice of vw’s, we have that for any w ∈ W and any i, (vw)i ≤
4κ log n, and for any pair of words w,w′,

‖vw + vw′‖44/d2 < ‖vw + vw′‖2/d1.6

Proof Recall that we assume vw are generated independently as vw = sw · v̂w where sw ≤ κ
√
d for some

constant κ and v̂w is from a spherical Gaussian distribution (each coordinate is i.i.d N(0, 1/d)).
Let’s do each of the claims separately.
For a standard Gaussian distribution, we know that

Pr
[
|(v̂w)i| ≥ 4d−0.5 log n

]
≤ e− 16

2 log2 n

Since sw ≤ κ
√
d, we know that

Pr [|(sw · v̂w)i| ≥ 4κ log n] ≤ e− 16
2 log2 n

Union bounding, we have that with probability 1 − dne− 16
2 log2 n = 1 − o(1) (recall that d < n0.5), for all

words w, for every coordinate i, (vw)i ≤ 4κ log n.
The second claim is not much more difficult. For standard Gaussian distribution, we know that

Pr
[
|(v̂w)i| ≥ d−0.3/κ

]
≤ e− d

0.4

2κ2

Since sw ≤ κ
√
d, we know that

Pr
[
|(sw · v̂w)i| ≥ d0.2

]
≤ e− d

0.4

2κ2

Taking a union bound, we have: with probability 1− dne− d
0.4

2κ2 (note in our setting dne−
d0.4

2κ2 = o(1) for large
enough d), for all words w and their coordinate i, |(vw)i| ≤ d0.2. In this case we have:

(vw + vw′)4i /d
2 ≤ (vw + vw′)2i /d

1.6

which easily implies the claim we want.

Lemma 4 If a real random variable X is symmetric and E[X2] = 1/d and |X| ≤ 2/
√
d a.s. Then for

t <
√
d/10, we have

1 +
t2

2d
≤ E

X
exp(tX) ≤ 1 +

t2

2d
+

4

3

(
t√
d

)4

Proof By the moment generating function of X, we have

E
X

exp(tX) =
∞∑

j=0

tj

(j)!
E[Xj]

Therefore by the assumption that X is symmetric and E[X2] = 1
d , we have that

E
X

exp(tX) ≥ 1 +
t2

2d

17

On the other hand, using the fact that |X| < 2√
d

a.s.

E
X

exp(tX) =

∞∑

j=0

t2j

(2j)!
E[X2j] = 1 +

t2

2d
+

∞∑

j=2

1

(2j)!

(
2t√
d

)2j

≤ 1 +
t2

2d
+

4

3

(
t√
d

)4

the last inequality is because we choose t <
√
d/10: t√

d
< 1/10; hence

∞∑

j=2

1

(2j)!

(
2t√
d

)2j

≤
(

t√
d

)4 ∞∑

j=0

(
1

5

)2j

≤ 4

3

(
t√
d

)4

A.1 Analyzing partition function Zc

In this section, we prove Theorem 2. We basically first prove that for the means of Zc are all (1 + o(1))-close
to each other, and then prove that Zc is concentrated around its mean. It turns out the concentration part
is non trivial because the random variable of concern, exp(〈vw, c〉) is not well-behaved in terms of the tail.
Note that exp(〈vw, c〉) is NOT sub-gaussian for any variance proxy. This essentially disallows us to use an
existing concentration inequality directly. We get around this issue by considering the truncated version of
exp(〈vw, c〉), which is bounded, and have similar tail properties as the original one, in the regime that we
are concerning.
Proof [Proof of Theorem 2]
Recall that by definition

Zc =
∑

w

exp(〈vw, c〉).

We fix context c and view vw as random variables throughout this proof. For convenience, we denote the
norm of c by ` = ‖c‖. Recall that vw is composed of vw = sw · v̂w, where sw is the scaling and v̂w is from
spherical Gaussian with covariance 1

dId×d and thus almost a unit vector.
Just as a warm-up, we lowerbound the mean of Zc as follows:

E[Zc] = nE [exp(〈vw, c〉)] ≥ nE [1 + 〈vw, c〉] = n

On the other hand, to upperbound the mean of Zc, we condition on the scaling sw,

E[Zc] = nE[exp(〈vw, ṽc〉)]
= nE [E [exp(〈vw, ṽc〉) | sw]]

Note that conditioned on sw, we have that 〈vw, ṽc〉 is a guassian random variable with variance σ2 =
‖c‖2s2w/d. Therefore,

E [exp(〈vw, ṽc〉) | sw] =

∫

x

1

σ
√

2π
exp(− x2

2σ2
) exp(x)dx

=

∫

x

1

σ
√

2π
exp(− (x− σ2)2

2σ2
+ σ2/2)dx

= exp(σ2/2)

It follows that

E[Zc] = E[exp(σ2/2)] = E[exp(s2w‖c‖2/2)] = E[exp(s2‖c‖2/2)]

18

Let Z := E[exp(|s|2/2d)]. By Proposition 5, we have that 1− o(d−0.4) ≤ ‖c‖ ≤ 1 + o(d−0.4). Therefore, for
any c,

E[Zc] = E[exp(s2‖c‖2/2d)] ≤ E[exp(s2/2) · exp(o(d−0.4)s2/2d)] ≤ (1 + o(d−0.4)κ2/2)Z = (1 + o(1))Z

Similarly we can prove that E[Zc] ≥ (1− o(1))Z for any c.
We calculate the variance of Zc as follows:

V[(Zc − EZc)
2] =

∑

w

V
[
exp(〈vw, c〉)2

]
≤ nE[exp(2〈vw, c〉)]

= nE [E [exp(2〈vw, c〉) | sw]]

By a very similar calculation as above, using the fact that 〈vw, c〉 is a guassian random variable with variance
σ2 = `2‖sw‖2/d,

E
[
exp(〈vw, c〉2) | sw

]
=

∫

x

1

σ
√

2π
exp(− x2

2σ2
) exp(2x)dx

=

∫

x

1

σ
√

2π
exp(− (x− 2σ2)2

2σ2
+ 2σ2)dx

= exp(2σ2)

Therefore, we have that

E[(Zc − EZc)
2] ≤ nE [E [exp(2〈vw, ṽc〉) | sw]]

= nE
[
exp(2σ2)

]
= nE

[
exp(2`2‖sw‖2/d)

]
≤ Λn

For Λ = exp(8κ2) being a constant. Therefore, the standard deviation of Zc is
√

Λn is much less than n.
Also note that E[Zc] ≥ n, therefore we should expect with good probability over the choice of vw’s, we have
that Zc is within E[Zc]±

√
Λn = E[Zc](1 + o(1)).

However, observe that exp(〈vw, c〉) is not sub-Gaussian or bounded. This disallows us to apply the usual
concentration inequalities. The rest of the proof deals with this issue in a slightly more specialized manner.
Let’s define Fw be the event that exp(〈vw, c〉) < d0.2. Observe that F is a very high probability event with
Pr[Fw] ≥ 1− exp(−d0.2/κ2) . Let random variable Xw have the same distribution as exp(〈vw, c〉)|Fw .
We prove concentration inequality for Z ′c =

∑
wXw. Observe that mean of Z ′c is lowerbounded

E[Z ′c] = nE [exp(〈vw, c〉)|Fw] ≥ n exp(E [〈vw, c〉|Fw]) = n

and the variance is upperbounded by

V[Z ′c] ≤ nE
[
exp(〈vw, c〉)2|Fw

]

≤ 1

Pr[Fw]
E
[
exp(〈vw, c〉)2

]

≤ 1

Pr[Fw]
Λn ≤ 1.1Λn

where the second line uses the fact that

E
[
exp(〈vw, c〉)2

]
= Pr[Fw]E

[
exp(〈vw, c〉)2|Fw

]
+ Pr[Fw]E

[
exp(〈vw, c〉)2|Fw

]

≥ Pr[Fw]E
[
exp(〈vw, c〉)2|Fw

]
.

19

Moreover, by definition, for any w, |Xw| ≤ d0.2. Therefore by Bernstein’s inequality, we have that

Pr
[
|Z ′c − E[Z ′c]| > 4

√
Λn+ 12n0.7

]
≤ e−2n0.4

By the fact that E[Z ′c] ≥ n, we have that for ε = n−0.3 ≤ d−0.6 (we use the fact that d < n0.5)

Pr [|Z ′c − E[Z ′c]| > εE[Z ′c]] ≤ 2e−2n
0.4

Let F = ∩wFw be the union of all Fw. We have that by definition, Z ′c have the same distribution as Zc|F .
Therefore, we have that

Pr[|Zc − E[Z ′c]| > εE[Z ′c] | F] ≤ 2e−2n
0.4

and therefore

Pr[|Zc − E[Z ′c]| > εE[Z ′c]] ≤
1

Pr[F]
· Pr[|Zc − E[Z ′c]| > εE[Z ′c] | F] ≤ 2e−2n

0.4

Finally we show that E[Z ′c] are close to each other as well. We take c that satisfies that ‖c‖ = 1± d−0.4 and
consider E[Zc] = E[exp(〈v, c〉)|F] , where v is from the same distribution where vw is generated, and F is
the event that exp(〈v, c〉) ≤ d0.2. Note that random variable exp(〈v, c〉)|F is really rational invariant with
respect to c. Therefore we have that E[Z ′c] = E[exp(〈v, ‖c‖z〉)|F], where z is any unit vector in the space,
and F ′ is the event that exp(〈v, z〉) ≤ d0.2.

E[Z ′c1] ≤ E[exp(〈v, ‖c‖z〉)|F ′] ≤ E[exp(〈v, z〉)|F ′] sup{exp(〈v, (‖c‖ − 1)z〉)|F ′} (A.9)

= E[exp(〈v, ‖c‖z〉)|F ′] exp(d−0.2) (A.10)

= (1 + o(1))E[exp(〈v, ‖c‖z〉)|F ′] (A.11)

Similarly we can prove that

E[Z ′c1] ≥ (1− o(1))E[exp(〈v, ‖c‖z〉)|F ′] (A.12)

Therefore, let Z = E[exp(〈v, ‖c‖z〉)|F ′], we have the desired result.

Proposition 5 When c ∼ C is at stationary distribution of the random walk, we have that

Pr
c∼C

[
|‖c‖ − 1| > 2d−0.4

]
≤ 2 exp(−d0.2)

Proof By assumption, each coordinate of c is independent with E[c2i] = 1
d and |ci|2 ≤ 4

d , so the Proposition
5 follows from standard Chernoff bound.

B Maximum Likelihood Estimator for log of Binomial Distribu-
tion

In this section, we present a very simple calculation that show that the weight function fw,w′ in GloVe makes
sense. Concretely, we assume that the co-occurrence count Xw,w′ for words pair w,w′ is from binomial
distribution bin(|T |, p(w,w′)). We show that the likelihood of logXw,w′ given on p(w,w′) = x/|T | is of the
form

C +
Xw,w′

|T | −Xw,w′
(x− log(Xw,w′))

2
+ high order term

where C is a fixed constant (that depends on the data Xw,w′ but not x or p.)

20

Theorem 6 Suppose X is from binomial distribution bin(m, p) with p = x/m, then we have that the likeli-
hood of X is of the form

Pr[X | p] = C +
X

m−X (x− log(X))
2

+O
(

(x− log(X))
3
)

where x = log(pm), and C only depends on X but not p or x.

Proof
Let X ∼ bin(m, p), then we know that the probability mass is Pr[X = k | p] =

(
m
k

)
(1 − p)m−kpk, k ∈

{0, 1, ...,m}.
Therefore, the log-likelihood is given by:

log Pr[X = k | p] = log

(
m

k

)
+ (m− k) log(1− p) + k log p, k ∈ N

Let x = log(mp), we have: for k ∈ N,

log Pr[X = k | p] = log

(
m

k

)
+ (m− k) log

(
1− ex

m

)
+ k log

ex

m

We take the Taylor expansion w.r.t x at point log k, and conclude

log Pr[X = k | p] = log

(
m

k

)
− km

2(m− k)
(x− log k)2 +mO

(
(x− log k)3

)

C Experiment Details

Training method The data set used is the English Wikipedia 1. We preprocessed the data by standard
approach (removing non-textual elements, sentence splitting, and tokenization) 2, resulting in a data set with
about 3 billion tokens. We ignored words that appeared less than 1000 times in the corpus and obtained a
vocabulary of 68, 430. The co-occurrence is then computed by using GloVe’s code, using a window size of
10. All the methods are then trained on this co-occurrence for fair comparison. For all our objectives, we
use AdaGrad (?) for the optimization with initial learning rate of 0.05, and run 100 iterations for all our
objectives.

Evaluation method The constructed vectors are evaluated on two standard testbeds for word analogy
tasks (GOOGLE3, MSR4) and also on a more challenging testbed we collected. The word analogy task
consists of questions like, “a:b::c:??.” The algorithm should return a list of candidates. The GOOGLE and
MSR questions are answered correctly only if the correct missing term is ranked top 1. For those more
difficult questions in our testbed, they are answered correctly if the missing term is among the top 10.
The GOOGLE testbed contains 19, 544 such questions, including a semantic subset (7874 questions divided
into 5 types) and a syntactic subset (10167 questions divided into 9 types). A typical semantic question is
“man:woman::king:?” and a syntactic one is “run:runs::walk:?.” The MSR includes 8000 syntactic questions
for adjectives, nouns and verbs. Our testbed includes 180 semantic questions collected from English courses,
such as “lettuce:vegetable::apples:?.” This testbed will be released with the public version of the paper.

1http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
2We used the script provided by Matt Mahoney. The script is at the bottom of http://mattmahoney.net/dc/textdata.html.
3code.google.com/p/word2vec/source/browse/trunk/questions-words.txt
4research.microsoft.com/en-us/projects/rnn/

21

Relations GloVe SN BIAS PMI

GOOGLE

capital-common-countries 96.44 96.25 97.04 96.05
capital-world 97.07 94.17 96.01 94.15
currency 8.65 8.65 8.17 8.65
city-in-state 73.33 67.29 72.8 66.88
family 90.00 89.76 88.57 89.76
gram1-adjective-to-adverb 28.33 23.08 21.17 23.39
gram2-opposite 35.98 35.71 36.24 35.19
gram3-comparative 84.68 84.53 84.68 84.38
gram4-superlative 54.37 43.68 45.86 42.87
gram5-present-participle 62.69 56.34 58.52 56.44
gram6-nationality-adjective 92.06 90.87 91.68 90.87
gram7-past-tense 53.33 49.81 48.91 49.87
gram8-plural 83.36 79.08 82.69 79.58
gram9-plural-verbs 56.40 54.93 52.59 55.67
semantic 84.54 81.13 83.77 80.98
syntactic 64.62 61.15 61.66 61.19
total 73.32 69.87 71.31 69.82

MSR

adjective 54.01 50.00 51.81 49.24
noun 73.10 69.70 70.50 68.60
verb 59.43 47.70 48.73 48.33
total 61.01 52.54 53.68 52.54

ours total(@top10) 35.09 35.67 35.09 30.41

Table 1: Accuracy on the word analogy tasks.

Our vocabulary covers about 92% of the GOOGLE questions, 63% of MSR, and 92% of our testbed. To
solve these tasks, we use linear algebraic query, i.e., rank d according to 〈vd, vc + vb − va〉. We then compare
our performance with GloVe5, trained with the following command:

./glove -save-file $SAVE_FILE -threads 8 -input-file $COOCCURRENCE_SHUF_FILE -x-max 100

-iter 1000 -vector-size 300 -binary 2 -vocab-file $VOCAB_FILE -verbose 2 -model 0

C.1 Performance

The performance of different methods is presented in Table 1. All our three methods achieve performance
comparable to the state-of-the-art approach, especially on semantic tasks. On syntatic tasks, our methods
achieve accuracy 3% lower than the competitor. This is because our model is built explicitly for modeling
semantic meanings; some specific features of the syntactic relations are not reflected, e.g., a word “she” can
affect the context by a lot and can determine if the next word is “thinks” rather than “think”.
The Mystery 2 described in the introduction stems from the two seemingly contradictory facts that there
is high entrywise error in the optimization, and that the best score only have a small margin over the second
best. The first can be observed in the training error. For the second fact, we present in Figure C.1 a scatter
plot of the best and second best scores for the questions in GOOGLE when solved by our method SN. It
can be seen that for a significant portion of the questions, the two scores are close to each other.

C.2 Model verification

We also run experiments to test some assumptions in our model. The results agree with our model and
analysis, providing positive support for the validity of our assumptions. More precisely, we test three key

5http://nlp.stanford.edu/projects/glove/

22

se
co
n
d
b
es
t
sc
or
e

best score

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 1: The scatter plot showing the small gap between the best score and the second best score for all
questions in the testbed GOOGLE. The red line is x = y.

elements in our model: the isotropy property, the distributions of the norms and directions of the word
vectors. Furthermore, we also test a key technical result followed from these assumptions that the partition
function Zc is roughly the same for different c.

Isotropy We randomly pick a word w, and compute v>wE
[
vw′v>w′

]
vw/v

>
wvw. Figure 2 shows the histogram

for 1000 random w. It can be observed that for all methods, the values are all reasonably concentrated,
mostly in the range [0.5, 1.5] times the mean.

Norm Figure 3 shows the histogram of the norms of the word vectors. It agrees with our assumptions:
they center around mean with roughly the same standard deviation, and the maximum is bounded by a
constant times the mean.

Direction To check the directions of the vectors, we randomly sample 1000 unit vector v, and compute
v>E

[
vw′v>w′

]
v. Figure C.2 is the histogram of these values, which shows that they are tightly concentrated

around the mean, which agrees with our assumption that the direction is roughly uniform over space.

The partition function Zc Note that we do not know the vectors for the contexts, so we approximately
verified this by computing Zc =

∑
w′ exp(c>w′) for a random unit vector c. Figure 5 shows the histogram

for 1000 random c. The values are concentrated, mostly in the range [0.8, 1.2] times the mean.

23

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

70

(a) GloVe

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

(b) SN

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

40

45

(c) BIAS

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

(d) PMI

Figure 2: Isotropy property. The figure shows the histogram of v>wE
[
vw′v>w′

]
v/v>wvw for 1000 random word

vector w. x-axis is normalized by the mean of the values.

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

(a) GloVe

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0

1000

2000

3000

4000

5000

6000

7000

(b) SN

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

(c) BIAS

2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

(d) PMI

Figure 3: Illustration of the norms of the word vectors. The figure shows the histogram of the norms.

24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

350

400

(a) GloVe

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

200

250

(b) SN

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

(c) BIAS

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

(d) PMI

Figure 4: Illustration of the directions of the word vectors. The figure shows the histogram of v>E
[
vw′v>w′

]
v

for 1000 random unit vector v. x-axis is normalized by the mean of the values.

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

(a) GloVe

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

(b) SN

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

(c) BIAS

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

(d) PMI

Figure 5: The partition function Zc. The figure shows the histogram of Zc for 1000 random unit vector c.
x-axis is normalized by the mean of the values.

25

	1 Introduction
	2 Semantic embeddings: the mysteries and the explanation
	2.1 Our explanation of Mysteries 1 and 2

	3 Generative model
	4 Co-occurrence probability
	5 Optimization objectives
	6 Experiment
	6.1 Performance
	6.2 Model verification

