2nd Midterm

Foundations of Mathematics 2nd midterm

$2020 \ \mathrm{Dec} \ 1$

M2.1 Let $S = \{1, 2, ..., 6\}$ and let $P(A) : A \cap \{2, 4, 6\} = \emptyset$ and $Q(A) : A \neq \emptyset$ be open sentences over the domain 2^S . (a) Determine all $A \in 2^S$ for which $P(A) \land Q(A)$ is true

- (b) Determine all $A \in 2^S$ for which $P(A) \lor \neg Q(A)$ is true
- (c) Determine all $A \in 2^S$ for which $(\neg P(A)) \land (\neg Q(A))$ is true

M2.2 Determine the truth value of each of the following quantified statements:

(a) $\exists x \in \mathbb{R}, x^3 + 2 = 0.$ (b) $\forall n \in \mathbb{N}, 2 \ge 3 - n$ (c) $\forall x \in \mathbb{R}, |x| = x$ (d) $\exists x \in \mathbb{Q}, x^4 - 4 = 0$ (e) $\exists x, y \in \mathbb{R}, x + y = \pi$ (f) $\forall x, y \in \mathbb{R}, x + y = \sqrt{x^2 + y^2}$

M2.3 Let $S = \{8, 12, 20, 24\}$. Prove that if $\{x, y\}$ is a 2-element subset of S, then either x + y = 8k for some even integer k or x + y = 4l for some odd integer l.

M2.4 Prove or disprove the following:

- (a) If A is an uncountable set, then $|A| = |\mathbb{R}|$
- (b) There exists a bijective function $f:\mathbb{Q}\to\mathbb{R}$
- (c) If A, B and C are sets such that $A \subseteq B \subseteq C$ and A and C are denumerable, then B is denumerable
- (d) The set $S = \{\sqrt{2}/n : n \in \mathbb{N}\}$ is denumerable
- (e) There exists a denumerable subset of the set of irrational numbers
- (f) Every infinite set is a subset of some denumerable set
- (g) If A and B are sets with the property that there exists an injective function $f: A \to B$, then |A| = |B|